Source code for cloudkitty.api.v1.datamodels.storage

# -*- coding: utf-8 -*-
# Copyright 2014 Objectif Libre
#
#    Licensed under the Apache License, Version 2.0 (the "License"); you may
#    not use this file except in compliance with the License. You may obtain
#    a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
#    WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
#    License for the specific language governing permissions and limitations
#    under the License.
#
import datetime
import decimal

from wsme import types as wtypes

from cloudkitty.api.v1.datamodels import rating as rating_resources


[docs] class RatedResource(rating_resources.CloudkittyResource): """Represents a rated CloudKitty resource.""" rating = decimal.Decimal def to_json(self): res_dict = super(RatedResource, self).to_json() res_dict['rating'] = self.rating return res_dict @classmethod def sample(cls): sample = cls(volume=decimal.Decimal('1.0'), service='compute', rating=decimal.Decimal('1.0'), desc={'flavor': 'm1.tiny', 'vcpus': '1'}) return sample
[docs] class DataFrame(wtypes.Base): """Type describing a stored data frame.""" begin = datetime.datetime """Begin date for the sample.""" end = datetime.datetime """End date for the sample.""" tenant_id = wtypes.text """Tenant owner of the sample.""" resources = [RatedResource] """A resource list.""" def to_json(self): return {'begin': self.begin, 'end': self.end, 'tenant_id': self.tenant_id, 'resources': self.resources} @classmethod def sample(cls): res_sample = RatedResource.sample() sample = cls(tenant_id='69d12143688f413cbf5c3cfe03ed0a12', begin=datetime.datetime(2015, 4, 22, 7), end=datetime.datetime(2015, 4, 22, 8), resources=[res_sample]) return sample
[docs] class DataFrameCollection(wtypes.Base): """A list of stored data frames.""" dataframes = [DataFrame] @classmethod def sample(cls): sample = DataFrame.sample() return cls(dataframes=[sample])