
Watcher Documentation
Release 14.1.1.dev3

OpenStack Foundation

Jan 15, 2026

CONTENTS

1 System Architecture 3
1.1 Overview . 3
1.2 Components . 3

1.2.1 AMQP Bus . 3
1.2.2 Datasource . 4
1.2.3 Watcher API . 4
1.2.4 Watcher Applier . 4
1.2.5 Watcher CLI . 5
1.2.6 Watcher Dashboard . 5
1.2.7 Watcher Database . 5
1.2.8 Watcher Decision Engine . 5

1.3 Data model . 6
1.4 Sequence diagrams . 9

1.4.1 Create a new Audit Template . 9
1.4.2 Create and launch a new Audit . 9
1.4.3 Launch Action Plan . 13

1.5 State Machine diagrams . 15
1.5.1 Audit State Machine . 15
1.5.2 Action Plan State Machine . 16

2 Contribution Guide 17
2.1 So You Want to Contribute . 17

2.1.1 Communication . 17
2.1.2 Contacting the Core Team . 17
2.1.3 New Feature Planning . 17
2.1.4 Task Tracking . 18
2.1.5 Reporting a Bug . 18
2.1.6 Getting Your Patch Merged . 18

Project Team Lead Duties . 18
2.2 Set up a development environment manually . 18

2.2.1 Prerequisites . 18
2.2.2 Getting the latest code . 18
2.2.3 Installing dependencies . 19

PyPi Packages and VirtualEnv . 19
2.2.4 Verifying Watcher is set up . 20
2.2.5 Run Watcher tests . 20
2.2.6 Build the Watcher documentation . 20
2.2.7 Configure the Watcher services . 20
2.2.8 Create Watcher SQL database . 21

i

2.2.9 Running Watcher services . 21
2.2.10 Interact with Watcher . 21
2.2.11 Exercising the Watcher Services locally . 21

2.3 Set up a development environment via DevStack . 22
2.3.1 Quick Devstack Instructions with Datasources 22

Gnocchi . 22
2.3.2 Detailed DevStack Instructions . 22
2.3.3 Multi-Node DevStack Environment . 24

Setting up SSH keys between compute nodes to enable live migration 24
Configuring NFS Server (ADVANCED) . 25
Configuring NFS on Compute Node (ADVANCED) 25
Configuring libvirt to listen on tcp (ADVANCED) 25
VNC server configuration . 26
Environment final checkup . 26

2.4 Developer Testing . 26
2.4.1 Unit tests . 26
2.4.2 Tempest tests . 27

2.5 Rally job . 27
2.5.1 Structure . 27
2.5.2 Useful links . 27

3 Install Guide 29
3.1 Infrastructure Optimization service overview . 29
3.2 Install and configure . 29

3.2.1 Install and configure for Red Hat Enterprise Linux and CentOS 29
Prerequisites . 30
Install and configure components . 32
Finalize installation . 33

3.2.2 Install and configure for Ubuntu . 34
Prerequisites . 34
Install and configure components . 36
Finalize installation . 38

3.3 Verify operation . 38
3.4 Next steps . 41

4 Administrator Guide 43
4.1 Installing API behind mod_wsgi . 43
4.2 Guru Meditation Reports . 44

4.2.1 Generating a GMR . 44
4.2.2 Structure of a GMR . 44

4.3 Policies . 44
4.3.1 Constructing a Policy Configuration File . 45

4.4 Strategies . 47
4.4.1 Actuator . 47

Synopsis . 47
Requirements . 47
Configuration . 47
Efficacy Indicator . 48
Algorithm . 48
How to use it ? . 48
External Links . 48

4.4.2 Basic Offline Server Consolidation . 48

ii

Synopsis . 48
Requirements . 49
Configuration . 51
Efficacy Indicator . 51
How to use it ? . 51
External Links . 51

4.4.3 Host Maintenance Strategy . 51
Synopsis . 51
Requirements . 52
Configuration . 54
Efficacy Indicator . 54
Algorithm . 54
How to use it ? . 54
External Links . 54

4.4.4 Node Resource Consolidation Strategy . 54
Synopsis . 54
Requirements . 55
Configuration . 57
Efficacy Indicator . 57
Algorithm . 57
How to use it ? . 57
External Links . 57

4.4.5 Noisy neighbor . 57
Synopsis . 57
Requirements . 58
Configuration . 60
Efficacy Indicator . 60
Algorithm . 60
How to use it ? . 60
External Links . 60

4.4.6 Outlet Temperature Based Strategy . 60
Synopsis . 60
Requirements . 60
Configuration . 63
Efficacy Indicator . 63
Algorithm . 63
How to use it ? . 63
External Links . 63

4.4.7 Saving Energy Strategy . 63
Synopsis . 63
Requirements . 64
Configuration . 65
Efficacy Indicator . 65
Algorithm . 65
How to use it ? . 66
External Links . 66

4.4.8 Storage capacity balance . 66
Synopsis . 66
Requirements . 66
Configuration . 68
Efficacy Indicator . 68

iii

Algorithm . 68
How to use it ? . 68
External Links . 68

4.4.9 Uniform Airflow Migration Strategy . 68
Synopsis . 68
Requirements . 69
Configuration . 71
Efficacy Indicator . 71
Algorithm . 71
How to use it ? . 71
External Links . 71

4.4.10 VM Workload Consolidation Strategy . 71
Synopsis . 71
Requirements . 72
Configuration . 75
Efficacy Indicator . 75
Algorithm . 75
How to use it ? . 75
External Links . 75

4.4.11 Watcher Overload standard deviation algorithm 75
Synopsis . 75
Requirements . 76
Configuration . 78
Efficacy Indicator . 78
Algorithm . 79
How to use it ? . 79
External Links . 79

4.4.12 Workload Balance Migration Strategy . 79
Synopsis . 79
Requirements . 80
Configuration . 82
Efficacy Indicator . 82
Algorithm . 82
How to use it ? . 82
External Links . 82

4.4.13 Zone migration . 82
Synopsis . 82
Requirements . 83
Configuration . 85
Efficacy Indicator . 86
Algorithm . 86
How to use it ? . 86
External Links . 87

4.5 Datasources . 87
4.5.1 Grafana datasource . 87

Synopsis . 87
Requirements . 87
Configuration . 87
Example configuration . 91
External Links . 93

4.5.2 Prometheus datasource . 93

iv

Synopsis . 93
Requirements . 94
Limitations . 94
Configuration . 95

4.6 Notifications in Watcher . 96
4.7 Concurrency . 96

4.7.1 Introduction . 96
4.7.2 Threadpool . 97
4.7.3 Decision engine concurrency . 97

AuditEndpoint . 97
DecisionEngineThreadPool . 97

4.7.4 Applier concurrency . 99

5 User Guide 101
5.1 Ways to install Watcher . 101

5.1.1 Prerequisites . 101
5.1.2 Installing from Source . 101
5.1.3 Installing from packages: PyPI . 102
5.1.4 Installing from packages: Debian (experimental) 102

5.2 Watcher User Guide . 103
5.2.1 Getting started with Watcher . 104
5.2.2 Watcher CLI Command . 105
5.2.3 Running an audit of the cluster . 105

5.3 Audit using Aodh alarm . 106
5.3.1 Step 1: Create an audit with EVENT type . 107
5.3.2 Step 2: Create Aodh Alarm . 107
5.3.3 Step 3: Trigger the alarm . 109
5.3.4 Step 4: Verify the audit . 110

6 Configuration Guide 111
6.1 Configuring Watcher . 111

6.1.1 Service overview . 111
6.1.2 Install and configure prerequisites . 112

Configure the Identity service for the Watcher service 112
Set up the database for Watcher . 113

6.1.3 Configure the Watcher service . 113
6.1.4 Configure Nova compute . 117
6.1.5 Configure Measurements . 117
6.1.6 Configure Nova Notifications . 117
6.1.7 Configure Cinder Notifications . 118
6.1.8 Workers . 118

6.2 watcher.conf . 118
6.2.1 DEFAULT . 118
6.2.2 api . 131
6.2.3 cache . 133
6.2.4 cinder_client . 141
6.2.5 collector . 141
6.2.6 database . 142
6.2.7 glance_client . 146
6.2.8 gnocchi_client . 147
6.2.9 grafana_client . 147
6.2.10 grafana_translators . 149

v

6.2.11 ironic_client . 150
6.2.12 keystone_authtoken . 150
6.2.13 keystone_client . 157
6.2.14 maas_client . 157
6.2.15 monasca_client . 158
6.2.16 neutron_client . 158
6.2.17 nova_client . 159
6.2.18 oslo_concurrency . 159
6.2.19 oslo_messaging_kafka . 160
6.2.20 oslo_messaging_notifications . 162
6.2.21 oslo_messaging_rabbit . 163
6.2.22 oslo_policy . 171
6.2.23 oslo_reports . 174
6.2.24 placement_client . 174
6.2.25 prometheus_client . 175
6.2.26 watcher_applier . 176
6.2.27 watcher_clients_auth . 177
6.2.28 watcher_cluster_data_model_collectors.baremetal 179
6.2.29 watcher_cluster_data_model_collectors.compute 179
6.2.30 watcher_cluster_data_model_collectors.storage 179
6.2.31 watcher_datasources . 179
6.2.32 watcher_decision_engine . 180
6.2.33 watcher_planner . 182
6.2.34 watcher_planners.weight . 183
6.2.35 watcher_planners.workload_stabilization . 183
6.2.36 watcher_strategies.basic . 183
6.2.37 watcher_strategies.node_resource_consolidation 184
6.2.38 watcher_strategies.noisy_neighbor . 184
6.2.39 watcher_strategies.outlet_temperature . 184
6.2.40 watcher_strategies.storage_capacity_balance 184
6.2.41 watcher_strategies.uniform_airflow . 185
6.2.42 watcher_strategies.vm_workload_consolidation 185
6.2.43 watcher_strategies.workload_balance . 185
6.2.44 watcher_strategies.workload_stabilization . 185
6.2.45 watcher_workflow_engines.taskflow . 186

7 Plugin Guide 187
7.1 Create a third-party plugin for Watcher . 187

7.1.1 Pre-requisites . 187
7.1.2 Third party project scaffolding . 187
7.1.3 Implementing a plugin for Watcher . 188

7.2 Build a new action . 188
7.2.1 Creating a new plugin . 188

Input validation . 189
7.2.2 Define configuration parameters . 190
7.2.3 Abstract Plugin Class . 190
7.2.4 Register a new entry point . 192
7.2.5 Using action plugins . 192
7.2.6 Scheduling of an action plugin . 192
7.2.7 Test your new action . 192

7.3 Build a new cluster data model collector . 192

vi

7.3.1 Creating a new plugin . 193
7.3.2 Define a custom model . 193
7.3.3 Define configuration parameters . 194
7.3.4 Abstract Plugin Class . 195
7.3.5 Register a new entry point . 196
7.3.6 Add new notification endpoints . 196
7.3.7 Using cluster data model collector plugins . 197

7.4 Build a new goal . 197
7.4.1 Pre-requisites . 197
7.4.2 Create a new plugin . 198
7.4.3 Abstract Plugin Class . 199
7.4.4 Add a new entry point . 199
7.4.5 Implement a customized efficacy specification 199

What is it for? . 199
Implementation . 200

7.5 Build a new planner . 201
7.5.1 Creating a new plugin . 201
7.5.2 Define configuration parameters . 202
7.5.3 Abstract Plugin Class . 202
7.5.4 Register a new entry point . 203
7.5.5 Using planner plugins . 203

7.6 Build a new scoring engine . 203
7.6.1 Pre-requisites . 204
7.6.2 Create a new scoring engine plugin . 204
7.6.3 (Optional) Create a new scoring engine container plugin 205
7.6.4 Abstract Plugin Class . 205
7.6.5 Abstract Plugin Container Class . 206
7.6.6 Add a new entry point . 207
7.6.7 Using scoring engine plugins . 208

7.7 Build a new optimization strategy . 208
7.7.1 Pre-requisites . 208
7.7.2 Create a new strategy plugin . 208
7.7.3 Strategy efficacy . 209
7.7.4 Define Strategy Parameters . 209
7.7.5 Abstract Plugin Class . 210
7.7.6 Add a new entry point . 212
7.7.7 Using strategy plugins . 213

Querying metrics . 213
Read usage metrics using the Watcher Datasource Helper 213

7.8 Available Plugins . 214
7.8.1 Goals . 214

airflow_optimization . 214
cluster_maintaining . 214
dummy . 214
hardware_maintenance . 214
noisy_neighbor . 214
saving_energy . 214
server_consolidation . 214
thermal_optimization . 215
unclassified . 215
workload_balancing . 215

vii

7.8.2 Scoring Engines . 215
dummy_scorer . 215

7.8.3 Scoring Engine Containers . 216
dummy_scoring_container . 216

7.8.4 Strategies . 216
actuator . 216
basic . 216
dummy . 216
dummy_with_resize . 217
dummy_with_scorer . 217
host_maintenance . 217
node_resource_consolidation . 218
noisy_neighbor . 218
outlet_temperature . 218
saving_energy . 219
storage_capacity_balance . 220
uniform_airflow . 220
vm_workload_consolidation . 220
workload_balance . 221
workload_stabilization . 221
zone_migration . 222

7.8.5 Actions . 222
change_node_power_state . 222
change_nova_service_state . 222
migrate . 222
nop . 223
resize . 223
sleep . 223
volume_migrate . 224

7.8.6 Workflow Engines . 224
taskflow . 224

7.8.7 Planners . 224
node_resource_consolidation . 224
weight . 224
workload_stabilization . 225

7.8.8 Cluster Data Model Collectors . 225
baremetal . 225
compute . 225
storage . 225

8 Watcher Manual Pages 227
8.1 watcher-api . 227

8.1.1 Service for the Watcher API . 227
SYNOPSIS . 227
DESCRIPTION . 227
OPTIONS . 227
FILES . 228
BUGS . 228

8.2 watcher-applier . 229
8.2.1 Service for the Watcher Applier . 229

SYNOPSIS . 229

viii

DESCRIPTION . 229
OPTIONS . 229
FILES . 230
BUGS . 230

8.3 watcher-db-manage . 230
8.3.1 Options . 230
8.3.2 Usage . 231
8.3.3 Command Options . 231

create_schema . 231
downgrade . 232
revision . 232
stamp . 232
upgrade . 232
version . 233
purge . 233

8.4 watcher-decision-engine . 234
8.4.1 Service for the Watcher Decision Engine . 234

SYNOPSIS . 234
DESCRIPTION . 234
OPTIONS . 234
FILES . 235
BUGS . 235

8.5 watcher-status . 235
8.5.1 CLI interface for Watcher status commands 235

Synopsis . 235
Description . 236
Options . 236

9 REST API Version History 237
9.1 1.0 (Initial version) . 237
9.2 1.1 . 237
9.3 1.2 . 237
9.4 1.3 . 237
9.5 1.4 . 237

10 Glossary 239
10.1 Action . 239
10.2 Action Plan . 239
10.3 Administrator . 240
10.4 Audit . 240
10.5 Audit Scope . 240
10.6 Audit Template . 241
10.7 Availability Zone . 241
10.8 Cluster . 241
10.9 Cluster Data Model (CDM) . 241
10.10 Controller Node . 242
10.11 Compute node . 242
10.12 Customer . 243
10.13 Goal . 243
10.14 Host Aggregate . 243
10.15 Instance . 243
10.16 Managed resource . 243

ix

10.17 Managed resource type . 243
10.18 Efficacy Indicator . 244
10.19 Efficacy Specification . 244
10.20 Optimization Efficacy . 244
10.21 Project . 245
10.22 Scoring Engine . 245
10.23 SLA . 245
10.24 SLA violation . 245
10.25 SLO . 245
10.26 Solution . 245
10.27 Strategy . 246
10.28 Watcher Applier . 246
10.29 Watcher Database . 246
10.30 Watcher Decision Engine . 247
10.31 Watcher Planner . 247

x

Watcher Documentation, Release 14.1.1.dev3

OpenStack Watcher provides a flexible and scalable resource optimization service for multi-tenant
OpenStack-based clouds. Watcher provides a complete optimization loopincluding everything from a
metrics receiver, complex event processor and profiler, optimization processor and an action plan ap-
plier. This provides a robust framework to realize a wide range of cloud optimization goals, including
the reduction of data center operating costs, increased system performance via intelligent virtual machine
migration, increased energy efficiency and more!

Watcher project consists of several source code repositories:

• watcher - is the main repository. It contains code for Watcher API server, Watcher Decision Engine
and Watcher Applier.

• python-watcherclient - Client library and CLI client for Watcher.

• watcher-dashboard - Watcher Horizon plugin.

The documentation provided here is continually kept up-to-date based on the latest code, and may not
represent the state of the project at any specific prior release.

CONTENTS 1

https://opendev.org/openstack/watcher/
https://opendev.org/openstack/python-watcherclient/
https://opendev.org/openstack/watcher-dashboard/

Watcher Documentation, Release 14.1.1.dev3

2 CONTENTS

CHAPTER

ONE

SYSTEM ARCHITECTURE

This page presents the current technical Architecture of the Watcher system.

1.1 Overview
Below you will find a diagram, showing the main components of Watcher:

watcher decision engine
watcher

db

 message bus

watcher applier

nova glanceceilometer monasca

datasource
drivers

model
drivers

action
drivers

planner
drivers

strategy
drivers

goal
drivers

watcher api

watcher
dashboard

watcher cli

scoring engine
drivers

API call
RPC cast
notification

extensions

workflow
drivers

gnocchi cinder

1.2 Components

1.2.1 AMQP Bus
The AMQP message bus handles internal asynchronous communications between the different Watcher
components.

3

Watcher Documentation, Release 14.1.1.dev3

1.2.2 Datasource
This component stores the metrics related to the cluster.

It can potentially rely on any appropriate storage system (InfluxDB, OpenTSDB, MongoDB,) but will
probably be more performant when using Time Series Databases which are optimized for handling time
series data, which are arrays of numbers indexed by time (a datetime or a datetime range).

1.2.3 Watcher API
This component implements the REST API provided by the Watcher system to the external world.

It enables the Administrator of a Cluster to control and monitor the Watcher system via any interaction
mechanism connected to this API:

• CLI

• Horizon plugin

• Python SDK

You can also read the detailed description of Watcher API.

1.2.4 Watcher Applier
This component is in charge of executing the Action Plan built by the Watcher Decision Engine. Taskflow
is the default workflow engine for Watcher.

It connects to the message bus and launches the Action Plan whenever a triggering message is received
on a dedicated AMQP queue.

The triggering message contains the Action Plan UUID.

It then gets the detailed information about the Action Plan from the Watcher Database which contains
the list of Actions to launch.

It then loops on each Action, gets the associated class and calls the execute() method of this class. Most
of the time, this method will first request a token to the Keystone API and if it is allowed, sends a request
to the REST API of the OpenStack service which handles this kind of atomic Action.

Note that as soon as Watcher Applier starts handling a given Action from the list, a notification message
is sent on the message bus indicating that the state of the action has changed to ONGOING.

If the Action is successful, the Watcher Applier sends a notification message on the bus informing the
other components of this.

If the Action fails, the Watcher Applier tries to rollback to the previous state of the Managed resource
(i.e. before the command was sent to the underlying OpenStack service).

In Stein, added a new config option action_execution_rule which is a dict type. Its key field is strategy
name and the value is ALWAYS or ANY. ALWAYS means the callback function returns True as usual.
ANY means the return depends on the result of previous action execution. The callback returns True if
previous action gets failed, and the engine continues to run the next action. If previous action executes
success, the callback returns False then the next action will be ignored. For strategies that arent in ac-
tion_execution_rule, the callback always returns True. Please add the next section in the watcher.conf
file if your strategy needs this feature.

[watcher_workflow_engines.taskflow]
action_execution_rule = {'your strategy name': 'ANY'}

4 Chapter 1. System Architecture

https://en.wikipedia.org/wiki/Time_series_database
https://docs.openstack.org/api-ref/resource-optimization/

Watcher Documentation, Release 14.1.1.dev3

1.2.5 Watcher CLI
The watcher command-line interface (CLI) can be used to interact with the Watcher system in order to
control it or to know its current status.

Please, read the detailed documentation about Watcher CLI.

1.2.6 Watcher Dashboard
The Watcher Dashboard can be used to interact with the Watcher system through Horizon in order to
control it or to know its current status.

Please, read the detailed documentation about Watcher Dashboard.

1.2.7 Watcher Database
This database stores all the Watcher domain objects which can be requested by the Watcher API or the
Watcher CLI:

• Goals

• Strategies

• Audit templates

• Audits

• Action plans

• Efficacy indicators via the Action Plan API.

• Actions

The Watcher domain being here optimization of some resources provided by an OpenStack system.

1.2.8 Watcher Decision Engine
This component is responsible for computing a set of potential optimization Actions in order to fulfill the
Goal of an Audit.

It first reads the parameters of the Audit to know the Goal to achieve.

Unless specified, it then selects the most appropriate strategy from the list of available strategies achieving
this goal.

The Strategy is then dynamically loaded (via stevedore). The Watcher Decision Engine executes the
strategy.

In order to compute the potential Solution for the Audit, the Strategy relies on different sets of data:

• Cluster data models that are periodically synchronized through pluggable cluster data model col-
lectors. These models contain the current state of various Managed resources (e.g., the data stored
in the Nova database). These models gives a strategy the ability to reason on the current state of a
given cluster.

• The data stored in the Cluster Datasource which provides information about the past of the Cluster.

Here below is a sequence diagram showing how the Decision Engine builds and maintains the cluster
data models that are used by the strategies.

1.2. Components 5

https://docs.openstack.org/python-watcherclient/latest/cli/
https://docs.openstack.org/watcher-dashboard/latest
https://docs.openstack.org/stevedore/latest

Watcher Documentation, Release 14.1.1.dev3

The execution of a strategy then yields a solution composed of a set of Actions as well as a set of efficacy
indicators.

These Actions are scheduled in time by the Watcher Planner (i.e., it generates an Action Plan).

1.3 Data model
The following diagram shows the data model of Watcher, especially the functional dependency of objects
from the actors (Admin, Customer) point of view (Goals, Audits, Action Plans,):

6 Chapter 1. System Architecture

Watcher Documentation, Release 14.1.1.dev3

Here below is a diagram representing the main objects in Watcher from a database perspective:

1.3. Data model 7

Watcher Documentation, Release 14.1.1.dev3

8 Chapter 1. System Architecture

Watcher Documentation, Release 14.1.1.dev3

1.4 Sequence diagrams
The following paragraph shows the messages exchanged between the different components of Watcher
for the most often used scenarios.

1.4.1 Create a new Audit Template
The Administrator first creates an Audit template providing at least the following parameters:

• A name

• A goal to achieve

• An optional strategy

The Watcher API makes sure that both the specified goal (mandatory) and its associated strategy (op-
tional) are registered inside the Watcher Database before storing a new audit template in the Watcher
Database.

1.4.2 Create and launch a new Audit
The Administrator can then launch a new Audit by providing at least the unique UUID of the previously
created Audit template:

The Administrator also can specify type of Audit and interval (in case of CONTINUOUS type). There
is three types of Audit: ONESHOT, CONTINUOUS and EVENT. ONESHOT Audit is launched once
and if it succeeded executed new action plan list will be provided; CONTINUOUS Audit creates action
plans with specified interval (in seconds or cron format, cron interval can be used like: */5 * * * *), if
action plan has been created, all previous action plans get CANCELLED state; EVENT audit is launched
when receiving webhooks API.

1.4. Sequence diagrams 9

https://docs.openstack.org/api-ref/resource-optimization/

Watcher Documentation, Release 14.1.1.dev3

A message is sent on the AMQP bus which triggers the Audit in the Watcher Decision Engine:

10 Chapter 1. System Architecture

Watcher Documentation, Release 14.1.1.dev3

1.4. Sequence diagrams 11

Watcher Documentation, Release 14.1.1.dev3

The Watcher Decision Engine reads the Audit parameters from the Watcher Database. It instantiates the
appropriate strategy (using entry points) given both the goal and the strategy associated to the parent
audit template of the audit. If no strategy is associated to the audit template, the strategy is dynamically
selected by the Decision Engine.

The Watcher Decision Engine also builds the Cluster Data Model. This data model is needed by the
Strategy to know the current state and topology of the audited OpenStack cluster.

The Watcher Decision Engine calls the execute() method of the instantiated Strategy and provides the
data model as an input parameter. This method computes a Solution to achieve the goal and returns it to
the Decision Engine. At this point, actions are not scheduled yet.

The Watcher Decision Engine dynamically loads the Watcher Planner implementation which is con-
figured in Watcher (via entry points) and calls the schedule() method of this class with the solution as
an input parameter. This method finds an appropriate scheduling of Actions taking into account some
scheduling rules (such as priorities between actions). It generates a new Action Plan with status REC-
OMMENDED and saves it into the Watcher Database. The saved action plan is now a scheduled flow
of actions to which a global efficacy is associated alongside a number of Efficacy Indicators as specified
by the related goal.

If every step executed successfully, the Watcher Decision Engine updates the current status of the Audit to
SUCCEEDED in the Watcher Database and sends a notification on the bus to inform other components
that the Audit was successful.

This internal workflow the Decision Engine follows to conduct an audit can be seen in the sequence
diagram here below:

12 Chapter 1. System Architecture

Watcher Documentation, Release 14.1.1.dev3

1.4.3 Launch Action Plan
The Administrator can then launch the recommended Action Plan:

1.4. Sequence diagrams 13

Watcher Documentation, Release 14.1.1.dev3

A message is sent on the AMQP bus which triggers the Action Plan in the Watcher Applier:

The Watcher Applier will get the description of the flow of Actions from the Watcher Database and for
each Action it will instantiate a corresponding Action handler python class.

The Watcher Applier will then call the following methods of the Action handler:

• validate_parameters(): this method will make sure that all the provided input parameters are
valid:

– If all parameters are valid, the Watcher Applier moves on to the next step.

– If it is not, an error is raised and the action is not executed. A notification is sent on the bus
informing other components of the failure.

• preconditions(): this method will make sure that all conditions are met before executing the action

14 Chapter 1. System Architecture

Watcher Documentation, Release 14.1.1.dev3

(for example, it makes sure that an instance still exists before trying to migrate it).

• execute(): this method is what triggers real commands on other OpenStack services (such as Nova,
) in order to change target resource state. If the action is successfully executed, a notification
message is sent on the bus indicating that the new state of the action is SUCCEEDED.

If every action of the action flow has been executed successfully, a notification is sent on the bus to
indicate that the whole Action Plan has SUCCEEDED.

1.5 State Machine diagrams

1.5.1 Audit State Machine
An Audit has a life-cycle and its current state may be one of the following:

• PENDING : a request for an Audit has been submitted (either manually by the Administrator or
automatically via some event handling mechanism) and is in the queue for being processed by the
Watcher Decision Engine

• ONGOING : the Audit is currently being processed by the Watcher Decision Engine

• SUCCEEDED : the Audit has been executed successfully and at least one solution was found

• FAILED : an error occurred while executing the Audit

• DELETED : the Audit is still stored in the Watcher database but is not returned any more through
the Watcher APIs.

• CANCELLED : the Audit was in PENDING or ONGOING state and was cancelled by the Ad-
ministrator

• SUSPENDED : the Audit was in ONGOING state and was suspended by the Administrator

The following diagram shows the different possible states of an Audit and what event makes the state
change to a new value:

1.5. State Machine diagrams 15

Watcher Documentation, Release 14.1.1.dev3

1.5.2 Action Plan State Machine
An Action Plan has a life-cycle and its current state may be one of the following:

• RECOMMENDED : the Action Plan is waiting for a validation from the Administrator

• PENDING : a request for an Action Plan has been submitted (due to an Administrator executing
an Audit) and is in the queue for being processed by the Watcher Applier

• ONGOING : the Action Plan is currently being processed by the Watcher Applier

• SUCCEEDED : the Action Plan has been executed successfully (i.e. all Actions that it contains
have been executed successfully)

• FAILED : an error occurred while executing the Action Plan

• DELETED : the Action Plan is still stored in the Watcher database but is not returned any more
through the Watcher APIs.

• CANCELLED : the Action Plan was in RECOMMENDED, PENDING or ONGOING state
and was cancelled by the Administrator

• SUPERSEDED : the Action Plan was in RECOMMENDED state and was automatically super-
seded by Watcher, due to an expiration delay or an update of the Cluster data model

The following diagram shows the different possible states of an Action Plan and what event makes the
state change to a new value:

16 Chapter 1. System Architecture

CHAPTER

TWO

CONTRIBUTION GUIDE

2.1 So You Want to Contribute
For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Watcher.

2.1.1 Communication

IRC Channel
#openstack-watcher (changelog)

Mailing list(prefix subjects with [watcher])
http://lists.openstack.org/pipermail/openstack-discuss/

Weekly Meetings
Bi-weekly, on Wednesdays at 08:00 UTC on odd weeks in the #openstack-meeting-alt IRC
channel (meetings logs)

Meeting Agenda
https://wiki.openstack.org/wiki/Watcher_Meeting_Agenda

2.1.2 Contacting the Core Team

Name IRC Email
Li Canwei licanwei li.canwei2@zte.com.cn
chen ke chenke chen.ke14@zte.com.cn
Corne Lukken dantalion info@dantalion.nl
su zhengwei suzhengwei sugar-2008@163.com
Yumeng Bao Yumeng yumeng_bao@yahoo.com

2.1.3 New Feature Planning
New feature will be discussed via IRC or ML (with [Watcher] prefix). Watcher team uses blueprints in
Launchpad to manage the new features.

17

https://docs.openstack.org/contributors/
http://eavesdrop.openstack.org/irclogs/%23openstack-watcher/
http://lists.openstack.org/pipermail/openstack-discuss/
http://eavesdrop.openstack.org/meetings/watcher/
https://wiki.openstack.org/wiki/Watcher_Meeting_Agenda
https://launchpad.net/~li-canwei2
mailto:li.canwei2@zte.com.cn
https://launchpad.net/~chenker
mailto:chen.ke14@zte.com.cn
https://launchpad.net/~dantalion
mailto:info@dantalion.nl
https://launchpad.net/~sue.sam
mailto:sugar-2008@163.com
https://launchpad.net/~yumeng-bao
mailto:yumeng_bao@yahoo.com
https://launchpad.net/watcher

Watcher Documentation, Release 14.1.1.dev3

2.1.4 Task Tracking
We track our tasks in Launchpad. If youre looking for some smaller, easier work item to pick up and get
started on, search for the low-hanging-fruit tag.

2.1.5 Reporting a Bug
You found an issue and want to make sure we are aware of it? You can do so HERE.

2.1.6 Getting Your Patch Merged
Due to the small number of core reviewers of the Watcher project, we only need one +2 before +W
(merge). All patches excepting for documentation or typos fixes must have unit test.

Project Team Lead Duties

All common PTL duties are enumerated here in the PTL guide.

2.2 Set up a development environment manually
This document describes getting the source from watcher Git repository for development purposes.

To install Watcher from packaging, refer instead to Watcher User Documentation.

2.2.1 Prerequisites
This document assumes you are using Ubuntu or Fedora, and that you have the following tools available
on your system:

• Python 2.7 and 3.5

• git

• setuptools

• pip

• msgfmt (part of the gettext package)

• virtualenv and virtualenvwrapper

Reminder: If youre successfully using a different platform, or a different version of the above, please
document your configuration here!

2.2.2 Getting the latest code
Make a clone of the code from our Git repository:

$ git clone https://opendev.org/openstack/watcher.git

When that is complete, you can:

$ cd watcher

18 Chapter 2. Contribution Guide

https://bugs.launchpad.net/watcher
https://docs.openstack.org/project-team-guide/ptl.html
https://opendev.org/openstack/watcher
https://docs.openstack.org/watcher/latest/
https://www.python.org/
https://git-scm.com/
https://pypi.org/project/setuptools
https://pypi.org/project/pip
https://virtualenvwrapper.readthedocs.io/en/latest/install.html

Watcher Documentation, Release 14.1.1.dev3

2.2.3 Installing dependencies
Watcher maintains two lists of dependencies:

requirements.txt
test-requirements.txt

The first is the list of dependencies needed for running Watcher, the second list includes dependencies
used for active development and testing of Watcher itself.

These dependencies can be installed from PyPi using the Python tool pip.

However, your system may need additional dependencies that pip (and by extension, PyPi) cannot sat-
isfy. These dependencies should be installed prior to using pip, and the installation method may vary
depending on your platform.

• Ubuntu 16.04:

$ sudo apt-get install python-dev libssl-dev libmysqlclient-dev libffi-dev

• Fedora 24+:

$ sudo dnf install redhat-rpm-config gcc python-devel libxml2-devel

• CentOS 7:

$ sudo yum install gcc python-devel libxml2-devel libxslt-devel mariadb-
↪→devel

PyPi Packages and VirtualEnv

We recommend establishing a virtualenv to run Watcher within. virtualenv limits the Python environment
to just what youre installing as dependencies, useful to keep a clean environment for working on Watcher.

$ mkvirtualenv watcher
$ git clone https://opendev.org/openstack/watcher.git

Use 'python setup.py' to link Watcher into Python's site-packages
$ cd watcher && python setup.py install

Install the dependencies for running Watcher
$ pip install -r ./requirements.txt

Install the dependencies for developing, testing, and running Watcher
$ pip install -r ./test-requirements.txt

This will create a local virtual environment in the directory $WORKON_HOME. The virtual environment
can be disabled using the command:

$ deactivate

You can re-activate this virtualenv for your current shell using:

$ workon watcher

2.2. Set up a development environment manually 19

https://pypi.org/
https://pypi.org/project/pip

Watcher Documentation, Release 14.1.1.dev3

For more information on virtual environments, see virtualenv and virtualenvwrapper.

2.2.4 Verifying Watcher is set up
Once set up, either directly or within a virtualenv, you should be able to invoke Python and import the
libraries. If youre using a virtualenv, dont forget to activate it:

$ workon watcher

You should then be able to import watcher using Python without issue:

$ python -c "import watcher"

If you can import watcher without a traceback, you should be ready to develop.

2.2.5 Run Watcher tests
Watcher provides both unit tests and functional/tempest tests. Please refer to Developer Testing to under-
stand how to run them.

2.2.6 Build the Watcher documentation
You can easily build the HTML documentation from doc/source files, by using tox:

$ workon watcher

(watcher) $ cd watcher
(watcher) $ tox -edocs

The HTML files are available into doc/build directory.

2.2.7 Configure the Watcher services
Watcher services require a configuration file. Use tox to generate a sample configuration file that can be
used to get started:

$ tox -e genconfig
$ cp etc/watcher.conf.sample etc/watcher.conf

Most of the default configuration should be enough to get you going, but you still need to configure the
following sections:

• The [database] section to configure the Watcher database

• The [keystone_authtoken] section to configure the Identity service i.e. Keystone

• The [watcher_messaging] section to configure the OpenStack AMQP-based message bus

• The watcher_clients_auth section to configure Keystone client to access related OpenStack
projects

So if you need some more details on how to configure one or more of these sections, please do have a
look at Configuring Watcher before continuing.

20 Chapter 2. Contribution Guide

https://pypi.org/project/virtualenv/
https://virtualenvwrapper.readthedocs.io/en/latest/install.html

Watcher Documentation, Release 14.1.1.dev3

2.2.8 Create Watcher SQL database
When initially getting set up, after youve configured which databases to use, youre probably going to
need to run the following to your database schema in place:

$ workon watcher

(watcher) $ watcher-db-manage create_schema

2.2.9 Running Watcher services
To run the Watcher API service, use:

$ workon watcher

(watcher) $ watcher-api

To run the Watcher Decision Engine service, use:

$ workon watcher

(watcher) $ watcher-decision-engine

To run the Watcher Applier service, use:

$ workon watcher

(watcher) $ watcher-applier

Default configuration of these services are available into /etc/watcher directory. See Configuring
Watcher for details on how Watcher is configured. By default, Watcher is configured with SQL backends.

2.2.10 Interact with Watcher
You can also interact with Watcher through its REST API. There is a Python Watcher client library
python-watcherclient which interacts exclusively through the REST API, and which Watcher itself uses
to provide its command-line interface.

There is also an Horizon plugin for Watcher watcher-dashboard which allows to interact with Watcher
through a web-based interface.

2.2.11 Exercising the Watcher Services locally
If you would like to exercise the Watcher services in isolation within a local virtual environment, you can
do this without starting any other OpenStack services. For example, this is useful for rapidly prototyping
and debugging interactions over the RPC channel, testing database migrations, and so forth.

You will find in the watcher-tools project, Ansible playbooks and Docker template files to easily play
with Watcher services within a minimal OpenStack isolated environment (Identity, Message Bus, SQL
database, Horizon,).

2.2. Set up a development environment manually 21

https://github.com/openstack/python-watcherclient
https://github.com/openstack/watcher-dashboard
https://github.com/b-com/watcher-tools

Watcher Documentation, Release 14.1.1.dev3

2.3 Set up a development environment via DevStack
Watcher is currently able to optimize compute resources - specifically Nova compute hosts - via oper-
ations such as live migrations. In order for you to fully be able to exercise what Watcher can do, it is
necessary to have a multinode environment to use.

You can set up the Watcher services quickly and easily using a Watcher DevStack plugin. See Plugin-
ModelDocs for information on DevStacks plugin model. To enable the Watcher plugin with DevStack,
add the following to the [[local|localrc]] section of your controllers local.conf to enable the
Watcher plugin:

enable_plugin watcher https://opendev.org/openstack/watcher

For more detailed instructions, see Detailed DevStack Instructions. Check out the DevStack documen-
tation for more information regarding DevStack.

2.3.1 Quick Devstack Instructions with Datasources
Watcher requires a datasource to collect metrics from compute nodes and instances in order to execute
most strategies. To enable this a [[local|localrc]] to setup DevStack for some of the supported data-
sources is provided. These examples specify the minimal configuration parameters to get both Watcher
and the datasource working but can be expanded is desired.

Gnocchi

With the Gnocchi datasource most of the metrics for compute nodes and instances will work with the
provided configuration but metrics that require Ironic such as host_airflow and host_power will
still be unavailable as well as instance_l3_cpu_cache

[[local|localrc]]

enable_plugin watcher https://opendev.org/openstack/watcher
enable_plugin watcher-dashboard https://opendev.org/openstack/watcher-
↪→dashboard
enable_plugin ceilometer https://opendev.org/openstack/ceilometer.git
enable_plugin aodh https://opendev.org/openstack/aodh
enable_plugin panko https://opendev.org/openstack/panko

CEILOMETER_BACKEND=gnocchi
[[post-config|$NOVA_CONF]]
[DEFAULT]
compute_monitors=cpu.virt_driver

2.3.2 Detailed DevStack Instructions
1. Obtain N (where N >= 1) servers (virtual machines preferred for DevStack). One of these servers

will be the controller node while the others will be compute nodes. N is preferably >= 3 so that
you have at least 2 compute nodes, but in order to stand up the Watcher services only 1 server is
needed (i.e., no computes are needed if you want to just experiment with the Watcher services).
These servers can be VMs running on your local machine via VirtualBox if you prefer. DevStack
currently recommends that you use Ubuntu 16.04 LTS. The servers should also have connections
to the same network such that they are all able to communicate with one another.

22 Chapter 2. Contribution Guide

https://docs.openstack.org/devstack/latest/plugins.html
https://docs.openstack.org/devstack/latest/plugins.html
https://docs.openstack.org/devstack/latest
https://docs.openstack.org/devstack/latest

Watcher Documentation, Release 14.1.1.dev3

2. For each server, clone the DevStack repository and create the stack user

sudo apt-get update
sudo apt-get install git
git clone https://opendev.org/openstack/devstack.git
sudo ./devstack/tools/create-stack-user.sh

Now you have a stack user that is used to run the DevStack processes. You may want to give your
stack user a password to allow SSH via a password

sudo passwd stack

3. Switch to the stack user and clone the DevStack repo again

sudo su stack
cd ~
git clone https://opendev.org/openstack/devstack.git

4. For each compute node, copy the provided local.conf.compute example file to the compute nodes
system at ~/devstack/local.conf. Make sure the HOST_IP and SERVICE_HOST values are
changed appropriately - i.e., HOST_IP is set to the IP address of the compute node and SER-
VICE_HOST is set to the IP address of the controller node.

If you need specific metrics collected (or want to use something other than Ceilometer), be sure
to configure it. For example, in the local.conf.compute example file, the appropriate ceilometer
plugins and services are enabled and disabled. If you were using something other than Ceilometer,
then you would likely want to configure it likewise. The example file also sets the compute mon-
itors nova configuration option to use the CPU virt driver. If you needed other metrics, it may be
necessary to configure similar configuration options for the projects providing those metrics.

5. For the controller node, copy the provided local.conf.controller example file to the controller nodes
system at ~/devstack/local.conf. Make sure the HOST_IP value is changed appropriately - i.e.,
HOST_IP is set to the IP address of the controller node.

Note

if you want to use another Watcher git repository (such as a local one), then change the enable
plugin line

enable_plugin watcher <your_local_git_repo> [optional_branch]

If you do this, then the Watcher DevStack plugin will try to pull the python-watcherclient repo from
<your_local_git_repo>/../, so either make sure that is also available or specify WATCHER-
CLIENT_REPO in the local.conf file.

Note

if you want to use a specific branch, specify WATCHER_BRANCH in the local.conf file. By
default it will use the master branch.

2.3. Set up a development environment via DevStack 23

https://github.com/openstack/watcher/tree/master/devstack/local.conf.compute
https://github.com/openstack/watcher/tree/master/devstack/local.conf.compute
https://github.com/openstack/watcher/tree/master/devstack/local.conf.controller

Watcher Documentation, Release 14.1.1.dev3

Note

watcher-api will default run under apache/httpd, set the variable
WATCHER_USE_MOD_WSGI=FALSE if you do not wish to run under apache/httpd.
For development environment it is suggested to set WATHCER_USE_MOD_WSGI to
FALSE. For Production environment it is suggested to keep it at the default TRUE value.

6. Start stacking from the controller node:

./devstack/stack.sh

7. Start stacking on each of the compute nodes using the same command.

See also

Configure the environment for live migration via NFS. See the Multi-Node DevStack Environ-
ment section for more details.

2.3.3 Multi-Node DevStack Environment
Since deploying Watcher with only a single compute node is not very useful, a few tips are given here
for enabling a multi-node environment with live migration.

Note

Nova supports live migration with local block storage so by default NFS is not required and is con-
sidered an advance configuration. The minimum requirements for live migration are:

• all hostnames are resolvable on each host

• all hosts have a passwordless ssh key that is trusted by the other hosts

• all hosts have a known_hosts file that lists each hosts

If these requirements are met live migration will be possible. Shared storage such as ceph, booting
form cinder volume or nfs are recommend when testing evacuate if you want to preserve vm data.

Setting up SSH keys between compute nodes to enable live migration

In order for live migration to work, SSH keys need to be exchanged between each compute node:

1. The SOURCE root users public RSA key (likely in /root/.ssh/id_rsa.pub) needs to be in the DES-
TINATION stack users authorized_keys file (~stack/.ssh/authorized_keys). This can be accom-
plished by manually copying the contents from the file on the SOURCE to the DESTINATION.
If you have a password configured for the stack user, then you can use the following command to
accomplish the same thing:

ssh-copy-id -i /root/.ssh/id_rsa.pub stack@DESTINATION

2. The DESTINATION hosts public ECDSA key (/etc/ssh/ssh_host_ecdsa_key.pub) needs to be in
the SOURCE root users known_hosts file (/root/.ssh/known_hosts). This can be accomplished by
running the following on the SOURCE machine (hostname must be used):

24 Chapter 2. Contribution Guide

Watcher Documentation, Release 14.1.1.dev3

ssh-keyscan -H DEST_HOSTNAME | sudo tee -a /root/.ssh/known_hosts

In essence, this means that every compute nodes root users public RSA key must exist in every other
compute nodes stack users authorized_keys file and every compute nodes public ECDSA key needs to
be in every other compute nodes root users known_hosts file.

Configuring NFS Server (ADVANCED)

If you would like to use live migration for shared storage, then the controller can serve as the NFS server
if needed

sudo apt-get install nfs-kernel-server
sudo mkdir -p /nfs/instances
sudo chown stack:stack /nfs/instances

Add an entry to /etc/exports with the appropriate gateway and netmask information

/nfs/instances <gateway>/<netmask>(rw,fsid=0,insecure,no_subtree_check,async,
↪→no_root_squash)

Export the NFS directories

sudo exportfs -ra

Make sure the NFS server is running

sudo service nfs-kernel-server status

If the server is not running, then start it

sudo service nfs-kernel-server start

Configuring NFS on Compute Node (ADVANCED)

Each compute node needs to use the NFS server to hold the instance data

sudo apt-get install rpcbind nfs-common
mkdir -p /opt/stack/data/instances
sudo mount <nfs-server-ip>:/nfs/instances /opt/stack/data/instances

If you would like to have the NFS directory automatically mounted on reboot, then add the following to
/etc/fstab

<nfs-server-ip>:/nfs/instances /opt/stack/data/instances nfs auto 0 0

Configuring libvirt to listen on tcp (ADVANCED)

Note

By default nova will use ssh as a transport for live migration if you have a low bandwidth connection
you can use tcp instead however this is generally not recommended.

2.3. Set up a development environment via DevStack 25

Watcher Documentation, Release 14.1.1.dev3

Edit /etc/libvirt/libvirtd.conf to make sure the following values are set

listen_tls = 0
listen_tcp = 1
auth_tcp = "none"

Edit /etc/default/libvirt-bin

libvirtd_opts="-d -l"

Restart the libvirt service

sudo service libvirt-bin restart

VNC server configuration

The VNC server listening parameter needs to be set to any address so that the server can accept connec-
tions from all of the compute nodes.

On both the controller and compute node, in /etc/nova/nova.conf

[vnc]
server_listen = "0.0.0.0"

Alternatively, in devstacks local.conf:

VNCSERVER_LISTEN="0.0.0.0"

Environment final checkup

If you are willing to make sure everything is in order in your DevStack environment, you can run the
Watcher Tempest tests which will validate its API but also that you can perform the typical Watcher
workflows. To do so, have a look at the Tempest tests section which will explain to you how to run them.

2.4 Developer Testing

2.4.1 Unit tests
All unit tests should be run using tox. Before running the unit tests, you should download the latest
watcher from the github. To run the same unit tests that are executing onto Gerrit which includes py36,
py37 and pep8, you can issue the following command:

$ git clone https://opendev.org/openstack/watcher
$ cd watcher
$ pip install tox
$ tox

If you only want to run one of the aforementioned, you can then issue one of the following:

$ tox -e py36
$ tox -e py37
$ tox -e pep8

26 Chapter 2. Contribution Guide

https://tox.readthedocs.org/
https://opendev.org/openstack/watcher
https://review.opendev.org/

Watcher Documentation, Release 14.1.1.dev3

If you only want to run specific unit test code and dont like to waste time waiting for all unit tests to
execute, you can add parameters -- followed by a regex string:

$ tox -e py37 -- watcher.tests.api

2.4.2 Tempest tests
Tempest tests for Watcher has been migrated to the external repo watcher-tempest-plugin.

2.5 Rally job
We provide, with Watcher, a Rally plugin you can use to benchmark the optimization service.

To launch this task with configured Rally you just need to run:

rally task start watcher/rally-jobs/watcher-watcher.yaml

2.5.1 Structure
• plugins - directory where you can add rally plugins. Almost everything in Rally is a plugin. Bench-

mark context, Benchmark scenario, SLA checks, Generic cleanup resources, .

• extra - all files from this directory will be copy pasted to gates, so you are able to use absolute paths
in rally tasks. Files will be located in ~/.rally/extra/*

• watcher.yaml is a task that is run in gates against OpenStack deployed by DevStack

2.5.2 Useful links
• How to install: https://docs.openstack.org/rally/latest/install_and_upgrade/install.html

• How to set Rally up and launch your first scenario: https://rally.readthedocs.io/en/latest/quick_
start/tutorial/step_1_setting_up_env_and_running_benchmark_from_samples.html

• More about Rally: https://docs.openstack.org/rally/latest/

• Rally project info and release notes: https://docs.openstack.org/rally/latest/project_info/index.
html

• How to add rally-gates: https://docs.openstack.org/rally/latest/quick_start/gates.html#gate-jobs

• About plugins: https://docs.openstack.org/rally/latest/plugins/index.html

• Plugin samples: https://github.com/openstack/rally/tree/master/samples/

2.5. Rally job 27

https://opendev.org/openstack/watcher-tempest-plugin
https://docs.openstack.org/rally/latest/install_and_upgrade/install.html
https://rally.readthedocs.io/en/latest/quick_start/tutorial/step_1_setting_up_env_and_running_benchmark_from_samples.html
https://rally.readthedocs.io/en/latest/quick_start/tutorial/step_1_setting_up_env_and_running_benchmark_from_samples.html
https://docs.openstack.org/rally/latest/
https://docs.openstack.org/rally/latest/project_info/index.html
https://docs.openstack.org/rally/latest/project_info/index.html
https://docs.openstack.org/rally/latest/quick_start/gates.html#gate-jobs
https://docs.openstack.org/rally/latest/plugins/index.html
https://github.com/openstack/rally/tree/master/samples/

Watcher Documentation, Release 14.1.1.dev3

28 Chapter 2. Contribution Guide

CHAPTER

THREE

INSTALL GUIDE

3.1 Infrastructure Optimization service overview
The Infrastructure Optimization service provides flexible and scalable optimization service for multi-
tenant OpenStack based clouds.

The Infrastructure Optimization service consists of the following components:

watcher command-line client
A CLI to communicate with watcher-api to optimize the cloud.

watcher-api service
An OpenStack-native REST API that accepts and responds to end-user calls by processing them
and forwarding to appropriate underlying watcher services via AMQP.

watcher-decision-engine service
It runs audit and return an action plan to achieve optimization goal specified by the end-user in
audit.

watcher-applier service
It executes action plan built by watcher-decision-engine. It interacts with other OpenStack com-
ponents like nova to execute the given action plan.

watcher-dashboard
Watcher UI implemented as a plugin for the OpenStack Dashboard.

3.2 Install and configure
This section describes how to install and configure the Infrastructure Optimization service, code-named
watcher, on the controller node.

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Identity Service, Compute Service, Telemetry data collection service.

Note that installation and configuration vary by distribution.

3.2.1 Install and configure for Red Hat Enterprise Linux and CentOS
This section describes how to install and configure the Infrastructure Optimization service for Red Hat
Enterprise Linux 7 and CentOS 7.

29

Watcher Documentation, Release 14.1.1.dev3

Prerequisites

Before you install and configure the Infrastructure Optimization service, you must create a database,
service credentials, and API endpoints.

1. Create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

mysql

• Create the watcher database:

CREATE DATABASE watcher CHARACTER SET utf8;

• Grant proper access to the watcher database:

GRANT ALL PRIVILEGES ON watcher.* TO 'watcher'@'localhost' \
IDENTIFIED BY 'WATCHER_DBPASS';

GRANT ALL PRIVILEGES ON watcher.* TO 'watcher'@'%' \
IDENTIFIED BY 'WATCHER_DBPASS';

Replace WATCHER_DBPASS with a suitable password.

• Exit the database access client.

exit;

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

• Create the watcher user:

$ openstack user create --domain default --password-prompt watcher
User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	b18ee38e06034b748141beda8fc8bfad
name	watcher
options	{}
password_expires_at	None
+---------------------+----------------------------------+

• Add the admin role to the watcher user:

$ openstack role add --project service --user watcher admin

30 Chapter 3. Install Guide

Watcher Documentation, Release 14.1.1.dev3

Note

This command produces no output.

• Create the watcher service entities:

$ openstack service create --name watcher --description
↪→"Infrastructure Optimization" infra-optim
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Infrastructure Optimization
enabled	True
id	d854f6fff0a64f77bda8003c8dedfada
name	watcher
type	infra-optim
+-------------+----------------------------------+

4. Create the Infrastructure Optimization service API endpoints:

$ openstack endpoint create --region RegionOne \
infra-optim public http://controller:9322
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Infrastructure Optimization
enabled	True
id	d854f6fff0a64f77bda8003c8dedfada
name	watcher
type	infra-optim
+-------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
infra-optim internal http://controller:9322
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	225aef8465ef4df48a341aaaf2b0a390
interface	internal
region	RegionOne
region_id	RegionOne
service_id	d854f6fff0a64f77bda8003c8dedfada
service_name	watcher
service_type	infra-optim
url	http://controller:9322
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
infra-optim admin http://controller:9322

(continues on next page)

3.2. Install and configure 31

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	375eb5057fb546edbdf3ee4866179672
interface	admin
region	RegionOne
region_id	RegionOne
service_id	d854f6fff0a64f77bda8003c8dedfada
service_name	watcher
service_type	infra-optim
url	http://controller:9322
+--------------+----------------------------------+

Install and configure components

1. Install the packages:

sudo yum install openstack-watcher-api openstack-watcher-applier \
openstack-watcher-decision-engine

2. Edit the /etc/watcher/watcher.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://watcher:WATCHER_DBPASS@controller/
↪→watcher?charset=utf8

• In the [DEFAULT] section, configure the transport url for RabbitMQ message broker.

[DEFAULT]
...
control_exchange = watcher
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace the RABBIT_PASS with the password you chose for OpenStack user in RabbitMQ.

• In the [keystone_authtoken] section, configure Identity service access.

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = watcher
password = WATCHER_PASS

32 Chapter 3. Install Guide

Watcher Documentation, Release 14.1.1.dev3

Replace WATCHER_PASS with the password you chose for the watcher user in the Identity
service.

• Watcher interacts with other OpenStack projects via project clients, in order to in-
stantiate these clients, Watcher requests new session from Identity service. In the
[watcher_clients_auth] section, configure the identity service access to interact with
other OpenStack project clients.

[watcher_clients_auth]
...
auth_type = password
auth_url = http://controller:5000
username = watcher
password = WATCHER_PASS
project_domain_name = default
user_domain_name = default
project_name = service

Replace WATCHER_PASS with the password you chose for the watcher user in the Identity
service.

• In the [api] section, configure host option.

[api]
...
host = controller

Replace controller with the IP address of the management network interface on your con-
troller node, typically 10.0.0.11 for the first node in the example architecture.

• In the [oslo_messaging_notifications] section, configure the messaging driver.

[oslo_messaging_notifications]
...
driver = messagingv2

3. Populate watcher database:

su -s /bin/sh -c "watcher-db-manage --config-file /etc/watcher/watcher.
↪→conf upgrade"

Finalize installation

Start the Infrastructure Optimization services and configure them to start when the system boots:

systemctl enable openstack-watcher-api.service \
openstack-watcher-decision-engine.service \
openstack-watcher-applier.service

systemctl start openstack-watcher-api.service \
openstack-watcher-decision-engine.service \
openstack-watcher-applier.service

3.2. Install and configure 33

Watcher Documentation, Release 14.1.1.dev3

3.2.2 Install and configure for Ubuntu
This section describes how to install and configure the Infrastructure Optimization service for Ubuntu
16.04 (LTS).

Prerequisites

Before you install and configure the Infrastructure Optimization service, you must create a database,
service credentials, and API endpoints.

1. Create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

mysql

• Create the watcher database:

CREATE DATABASE watcher CHARACTER SET utf8;

• Grant proper access to the watcher database:

GRANT ALL PRIVILEGES ON watcher.* TO 'watcher'@'localhost' \
IDENTIFIED BY 'WATCHER_DBPASS';

GRANT ALL PRIVILEGES ON watcher.* TO 'watcher'@'%' \
IDENTIFIED BY 'WATCHER_DBPASS';

Replace WATCHER_DBPASS with a suitable password.

• Exit the database access client.

exit;

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

• Create the watcher user:

$ openstack user create --domain default --password-prompt watcher
User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	b18ee38e06034b748141beda8fc8bfad
name	watcher
options	{}
password_expires_at	None
+---------------------+----------------------------------+

• Add the admin role to the watcher user:

34 Chapter 3. Install Guide

Watcher Documentation, Release 14.1.1.dev3

$ openstack role add --project service --user watcher admin

Note

This command produces no output.

• Create the watcher service entities:

$ openstack service create --name watcher --description
↪→"Infrastructure Optimization" infra-optim
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Infrastructure Optimization
enabled	True
id	d854f6fff0a64f77bda8003c8dedfada
name	watcher
type	infra-optim
+-------------+----------------------------------+

4. Create the Infrastructure Optimization service API endpoints:

$ openstack endpoint create --region RegionOne \
infra-optim public http://controller:9322
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Infrastructure Optimization
enabled	True
id	d854f6fff0a64f77bda8003c8dedfada
name	watcher
type	infra-optim
+-------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
infra-optim internal http://controller:9322
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	225aef8465ef4df48a341aaaf2b0a390
interface	internal
region	RegionOne
region_id	RegionOne
service_id	d854f6fff0a64f77bda8003c8dedfada
service_name	watcher
service_type	infra-optim
url	http://controller:9322
+--------------+----------------------------------+

(continues on next page)

3.2. Install and configure 35

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

$ openstack endpoint create --region RegionOne \
infra-optim admin http://controller:9322
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	375eb5057fb546edbdf3ee4866179672
interface	admin
region	RegionOne
region_id	RegionOne
service_id	d854f6fff0a64f77bda8003c8dedfada
service_name	watcher
service_type	infra-optim
url	http://controller:9322
+--------------+----------------------------------+

Install and configure components

1. Install the packages:

apt install watcher-api watcher-decision-engine \
watcher-applier

apt install python-watcherclient

2. Edit the /etc/watcher/watcher.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://watcher:WATCHER_DBPASS@controller/
↪→watcher?charset=utf8

• In the [DEFAULT] section, configure the transport url for RabbitMQ message broker.

[DEFAULT]
...
control_exchange = watcher
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace the RABBIT_PASS with the password you chose for OpenStack user in RabbitMQ.

• In the [keystone_authtoken] section, configure Identity service access.

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211

(continues on next page)

36 Chapter 3. Install Guide

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = watcher
password = WATCHER_PASS

Replace WATCHER_PASS with the password you chose for the watcher user in the Identity
service.

• Watcher interacts with other OpenStack projects via project clients, in order to in-
stantiate these clients, Watcher requests new session from Identity service. In the
[watcher_clients_auth] section, configure the identity service access to interact with
other OpenStack project clients.

[watcher_clients_auth]
...
auth_type = password
auth_url = http://controller:5000
username = watcher
password = WATCHER_PASS
project_domain_name = default
user_domain_name = default
project_name = service

Replace WATCHER_PASS with the password you chose for the watcher user in the Identity
service.

• In the [api] section, configure host option.

[api]
...
host = controller

Replace controller with the IP address of the management network interface on your con-
troller node, typically 10.0.0.11 for the first node in the example architecture.

• In the [oslo_messaging_notifications] section, configure the messaging driver.

[oslo_messaging_notifications]
...
driver = messagingv2

3. Populate watcher database:

su -s /bin/sh -c "watcher-db-manage --config-file /etc/watcher/watcher.
↪→conf upgrade"

3.2. Install and configure 37

Watcher Documentation, Release 14.1.1.dev3

Finalize installation

Start the Infrastructure Optimization services and configure them to start when the system boots:

systemctl enable watcher-api.service \
watcher-decision-engine.service \
watcher-applier.service

systemctl start watcher-api.service \
watcher-decision-engine.service \
watcher-applier.service

3.3 Verify operation
Verify operation of the Infrastructure Optimization service.

Note

Perform these commands on the controller node.

1. Source the admin project credentials to gain access to admin-only CLI commands:

$. admin-openrc

2. List service components to verify successful launch and registration of each process:

$ openstack optimize service list
+----+-------------------------+------------+--------+
| ID | Name | Host | Status |
+----+-------------------------+------------+--------+
| 1 | watcher-decision-engine | controller | ACTIVE |
| 2 | watcher-applier | controller | ACTIVE |
+----+-------------------------+------------+--------+

3. List goals and strategies:

$ openstack optimize goal list
+--------------------------------------+----------------------+---------

↪→-------------+
| UUID | Name | Display␣

↪→name |
+--------------------------------------+----------------------+---------

↪→-------------+
| a8cd6d1a-008b-4ff0-8dbc-b30493fcc5b9 | dummy | Dummy␣

↪→goal |
| 03953f2f-02d0-42b5-9a12-7ba500a54395 | workload_balancing |␣

↪→Workload Balancing |
| de0f8714-984b-4d6b-add1-9cad8120fbce | server_consolidation | Server␣

↪→Consolidation |
| f056bc80-c6d1-40dc-b002-938ccade9385 | thermal_optimization | Thermal␣

↪→Optimization |
(continues on next page)

38 Chapter 3. Install Guide

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

| e7062856-892e-4f0f-b84d-b828464b3fd0 | airflow_optimization | Airflow␣
↪→Optimization |
| 1f038da9-b36c-449f-9f04-c225bf3eb478 | unclassified |␣

↪→Unclassified |
+--------------------------------------+----------------------+---------

↪→-------------+

$ openstack optimize strategy list
+--------------------------------------+---------------------------+------
↪→---------------------------------------+----------------------+
| UUID | Name |␣
↪→Display name | Goal |
+--------------------------------------+---------------------------+------
↪→---------------------------------------+----------------------+
| 98ae84c8-7c9b-4cbd-8d9c-4bd7c6b106eb | dummy |␣
↪→Dummy strategy | dummy |
| 02a170b6-c72e-479d-95c0-8a4fdd4cc1ef | dummy_with_scorer |␣
↪→Dummy Strategy using sample Scoring Engines | dummy |
| 8bf591b8-57e5-4a9e-8c7d-c37bda735a45 | outlet_temperature |␣
↪→Outlet temperature based strategy | thermal_optimization |
| 8a0810fb-9d9a-47b9-ab25-e442878abc54 | vm_workload_consolidation | VM␣
↪→Workload Consolidation Strategy | server_consolidation |
| 1718859c-3eb5-45cb-9220-9cb79fe42fa5 | basic |␣
↪→Basic offline consolidation | server_consolidation |
| b5e7f5f1-4824-42c7-bb52-cf50724f67bf | workload_stabilization |␣
↪→Workload stabilization | workload_balancing |
| f853d71e-9286-4df3-9d3e-8eaf0f598e07 | workload_balance |␣
↪→Workload Balance Migration Strategy | workload_balancing |
| 58bdfa89-95b5-4630-adf6-fd3af5ff1f75 | uniform_airflow |␣
↪→Uniform airflow migration strategy | airflow_optimization |
| 66fde55d-a612-4be9-8cb0-ea63472b420b | dummy_with_resize |␣
↪→Dummy strategy with resize | dummy |
+--------------------------------------+---------------------------+------
↪→---------------------------------------+----------------------+

4. Run an action plan by creating an audit with dummy goal:

$ openstack optimize audit create --goal dummy
+--------------+--------------------------------------+
| Field | Value |
+--------------+--------------------------------------+
UUID	e94d4826-ad4e-44df-ad93-dff489fde457
Created At	2017-05-23T11:46:58.763394+00:00
Updated At	None
Deleted At	None
State	PENDING
Audit Type	ONESHOT
Parameters	{}
Interval	None
Goal	dummy

(continues on next page)

3.3. Verify operation 39

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

Strategy	auto
Audit Scope	[]
Auto Trigger	False
+--------------+--------------------------------------+

$ openstack optimize audit list
+--------------------------------------+------------+-----------+------

↪→-+----------+--------------+
| UUID | Audit Type | State | Goal␣

↪→ | Strategy | Auto Trigger |
+--------------------------------------+------------+-----------+------

↪→-+----------+--------------+
| e94d4826-ad4e-44df-ad93-dff489fde457 | ONESHOT | SUCCEEDED |␣

↪→dummy | auto | False |
+--------------------------------------+------------+-----------+------

↪→-+----------+--------------+

$ openstack optimize actionplan list
+--------------------------------------+-------------------------------

↪→-------+-------------+------------+-----------------+
| UUID | Audit ␣

↪→ | State | Updated At | Global efficacy |
+--------------------------------------+-------------------------------

↪→-------+-------------+------------+-----------------+
| ba9ce6b3-969c-4b8e-bb61-ae24e8630f81 | e94d4826-ad4e-44df-ad93-

↪→dff489fde457 | RECOMMENDED | None | None |
+--------------------------------------+-------------------------------

↪→-------+-------------+------------+-----------------+

$ openstack optimize actionplan start ba9ce6b3-969c-4b8e-bb61-ae24e8630f81
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
UUID	ba9ce6b3-969c-4b8e-bb61-ae24e8630f81
Created At	2017-05-23T11:46:58+00:00
Updated At	2017-05-23T11:53:12+00:00
Deleted At	None
Audit	e94d4826-ad4e-44df-ad93-dff489fde457
Strategy	dummy
State	ONGOING
Efficacy indicators	[]
Global efficacy	{}
+---------------------+--------------------------------------+

$ openstack optimize actionplan list
+--------------------------------------+----------------------------------
↪→----+-----------+---------------------------+-----------------+
| UUID | Audit ␣
↪→ | State | Updated At | Global efficacy |

(continues on next page)

40 Chapter 3. Install Guide

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

+--------------------------------------+----------------------------------
↪→----+-----------+---------------------------+-----------------+
| ba9ce6b3-969c-4b8e-bb61-ae24e8630f81 | e94d4826-ad4e-44df-ad93-
↪→dff489fde457 | SUCCEEDED | 2017-05-23T11:53:16+00:00 | None |
+--------------------------------------+----------------------------------
↪→----+-----------+---------------------------+-----------------+

3.4 Next steps
Your OpenStack environment now includes the watcher service.

To add additional services, see https://docs.openstack.org/queens/install/.

The Infrastructure Optimization service (Watcher) provides flexible and scalable resource optimization
service for multi-tenant OpenStack-based clouds.

Watcher provides a complete optimization loop including everything from a metrics receiver, complex
event processor and profiler, optimization processor and an action plan applier. This provides a robust
framework to realize a wide range of cloud optimization goals, including the reduction of data center
operating costs, increased system performance via intelligent virtual machine migration, increased energy
efficiency and more!

Watcher also supports a pluggable architecture by which custom optimization algorithms, data metrics
and data profilers can be developed and inserted into the Watcher framework.

Check the documentation for watcher optimization strategies at Strategies.

Check watcher glossary at Glossary.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorial.

3.4. Next steps 41

https://docs.openstack.org/queens/install/
https://docs.openstack.org/watcher/latest/strategies/index.html
https://docs.openstack.org/watcher/latest/glossary.html
https://docs.openstack.org/queens/install/

Watcher Documentation, Release 14.1.1.dev3

42 Chapter 3. Install Guide

CHAPTER

FOUR

ADMINISTRATOR GUIDE

4.1 Installing API behind mod_wsgi
1. Install the Apache Service:

Fedora 21/RHEL7/CentOS7:
sudo yum install httpd

Fedora 22 (or higher):
sudo dnf install httpd

Debian/Ubuntu:
apt-get install apache2

2. Copy etc/apache2/watcher.conf under the apache sites:

Fedora/RHEL7/CentOS7:
sudo cp etc/apache2/watcher /etc/httpd/conf.d/watcher.conf

Debian/Ubuntu:
sudo cp etc/apache2/watcher /etc/apache2/sites-available/watcher.conf

3. Edit <apache-configuration-dir>/watcher.conf according to installation and environ-
ment.

• Modify the WSGIDaemonProcess directive to set the user and group values to appropriate
user on your server.

• Modify the WSGIScriptAlias directive to point to the watcher/api/app.wsgi script.

• Modify the Directory directive to set the path to the Watcher API code.

• Modify the ErrorLog and CustomLog to redirect the logs to the right directory.

4. Enable the apache watcher site and reload:

Fedora/RHEL7/CentOS7:
sudo systemctl reload httpd

Debian/Ubuntu:
sudo a2ensite watcher
sudo service apache2 reload

43

Watcher Documentation, Release 14.1.1.dev3

4.2 Guru Meditation Reports
Watcher contains a mechanism whereby developers and system administrators can generate a report about
the state of a running Watcher service. This report is called a Guru Meditation Report (GMR for short).

4.2.1 Generating a GMR
A GMR can be generated by sending the USR2 signal to any Watcher process with support (see below).
The GMR will then be outputted as standard error for that particular process.

For example, suppose that watcher-api has process id 8675, and was run with 2>/var/log/watcher/
watcher-api-err.log. Then, kill -USR2 8675will trigger the Guru Meditation report to be printed
to /var/log/watcher/watcher-api-err.log.

4.2.2 Structure of a GMR
The GMR is designed to be extensible; any particular service may add its own sections. However, the
base GMR consists of several sections:

Package
Shows information about the package to which this process belongs, including version information.

Threads
Shows stack traces and thread ids for each of the threads within this process.

Green Threads
Shows stack traces for each of the green threads within this process (green threads dont have thread
ids).

Configuration
Lists all the configuration options currently accessible via the CONF object for the current process.

Plugins
Lists all the plugins currently accessible by the Watcher service.

4.3 Policies

Warning

JSON formatted policy file is deprecated since Watcher 6.0.0 (Wallaby). This oslopolicy-convert-
json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML in a backward-
compatible way.

Watchers public API calls may be restricted to certain sets of users using a policy configuration file. This
document explains exactly how policies are configured and what they apply to.

A policy is composed of a set of rules that are used in determining if a particular action may be performed
by the authorized tenant.

44 Chapter 4. Administrator Guide

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Watcher Documentation, Release 14.1.1.dev3

4.3.1 Constructing a Policy Configuration File
A policy configuration file is a simply JSON object that contain sets of rules. Each top-level key is the
name of a rule. Each rule is a string that describes an action that may be performed in the Watcher API.

The actions that may have a rule enforced on them are:

• strategy:get_all, strategy:detail - List available strategies

– GET /v1/strategies

– GET /v1/strategies/detail

• strategy:get - Retrieve a specific strategy entity

– GET /v1/strategies/<STRATEGY_UUID>

– GET /v1/strategies/<STRATEGY_NAME>

• goal:get_all, goal:detail - List available goals

– GET /v1/goals

– GET /v1/goals/detail

• goal:get - Retrieve a specific goal entity

– GET /v1/goals/<GOAL_UUID>

– GET /v1/goals/<GOAL_NAME>

• audit_template:get_all, audit_template:detail - List available audit_templates

– GET /v1/audit_templates

– GET /v1/audit_templates/detail

• audit_template:get - Retrieve a specific audit template entity

– GET /v1/audit_templates/<AUDIT_TEMPLATE_UUID>

– GET /v1/audit_templates/<AUDIT_TEMPLATE_NAME>

• audit_template:create - Create an audit template entity

– POST /v1/audit_templates

• audit_template:delete - Delete an audit template entity

– DELETE /v1/audit_templates/<AUDIT_TEMPLATE_UUID>

– DELETE /v1/audit_templates/<AUDIT_TEMPLATE_NAME>

• audit_template:update - Update an audit template entity

– PATCH /v1/audit_templates/<AUDIT_TEMPLATE_UUID>

– PATCH /v1/audit_templates/<AUDIT_TEMPLATE_NAME>

• audit:get_all, audit:detail - List available audits

– GET /v1/audits

– GET /v1/audits/detail

• audit:get - Retrieve a specific audit entity

– GET /v1/audits/<AUDIT_UUID>

4.3. Policies 45

Watcher Documentation, Release 14.1.1.dev3

• audit:create - Create an audit entity

– POST /v1/audits

• audit:delete - Delete an audit entity

– DELETE /v1/audits/<AUDIT_UUID>

• audit:update - Update an audit entity

– PATCH /v1/audits/<AUDIT_UUID>

• action_plan:get_all, action_plan:detail - List available action plans

– GET /v1/action_plans

– GET /v1/action_plans/detail

• action_plan:get - Retrieve a specific action plan entity

– GET /v1/action_plans/<ACTION_PLAN_UUID>

• action_plan:delete - Delete an action plan entity

– DELETE /v1/action_plans/<ACTION_PLAN_UUID>

• action_plan:update - Update an action plan entity

– PATCH /v1/audits/<ACTION_PLAN_UUID>

• action:get_all, action:detail - List available action

– GET /v1/actions

– GET /v1/actions/detail

• action:get - Retrieve a specific action plan entity

– GET /v1/actions/<ACTION_UUID>

• service:get_all, service:detail - List available Watcher services

– GET /v1/services

– GET /v1/services/detail

• service:get - Retrieve a specific Watcher service entity

– GET /v1/services/<SERVICE_ID>

To limit an action to a particular role or roles, you list the roles like so

{
"audit:create": ["role:admin", "role:superuser"]

}

The above would add a rule that only allowed users that had roles of either admin or superuser to launch
an audit.

46 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

4.4 Strategies

4.4.1 Actuator

Synopsis

display name: Actuator

goal: unclassified

Actuator

Actuator that simply executes the actions given as parameter

This strategy allows anyone to create an action plan with a predefined set of actions. This
strategy can be used for 2 different purposes:

• Test actions

• Use this strategy based on an event trigger to perform some explicit task

Requirements

Metrics

None

Cluster data model

None

Actions

Default Watchers actions.

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

Configuration

Strategy parameters are:

parameter type default Value description
actions array None Actions to be executed.

The elements of actions array are:

4.4. Strategies 47

Watcher Documentation, Release 14.1.1.dev3

parameter type default Value description
action_type string None Action name defined in setup.cfg(mandatory)
resource_id string None Resource_id of the action.
input_parameters object None Input_parameters of the action(mandatory).

Efficacy Indicator

None

Algorithm

This strategy create an action plan with a predefined set of actions.

How to use it ?

$ openstack optimize audittemplate create \
at1 unclassified --strategy actuator

$ openstack optimize audit create -a at1 \
-p actions='[{"action_type": "migrate", "resource_id": "56a40802-6fde-4b59-

↪→957c-c84baec7eaed", "input_parameters": {"migration_type": "live", "source_
↪→node": "s01"}}]'

External Links

None

4.4.2 Basic Offline Server Consolidation

Synopsis

display name: Basic offline consolidation

goal: server_consolidation

Good server consolidation strategy

Basic offline consolidation using live migration

Consolidation of VMs is essential to achieve energy optimization in cloud environments
such as OpenStack. As VMs are spinned up and/or moved over time, it becomes necessary
to migrate VMs among servers to lower the costs. However, migration of VMs introduces
runtime overheads and consumes extra energy, thus a good server consolidation strategy
should carefully plan for migration in order to both minimize energy consumption and com-
ply to the various SLAs.

This algorithm not only minimizes the overall number of used servers, but also minimizes
the number of migrations.

It has been developed only for tests. You must have at least 2 physical compute nodes to run
it, so you can easily run it on DevStack. It assumes that live migration is possible on your
OpenStack cluster.

48 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Requirements

Metrics

The basic strategy requires the following metrics:

metric service
name

plu-
gins

comment

compute.node.
cpu.percent

ceilome-
ter

none need to set the compute_monitors option to cpu.
virt_driver in the nova.conf.

cpu ceilome-
ter

none

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

Actions

Default Watchers actions:

4.4. Strategies 49

https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute

Watcher Documentation, Release 14.1.1.dev3

action description
migration Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

change_nova_service_state Disables or enables the nova-compute ser-
vice, deployed on a host
By using this action, you will be able to up-
date the state of a nova-compute service. A
disabled nova-compute service can not be
selected by the nova scheduler for future de-
ployment of server.
The action schema is:
schema = Schema({
'resource_id': str,
'state': str,
'disabled_reason': str,

})

The resource_id references a nova-
compute service name (list of available
nova-compute services is returned by
this command: nova service-list
--binary nova-compute). The state
value should either be ONLINE or OF-
FLINE. The disabled_reason references
the reason why Watcher disables this nova-
compute service. The value should be with
watcher_ prefix, such as watcher_disabled,
watcher_maintaining.

50 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

Configuration

Strategy parameter is:

parameter type de-
fault
Value

description

migration_attemptsNum-
ber

0 Maximum number of combinations to be tried by the strategy while
searching for potential candidates. To remove the limit, set it to 0

period Num-
ber

7200 The time interval in seconds for getting statistic aggregation from met-
ric data source

Efficacy Indicator

[{'name': 'released_nodes_ratio', 'description': 'Ratio of released compute␣
↪→nodes divided by the total number of enabled compute nodes.', 'unit': '%',
↪→'value': 0}]

How to use it ?

$ openstack optimize audittemplate create \
at1 server_consolidation --strategy basic

$ openstack optimize audit create -a at1 -p migration_attempts=4

External Links

None.

4.4.3 Host Maintenance Strategy

Synopsis

display name: Host Maintenance Strategy

goal: cluster_maintaining

[PoC]Host Maintenance

Description

4.4. Strategies 51

Watcher Documentation, Release 14.1.1.dev3

It is a migration strategy for one compute node maintenance, without having the
users application been interrupted. If given one backup node, the strategy will
firstly migrate all instances from the maintenance node to the backup node. If
the backup node is not provided, it will migrate all instances, relying on nova-
scheduler.

Requirements

• You must have at least 2 physical compute nodes to run this strategy.

Limitations

• This is a proof of concept that is not meant to be used in production

• It migrates all instances from one host to other hosts. Its better to execute such strategy
when load is not heavy, and use this algorithm with ONESHOT audit.

• It assumes that cold and live migrations are possible.

Requirements

None.

Metrics

None

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

Actions

Default Watchers actions:

52 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

action description
migration Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

change_nova_service_state Disables or enables the nova-compute ser-
vice, deployed on a host
By using this action, you will be able to up-
date the state of a nova-compute service. A
disabled nova-compute service can not be
selected by the nova scheduler for future de-
ployment of server.
The action schema is:
schema = Schema({
'resource_id': str,
'state': str,
'disabled_reason': str,

})

The resource_id references a nova-
compute service name (list of available
nova-compute services is returned by
this command: nova service-list
--binary nova-compute). The state
value should either be ONLINE or OF-
FLINE. The disabled_reason references
the reason why Watcher disables this nova-
compute service. The value should be with
watcher_ prefix, such as watcher_disabled,
watcher_maintaining.

4.4. Strategies 53

Watcher Documentation, Release 14.1.1.dev3

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

Configuration

Strategy parameters are:

parameter type default Value description
maintenance_nodeString The name of the compute node which need maintenance. Required.
backup_node String The name of the compute node which will backup the maintenance node.

Optional.

Efficacy Indicator

None

Algorithm

For more information on the Host Maintenance Strategy please refer to: https://specs.openstack.org/
openstack/watcher-specs/specs/queens/approved/cluster-maintenance-strategy.html

How to use it ?

$ openstack optimize audit create \
-g cluster_maintaining -s host_maintenance \
-p maintenance_node=compute01 \
-p backup_node=compute02 \
--auto-trigger

External Links

None.

4.4.4 Node Resource Consolidation Strategy

Synopsis

display name: Node Resource Consolidation Strategy

goal: Server Consolidation

consolidating resources on nodes using server migration

Description

54 Chapter 4. Administrator Guide

https://specs.openstack.org/openstack/watcher-specs/specs/queens/approved/cluster-maintenance-strategy.html
https://specs.openstack.org/openstack/watcher-specs/specs/queens/approved/cluster-maintenance-strategy.html

Watcher Documentation, Release 14.1.1.dev3

This strategy checks the resource usages of compute nodes, if the used resources are less
than total, it will try to migrate server to consolidate the use of resource.

Requirements

• You must have at least 2 compute nodes to run this strategy.

• Hardware: compute nodes should use the same physical CPUs/RAMs

Limitations

• This is a proof of concept that is not meant to be used in production

• It assume that live migrations are possible

Spec URL

http://specs.openstack.org/openstack/watcher-specs/specs/train/implemented/
node-resource-consolidation.html

Requirements

None.

Metrics

None

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

Actions

Default Watchers actions:

4.4. Strategies 55

http://specs.openstack.org/openstack/watcher-specs/specs/train/implemented/node-resource-consolidation.html
http://specs.openstack.org/openstack/watcher-specs/specs/train/implemented/node-resource-consolidation.html

Watcher Documentation, Release 14.1.1.dev3

action description
migration Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

change_nova_service_state Disables or enables the nova-compute ser-
vice, deployed on a host
By using this action, you will be able to up-
date the state of a nova-compute service. A
disabled nova-compute service can not be
selected by the nova scheduler for future de-
ployment of server.
The action schema is:
schema = Schema({
'resource_id': str,
'state': str,
'disabled_reason': str,

})

The resource_id references a nova-
compute service name (list of available
nova-compute services is returned by
this command: nova service-list
--binary nova-compute). The state
value should either be ONLINE or OF-
FLINE. The disabled_reason references
the reason why Watcher disables this nova-
compute service. The value should be with
watcher_ prefix, such as watcher_disabled,
watcher_maintaining.

56 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

Configuration

Strategy parameters are:

pa-
rame-
ter

type default Value description

host_choiceString The way to select the server migration destination node, The value auto means that
Nova schedular selects the destination node, and specify means the strategy specifies
the destination.

Efficacy Indicator

None

Algorithm

For more information on the Node Resource Consolidation Strategy please refer to: https://specs.
openstack.org/openstack/watcher-specs/specs/train/approved/node-resource-consolidation.html

How to use it ?

$ openstack optimize audittemplate create \
at1 server_consolidation \
--strategy node_resource_consolidation

$ openstack optimize audit create \
-a at1 -p host_choice=auto

External Links

None.

4.4.5 Noisy neighbor

Synopsis

display name: Noisy Neighbor

goal: noisy_neighbor

4.4. Strategies 57

https://specs.openstack.org/openstack/watcher-specs/specs/train/approved/node-resource-consolidation.html
https://specs.openstack.org/openstack/watcher-specs/specs/train/approved/node-resource-consolidation.html

Watcher Documentation, Release 14.1.1.dev3

Noisy Neighbor strategy using live migration

Description

This strategy can identify and migrate a Noisy Neighbor - a low priority VM that negatively
affects performance of a high priority VM in terms of IPC by over utilizing Last Level Cache.

Requirements

To enable LLC metric, latest Intel server with CMT support is required.

Limitations

This is a proof of concept that is not meant to be used in production

Spec URL

http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/noisy_
neighbor_strategy.html

Requirements

Metrics

The noisy_neighbor strategy requires the following metrics:

metric service name plugins comment
cpu_l3_cache ceilometer none Intel CMT is required

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

Actions

Default Watchers actions:

58 Chapter 4. Administrator Guide

http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/noisy_neighbor_strategy.html
http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/noisy_neighbor_strategy.html
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
http://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html

Watcher Documentation, Release 14.1.1.dev3

action description
migration Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

4.4. Strategies 59

Watcher Documentation, Release 14.1.1.dev3

Configuration

Strategy parameter is:

parameter type default Value description
cache_threshold Number 35.0 Performance drop in L3_cache threshold for migration

Efficacy Indicator

None

Algorithm

For more information on the noisy neighbor strategy please refer to: http://specs.openstack.org/
openstack/watcher-specs/specs/pike/implemented/noisy_neighbor_strategy.html

How to use it ?

$ openstack optimize audittemplate create \
at1 noisy_neighbor --strategy noisy_neighbor

$ openstack optimize audit create -a at1 \
-p cache_threshold=45.0

External Links

None

4.4.6 Outlet Temperature Based Strategy

Synopsis

display name: Outlet temperature based strategy

goal: thermal_optimization

Good Thermal Strategy

Towards to software defined infrastructure, the power and thermal intelligences is being
adopted to optimize workload, which can help improve efficiency, reduce power, as well as
to improve datacenter PUE and lower down operation cost in data center. Outlet (Exhaust
Air) Temperature is one of the important thermal telemetries to measure thermal/workload
status of server.

This strategy makes decisions to migrate workloads to the hosts with good thermal condition
(lowest outlet temperature) when the outlet temperature of source hosts reach a configurable
threshold.

Requirements

This strategy has a dependency on the host having Intels Power Node Manager 3.0 or later enabled.

60 Chapter 4. Administrator Guide

http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/noisy_neighbor_strategy.html
http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/noisy_neighbor_strategy.html

Watcher Documentation, Release 14.1.1.dev3

Metrics

The outlet_temperature strategy requires the following metrics:

metric service name plugins comment
hardware.ipmi.node.outlet_temperature ceilometer IPMI

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

Actions

Default Watchers actions:

4.4. Strategies 61

https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#ipmi-based-meters

Watcher Documentation, Release 14.1.1.dev3

action description
migration Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

62 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Configuration

Strategy parameter is:

param-
eter

type default
Value

description

thresholdNum-
ber

35.0 Temperature threshold for migration

period Num-
ber

30 The time interval in seconds for getting statistic aggregation from
metric data source

Efficacy Indicator

None

Algorithm

For more information on the Outlet Temperature Based Strategy please refer to: https://specs.openstack.
org/openstack/watcher-specs/specs/mitaka/implemented/outlet-temperature-based-strategy.html

How to use it ?

$ openstack optimize audittemplate create \
at1 thermal_optimization --strategy outlet_temperature

$ openstack optimize audit create -a at1 -p threshold=31.0

External Links

• Intel Power Node Manager 3.0

4.4.7 Saving Energy Strategy

Synopsis

display name: Saving Energy Strategy

goal: saving_energy

Saving Energy Strategy

Description

Saving Energy Strategy together with VM Workload Consolidation Strategy can perform the
Dynamic Power Management (DPM) functionality, which tries to save power by dynamically
consolidating workloads even further during periods of low resource utilization. Virtual
machines are migrated onto fewer hosts and the unneeded hosts are powered off.

After consolidation, Saving Energy Strategy produces a solution of powering off/on accord-
ing to the following detailed policy:

In this policy, a preset number(min_free_hosts_num) is given by user, and this
min_free_hosts_num describes minimum free compute nodes that users expect to have,
where free compute nodes refers to those nodes unused but still powered on.

4.4. Strategies 63

https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/outlet-temperature-based-strategy.html
https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/outlet-temperature-based-strategy.html
http://www.intel.com/content/www/us/en/power-management/intelligent-power-node-manager-3-0-specification.html

Watcher Documentation, Release 14.1.1.dev3

If the actual number of unused nodes(in power-on state) is larger than the given number,
randomly select the redundant nodes and power off them; If the actual number of unused
nodes(in poweron state) is smaller than the given number and there are spare unused nodes(in
poweroff state), randomly select some nodes(unused,poweroff) and power on them.

Requirements

In this policy, in order to calculate the min_free_hosts_num, users must provide two param-
eters:

• One parameter(min_free_hosts_num) is a constant int number. This number should be
int type and larger than zero.

• The other parameter(free_used_percent) is a percentage number, which de-
scribes the quotient of min_free_hosts_num/nodes_with_VMs_num, where
nodes_with_VMs_num is the number of nodes with VMs running on it. This
parameter is used to calculate a dynamic min_free_hosts_num. The nodes with VMs
refer to those nodes with VMs running on it.

Then choose the larger one as the final min_free_hosts_num.

Limitations

• at least 2 physical compute hosts

Spec URL

http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/
energy-saving-strategy.html

Requirements

This feature will use Ironic to do the power on/off actions, therefore this feature requires that the ironic
component is configured. And the compute node should be managed by Ironic.

Ironic installation: https://docs.openstack.org/ironic/latest/install/index.html

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

64 Chapter 4. Administrator Guide

http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/energy-saving-strategy.html
http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/energy-saving-strategy.html
https://docs.openstack.org/ironic/latest/install/index.html

Watcher Documentation, Release 14.1.1.dev3

Actions

action description
change_node_power_state Compute node power on/off

By using this action, you will be able to
on/off the power of a compute node.
The action schema is:
schema = Schema({
'resource_id': str,
'state': str,

})

The resource_id references a baremetal
node id (list of available ironic nodes
is returned by this command: ironic
node-list). The state value should either
be on or off.

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

Configuration

Strategy parameter is:

parameter type default
Value

description

free_used_percentNum-
ber

10.0 a rational number, which describes the the quotient of
min_free_hosts_num/nodes_with_VMs_num

min_free_hosts_numInt 1 an int number describes minimum free compute nodes

Efficacy Indicator

None

Algorithm

For more information on the Energy Saving Strategy please refer to: http://specs.openstack.org/
openstack/watcher-specs/specs/pike/implemented/energy-saving-strategy.html

4.4. Strategies 65

http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/energy-saving-strategy.html
http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/energy-saving-strategy.html

Watcher Documentation, Release 14.1.1.dev3

How to use it ?

step1: Add compute nodes info into ironic node management

$ ironic node-create -d pxe_ipmitool -i ipmi_address=10.43.200.184 \
ipmi_username=root -i ipmi_password=nomoresecret -e compute_node_id=3

step 2: Create audit to do optimization

$ openstack optimize audittemplate create \
saving_energy_template1 saving_energy --strategy saving_energy

$ openstack optimize audit create -a saving_energy_audit1 \
-p free_used_percent=20.0

External Links

None

4.4.8 Storage capacity balance

Synopsis

display name: Storage Capacity Balance Strategy

goal: workload_balancing

Storage capacity balance using cinder volume migration

Description

This strategy migrates volumes based on the workload of the cinder pools. It makes deci-
sion to migrate a volume whenever a pools used utilization % is higher than the specified
threshold. The volume to be moved should make the pool close to average workload of all
cinder pools.

Requirements

• You must have at least 2 cinder volume pools to run this strategy.

Limitations

• Volume migration depends on the storage device. It may take a long time.

Spec URL

http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/
storage-capacity-balance.html

Requirements

Metrics

None

66 Chapter 4. Administrator Guide

http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/storage-capacity-balance.html
http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/storage-capacity-balance.html

Watcher Documentation, Release 14.1.1.dev3

Cluster data model

Storage cluster data model is required:

Cinder cluster data model collector

The Cinder cluster data model collector creates an in-memory representation of the resources
exposed by the storage service.

Actions

Default Watchers actions:

action description
volume_migrate Migrates a volume to destination node or type

By using this action, you will be able to migrate
cinder volume. Migration type swap can only be
used for migrating attached volume. Migration
type migrate can be used for migrating detached
volume to the pool of same volume type. Migra-
tion type retype can be used for changing volume
type of detached volume.
The action schema is:
schema = Schema({

'resource_id': str, # should be␣
↪→a UUID
'migration_type': str, # choices␣

↪→-> "swap", "migrate","retype"
'destination_node': str,
'destination_type': str,

})

The resource_id is the UUID of cinder volume to
migrate. The destination_node is the destination
block storage pool name. (list of available pools are
returned by this command: cinder get-pools)
which is mandatory for migrating detached vol-
ume to the one with same volume type. The des-
tination_type is the destination block storage type
name. (list of available types are returned by this
command: cinder type-list) which is manda-
tory for migrating detached volume or swapping
attached volume to the one with different volume
type.

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options

4.4. Strategies 67

Watcher Documentation, Release 14.1.1.dev3

to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

Configuration

Strategy parameter is:

parameter type default Value description
volume_threshold Number 80.0 Volume threshold for capacity balance

Efficacy Indicator

None

Algorithm

For more information on the storage capacity balance strategy please refer to: http://specs.openstack.org/
openstack/watcher-specs/specs/queens/implemented/storage-capacity-balance.html

How to use it ?

$ openstack optimize audittemplate create \
at1 workload_balancing --strategy storage_capacity_balance

$ openstack optimize audit create -a at1 \
-p volume_threshold=85.0

External Links

None

4.4.9 Uniform Airflow Migration Strategy

Synopsis

display name: Uniform airflow migration strategy

goal: airflow_optimization

[PoC]Uniform Airflow using live migration

Description

It is a migration strategy based on the airflow of physical servers. It generates
solutions to move VM whenever a servers airflow is higher than the specified
threshold.

Requirements

• Hardware: compute node with NodeManager 3.0 support

68 Chapter 4. Administrator Guide

http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/storage-capacity-balance.html
http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/storage-capacity-balance.html

Watcher Documentation, Release 14.1.1.dev3

• Software: Ceilometer component ceilometer-agent-compute running in each compute
node, and Ceilometer API can report such telemetry airflow, system power, inlet tem-
perature successfully.

• You must have at least 2 physical compute nodes to run this strategy

Limitations

• This is a proof of concept that is not meant to be used in production.

• We cannot forecast how many servers should be migrated. This is the reason why we
only plan a single virtual machine migration at a time. So its better to use this algorithm
with CONTINUOUS audits.

• It assumes that live migrations are possible.

Requirements

This strategy has a dependency on the server having Intels Power Node Manager 3.0 or later enabled.

Metrics

The uniform_airflow strategy requires the following metrics:

metric service name plugins comment
hardware.ipmi.node.airflow ceilometer IPMI
hardware.ipmi.node.temperature ceilometer IPMI
hardware.ipmi.node.power ceilometer IPMI

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

4.4. Strategies 69

http://docs.openstack.org/admin-guide/telemetry-measurements.html#ipmi-based-meters
http://docs.openstack.org/admin-guide/telemetry-measurements.html#ipmi-based-meters
http://docs.openstack.org/admin-guide/telemetry-measurements.html#ipmi-based-meters

Watcher Documentation, Release 14.1.1.dev3

Actions

Default Watchers actions:

action description
migration Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

70 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Configuration

Strategy parameters are:

parameter type default
Value

description

threshold_airflow Num-
ber

400.0 Airflow threshold for migration Unit is 0.1CFM

threshold_inlet_t Num-
ber

28.0 Inlet temperature threshold for migration deci-
sion

threshold_power Num-
ber

350.0 System power threshold for migration decision

period Num-
ber

300 Aggregate time period of ceilometer

Efficacy Indicator

None

Algorithm

For more information on the Uniform Airflow Migration Strategy please refer to: https://specs.openstack.
org/openstack/watcher-specs/specs/newton/implemented/uniform-airflow-migration-strategy.html

How to use it ?

$ openstack optimize audittemplate create \
at1 airflow_optimization --strategy uniform_airflow

$ openstack optimize audit create -a at1 -p threshold_airflow=410 \
-p threshold_inlet_t=29.0 -p threshold_power=355.0 -p period=310

External Links

• Intel Power Node Manager 3.0

4.4.10 VM Workload Consolidation Strategy

Synopsis

display name: VM Workload Consolidation Strategy

goal: vm_consolidation

VM Workload Consolidation Strategy

A load consolidation strategy based on heuristic first-fit algorithm which focuses on mea-
sured CPU utilization and tries to minimize hosts which have too much or too little load
respecting resource capacity constraints.

This strategy produces a solution resulting in more efficient utilization of cluster resources
using following four phases:

• Offload phase - handling over-utilized resources

4.4. Strategies 71

https://specs.openstack.org/openstack/watcher-specs/specs/newton/implemented/uniform-airflow-migration-strategy.html
https://specs.openstack.org/openstack/watcher-specs/specs/newton/implemented/uniform-airflow-migration-strategy.html
http://www.intel.com/content/www/us/en/power-management/intelligent-power-node-manager-3-0-specification.html

Watcher Documentation, Release 14.1.1.dev3

• Consolidation phase - handling under-utilized resources

• Solution optimization - reducing number of migrations

• Disability of unused compute nodes

A capacity coefficients (cc) might be used to adjust optimization thresholds. Different re-
sources may require different coefficient values as well as setting up different coefficient
values in both phases may lead to more efficient consolidation in the end. If the cc equals
1 the full resource capacity may be used, cc values lower than 1 will lead to resource under
utilization and values higher than 1 will lead to resource overbooking. e.g. If targeted uti-
lization is 80 percent of a compute node capacity, the coefficient in the consolidation phase
will be 0.8, but may any lower value in the offloading phase. The lower it gets the cluster
will appear more released (distributed) for the following consolidation phase.

As this strategy leverages VM live migration to move the load from one compute node to
another, this feature needs to be set up correctly on all compute nodes within the cluster.
This strategy assumes it is possible to live migrate any VM from an active compute node to
any other active compute node.

Requirements

Metrics

The vm_workload_consolidation strategy requires the following metrics:

metric service
name

plu-
gins

comment

cpu ceilome-
ter

none

memory.
resident

ceilome-
ter

none

memory ceilome-
ter

none

disk.root.size ceilome-
ter

none

compute.node.
cpu.percent

ceilome-
ter

none (optional) need to set the compute_monitors option to
cpu.virt_driver in the nova.conf.

hardware.
memory.used

ceilome-
ter

SNMP (optional)

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

72 Chapter 4. Administrator Guide

https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#snmp-based-meters

Watcher Documentation, Release 14.1.1.dev3

Actions

Default Watchers actions:

4.4. Strategies 73

Watcher Documentation, Release 14.1.1.dev3

action description
migration Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

change_nova_service_state Disables or enables the nova-compute ser-
vice, deployed on a host
By using this action, you will be able to up-
date the state of a nova-compute service. A
disabled nova-compute service can not be
selected by the nova scheduler for future de-
ployment of server.
The action schema is:
schema = Schema({
'resource_id': str,
'state': str,
'disabled_reason': str,

})

The resource_id references a nova-
compute service name (list of available
nova-compute services is returned by
this command: nova service-list
--binary nova-compute). The state
value should either be ONLINE or OF-
FLINE. The disabled_reason references
the reason why Watcher disables this nova-
compute service. The value should be with
watcher_ prefix, such as watcher_disabled,
watcher_maintaining.

74 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

Configuration

Strategy parameter is:

param-
eter

type default
Value

description

period Num-
ber

3600 The time interval in seconds for getting statistic aggregation from
metric data source

Efficacy Indicator

[{'name': 'released_nodes_ratio', 'description': 'Ratio of released compute␣
↪→nodes divided by the total number of enabled compute nodes.', 'unit': '%',
↪→'value': 0}]

Algorithm

For more information on the VM Workload consolidation strategy please refer to: https://specs.
openstack.org/openstack/watcher-specs/specs/mitaka/implemented/zhaw-load-consolidation.html

How to use it ?

$ openstack optimize audittemplate create \
at1 server_consolidation --strategy vm_workload_consolidation

$ openstack optimize audit create -a at1

External Links

Spec URL https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/
zhaw-load-consolidation.html

4.4.11 Watcher Overload standard deviation algorithm

Synopsis

display name: Workload stabilization

goal: workload_balancing

4.4. Strategies 75

https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/zhaw-load-consolidation.html
https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/zhaw-load-consolidation.html
https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/zhaw-load-consolidation.html
https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/zhaw-load-consolidation.html

Watcher Documentation, Release 14.1.1.dev3

Workload Stabilization control using live migration

This is workload stabilization strategy based on standard deviation algorithm. The goal is to
determine if there is an overload in a cluster and respond to it by migrating VMs to stabilize
the cluster.

This strategy has been tested in a small (32 nodes) cluster.

It assumes that live migrations are possible in your cluster.

Requirements

Metrics

The workload_stabilization strategy requires the following metrics:

metric service
name

plu-
gins

comment

compute.node.
cpu.percent

ceilome-
ter

none need to set the compute_monitors option to cpu.
virt_driver in the nova.conf.

hardware.memory.
used

ceilome-
ter

SNMP

cpu ceilome-
ter

none

instance_ram_usageceilome-
ter

none

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

Actions

Default Watchers actions:

76 Chapter 4. Administrator Guide

https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#snmp-based-meters
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute

Watcher Documentation, Release 14.1.1.dev3

action description
migration Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

4.4. Strategies 77

Watcher Documentation, Release 14.1.1.dev3

Configuration

Strategy parameters are:

pa-
ram-
eter

type default Value description

metricsar-
ray

[instance_cpu_usage,
instance_ram_usage]

Metrics used as rates of cluster loads.

thresholdsob-
ject

{instance_cpu_usage:
0.2, in-
stance_ram_usage:
0.2}

Dict where key is a metric and value is a trigger value.

weightsob-
ject

{in-
stance_cpu_usage_weight:
1.0, in-
stance_ram_usage_weight:
1.0}

These weights used to calculate common standard deviation.
Name of weight contains meter name and _weight suffix.

instance_metricsob-
ject

{instance_cpu_usage:
com-
pute.node.cpu.percent,
instance_ram_usage:
hard-
ware.memory.used}

Mapping to get hardware statistics using instance metrics.

host_choicestring retry Method of hosts choice. There are cycle, retry and fullsearch
methods. Cycle will iterate hosts in cycle. Retry will get
some hosts random (count defined in retry_count option).
Fullsearch will return each host from list.

retry_countnum-
ber

1 Count of random returned hosts.

periodsob-
ject

{instance: 720, node:
600}

These periods are used to get statistic aggregation for in-
stance and host metrics. The period is simply a repeating
interval of time into which the samples are grouped for ag-
gregation. Watcher uses only the last period of all received
ones.

Efficacy Indicator

[{'name': 'released_nodes_ratio', 'description': 'Ratio of released compute␣
↪→nodes divided by the total number of enabled compute nodes.', 'unit': '%',
↪→'value': 0}]

78 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Algorithm

You can find description of overload algorithm and role of standard deviation here: https://specs.
openstack.org/openstack/watcher-specs/specs/newton/implemented/sd-strategy.html

How to use it ?

$ openstack optimize audittemplate create \
at1 workload_balancing --strategy workload_stabilization

$ openstack optimize audit create -a at1 \
-p thresholds='{"instance_ram_usage": 0.05}' \
-p metrics='["instance_ram_usage"]'

External Links

• Watcher Overload standard deviation algorithm spec

4.4.12 Workload Balance Migration Strategy

Synopsis

display name: Workload Balance Migration Strategy

goal: workload_balancing

[PoC]Workload balance using live migration

Description

It is a migration strategy based on the VM workload of physical servers. It gen-
erates solutions to move a workload whenever a servers CPU or RAM utilization
% is higher than the specified threshold. The VM to be moved should make the
host close to average workload of all compute nodes.

Requirements

• Hardware: compute node should use the same physical CPUs/RAMs

• Software: Ceilometer component ceilometer-agent-compute running in each com-
pute node, and Ceilometer API can report such telemetry instance_cpu_usage and in-
stance_ram_usage successfully.

• You must have at least 2 physical compute nodes to run this strategy.

Limitations

• This is a proof of concept that is not meant to be used in production

• We cannot forecast how many servers should be migrated. This is the reason why we
only plan a single virtual machine migration at a time. So its better to use this algorithm
with CONTINUOUS audits.

• It assume that live migrations are possible

4.4. Strategies 79

https://specs.openstack.org/openstack/watcher-specs/specs/newton/implemented/sd-strategy.html
https://specs.openstack.org/openstack/watcher-specs/specs/newton/implemented/sd-strategy.html
https://specs.openstack.org/openstack/watcher-specs/specs/newton/implemented/sd-strategy.html

Watcher Documentation, Release 14.1.1.dev3

Requirements

None.

Metrics

The workload_balance strategy requires the following metrics:

metric service name plugins comment
cpu ceilometer none
memory.resident ceilometer none

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

Actions

Default Watchers actions:

80 Chapter 4. Administrator Guide

https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-compute

Watcher Documentation, Release 14.1.1.dev3

action description
migration Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

4.4. Strategies 81

Watcher Documentation, Release 14.1.1.dev3

Configuration

Strategy parameters are:

pa-
rame-
ter

type default
Value

description

metrics String in-
stance_cpu_usage

Workload balance base on cpu or ram utilization. Choices: [in-
stance_cpu_usage, instance_ram_usage]

thresholdNum-
ber

25.0 Workload threshold for migration

period Num-
ber

300 Aggregate time period of ceilometer

Efficacy Indicator

None

Algorithm

For more information on the Workload Balance Migration Strategy please re-
fer to: https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/
workload-balance-migration-strategy.html

How to use it ?

$ openstack optimize audittemplate create \
at1 workload_balancing --strategy workload_balance

$ openstack optimize audit create -a at1 -p threshold=26.0 \
-p period=310 -p metrics=instance_cpu_usage

External Links

None.

4.4.13 Zone migration

Synopsis

display name: Zone migration

goal: hardware_maintenance

Zone migration using instance and volume migration

This is zone migration strategy to migrate many instances and volumes efficiently with min-
imum downtime for hardware maintenance.

82 Chapter 4. Administrator Guide

https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/workload-balance-migration-strategy.html
https://specs.openstack.org/openstack/watcher-specs/specs/mitaka/implemented/workload-balance-migration-strategy.html

Watcher Documentation, Release 14.1.1.dev3

Requirements

Metrics

None

Cluster data model

Default Watchers Compute cluster data model:

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources
exposed by the compute service.

Storage cluster data model is also required:

Cinder cluster data model collector

The Cinder cluster data model collector creates an in-memory representation of the resources
exposed by the storage service.

Actions

Default Watchers actions:

4.4. Strategies 83

Watcher Documentation, Release 14.1.1.dev3

action description
migrate Migrates a server to a destination nova-

compute host
This action will allow you to migrate a
server to another compute destination host.
Migration type live can only be used for mi-
grating active VMs. Migration type cold
can be used for migrating non-active VMs
as well active VMs, which will be shut
down while migrating.
The action schema is:
schema = Schema({
'resource_id': str, # should␣
↪→be a UUID
'migration_type': str, #␣
↪→choices -> "live", "cold"
'destination_node': str,
'source_node': str,

})

The resource_id is the UUID of the
server to migrate. The source_node
and destination_node parameters are re-
spectively the source and the destina-
tion compute hostname (list of available
compute hosts is returned by this com-
mand: nova service-list --binary
nova-compute).

Note

Nova API version must be 2.56 or above
if destination_node parameter is given.

volume_migrate Migrates a volume to destination node or
type
By using this action, you will be able to mi-
grate cinder volume. Migration type swap
can only be used for migrating attached vol-
ume. Migration type migrate can be used
for migrating detached volume to the pool
of same volume type. Migration type re-
type can be used for changing volume type
of detached volume.
The action schema is:
schema = Schema({

'resource_id': str, #␣
↪→should be a UUID
'migration_type': str, #␣

↪→choices -> "swap", "migrate",
↪→"retype"
'destination_node': str,
'destination_type': str,

})

The resource_id is the UUID of cinder vol-
ume to migrate. The destination_node is
the destination block storage pool name.
(list of available pools are returned by this
command: cinder get-pools) which is
mandatory for migrating detached volume
to the one with same volume type. The des-
tination_type is the destination block stor-
age type name. (list of available types
are returned by this command: cinder
type-list) which is mandatory for mi-
grating detached volume or swapping at-
tached volume to the one with different vol-
ume type.

84 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Planner

Default Watchers planner:

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions
having a higher weight will be scheduled before the other ones. There are two config options
to configure: action_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

Configuration

Strategy parameters are:

parameter type default
Value

description

compute_nodesar-
ray

None Compute nodes to migrate.

storage_poolsar-
ray

None Storage pools to migrate.

parallel_totalin-
te-
ger

6 The number of actions to be run in parallel in total.

parallel_per_nodein-
te-
ger

2 The number of actions to be run in parallel per compute node.

parallel_per_poolin-
te-
ger

2 The number of actions to be run in parallel per storage pool.

priority ob-
ject

None List prioritizes instances and volumes.

with_attached_volumebooleanFalse False: Instances will migrate after all volumes migrate. True: An
instance will migrate after the attached volumes migrate.

The elements of compute_nodes array are:

parameter type default Value description
src_node string None Compute node from which instances migrate(mandatory).
dst_node string None Compute node to which instances migrate.

The elements of storage_pools array are:

4.4. Strategies 85

Watcher Documentation, Release 14.1.1.dev3

parameter type default Value description
src_pool string None Storage pool from which volumes migrate(mandatory).
dst_pool string None Storage pool to which volumes migrate.
src_type string None Source volume type(mandatory).
dst_type string None Destination volume type (mandatory).

The elements of priority object are:

parameter type default
Value

description

project ar-
ray

None Project names.

compute_node ar-
ray

None Compute node names.

storage_pool ar-
ray

None Storage pool names.

compute enum None Instance attributes. [vcpu_num, mem_size, disk_size, cre-
ated_at]

storage enum None Volume attributes. [size, created_at]

Efficacy Indicator

[{'name': 'live_instance_migrate_ratio', 'description': 'Ratio of actual live␣
↪→migrated instances to planned live migrate instances.', 'unit': '%', 'value
↪→': 0}, {'name': 'cold_instance_migrate_ratio', 'description': 'Ratio of␣
↪→actual cold migrated instances to planned cold migrate instances.', 'unit':
↪→'%', 'value': 0}, {'name': 'volume_migrate_ratio', 'description': 'Ratio of␣
↪→actual detached volumes migrated to planned detached volumes migrate.',
↪→'unit': '%', 'value': 0}, {'name': 'volume_update_ratio', 'description':
↪→'Ratio of actual attached volumes migrated to planned attached volumes␣
↪→migrate.', 'unit': '%', 'value': 0}]

Algorithm

For more information on the zone migration strategy please refer to: http://specs.openstack.org/
openstack/watcher-specs/specs/queens/implemented/zone-migration-strategy.html

How to use it ?

$ openstack optimize audittemplate create \
at1 hardware_maintenance --strategy zone_migration

$ openstack optimize audit create -a at1 \
-p compute_nodes='[{"src_node": "s01", "dst_node": "d01"}]'

86 Chapter 4. Administrator Guide

http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/zone-migration-strategy.html
http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/zone-migration-strategy.html

Watcher Documentation, Release 14.1.1.dev3

External Links

None

4.5 Datasources

4.5.1 Grafana datasource

Synopsis

Grafana can interface with many different types of storage backends that Grafana calls datasources. Since
the term datasources causes significant confusion by overlapping definitions used in Watcher these data-
sources are called projects instead. Some examples of supported projects are InfluxDB or Elasticsearch
while others might be more familiar such as Monasca or Gnocchi. The Grafana datasource provides the
functionality to retrieve metrics from Grafana for different projects. This functionality is achieved by
using the proxy interface exposed in Grafana to communicate with Grafana projects directly.

Background

Since queries to retrieve metrics from Grafana are proxied to the project the format of these queries will
change significantly depending on the type of project. The structure of the projects themselves will also
change significantly as they are structured by users and administrators. For instance, some developers
might decide to store metrics about compute_nodes in MySQL and use the UUID as primary key while
others use InfluxDB and use the hostname as primary key. Furthermore, datasources in Watcher should
return metrics in specific units strictly defined in the baseclass depending on how the units are stored in
the projects they might require conversion before being returned. The flexible configuration parameters
of the Grafana datasource allow to specify exactly how the deployment is configured and this will enable
to correct retrieval of metrics and with the correct units.

Requirements

The use of the Grafana datasource requires a reachable Grafana endpoint and an authentication token
for access to the desired projects. The projects behind Grafana will need to contain the metrics for
compute_nodes or instances and these need to be identifiable by an attribute of the Watcher datamodel
for instance hostname or UUID.

Limitations

• Only the InfluxDB project is currently supported1.

• All metrics must be retrieved from the same Grafana endpoint (same URL).

• All metrics must be retrieved with the same authentication token.

Configuration

Several steps are required in order to use the Grafana datasource, Most steps are related configuring
Watcher to match the deployed Grafana setup such as queries proxied to the project or the type of project
for any given metric. Most of the configuration can either be supplied via the traditional configuration
file or in a special yaml file.

1 A base class for projects is available and easily extensible.

4.5. Datasources 87

https://grafana.com/plugins?type=datasource
https://github.com/openstack/watcher/blob/584eeefdc8/watcher/datasources/base.py
https://opendev.org/openstack/watcher/src/branch/master/watcher/decision_engine/model/element/node.py
https://opendev.org/openstack/watcher/src/branch/master/watcher/decision_engine/model/element/instance.py
https://opendev.org/openstack/watcher/src/branch/master/watcher/decision_engine/model/element
https://specs.openstack.org/openstack/watcher-specs/specs/train/approved/file-based-metricmap.html
https://review.opendev.org/#/c/649341/24/watcher/datasources/grafana_translator/base.py

Watcher Documentation, Release 14.1.1.dev3

token

First step is to generate an access token with access to the required projects. This can be done from the
api or from the web interface. Tokens generated from the web interface will have the same access to
projects as the user that created them while using the cli allows to generate a key for a specific role.The
token will only be displayed once so store it well. This token will go into the configuration file later and
this parameter can not be placed in the yaml.

base_url

Next step is supplying the base url of the Grafana endpoint. The base url parameter will need to specify
the type of http protocol and the use of plain text http is strongly discouraged due to the transmission of
the access token. Additionally the path to the proxy interface needs to be supplied as well in case Grafana
is placed in a sub directory of the web server. An example would be: https://mygrafana.org/api/
datasource/proxy/ were /api/datasource/proxy is the default path without any subdirectories.
Likewise, this parameter can not be placed in the yaml.

To prevent many errors from occurring and potentially filing the logs files it is advised to specify the
desired datasource in the configuration as it would prevent the datasource manager from having to iterate
and try possible datasources with the launch of each audit. To do this specify datasources in the
[watcher_datasources] group.

The current configuration that is required to be placed in the traditional configuration file would look like
the following:

[grafana_client]
token = 0JLbF0oB4R3Q2Fl337Gh4Df5VN12D3adBE3f==
base_url = https://mygranfa.org/api/datasource/proxy

[watcher_datasources]
datasources = grafana

metric parameters

The last five remaining configuration parameters can all be placed both in the traditional configuration
file or in the yaml, however, it is not advised to mix and match but in the case it does occur the yaml would
override the settings from the traditional configuration file. All five of these parameters are dictionaries
mapping specific metrics to a configuration parameter. For instance the project_id_map will specify
the specific project id in Grafana to be used. The parameters are named as follow:

• project_id_map

• database_map

• translator_map

• attribute_map

• query_map

These five parameters are named differently if configured using the yaml configuration file. The param-
eters are named as follows and are in identical order as to the list of the traditional configuration file:

• project

• db

88 Chapter 4. Administrator Guide

https://grafana.com/docs/http_api/auth/#create-api-key
https://grafana.com/docs/http_api/auth/#create-api-token

Watcher Documentation, Release 14.1.1.dev3

• translator

• attribute

• query

When specified in the yaml the parameters are no longer dictionaries instead each parameter needs to be
defined per metric as sub-parameters. Examples of these parameters configured for both the yaml and
traditional configuration are described at the end of this document.

project_id

The project ids can only be determined by someone with the admin role in Grafana as that role is required
to open the list of projects. The list of projects can be found on /datasources in the web interface but
unfortunately it does not immediately display the project id. To display the id one can best hover the
mouse over the projects and the url will show the project ids for example /datasources/edit/7563.
Alternatively the entire list of projects can be retrieved using the REST api. To easily make requests to
the REST api a tool such as Postman can be used.

database

The database is the parameter for the schema / database that is actually defined in the project. For instance,
if the project would be based on MySQL this is were the name of schema used within the MySQL server
would be specified. For many different projects it is possible to list all the databases currently available.
Tools like Postman can be used to list all the available databases per project. For InfluxDB based projects
this would be with the following path and query, however be sure to construct these request in Postman
as the header needs to contain the authorization token:

https://URL.DOMAIN/api/datasources/proxy/PROJECT_ID/query?q=SHOW%20DATABASES

translator

Each translator is for a specific type of project will have a uniquely identifiable name and the baseclass
allows to easily support new types of projects such as elasticsearch or prometheus. Currently only In-
fluxDB based projects are supported as a result the only valid value for this parameter is ‘ influxdb‘.

attribute

The attribute parameter specifies which attribute to use from Watchers data model in order to construct
the query. The available attributes differ per type of object in the data model but the following table
shows the attributes for ComputeNodes, Instances and IronicNodes.

4.5. Datasources 89

https://grafana.com/docs/http_api/data_source/#get-all-datasources

Watcher Documentation, Release 14.1.1.dev3

ComputeNode Instance IronicNode
uuid uuid uuid
id name human_id
hostname project_id power_state
status watcher_exclude maintenance
disabled_reason locked maintenance_reason
state metadata extra
memory state
disk memory
disk_capacity disk
vcpus disk_capacity

vcpus

Many if not all of these attributes map to attributes of the objects that are fetched from clients such as
Nova. To see how these attributes are put into the data model the following source files can be analyzed
for Nova and Ironic.

query

The query is the single most important parameter it will be passed to the project and should return the
desired metric for the specific host and return the value in the correct unit. The units for all available met-
rics are documented in the datasource baseclass. This might mean the query specified in this parameter
is responsible for converting the unit. The following query demonstrates how such a conversion could be
achieved and demonstrates the conversion from bytes to megabytes.

SELECT value/1000000 FROM memory...

Queries will be formatted using the .format string method within Python. This format will currently have
give attributes exposed to it labeled {0} through {4}. Every occurrence of these characters within the
string will be replaced with the specific attribute.

{0}
is the aggregate typically mean, min, max but count is also supported.

{1}
is the attribute as specified in the attribute parameter.

{2}
is the period of time to aggregate data over in seconds.

{3}
is the granularity or the interval between data points in seconds.

{4}
is translator specific and in the case of InfluxDB it will be used for retention_periods.

InfluxDB

Constructing the queries or rather anticipating how the results should look to be correctly interpreted by
Watcher can be a challenge. The following json example demonstrates how what the result should look
like and the query used to get this result.

90 Chapter 4. Administrator Guide

https://opendev.org/openstack/watcher/src/branch/master/watcher/decision_engine/model/collector/nova.py#L304
https://opendev.org/openstack/watcher/src/branch/master/watcher/decision_engine/model/collector/ironic.py#L85
https://opendev.org/openstack/watcher/src/branch/master/watcher/datasources/base.py

Watcher Documentation, Release 14.1.1.dev3

{
"results": [

{
"statement_id": 0,
"series": [

{
"name": "vmstats",
"tags": {

"host": "autoserver01"
},
"columns": [

"time",
"mean"

],
"values": [

[
1560848284284,
7680000

]
]

}
]

}
]
}

SELECT {0}("{0}_value") FROM "vmstats" WHERE host =~ /^{1}$/ AND
"type_instance" =~ /^mem$/ AND time >= now() - {2}s GROUP BY host

Example configuration

The example configurations will show both how to achieve the entire configuration in the config file or
use a combination of the regular file and yaml. Using yaml to define all the parameters for each metric
is recommended since it has better human readability and supports mutli-line option definitions.

Configuration file

It is important to note that the line breaks shown in between assignments of parameters can not be
used in the actual configuration and these are simply here for readability reasons.

[grafana_client]
Authentication token to gain access (string value)
Note: This option can be changed without restarting.
token = eyJrIjoiT0tTcG1pUlY2RnVKZTFVaDFsNFZXdE9ZWmNrMkZYbk==

first part of the url (including https:// or http://) up until project id
part. Example: https://secure.org/api/datasource/proxy/ (string value)
Note: This option can be changed without restarting.
base_url = https://monitoring-grafana.com/api/datasources/proxy/

(continues on next page)

4.5. Datasources 91

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

Project id as in url (integer value)
Note: This option can be changed without restarting.
project_id_map = host_cpu_usage:1337,host_ram_usage:6969,
instance_cpu_usage:1337,instance_ram_usage:9696

Mapping of grafana databases to datasource metrics. (dict value)
Note: This option can be changed without restarting.
database_map = host_cpu_usage:monit_production,
host_ram_usage:monit_production,instance_cpu_usage:prod_cloud,
instance_ram_usage:prod_cloud

translator_map = host_cpu_usage:influxdb,host_ram_usage:influxdb,
instance_cpu_usage:influxdb,instance_ram_usage:influxdb

attribute_map = host_cpu_usage:hostname,host_ram_usage:hostname,
instance_cpu_usage:name,instance_ram_usage:name

query_map = host_cpu_usage:SELECT 100-{0}("{0}_value") FROM {4}.cpu WHERE
("host" =~ /^{1}$/ AND "type_instance" =~/^idle$/ AND time > now()-{2}s),
host_ram_usage:SELECT {0}("{0}_value")/1000000 FROM {4}.memory WHERE
("host" =~ /^{1}$/) AND "type_instance" =~ /^used$/ AND time >= now()-{2}s
GROUP BY "type_instance",instance_cpu_usage:SELECT {0}("{0}_value") FROM
"vmstats" WHERE host =~ /^{1}$/ AND "type_instance" =~ /^cpu$/ AND time >=
now() - {2}s GROUP BY host,instance_ram_usage:SELECT {0}("{0}_value") FROM
"vmstats" WHERE host =~ /^{1}$/ AND "type_instance" =~ /^mem$/ AND time >=
now() - {2}s GROUP BY host

[grafana_translators]

retention_periods = one_week:10080,one_month:302400,five_years:525600

[watcher_datasources]
datasources = grafana

yaml

When using the yaml configuration file some parameters still need to be defined using the regular con-
figuration such as the path for the yaml file these parameters are detailed below:

[grafana_client]
token = eyJrIjoiT0tTcG1pUlY2RnVKZTFVaDFsNFZXdE9ZWmNrMkZYbk==

base_url = https://monitoring-grafana.com/api/datasources/proxy/

[watcher_datasources]
datasources = grafana

[watcher_decision_engine]
metric_map_path = /etc/watcher/metric_map.yaml

92 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Using the yaml allows to more effectively define the parameters per metric with greater human readability
due to the availability of multi line options. These multi line options are demonstrated in the query
parameters.

grafana:
host_cpu_usage:
project: 1337
db: monit_production
translator: influxdb
attribute: hostname
query: >

SELECT 100-{0}("{0}_value") FROM {4}.cpu
WHERE ("host" =~ /^{1}$/ AND "type_instance" =~/^idle$/ AND
time > now()-{2}s)

host_ram_usage:
project: 6969
db: monit_production
translator: influxdb
attribute: hostname
query: >

SELECT {0}("{0}_value")/1000000 FROM {4}.memory WHERE
("host" =~ /^{1}$/) AND "type_instance" =~ /^used$/ AND time >=
now()-{2}s GROUP BY "type_instance"

instance_cpu_usage:
project: 1337
db: prod_cloud
translator: influxdb
attribute: name
query: >

SELECT {0}("{0}_value") FROM
"vmstats" WHERE host =~ /^{1}$/ AND "type_instance" =~ /^cpu$/ AND
time >= now() - {2}s GROUP BY host

instance_ram_usage:
project: 9696
db: prod_cloud
translator: influxdb
attribute: name
query: >

SELECT {0}("{0}_value") FROM
"vmstats" WHERE host =~ /^{1}$/ AND "type_instance" =~ /^mem$/ AND
time >= now() - {2}s GROUP BY host

External Links

• List of Grafana datasources

4.5.2 Prometheus datasource

Synopsis

The Prometheus datasource allows Watcher to use a Prometheus server as the source for collected metrics
used by the Watcher decision engine. At minimum deployers must configure the host and port at which

4.5. Datasources 93

https://grafana.com/plugins?type=datasource

Watcher Documentation, Release 14.1.1.dev3

the Prometheus server is listening.

Requirements

It is required that Prometheus metrics contain a label to identify the hostname of the exporter from
which the metric was collected. This is used to match against the Watcher cluster model ComputeNode.
hostname. The default for this label is fqdn and in the prometheus scrape configs would look like:

scrape_configs:
- job_name: node

static_configs:
- targets: ['10.1.2.3:9100']

labels:
fqdn: "testbox.controlplane.domain"

This default can be overridden when a deployer uses a different label to identify the exporter host (for
example hostname or host, or any other label, as long as it identifies the host).

Internally this label is used in creating fqdn_instance_labels, containing the list of values assigned to
the the label in the Prometheus targets. The elements of the resulting fqdn_instance_labels are expected
to match the ComputeNode.hostname used in the Watcher decision engine cluster model. An example
fqdn_instance_labels is the following:

[
'ena.controlplane.domain',
'dio.controlplane.domain',
'tria.controlplane.domain',
]

For instance metrics, it is required that Prometheus contains a label with the uuid of the OpenStack
instance in each relevant metric. By default, the datasource will look for the label resource. The
instance_uuid_label config option in watcher.conf allows deployers to override this default to any
other label name that stores the uuid.

Limitations

The current implementation doesnt support the statistic_series function of the Watcher class
DataSourceBase. It is expected that the statistic_aggregation function (which is imple-
mented) is sufficient in providing the current state of the managed resources in the cluster. The
statistic_aggregation function defaults to querying back 300 seconds, starting from the present
time (the time period is a function parameter and can be set to a value as required). Implementing the
statistic_series can always be re-visited if the requisite interest and work cycles are volunteered by
the interested parties.

One further note about a limitation in the implemented statistic_aggregation function. This func-
tion is defined with a granularity parameter, to be used when querying whichever of the Watcher
DataSourceBase metrics providers. In the case of Prometheus, we do not fetch and then process in-
dividual metrics across the specified time period. Instead we use the PromQL querying operators and
functions, so that the server itself will process the request across the specified parameters and then return
the result. So granularity parameter is redundant and remains unused for the Prometheus implementa-
tion of statistic_aggregation. The granularity of the data fetched by Prometheus server is specified
in configuration as the server scrape_interval (current default 15 seconds).

94 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Configuration

A deployer must set the datasources parameter to include prometheus under the watcher_datasources
section of watcher.conf (or add prometheus in datasources for a specific strategy if preferred eg. under
the [watcher_strategies.workload_stabilization] section).

The watcher.conf configuration file is also used to set the parameter values required by the Watcher
Prometheus data source. The configuration can be added under the [prometheus_client] section and
the available options are duplicated below from the code as they are self documenting:

cfg.StrOpt('host',
help="The hostname or IP address for the prometheus server."),

cfg.StrOpt('port',
help="The port number used by the prometheus server."),

cfg.StrOpt('fqdn_label',
default="fqdn",
help="The label that Prometheus uses to store the fqdn of "

"exporters. Defaults to 'fqdn'."),
cfg.StrOpt('instance_uuid_label',

default="resource",
help="The label that Prometheus uses to store the uuid of "

"OpenStack instances. Defaults to 'resource'."),
cfg.StrOpt('username',

help="The basic_auth username to use to authenticate with the "
"Prometheus server."),

cfg.StrOpt('password',
secret=True,
help="The basic_auth password to use to authenticate with the "

"Prometheus server."),
cfg.StrOpt('cafile',

help="Path to the CA certificate for establishing a TLS "
"connection with the Prometheus server."),

cfg.StrOpt('certfile',
help="Path to the client certificate for establishing a TLS "

"connection with the Prometheus server."),
cfg.StrOpt('keyfile',

help="Path to the client key for establishing a TLS "
"connection with the Prometheus server."),

The host and port are required configuration options which have no set default. These specify the
hostname (or IP) and port for at which the Prometheus server is listening. The fqdn_label allows
deployers to override the required metric label used to match Prometheus node exporters against the
Watcher ComputeNodes in the Watcher decision engine cluster data model. The default is fqdn and
deployers can specify any other value (e.g. if they have an equivalent but different label such as host).

So a sample watcher.conf configured to use the Prometheus server at 10.2.3.4:9090 would look like
the following:

[watcher_datasources]

datasources = prometheus

(continues on next page)

4.5. Datasources 95

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

[prometheus_client]

host = 10.2.3.4
port = 9090
fqdn_label = fqdn

4.6 Notifications in Watcher

Event type Notification class Payload class Sam-
ple

action.cancel.end ActionCancelNotification ActionCancelPayload
action.cancel.error ActionCancelNotification ActionCancelPayload
action.cancel.start ActionCancelNotification ActionCancelPayload
action.create ActionCreateNotification ActionCreatePayload
action.delete ActionDeleteNotification ActionDeletePayload
action.execution.end ActionExecutionNotificationActionExecutionPayload
action.execution.error ActionExecutionNotificationActionExecutionPayload
action.execution.start ActionExecutionNotificationActionExecutionPayload
action_plan.execution.
end

ActionPlanActionNotificationActionPlanActionPayload

action_plan.execution.
error

ActionPlanActionNotificationActionPlanActionPayload

action_plan.execution.
start

ActionPlanActionNotificationActionPlanActionPayload

action_plan.cancel.end ActionPlanCancelNotificationActionPlanCancelPayload
action_plan.cancel.
error

ActionPlanCancelNotificationActionPlanCancelPayload

action_plan.cancel.
start

ActionPlanCancelNotificationActionPlanCancelPayload

action_plan.create ActionPlanCreateNotificationActionPlanCreatePayload
action_plan.delete ActionPlanDeleteNotificationActionPlanDeletePayload
action_plan.update ActionPlanUpdateNotificationActionPlanUpdatePayload
action.update ActionUpdateNotification ActionUpdatePayload
audit.strategy.end AuditActionNotification AuditActionPayload
audit.strategy.error AuditActionNotification AuditActionPayload
audit.strategy.start AuditActionNotification AuditActionPayload
audit.create AuditCreateNotification AuditCreatePayload
audit.delete AuditDeleteNotification AuditDeletePayload
audit.update AuditUpdateNotification AuditUpdatePayload
infra.optim.exception ExceptionNotification ExceptionPayload
service.update ServiceUpdateNotification ServiceUpdatePayload

4.7 Concurrency

4.7.1 Introduction
Modern processors typically contain multiple cores all capable of executing instructions in parallel. En-
suring applications can fully utilize modern underlying hardware requires developing with these concepts

96 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

in mind. The OpenStack foundation maintains a number of libraries to facilitate this utilization, com-
bined with constructs like CPythons GIL the proper use of these concepts becomes more straightforward
compared to other programming languages.

The primary libraries maintained by OpenStack to facilitate concurrency are futurist and taskflow. Here
futurist is a more straightforward and lightweight library while taskflow is more advanced supporting
features like rollback mechanisms. Within Watcher both libraries are used to facilitate concurrency.

4.7.2 Threadpool
A threadpool is a collection of one or more threads typically called workers to which tasks can be sub-
mitted. These submitted tasks will be scheduled by a threadpool and subsequently executed. In the case
of Python tasks typically are bounded or unbounded methods while other programming languages like
Java require implementing an interface.

The order and amount of concurrency with which these tasks are executed is up to the threadpool to
decide. Some libraries like taskflow allow for either strong or loose ordering of tasks while others like
futurist might only support loose ordering. Taskflow supports building tree-based hierarchies of depen-
dent tasks for example.

Upon submission of a task to a threadpool a so called future is returned. These objects allow to determine
information about the task such as if it is currently being executed or if it has finished execution. When
the task has finished execution the future can also be used to retrieve what was returned by the method.

Some libraries like futurist provide synchronization primitives for collections of futures such as
wait_for_any. The following sections will cover different types of concurrency used in various services
of Watcher.

4.7.3 Decision engine concurrency
The concurrency in the decision engine is governed by two independent threadpools. Both of these
threadpools are GreenThreadPoolExecutor from the futurist library. One of these is used automatically
and most contributors will not interact with it while developing new features. The other threadpool
can frequently be used while developing new features or updating existing ones. It is known as the
DecisionEngineThreadpool and allows to achieve performance improvements in network or I/O bound
operations.

AuditEndpoint

The first threadpool is used to allow multiple audits to be run in parallel. In practice, however, only one
audit can be run in parallel. This is due to the data model used by audits being a singleton. To prevent
audits destroying each others data model one must wait for the other to complete before being allowed to
access this data model. A performance improvement could be achieved by being more intelligent in the
use, caching and construction of these data models.

DecisionEngineThreadPool

The second threadpool is used for generic tasks, typically networking and I/O could benefit the most of
this threadpool. Upon execution of an audit this threadpool can be utilized to retrieve information from
the Nova compute service for instance. This second threadpool is a singleton and is shared amongst
concurrently running audits as a result the amount of workers is static and independent from the amount
of workers in the first threadpool. The use of the DecisionEngineThreadpoolwhile building the Nova
compute data model is demonstrated to show how it can effectively be used.

4.7. Concurrency 97

https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.openstack.org/futurist/latest/
https://docs.openstack.org/taskflow/latest/
https://docs.python.org/3/library/concurrent.futures.html
https://docs.openstack.org/futurist/latest/reference/index.html#waiters
https://docs.openstack.org/futurist/latest/reference/index.html#executors
https://docs.openstack.org/futurist/latest/

Watcher Documentation, Release 14.1.1.dev3

In the following example a reference to the DecisionEngineThreadpool is stored in self.executor.
Here two tasks are submitted one with function self._collect_aggregates and the other function
self._collect_zones. With both self.executor.submit calls subsequent arguments are passed
to the function. All subsequent arguments are passed to the function being submitted as task follow-
ing the common (fn, *args, **kwargs) signature. One of the original signatures would be def
_collect_aggregates(host_aggregates, compute_nodes) for example.

zone_aggregate_futures = {
self.executor.submit(

self._collect_aggregates, host_aggregates, compute_nodes),
self.executor.submit(

self._collect_zones, availability_zones, compute_nodes)
}
waiters.wait_for_all(zone_aggregate_futures)

The last statement of the example above waits on all futures to complete. Similarly, waiters.
wait_for_any will wait for any future of the specified collection to complete. To simplify the usage
of wait_for_any the DecisiongEngineThreadpool defines a do_while_futures method. This
method will iterate in a do_while loop over a collection of futures until all of them have completed. The
advantage of do_while_futures is that it allows to immediately call a method as soon as a future fin-
ishes. The arguments for this callback method can be supplied when calling do_while_futures, how-
ever, the first argument to the callback is always the future itself! If the collection of futures can safely be
modified do_while_futures_modify can be used and should have slightly better performance. The
following example will show how do_while_futures is used in the decision engine.

For every compute node from compute_nodes submit a task to gather the node␣
↪→it's information.
List comprehension is used to store all the futures of the submitted tasks␣
↪→in node_futures.
node_futures = [self.executor.submit(

self.nova_helper.get_compute_node_by_name,
node, servers=True, detailed=True)
for node in compute_nodes]

LOG.debug("submitted {0} jobs".format(len(compute_nodes)))

future_instances = []
do_while iterate over node_futures and upon completion of a future call
self._compute_node_future with the future and future_instances as arguments.
self.executor.do_while_futures_modify(

node_futures, self._compute_node_future, future_instances)

Wait for all instance jobs to finish
waiters.wait_for_all(future_instances)

Finally, lets demonstrate how powerful this do_while_futures can be by showing what the
compute_node_future callback does. First, it retrieves the result from the future and adds the com-
pute node to the data model. Afterwards, it checks if the compute node has any associated instances
and if so it submits an additional task to the DecisionEngineThreadpool. The future is appended to
the future_instances so waiters.wait_for_all can be called on this list. This is important as
otherwise the building of the data model might return before all tasks for instances have finished.

98 Chapter 4. Administrator Guide

Watcher Documentation, Release 14.1.1.dev3

Get the result from the future.
node_info = future.result()[0]

Filter out baremetal nodes.
if node_info.hypervisor_type == 'ironic':

LOG.debug("filtering out baremetal node: %s", node_info)
return

Add the compute node to the data model.
self.add_compute_node(node_info)
Get the instances from the compute node.
instances = getattr(node_info, "servers", None)
Do not submit job if there are no instances on compute node.
if instances is None:

LOG.info("No instances on compute_node: {0}".format(node_info))
return

Submit a job to retrieve detailed information about the instances.
future_instances.append(

self.executor.submit(
self.add_instance_node, node_info, instances)

)

Without do_while_futures an additional waiters.wait_for_all would be required in between the
compute node tasks and the instance tasks. This would cause the progress of the decision engine to stall
as less and less tasks remain active before the instance tasks could be submitted. This demonstrates how
do_while_futures can be used to achieve more constant utilization of the underlying hardware.

4.7.4 Applier concurrency
The applier does not use the futurist GreenThreadPoolExecutor directly but instead uses taskflow. How-
ever, taskflow still utilizes a greenthreadpool. This threadpool is initialized in the workflow engine called
DefaultWorkFlowEngine. Currently Watcher supports one workflow engine but the base class allows
contributors to develop other workflow engines as well. In taskflow tasks are created using different types
of flows such as a linear, unordered or a graph flow. The linear and graph flow allow for strong ordering
between individual tasks and it is for this reason that the workflow engine utilizes a graph flow. The
creation of tasks, subsequently linking them into a graph like structure and submitting them is shown
below.

self.execution_rule = self.get_execution_rule(actions)
flow = gf.Flow("watcher_flow")
actions_uuid = {}
for a in actions:

task = TaskFlowActionContainer(a, self)
flow.add(task)
actions_uuid[a.uuid] = task

for a in actions:
for parent_id in a.parents:

flow.link(actions_uuid[parent_id], actions_uuid[a.uuid],
decider=self.decider)

(continues on next page)

4.7. Concurrency 99

https://docs.openstack.org/futurist/latest/
https://docs.openstack.org/futurist/latest/reference/index.html#executors
https://docs.openstack.org/taskflow/latest/

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

e = engines.load(
flow, executor='greenthreaded', engine='parallel',
max_workers=self.config.max_workers)

e.run()

return flow

In the applier tasks are contained in a TaskFlowActionContainer which allows them to trigger events
in the workflow engine. This way the workflow engine can halt or take other actions while the action
plan is being executed based on the success or failure of individual actions. However, the base workflow
engine simply uses these notifies to store the result of individual actions in the database. Additionally,
since taskflow uses a graph flow if any of the tasks would fail all children of this tasks not be executed
while do_revert will be triggered for all parents.

class TaskFlowActionContainer(...):
...
def do_execute(self, *args, **kwargs):

...
result = self.action.execute()
if result is True:

return self.engine.notify(self._db_action,
objects.action.State.SUCCEEDED)

else:
self.engine.notify(self._db_action,

objects.action.State.FAILED)

class BaseWorkFlowEngine(...):
...
def notify(self, action, state):

db_action = objects.Action.get_by_uuid(self.context, action.uuid,
eager=True)

db_action.state = state
db_action.save()
return db_action

100 Chapter 4. Administrator Guide

CHAPTER

FIVE

USER GUIDE

5.1 Ways to install Watcher
This document describes some ways to install Watcher in order to use it. If you are intending to develop
on or with Watcher, please read Set up a development environment manually.

5.1.1 Prerequisites
The source install instructions specifically avoid using platform specific packages, instead using the
source for the code and the Python Package Index (PyPi).

Its expected that your system already has python2.7, latest version of pip, and git available.

Your system shall also have some additional system libraries:

On Ubuntu (tested on 16.04LTS):

$ sudo apt-get install python-dev libssl-dev libmysqlclient-dev␣
↪→libffi-dev

On Fedora-based distributions e.g., Fedora/RHEL/CentOS/Scientific Linux (tested on Cen-
tOS 7.1):

$ sudo yum install gcc python-devel openssl-devel libffi-devel mysql-
↪→devel

5.1.2 Installing from Source
Clone the Watcher repository:

$ git clone https://opendev.org/openstack/watcher.git
$ cd watcher

Install the Watcher modules:

python setup.py install

The following commands should be available on the command-line path:

• watcher-api the Watcher Web service used to handle RESTful requests

• watcher-decision-engine the Watcher Decision Engine used to build action plans, according
to optimization goals to achieve.

101

https://pypi.org/
https://www.python.org
https://pip.pypa.io/en/latest/installing/
https://git-scm.com/

Watcher Documentation, Release 14.1.1.dev3

• watcher-applier the Watcher Applier module, used to apply action plan

• watcher-db-manage used to bootstrap Watcher data

You will find sample configuration files in etc/watcher:

• watcher.conf.sample

Install the Watcher modules dependencies:

pip install -r requirements.txt

From here, refer to Configuring Watcher to declare Watcher as a new service into Keystone and to con-
figure its different modules. Once configured, you should be able to run the Watcher services by issuing
these commands:

$ watcher-api
$ watcher-decision-engine
$ watcher-applier

By default, this will show logging on the console from which it was started. Once started, you can use
the Watcher Client to play with Watcher service.

5.1.3 Installing from packages: PyPI
Watcher package is available on PyPI repository. To install Watcher on your system:

$ sudo pip install python-watcher

The Watcher services along with its dependencies should then be automatically installed on your system.

Once installed, you still need to declare Watcher as a new service into Keystone and to configure its
different modules, which you can find described in Configuring Watcher.

5.1.4 Installing from packages: Debian (experimental)
Experimental Debian packages are available on Debian repositories. The best way to use them is to install
them into a Docker container.

Here is single Dockerfile snippet you can use to run your Docker container:

FROM debian:experimental
MAINTAINER David TARDIVEL <david.tardivel@b-com.com>

RUN apt-get update
RUN apt-get dist-upgrade
RUN apt-get install vim net-tools
RUN apt-get install experimental watcher-api

CMD ["/usr/bin/watcher-api"]

Build your container from this Dockerfile:

$ docker build -t watcher/api .

To run your container, execute this command:

102 Chapter 5. User Guide

https://opendev.org/openstack/python-watcherclient
https://packages.debian.org/experimental/allpackages
https://www.docker.com/

Watcher Documentation, Release 14.1.1.dev3

$ docker run -d -p 9322:9322 watcher/api

Check in your logs Watcher API is started

$ docker logs <container ID>

You can run similar container with Watcher Decision Engine (package watcher-decision-engine)
and with the Watcher Applier (package watcher-applier).

5.2 Watcher User Guide
See the architecture page for an architectural overview of the different components of Watcher and how
they fit together.

In this guide were going to take you through the fundamentals of using Watcher.

The following diagram shows the main interactions between the Administrator and the Watcher system:

5.2. Watcher User Guide 103

https://docs.openstack.org/watcher/latest/architecture.html

Watcher Documentation, Release 14.1.1.dev3

5.2.1 Getting started with Watcher
This guide assumes you have a working installation of Watcher. If you get watcher: command not found
you may have to verify your installation. Please refer to the installation guide. In order to use Watcher,
you have to configure your credentials suitable for watcher command-line tools.

You can interact with Watcher either by using our dedicated Watcher CLI named watcher, or by using
the OpenStack CLI openstack.

If you want to deploy Watcher in Horizon, please refer to the Watcher Horizon plugin installation guide.

104 Chapter 5. User Guide

https://docs.openstack.org/watcher/latest/install/
https://docs.openstack.org/python-watcherclient/latest/cli/index.html
https://docs.openstack.org/python-openstackclient/latest/cli/man/openstack.html
https://docs.openstack.org/watcher-dashboard/latest/install/installation.html

Watcher Documentation, Release 14.1.1.dev3

Note

Notice, that in this guide well use OpenStack CLI as major interface. Nevertheless, you can use
Watcher CLI in the same way. It can be achieved by replacing

$ openstack optimize ...

with
$ watcher ...

5.2.2 Watcher CLI Command
We can see all of the commands available with Watcher CLI by running the watcher binary without
options.

$ openstack help optimize

5.2.3 Running an audit of the cluster
First, you need to find the goal you want to achieve:

$ openstack optimize goal list

Note

If you get You must provide a username via either os-username or via env[OS_USERNAME] you
may have to verify your credentials.

Then, you can create an audit template. An audit template defines an optimization goal to achieve (i.e.
the settings of your audit).

$ openstack optimize audittemplate create my_first_audit_template <your_goal>

Although optional, you may want to actually set a specific strategy for your audit template. If so, you
may can search of its UUID or name using the following command:

$ openstack optimize strategy list --goal <your_goal_uuid_or_name>

You can use the following command to check strategy details including which parameters of which format
it supports:

$ openstack optimize strategy show <your_strategy>

The command to create your audit template would then be:

$ openstack optimize audittemplate create my_first_audit_template <your_goal>␣
↪→\
--strategy <your_strategy>

Then, you can create an audit. An audit is a request for optimizing your cluster depending on the specified
goal.

5.2. Watcher User Guide 105

https://docs.openstack.org/python-openstackclient/latest/cli/man/openstack.html
https://docs.openstack.org/python-watcherclient/latest/cli/index.html

Watcher Documentation, Release 14.1.1.dev3

You can launch an audit on your cluster by referencing the audit template (i.e. the settings of your audit)
that you want to use.

• Get the audit template UUID or name:

$ openstack optimize audittemplate list

• Start an audit based on this audit template settings:

$ openstack optimize audit create -a <your_audit_template>

If your_audit_template was created by strategy <your_strategy>, and it defines some parameters (com-
mand watcher strategy show to check parameters format), your can append -p to input required
parameters:

$ openstack optimize audit create -a <your_audit_template> \
-p <your_strategy_para1>=5.5 -p <your_strategy_para2>=hi

Input parameter could cause audit creation failure, when:

• no predefined strategy for audit template

• no parameters spec in predefined strategy

• input parameters dont comply with spec

Watcher service will compute an Action Plan composed of a list of potential optimization actions (in-
stance migration, disabling of a compute node,) according to the goal to achieve.

• Wait until the Watcher audit has produced a new action plan, and get it:

$ openstack optimize actionplan list --audit <the_audit_uuid>

• Have a look on the list of optimization actions contained in this new action plan:

$ openstack optimize action list --action-plan <the_action_plan_uuid>

Once you have learned how to create an Action Plan, its time to go further by applying it to your cluster:

• Execute the action plan:

$ openstack optimize actionplan start <the_action_plan_uuid>

You can follow the states of the actions by periodically calling:

$ openstack optimize action list --action-plan <the_action_plan_uuid>

You can also obtain more detailed information about a specific action:

$ openstack optimize action show <the_action_uuid>

5.3 Audit using Aodh alarm
Audit with EVENT type can be triggered by special alarm. This guide walks you through the steps to
build an event-driven optimization solution by integrating Watcher with Ceilometer/Aodh.

106 Chapter 5. User Guide

Watcher Documentation, Release 14.1.1.dev3

5.3.1 Step 1: Create an audit with EVENT type
The first step is to create an audit with EVENT type, you can create an audit template firstly:

$ openstack optimize audittemplate create your_template_name <your_goal> \
--strategy <your_strategy>

or create an audit directly with special goal and strategy:

$ openstack optimize audit create --goal <your_goal> \
--strategy <your_strategy> --audit_type EVENT

This is an example for creating an audit with dummy strategy:

$ openstack optimize audit create --goal dummy \
--strategy dummy --audit_type EVENT

+---------------+--------------------------------------+
| Field | Value |
+---------------+--------------------------------------+
UUID	a3326a6a-c18e-4e8e-adba-d0c61ad404c5
Name	dummy-2020-01-14T03:21:19.168467
Created At	2020-01-14T03:21:19.200279+00:00
Updated At	None
Deleted At	None
State	PENDING
Audit Type	EVENT
Parameters	{u'para2': u'hello', u'para1': 3.2}
Interval	None
Goal	dummy
Strategy	dummy
Audit Scope	[]
Auto Trigger	False
Next Run Time	None
Hostname	None
Start Time	None
End Time	None
Force	False
+---------------+--------------------------------------+

We need to build Aodh action url using Watcher webhook API. For convenience we export the url into
an environment variable:

$ export AUDIT_UUID=a3326a6a-c18e-4e8e-adba-d0c61ad404c5
$ export ALARM_URL="trust+http://localhost/infra-optim/v1/webhooks/$AUDIT_UUID
↪→"

5.3.2 Step 2: Create Aodh Alarm
Once we have the audit created, we can continue to create Aodh alarm and set the alarm action to
Watcher webhook API. The alarm type can be event(i.e. compute.instance.create.end) or gnoc-
chi_resources_threshold(i.e. cpu_util), more info refer to alarm-creation

For example:

5.3. Audit using Aodh alarm 107

https://docs.openstack.org/aodh/latest/admin/telemetry-alarms.html#alarm-creation

Watcher Documentation, Release 14.1.1.dev3

$ openstack alarm create \
--type event --name instance_create \
--event-type "compute.instance.create.end" \
--enable True --repeat-actions False \
--alarm-action $ALARM_URL

+---------------------------+---
↪→---+
| Field | Value ␣
↪→ |
+---------------------------+---
↪→---+
| alarm_actions | [u'trust+http://localhost/infra-optim/v1/
↪→webhooks/a3326a6a-c18e-4e8e-adba-d0c61ad404c5'] |
| alarm_id | b9e381fc-8e3e-4943-82ee-647e7a2ef644 ␣
↪→ |
| description | Alarm when compute.instance.create.end event␣
↪→occurred. |
| enabled | True ␣
↪→ |
| event_type | compute.instance.create.end ␣
↪→ |
| insufficient_data_actions | [] ␣
↪→ |
| name | instance_create ␣
↪→ |
| ok_actions | [] ␣
↪→ |
| project_id | 728d66e18c914af1a41e2a585cf766af ␣
↪→ |
| query | ␣
↪→ |
| repeat_actions | False ␣
↪→ |
| severity | low ␣
↪→ |
| state | insufficient data ␣
↪→ |
| state_reason | Not evaluated yet ␣
↪→ |
| state_timestamp | 2020-01-14T03:56:26.894416 ␣
↪→ |
| time_constraints | [] ␣
↪→ |
| timestamp | 2020-01-14T03:56:26.894416 ␣
↪→ |
| type | event ␣
↪→ |
| user_id | 88c40156af7445cc80580a1e7e3ba308 ␣
↪→ |
+---------------------------+---

(continues on next page)

108 Chapter 5. User Guide

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

↪→---+

5.3.3 Step 3: Trigger the alarm
In this example, you can create a new instance to trigger the alarm. The alarm state will translate from
insufficient data to alarm.

$ openstack alarm show b9e381fc-8e3e-4943-82ee-647e7a2ef644
+---------------------------+---
↪→--+
| Field | Value ␣
↪→ |
+---------------------------+---
↪→--+
| alarm_actions | [u'trust+http://localhost/infra-optim/v1/
↪→webhooks/a3326a6a-c18e-4e8e-adba-d0c61ad404c5'] |
| alarm_id | b9e381fc-8e3e-4943-82ee-647e7a2ef644 ␣
↪→ |
| description | Alarm when compute.instance.create.end event␣
↪→occurred. |
| enabled | True ␣
↪→ |
| event_type | compute.instance.create.end ␣
↪→ |
| insufficient_data_actions | [] ␣
↪→ |
| name | instance_create ␣
↪→ |
| ok_actions | [] ␣
↪→ |
| project_id | 728d66e18c914af1a41e2a585cf766af ␣
↪→ |
| query | ␣
↪→ |
| repeat_actions | False ␣
↪→ |
| severity | low ␣
↪→ |
| state | alarm ␣
↪→ |
| state_reason | Event <id=67dd0afa-2082-45a4-8825-9573b2cc60e5,
↪→event_type=compute.instance.create.end> hits the query <query=[]>. |
| state_timestamp | 2020-01-14T03:56:26.894416 ␣
↪→ |
| time_constraints | [] ␣
↪→ |
| timestamp | 2020-01-14T06:17:40.350649 ␣
↪→ |
| type | event ␣

(continues on next page)

5.3. Audit using Aodh alarm 109

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

↪→ |
| user_id | 88c40156af7445cc80580a1e7e3ba308 ␣
↪→ |
+---------------------------+---
↪→--+

5.3.4 Step 4: Verify the audit
This can be verified to check if the audit state was SUCCEEDED:

$ openstack optimize audit show a3326a6a-c18e-4e8e-adba-d0c61ad404c5
+---------------+--------------------------------------+
| Field | Value |
+---------------+--------------------------------------+
UUID	a3326a6a-c18e-4e8e-adba-d0c61ad404c5
Name	dummy-2020-01-14T03:21:19.168467
Created At	2020-01-14T03:21:19+00:00
Updated At	2020-01-14T06:26:40+00:00
Deleted At	None
State	SUCCEEDED
Audit Type	EVENT
Parameters	{u'para2': u'hello', u'para1': 3.2}
Interval	None
Goal	dummy
Strategy	dummy
Audit Scope	[]
Auto Trigger	False
Next Run Time	None
Hostname	ubuntudbs
Start Time	None
End Time	None
Force	False
+---------------+--------------------------------------+

and you can use the following command to check if the action plan was created:

$ openstack optimize actionplan list --audit a3326a6a-c18e-4e8e-adba-
↪→d0c61ad404c5
+--------------------------------------+--------------------------------------
↪→+-------------+------------+-----------------+
| UUID | Audit ␣
↪→| State | Updated At | Global efficacy |
+--------------------------------------+--------------------------------------
↪→+-------------+------------+-----------------+
| 673b3fcb-8c16-4a41-9ee3-2956d9f6ca9e | a3326a6a-c18e-4e8e-adba-d0c61ad404c5␣
↪→| RECOMMENDED | None | |
+--------------------------------------+--------------------------------------
↪→+-------------+------------+-----------------+

110 Chapter 5. User Guide

CHAPTER

SIX

CONFIGURATION GUIDE

6.1 Configuring Watcher
This document is continually updated and reflects the latest available code of the Watcher service.

6.1.1 Service overview
The Watcher system is a collection of services that provides support to optimize your IaaS platform.
The Watcher service may, depending upon configuration, interact with several other OpenStack services.
This includes:

• the OpenStack Identity service (keystone) for request authentication and to locate other OpenStack
services.

• the OpenStack Telemetry service (ceilometer) for collecting the resources metrics.

• the time series database (gnocchi) for consuming the resources metrics.

• the OpenStack Compute service (nova) works with the Watcher service and acts as a user-facing
API for instance migration.

• the OpenStack Bare Metal service (ironic) works with the Watcher service and allows to manage
power state of nodes.

• the OpenStack Block Storage service (cinder) works with the Watcher service and as an API for
volume node migration.

The Watcher service includes the following components:

• watcher-decision-engine: runs audit on part of your IaaS and return an action plan in order
to optimize resource placement.

• watcher-api: A RESTful API that processes application requests by sending them to the watcher-
decision-engine over RPC.

• watcher-applier: applies the action plan.

• python-watcherclient: A command-line interface (CLI) for interacting with the Watcher service.

• watcher-dashboard: An Horizon plugin for interacting with the Watcher service.

Additionally, the Watcher service has certain external dependencies, which are very similar to other
OpenStack services:

• A database to store audit and action plan information and state. You can set the database back-end
type and location.

• A queue. A central hub for passing messages, such as RabbitMQ.

111

https://github.com/openstack/keystone
https://github.com/openstack/ceilometer
https://github.com/gnocchixyz/gnocchi
https://github.com/openstack/nova
https://github.com/openstack/ironic
https://github.com/openstack/cinder
https://github.com/openstack/python-watcherclient
https://github.com/openstack/watcher-dashboard
https://www.rabbitmq.com/

Watcher Documentation, Release 14.1.1.dev3

Optionally, one may wish to utilize the following associated projects for additional functionality:

• watcher metering: an alternative to collect and push metrics to the Telemetry service.

6.1.2 Install and configure prerequisites
You can configure Watcher services to run on separate nodes or the same node. In this guide, the com-
ponents run on one node, typically the Controller node.

This section shows you how to install and configure the services.

It assumes that the Identity, Image, Compute, and Networking services have already been set up.

Configure the Identity service for the Watcher service

1. Create the Watcher service user (eg watcher). The service uses this to authenticate with the Iden-
tity Service. Use the KEYSTONE_SERVICE_PROJECT_NAME project (named service by default in
devstack) and give the user the admin role:

$ keystone user-create --name=watcher --pass=WATCHER_PASSWORD \
--email=watcher@example.com \
--tenant=KEYSTONE_SERVICE_PROJECT_NAME

$ keystone user-role-add --user=watcher \
--tenant=KEYSTONE_SERVICE_PROJECT_NAME --role=admin

or (by using python-openstackclient 1.8.0+)

$ openstack user create --password WATCHER_PASSWORD --enable \
--email watcher@example.com watcher \
--project=KEYSTONE_SERVICE_PROJECT_NAME

$ openstack role add --project KEYSTONE_SERVICE_PROJECT_NAME \
--user watcher admin

2. You must register the Watcher Service with the Identity Service so that other OpenStack services
can locate it. To register the service:

$ keystone service-create --name=watcher --type=infra-optim \
--description="Infrastructure Optimization service"

or (by using python-openstackclient 1.8.0+)

$ openstack service create --name watcher infra-optim \
--description="Infrastructure Optimization service"

3. Create the endpoints by replacing YOUR_REGION and WATCHER_API_[PUBLIC|ADMIN|INTERNAL]_IP
with your region and your Watcher Services API node IP addresses (or FQDN):

$ keystone endpoint-create \
--service-id=the_service_id_above \
--publicurl=http://WATCHER_API_PUBLIC_IP:9322 \
--internalurl=http://WATCHER_API_INTERNAL_IP:9322 \
--adminurl=http://WATCHER_API_ADMIN_IP:9322

or (by using python-openstackclient 1.8.0+)

112 Chapter 6. Configuration Guide

https://github.com/b-com/watcher-metering

Watcher Documentation, Release 14.1.1.dev3

$ openstack endpoint create --region YOUR_REGION
watcher public http://WATCHER_API_PUBLIC_IP:9322

$ openstack endpoint create --region YOUR_REGION
watcher internal http://WATCHER_API_INTERNAL_IP:9322

$ openstack endpoint create --region YOUR_REGION
watcher admin http://WATCHER_API_ADMIN_IP:9322

Set up the database for Watcher

The Watcher service stores information in a database. This guide uses the MySQL database that is used
by other OpenStack services.

1. In MySQL, create a watcher database that is accessible by the watcher user. Replace
WATCHER_DBPASSWORD with the actual password:

mysql

mysql> CREATE DATABASE watcher CHARACTER SET utf8;
mysql> GRANT ALL PRIVILEGES ON watcher.* TO 'watcher'@'localhost' \
IDENTIFIED BY 'WATCHER_DBPASSWORD';
mysql> GRANT ALL PRIVILEGES ON watcher.* TO 'watcher'@'%' \
IDENTIFIED BY 'WATCHER_DBPASSWORD';

6.1.3 Configure the Watcher service
The Watcher service is configured via its configuration file. This file is typically located at /etc/
watcher/watcher.conf.

You can easily generate and update a sample configuration file named watcher.conf.sample by using these
following commands:

$ git clone https://opendev.org/openstack/watcher.git
$ cd watcher/
$ tox -e genconfig
$ vi etc/watcher/watcher.conf.sample

The configuration file is organized into the following sections:

• [DEFAULT] - General configuration

• [api] - API server configuration

• [database] - SQL driver configuration

• [keystone_authtoken] - Keystone Authentication plugin configuration

• [watcher_clients_auth] - Keystone auth configuration for clients

• [watcher_applier] - Watcher Applier module configuration

• [watcher_decision_engine] - Watcher Decision Engine module configuration

• [oslo_messaging_rabbit] - Oslo Messaging RabbitMQ driver configuration

6.1. Configuring Watcher 113

Watcher Documentation, Release 14.1.1.dev3

• [cinder_client] - Cinder client configuration

• [glance_client] - Glance client configuration

• [gnocchi_client] - Gnocchi client configuration

• [ironic_client] - Ironic client configuration

• [keystone_client] - Keystone client configuration

• [nova_client] - Nova client configuration

• [neutron_client] - Neutron client configuration

• [placement_client] - Placement client configuration

The Watcher configuration file is expected to be named watcher.conf. When starting Watcher, you can
specify a different configuration file to use with --config-file. If you do not specify a configuration
file, Watcher will look in the following directories for a configuration file, in order:

• ~/.watcher/

• ~/

• /etc/watcher/

• /etc/

Although some configuration options are mentioned here, it is recommended that you review all the
available options so that the watcher service is configured for your needs.

1. The Watcher Service stores information in a database. This guide uses the MySQL database that
is used by other OpenStack services.

Configure the location of the database via the connection option. In the following, replace
WATCHER_DBPASSWORD with the password of your watcher user, and replace DB_IP with
the IP address where the DB server is located:

[database]
...

The SQLAlchemy connection string used to connect to the
database (string value)
#connection=<None>
connection = mysql+pymysql://watcher:WATCHER_DBPASSWORD@DB_IP/watcher?
↪→charset=utf8

2. Configure the Watcher Service to use the RabbitMQ message broker by setting one or more of
these options. Replace RABBIT_HOST with the IP address of the RabbitMQ server, RAB-
BITMQ_USER and RABBITMQ_PASSWORD by the RabbitMQ server login credentials

[DEFAULT]

The default exchange under which topics are scoped. May be
overridden by an exchange name specified in the transport_url
option. (string value)
control_exchange = watcher

(continues on next page)

114 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

...
transport_url = rabbit://RABBITMQ_USER:RABBITMQ_PASSWORD@RABBIT_HOST

3. Watcher API shall validate the token provided by every incoming request, via keystonemiddleware,
which requires the Watcher service to be configured with the right credentials for the Identity
service.

In the configuration section here below:

• replace IDENTITY_IP with the IP of the Identity server

• replace WATCHER_PASSWORD with the password you chose for the watcher user

• replace KEYSTONE_SERVICE_PROJECT_NAME with the name of project created for
OpenStack services (e.g. service)

[keystone_authtoken]

Authentication type to load (unknown value)
Deprecated group/name - [DEFAULT]/auth_plugin
#auth_type = <None>
auth_type = password

Authentication URL (unknown value)
#auth_url = <None>
auth_url = http://IDENTITY_IP:5000

Username (unknown value)
Deprecated group/name - [DEFAULT]/username
#username = <None>
username=watcher

User's password (unknown value)
#password = <None>
password = WATCHER_PASSWORD

Domain ID containing project (unknown value)
#project_domain_id = <None>
project_domain_id = default

User's domain id (unknown value)
#user_domain_id = <None>
user_domain_id = default

Project name to scope to (unknown value)
Deprecated group/name - [DEFAULT]/tenant-name
#project_name = <None>
project_name = KEYSTONE_SERVICE_PROJECT_NAME

4. Watchers decision engine and applier interact with other OpenStack projects through those projects
clients. In order to instantiate these clients, Watcher needs to request a new session from the
Identity service using the right credentials.

6.1. Configuring Watcher 115

Watcher Documentation, Release 14.1.1.dev3

In the configuration section here below:

• replace IDENTITY_IP with the IP of the Identity server

• replace WATCHER_PASSWORD with the password you chose for the watcher user

• replace KEYSTONE_SERVICE_PROJECT_NAME with the name of project created for
OpenStack services (e.g. service)

[watcher_clients_auth]

Authentication type to load (unknown value)
Deprecated group/name - [DEFAULT]/auth_plugin
#auth_type = <None>
auth_type = password

Authentication URL (unknown value)
#auth_url = <None>
auth_url = http://IDENTITY_IP:5000

Username (unknown value)
Deprecated group/name - [DEFAULT]/username
#username = <None>
username=watcher

User's password (unknown value)
#password = <None>
password = WATCHER_PASSWORD

Domain ID containing project (unknown value)
#project_domain_id = <None>
project_domain_id = default

User's domain id (unknown value)
#user_domain_id = <None>
user_domain_id = default

Project name to scope to (unknown value)
Deprecated group/name - [DEFAULT]/tenant-name
#project_name = <None>
project_name = KEYSTONE_SERVICE_PROJECT_NAME

5. Configure the clients to use a specific version if desired. For example, to configure Watcher to use
a Nova client with version 2.1, use:

[nova_client]

Version of Nova API to use in novaclient. (string value)
#api_version = 2.56
api_version = 2.1

6. Create the Watcher Service database tables:

116 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

$ watcher-db-manage --config-file /etc/watcher/watcher.conf create_schema

7. Start the Watcher Service:

$ watcher-api && watcher-decision-engine && watcher-applier

6.1.4 Configure Nova compute
Please check your hypervisor configuration to correctly handle instance migration.

6.1.5 Configure Measurements
You can configure and install Ceilometer by following the documentation below :

1. https://docs.openstack.org/ceilometer/latest

The built-in strategy basic_consolidation provided by watcher requires compute.node.cpu.percent and
cpu measurements to be collected by Ceilometer. The measurements available depend on the hypervisors
that OpenStack manages on the specific implementation. You can find the measurements available per
hypervisor and OpenStack release on the OpenStack site. You can use ceilometer meter-list to list the
available meters.

For more information: https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.
html

Ceilometer is designed to collect measurements from OpenStack services and from other external com-
ponents. If you would like to add new meters to the currently existing ones, you need to follow the
documentation below:

1. https://docs.openstack.org/ceilometer/latest/contributor/measurements.html#new-measurements

The Ceilometer collector uses a pluggable storage system, meaning that you can pick any database system
you prefer. The original implementation has been based on MongoDB but you can create your own
storage driver using whatever technology you want. For more information : https://wiki.openstack.org/
wiki/Gnocchi

6.1.6 Configure Nova Notifications
Watcher can consume notifications generated by the Nova services, in order to build or update, in real
time, its cluster data model related to computing resources.

Nova emits unversioned(legacy) and versioned notifications on different topics. Because legacy notifi-
cations will be deprecated, Watcher consumes Nova versioned notifications.

• In the file /etc/nova/nova.conf, the value of driver in the section
[oslo_messaging_notifications] cant be noop, and the value of notification_format
in the section [notifications] should be both or versioned

[oslo_messaging_notifications]
driver = messagingv2

...

[notifications]
notification_format = both

6.1. Configuring Watcher 117

https://docs.openstack.org/nova/latest/admin/migration.html
https://docs.openstack.org/ceilometer/latest
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html
https://docs.openstack.org/ceilometer/latest/contributor/measurements.html#new-measurements
https://wiki.openstack.org/wiki/Gnocchi
https://wiki.openstack.org/wiki/Gnocchi

Watcher Documentation, Release 14.1.1.dev3

6.1.7 Configure Cinder Notifications
Watcher can also consume notifications generated by the Cinder services, in order to build or update, in
real time, its cluster data model related to storage resources. To do so, you have to update the Cinder
configuration file on controller and volume nodes, in order to let Watcher receive Cinder notifications in
a dedicated watcher_notifications channel.

• In the file /etc/cinder/cinder.conf, update the section
[oslo_messaging_notifications], by redefining the list of topics into which Cinder
services will publish events

[oslo_messaging_notifications]
driver = messagingv2
topics = notifications,watcher_notifications

• Restart the Cinder services.

6.1.8 Workers
You can define a number of workers for the Decision Engine and the Applier.

If you want to create and run more audits simultaneously, you have to raise the number of workers used
by the Decision Engine:

[watcher_decision_engine]

...

The maximum number of threads that can be used to execute strategies
(integer value)
#max_workers = 2

If you want to execute simultaneously more recommended action plans, you have to raise the number of
workers used by the Applier:

[watcher_applier]

...

Number of workers for applier, default value is 1. (integer value)
Minimum value: 1
#workers = 1

6.2 watcher.conf
The watcher.conf file contains most of the options to configure the Watcher services.

6.2.1 DEFAULT

debug

Type
boolean

118 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Default
False

Mutable
This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.

log_config_append

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 1: Deprecated Variations

Group Name
DEFAULT log-config
DEFAULT log_config

log_date_format

Type
string

Default
%Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file

Type
string

Default
<None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 2: Deprecated Variations

Group Name
DEFAULT logfile

6.2. watcher.conf 119

Watcher Documentation, Release 14.1.1.dev3

log_dir

Type
string

Default
<None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 3: Deprecated Variations

Group Name
DEFAULT logdir

watch_log_file

Type
boolean

Default
False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
This function is known to have bene broken for long time, and depends on
the unmaintained library

use_syslog

Type
boolean

Default
False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type
boolean

Default
False

120 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type
string

Default
LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type
boolean

Default
False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type
boolean

Default
False

Log output to standard error. This option is ignored if log_config_append is set.

log_color

Type
boolean

Default
False

(Optional) Set the color key according to log levels. This option takes effect only when logging to
stderr or stdout is used. This option is ignored if log_config_append is set.

log_rotate_interval

Type
integer

Default
1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to interval.

log_rotate_interval_type

Type
string

6.2. watcher.conf 121

Watcher Documentation, Release 14.1.1.dev3

Default
days

Valid Values
Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type
integer

Default
30

Maximum number of rotated log files.

max_logfile_size_mb

Type
integer

Default
200

Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.

log_rotation_type

Type
string

Default
none

Valid Values
interval, size, none

Log rotation type.

Possible values

interval
Rotate logs at predefined time intervals.

size
Rotate logs once they reach a predefined size.

none
Do not rotate log files.

logging_context_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s

122 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

[%(global_request_id)s %(request_id)s %(user_identity)s]
%(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s [-]
%(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type
string

Default
%(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type
string

Default
%(user)s %(project)s %(domain)s %(system_scope)s
%(user_domain)s %(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

Type
list

Default
['amqp=WARN', 'amqplib=WARN', 'boto=WARN', 'qpid=WARN',
'sqlalchemy=WARN', 'suds=INFO', 'oslo.messaging=INFO',

6.2. watcher.conf 123

Watcher Documentation, Release 14.1.1.dev3

'oslo_messaging=INFO', 'iso8601=WARN', 'requests.packages.
urllib3.connectionpool=WARN', 'urllib3.connectionpool=WARN',
'websocket=WARN', 'requests.packages.urllib3.util.retry=WARN',
'urllib3.util.retry=WARN', 'keystonemiddleware=WARN',
'routes.middleware=WARN', 'stevedore=WARN', 'taskflow=WARN',
'keystoneauth=WARN', 'oslo.cache=INFO', 'oslo_policy=INFO',
'dogpile.core.dogpile=INFO']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

Type
boolean

Default
False

Enables or disables publication of error events.

instance_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type
integer

Default
0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type
integer

Default
0

Maximum number of logged messages per rate_limit_interval.

124 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

rate_limit_except_level

Type
string

Default
CRITICAL

Valid Values
CRITICAL, ERROR, INFO, WARNING, DEBUG,

Log level name used by rate limiting. Logs with level greater or equal to rate_limit_except_level
are not filtered. An empty string means that all levels are filtered.

fatal_deprecations

Type
boolean

Default
False

Enables or disables fatal status of deprecations.

enable_authentication

Type
boolean

Default
True

This option enables or disables user authentication via keystone. Default value is True.

fatal_exception_format_errors

Type
boolean

Default
False

Make exception message format errors fatal.

pybasedir

Type
string

Default
/home/zuul/src/opendev.org/openstack/watcher/watcher

Directory where the watcher python module is installed.

bindir

Type
string

Default
$pybasedir/bin

6.2. watcher.conf 125

Watcher Documentation, Release 14.1.1.dev3

Directory where watcher binaries are installed.

state_path

Type
string

Default
$pybasedir

Top-level directory for maintaining watchers state.

periodic_interval

Type
integer

Default
60

Mutable
This option can be changed without restarting.

Seconds between running periodic tasks.

host

Type
host address

Default
npbe7be73f5aa64

Name of this node. This can be an opaque identifier. It is not necessarily a hostname, FQDN, or
IP address. However, the node name must be valid within an AMQP key.

service_down_time

Type
integer

Default
90

Maximum time since last check-in for up service.

executor_thread_pool_size

Type
integer

Default
64

Size of executor thread pool when executor is threading or eventlet.

Table 4: Deprecated Variations

Group Name
DEFAULT rpc_thread_pool_size

126 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

rpc_response_timeout

Type
integer

Default
60

Seconds to wait for a response from a call.

transport_url

Type
string

Default
rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass@]host:port[,[userN:passN@]hostN:portN]/virtual_host?query

Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type
string

Default
openstack

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type
boolean

Default
False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

run_external_periodic_tasks

Type
boolean

Default
True

Some periodic tasks can be run in a separate process. Should we run them here?

6.2. watcher.conf 127

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Watcher Documentation, Release 14.1.1.dev3

backdoor_port

Type
string

Default
<None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0 results in
listening on a random tcp port number; <port> results in listening on the specified port number (and
not enabling backdoor if that port is in use); and <start>:<end> results in listening on the smallest
unused port number within the specified range of port numbers. The chosen port is displayed in
the services log file.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The backdoor_port option is deprecated and will be removed in a future re-
lease.

backdoor_socket

Type
string

Default
<None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both
are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The backdoor_socket option is deprecated and will be removed in a future
release.

log_options

Type
boolean

Default
True

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

128 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

graceful_shutdown_timeout

Type
integer

Default
60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

api_paste_config

Type
string

Default
api-paste.ini

File name for the paste.deploy config for api service

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The api_paste_config option is deprecated and will be removed in a future
release.

wsgi_log_format

Type
string

Default
%(client_ip)s "%(request_line)s" status: %(status_code)s len:
%(body_length)s time: %(wall_seconds).7f

A python format string that is used as the template to generate log lines. The following values can
beformatted into it: client_ip, date_time, request_line, status_code, body_length, wall_seconds.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The wsgi_log_format option is deprecated and will be removed in a future
release.

tcp_keepidle

Type
integer

Default
600

6.2. watcher.conf 129

Watcher Documentation, Release 14.1.1.dev3

Sets the value of TCP_KEEPIDLE in seconds for each server socket. Not supported on OS X.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The tcp_keepidle option is deprecated and will be removed in a future release.

wsgi_default_pool_size

Type
integer

Default
100

Size of the pool of greenthreads used by wsgi

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The wsgi_default_pool_size option is deprecated and will be removed in a
future release.

max_header_line

Type
integer

Default
16384

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated when keystone is configured to use PKI tokens
with big service catalogs).

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The max_header_line option is deprecated and will be removed in a future
release.

wsgi_keep_alive

Type
boolean

Default
True

130 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

If False, closes the client socket connection explicitly.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The wsgi_keep_alive option is deprecated and will be removed in a future
release.

client_socket_timeout

Type
integer

Default
900

Timeout for client connections socket operations. If an incoming connection is idle for this number
of seconds it will be closed. A value of 0 means wait forever.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The client_socket_timeout option is deprecated and will be removed in a fu-
ture release.

wsgi_server_debug

Type
boolean

Default
False

True if the server should send exception tracebacks to the clients on 500 errors. If False, the server
will respond with empty bodies.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The wsgi_server_debug option is deprecated and will be removed in a future
release.

6.2.2 api

port

Type
port number

6.2. watcher.conf 131

Watcher Documentation, Release 14.1.1.dev3

Default
9322

Minimum Value
0

Maximum Value
65535

The port for the watcher API server

host

Type
host address

Default
127.0.0.1

The listen IP address for the watcher API server

max_limit

Type
integer

Default
1000

The maximum number of items returned in a single response from a collection resource

workers

Type
integer

Default
<None>

Minimum Value
1

Number of workers for Watcher API service. The default is equal to the number of CPUs available
if that can be determined, else a default worker count of 1 is returned.

enable_ssl_api

Type
boolean

Default
False

Enable the integrated stand-alone API to service requests via HTTPS instead of HTTP. If there is
a front-end service performing HTTPS offloading from the service, this option should be False;
note, you will want to change public API endpoint to represent SSL termination URL with pub-
lic_endpoint option.

enable_webhooks_auth

132 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Type
boolean

Default
True

This option enables or disables webhook request authentication via keystone. Default value is True.

6.2.3 cache

config_prefix

Type
string

Default
cache.oslo

Prefix for building the configuration dictionary for the cache region. This should not need to be
changed unless there is another dogpile.cache region with the same configuration name.

expiration_time

Type
integer

Default
600

Minimum Value
1

Default TTL, in seconds, for any cached item in the dogpile.cache region. This applies to any
cached method that doesnt have an explicit cache expiration time defined for it.

backend_expiration_time

Type
integer

Default
<None>

Minimum Value
1

Expiration time in cache backend to purge expired records automatically. This should be greater
than expiration_time and all cache_time options

backend

Type
string

Default
dogpile.cache.null

Valid Values
oslo_cache.memcache_pool, oslo_cache.dict, oslo_cache.mongo,
oslo_cache.etcd3gw, dogpile.cache.pymemcache, dogpile.cache.memcached,

6.2. watcher.conf 133

Watcher Documentation, Release 14.1.1.dev3

dogpile.cache.pylibmc, dogpile.cache.bmemcached, dogpile.cache.dbm, dog-
pile.cache.redis, dogpile.cache.redis_sentinel, dogpile.cache.memory, dog-
pile.cache.memory_pickle, dogpile.cache.null

Cache backend module. For eventlet-based or environments with hundreds of threaded servers,
Memcache with pooling (oslo_cache.memcache_pool) is recommended. For environments
with less than 100 threaded servers, Memcached (dogpile.cache.memcached) or Redis (dog-
pile.cache.redis) is recommended. Test environments with a single instance of the server can use
the dogpile.cache.memory backend.

backend_argument

Type
multi-valued

Default
''

Arguments supplied to the backend module. Specify this option once per argument to be passed
to the dogpile.cache backend. Example format: <argname>:<value>.

proxies

Type
list

Default
[]

Proxy classes to import that will affect the way the dogpile.cache backend functions. See the
dogpile.cache documentation on changing-backend-behavior.

enabled

Type
boolean

Default
False

Global toggle for caching.

debug_cache_backend

Type
boolean

Default
False

Extra debugging from the cache backend (cache keys, get/set/delete/etc calls). This is only re-
ally useful if you need to see the specific cache-backend get/set/delete calls with the keys/values.
Typically this should be left set to false.

memcache_servers

Type
list

134 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Default
['localhost:11211']

Memcache servers in the format of host:port. This is used by backends dependent on Mem-
cached.If dogpile.cache.memcached or oslo_cache.memcache_pool is used and a given
host refer to an IPv6 or a given domain refer to IPv6 then you should prefix the given address with
the address family (inet6) (e.g inet6[::1]:11211, inet6:[fd12:3456:789a:1::1]:11211,
inet6:[controller-0.internalapi]:11211). If the address family is not given then these
backends will use the default inet address family which corresponds to IPv4

memcache_dead_retry

Type
integer

Default
300

Number of seconds memcached server is considered dead before it is tried again. (dog-
pile.cache.memcache and oslo_cache.memcache_pool backends only).

memcache_socket_timeout

Type
floating point

Default
1.0

Timeout in seconds for every call to a server. (dogpile.cache.memcache and
oslo_cache.memcache_pool backends only).

memcache_pool_maxsize

Type
integer

Default
10

Max total number of open connections to every memcached server. (oslo_cache.memcache_pool
backend only).

memcache_pool_unused_timeout

Type
integer

Default
60

Number of seconds a connection to memcached is held unused in the pool before it is closed.
(oslo_cache.memcache_pool backend only).

memcache_pool_connection_get_timeout

Type
integer

6.2. watcher.conf 135

Watcher Documentation, Release 14.1.1.dev3

Default
10

Number of seconds that an operation will wait to get a memcache client connection.

memcache_pool_flush_on_reconnect

Type
boolean

Default
False

Global toggle if memcache will be flushed on reconnect. (oslo_cache.memcache_pool backend
only).

memcache_sasl_enabled

Type
boolean

Default
False

Enable the SASL(Simple Authentication and SecurityLayer) if the SASL_enable is true, else dis-
able.

memcache_username

Type
string

Default
<None>

the user name for the memcached which SASL enabled

memcache_password

Type
string

Default
<None>

the password for the memcached which SASL enabled

redis_server

Type
string

Default
localhost:6379

Redis server in the format of host:port

redis_db

Type
integer

136 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Default
0

Minimum Value
0

Database id in Redis server

redis_username

Type
string

Default
<None>

the user name for redis

redis_password

Type
string

Default
<None>

the password for redis

redis_sentinels

Type
list

Default
['localhost:26379']

Redis sentinel servers in the format of host:port

redis_socket_timeout

Type
floating point

Default
1.0

Timeout in seconds for every call to a server. (dogpile.cache.redis and dogpile.cache.redis_sentinel
backends only).

redis_sentinel_service_name

Type
string

Default
mymaster

Service name of the redis sentinel cluster.

6.2. watcher.conf 137

Watcher Documentation, Release 14.1.1.dev3

tls_enabled

Type
boolean

Default
False

Global toggle for TLS usage when communicating with the caching servers. Currently
supported by dogpile.cache.bmemcache, dogpile.cache.pymemcache, oslo_cache.
memcache_pool, dogpile.cache.redis and dogpile.cache.redis_sentinel.

tls_cafile

Type
string

Default
<None>

Path to a file of concatenated CA certificates in PEM format necessary to establish the caching
servers authenticity. If tls_enabled is False, this option is ignored.

tls_certfile

Type
string

Default
<None>

Path to a single file in PEM format containing the clients certificate as well as any number of CA
certificates needed to establish the certificates authenticity. This file is only required when client
side authentication is necessary. If tls_enabled is False, this option is ignored.

tls_keyfile

Type
string

Default
<None>

Path to a single file containing the clients private key in. Otherwise the private key will be taken
from the file specified in tls_certfile. If tls_enabled is False, this option is ignored.

tls_allowed_ciphers

Type
string

Default
<None>

Set the available ciphers for sockets created with the TLS context. It should be a string in
the OpenSSL cipher list format. If not specified, all OpenSSL enabled ciphers will be avail-
able. Currently supported by dogpile.cache.bmemcache, dogpile.cache.pymemcache and
oslo_cache.memcache_pool.

138 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

enable_socket_keepalive

Type
boolean

Default
False

Global toggle for the socket keepalive of dogpiles pymemcache backend

socket_keepalive_idle

Type
integer

Default
1

Minimum Value
0

The time (in seconds) the connection needs to remain idle before TCP starts sending keepalive
probes. Should be a positive integer most greater than zero.

socket_keepalive_interval

Type
integer

Default
1

Minimum Value
0

The time (in seconds) between individual keepalive probes. Should be a positive integer greater
than zero.

socket_keepalive_count

Type
integer

Default
1

Minimum Value
0

The maximum number of keepalive probes TCP should send before dropping the connection.
Should be a positive integer greater than zero.

enable_retry_client

Type
boolean

Default
False

6.2. watcher.conf 139

Watcher Documentation, Release 14.1.1.dev3

Enable retry client mechanisms to handle failure. Those mechanisms can be used to wrap all kind
of pymemcache clients. The wrapper allows you to define how many attempts to make and how
long to wait between attemots.

retry_attempts

Type
integer

Default
2

Minimum Value
1

Number of times to attempt an action before failing.

retry_delay

Type
floating point

Default
0

Number of seconds to sleep between each attempt.

hashclient_retry_attempts

Type
integer

Default
2

Minimum Value
1

Amount of times a client should be tried before it is marked dead and removed from the pool in
the HashClients internal mechanisms.

hashclient_retry_delay

Type
floating point

Default
1

Time in seconds that should pass between retry attempts in the HashClients internal mechanisms.

dead_timeout

Type
floating point

Default
60

Time in seconds before attempting to add a node back in the pool in the HashClients internal
mechanisms.

140 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

enforce_fips_mode

Type
boolean

Default
False

Global toggle for enforcing the OpenSSL FIPS mode. This feature requires Python support. This is
available in Python 3.9 in all environments and may have been backported to older Python versions
on select environments. If the Python executable used does not support OpenSSL FIPS mode,
an exception will be raised. Currently supported by dogpile.cache.bmemcache, dogpile.
cache.pymemcache and oslo_cache.memcache_pool.

6.2.4 cinder_client

api_version

Type
string

Default
3

Version of Cinder API to use in cinderclient.

endpoint_type

Type
string

Default
publicURL

Type of endpoint to use in cinderclient. Supported values: internalURL, publicURL, adminURL.
The default is publicURL.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack service.

6.2.5 collector

collector_plugins

Type
list

Default
['compute']

The cluster data model plugin names.

Supported in-tree collectors include:

6.2. watcher.conf 141

Watcher Documentation, Release 14.1.1.dev3

• compute - data model collector for nova

• storage - data model collector for cinder

• baremetal - data model collector for ironic

Custom data model collector plugins can be defined with the
watcher_cluster_data_model_collectors extension point.

api_call_retries

Type
integer

Default
10

Number of retries before giving up on external service calls.

api_query_timeout

Type
integer

Default
1

Time before retry after failed call to external service.

6.2.6 database

mysql_engine

Type
string

Default
InnoDB

MySQL engine to use.

sqlite_synchronous

Type
boolean

Default
True

If True, SQLite uses synchronous mode.

backend

Type
string

Default
sqlalchemy

The back end to use for the database.

142 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

connection

Type
string

Default
<None>

The SQLAlchemy connection string to use to connect to the database.

slave_connection

Type
string

Default
<None>

The SQLAlchemy connection string to use to connect to the slave database.

asyncio_connection

Type
string

Default
<None>

The SQLAlchemy asyncio connection string to use to connect to the database.

asyncio_slave_connection

Type
string

Default
<None>

The SQLAlchemy asyncio connection string to use to connect to the slave database.

mysql_sql_mode

Type
string

Default
TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_wsrep_sync_wait

Type
integer

Default
<None>

For Galera only, configure wsrep_sync_wait causality checks on new connections. Default is None,
meaning dont configure any setting.

6.2. watcher.conf 143

Watcher Documentation, Release 14.1.1.dev3

connection_recycle_time

Type
integer

Default
3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

max_pool_size

Type
integer

Default
5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

max_retries

Type
integer

Default
10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

retry_interval

Type
integer

Default
10

Interval between retries of opening a SQL connection.

max_overflow

Type
integer

Default
50

If set, use this value for max_overflow with SQLAlchemy.

connection_debug

Type
integer

Default
0

144 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Minimum Value
0

Maximum Value
100

Verbosity of SQL debugging information: 0=None, 100=Everything.

connection_trace

Type
boolean

Default
False

Add Python stack traces to SQL as comment strings.

pool_timeout

Type
integer

Default
<None>

If set, use this value for pool_timeout with SQLAlchemy.

use_db_reconnect

Type
boolean

Default
False

Enable the experimental use of database reconnect on connection lost.

db_retry_interval

Type
integer

Default
1

Seconds between retries of a database transaction.

db_inc_retry_interval

Type
boolean

Default
True

If True, increases the interval between retries of a database operation up to db_max_retry_interval.

db_max_retry_interval

Type
integer

6.2. watcher.conf 145

Watcher Documentation, Release 14.1.1.dev3

Default
10

If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries

Type
integer

Default
20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters

Type
string

Default
''

Optional URL parameters to append onto the connection URL at connect time; specify as
param1=value1¶m2=value2&

6.2.7 glance_client

api_version

Type
string

Default
2

Version of Glance API to use in glanceclient.

endpoint_type

Type
string

Default
publicURL

Type of endpoint to use in glanceclient. Supported values: internalURL, publicURL, adminURL.
The default is publicURL.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack service.

146 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

6.2.8 gnocchi_client

api_version

Type
string

Default
1

Version of Gnocchi API to use in gnocchiclient.

endpoint_type

Type
string

Default
public

Type of endpoint to use in gnocchi client. Supported values: internal, public, admin. The default
is public.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack service.

6.2.9 grafana_client
See https://docs.openstack.org/watcher/latest/datasources/grafana.html for details on how these options
are used.

token

Type
string

Default
<None>

Authentication token to gain access

base_url

Type
string

Default
<None>

First part of the url (including https:// or http://) up until project id part. Example: https://secure.
org/api/datasource/proxy/

6.2. watcher.conf 147

https://docs.openstack.org/watcher/latest/datasources/grafana.html
https://
http://
https://secure.org/api/datasource/proxy/
https://secure.org/api/datasource/proxy/

Watcher Documentation, Release 14.1.1.dev3

project_id_map

Type
dict

Default
{'host_cpu_usage': None, 'host_ram_usage': None,
'host_outlet_temp': None, 'host_inlet_temp':
None, 'host_airflow': None, 'host_power': None,
'instance_cpu_usage': None, 'instance_ram_usage': None,
'instance_ram_allocated': None, 'instance_l3_cache_usage':
None, 'instance_root_disk_size': None}

Mapping of datasource metrics to grafana project ids. Dictionary values should be positive inte-
gers. Example: 7465

database_map

Type
dict

Default
{'host_cpu_usage': None, 'host_ram_usage': None,
'host_outlet_temp': None, 'host_inlet_temp':
None, 'host_airflow': None, 'host_power': None,
'instance_cpu_usage': None, 'instance_ram_usage': None,
'instance_ram_allocated': None, 'instance_l3_cache_usage':
None, 'instance_root_disk_size': None}

Mapping of datasource metrics to grafana databases. Values should be strings. Example: in-
flux_production

attribute_map

Type
dict

Default
{'host_cpu_usage': None, 'host_ram_usage': None,
'host_outlet_temp': None, 'host_inlet_temp':
None, 'host_airflow': None, 'host_power': None,
'instance_cpu_usage': None, 'instance_ram_usage': None,
'instance_ram_allocated': None, 'instance_l3_cache_usage':
None, 'instance_root_disk_size': None}

Mapping of datasource metrics to resource attributes. For a complete list of available attributes
see https://docs.openstack.org/watcher/latest/datasources/grafana.html#attribute Values should be
strings. Example: hostname

translator_map

Type
dict

Default
{'host_cpu_usage': None, 'host_ram_usage': None,
'host_outlet_temp': None, 'host_inlet_temp':

148 Chapter 6. Configuration Guide

https://docs.openstack.org/watcher/latest/datasources/grafana.html#attribute

Watcher Documentation, Release 14.1.1.dev3

None, 'host_airflow': None, 'host_power': None,
'instance_cpu_usage': None, 'instance_ram_usage': None,
'instance_ram_allocated': None, 'instance_l3_cache_usage':
None, 'instance_root_disk_size': None}

Mapping of datasource metrics to grafana translators. Values should be strings. Example: influxdb

query_map

Type
dict

Default
{'host_cpu_usage': None, 'host_ram_usage': None,
'host_outlet_temp': None, 'host_inlet_temp':
None, 'host_airflow': None, 'host_power': None,
'instance_cpu_usage': None, 'instance_ram_usage': None,
'instance_ram_allocated': None, 'instance_l3_cache_usage':
None, 'instance_root_disk_size': None}

Mapping of datasource metrics to grafana queries. Values should be strings for which the .format
method will transform it. The transformation offers five parameters to the query labeled {0} to
{4}. {0} will be replaced with the aggregate, {1} with the resource attribute, {2} with the period,
{3} with the granularity and {4} with translator specifics for InfluxDB this will be the retention
period. These queries will need to be constructed using tools such as Postman. Example: SELECT
cpu FROM {4}.cpu_percent WHERE host == {1} AND time > now()-{2}s

http_timeout

Type
integer

Default
60

Minimum Value
0

Mutable
This option can be changed without restarting.

Timeout for Grafana request

6.2.10 grafana_translators

retention_periods

Type
dict

Default
{'one_week': 604800, 'one_month': 2592000, 'five_years':
31556952}

Keys are the names of retention periods in InfluxDB and the values should correspond with the
maximum time they can retain in seconds. Example: {one_day: 86400}

6.2. watcher.conf 149

Watcher Documentation, Release 14.1.1.dev3

6.2.11 ironic_client

api_version

Type
string

Default
1

Version of Ironic API to use in ironicclient.

endpoint_type

Type
string

Default
publicURL

Type of endpoint to use in ironicclient. Supported values: internalURL, publicURL, adminURL.
The default is publicURL.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack service.

6.2.12 keystone_authtoken

www_authenticate_uri

Type
string

Default
<None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint.

Table 5: Deprecated Variations

Group Name
keystone_authtoken auth_uri

auth_uri

150 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Type
string

Default
<None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning

This option is deprecated for removal since Queens. Its value may be silently ignored in the
future.

Reason
The auth_uri option is deprecated in favor of www_authenticate_uri and will
be removed in the S release.

auth_version

Type
string

Default
<None>

API version of the Identity API endpoint.

interface

Type
string

Default
internal

Interface to use for the Identity API endpoint. Valid values are public, internal (default) or admin.

delay_auth_decision

Type
boolean

Default
False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout

Type
integer

6.2. watcher.conf 151

Watcher Documentation, Release 14.1.1.dev3

Default
<None>

Request timeout value for communicating with Identity API server.

http_request_max_retries

Type
integer

Default
3

How many times are we trying to reconnect when communicating with Identity API Server.

cache

Type
string

Default
<None>

Request environment key where the Swift cache object is stored. When auth_token middleware is
deployed with a Swift cache, use this option to have the middleware share a caching backend with
swift. Otherwise, use the memcached_servers option instead.

certfile

Type
string

Default
<None>

Required if identity server requires client certificate

keyfile

Type
string

Default
<None>

Required if identity server requires client certificate

cafile

Type
string

Default
<None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure

Type
boolean

152 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Default
False

Verify HTTPS connections.

region_name

Type
string

Default
<None>

The region in which the identity server can be found.

memcached_servers

Type
list

Default
<None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 6: Deprecated Variations

Group Name
keystone_authtoken memcache_servers

token_cache_time

Type
integer

Default
300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

memcache_security_strategy

Type
string

Default
None

Valid Values
None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

6.2. watcher.conf 153

Watcher Documentation, Release 14.1.1.dev3

memcache_secret_key

Type
string

Default
<None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry

Type
integer

Default
300

(Optional) Number of seconds memcached server is considered dead before it is tried again.

memcache_pool_maxsize

Type
integer

Default
10

(Optional) Maximum total number of open connections to every memcached server.

memcache_pool_socket_timeout

Type
integer

Default
3

(Optional) Socket timeout in seconds for communicating with a memcached server.

memcache_pool_unused_timeout

Type
integer

Default
60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout

Type
integer

Default
10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

154 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

memcache_use_advanced_pool

Type
boolean

Default
True

(Optional) Use the advanced (eventlet safe) memcached client pool.

include_service_catalog

Type
boolean

Default
True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind

Type
string

Default
permissive

Used to control the use and type of token binding. Can be set to: disabled to not check token
binding. permissive (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. strict like permissive but if the bind type is unknown the token
will be rejected. required any form of token binding is needed to be allowed. Finally the name of
a binding method that must be present in tokens.

service_token_roles

Type
list

Default
['service']

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list
must be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required

Type
boolean

Default
False

For backwards compatibility reasons we must let valid service tokens pass that dont pass the ser-
vice_token_roles check as valid. Setting this true will become the default in a future release and
should be enabled if possible.

6.2. watcher.conf 155

Watcher Documentation, Release 14.1.1.dev3

service_type

Type
string

Default
<None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

memcache_sasl_enabled

Type
boolean

Default
False

Enable the SASL(Simple Authentication and Security Layer) if the SASL_enable is true, else dis-
able.

memcache_username

Type
string

Default
''

the user name for the SASL

memcache_password

Type
string

Default
''

the username password for SASL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 7: Deprecated Variations

Group Name
keystone_authtoken auth_plugin

156 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

auth_section

Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

6.2.13 keystone_client

interface

Type
string

Default
admin

Valid Values
internal, public, admin

Type of endpoint to use in keystoneclient.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack service.

6.2.14 maas_client

url

Type
string

Default
<None>

MaaS URL, example: http://1.2.3.4:5240/MAAS

api_key

Type
string

Default
<None>

MaaS API authentication key.

timeout

Type
integer

6.2. watcher.conf 157

http://1.2.3.4:5240/MAAS

Watcher Documentation, Release 14.1.1.dev3

Default
60

MaaS client operation timeout in seconds.

6.2.15 monasca_client

api_version

Type
string

Default
2_0

Version of Monasca API to use in monascaclient.

interface

Type
string

Default
internal

Type of interface used for monasca endpoint. Supported values: internal, public, admin. The
default is internal.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack service.

6.2.16 neutron_client

api_version

Type
string

Default
2.0

Version of Neutron API to use in neutronclient.

endpoint_type

Type
string

Default
publicURL

Type of endpoint to use in neutronclient. Supported values: internalURL, publicURL, adminURL.
The default is publicURL.

158 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack service.

6.2.17 nova_client

api_version

Type
string

Default
2.56

Version of Nova API to use in novaclient.

Minimum required version: 2.56

Certain Watcher features depend on a minimum version of the compute API being avail-
able which is enforced with this option. See https://docs.openstack.org/nova/latest/reference/
api-microversion-history.html for the compute API microversion history.

endpoint_type

Type
string

Default
publicURL

Type of endpoint to use in novaclient. Supported values: internalURL, publicURL, adminURL.
The default is publicURL.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack service.

6.2.18 oslo_concurrency

disable_process_locking

Type
boolean

Default
False

Enables or disables inter-process locks.

6.2. watcher.conf 159

https://docs.openstack.org/nova/latest/reference/api-microversion-history.html
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html

Watcher Documentation, Release 14.1.1.dev3

lock_path

Type
string

Default
<None>

Directory to use for lock files. For security, the specified directory should only be writable
by the user running the processes that need locking. Defaults to environment variable
OSLO_LOCK_PATH. If external locks are used, a lock path must be set.

6.2.19 oslo_messaging_kafka

kafka_max_fetch_bytes

Type
integer

Default
1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type
floating point

Default
1.0

Default timeout(s) for Kafka consumers

consumer_group

Type
string

Default
oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

producer_batch_timeout

Type
floating point

Default
0.0

Upper bound on the delay for KafkaProducer batching in seconds

producer_batch_size

Type
integer

Default
16384

160 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Size of batch for the producer async send

compression_codec

Type
string

Default
none

Valid Values
none, gzip, snappy, lz4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit

Type
boolean

Default
False

Enable asynchronous consumer commits

max_poll_records

Type
integer

Default
500

The maximum number of records returned in a poll call

security_protocol

Type
string

Default
PLAINTEXT

Valid Values
PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

sasl_mechanism

Type
string

Default
PLAIN

Mechanism when security protocol is SASL

6.2. watcher.conf 161

Watcher Documentation, Release 14.1.1.dev3

ssl_cafile

Type
string

Default
''

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type
string

Default
''

Client certificate PEM file used for authentication.

ssl_client_key_file

Type
string

Default
''

Client key PEM file used for authentication.

ssl_client_key_password

Type
string

Default
''

Client key password file used for authentication.

6.2.20 oslo_messaging_notifications

driver

Type
multi-valued

Default
''

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop

transport_url

Type
string

Default
<None>

162 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

topics

Type
list

Default
['notifications']

AMQP topic used for OpenStack notifications.

retry

Type
integer

Default
-1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. 0 - No retry, -1 - indefinite

6.2.21 oslo_messaging_rabbit

amqp_durable_queues

Type
boolean

Default
False

Use durable queues in AMQP. If rabbit_quorum_queue is enabled, queues will be durable and this
value will be ignored.

amqp_auto_delete

Type
boolean

Default
False

Auto-delete queues in AMQP.

rpc_conn_pool_size

Type
integer

Default
30

Minimum Value
1

Size of RPC connection pool.

6.2. watcher.conf 163

Watcher Documentation, Release 14.1.1.dev3

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

ssl

Type
boolean

Default
False

Connect over SSL.

ssl_version

Type
string

Default
''

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

ssl_key_file

Type
string

Default
''

SSL key file (valid only if SSL enabled).

ssl_cert_file

Type
string

Default
''

SSL cert file (valid only if SSL enabled).

164 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

ssl_ca_file

Type
string

Default
''

SSL certification authority file (valid only if SSL enabled).

ssl_enforce_fips_mode

Type
boolean

Default
False

Global toggle for enforcing the OpenSSL FIPS mode. This feature requires Python support. This is
available in Python 3.9 in all environments and may have been backported to older Python versions
on select environments. If the Python executable used does not support OpenSSL FIPS mode, an
exception will be raised.

heartbeat_in_pthread

Type
boolean

Default
False

(DEPRECATED) It is recommend not to use this option anymore. Run the health check heartbeat
thread through a native python thread by default. If this option is equal to False then the health
check heartbeat will inherit the execution model from the parent process. For example if the parent
process has monkey patched the stdlib by using eventlet/greenlet then the heartbeat will be run
through a green thread. This option should be set to True only for the wsgi services.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The option is related to Eventlet which will be removed. In addition this
has never worked as expected with services using eventlet for core service
framework.

kombu_reconnect_delay

Type
floating point

Default
1.0

Minimum Value
0.0

6.2. watcher.conf 165

Watcher Documentation, Release 14.1.1.dev3

Maximum Value
4.5

How long to wait (in seconds) before reconnecting in response to an AMQP consumer cancel
notification.

kombu_reconnect_splay

Type
floating point

Default
0.0

Minimum Value
0.0

Random time to wait for when reconnecting in response to an AMQP consumer cancel notification.

kombu_compression

Type
string

Default
<None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout

Type
integer

Default
60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 8: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_reconnect_timeout

kombu_failover_strategy

Type
string

Default
round-robin

Valid Values
round-robin, shuffle

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

166 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

rabbit_login_method

Type
string

Default
AMQPLAIN

Valid Values
PLAIN, AMQPLAIN, EXTERNAL, RABBIT-CR-DEMO

The RabbitMQ login method.

rabbit_retry_interval

Type
integer

Default
1

Minimum Value
1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff

Type
integer

Default
2

Minimum Value
0

How long to backoff for between retries when connecting to RabbitMQ.

rabbit_interval_max

Type
integer

Default
30

Minimum Value
1

Maximum interval of RabbitMQ connection retries.

rabbit_ha_queues

Type
boolean

Default
False

6.2. watcher.conf 167

Watcher Documentation, Release 14.1.1.dev3

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe the
RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-policy
argument when declaring a queue. If you just want to make sure that all queues (except those with
auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA ^(?!amq.).*
{ha-mode: all}

rabbit_quorum_queue

Type
boolean

Default
False

Use quorum queues in RabbitMQ (x-queue-type: quorum). The quorum queue is a modern queue
type for RabbitMQ implementing a durable, replicated FIFO queue based on the Raft consensus
algorithm. It is available as of RabbitMQ 3.8.0. If set this option will conflict with the HA queues
(rabbit_ha_queues) aka mirrored queues, in other words the HA queues should be disabled.
Quorum queues are also durable by default so the amqp_durable_queues option is ignored when
this option is enabled.

rabbit_transient_quorum_queue

Type
boolean

Default
False

Use quorum queues for transients queues in RabbitMQ. Enabling this option will then make sure
those queues are also using quorum kind of rabbit queues, which are HA by default.

rabbit_quorum_delivery_limit

Type
integer

Default
0

Each time a message is redelivered to a consumer, a counter is incremented. Once the redelivery
count exceeds the delivery limit the message gets dropped or dead-lettered (if a DLX exchange has
been configured) Used only when rabbit_quorum_queue is enabled, Default 0 which means dont
set a limit.

rabbit_quorum_max_memory_length

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of messages in the quorum queue.
Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set a limit.

168 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Table 9: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_length

rabbit_quorum_max_memory_bytes

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of memory bytes used by the
quorum queue. Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set
a limit.

Table 10: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_bytes

rabbit_transient_queues_ttl

Type
integer

Default
1800

Minimum Value
0

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply
and fanout queues. Setting 0 as value will disable the x-expires. If doing so, make sure you have
a rabbitmq policy to delete the queues or you deployment will create an infinite number of queue
over time.In case rabbit_stream_fanout is set to True, this option will control data retention policy
(x-max-age) for messages in the fanout queue rather then the queue duration itself. So the oldest
data in the stream queue will be discarded from it once reaching TTL Setting to 0 will disable
x-max-age for stream which make stream grow indefinitely filling up the diskspace

rabbit_qos_prefetch_count

Type
integer

Default
0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.

heartbeat_timeout_threshold

6.2. watcher.conf 169

Watcher Documentation, Release 14.1.1.dev3

Type
integer

Default
60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate

Type
integer

Default
3

How often times during the heartbeat_timeout_threshold we check the heartbeat.

direct_mandatory_flag

Type
boolean

Default
True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does not
exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to sender
to recover.This flag is deprecated and it will not be possible to deactivate this functionality anymore

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Mandatory flag no longer deactivable.

enable_cancel_on_failover

Type
boolean

Default
False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

use_queue_manager

Type
boolean

Default
False

Should we use consistant queue names or random ones

170 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

hostname

Type
string

Default
node1.example.com

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Hostname used by queue manager. Defaults to the value returned by socket.gethostname().

processname

Type
string

Default
nova-api

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Process name used by queue manager

rabbit_stream_fanout

Type
boolean

Default
False

Use stream queues in RabbitMQ (x-queue-type: stream). Streams are a new persistent and
replicated data structure (queue type) in RabbitMQ which models an append-only log with non-
destructive consumer semantics. It is available as of RabbitMQ 3.9.0. If set this option will replace
all fanout queues with only one stream queue.

6.2.22 oslo_policy

enforce_scope

Type
boolean

Default
True

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced. If
the scopes do not match, an InvalidScope exception will be raised. If False, a message will be
logged informing operators that policies are being invoked with mismatching scope.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

6.2. watcher.conf 171

Watcher Documentation, Release 14.1.1.dev3

Reason
This configuration was added temporarily to facilitate a smooth transition to
the new RBAC. OpenStack will always enforce scope checks. This configu-
ration option is deprecated and will be removed in the 2025.2 cycle.

enforce_new_defaults

Type
boolean

Default
True

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token is
allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged to
enable this flag along with the enforce_scope flag so that you can get the benefits of new defaults
and scope_type together. If False, the deprecated policy check string is logically ORd with the
new policy check string, allowing for a graceful upgrade experience between releases with new
policies, which is the default behavior.

policy_file

Type
string

Default
policy.yaml

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

policy_default_rule

Type
string

Default
default

Default rule. Enforced when a requested rule is not found.

policy_dirs

Type
multi-valued

Default
policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

remote_content_type

Type
string

172 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Default
application/x-www-form-urlencoded

Valid Values
application/x-www-form-urlencoded, application/json

Content Type to send and receive data for REST based policy check

remote_ssl_verify_server_crt

Type
boolean

Default
False

server identity verification for REST based policy check

remote_ssl_ca_crt_file

Type
string

Default
<None>

Absolute path to ca cert file for REST based policy check

remote_ssl_client_crt_file

Type
string

Default
<None>

Absolute path to client cert for REST based policy check

remote_ssl_client_key_file

Type
string

Default
<None>

Absolute path client key file REST based policy check

remote_timeout

Type
floating point

Default
60

Minimum Value
0

Timeout in seconds for REST based policy check

6.2. watcher.conf 173

Watcher Documentation, Release 14.1.1.dev3

6.2.23 oslo_reports

log_dir

Type
string

Default
<None>

Path to a log directory where to create a file

file_event_handler

Type
string

Default
<None>

The path to a file to watch for changes to trigger the reports, instead of signals. Setting this option
disables the signal trigger for the reports. If application is running as a WSGI application it is
recommended to use this instead of signals.

file_event_handler_interval

Type
integer

Default
1

How many seconds to wait between polls when file_event_handler is set

6.2.24 placement_client
Configuration options for connecting to the placement API service

api_version

Type
string

Default
1.29

microversion of placement API when using placement service.

interface

Type
string

Default
public

Valid Values
internal, public, admin

Type of endpoint when using placement service.

174 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack service.

6.2.25 prometheus_client
See https://docs.openstack.org/watcher/latest/datasources/prometheus.html for details on how these op-
tions are used.

host

Type
string

Default
<None>

The hostname or IP address for the prometheus server.

port

Type
string

Default
<None>

The port number used by the prometheus server.

fqdn_label

Type
string

Default
fqdn

The label that Prometheus uses to store the fqdn of exporters. Defaults to fqdn.

instance_uuid_label

Type
string

Default
resource

The label that Prometheus uses to store the uuid of OpenStack instances. Defaults to resource.

username

Type
string

6.2. watcher.conf 175

https://docs.openstack.org/watcher/latest/datasources/prometheus.html

Watcher Documentation, Release 14.1.1.dev3

Default
<None>

The basic_auth username to use to authenticate with the Prometheus server.

password

Type
string

Default
<None>

The basic_auth password to use to authenticate with the Prometheus server.

cafile

Type
string

Default
<None>

Path to the CA certificate for establishing a TLS connection with the Prometheus server.

certfile

Type
string

Default
<None>

Path to the client certificate for establishing a TLS connection with the Prometheus server.

keyfile

Type
string

Default
<None>

Path to the client key for establishing a TLS connection with the Prometheus server.

6.2.26 watcher_applier

workers

Type
integer

Default
1

Minimum Value
1

Number of workers for applier, default value is 1.

176 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

conductor_topic

Type
string

Default
watcher.applier.control

The topic name used for control events, this topic used for rpc call

publisher_id

Type
string

Default
watcher.applier.api

The identifier used by watcher module on the message broker

workflow_engine

Type
string

Default
taskflow

Select the engine to use to execute the workflow

rollback_when_actionplan_failed

Type
boolean

Default
False

If set True, the failed actionplan will rollback when executing. Default value is False.

6.2.27 watcher_clients_auth

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

6.2. watcher.conf 177

Watcher Documentation, Release 14.1.1.dev3

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

insecure

Type
boolean

Default
False

Verify HTTPS connections.

timeout

Type
integer

Default
<None>

Timeout value for http requests

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

auth_type

Type
unknown type

Default
<None>

Authentication type to load

178 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Table 11: Deprecated Variations

Group Name
watcher_clients_auth auth_plugin

auth_section

Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

6.2.28 watcher_cluster_data_model_collectors.baremetal

period

Type
integer

Default
3600

The time interval (in seconds) between each synchronization of the model

6.2.29 watcher_cluster_data_model_collectors.compute

period

Type
integer

Default
3600

The time interval (in seconds) between each synchronization of the model

6.2.30 watcher_cluster_data_model_collectors.storage

period

Type
integer

Default
3600

The time interval (in seconds) between each synchronization of the model

6.2.31 watcher_datasources

datasources

Type
list

6.2. watcher.conf 179

Watcher Documentation, Release 14.1.1.dev3

Default
['gnocchi', 'monasca', 'grafana', 'prometheus']

Datasources to use in order to query the needed metrics. If one of strategy metric is not available in
the first datasource, the next datasource will be chosen. This is the default for all strategies unless
a strategy has a specific override.

query_max_retries

Type
integer

Default
10

Minimum Value
1

Mutable
This option can be changed without restarting.

How many times Watcher is trying to query again

Table 12: Deprecated Variations

Group Name
gnocchi_client query_max_retries

query_timeout

Type
integer

Default
1

Minimum Value
0

Mutable
This option can be changed without restarting.

How many seconds Watcher should wait to do query again

Table 13: Deprecated Variations

Group Name
gnocchi_client query_timeout

6.2.32 watcher_decision_engine

conductor_topic

Type
string

180 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

Default
watcher.decision.control

The topic name used for control events, this topic used for RPC calls

notification_topics

Type
list

Default
['nova.versioned_notifications', 'watcher.
watcher_notifications']

The exchange and topic names from which notification events will be listened to. The exchange
should be specified to get an ability to use pools.

publisher_id

Type
string

Default
watcher.decision.api

The identifier used by the Watcher module on the message broker

max_audit_workers

Type
integer

Default
2

The maximum number of threads that can be used to execute audits in parallel.

max_general_workers

Type
integer

Default
4

The maximum number of threads that can be used to execute general tasks in parallel. The number
of general workers will not increase depending on the number of audit workers!

action_plan_expiry

Type
integer

Default
24

Mutable
This option can be changed without restarting.

An expiry timespan(hours). Watcher invalidates any action plan for which its creation time -whose
number of hours has been offset by this value- is older that the current time.

6.2. watcher.conf 181

Watcher Documentation, Release 14.1.1.dev3

check_periodic_interval

Type
integer

Default
1800

Mutable
This option can be changed without restarting.

Interval (in seconds) for checking action plan expiry.

metric_map_path

Type
string

Default
/etc/watcher/metric_map.yaml

Path to metric map yaml formatted file. The file contains a map per datasource whose keys are
the metric names as recognized by watcher and the value is the real name of the metric in the
datasource. For example:

monasca:
instance_cpu_usage: VM_CPU

gnocchi:
instance_cpu_usage: cpu_vm_util

This file is optional.

continuous_audit_interval

Type
integer

Default
10

Mutable
This option can be changed without restarting.

Interval (in seconds) for checking newly created continuous audits.

6.2.33 watcher_planner

planner

Type
string

Default
weight

The selected planner used to schedule the actions

182 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

6.2.34 watcher_planners.weight

weights

Type
dict

Default
{'nop': 70, 'volume_migrate': 60, 'change_nova_service_state':
50, 'sleep': 40, 'migrate': 30, 'resize': 20,
'turn_host_to_acpi_s3_state': 10, 'change_node_power_state':
9}

These weights are used to schedule the actions. Action Plan will be build in accordance with sets
of actions ordered by descending weights.Two action types cannot have the same weight.

parallelization

Type
dict

Default
{'turn_host_to_acpi_s3_state': 2, 'resize': 2, 'migrate':
2, 'sleep': 1, 'change_nova_service_state': 1, 'nop': 1,
'change_node_power_state': 2, 'volume_migrate': 2}

Number of actions to be run in parallel on a per action type basis.

6.2.35 watcher_planners.workload_stabilization

weights

Type
dict

Default
{'turn_host_to_acpi_s3_state': 0, 'resize': 1, 'migrate':
2, 'sleep': 3, 'change_nova_service_state': 4, 'nop': 5}

These weights are used to schedule the actions

6.2.36 watcher_strategies.basic

datasources

Type
list

Default
<None>

Datasources to use in order to query the needed metrics. This option overrides the global prefer-
ence. options: [gnocchi, monasca, grafana, prometheus]

check_optimize_metadata

Type
boolean

6.2. watcher.conf 183

Watcher Documentation, Release 14.1.1.dev3

Default
False

Check optimize metadata field in instance before migration

6.2.37 watcher_strategies.node_resource_consolidation

datasources

Type
list

Default
<None>

Datasources to use in order to query the needed metrics. This option overrides the global prefer-
ence. options: [gnocchi, monasca, grafana, prometheus]

6.2.38 watcher_strategies.noisy_neighbor

datasources

Type
list

Default
<None>

Datasources to use in order to query the needed metrics. This option overrides the global prefer-
ence. options: [gnocchi, monasca, grafana, prometheus]

6.2.39 watcher_strategies.outlet_temperature

datasources

Type
list

Default
<None>

Datasources to use in order to query the needed metrics. This option overrides the global prefer-
ence. options: [gnocchi, monasca, grafana, prometheus]

6.2.40 watcher_strategies.storage_capacity_balance

datasources

Type
list

Default
<None>

Datasources to use in order to query the needed metrics. This option overrides the global prefer-
ence. options: [gnocchi, monasca, grafana, prometheus]

184 Chapter 6. Configuration Guide

Watcher Documentation, Release 14.1.1.dev3

ex_pools

Type
list

Default
['local_vstorage']

exclude pools

6.2.41 watcher_strategies.uniform_airflow

datasources

Type
list

Default
<None>

Datasources to use in order to query the needed metrics. This option overrides the global prefer-
ence. options: [gnocchi, monasca, grafana, prometheus]

6.2.42 watcher_strategies.vm_workload_consolidation

datasources

Type
list

Default
<None>

Datasources to use in order to query the needed metrics. This option overrides the global prefer-
ence. options: [gnocchi, monasca, grafana, prometheus]

6.2.43 watcher_strategies.workload_balance

datasources

Type
list

Default
<None>

Datasources to use in order to query the needed metrics. This option overrides the global prefer-
ence. options: [gnocchi, monasca, grafana, prometheus]

6.2.44 watcher_strategies.workload_stabilization

datasources

Type
list

Default
<None>

6.2. watcher.conf 185

Watcher Documentation, Release 14.1.1.dev3

Datasources to use in order to query the needed metrics. This option overrides the global prefer-
ence. options: [gnocchi, monasca, grafana, prometheus]

6.2.45 watcher_workflow_engines.taskflow

max_workers

Type
integer

Default
4

Minimum Value
1

Number of workers for taskflow engine to execute actions.

action_execution_rule

Type
dict

Default
{}

The execution rule for linked actions,the key is strategy name and value ALWAYS means all actions
will be executed,value ANY means if previous action executes success, the next action will be
ignored.None means ALWAYS.

186 Chapter 6. Configuration Guide

CHAPTER

SEVEN

PLUGIN GUIDE

7.1 Create a third-party plugin for Watcher
Watcher provides a plugin architecture which allows anyone to extend the existing functionalities by
implementing third-party plugins. This process can be cumbersome so this documentation is there to
help you get going as quickly as possible.

7.1.1 Pre-requisites
We assume that you have set up a working Watcher development environment. So if this not already the
case, you can check out our documentation which explains how to set up a development environment.

7.1.2 Third party project scaffolding
First off, we need to create the project structure. To do so, we can use cookiecutter and the OpenStack
cookiecutter project scaffolder to generate the skeleton of our project:

$ virtualenv thirdparty
$. thirdparty/bin/activate
$ pip install cookiecutter
$ cookiecutter https://github.com/openstack-dev/cookiecutter

The last command will ask you for many information, and If you set module_name and repo_name as
thirdparty, you should end up with a structure that looks like this:

$ cd thirdparty
$ tree .
.
babel.cfg
CONTRIBUTING.rst
doc
ăă source
ăă conf.py
ăă contributing.rst
ăă index.rst
ăă installation.rst
ăă readme.rst
ăă usage.rst
HACKING.rst
LICENSE
MANIFEST.in

(continues on next page)

187

https://github.com/audreyr/cookiecutter
https://github.com/openstack-dev/cookiecutter
https://github.com/openstack-dev/cookiecutter

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

README.rst
requirements.txt
setup.cfg
setup.py
test-requirements.txt
thirdparty
ăă __init__.py
ăă tests
ăă base.py
ăă __init__.py
ăă test_thirdparty.py
tox.ini

Note: You should add python-watcher as a dependency in the requirements.txt file:

Watcher-specific requirements
python-watcher

7.1.3 Implementing a plugin for Watcher
Now that the project skeleton has been created, you can start the implementation of your plugin. As of
now, you can implement the following plugins for Watcher:

• A goal plugin

• A strategy plugin

• An action plugin

• A planner plugin

• A workflow engine plugin

• A cluster data model collector plugin

If you want to learn more on how to implement them, you can refer to their dedicated documentation.

7.2 Build a new action
Watcher Applier has an external action plugin interface which gives anyone the ability to integrate an
external action in order to extend the initial set of actions Watcher provides.

This section gives some guidelines on how to implement and integrate custom actions with Watcher.

7.2.1 Creating a new plugin
First of all you have to extend the base BaseAction class which defines a set of abstract methods and/or
properties that you will have to implement:

• The schema is an abstract property that you have to implement. This is the first function to be
called by the applier before any further processing and its role is to validate the input parameters
that were provided to it.

• The pre_condition() is called before the execution of an action. This method is a hook that
can be used to perform some initializations or to make some more advanced validation on its input

188 Chapter 7. Plugin Guide

https://pypi.org/project/python-watcher

Watcher Documentation, Release 14.1.1.dev3

parameters. If you wish to block the execution based on this factor, you simply have to raise an
exception.

• The post_condition() is called after the execution of an action. As this function is called
regardless of whether an action succeeded or not, this can prove itself useful to perform cleanup
operations.

• The execute() is the main component of an action. This is where you should implement the logic
of your action.

• The revert() allows you to roll back the targeted resource to its original state following a faulty
execution. Indeed, this method is called by the workflow engine whenever an action raises an
exception.

Here is an example showing how you can write a plugin called DummyAction:

Filepath = <PROJECT_DIR>/thirdparty/dummy.py
Import path = thirdparty.dummy
import voluptuous

from watcher.applier.actions import base

class DummyAction(base.BaseAction):

@property
def schema(self):

return voluptuous.Schema({})

def execute(self):
Does nothing
pass # Only returning False is considered as a failure

def revert(self):
Does nothing
pass

def pre_condition(self):
No pre-checks are done here
pass

def post_condition(self):
Nothing done here
pass

This implementation is the most basic one. So in order to get a better understanding on how to implement
a more advanced action, have a look at the Migrate class.

Input validation

As you can see in the previous example, we are using Voluptuous to validate the input parameters of an
action. So if you want to learn more about how to work with Voluptuous, you can have a look at their
documentation:

7.2. Build a new action 189

https://github.com/alecthomas/voluptuous
https://github.com/alecthomas/voluptuous
https://github.com/alecthomas/voluptuous/blob/master/README.md

Watcher Documentation, Release 14.1.1.dev3

7.2.2 Define configuration parameters
At this point, you have a fully functional action. However, in more complex implementation, you may
want to define some configuration options so one can tune the action to its needs. To do so, you can
implement the get_config_opts() class method as followed:

from oslo_config import cfg

class DummyAction(base.BaseAction):

[...]

def execute(self):
assert self.config.test_opt == 0

@classmethod
def get_config_opts(cls):

return super(
DummyAction, cls).get_config_opts() + [
cfg.StrOpt('test_opt', help="Demo Option.", default=0),
Some more options ...

]

The configuration options defined within this class method will be included within the global watcher.
conf configuration file under a section named by convention: {namespace}.{plugin_name}. In our
case, the watcher.conf configuration would have to be modified as followed:

[watcher_actions.dummy]
Option used for testing.
test_opt = test_value

Then, the configuration options you define within this method will then be injected in each instantiated
object via the config parameter of the __init__() method.

7.2.3 Abstract Plugin Class
Here below is the abstract BaseAction class that every single action should implement:

class watcher.applier.actions.base.BaseAction(config, osc=None)

schema

Defines a Schema that the input parameters shall comply to

Returns
A schema declaring the input parameters this action should be provided along
with their respective constraints (e.g. type, value range,)

Return type
voluptuous.Schema instance

__init__(config, osc=None)
Constructor

Parameters

• config (dict) A mapping containing the configuration of this action

190 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

• osc (OpenStackClients instance, optional) an OpenStackClients in-
stance, defaults to None

abstract execute()

Executes the main logic of the action

This method can be used to perform an action on a given set of input parameters to accomplish
some type of operation. This operation may return a boolean value as a result of its execution.
If False, this will be considered as an error and will then trigger the reverting of the actions.

Returns
A flag indicating whether or not the action succeeded

Return type
bool

classmethod get_config_opts()

Defines the configuration options to be associated to this loadable

Returns
A list of configuration options relative to this Loadable

Return type
list of oslo_config.cfg.Opt instances

abstract get_description()

Description of the action

abstract post_condition()

Hook: called after the execution of an action

This function is called regardless of whether an action succeeded or not. So you can use it to
perform cleanup operations.

abstract pre_condition()

Hook: called before the execution of an action

This method can be used to perform some initializations or to make some more advanced
validation on its input parameters. So if you wish to block its execution based on this factor,
raise the related exception.

abstract revert()

Revert this action

This method should rollback the resource to its initial state in the event of a faulty execution.
This happens when the action raised an exception during its execute().

abstract property schema

Defines a Schema that the input parameters shall comply to

Returns
A schema declaring the input parameters this action should be provided along
with their respective constraints

Return type
jsonschema.Schema instance

7.2. Build a new action 191

Watcher Documentation, Release 14.1.1.dev3

7.2.4 Register a new entry point
In order for the Watcher Applier to load your new action, the action must be registered as a named entry
point under the watcher_actions entry point of your setup.py file. If you are using pbr, this entry
point should be placed in your setup.cfg file.

The name you give to your entry point has to be unique.

Here below is how you would proceed to register DummyAction using pbr:

[entry_points]
watcher_actions =

dummy = thirdparty.dummy:DummyAction

7.2.5 Using action plugins
The Watcher Applier service will automatically discover any installed plugins when it is restarted. If a
Python package containing a custom plugin is installed within the same environment as Watcher, Watcher
will automatically make that plugin available for use.

At this point, you can use your new action plugin in your strategy plugin if you reference it via the use of
the add_action() method:

[...]
self.solution.add_action(

action_type="dummy", # Name of the entry point we registered earlier
applies_to="",
input_parameters={})

By doing so, your action will be saved within the Watcher Database, ready to be processed by the planner
for creating an action plan which can then be executed by the Watcher Applier via its workflow engine.

At the last, remember to add the action into the weights in watcher.conf, otherwise you will get an
error when the action be referenced in a strategy.

7.2.6 Scheduling of an action plugin
Watcher provides a basic built-in planner which is only able to process the Watcher built-in actions.
Therefore, you will either have to use an existing third-party planner or implement another planner that
will be able to take into account your new action plugin.

7.2.7 Test your new action
In order to test your new action via a manual test or a Tempest test, you can use the Actuator strategy
and pass it one or more actions to execute. This way, you can isolate your action to see if it works as
expected.

7.3 Build a new cluster data model collector
Watcher Decision Engine has an external cluster data model (CDM) plugin interface which gives anyone
the ability to integrate an external cluster data model collector (CDMC) in order to extend the initial set
of cluster data model collectors Watcher provides.

This section gives some guidelines on how to implement and integrate custom cluster data model collec-
tors within Watcher.

192 Chapter 7. Plugin Guide

https://docs.openstack.org/pbr/latest
https://docs.openstack.org/pbr/latest

Watcher Documentation, Release 14.1.1.dev3

7.3.1 Creating a new plugin
In order to create a new cluster data model collector, you have to:

• Extend the BaseClusterDataModelCollector class.

• Implement its execute() abstract method to return your entire cluster data model that this method
should build.

• Implement its audit_scope_handler() abstract property to return your audit scope handler.

• Implement its notification_endpoints() abstract property to return the list of all the
NotificationEndpoint instances that will be responsible for handling incoming notifications
in order to incrementally update your cluster data model.

First of all, you have to extend the BaseClusterDataModelCollector base class which defines the
execute() abstract method you will have to implement. This method is responsible for building an
entire cluster data model.

Here is an example showing how you can write a plugin called DummyClusterDataModelCollector:

Filepath = <PROJECT_DIR>/thirdparty/dummy.py
Import path = thirdparty.dummy

from watcher.decision_engine.model import model_root
from watcher.decision_engine.model.collector import base

class DummyClusterDataModelCollector(base.BaseClusterDataModelCollector):

def execute(self):
model = model_root.ModelRoot()
Do something here...
return model

@property
def audit_scope_handler(self):

return None

@property
def notification_endpoints(self):

return []

This implementation is the most basic one. So in order to get a better understanding on how to implement
a more advanced cluster data model collector, have a look at the NovaClusterDataModelCollector
class.

7.3.2 Define a custom model
As you may have noticed in the above example, we are reusing an existing model provided by Watcher.
However, this model can be easily customized by implementing a new class that would implement the
Model abstract base class. Here below is simple example on how to proceed in implementing a custom
Model:

7.3. Build a new cluster data model collector 193

Watcher Documentation, Release 14.1.1.dev3

Filepath = <PROJECT_DIR>/thirdparty/dummy.py
Import path = thirdparty.dummy

from watcher.decision_engine.model import base as modelbase
from watcher.decision_engine.model.collector import base

class MyModel(modelbase.Model):

def to_string(self):
return 'MyModel'

class DummyClusterDataModelCollector(base.BaseClusterDataModelCollector):

def execute(self):
model = MyModel()
Do something here...
return model

@property
def notification_endpoints(self):

return []

Here below is the abstract Model class that every single cluster data model should implement:

class watcher.decision_engine.model.base.Model

7.3.3 Define configuration parameters
At this point, you have a fully functional cluster data model collector. By default, cluster data model
collectors define a period option (see get_config_opts()) that corresponds to the interval of time
between each synchronization of the in-memory model.

However, in more complex implementation, you may want to define some configuration options so
one can tune the cluster data model collector to your needs. To do so, you can implement the
get_config_opts() class method as followed:

from oslo_config import cfg
from watcher.decision_engine.model import model_root
from watcher.decision_engine.model.collector import base

class DummyClusterDataModelCollector(base.BaseClusterDataModelCollector):

def execute(self):
model = model_root.ModelRoot()
Do something here...
return model

@property
(continues on next page)

194 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

def audit_scope_handler(self):
return None

@property
def notification_endpoints(self):

return []

@classmethod
def get_config_opts(cls):

return super(
DummyClusterDataModelCollector, cls).get_config_opts() + [
cfg.StrOpt('test_opt', help="Demo Option.", default=0),
Some more options ...

]

The configuration options defined within this class method will be included within the global
watcher.conf configuration file under a section named by convention: {namespace}.
{plugin_name} (see section Register a new entry point). The namespace for CDMC plugins is
watcher_cluster_data_model_collectors, so in our case, the watcher.conf configuration
would have to be modified as followed:

[watcher_cluster_data_model_collectors.dummy]
Option used for testing.
test_opt = test_value

Then, the configuration options you define within this method will then be injected in each instantiated
object via the config parameter of the __init__() method.

7.3.4 Abstract Plugin Class
Here below is the abstract BaseClusterDataModelCollector class that every single cluster data
model collector should implement:

class watcher.decision_engine.model.collector.base.BaseClusterDataModelCollector(*args,
**kwargs)

__init__(config, osc=None)

abstract execute()

Build a cluster data model

abstract get_audit_scope_handler(audit_scope)
Get audit scope handler

classmethod get_config_opts()

Defines the configuration options to be associated to this loadable

Returns
A list of configuration options relative to this Loadable

Return type
list of oslo_config.cfg.Opt instances

7.3. Build a new cluster data model collector 195

Watcher Documentation, Release 14.1.1.dev3

abstract property notification_endpoints

Associated notification endpoints

Returns
Associated notification endpoints

Return type
List of EventsNotificationEndpoint instances

synchronize()

Synchronize the cluster data model

Whenever called this synchronization will perform a drop-in replacement with the existing
cluster data model

7.3.5 Register a new entry point
In order for the Watcher Decision Engine to load your new cluster data model collector, the latter must
be registered as a named entry point under the watcher_cluster_data_model_collectors entry
point namespace of your setup.py file. If you are using pbr, this entry point should be placed in your
setup.cfg file.

The name you give to your entry point has to be unique.

Here below is how to register DummyClusterDataModelCollector using pbr:

[entry_points]
watcher_cluster_data_model_collectors =

dummy = thirdparty.dummy:DummyClusterDataModelCollector

7.3.6 Add new notification endpoints
At this point, you have a fully functional cluster data model collector. However, this CDMC is only
refreshed periodically via a background scheduler. As you may sometimes execute a strategy with a stale
CDM due to a high activity on your infrastructure, you can define some notification endpoints that will be
responsible for incrementally updating the CDM based on notifications emitted by other services such as
Nova. To do so, you can implement and register a new DummyEndpoint notification endpoint regarding
a dummy event as shown below:

from watcher.decision_engine.model import model_root
from watcher.decision_engine.model.collector import base

class DummyNotification(base.NotificationEndpoint):

@property
def filter_rule(self):

return filtering.NotificationFilter(
publisher_id=r'.*',
event_type=r'^dummy$',

)

def info(self, ctxt, publisher_id, event_type, payload, metadata):
Do some CDM modifications here...

(continues on next page)

196 Chapter 7. Plugin Guide

https://docs.openstack.org/pbr/latest/
https://docs.openstack.org/pbr/latest/

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

pass

class DummyClusterDataModelCollector(base.BaseClusterDataModelCollector):

def execute(self):
model = model_root.ModelRoot()
Do something here...
return model

@property
def notification_endpoints(self):

return [DummyNotification(self)]

Note that if the event you are trying to listen to is published by a new service, you may have to
also add a new topic Watcher will have to subscribe to in the notification_topics option of the
[watcher_decision_engine] section.

7.3.7 Using cluster data model collector plugins
The Watcher Decision Engine service will automatically discover any installed plugins when it is
restarted. If a Python package containing a custom plugin is installed within the same environment
as Watcher, Watcher will automatically make that plugin available for use.

At this point, you can use your new cluster data model plugin in your strategy plugin by using the
collector_manager property as followed:

[...]
dummy_collector = self.collector_manager.get_cluster_model_collector(

"dummy") # "dummy" is the name of the entry point we declared earlier
dummy_model = dummy_collector.get_latest_cluster_data_model()
Do some stuff with this model

7.4 Build a new goal
Watcher Decision Engine has an external goal plugin interface which gives anyone the ability to integrate
an external goal which can be achieved by a strategy.

This section gives some guidelines on how to implement and integrate custom goals with Watcher. If you
wish to create a third-party package for your plugin, you can refer to our documentation for third-party
package creation.

7.4.1 Pre-requisites
Before using any goal, please make sure that none of the existing goals fit your needs. Indeed, the
underlying value of defining a goal is to be able to compare the efficacy of the action plans resulting from
the various strategies satisfying the same goal. By doing so, Watcher can assist the administrator in his
choices.

7.4. Build a new goal 197

Watcher Documentation, Release 14.1.1.dev3

7.4.2 Create a new plugin
In order to create a new goal, you have to:

• Extend the Goal class.

• Implement its get_name() class method to return the unique ID of the new goal you want to
create. This unique ID should be the same as the name of the entry point you will declare later on.

• Implement its get_display_name() class method to return the translated display name of the
goal you want to create. Note: Do not use a variable to return the translated string so it can be
automatically collected by the translation tool.

• Implement its get_translatable_display_name() class method to return the translation key
(actually the english display name) of your new goal. The value return should be the same as the
string translated in get_display_name().

• Implement its get_efficacy_specification() method to return the efficacy specification for
your goal.

Here is an example showing how you can define a new NewGoal goal plugin:

filepath: thirdparty/new.py
import path: thirdparty.new

from watcher._i18n import _
from watcher.decision_engine.goal import base
from watcher.decision_engine.goal.efficacy import specs

class NewGoal(base.Goal):

@classmethod
def get_name(cls):

return "new_goal" # Will be the name of the entry point

@classmethod
def get_display_name(cls):

return _("New Goal")

@classmethod
def get_translatable_display_name(cls):

return "New Goal"

@classmethod
def get_efficacy_specification(cls):

return specs.Unclassified()

As you may have noticed, the get_efficacy_specification() method returns an Unclassified()
instance which is provided by Watcher. This efficacy specification is useful during the development
process of your goal as it corresponds to an empty specification. If you want to learn more about what
efficacy specifications are used for or to define your own efficacy specification, please refer to the related
section below.

198 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

7.4.3 Abstract Plugin Class
Here below is the abstract Goal class:

class watcher.decision_engine.goal.base.Goal(config)

classmethod get_config_opts()

Defines the configuration options to be associated to this loadable

Returns
A list of configuration options relative to this Loadable

Return type
list of oslo_config.cfg.Opt instances

abstract classmethod get_display_name()

The goal display name for the goal

abstract get_efficacy_specification()

The efficacy spec for the current goal

abstract classmethod get_name()

Name of the goal: should be identical to the related entry point

abstract classmethod get_translatable_display_name()

The translatable msgid of the goal

7.4.4 Add a new entry point
In order for the Watcher Decision Engine to load your new goal, the goal must be registered as a named
entry point under the watcher_goals entry point namespace of your setup.py file. If you are using
pbr, this entry point should be placed in your setup.cfg file.

The name you give to your entry point has to be unique and should be the same as the value returned by
the get_name() class method of your goal.

Here below is how you would proceed to register NewGoal using pbr:

[entry_points]
watcher_goals =

new_goal = thirdparty.new:NewGoal

To get a better understanding on how to implement a more advanced goal, have a look at the watcher.
decision_engine.goal.goals.ServerConsolidation class.

7.4.5 Implement a customized efficacy specification

What is it for?

Efficacy specifications define a set of specifications for a given goal. These specifications actually define
a list of indicators which are to be used to compute a global efficacy that outlines how well a strategy
performed when trying to achieve the goal it is associated to.

The idea behind such specification is to give the administrator the possibility to run an audit using different
strategies satisfying the same goal and be able to judge how they performed at a glance.

7.4. Build a new goal 199

https://docs.openstack.org/pbr/latest
https://docs.openstack.org/pbr/latest

Watcher Documentation, Release 14.1.1.dev3

Implementation

In order to create a new efficacy specification, you have to:

• Extend the EfficacySpecification class.

• Implement get_indicators_specifications() by returning a list of
IndicatorSpecification instances.

– Each IndicatorSpecification instance should actually extend the latter.

– Each indicator specification should have a unique name which should be a valid Python
variable name.

– They should implement the schema abstract property by returning a Schema instance. This
schema is the contract the strategy will have to comply with when setting the value associated
to the indicator specification within its solution (see the architecture of Watcher for more
information on the audit execution workflow).

• Implement the get_global_efficacy() method: it should compute the global efficacy for the
goal it achieves based on the efficacy indicators you just defined.

Here below is an example of an efficacy specification containing one indicator specification:

from watcher._i18n import _
from watcher.decision_engine.goal.efficacy import base as efficacy_base
from watcher.decision_engine.goal.efficacy import indicators
from watcher.decision_engine.solution import efficacy

class IndicatorExample(IndicatorSpecification):
def __init__(self):

super(IndicatorExample, self).__init__(
name="indicator_example",
description=_("Example of indicator specification."),
unit=None,

)

@property
def schema(self):

return voluptuous.Schema(voluptuous.Range(min=0), required=True)

class UnclassifiedStrategySpecification(efficacy_base.EfficacySpecification):

def get_indicators_specifications(self):
return [IndicatorExample()]

def get_global_efficacy(self, indicators_map):
return efficacy.Indicator(
name="global_efficacy_indicator",
description="Example of global efficacy indicator",
unit="%",
value=indicators_map.indicator_example % 100)

200 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

To get a better understanding on how to implement an efficacy specification, have a look at
ServerConsolidationSpecification.

Also, if you want to see a concrete example of an indicator specification, have a look at
ReleasedComputeNodesCount.

7.5 Build a new planner
Watcher Decision Engine has an external planner plugin interface which gives anyone the ability to
integrate an external planner in order to extend the initial set of planners Watcher provides.

This section gives some guidelines on how to implement and integrate custom planners with Watcher.

7.5.1 Creating a new plugin
First of all you have to extend the base BasePlanner class which defines an abstract method that you
will have to implement. The schedule() is the method being called by the Decision Engine to schedule
a given solution (BaseSolution) into an action plan by ordering/sequencing an unordered set of actions
contained in the proposed solution (for more details, see definition of a solution).

Here is an example showing how you can write a planner plugin called DummyPlanner:

Filepath = third-party/third_party/dummy.py
Import path = third_party.dummy
from oslo_utils import uuidutils
from watcher.decision_engine.planner import base

class DummyPlanner(base.BasePlanner):

def _create_action_plan(self, context, audit_id):
action_plan_dict = {

'uuid': uuidutils.generate_uuid(),
'audit_id': audit_id,
'first_action_id': None,
'state': objects.action_plan.State.RECOMMENDED

}

new_action_plan = objects.ActionPlan(context, **action_plan_dict)
new_action_plan.create(context)
new_action_plan.save()
return new_action_plan

def schedule(self, context, audit_id, solution):
Empty action plan
action_plan = self._create_action_plan(context, audit_id)
todo: You need to create the workflow of actions here
and attach it to the action plan
return action_plan

This implementation is the most basic one. So if you want to have more advanced examples, have a look
at the implementation of planners already provided by Watcher like DefaultPlanner. A list with all
available planner plugins can be found here.

7.5. Build a new planner 201

Watcher Documentation, Release 14.1.1.dev3

7.5.2 Define configuration parameters
At this point, you have a fully functional planner. However, in more complex implementation, you may
want to define some configuration options so one can tune the planner to its needs. To do so, you can
implement the get_config_opts() class method as followed:

from oslo_config import cfg

class DummyPlanner(base.BasePlanner):

[...]

def schedule(self, context, audit_uuid, solution):
assert self.config.test_opt == 0
[...]

@classmethod
def get_config_opts(cls):

return super(
DummyPlanner, cls).get_config_opts() + [
cfg.StrOpt('test_opt', help="Demo Option.", default=0),
Some more options ...

]

The configuration options defined within this class method will be included within the global watcher.
conf configuration file under a section named by convention: {namespace}.{plugin_name}. In our
case, the watcher.conf configuration would have to be modified as followed:

[watcher_planners.dummy]
Option used for testing.
test_opt = test_value

Then, the configuration options you define within this method will then be injected in each instantiated
object via the config parameter of the __init__() method.

7.5.3 Abstract Plugin Class
Here below is the abstract BasePlanner class that every single planner should implement:

class watcher.decision_engine.planner.base.BasePlanner(config)

classmethod get_config_opts()

Defines the configuration options to be associated to this loadable

Returns
A list of configuration options relative to this Loadable

Return type
list of oslo_config.cfg.Opt instances

abstract schedule(context, audit_uuid, solution)
The planner receives a solution to schedule

Parameters

202 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

• solution (BaseSolution subclass instance) A solution provided by a
strategy for scheduling

• audit_uuid (str) the audit uuid

Returns
Action plan with an ordered sequence of actions such that all security, depen-
dency, and performance requirements are met.

Return type
watcher.objects.ActionPlan instance

7.5.4 Register a new entry point
In order for the Watcher Decision Engine to load your new planner, the latter must be registered as a
new entry point under the watcher_planners entry point namespace of your setup.py file. If you are
using pbr, this entry point should be placed in your setup.cfg file.

The name you give to your entry point has to be unique.

Here below is how you would proceed to register DummyPlanner using pbr:

[entry_points]
watcher_planners =

dummy = third_party.dummy:DummyPlanner

7.5.5 Using planner plugins
The Watcher Decision Engine service will automatically discover any installed plugins when it is started.
This means that if Watcher is already running when you install your plugin, you will have to restart the
related Watcher services. If a Python package containing a custom plugin is installed within the same
environment as Watcher, Watcher will automatically make that plugin available for use.

At this point, Watcher will use your new planner if you referenced it in the planner option under the
[watcher_planner] section of your watcher.conf configuration file when you started it. For exam-
ple, if you want to use the dummy planner you just installed, you would have to select it as followed:

[watcher_planner]
planner = dummy

As you may have noticed, only a single planner implementation can be activated at a time, so make sure
it is generic enough to support all your strategies and actions.

7.6 Build a new scoring engine
Watcher Decision Engine has an external scoring engine plugin interface which gives anyone the ability
to integrate an external scoring engine in order to make use of it in a strategy.

This section gives some guidelines on how to implement and integrate custom scoring engines with
Watcher. If you wish to create a third-party package for your plugin, you can refer to our documentation
for third-party package creation.

7.6. Build a new scoring engine 203

https://docs.openstack.org/pbr/latest
https://docs.openstack.org/pbr/latest

Watcher Documentation, Release 14.1.1.dev3

7.6.1 Pre-requisites
Because scoring engines execute a purely mathematical tasks, they typically do not have any additional
dependencies. Additional requirements might be defined by specific scoring engine implementations.
For example, some scoring engines might require to prepare learning data, which has to be loaded during
the scoring engine startup. Some other might require some external services to be available (e.g. if the
scoring infrastructure is running in the cloud).

7.6.2 Create a new scoring engine plugin
In order to create a new scoring engine you have to:

• Extend the watcher.decision_engine.scoring.base.ScoringEngine class

• Implement its get_name() method to return the unique ID of the new scoring engine you want
to create. This unique ID should be the same as the name of the entry point we will declare later
on.

• Implement its get_description() method to return the user-friendly description of the imple-
mented scoring engine. It might contain information about algorithm used, learning data etc.

• Implement its get_metainfo() method to return the machine-friendly metadata about this scor-
ing engine. For example, it could be a JSON formatted text with information about the data model
used, its input and output data format, column names, etc.

• Implement its calculate_score() method to return the result calculated by this scoring engine.

Here is an example showing how you can write a plugin called NewScorer:

filepath: thirdparty/new.py
import path: thirdparty.new
from watcher.decision_engine.scoring import base

class NewScorer(base.ScoringEngine):

def get_name(self):
return 'new_scorer'

def get_description(self):
return ''

def get_metainfo(self):
return """{

"feature_columns": [
"column1",
"column2",
"column3"],

"result_columns": [
"value",
"probability"]

}"""

def calculate_score(self, features):
return '[12, 0.83]'

204 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

As you can see in the above example, the calculate_score() method returns a string. Both this class
and the client (caller) should perform all the necessary serialization or deserialization.

7.6.3 (Optional) Create a new scoring engine container plugin
Optionally, its possible to implement a container plugin, which can return a list of scoring engines. This
list can be re-evaluated multiple times during the lifecycle of Watcher Decision Engine and synchronized
with Watcher Database using the watcher-sync command line tool.

Below is an example of a container using some scoring engine implementation that is simply made of a
client responsible for communicating with a real scoring engine deployed as a web service on external
servers:

class NewScoringContainer(base.ScoringEngineContainer):

@classmethod
def get_scoring_engine_list(self):

return [
RemoteScoringEngine(

name='scoring_engine1',
description='Some remote Scoring Engine 1',
remote_url='http://engine1.example.com/score'),

RemoteScoringEngine(
name='scoring_engine2',
description='Some remote Scoring Engine 2',
remote_url='http://engine2.example.com/score'),

]

7.6.4 Abstract Plugin Class
Here below is the abstract watcher.decision_engine.scoring.base.ScoringEngine class:

class watcher.decision_engine.scoring.base.ScoringEngine(config)
A base class for all the Scoring Engines.

A Scoring Engine is an instance of a data model, to which the learning data was applied.

Please note that this class contains non-static and non-class methods by design, so that its easy to
create multiple Scoring Engine instances using a single class (possibly configured differently).

abstract calculate_score(features)
Calculates a score value based on arguments passed.

Scoring Engines might be very different to each other. They might solve different problems
or use different algorithms or frameworks internally. To enable this kind of flexibility, the
method takes only one argument (string) and produces the results in the same format (string).
The consumer of the Scoring Engine is ultimately responsible for providing the right argu-
ments and parsing the result.

Parameters
features (str) Input data for Scoring Engine

Returns
A score result

7.6. Build a new scoring engine 205

Watcher Documentation, Release 14.1.1.dev3

Return type
str

classmethod get_config_opts()

Defines the configuration options to be associated to this loadable

Returns
A list of configuration options relative to this Loadable

Return type
list of oslo_config.cfg.Opt instances

abstract get_description()

Returns the description of the Scoring Engine.

The description might contain any human readable information, which might be useful for
Strategy developers planning to use this Scoring Engine. It will be also visible in the Watcher
API and CLI.

Returns
A Scoring Engine description

Return type
str

abstract get_metainfo()

Returns the metadata information about Scoring Engine.

The metadata might contain a machine-friendly (e.g. in JSON format) information needed
to use this Scoring Engine. For example, some Scoring Engines require to pass the array of
features in particular order to be able to calculate the score value. This order can be defined
in metadata and used in Strategy.

Returns
A Scoring Engine metadata

Return type
str

abstract get_name()

Returns the name of the Scoring Engine.

The name should be unique across all Scoring Engines.

Returns
A Scoring Engine name

Return type
str

7.6.5 Abstract Plugin Container Class
Here below is the abstract ScoringContainer class:

class watcher.decision_engine.scoring.base.ScoringEngineContainer(config)
A base class for all the Scoring Engines Containers.

206 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

A Scoring Engine Container is an abstraction which allows to plugin multiple Scoring Engines as
a single Stevedore plugin. This enables some more advanced scenarios like dynamic reloading of
Scoring Engine implementations without having to restart any Watcher services.

classmethod get_config_opts()

Defines the configuration options to be associated to this loadable

Returns
A list of configuration options relative to this Loadable

Return type
list of oslo_config.cfg.Opt instances

abstract classmethod get_scoring_engine_list()

Returns a list of Scoring Engine instances.

Returns
A list of Scoring Engine instances

Return type

class
~.scoring_engine.ScoringEngine

7.6.6 Add a new entry point
In order for the Watcher Decision Engine to load your new scoring engine, it must be registered as a
named entry point under the watcher_scoring_engines entry point of your setup.py file. If you are
using pbr, this entry point should be placed in your setup.cfg file.

The name you give to your entry point has to be unique and should be the same as the value returned by
the get_name() method of your strategy.

Here below is how you would proceed to register NewScorer using pbr:

[entry_points]
watcher_scoring_engines =

new_scorer = thirdparty.new:NewScorer

To get a better understanding on how to implement a more advanced scoring engine, have a look at the
DummyScorer class. This implementation is not really using machine learning, but other than that it
contains all the pieces which the real implementation would have.

In addition, for some use cases there is a need to register a list (possibly dynamic, depending on
the implementation and configuration) of scoring engines in a single plugin, so there is no need
to restart Watcher Decision Engine every time such list changes. For these cases, an additional
watcher_scoring_engine_containers entry point can be used.

For the example how to use scoring engine containers, please have a look at the
DummyScoringContainer and the way it is configured in setup.cfg. For new containers it
could be done like this:

[entry_points]
watcher_scoring_engine_containers =

new_scoring_container = thirdparty.new:NewContainer

7.6. Build a new scoring engine 207

https://docs.openstack.org/pbr/latest/
https://docs.openstack.org/pbr/latest/

Watcher Documentation, Release 14.1.1.dev3

7.6.7 Using scoring engine plugins
The Watcher Decision Engine service will automatically discover any installed plugins when it is
restarted. If a Python package containing a custom plugin is installed within the same environment
as Watcher, Watcher will automatically make that plugin available for use.

At this point, Watcher will scan and register inside the Watcher Database all the scoring engines you
implemented upon restarting the Watcher Decision Engine.

In addition, watcher-sync tool can be used to trigger Watcher Database synchronization. This might be
used for dynamic scoring containers, which can return different scoring engines based on some external
configuration (if they support that).

7.7 Build a new optimization strategy
Watcher Decision Engine has an external strategy plugin interface which gives anyone the ability to
integrate an external strategy in order to make use of placement algorithms.

This section gives some guidelines on how to implement and integrate custom strategies with Watcher.
If you wish to create a third-party package for your plugin, you can refer to our documentation for third-
party package creation.

7.7.1 Pre-requisites
Before using any strategy, you should make sure you have your Telemetry service configured so that it
would provide you all the metrics you need to be able to use your strategy.

7.7.2 Create a new strategy plugin
In order to create a new strategy, you have to:

• Extend the UnclassifiedStrategy class

• Implement its get_name() class method to return the unique ID of the new strategy you want to
create. This unique ID should be the same as the name of the entry point we will declare later on.

• Implement its get_display_name() class method to return the translated display name of the
strategy you want to create. Note: Do not use a variable to return the translated string so it can be
automatically collected by the translation tool.

• Implement its get_translatable_display_name() class method to return the translation key
(actually the English display name) of your new strategy. The value return should be the same as
the string translated in get_display_name().

• Implement its execute() method to return the solution you computed within your strategy.

Here is an example showing how you can write a plugin called NewStrategy:

filepath: thirdparty/new.py
import path: thirdparty.new
import abc
from watcher._i18n import _
from watcher.decision_engine.strategy.strategies import base

class NewStrategy(base.UnclassifiedStrategy):
(continues on next page)

208 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

(continued from previous page)

def __init__(self, osc=None):
super(NewStrategy, self).__init__(osc)

def execute(self, original_model):
self.solution.add_action(action_type="nop",

input_parameters=parameters)
Do some more stuff here ...
return self.solution

@classmethod
def get_name(cls):

return "new_strategy"

@classmethod
def get_display_name(cls):

return _("New strategy")

@classmethod
def get_translatable_display_name(cls):

return "New strategy"

As you can see in the above example, the execute() method returns a BaseSolution instance as
required. This solution is what wraps the abstract set of actions the strategy recommends to you. This
solution is then processed by a planner to produce an action plan which contains the sequenced flow of
actions to be executed by the Watcher Applier. This solution also contains the various efficacy indicators
alongside its computed global efficacy.

Please note that your strategy class will expect to find the same constructor signature as BaseStrategy to
instantiate you strategy. Therefore, you should ensure that your __init__ signature is identical to the
BaseStrategy one.

7.7.3 Strategy efficacy
As stated before, the NewStrategy class extends a class called UnclassifiedStrategy. This class
actually implements a set of abstract methods which are defined within the BaseStrategy parent class.

One thing this UnclassifiedStrategy class defines is that our NewStrategy achieves the
unclassified goal. This goal is a peculiar one as it does not contain any indicator nor does it cal-
culate a global efficacy. This proves itself to be quite useful during the development of a new strategy for
which the goal has yet to be defined or in case a new goal has yet to be implemented.

7.7.4 Define Strategy Parameters
For each new added strategy, you can add parameters spec so that an operator can input strategy parame-
ters when creating an audit to control the execute() behavior of strategy. This is useful to define some
threshold for your strategy, and tune them at runtime.

To define parameters, just implements get_schema() to return parameters spec with jsonschema format.
It is strongly encouraged that provide default value for each parameter, or else reference fails if operator
specify no parameters.

Here is an example showing how you can define 2 parameters for DummyStrategy:

7.7. Build a new optimization strategy 209

http://json-schema.org/

Watcher Documentation, Release 14.1.1.dev3

class DummyStrategy(base.DummyBaseStrategy):

@classmethod
def get_schema(cls):

return {
"properties": {

"para1": {
"description": "number parameter example",
"type": "number",
"default": 3.2,
"minimum": 1.0,
"maximum": 10.2,

},
"para2": {

"description": "string parameter example",
"type": "string",
"default": "hello",

},
},

}

You can reference parameters in execute():

class DummyStrategy(base.DummyBaseStrategy):

def execute(self):
para1 = self.input_parameters.para1
para2 = self.input_parameters.para2

if para1 > 5:
...

Operator can specify parameters with following commands:

$ watcher audit create -a <your_audit_template> -p para1=6.0 -p para2=hi

Pls. check user-guide for details.

7.7.5 Abstract Plugin Class
Here below is the abstract BaseStrategy class:

class watcher.decision_engine.strategy.strategies.base.BaseStrategy(config,
osc=None)

A base class for all the strategies

A Strategy is an algorithm implementation which is able to find a Solution for a given Goal.

DATASOURCE_METRICS = []

Contains all metrics the strategy requires from a datasource to properly execute

__init__(config, osc=None)
Constructor: the signature should be identical within the subclasses

210 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

Parameters

• config (Struct) Configuration related to this plugin

• osc (OpenStackClients instance) An OpenStackClients instance

property baremetal_model

Cluster data model

Returns
Cluster data model the strategy is executed on

Rtype model
ModelRoot instance

property compute_model

Cluster data model

Returns
Cluster data model the strategy is executed on

Rtype model
ModelRoot instance

abstract do_execute(audit=None)
Strategy execution phase

Parameters
audit (Audit instance) An Audit instance

This phase is where you should put the main logic of your strategy.

execute(audit=None)
Execute a strategy

Parameters
audit (Audit instance) An Audit instance

Returns
A computed solution (via a placement algorithm)

Return type
BaseSolution instance

classmethod get_config_opts()

Defines the configuration options to be associated to this loadable

Returns
A list of configuration options relative to this Loadable

Return type
list of oslo_config.cfg.Opt instances

abstract classmethod get_display_name()

The goal display name for the strategy

classmethod get_goal()

The goal the strategy achieves

7.7. Build a new optimization strategy 211

Watcher Documentation, Release 14.1.1.dev3

abstract classmethod get_goal_name()

The goal name the strategy achieves

abstract classmethod get_name()

The name of the strategy

classmethod get_schema()

Defines a Schema that the input parameters shall comply to

Returns
A jsonschema format (mandatory default setting)

Return type
dict

abstract classmethod get_translatable_display_name()

The translatable msgid of the strategy

abstract post_execute()

Post-execution phase

This can be used to compute the global efficacy

abstract pre_execute()

Pre-execution phase

This can be used to fetch some pre-requisites or data.

property storage_model

Cluster data model

Returns
Cluster data model the strategy is executed on

Rtype model
ModelRoot instance

7.7.6 Add a new entry point
In order for the Watcher Decision Engine to load your new strategy, the strategy must be registered as a
named entry point under the watcher_strategies entry point of your setup.py file. If you are using
pbr, this entry point should be placed in your setup.cfg file.

The name you give to your entry point has to be unique and should be the same as the value returned by
the get_name() class method of your strategy.

Here below is how you would proceed to register NewStrategy using pbr:

[entry_points]
watcher_strategies =

new_strategy = thirdparty.new:NewStrategy

To get a better understanding on how to implement a more advanced strategy, have a look at the
BasicConsolidation class.

212 Chapter 7. Plugin Guide

https://docs.openstack.org/pbr/latest
https://docs.openstack.org/pbr/latest

Watcher Documentation, Release 14.1.1.dev3

7.7.7 Using strategy plugins
The Watcher Decision Engine service will automatically discover any installed plugins when it is
restarted. If a Python package containing a custom plugin is installed within the same environment
as Watcher, Watcher will automatically make that plugin available for use.

At this point, Watcher will scan and register inside the Watcher Database all the strategies (alongside the
goals they should satisfy) you implemented upon restarting the Watcher Decision Engine.

You should take care when installing strategy plugins. By their very nature, there are no guarantees that
utilizing them as is will be supported, as they may require a set of metrics which is not yet available
within the Telemetry service. In such a case, please do make sure that you first check/configure the latter
so your new strategy can be fully functional.

Querying metrics

A large set of metrics, generated by OpenStack modules, can be used in your strategy implementation. To
collect these metrics, Watcher provides a DataSourceManager for two data sources which are Ceilometer
(with Gnocchi as API) and Monasca. If you wish to query metrics from a different data source, you can
implement your own and use it via DataSourceManager from within your new strategy. Indeed, strategies
in Watcher have the cluster data models decoupled from the data sources which means that you may keep
the former while changing the latter. The recommended way for you to support a new data source is to
implement a new helper that would encapsulate within separate methods the queries you need to perform.
To then use it, you would just have to add it to appropriate watcher_strategies.* section in config file.

If you want to use Ceilometer but with your own metrics database backend, please refer to the Ceilometer
developer guide. The list of the available Ceilometer backends is located here. The Ceilosca project is
a good example of how to create your own pluggable backend. Moreover, if your strategy requires new
metrics not covered by Ceilometer, you can add them through a Ceilometer plugin.

Read usage metrics using the Watcher Datasource Helper

The following code snippet shows how datasource_backend is defined:

from watcher.datasource import manager as ds_manager

@property
def datasource_backend(self):

if not self._datasource_backend:

Load the global preferred datasources order but override it
if the strategy has a specific datasources config
datasources = CONF.watcher_datasources
if self.config.datasources:

datasources = self.config

self._datasource_backend = ds_manager.DataSourceManager(
config=datasources,
osc=self.osc

).get_backend(self.DATASOURCE_METRICS)
return self._datasource_backend

Using that you can now query the values for that specific metric:

7.7. Build a new optimization strategy 213

https://github.com/openstack/watcher/blob/master/watcher/datasource/manager.py
https://docs.openstack.org/ceilometer/latest
https://gnocchi.xyz/
https://github.com/openstack/monasca-api/blob/master/docs/monasca-api-spec.md
https://docs.openstack.org/ceilometer/latest/contributor/architecture.html#storing-accessing-the-data
https://docs.openstack.org/ceilometer/latest/contributor/architecture.html#storing-accessing-the-data
https://docs.openstack.org/ceilometer/latest/contributor/install/dbreco.html#choosing-a-database-backend
https://github.com/openstack/monasca-ceilometer/blob/master/ceilosca/ceilometer/storage/impl_monasca.py
https://docs.openstack.org/ceilometer/latest/contributor/plugins.html

Watcher Documentation, Release 14.1.1.dev3

avg_meter = self.datasource_backend.statistic_aggregation(
instance.uuid, 'instance_cpu_usage', self.periods['instance'],
self.granularity,
aggregation=self.aggregation_method['instance'])

7.8 Available Plugins
In this section we present all the plugins that are shipped along with Watcher. If you want to know which
plugins your Watcher services have access to, you can use the Guru Meditation Reports to display them.

7.8.1 Goals

airflow_optimization

AirflowOptimization

This goal is used to optimize the airflow within a cloud infrastructure.

cluster_maintaining

ClusterMaintenance

This goal is used to maintain compute nodes without having the users application being interrupted.

dummy

Dummy

Reserved goal that is used for testing purposes.

hardware_maintenance

HardwareMaintenance

This goal is to migrate instances and volumes on a set of compute nodes and storage from nodes under
maintenance

noisy_neighbor

NoisyNeighborOptimization

This goal is used to identify and migrate a Noisy Neighbor - a low priority VM that negatively affects
performance of a high priority VM in terms of IPC by over utilizing Last Level Cache.

saving_energy

SavingEnergy

This goal is used to reduce power consumption within a data center.

server_consolidation

ServerConsolidation

This goal is for efficient usage of compute server resources in order to reduce the total number of servers.

214 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

thermal_optimization

ThermalOptimization

This goal is used to balance the temperature across different servers.

unclassified

Unclassified

This goal is used to ease the development process of a strategy. Containing no actual indicator specifica-
tion, this goal can be used whenever a strategy has yet to be formally associated with an existing goal. If
the goal achieve has been identified but there is no available implementation, this Goal can also be used
as a transitional stage.

workload_balancing

WorkloadBalancing

This goal is used to evenly distribute workloads across different servers.

7.8.2 Scoring Engines

dummy_scorer

Sample Scoring Engine implementing simplified workload classification.

Typically a scoring engine would be implemented using machine learning techniques. For example, for
workload classification problem the solution could consist of the following steps:

1. Define a problem to solve: we want to detect the workload on the machine based on the collected
metrics like power consumption, temperature, CPU load, memory usage, disk usage, network us-
age, etc.

2. The workloads could be predefined, e.g. IDLE, CPU-INTENSIVE, MEMORY-INTENSIVE, IO-
BOUND, Or we could let the ML algorithm to find the workloads based on the learning data
provided. The decision here leads to learning algorithm used (supervised vs. non-supervised
learning).

3. Collect metrics from sample servers (learning data).

4. Define the analytical model, pick ML framework and algorithm.

5. Apply learning data to the data model. Once taught, the data model becomes a scoring engine and
can start doing predictions or classifications.

6. Wrap up the scoring engine with the class like this one, so it has a standard interface and can be
used inside Watcher.

This class is a greatly very simplified version of the above model. The goal is to provide an example how
such class could be implemented and used in Watcher, without adding additional dependencies like ma-
chine learning frameworks (which can be quite heavy) or over-complicating its internal implementation,
which can distract from looking at the overall picture.

That said, this class implements a workload classification manually (in plain python code) and is not
intended to be used in production.

7.8. Available Plugins 215

Watcher Documentation, Release 14.1.1.dev3

7.8.3 Scoring Engine Containers

dummy_scoring_container

Sample Scoring Engine container returning a list of scoring engines.

Please note that it can be used in dynamic scenarios and the returned list might return instances based on
some external configuration (e.g. in database). In order for these scoring engines to become discoverable
in Watcher API and Watcher CLI, a database re-sync is required. It can be executed using watcher-sync
tool for example.

7.8.4 Strategies

actuator

Actuator

Actuator that simply executes the actions given as parameter

This strategy allows anyone to create an action plan with a predefined set of actions. This strategy can
be used for 2 different purposes:

• Test actions

• Use this strategy based on an event trigger to perform some explicit task

basic

Good server consolidation strategy

Basic offline consolidation using live migration

Consolidation of VMs is essential to achieve energy optimization in cloud environments such as Open-
Stack. As VMs are spinned up and/or moved over time, it becomes necessary to migrate VMs among
servers to lower the costs. However, migration of VMs introduces runtime overheads and consumes ex-
tra energy, thus a good server consolidation strategy should carefully plan for migration in order to both
minimize energy consumption and comply to the various SLAs.

This algorithm not only minimizes the overall number of used servers, but also minimizes the number of
migrations.

It has been developed only for tests. You must have at least 2 physical compute nodes to run it, so you
can easily run it on DevStack. It assumes that live migration is possible on your OpenStack cluster.

dummy

Dummy strategy used for integration testing via Tempest

Description

This strategy does not provide any useful optimization. Its only purpose is to be used by Tempest tests.

Requirements

<None>

Limitations

Do not use in production.

Spec URL

216 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

<None>

dummy_with_resize

Dummy strategy used for integration testing via Tempest

Description

This strategy does not provide any useful optimization. Its only purpose is to be used by Tempest tests.

Requirements

<None>

Limitations

Do not use in production.

Spec URL

<None>

dummy_with_scorer

A dummy strategy using dummy scoring engines.

This is a dummy strategy demonstrating how to work with scoring engines. One scoring engine is pre-
dicting the workload type of a machine based on the telemetry data, the other one is simply calculating
the average value for given elements in a list. Results are then passed to the NOP action.

The strategy is presenting the whole workflow: - Get a reference to a scoring engine - Prepare input data
(features) for score calculation - Perform score calculation - Use scorers metadata for results interpretation

host_maintenance

[PoC]Host Maintenance

Description

It is a migration strategy for one compute node maintenance, without having the users ap-
plication been interrupted. If given one backup node, the strategy will firstly migrate all
instances from the maintenance node to the backup node. If the backup node is not pro-
vided, it will migrate all instances, relying on nova-scheduler.

Requirements

• You must have at least 2 physical compute nodes to run this strategy.

Limitations

• This is a proof of concept that is not meant to be used in production

• It migrates all instances from one host to other hosts. Its better to execute such strategy when load
is not heavy, and use this algorithm with ONESHOT audit.

• It assumes that cold and live migrations are possible.

7.8. Available Plugins 217

Watcher Documentation, Release 14.1.1.dev3

node_resource_consolidation

consolidating resources on nodes using server migration

Description

This strategy checks the resource usages of compute nodes, if the used resources are less than total, it
will try to migrate server to consolidate the use of resource.

Requirements

• You must have at least 2 compute nodes to run this strategy.

• Hardware: compute nodes should use the same physical CPUs/RAMs

Limitations

• This is a proof of concept that is not meant to be used in production

• It assume that live migrations are possible

Spec URL

http://specs.openstack.org/openstack/watcher-specs/specs/train/implemented/
node-resource-consolidation.html

noisy_neighbor

Noisy Neighbor strategy using live migration

Description

This strategy can identify and migrate a Noisy Neighbor - a low priority VM that negatively affects
performance of a high priority VM in terms of IPC by over utilizing Last Level Cache.

Requirements

To enable LLC metric, latest Intel server with CMT support is required.

Limitations

This is a proof of concept that is not meant to be used in production

Spec URL

http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/noisy_neighbor_strategy.
html

outlet_temperature

[PoC] Outlet temperature control using live migration

Description

It is a migration strategy based on the outlet temperature of compute hosts. It generates solutions to move
a workload whenever a servers outlet temperature is higher than the specified threshold.

Requirements

• Hardware: All computer hosts should support IPMI and PTAS technology

• Software: Ceilometer component ceilometer-agent-ipmi running in each compute host, and
Ceilometer API can report such telemetry hardware.ipmi.node.outlet_temperature suc-
cessfully.

218 Chapter 7. Plugin Guide

http://specs.openstack.org/openstack/watcher-specs/specs/train/implemented/node-resource-consolidation.html
http://specs.openstack.org/openstack/watcher-specs/specs/train/implemented/node-resource-consolidation.html
http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/noisy_neighbor_strategy.html
http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/noisy_neighbor_strategy.html

Watcher Documentation, Release 14.1.1.dev3

• You must have at least 2 physical compute hosts to run this strategy.

Limitations

• This is a proof of concept that is not meant to be used in production

• We cannot forecast how many servers should be migrated. This is the reason why we only plan a
single virtual machine migration at a time. So its better to use this algorithm with CONTINUOUS
audits.

• It assume that live migrations are possible

Spec URL

https://github.com/openstack/watcher-specs/blob/master/specs/mitaka/implemented/
outlet-temperature-based-strategy.rst

saving_energy

Saving Energy Strategy

Description

Saving Energy Strategy together with VM Workload Consolidation Strategy can perform the Dynamic
Power Management (DPM) functionality, which tries to save power by dynamically consolidating work-
loads even further during periods of low resource utilization. Virtual machines are migrated onto fewer
hosts and the unneeded hosts are powered off.

After consolidation, Saving Energy Strategy produces a solution of powering off/on according to the
following detailed policy:

In this policy, a preset number(min_free_hosts_num) is given by user, and this min_free_hosts_num
describes minimum free compute nodes that users expect to have, where free compute nodes refers to
those nodes unused but still powered on.

If the actual number of unused nodes(in power-on state) is larger than the given number, randomly select
the redundant nodes and power off them; If the actual number of unused nodes(in poweron state) is
smaller than the given number and there are spare unused nodes(in poweroff state), randomly select
some nodes(unused,poweroff) and power on them.

Requirements

In this policy, in order to calculate the min_free_hosts_num, users must provide two parameters:

• One parameter(min_free_hosts_num) is a constant int number. This number should be int type
and larger than zero.

• The other parameter(free_used_percent) is a percentage number, which describes the quotient
of min_free_hosts_num/nodes_with_VMs_num, where nodes_with_VMs_num is the number of
nodes with VMs running on it. This parameter is used to calculate a dynamic min_free_hosts_num.
The nodes with VMs refer to those nodes with VMs running on it.

Then choose the larger one as the final min_free_hosts_num.

Limitations

• at least 2 physical compute hosts

Spec URL

http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/energy-saving-strategy.
html

7.8. Available Plugins 219

https://github.com/openstack/watcher-specs/blob/master/specs/mitaka/implemented/outlet-temperature-based-strategy.rst
https://github.com/openstack/watcher-specs/blob/master/specs/mitaka/implemented/outlet-temperature-based-strategy.rst
http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/energy-saving-strategy.html
http://specs.openstack.org/openstack/watcher-specs/specs/pike/implemented/energy-saving-strategy.html

Watcher Documentation, Release 14.1.1.dev3

storage_capacity_balance

Storage capacity balance using cinder volume migration

Description

This strategy migrates volumes based on the workload of the cinder pools. It makes decision to migrate
a volume whenever a pools used utilization % is higher than the specified threshold. The volume to be
moved should make the pool close to average workload of all cinder pools.

Requirements

• You must have at least 2 cinder volume pools to run this strategy.

Limitations

• Volume migration depends on the storage device. It may take a long time.

Spec URL

http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/
storage-capacity-balance.html

uniform_airflow

[PoC]Uniform Airflow using live migration

Description

It is a migration strategy based on the airflow of physical servers. It generates solutions to
move VM whenever a servers airflow is higher than the specified threshold.

Requirements

• Hardware: compute node with NodeManager 3.0 support

• Software: Ceilometer component ceilometer-agent-compute running in each compute node, and
Ceilometer API can report such telemetry airflow, system power, inlet temperature successfully.

• You must have at least 2 physical compute nodes to run this strategy

Limitations

• This is a proof of concept that is not meant to be used in production.

• We cannot forecast how many servers should be migrated. This is the reason why we only plan a
single virtual machine migration at a time. So its better to use this algorithm with CONTINUOUS
audits.

• It assumes that live migrations are possible.

vm_workload_consolidation

VM Workload Consolidation Strategy

A load consolidation strategy based on heuristic first-fit algorithm which focuses on measured CPU
utilization and tries to minimize hosts which have too much or too little load respecting resource capacity
constraints.

This strategy produces a solution resulting in more efficient utilization of cluster resources using follow-
ing four phases:

• Offload phase - handling over-utilized resources

220 Chapter 7. Plugin Guide

http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/storage-capacity-balance.html
http://specs.openstack.org/openstack/watcher-specs/specs/queens/implemented/storage-capacity-balance.html

Watcher Documentation, Release 14.1.1.dev3

• Consolidation phase - handling under-utilized resources

• Solution optimization - reducing number of migrations

• Disability of unused compute nodes

A capacity coefficients (cc) might be used to adjust optimization thresholds. Different resources may
require different coefficient values as well as setting up different coefficient values in both phases may
lead to more efficient consolidation in the end. If the cc equals 1 the full resource capacity may be used,
cc values lower than 1 will lead to resource under utilization and values higher than 1 will lead to resource
overbooking. e.g. If targeted utilization is 80 percent of a compute node capacity, the coefficient in the
consolidation phase will be 0.8, but may any lower value in the offloading phase. The lower it gets the
cluster will appear more released (distributed) for the following consolidation phase.

As this strategy leverages VM live migration to move the load from one compute node to another, this
feature needs to be set up correctly on all compute nodes within the cluster. This strategy assumes it is
possible to live migrate any VM from an active compute node to any other active compute node.

workload_balance

[PoC]Workload balance using live migration

Description

It is a migration strategy based on the VM workload of physical servers. It generates solu-
tions to move a workload whenever a servers CPU or RAM utilization % is higher than the
specified threshold. The VM to be moved should make the host close to average workload
of all compute nodes.

Requirements

• Hardware: compute node should use the same physical CPUs/RAMs

• Software: Ceilometer component ceilometer-agent-compute running in each compute node, and
Ceilometer API can report such telemetry instance_cpu_usage and instance_ram_usage success-
fully.

• You must have at least 2 physical compute nodes to run this strategy.

Limitations

• This is a proof of concept that is not meant to be used in production

• We cannot forecast how many servers should be migrated. This is the reason why we only plan a
single virtual machine migration at a time. So its better to use this algorithm with CONTINUOUS
audits.

• It assume that live migrations are possible

workload_stabilization

Workload Stabilization control using live migration

This is workload stabilization strategy based on standard deviation algorithm. The goal is to determine
if there is an overload in a cluster and respond to it by migrating VMs to stabilize the cluster.

This strategy has been tested in a small (32 nodes) cluster.

It assumes that live migrations are possible in your cluster.

7.8. Available Plugins 221

Watcher Documentation, Release 14.1.1.dev3

zone_migration

Zone migration using instance and volume migration

This is zone migration strategy to migrate many instances and volumes efficiently with minimum down-
time for hardware maintenance.

7.8.5 Actions

change_node_power_state

Compute node power on/off

By using this action, you will be able to on/off the power of a compute node.

The action schema is:

schema = Schema({
'resource_id': str,
'state': str,
})

The resource_id references a baremetal node id (list of available ironic nodes is returned by this com-
mand: ironic node-list). The state value should either be on or off.

change_nova_service_state

Disables or enables the nova-compute service, deployed on a host

By using this action, you will be able to update the state of a nova-compute service. A disabled nova-
compute service can not be selected by the nova scheduler for future deployment of server.

The action schema is:

schema = Schema({
'resource_id': str,
'state': str,
'disabled_reason': str,
})

The resource_id references a nova-compute service name (list of available nova-compute services is re-
turned by this command: nova service-list --binary nova-compute). The state value should
either be ONLINE or OFFLINE. The disabled_reason references the reason why Watcher disables
this nova-compute service. The value should be with watcher_ prefix, such as watcher_disabled,
watcher_maintaining.

migrate

Migrates a server to a destination nova-compute host

This action will allow you to migrate a server to another compute destination host. Migration type live
can only be used for migrating active VMs. Migration type cold can be used for migrating non-active
VMs as well active VMs, which will be shut down while migrating.

The action schema is:

222 Chapter 7. Plugin Guide

Watcher Documentation, Release 14.1.1.dev3

schema = Schema({
'resource_id': str, # should be a UUID
'migration_type': str, # choices -> "live", "cold"
'destination_node': str,
'source_node': str,
})

The resource_id is the UUID of the server to migrate. The source_node and destination_node parameters
are respectively the source and the destination compute hostname (list of available compute hosts is
returned by this command: nova service-list --binary nova-compute).

Note

Nova API version must be 2.56 or above if destination_node parameter is given.

nop

logs a message

The action schema is:

schema = Schema({
'message': str,
})

The message is the actual message that will be logged.

resize

Resizes a server with specified flavor.

This action will allow you to resize a server to another flavor.

The action schema is:

schema = Schema({
'resource_id': str, # should be a UUID
'flavor': str, # should be either ID or Name of Flavor
})

The resource_id is the UUID of the server to resize. The flavor is the ID or Name of Flavor (Nova accepts
either ID or Name of Flavor to resize() function).

sleep

Makes the executor of the action plan wait for a given duration

The action schema is:

schema = Schema({
'duration': float,
})

The duration is expressed in seconds.

7.8. Available Plugins 223

Watcher Documentation, Release 14.1.1.dev3

volume_migrate

Migrates a volume to destination node or type

By using this action, you will be able to migrate cinder volume. Migration type swap can only be used
for migrating attached volume. Migration type migrate can be used for migrating detached volume to
the pool of same volume type. Migration type retype can be used for changing volume type of detached
volume.

The action schema is:

schema = Schema({
'resource_id': str, # should be a UUID
'migration_type': str, # choices -> "swap", "migrate","retype"
'destination_node': str,
'destination_type': str,

})

The resource_id is the UUID of cinder volume to migrate. The destination_node is the destination block
storage pool name. (list of available pools are returned by this command: cinder get-pools) which
is mandatory for migrating detached volume to the one with same volume type. The destination_type is
the destination block storage type name. (list of available types are returned by this command: cinder
type-list) which is mandatory for migrating detached volume or swapping attached volume to the one
with different volume type.

7.8.6 Workflow Engines

taskflow

Taskflow as a workflow engine for Watcher

Full documentation on taskflow at https://docs.openstack.org/taskflow/latest

7.8.7 Planners

node_resource_consolidation

Node Resource Consolidation planner implementation

This implementation preserves the original order of actions in the solution and try to parallelize actions
which have the same action type.

Limitations

• This is a proof of concept that is not meant to be used in production

weight

Weight planner implementation

This implementation builds actions with parents in accordance with weights. Set of actions having a
higher weight will be scheduled before the other ones. There are two config options to configure: ac-
tion_weights and parallelization.

Limitations

• This planner requires to have action_weights and parallelization configs tuned well.

224 Chapter 7. Plugin Guide

https://docs.openstack.org/taskflow/latest

Watcher Documentation, Release 14.1.1.dev3

workload_stabilization

Workload Stabilization planner implementation

This implementation comes with basic rules with a set of action types that are weighted. An action
having a lower weight will be scheduled before the other ones. The set of action types can be specified
by weights in the watcher.conf. You need to associate a different weight to all available actions into the
configuration file, otherwise you will get an error when the new action will be referenced in the solution
produced by a strategy.

Limitations

• This is a proof of concept that is not meant to be used in production

7.8.8 Cluster Data Model Collectors

baremetal

Baremetal cluster data model collector

The Baremetal cluster data model collector creates an in-memory representation of the resources exposed
by the baremetal service.

compute

Nova cluster data model collector

The Nova cluster data model collector creates an in-memory representation of the resources exposed by
the compute service.

storage

Cinder cluster data model collector

The Cinder cluster data model collector creates an in-memory representation of the resources exposed
by the storage service.

7.8. Available Plugins 225

Watcher Documentation, Release 14.1.1.dev3

226 Chapter 7. Plugin Guide

CHAPTER

EIGHT

WATCHER MANUAL PAGES

8.1 watcher-api

8.1.1 Service for the Watcher API

Author
openstack@lists.launchpad.net

Copyright
OpenStack Foundation

Manual section
1

Manual group
cloud computing

SYNOPSIS

watcher-api [options]

DESCRIPTION

watcher-api is a server daemon that serves the Watcher API

OPTIONS

General options

-h, help
Show the help message and exit

version
Print the version number and exit

-v, verbose
Print more verbose output

noverbose
Disable verbose output

-d, debug
Print debugging output (set logging level to DEBUG instead of default
WARNING level)

227

mailto:openstack@lists.launchpad.net

Watcher Documentation, Release 14.1.1.dev3

nodebug
Disable debugging output

use-syslog
Use syslog for logging

nouse-syslog
Disable the use of syslog for logging

syslog-log-facility SYSLOG_LOG_FACILITY
syslog facility to receive log lines

config-dir DIR
Path to a config directory to pull *.conf files from. This file set is sorted, to
provide a predictable parse order if individual options are over-ridden. The
set is parsed after the file(s) specified via previous config-file, arguments
hence over-ridden options in the directory take precedence. This means that
configuration from files in a specified config-dir will always take precedence
over configuration from files specified by config-file, regardless to argument
order.

config-file PATH
Path to a config file to use. Multiple config files can be specified by using
this flag multiple times, for example, config-file <file1> config-file <file2>.
Values in latter files take precedence.

log-config-append PATH log-config PATH
The name of logging configuration file. It does not disable existing log-
gers, but just appends specified logging configuration to any other existing
logging options. Please see the Python logging module documentation for
details on logging configuration files. The log-config name for this option is
deprecated.

log-format FORMAT
A logging.Formatter log message format string which may use any of the
available logging.LogRecord attributes. Default: None

log-date-format DATE_FORMAT
Format string for %(asctime)s in log records. Default: None

log-file PATH, logfile PATH
(Optional) Name of log file to output to. If not set, logging will go to stdout.

log-dir LOG_DIR, logdir LOG_DIR
(Optional) The directory to keep log files in (will be prepended to log-file)

FILES

/etc/watcher/watcher.conf
Default configuration file for Watcher API

BUGS

• Watcher bugs are tracked in Launchpad at OpenStack Watcher

228 Chapter 8. Watcher Manual Pages

http://bugs.launchpad.net/watcher

Watcher Documentation, Release 14.1.1.dev3

8.2 watcher-applier

8.2.1 Service for the Watcher Applier

Author
openstack@lists.launchpad.net

Copyright
OpenStack Foundation

Manual section
1

Manual group
cloud computing

SYNOPSIS

watcher-applier [options]

DESCRIPTION

Watcher Applier

OPTIONS

General options

-h, help
Show the help message and exit

version
Print the version number and exit

-v, verbose
Print more verbose output

noverbose
Disable verbose output

-d, debug
Print debugging output (set logging level to DEBUG instead of default
WARNING level)

nodebug
Disable debugging output

use-syslog
Use syslog for logging

nouse-syslog
Disable the use of syslog for logging

syslog-log-facility SYSLOG_LOG_FACILITY
syslog facility to receive log lines

config-dir DIR
Path to a config directory to pull *.conf files from. This file set is sorted, to
provide a predictable parse order if individual options are over-ridden. The

8.2. watcher-applier 229

mailto:openstack@lists.launchpad.net

Watcher Documentation, Release 14.1.1.dev3

set is parsed after the file(s) specified via previous config-file, arguments
hence over-ridden options in the directory take precedence. This means that
configuration from files in a specified config-dir will always take precedence
over configuration from files specified by config-file, regardless to argument
order.

config-file PATH
Path to a config file to use. Multiple config files can be specified by using
this flag multiple times, for example, config-file <file1> config-file <file2>.
Values in latter files take precedence.

log-config-append PATH log-config PATH
The name of logging configuration file. It does not disable existing log-
gers, but just appends specified logging configuration to any other existing
logging options. Please see the Python logging module documentation for
details on logging configuration files. The log-config name for this option is
deprecated.

log-format FORMAT
A logging.Formatter log message format string which may use any of the
available logging.LogRecord attributes. Default: None

log-date-format DATE_FORMAT
Format string for %(asctime)s in log records. Default: None

log-file PATH, logfile PATH
(Optional) Name of log file to output to. If not set, logging will go to stdout.

log-dir LOG_DIR, logdir LOG_DIR
(Optional) The directory to keep log files in (will be prepended to log-file)

FILES

/etc/watcher/watcher.conf
Default configuration file for Watcher Applier

BUGS

• Watcher bugs are tracked in Launchpad at OpenStack Watcher

8.3 watcher-db-manage
The watcher-db-manage utility is used to create the database schema tables that the watcher services
will use for storage. It can also be used to upgrade (or downgrade) existing database tables when migrating
between different versions of watcher.

The Alembic library is used to perform the database migrations.

8.3.1 Options
This is a partial list of the most useful options. To see the full list, run the following:

watcher-db-manage --help

230 Chapter 8. Watcher Manual Pages

http://bugs.launchpad.net/watcher
http://alembic.readthedocs.org

Watcher Documentation, Release 14.1.1.dev3

-h, --help

Show help message and exit.

--config-dir <DIR>

Path to a config directory with configuration files.

--config-file <PATH>

Path to a configuration file to use.

-d, --debug

Print debugging output.

-v, --verbose

Print more verbose output.

--version

Show the programs version number and exit.

upgrade, downgrade, stamp, revision, version, create_schema, purge

The command to run.

8.3.2 Usage
Options for the various commands for watcher-db-manage are listed when the -h or --help option is
used after the command.

For example:

watcher-db-manage create_schema --help

Information about the database is read from the watcher configuration file used by the API server and
conductor services. This file must be specified with the --config-file option:

watcher-db-manage --config-file /path/to/watcher.conf create_schema

The configuration file defines the database backend to use with the connection database option:

[database]
connection=mysql://root@localhost/watcher

If no configuration file is specified with the --config-file option, watcher-db-manage assumes an
SQLite database.

8.3.3 Command Options
watcher-db-manage is given a command that tells the utility what actions to perform. These commands
can take arguments. Several commands are available:

create_schema

-h, --help

Show help for create_schema and exit.

This command will create database tables based on the most current version. It assumes that there are
no existing tables.

8.3. watcher-db-manage 231

Watcher Documentation, Release 14.1.1.dev3

An example of creating database tables with the most recent version:

watcher-db-manage --config-file=/etc/watcher/watcher.conf create_schema

downgrade

-h, --help

Show help for downgrade and exit.

--revision <REVISION>

The revision number you want to downgrade to.

This command will revert existing database tables to a previous version. The version can be specified
with the --revision option.

An example of downgrading to table versions at revision 2581ebaf0cb2:

watcher-db-manage --config-file=/etc/watcher/watcher.conf downgrade --
↪→revision 2581ebaf0cb2

revision

-h, --help

Show help for revision and exit.

-m <MESSAGE>, --message <MESSAGE>

The message to use with the revision file.

--autogenerate

Compares table metadata in the application with the status of the database and generates migrations
based on this comparison.

This command will create a new revision file. You can use the --message option to comment the
revision.

This is really only useful for watcher developers making changes that require database changes. This
revision file is used during database migration and will specify the changes that need to be made to the
database tables. Further discussion is beyond the scope of this document.

stamp

-h, --help

Show help for stamp and exit.

--revision <REVISION>

The revision number.

This command will stamp the revision table with the version specified with the --revision option. It
will not run any migrations.

upgrade

-h, --help

Show help for upgrade and exit.

232 Chapter 8. Watcher Manual Pages

Watcher Documentation, Release 14.1.1.dev3

--revision <REVISION>

The revision number to upgrade to.

This command will upgrade existing database tables to the most recent version, or to the version specified
with the --revision option.

If there are no existing tables, then new tables are created, beginning with the oldest known version, and
successively upgraded using all of the database migration files, until they are at the specified version.
Note that this behavior is different from the create_schema command that creates the tables based on the
most recent version.

An example of upgrading to the most recent table versions:

watcher-db-manage --config-file=/etc/watcher/watcher.conf upgrade

Note

This command is the default if no command is given to watcher-db-manage.

Warning

The upgrade command is not compatible with SQLite databases since it uses ALTER TABLE com-
mands to upgrade the database tables. SQLite supports only a limited subset of ALTER TABLE.

version

-h, --help

Show help for version and exit.

This command will output the current database version.

purge

-h, --help

Show help for purge and exit.

-d, --age-in-days

The number of days (starting from today) before which we consider soft deleted objects as expired
and should hence be erased. By default, all objects soft deleted are considered expired. This can
be useful as removing a significant amount of objects may cause a performance issues.

-n, --max-number

The maximum number of database objects we expect to be deleted. If exceeded, this will prevent
any deletion.

-t, --goal

Either the UUID or name of the goal to purge.

-e, --exclude-orphans

This is a flag to indicate when we want to exclude orphan objects from deletion.

8.3. watcher-db-manage 233

Watcher Documentation, Release 14.1.1.dev3

--dry-run

This is a flag to indicate when we want to perform a dry run. This will show the objects that would
be deleted instead of actually deleting them.

This command will purge the current database by removing both its soft deleted and orphan objects.

8.4 watcher-decision-engine

8.4.1 Service for the Watcher Decision Engine

Author
openstack@lists.launchpad.net

Copyright
OpenStack Foundation

Manual section
1

Manual group
cloud computing

SYNOPSIS

watcher-decision-engine [options]

DESCRIPTION

Watcher Decision Engine

OPTIONS

General options

-h, help
Show the help message and exit

version
Print the version number and exit

-v, verbose
Print more verbose output

noverbose
Disable verbose output

-d, debug
Print debugging output (set logging level to DEBUG instead of default
WARNING level)

nodebug
Disable debugging output

use-syslog
Use syslog for logging

nouse-syslog
Disable the use of syslog for logging

234 Chapter 8. Watcher Manual Pages

mailto:openstack@lists.launchpad.net

Watcher Documentation, Release 14.1.1.dev3

syslog-log-facility SYSLOG_LOG_FACILITY
syslog facility to receive log lines

config-dir DIR
Path to a config directory to pull *.conf files from. This file set is sorted, to
provide a predictable parse order if individual options are over-ridden. The
set is parsed after the file(s) specified via previous config-file, arguments
hence over-ridden options in the directory take precedence. This means that
configuration from files in a specified config-dir will always take precedence
over configuration from files specified by config-file, regardless to argument
order.

config-file PATH
Path to a config file to use. Multiple config files can be specified by using
this flag multiple times, for example, config-file <file1> config-file <file2>.
Values in latter files take precedence.

log-config-append PATH log-config PATH
The name of logging configuration file. It does not disable existing log-
gers, but just appends specified logging configuration to any other existing
logging options. Please see the Python logging module documentation for
details on logging configuration files. The log-config name for this option is
deprecated.

log-format FORMAT
A logging.Formatter log message format string which may use any of the
available logging.LogRecord attributes. Default: None

log-date-format DATE_FORMAT
Format string for %(asctime)s in log records. Default: None

log-file PATH, logfile PATH
(Optional) Name of log file to output to. If not set, logging will go to stdout.

log-dir LOG_DIR, logdir LOG_DIR
(Optional) The directory to keep log files in (will be prepended to log-file)

FILES

/etc/watcher/watcher.conf
Default configuration file for Watcher Decision Engine

BUGS

• Watcher bugs are tracked in Launchpad at OpenStack Watcher

8.5 watcher-status

8.5.1 CLI interface for Watcher status commands

Synopsis

watcher-status <category> <command> [<args>]

8.5. watcher-status 235

http://bugs.launchpad.net/watcher

Watcher Documentation, Release 14.1.1.dev3

Description

watcher-status is a tool that provides routines for checking the status of a Watcher deployment.

Options

The standard pattern for executing a watcher-status command is:

watcher-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

watcher-status

Categories are:

• upgrade

Detailed descriptions are below:

You can also run with a category argument such as upgrade to see a list of all commands in that category:

watcher-status upgrade

These sections describe the available categories and arguments for Watcher-status.

Upgrade

watcher-status upgrade check
Performs a release-specific readiness check before restarting services with new code. For example,
missing or changed configuration options, incompatible object states, or other conditions that could
lead to failures while upgrading.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This

should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

2.0.0 (Stein)

• Sample check to be filled in with checks as they are added in Stein.

3.0.0 (Train)

• A check was added to enforce the minimum required version of nova API used.

236 Chapter 8. Watcher Manual Pages

CHAPTER

NINE

REST API VERSION HISTORY

This documents the changes made to the REST API with every microversion change. The description
for each version should be a verbose one which has enough information to be suitable for use in user
documentation.

9.1 1.0 (Initial version)
This is the initial version of the Watcher API which supports microversions.

A user can specify a header in the API request:

OpenStack-API-Version: infra-optim <version>

where <version> is any valid api version for this API.

If no version is specified then the API will behave as if version 1.0 was requested.

9.2 1.1
Added the parameters start_time and end_time to create audit request. Supported for start and end
time of continuous audits.

9.3 1.2
Added force into create audit request. If force is true, audit will be executed despite of ongoing
actionplan.

9.4 1.3
Added list data model API.

9.5 1.4
Added Watcher webhook API. It can be used to trigger audit with event type.

237

Watcher Documentation, Release 14.1.1.dev3

238 Chapter 9. REST API Version History

CHAPTER

TEN

GLOSSARY

This page explains the different terms used in the Watcher system.

They are sorted in alphabetical order.

10.1 Action
An Action is what enables Watcher to transform the current state of a Cluster after an Audit.

An Action is an atomic task which changes the current state of a target Managed resource of the OpenStack
Cluster such as:

• Live migration of an instance from one compute node to another compute node with Nova

• Changing the power level of a compute node (ACPI level,)

• Changing the current state of a compute node (enable or disable) with Nova

In most cases, an Action triggers some concrete commands on an existing OpenStack module (Nova,
Neutron, Cinder, Ironic, etc.).

An Action has a life-cycle and its current state may be one of the following:

• PENDING : the Action has not been executed yet by the Watcher Applier

• ONGOING : the Action is currently being processed by the Watcher Applier

• SUCCEEDED : the Action has been executed successfully

• FAILED : an error occurred while trying to execute the Action

• DELETED : the Action is still stored in the Watcher database but is not returned any more through
the Watcher APIs.

• CANCELLED : the Action was in PENDING or ONGOING state and was cancelled by the
Administrator

Some default implementations are provided, but it is possible to develop new implementations which are
dynamically loaded by Watcher at launch time.

10.2 Action Plan
An Action Plan specifies a flow of Actions that should be executed in order to satisfy a given Goal. It
also contains an estimated global efficacy alongside a set of efficacy indicators.

An Action Plan is generated by Watcher when an Audit is successful which implies that the Strategy
which was used has found a Solution to achieve the Goal of this Audit.

239

Watcher Documentation, Release 14.1.1.dev3

In the default implementation of Watcher, an action plan is composed of a list of successive Actions (i.e.,
a Workflow of Actions belonging to a unique branch).

However, Watcher provides abstract interfaces for many of its components, allowing other implementa-
tions to generate and handle more complex Action Plan(s) composed of two types of Action Item(s):

• simple Actions: atomic tasks, which means it can not be split into smaller tasks or commands from
an OpenStack point of view.

• composite Actions: which are composed of several simple Actions ordered in sequential and/or
parallel flows.

An Action Plan may be described using standard workflow model description formats such as Business
Process Model and Notation 2.0 (BPMN 2.0) or Unified Modeling Language (UML).

To see the life-cycle and description of Action Plan states, visit the Action Plan state machine.

10.3 Administrator
The Administrator is any user who has admin access on the OpenStack cluster. This user is allowed to
create new projects for tenants, create new users and assign roles to each user.

The Administrator usually has remote access to any host of the cluster in order to change the configuration
and restart any OpenStack service, including Watcher.

In the context of Watcher, the Administrator is a role for users which allows them to run any Watcher
commands, such as:

• Create/Delete an Audit Template

• Launch an Audit

• Get the Action Plan

• Launch a recommended Action Plan manually

• Archive previous Audits and Action Plans

The Administrator is also allowed to modify any Watcher configuration files and to restart Watcher ser-
vices.

10.4 Audit
In the Watcher system, an Audit is a request for optimizing a Cluster.

The optimization is done in order to satisfy one Goal on a given Cluster.

For each Audit, the Watcher system generates an Action Plan.

To see the life-cycle and description of an Audit states, visit the Audit State machine.

10.5 Audit Scope
An Audit Scope is a set of audited resources. Audit Scope should be defined in each Audit Template
(which contains the Audit settings).

240 Chapter 10. Glossary

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.uml.org/

Watcher Documentation, Release 14.1.1.dev3

10.6 Audit Template
An Audit may be launched several times with the same settings (Goal, thresholds,). Therefore it makes
sense to save those settings in some sort of Audit preset object, which is known as an Audit Template.

An Audit Template contains at least the Goal of the Audit.

It may also contain some error handling settings indicating whether:

• Watcher Applier stops the entire operation

• Watcher Applier performs a rollback

and how many retries should be attempted before failure occurs (also the latter can be complex: for
example the scenario in which there are many first-time failures on ultimately successful Actions).

Moreover, an Audit Template may contain some settings related to the level of automation for the Action
Plan that will be generated by the Audit. A flag will indicate whether the Action Plan will be launched
automatically or will need a manual confirmation from the Administrator.

10.7 Availability Zone
Please, read the official OpenStack definition of an Availability Zone.

10.8 Cluster
A Cluster is a set of physical machines which provide compute, storage and networking resources and
are managed by the same OpenStack Controller node. A Cluster represents a set of resources that a cloud
provider is able to offer to his/her customers.

A data center may contain several clusters.

The Cluster may be divided in one or several Availability Zone(s).

10.9 Cluster Data Model (CDM)
A Cluster Data Model (or CDM) is a logical representation of the current state and topology of the
Cluster Managed resources.

It is represented as a set of Managed resources (which may be a simple tree or a flat list of key-value
pairs) which enables Watcher Strategies to know the current relationships between the different resources
of the Cluster during an Audit and enables the Strategy to request information such as:

• What compute nodes are in a given Audit Scope?

• What Instances are hosted on a given compute node?

• What is the current load of a compute node?

• What is the current free memory of a compute node?

• What is the network link between two compute nodes?

• What is the available bandwidth on a given network link?

• What is the current space available on a given virtual disk of a given Instance ?

• What is the current state of a given Instance?

10.6. Audit Template 241

https://docs.openstack.org/nova/latest/user/aggregates.html#availability-zones-azs

Watcher Documentation, Release 14.1.1.dev3

•

In a word, this data model enables the Strategy to know:

• the current topology of the Cluster

• the current capacity for each Managed resource

• the current amount of used/free space for each Managed resource

• the current state of each Managed resources

In the Watcher project, we aim at providing a some generic and basic Cluster Data Model for each
Goal, usable in the associated Strategies through a plugin-based mechanism which are called cluster
data model collectors (or CDMCs). These CDMCs are responsible for loading and keeping up-to-date
their associated CDM by listening to events and also periodically rebuilding themselves from the ground
up. They are also directly accessible from the strategies classes. These CDMs are used to:

• simplify the development of a new Strategy for a given Goal when there already are some existing
Strategies associated to the same Goal

• avoid duplicating the same code in several Strategies associated to the same Goal

• have a better consistency between the different Strategies for a given Goal

• avoid any strong coupling with any external Cluster Data Model (the proposed data model acts as
a pivot data model)

There may be various generic and basic Cluster Data Models proposed in Watcher helpers, each of them
being adapted to achieving a given Goal:

• For example, for a Goal which aims at optimizing the network resources the Strategy may need to
know which resources are communicating together.

• Whereas for a Goal which aims at optimizing thermal and power conditions, the Strategy may need
to know the location of each compute node in the racks and the location of each rack in the room.

Note however that a developer can use his/her own Cluster Data Model if the proposed data model does
not fit his/her needs as long as the Strategy is able to produce a Solution for the requested Goal. For
example, a developer could rely on the Nova Data Model to optimize some compute resources.

The Cluster Data Model may be persisted in any appropriate storage system (SQL database, NoSQL
database, JSON file, XML File, In Memory Database,). As of now, an in-memory model is built and
maintained in the background in order to accelerate the execution of strategies.

10.10 Controller Node
Please, read the official OpenStack definition of a Controller Node.

In many configurations, Watcher will reside on a controller node even if it can potentially be hosted on a
dedicated machine.

10.11 Compute node
Please, read the official OpenStack definition of a Compute Node.

242 Chapter 10. Glossary

https://docs.openstack.org/nova/latest/install/overview.html#controller
https://docs.openstack.org/nova/latest/install/overview.html#compute

Watcher Documentation, Release 14.1.1.dev3

10.12 Customer
A Customer is the person or company which subscribes to the cloud provider offering. A customer may
have several Project(s) hosted on the same Cluster or dispatched on different clusters.

In the private cloud context, the Customers are different groups within the same organization (different
departments, project teams, branch offices and so on). Cloud infrastructure includes the ability to pre-
cisely track each customers service usage so that it can be charged back to them, or at least reported to
them.

10.13 Goal
A Goal is a human readable, observable and measurable end result having one objective to be achieved.

Here are some examples of Goals:

• minimize the energy consumption

• minimize the number of compute nodes (consolidation)

• balance the workload among compute nodes

• minimize the license cost (some software have a licensing model which is based on the number of
sockets or cores where the software is deployed)

• find the most appropriate moment for a planned maintenance on a given group of host (which may
be an entire availability zone): power supply replacement, cooling system replacement, hardware
modification,

10.14 Host Aggregate
Please, read the official OpenStack definition of a Host Aggregate.

10.15 Instance
A running virtual machine, or a virtual machine in a known state such as suspended, that can be used
like a hardware server.

10.16 Managed resource
A Managed resource is one instance of Managed resource type in a topology with particular properties
and dependencies on other Managed resources (relationships).

For example, a Managed resource can be one virtual machine (i.e., an instance) hosted on a compute
node and connected to another virtual machine through a network link (represented also as a Managed
resource in the Cluster Data Model).

10.17 Managed resource type
A Managed resource type is a type of hardware or software element of the Cluster that the Watcher
system can act on.

Here are some examples of Managed resource types:

• Nova Host Aggregates

10.12. Customer 243

https://docs.openstack.org/nova/latest/user/aggregates.html
https://docs.openstack.org/heat/latest/template_guide/openstack.html#OS::Nova::HostAggregate

Watcher Documentation, Release 14.1.1.dev3

• Nova Servers

• Cinder Volumes

• Neutron Routers

• Neutron Networks

• Neutron load-balancers

• Sahara Hadoop Cluster

•

It can be any of the official list of available resource types defined in OpenStack for HEAT.

10.18 Efficacy Indicator
An efficacy indicator is a single value that gives an indication on how the solution produced by a given
strategy performed. These efficacy indicators are specific to a given goal and are usually used to compute
the global efficacy of the resulting action plan.

In Watcher, these efficacy indicators are specified alongside the goal they relate to. When a strategy
(which always relates to a goal) is executed, it produces a solution containing the efficacy indicators
specified by the goal. This solution, which has been translated by the Watcher Planner into an action
plan, will see its indicators and global efficacy stored and would now be accessible through the Watcher
API .

10.19 Efficacy Specification
An efficacy specification is a contract that is associated to each Goal that defines the various efficacy in-
dicators a strategy achieving the associated goal should provide within its solution. Indeed, each solution
proposed by a strategy will be validated against this contract before calculating its global efficacy.

10.20 Optimization Efficacy
The Optimization Efficacy is the objective measure of how much of the Goal has been achieved in respect
with constraints and SLAs defined by the Customer.

The way efficacy is evaluated will depend on the Goal to achieve.

Of course, the efficacy will be relevant only as long as the Action Plan is relevant (i.e., the current state
of the Cluster has not changed in a way that a new Audit would need to be launched).

For example, if the Goal is to lower the energy consumption, the Efficacy will be computed using several
efficacy indicators (KPIs):

• the percentage of energy gain (which must be the highest possible)

• the number of SLA violations (which must be the lowest possible)

• the number of virtual machine migrations (which must be the lowest possible)

All those indicators are computed within a given timeframe, which is the time taken to execute the whole
Action Plan.

The efficacy also enables the Administrator to objectively compare different Strategies for the same goal
and same workload of the Cluster.

244 Chapter 10. Glossary

https://docs.openstack.org/heat/latest/template_guide/openstack.html#OS::Nova::Server
https://docs.openstack.org/heat/latest/template_guide/openstack.html#OS::Cinder::Volume
https://docs.openstack.org/heat/latest/template_guide/openstack.html#OS::Neutron::Router
https://docs.openstack.org/heat/latest/template_guide/openstack.html#OS::Neutron::Net
https://docs.openstack.org/heat/latest/template_guide/openstack.html#OS::Neutron::LoadBalancer
https://docs.openstack.org/heat/latest/template_guide/openstack.html#OS::Sahara::Cluster
https://docs.openstack.org/heat/latest/template_guide/openstack.html

Watcher Documentation, Release 14.1.1.dev3

10.21 Project
Projects represent the base unit of ownership in OpenStack, in that all resources in OpenStack should be
owned by a specific project. In OpenStack Identity, a project must be owned by a specific domain.

Please, read the official OpenStack definition of a Project.

10.22 Scoring Engine
A Scoring Engine is an executable that has a well-defined input, a well-defined output, and performs a
purely mathematical task. That is, the calculation does not depend on the environment in which it is
running - it would produce the same result anywhere.

Because there might be multiple algorithms used to build a particular data model (and therefore a scoring
engine), the usage of scoring engine might vary. A metainfo field is supposed to contain any information
which might be needed by the user of a given scoring engine.

10.23 SLA
SLA means Service Level Agreement.

The resources are negotiated between the Customer and the Cloud Provider in a contract.

Most of the time, this contract is composed of two documents:

• SLA : Service Level Agreement

• SLO : Service Level Objectives

Note that the SLA is more general than the SLO in the sense that the former specifies what service is to
be provided, how it is supported, times, locations, costs, performance, and responsibilities of the par-
ties involved while the SLO focuses on more measurable characteristics such as availability, throughput,
frequency, response time or quality.

You can also read the Wikipedia page for SLA which provides a good definition.

10.24 SLA violation
A SLA violation happens when a SLA defined with a given Customer could not be respected by the cloud
provider within the timeframe defined by the official contract document.

10.25 SLO
A Service Level Objective (SLO) is a key element of a SLA between a service provider and a Customer.
SLOs are agreed as a means of measuring the performance of the Service Provider and are outlined as a
way of avoiding disputes between the two parties based on misunderstanding.

You can also read the Wikipedia page for SLO which provides a good definition.

10.26 Solution
A Solution is the result of execution of a strategy (i.e., an algorithm). Each solution is composed of many
pieces of information:

• A set of actions generated by the strategy in order to achieve the goal of an associated audit.

10.21. Project 245

https://docs.openstack.org/doc-contrib-guide/common/glossary.html
https://en.wikipedia.org/wiki/Service-level_agreement
https://en.wikipedia.org/wiki/Service_level_objective

Watcher Documentation, Release 14.1.1.dev3

• A set of efficacy indicators as defined by the associated goal

• A global efficacy which is computed by the associated goal using the aforementioned efficacy
indicators.

A Solution is different from an Action Plan because it contains the non-scheduled list of Actions which
is produced by a Strategy. In other words, the list of Actions in a Solution has not yet been re-ordered by
the Watcher Planner.

Note that some algorithms (i.e. Strategies) may generate several Solutions. This gives rise to the problem
of determining which Solution should be applied.

Two approaches to dealing with this can be envisaged:

• fully automated mode: only the Solution with the highest ranking (i.e., the highest Optimization
Efficacy) will be sent to the Watcher Planner and translated into concrete Actions.

• manual mode: several Solutions are proposed to the Administrator with a detailed measurement
of the estimated Optimization Efficacy and he/she decides which one will be launched.

10.27 Strategy
A Strategy is an algorithm implementation which is able to find a Solution for a given Goal.

There may be several potential strategies which are able to achieve the same Goal. This is why it is
possible to configure which specific Strategy should be used for each goal.

Some strategies may provide better optimization results but may take more time to find an optimal Solu-
tion.

10.28 Watcher Applier
This component is in charge of executing the Action Plan built by the Watcher Decision Engine.

See: System Architecture for more details on this component.

10.29 Watcher Database
This database stores all the Watcher domain objects which can be requested by the Watcher API or the
Watcher CLI:

• Audit templates

• Audits

• Action plans

• Actions

• Goals

The Watcher domain being here optimization of some resources provided by an OpenStack system.

See System Architecture for more details on this component.

246 Chapter 10. Glossary

Watcher Documentation, Release 14.1.1.dev3

10.30 Watcher Decision Engine
This component is responsible for computing a set of potential optimization Actions in order to fulfill the
Goal of an Audit.

It first reads the parameters of the Audit from the associated Audit Template and knows the Goal to
achieve.

It then selects the most appropriate Strategy depending on how Watcher was configured for this Goal.

The Strategy is then executed and generates a set of Actions which are scheduled in time by the Watcher
Planner (i.e., it generates an Action Plan).

See System Architecture for more details on this component.

10.31 Watcher Planner
The Watcher Planner is part of the Watcher Decision Engine.

This module takes the set of Actions generated by a Strategy and builds the design of a workflow which
defines how-to schedule in time those different Actions and for each Action what are the prerequisite
conditions.

It is important to schedule Actions in time in order to prevent overload of the Cluster while applying the
Action Plan. For example, it is important not to migrate too many instances at the same time in order to
avoid a network congestion which may decrease the SLA for Customers.

It is also important to schedule Actions in order to avoid security issues such as denial of service on core
OpenStack services.

Some default implementations are provided, but it is possible to develop new implementations which are
dynamically loaded by Watcher at launch time.

See System Architecture for more details on this component.

10.30. Watcher Decision Engine 247

	System Architecture
	Overview
	Components
	AMQP Bus
	Datasource
	Watcher API
	Watcher Applier
	Watcher CLI
	Watcher Dashboard
	Watcher Database
	Watcher Decision Engine

	Data model
	Sequence diagrams
	Create a new Audit Template
	Create and launch a new Audit
	Launch Action Plan

	State Machine diagrams
	Audit State Machine
	Action Plan State Machine

	Contribution Guide
	So You Want to Contribute…
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties

	Set up a development environment manually
	Prerequisites
	Getting the latest code
	Installing dependencies
	PyPi Packages and VirtualEnv

	Verifying Watcher is set up
	Run Watcher tests
	Build the Watcher documentation
	Configure the Watcher services
	Create Watcher SQL database
	Running Watcher services
	Interact with Watcher
	Exercising the Watcher Services locally

	Set up a development environment via DevStack
	Quick Devstack Instructions with Datasources
	Gnocchi

	Detailed DevStack Instructions
	Multi-Node DevStack Environment
	Setting up SSH keys between compute nodes to enable live migration
	Configuring NFS Server (ADVANCED)
	Configuring NFS on Compute Node (ADVANCED)
	Configuring libvirt to listen on tcp (ADVANCED)
	VNC server configuration
	Environment final checkup

	Developer Testing
	Unit tests
	Tempest tests

	Rally job
	Structure
	Useful links

	Install Guide
	Infrastructure Optimization service overview
	Install and configure
	Install and configure for Red Hat Enterprise Linux and CentOS
	Prerequisites
	Install and configure components
	Finalize installation

	Install and configure for Ubuntu
	Prerequisites
	Install and configure components
	Finalize installation

	Verify operation
	Next steps

	Administrator Guide
	Installing API behind mod_wsgi
	Guru Meditation Reports
	Generating a GMR
	Structure of a GMR

	Policies
	Constructing a Policy Configuration File

	Strategies
	Actuator
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Basic Offline Server Consolidation
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	How to use it ?
	External Links

	Host Maintenance Strategy
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Node Resource Consolidation Strategy
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Noisy neighbor
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Outlet Temperature Based Strategy
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Saving Energy Strategy
	Synopsis
	Requirements
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Storage capacity balance
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Uniform Airflow Migration Strategy
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	VM Workload Consolidation Strategy
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Watcher Overload standard deviation algorithm
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Workload Balance Migration Strategy
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Zone migration
	Synopsis
	Requirements
	Metrics
	Cluster data model
	Actions
	Planner

	Configuration
	Efficacy Indicator
	Algorithm
	How to use it ?
	External Links

	Datasources
	Grafana datasource
	Synopsis
	Background

	Requirements
	Limitations

	Configuration
	token
	base_url
	metric parameters
	project_id
	database
	translator
	attribute
	query

	Example configuration
	Configuration file
	yaml

	External Links

	Prometheus datasource
	Synopsis
	Requirements
	Limitations
	Configuration

	Notifications in Watcher
	Concurrency
	Introduction
	Threadpool
	Decision engine concurrency
	AuditEndpoint
	DecisionEngineThreadPool

	Applier concurrency

	User Guide
	Ways to install Watcher
	Prerequisites
	Installing from Source
	Installing from packages: PyPI
	Installing from packages: Debian (experimental)

	Watcher User Guide
	Getting started with Watcher
	Watcher CLI Command
	Running an audit of the cluster

	Audit using Aodh alarm
	Step 1: Create an audit with EVENT type
	Step 2: Create Aodh Alarm
	Step 3: Trigger the alarm
	Step 4: Verify the audit

	Configuration Guide
	Configuring Watcher
	Service overview
	Install and configure prerequisites
	Configure the Identity service for the Watcher service
	Set up the database for Watcher

	Configure the Watcher service
	Configure Nova compute
	Configure Measurements
	Configure Nova Notifications
	Configure Cinder Notifications
	Workers

	watcher.conf
	DEFAULT
	api
	cache
	cinder_client
	collector
	database
	glance_client
	gnocchi_client
	grafana_client
	grafana_translators
	ironic_client
	keystone_authtoken
	keystone_client
	maas_client
	monasca_client
	neutron_client
	nova_client
	oslo_concurrency
	oslo_messaging_kafka
	oslo_messaging_notifications
	oslo_messaging_rabbit
	oslo_policy
	oslo_reports
	placement_client
	prometheus_client
	watcher_applier
	watcher_clients_auth
	watcher_cluster_data_model_collectors.baremetal
	watcher_cluster_data_model_collectors.compute
	watcher_cluster_data_model_collectors.storage
	watcher_datasources
	watcher_decision_engine
	watcher_planner
	watcher_planners.weight
	watcher_planners.workload_stabilization
	watcher_strategies.basic
	watcher_strategies.node_resource_consolidation
	watcher_strategies.noisy_neighbor
	watcher_strategies.outlet_temperature
	watcher_strategies.storage_capacity_balance
	watcher_strategies.uniform_airflow
	watcher_strategies.vm_workload_consolidation
	watcher_strategies.workload_balance
	watcher_strategies.workload_stabilization
	watcher_workflow_engines.taskflow

	Plugin Guide
	Create a third-party plugin for Watcher
	Pre-requisites
	Third party project scaffolding
	Implementing a plugin for Watcher

	Build a new action
	Creating a new plugin
	Input validation

	Define configuration parameters
	Abstract Plugin Class
	Register a new entry point
	Using action plugins
	Scheduling of an action plugin
	Test your new action

	Build a new cluster data model collector
	Creating a new plugin
	Define a custom model
	Define configuration parameters
	Abstract Plugin Class
	Register a new entry point
	Add new notification endpoints
	Using cluster data model collector plugins

	Build a new goal
	Pre-requisites
	Create a new plugin
	Abstract Plugin Class
	Add a new entry point
	Implement a customized efficacy specification
	What is it for?
	Implementation

	Build a new planner
	Creating a new plugin
	Define configuration parameters
	Abstract Plugin Class
	Register a new entry point
	Using planner plugins

	Build a new scoring engine
	Pre-requisites
	Create a new scoring engine plugin
	(Optional) Create a new scoring engine container plugin
	Abstract Plugin Class
	Abstract Plugin Container Class
	Add a new entry point
	Using scoring engine plugins

	Build a new optimization strategy
	Pre-requisites
	Create a new strategy plugin
	Strategy efficacy
	Define Strategy Parameters
	Abstract Plugin Class
	Add a new entry point
	Using strategy plugins
	Querying metrics
	Read usage metrics using the Watcher Datasource Helper

	Available Plugins
	Goals
	airflow_optimization
	cluster_maintaining
	dummy
	hardware_maintenance
	noisy_neighbor
	saving_energy
	server_consolidation
	thermal_optimization
	unclassified
	workload_balancing

	Scoring Engines
	dummy_scorer

	Scoring Engine Containers
	dummy_scoring_container

	Strategies
	actuator
	basic
	dummy
	dummy_with_resize
	dummy_with_scorer
	host_maintenance
	node_resource_consolidation
	noisy_neighbor
	outlet_temperature
	saving_energy
	storage_capacity_balance
	uniform_airflow
	vm_workload_consolidation
	workload_balance
	workload_stabilization
	zone_migration

	Actions
	change_node_power_state
	change_nova_service_state
	migrate
	nop
	resize
	sleep
	volume_migrate

	Workflow Engines
	taskflow

	Planners
	node_resource_consolidation
	weight
	workload_stabilization

	Cluster Data Model Collectors
	baremetal
	compute
	storage

	Watcher Manual Pages
	watcher-api
	Service for the Watcher API
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	BUGS

	watcher-applier
	Service for the Watcher Applier
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	BUGS

	watcher-db-manage
	Options
	Usage
	Command Options
	create_schema
	downgrade
	revision
	stamp
	upgrade
	version
	purge

	watcher-decision-engine
	Service for the Watcher Decision Engine
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	BUGS

	watcher-status
	CLI interface for Watcher status commands
	Synopsis
	Description
	Options
	Upgrade

	REST API Version History
	1.0 (Initial version)
	1.1
	1.2
	1.3
	1.4

	Glossary
	Action
	Action Plan
	Administrator
	Audit
	Audit Scope
	Audit Template
	Availability Zone
	Cluster
	Cluster Data Model (CDM)
	Controller Node
	Compute node
	Customer
	Goal
	Host Aggregate
	Instance
	Managed resource
	Managed resource type
	Efficacy Indicator
	Efficacy Specification
	Optimization Efficacy
	Project
	Scoring Engine
	SLA
	SLA violation
	SLO
	Solution
	Strategy
	Watcher Applier
	Watcher Database
	Watcher Decision Engine
	Watcher Planner

