
TripleO Documentation
Release 0.0.1.dev1610

OpenStack Foundation

Oct 12, 2023

CONTENTS

1 Contributor Guide 2
1.1 TripleO Contributor Guide . 2

1.1.1 Information for New Developers . 2
1.1.2 How to Contribute . 4
1.1.3 Core maintainers . 5
1.1.4 Squads . 7

1.2 Developer Documentation . 7
1.2.1 Composable services tutorial . 7
1.2.2 Release Management . 38
1.2.3 Primer python-tripleoclient and tripleo-common 41
1.2.4 Upgrades Development . 43

2 TripleO Architecture 61
2.1 TripleO Architecture . 61

2.1.1 Architecture Overview . 61
2.1.2 Benefits . 63
2.1.3 Deployment Workflow Overview . 63
2.1.4 Deployment Workflow Detail . 64
2.1.5 High Availability (HA) . 68
2.1.6 Managing the Deployment . 68

3 TripleO Components 69
3.1 TripleO Components . 69

3.1.1 Shared Libraries . 69
3.1.2 Installer . 71
3.1.3 Node Management . 71
3.1.4 Deployment & Orchestration . 72
3.1.5 User Interfaces . 74
3.1.6 tripleo-validations . 75
3.1.7 Deprecated . 76

4 Tripleo CI Guide 77
4.1 TripleO CI Guide . 77

4.1.1 TripleO CI jobs primer . 77
4.1.2 Reproduce CI jobs for debugging and development 79
4.1.3 How to add a TripleO job to your projects check pipeline 82
4.1.4 Standalone Scenario jobs . 86
4.1.5 Baremetal jobs . 87
4.1.6 How the TripleO-RDO Pipelines Promotions Work 92

i

4.1.7 TripleO CI Promotions . 94
4.1.8 emit-releases-file and releases.sh . 98
4.1.9 TripleO CI ruck|rover primer . 100
4.1.10 Chasing CI promotions . 104
4.1.11 Gating github projects using TripleO CI jobs 108
4.1.12 Content Provider Jobs . 110
4.1.13 TripleO Dependency Pipeline . 113

5 Install Guide 116
5.1 TripleO Install Guide . 116

5.1.1 TripleO Introduction . 116
5.1.2 Deploy Guide . 116
5.1.3 (DEPRECATED) Basic Deployment (UI) . 117
5.1.4 Feature Configuration . 122
5.1.5 Custom Configurations . 130

6 Upgrades/Updates/FFWD-Upgrade 132
6.1 Upgrade, Update, FFWD Upgrade Guide . 132

7 Documentation Conventions 133

ii

TripleO Documentation, Release 0.0.1.dev1610

TripleO is a project aimed at installing, upgrading and operating OpenStack clouds using OpenStacks
own cloud facilities as the foundation - building on Nova, Ironic, Neutron and Heat to automate cloud
management at datacenter scale

CONTENTS 1

CHAPTER

ONE

CONTRIBUTOR GUIDE

1.1 TripleO Contributor Guide

1.1.1 Information for New Developers

The intention of this document is to give new developers some information regarding how to get started
with TripleO as well as some best practices that the TripleO community has settled on.

In general TripleO is a very complex chunk of software. It uses numerous technologies to implement
an OpenStack installer. The premise of TripleO was to use the OpenStack platform itself as the installer
and API for user interfaces. As such the first step to installing TripleO is to create what is called an
undercloud. We use almost similar architecture for both undercloud and overcloud that leverages same
set of Heat templates found in tripleo-heat-templates repository, with a few minor differences. The
undercloud services are deployed in containers and can be managed by the same tool chain used for
overcloud.

Once the undercloud is deployed, we use a combination of Ansible playbooks and a set of Heat tem-
plates, to drive the deployment of an overcloud. Ironic is used to provision hardware and boot an
operating system either on baremetal (for real deployments) or on VMs (for development). All services
are deployed in containers on the overcloud like undercloud.

Repositories that are part of TripleO

• tripleo-common: This is intended to be for TripleO libraries of common code. Unfortunately it
has become a bit overrun with unrelated bits. Work is ongoing to clean this up and split this into
separate repositories.

• tripleo-ansible: Contains Ansible playbooks, roles, plugins, modules, filters for use with TripleO
deployments.

• tripleo-heat-templates: This contains all the Heat templates necessary to deploy the overcloud
(and hopefully soon the undercloud as well).

• python-tripleoclient: The CLI for deploying TripleO. This contains some logic but remember that
we want to call Mistral actions from here where needed so that the logic can be shared with the
UI.

• tripleo-docs: Where these docs are kept.

• tripleo-image-elements: Image elements (snippets of puppet that prepare specific parts of the
image) for building the undercloud and overcloud disk images.

2

https://opendev.org/openstack/tripleo-common/
https://opendev.org/openstack/tripleo-ansible/
https://opendev.org/openstack/tripleo-heat-templates
https://opendev.org/openstack/python-tripleoclient
https://opendev.org/openstack/tripleo-docs
https://opendev.org/openstack/tripleo-image-elements

TripleO Documentation, Release 0.0.1.dev1610

• tripleo-puppet-elements: Puppet elements used to configure and deploy the overcloud. These used
during installation to set up the services.

• puppet-tripleo: Puppet is used to configure the services in TripleO. This repository contains vari-
ous puppet modules for doing this.

• tripleo-quickstart: Quickstart is an Ansible driven deployment for TripleO used in CI. Most de-
velopers also use this to stand up instances for development as well.

• tripleo-quickstart-extras: Extended functionality for tripleo-quickstart allowing for end-to-end de-
ployment and testing.

• tripleo-ui: The web based graphical user interface for deploying TripleO.

• kolla: We use the containers built by the Kolla project for services in TripleO. Any new containers
or additions to existing containers should be submitted here.

• diskimage-builder: Disk image builder is used to build our base images for the TripleO deploy-
ment.

Definition of Done

This is basically a check list of things that you want to think about when implementing a new feature.

• Ensure that the continuous integration (CI) is in place and passing, adding coverage to tests if re-
quired. See http://specs.openstack.org/openstack/tripleo-specs/specs/policy/adding-ci-jobs.html
for more information.

• Ensure there are unit tests where possible.

• Maintain backwards compatibility with our existing template interfaces from tripleo-heat-
templates.

• New features should be reviewed by cores who have knowledge in that area of the codebase.

• One should consider logging and support implications. If you have new logs, would they be
available via sosreport.

• Error messages are easy to understand and work their way back to the user (stack traces are not
sufficient).

• Documentation should be updated if necessary. New features need a tripleo-docs patch.

• If any new dependencies are used for your feature, be sure they are properly packaged and avail-
able in RDO. You can ask on #rdo (on OFTC server) for help with this.

Using TripleO Standalone for Development

The Standalone container based deployment can be used for development purposes. This reuses the
existing TripleO Heat Templates, allowing you to do the development using this framework instead of a
complete overcloud. This is very useful if you are developing Heat templates or containerized services.

Please see Standalone Deployment Guide on how to set up a Standalone OpenStack node.

1.1. TripleO Contributor Guide 3

https://opendev.org/openstack/tripleo-puppet-elements
https://opendev.org/openstack/puppet-tripleo
https://opendev.org/openstack/tripleo-quickstart
https://opendev.org/openstack/tripleo-quickstart-extras
https://opendev.org/openstack/tripleo-ui
https://opendev.org/openstack/kolla
https://opendev.org/openstack/diskimage-builder
http://specs.openstack.org/openstack/tripleo-specs/specs/policy/adding-ci-jobs.html
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/deployment/standalone.html

TripleO Documentation, Release 0.0.1.dev1610

1.1.2 How to Contribute

TripleO source code is publicly available. You can contribute code to individual projects, documentation,
report bugs and vulnerabilities, request features.

Contributing Code

As long as TripleO is a set of integrated OpenStack projects, all development is happening in OpenStack
upstream.

Learn how to contribute into OpenStacks upstream.

See TripleO Components to find out how to contribute into individual projects.

Contacting the Core Team

Please refer to the TripleO Core Team contacts.

For upgrade specific contacts, refer to TripleO Upgrade Core contacts

For TripleO Ansible specific contacts, refer to TripleO Ansible Core contacts

For Shared TripleO CI role contacts, refer to TripleO Shared CI Core contacts

Contributing to this Documentation

TripleO User Documentation lives on git.opendev.org and is mirrored on GitHub under the OpenStack
organization.

Learn how to contribute into TripleO Docs.

Reporting Bugs

OpenStack Upstream: If you find bugs or vulnerabilities which affect upstream projects, please follow
OpenStacks process of filing bugs.

• Learn how to report bugs in OpenStack.

• If you want to file a bug against upstream project, you can find useful links in our list of TripleO
Components.

TripleO If the bug impacts the TripleO project as a whole, you can file a bug in Launchpad:

1. Go to https://launchpad.net/tripleo

2. Fill in needed information (If you filed also upstream bug, please provide its URL in advanced
fields)

3. Submit bug

1.1. TripleO Contributor Guide 4

https://wiki.openstack.org/wiki/How_To_Contribute
https://review.opendev.org/#/admin/groups/190,members
https://review.opendev.org/#/admin/groups/1853,members
https://review.opendev.org/#/admin/groups/448,members
https://review.opendev.org/#/admin/groups/2090,members
https://opendev.org/openstack/tripleo-docs/
https://github.com/openstack/tripleo-docs
https://github.com/openstack/tripleo-docs
https://opendev.org/openstack/tripleo-docs/src/branch/master/README.rst
https://docs.openstack.org/project-team-guide/bugs.html
https://launchpad.net/tripleo

TripleO Documentation, Release 0.0.1.dev1610

Requesting Features

OpenStack Upstream: Since we are developing projects in OpenStack community, all the features are
being requested upstream via Blueprints.

• Learn how to create Blueprints in OpenStack.

• If you want to file a bug against upstream project, you can find useful links in our list of TripleO
Components.

1.1.3 Core maintainers

The intention of this document is to give developers some information regarding what is expected from
core maintainers and hopefully provide some guidance to those aiming for this role.

Teams

The TripleO Core team is responsible for reviewing all changes proposed to repositories that are under
the governance of TripleO.

The TripleO Upgrade core reviewers maintain the tripleo_upgrade project.

The TripleO Validation team maintains the Validation Framework in TripleO.

The TripleO CI team maintains the TripleO CI related projects (tripleo-ci, tripleo-quickstart, tripleo-
quickstart-extras, etc).

We also have contributors with a specific area of expertise who have been granted core reviews on their
area. Example: a Ceph integration expert would have core review on the Ceph related patches in TripleO.

Because Gerrit doesnt allow such granularity, we trust people to understand which patches they can use
their core reviewer status or not. If one is granted core review access on an area, there is an expectation
that itll only be used in this specific area. The grant is usually done for all the TripleO repositories but
we expect SME cores to use +/- 2 for their area of expertise otherwise the regular +/- 1.

Note: Everyone is warmly encouraged to review incoming patches in TripleO, even if youre not (yet)
a member of these teams. Participating in the review process will be a major task on the road to join the
core maintainer teams.

Adding new members

Each team mentioned above should be aware of who is active in their respective project(s).

In order to add someone in one of these groups, it has to be discussed between other cores and the
TripleO PTL.

It is a good practice to reach out to the nominee before proposing the candidate, to make sure about their
willingness to accept this position and its responsibilities.

In real life, it usually happens by informal discussions, but the official proposals have to be sent with
an email to the openstack-discuss mailing list. It is strongly recommended to have this initial informal
agreement before going public, in case there are some disagreements which could cause unpleasant
discussions which could harm the nominee.

1.1. TripleO Contributor Guide 5

https://wiki.openstack.org/wiki/Blueprints
https://governance.openstack.org/tc/reference/projects/tripleo.html
https://opendev.org/openstack/tripleo-upgrade

TripleO Documentation, Release 0.0.1.dev1610

This discussion can be initiated by any core, and only the existing cores votes will weight into whether
or not the proposal is granted. Of course anyone is welcome to share their feedback and opinions.

Removing members

It is normal for developers to reduce their activity and work on something else. If they dont reach out by
themselves, it is the responsibility of the teams to remove them from the core list and inform about the
change on the mailing-list and privately when possible.

Also if someone doesnt respect the TripleO rules or doesnt use the core permission correctly, this person
will be removed from the core list with a private notice at least.

Core membership expectations

Becoming a core member is a serious commitment and it is not granted easily. Here are a non-exhaustive
list of things that are expected:

• The time invested on the project is consistent.

• (Nearly) Daily participation in core reviews.

Note: Core reviewers are expected to provide thoroughly reviews on the code, which doesnt only
mean +1/-1, but also comments the code that confirm that the patch is ready (or not) to be merged into
the repository. This capacity to provide these kind of reviews is strongly evaluated when recruiting
new core reviewers. It is prefered to provide quality reviews over quantity. A negative review needs
productive feedback and harmful comments wont help to build credibility within the team.

• Quality of technical contributions: bug reports, code, commit messages, specs, e-mails, etc.

• Awareness of discussions happening within the project (mailing-list, specs).

• Best effort participation on IRC #tripleo (when timezone permits), to provide support to our dear
users and developers.

• Gain trust with other core members, engage collaboration and be nice with people. While mainly
maintained by Red Hat, TripleO remains a friendly project where we hope people can have fun
while maintaining a project which meets business needs for the OpenStack community.

• Understand the Expedited Approvals policy.

Final note

The goal of becoming core must not be intimidating. It should be reachable to anyone well involved in
our project with has good intents and enough technical level. One should never hesitate to ask for help
and mentorship when needed.

1.1. TripleO Contributor Guide 6

https://specs.openstack.org/openstack/tripleo-specs/specs/policy/expedited-approvals.html

TripleO Documentation, Release 0.0.1.dev1610

1.1.4 Squads

Work in TripleO is divided in Squads. For more information the project policy.

The list tends to be dynamic over the cycles, depending on which topics the team is working on. The list
below is subject to change as squads change.

Squad Description
CI Group of people focusing on Continuous Integration tooling and system https://etherpad.

openstack.org/p/tripleo-ci-squad-meeting
UI/CLI Group of people focusing on TripleO UI and CLI https://etherpad.openstack.org/p/

tripleo-ui-cli-squad-status
Up-
grade

Group of people focusing on TripleO upgrades https://etherpad.openstack.org/p/
tripleo-upgrade-squad-status

Valida-
tions

Group of people focusing on TripleO validations tooling https://etherpad.openstack.org/p/
tripleo-validations-squad-status

Work-
flows

Group of people focusing on TripleO Workflows https://etherpad.openstack.org/p/
tripleo-workflows-squad-status

Con-
tainers

Group of people focusing on TripleO deployed in containers https://etherpad.openstack.
org/p/tripleo-containers-squad-status

Net-
work-
ing

Group of people focusing on networking bits in TripleO https://etherpad.openstack.org/p/
tripleo-networking-squad-status

Integra-
tion

Group of people focusing on configuration management (eg: services) https://etherpad.
openstack.org/p/tripleo-integration-squad-status

Edge Group of people focusing on Edge/multi-site/multi-cloud https://etherpad.openstack.org/
p/tripleo-edge-squad-status

Note: Note about CI: the squad is about working together on the tooling used by OpenStack Infra to
test TripleO, though every squad has in charge of maintaining the good shape of their tests.

1.2 Developer Documentation

Documentation of developer-specific options in TripleO.

1.2.1 Composable services tutorial

This guide will be a walkthrough related to how to add new services to a TripleO deployment through
additions to the tripleo-heat-templates and puppet-tripleo repositories, using part of the architecture
defined in the composable services architecture.

Note: No puppet manifests may be defined in the THT repository, they should go to the puppet-tripleo
repository instead.

1.2. Developer Documentation 7

https://specs.openstack.org/openstack/tripleo-specs/specs/policy/squads.html
https://etherpad.openstack.org/p/tripleo-ci-squad-meeting
https://etherpad.openstack.org/p/tripleo-ci-squad-meeting
https://etherpad.openstack.org/p/tripleo-ui-cli-squad-status
https://etherpad.openstack.org/p/tripleo-ui-cli-squad-status
https://etherpad.openstack.org/p/tripleo-upgrade-squad-status
https://etherpad.openstack.org/p/tripleo-upgrade-squad-status
https://etherpad.openstack.org/p/tripleo-validations-squad-status
https://etherpad.openstack.org/p/tripleo-validations-squad-status
https://etherpad.openstack.org/p/tripleo-workflows-squad-status
https://etherpad.openstack.org/p/tripleo-workflows-squad-status
https://etherpad.openstack.org/p/tripleo-containers-squad-status
https://etherpad.openstack.org/p/tripleo-containers-squad-status
https://etherpad.openstack.org/p/tripleo-networking-squad-status
https://etherpad.openstack.org/p/tripleo-networking-squad-status
https://etherpad.openstack.org/p/tripleo-integration-squad-status
https://etherpad.openstack.org/p/tripleo-integration-squad-status
https://etherpad.openstack.org/p/tripleo-edge-squad-status
https://etherpad.openstack.org/p/tripleo-edge-squad-status
https://blueprints.launchpad.net/tripleo/+spec/composable-services-within-roles
https://github.com/openstack/tripleo-heat-templates/tree/master/puppet/services
https://github.com/openstack/puppet-tripleo/tree/master/manifests/profile
https://github.com/openstack/puppet-tripleo/tree/master/manifests/profile

TripleO Documentation, Release 0.0.1.dev1610

Introduction

The initial scope of this tutorial is to create a brief walkthrough with some guidelines and naming con-
ventions for future modules and features aligned with the composable services architecture. Regarding
the example described in this tutorial, which leads to align an _existing_ non-composable service imple-
mentation with the composable roles approach, it is important to notice that a similar approach would
be followed if a user needed to add an entirely new service to a tripleo deployment.

The puppet manifests used to configure services on overcloud nodes currently reside in the tripleo-heat-
templates repository, in the folder puppet/manifests. In order to properly organize and structure the code,
all manifests will be re-defined in the puppet-tripleo repository, and adapted to the composable services
architecture.

The use case for this example uses NTP as a service installed by default among the OpenStack deploy-
ment. So the profile needs to be added to all the roles in roles_data.yaml.

Which means that NTP will be installed everywhere in the overcloud, so the tutorial will describe the
process of refactoring the code from those files in order move it to the puppet-tripleo repository.

This tutorial is divided into several steps, according to different changes that need to be added to the
structure of tripleo-heat-templates and puppet-tripleo.

Relevant repositories in this guide

• tripleo-heat-templates: All the tripleo-heat-templates (aka THT) logic.

• puppet-tripleo: TripleO puppet manifests used to deploy the overcloud services.

• tripleo-puppet-elements: References puppet modules used by TripleO to deploy the overcloud
services. (Not used in this tutorial)

Gerrit patches used in this example

The gerrit patches used to describe this walkthrough are:

• https://review.opendev.org/#/c/310725/ (puppet-tripleo)

• https://review.opendev.org/#/c/310421/ (tripleo-heat-templates controller)

• https://review.opendev.org/#/c/330916/ (tripleo-heat-templates compute)

• https://review.opendev.org/#/c/330921/ (tripleo-heat-templates cephstorage)

• https://review.opendev.org/#/c/330923/ (tripleo-heat-templates objectstorage)

1.2. Developer Documentation 8

https://github.com/openstack/tripleo-heat-templates/tree/3d01f650f18b9e4f1892a6d9aa17f1bfc99b5091/puppet/manifests
https://blueprints.launchpad.net/tripleo/+spec/composable-services-within-roles
https://blueprints.launchpad.net/tripleo/+spec/composable-services-within-roles
https://review.opendev.org/#/c/310725/
https://review.opendev.org/#/c/310421/
https://review.opendev.org/#/c/330916/
https://review.opendev.org/#/c/330921/
https://review.opendev.org/#/c/330923/

TripleO Documentation, Release 0.0.1.dev1610

Change prerequisites

The controller services are defined and configured via Heat resource chains. In the proposed patch (https:
//review.opendev.org/#/c/259568) controller services will be wired to a new Heat feature that allows it
to dynamically include a set of nested stacks representing individual services via a Heat resource chain.
The current example will use this interface to decompose the controller role into isolated services.

Updating tripleo-heat-templates

This section will describe the changes needed for tripleo-heat-templates.

Folder structure convention for tripleo-heat-templates

Services should be defined in the services folder, depending on the service purpose.

puppet
services ---> To host all services.

<service type> ---> Folder to store a specific type
↪→services (If time, will store time based services like: NTP, timezone,
↪→Chrony among others).

<service name>.yaml ---> Heat template defining per-service
↪→configuration.

<service name>-base.yaml ---> Heat template defining common service
↪→configuration.

Note: No puppet manifests may be defined in the THT repository, they should go to the puppet-tripleo
repository instead.

Note: The use of a base heat template (<service>-base.yaml) is necessary in cases where a given service
(e.g. heat) is comprised of a number of individual component services (e.g. heat-api, heat-engine) which
need to share some of the base configuration (such as rabbit credentials). Using a base template in those
cases means we dont need to duplicate that configuration. Refer to: https://review.opendev.org/#/c/
313577/ for further details. Also, refer to Duplicated parameters for an use-case description.

Changes list

The list of changes in THT are:

• If there is any configuration of the given feature/service in any of the
tripleo-heat-templates/puppet/manifests/*.pp files, then this will need
to be removed and migrated to the puppet-tripleo repository.

• Create a service type specific folder in the root services folder (deployment/time).

• Create a heat template for the service inside the deployment/time folder (deployment/time/
ntp-baremetal-puppet.yaml).

1.2. Developer Documentation 9

https://review.opendev.org/#/c/259568
https://review.opendev.org/#/c/259568
https://github.com/openstack/tripleo-heat-templates/tree/master/puppet/services
https://github.com/openstack/puppet-tripleo/tree/master/manifests/profile
https://github.com/openstack/puppet-tripleo/tree/master/manifests/profile
https://review.opendev.org/#/c/313577/
https://review.opendev.org/#/c/313577/

TripleO Documentation, Release 0.0.1.dev1610

• Optionally, create a common heat template to reuse common configuration data, which is refer-
enced from each per-service heat template.

Step 1 - Updating puppet references

Remove all puppet references for the composable service from the current manifests (*.pp). All the
puppet logic will live in the puppet-tripleo repository based on a configuration step, so it is mandatory
to remove all the puppet references from tripleo-heat-templates.

The updated .pp files for the NTP example were:

• puppet/manifests/overcloud_cephstorage.pp

• puppet/manifests/overcloud_compute.pp

• puppet/manifests/overcloud_controller.pp

• puppet/manifests/overcloud_controller_pacemaker.pp

• puppet/manifests/overcloud_object.pp

• puppet/manifests/overcloud_volume.pp

Step 2 - overcloud-resource-registry-puppet.j2.yaml resource registry changes

The resource OS::TripleO::Services::Timesync must be defined in the resource registry
(overcloud-resource-registry-puppet.j2.yaml)

Create a new resource type alias which references the per-service heat template file, as described above.

By updating the resource registry we are forcing to use a nested template to configure our resources. In
the example case the created resource (OS::TripleO::Services::Timesync), will point to the correspond-
ing service yaml file (deployment/time/ntp-baremetal-puppet.yaml).

Step 3 - roles_data.yaml initial changes

The default roles are defined here. They are then iterated and the respective values of each section are
rendered into the overcloud.j2.yaml.

Mandatory services should be added to the roles ServicesDefault value, which defines all the services
enabled by default in the role(s).

From roles_data.yaml find:

- name: Controller
CountDefault: 1
ServicesDefault:

- OS::TripleO::Services::CACerts
- OS::TripleO::Services::CertmongerUser
- OS::TripleO::Services::CephMds
- OS::TripleO::Services::Keystone
- OS::TripleO::Services::GlanceApi
- OS::TripleO::Services::GlanceRegistry
...
- OS::TripleO::Services::Timesync ---> New service

↪→deployed in the controller overcloud (continues on next page)

1.2. Developer Documentation 10

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

Update this section with your new service to be deployed to the controllers in the overcloud.

These values will be used by the controller roles ServiceChain resource as follows:

{% for role in roles %}
Resources generated for {{role.name}} Role
{{role.name}}ServiceChain:

type: OS::TripleO::Services
properties:

Services:
get_param: {{role.name}}Services

ServiceNetMap: {get_attr: [ServiceNetMap, service_net_map]}
EndpointMap: {get_attr: [EndpointMap, endpoint_map]}

...
{% endfor %}

THT changes for all the different roles are covered in:

• https://review.opendev.org/#/c/310421/ (tripleo-heat-templates controller)

• https://review.opendev.org/#/c/330916/ (tripleo-heat-templates compute)

• https://review.opendev.org/#/c/330921/ (tripleo-heat-templates cephstorage)

• https://review.opendev.org/#/c/330923/ (tripleo-heat-templates objectstorage)

Note: In the case of the controller services, they are defined as part of the roles ServiceChain resource.
If it is needed to add optional services, they need to be appended to the current services list defined by
the default value of the roles ServicesDefault parameter.

Step 4 - Create the services yaml files

Create: deployment/time/ntp-baremetal-puppet.yaml

This file will have all the configuration details for the service to be configured.

heat_template_version: rocky
description: >

NTP service deployment using puppet, this YAML file
creates the interface between the HOT template
and the puppet manifest that actually installs
and configure NTP.

parameters:
EndpointMap:

default: {}
description: Mapping of service endpoint -> protocol. Typically set

via parameter_defaults in the resource registry.
type: json

NtpServers:
default: ['0.pool.ntp.org', '1.pool.ntp.org']
description: NTP servers

(continues on next page)

1.2. Developer Documentation 11

https://review.opendev.org/#/c/310421/
https://review.opendev.org/#/c/330916/
https://review.opendev.org/#/c/330921/
https://review.opendev.org/#/c/330923/

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

type: comma_delimited_list
NtpInterfaces:

default: ['0.0.0.0']
description: Listening interfaces
type: comma_delimited_list

outputs:
role_data:

description: Role ntp using composable services.
value:

config_settings:
ntp::ntpservers: {get_param: NtpServers}
ntp::ntpinterfaces: {get_param: NtpInterfaces}

step_config: |
include ::tripleo::profile::base::time::ntp

Note: All role-specific parameters have to be tagged:

ExampleParameter:
description: This is an example.
type: json
default: {}
tags:

- role_specific

Note: It is required for all service templates to accept the EndpointMap parameter, all other parameters
are optional and may be defined per-service. Care should be taken to avoid naming collisions between
service parameters, e.g via using the service name as a prefix, Ntp in this example.

Service templates should output a role_data value, which is a mapping containing config_settings which
is a mapping of hiera key/value pairs required to configure the service, and step_config, which is a
puppet manifest fragment that references the puppet-tripleo profile that configures the service.

If it is needed, the templates can be decomposed to remove duplicated parameters among different
deployment environments (i.e. using pacemaker). To do this see section Duplicated parameters.

If your service has configuration that affects another service and should only be run on nodes (roles) that
contain that service, you can use service_config_settings. You then have to specify the hieradata inside
this section by using the name of the service as the key. So, if you want to output hieradata related to
your service, on nodes that deploy keystone, you would do this:

role_data:
...

step_config:
...

...
service_config_settings:

keystone:
Here goes the hieradata

This is useful for things such as creating the keystone endpoints for your service, since one usually wants
these commands to only be run on the keystone node.

1.2. Developer Documentation 12

TripleO Documentation, Release 0.0.1.dev1610

Updating puppet-tripleo

The puppet manifests that currently define overcloud node configuration are moved from the tripleo-
heat-templates to new puppet-tripleo class definitions as part of the composable services approach. In
next iterations, all service configuration should be moved also to puppet-tripleo. This section considers
the addition of the ntp definition to puppet-tripleo.

Folder structure convention

Services should be defined in the services folder, depending on the service purpose.

manifests
profile/base ---> To host all services not using pacemaker.

time ---> Specific folder for time services (NTP, timezone,
↪→Chrony among others).

ntp.pp ---> Puppet manifest to configure the service.

Note: For further information related to the current folders manifests structure refer to the puppet-
tripleo repository.

Adding the puppet manifest

This step will reference how the puppet logic should be organized in puppet-tripleo.

Inside the manifests folder, add the service manifest following the folder structure (manifests/
profile/base/time/ntp.pp) as:

class tripleo::profile::base::time::ntp (
#We get the configuration step in which we can choose which steps to

↪→execute
$step = hiera('step'),

) {
#step assigned for core modules.
#(Check for further references about the configuration steps)
#https://opendev.org/openstack/tripleo-heat-templates/src/branch/master/

↪→puppet/services/README.rst
if ($step >= 2){

#We will call the NTP puppet class and assign our configuration values.
#If needed additional Puppet packages can be added/installed by using

↪→the repo tripleo-puppet-elements
if count($ntpservers) > 0 {

include ::ntp
}

}
}

If users have followed all the previous steps, they should be able to configure their services using the
composable services within roles guidelines.

1.2. Developer Documentation 13

https://github.com/openstack/puppet-tripleo/tree/master/manifests/profile
https://github.com/openstack/puppet-tripleo/tree/master/manifests/profile

TripleO Documentation, Release 0.0.1.dev1610

THT design patterns

Duplicated parameters

Problem: When defining multiple related services, it can be necessary to define the same parameters
(such as rabbit or DB credentials) in multiple service templates. To avoid this, it is possible to define a
base heat template that contains the common parameters and config_settings mapping for those services
that require it.

This pattern will describe how to avoid duplicated parameters in the THT yaml files.

mongodb-base.yaml: This file should have all the common parameters between the different envi-
ronments (With pacemaker and without pacemaker).

heat_template_version: rocky
description: >

Configuration details for MongoDB service using composable roles
parameters:

MongoDbNoJournal:
default: false
description: Should MongoDb journaling be disabled
type: boolean

MongoDbIPv6:
default: false
description: Enable IPv6 if MongoDB VIP is IPv6
type: boolean

MongoDbReplset:
type: string
default: "tripleo"

outputs:
role_data:

description: Role data for the MongoDB base service.
value:

config_settings:
mongodb::server::nojournal: {get_param: MongoDbNoJournal}
mongodb::server::ipv6: {get_param: MongoDbIPv6}
mongodb::server::replset: {get_param: MongoDbReplset}

In this way we will be able to reuse the common parameter among all the template files requiring it.

Referencing the common parameter:

mongodb.yaml: Will have specific parameters to deploy mongodb without pacemaker.

heat_template_version: rocky
description: >

MongoDb service deployment using puppet
parameters:

#Parameters not used EndpointMap
EndpointMap:

default: {}
description: Mapping of service endpoint -> protocol. Typically set

via parameter_defaults in the resource registry.
type: json

resources:
MongoDbBase:

type: ./mongodb-base.yaml

(continues on next page)

1.2. Developer Documentation 14

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

outputs:
role_data:

description: Service mongodb using composable services.
value:

config_settings:
map_merge:

- get_attr: [MongoDbBase, role_data, config_settings]
- mongodb::server::service_manage: True

step_config: |
include ::tripleo::profile::base::database::mongodb

In this case mongodb.yaml is using all the common parameter added in the MongoDbBase resource.

If using the parameter EndpointMap in the base template, you must the pass it from from the service
file, and even if it is not used in the service template, it must still be defined.

In the service file:

parameters:
EndpointMap:

default: {}
description: Mapping of service endpoint -> protocol. Typically set

via parameter_defaults in the resource registry.
type: json

resources:
<ServiceName>ServiceBase:

type: ./<ServiceName>-base.yaml
properties:

EndpointMap: {get_param: EndpointMap}

This will pass the endpoint information to the base config file.

Note: Even if the EndpointMap parameter is optional in the base template, for consistency is advised
always using it in all service templates.

TLS support for services

Public TLS

If youre adding a REST service to TripleO, chances are that youll need your service to be terminated
by HAProxy. Unfortunately, adding your service to HAProxy needs extra changes to existing modules.
Fortunately, its not that hard to do.

You can add your service to be terminated by HAproxy by modifying the manifests/haproxy.pp file.

First off, we need a flag to tell the HAProxy module to write the frontend for your service in the HAProxy
configuration file if your service is deployed. For this, we will add a parameter for the manifest. If you
have followed the walk-through, you may have noticed that the tripleo-heat-templates yaml template
requires you to set a name for your service in the role_data output:

...
outputs:

(continues on next page)

1.2. Developer Documentation 15

https://github.com/openstack/puppet-tripleo/blob/master/manifests/haproxy.pp
https://github.com/openstack/tripleo-heat-templates

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

role_data:
description: Description of your service
value:

service_name: my_service
...

The overcloud stack generated from the tripleo-heat-templates will use this name and automatically
generate several hieradata entries that are quite useful. One of this entries is a global flag that can tell if
your service is enabled at all or not. So well use this flag and fetch it from hiera to set the parameter we
need in haproxy.pp:

...
$keystone_admin = hiera('keystone_enabled', false),
$keystone_public = hiera('keystone_enabled', false),
$neutron = hiera('neutron_api_enabled', false),
$cinder = hiera('cinder_api_enabled', false),
$glance_api = hiera('glance_api_enabled', false),
...
$my_service = hiera('my_service_enabled', false),
...

Note that the name of the hiera key matches the following format <service name>_enabled and defaults
to false.

Next, you need to add a parameter that tells HAProxy which network your service is listening on:

...
$barbican_network = hiera('barbican_api_network', false),
$ceilometer_network = hiera('ceilometer_api_network', undef),
$cinder_network = hiera('cinder_api_network', undef),
$glance_api_network = hiera('glance_api_network', undef),
$heat_api_network = hiera('heat_api_network', undef),
...
$my_service_network = hiera('my_service_network', undef),
...

Tripleo-heat-templates will also autogenerate this key for you. However for it to do this,
you need to specify the network for your service in the templates. The file where this
needs to be set is network/service_net_map.j2.yaml, and youll be looking for a parameter called
ServiceNetMapDefaults. It will look like this:

Note that the key in this map must match the service_name
see the description above about conversion from CamelCase to
snake_case - the names must still match when converted
ServiceNetMapDefaults:

default:
Note the values in this map are replaced by *NetName
to allow for sane defaults when the network names are
overridden.
...
NeutronTenantNetwork: tenant
CeilometerApiNetwork: internal_api
BarbicanApiNetwork: internal_api
CinderApiNetwork: internal_api
GlanceApiNetwork: storage

(continues on next page)

1.2. Developer Documentation 16

https://github.com/openstack/tripleo-heat-templates/blob/master/network/service_net_map.j2.yaml

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

...
MyServiceNetwork: <some network>

Now, having added this, youll have access to the aforementioned hiera key and several others.

Note that the network is used by HAProxy to terminate TLS for your service. This is used when Internal
TLS is enabled and youll learn more about it in the Internal TLS section.

Then, you need to add the ports that HAProxy will listen on. There is a list with the defaults which is
called default_service_ports, and you need to add your service here:

$default_service_ports = {
...
neutron_api_port => 9696,
neutron_api_ssl_port => 13696,
nova_api_port => 8774,
nova_api_ssl_port => 13774,
nova_placement_port => 8778,
nova_placement_ssl_port => 13778,
nova_metadata_port => 8775,
nova_novnc_port => 6080,
nova_novnc_ssl_port => 13080,
...
my_service_port => 5123,
my_service_ssl_port => 13123,
...

}

You are specifying two ports here, one that is the standard port, and another one that is used for SSL in
the public VIP/host. This was done initially to address deployments without network isolation. In these
cases, deploying TLS would effectively take over the other interfaces, so HAProxy would be listening
with TLS everywhere accidentally if only using one port, and further configuration for the services would
need to happen to address this. However, this is not really an issue in network isolated deployments,
since they would be using different IP addresses. So this extra port might not be needed in the future if
network isolation becomes the standard mode of deploying.

Note: The SSL port is not needed if your service is only internal and doesnt listen on the public VIP.

Note: These ports can be overwritten by using the $service_ports parameter from this mani-
fest. Once could pass it via hieradata through the ExtraConfig tripleo-heat-templates parameter, and
setting something like this as the value:

tripleo::haproxy::service_ports:
my_service_ssl_port: 5123
my_service_2_ssl_port: 5124

Please consider that this will overwrite any entry from the list of defaults, so you have to be careful to
update all the relevant entries in tripleo-heat-templates if you want to change port (be it SSL port or
non-SSL port).

Finally, you need to add the actual endpoint to HAproxy which will configure the listen directive
(or frontend and backend) in the haproxy configuration. For this, we have a helper class called

1.2. Developer Documentation 17

TripleO Documentation, Release 0.0.1.dev1610

::tripleo::haproxy::endpoint that sets the relevant bits for you. All we need to do is pass
in all the information that class needs. And we need to make sure that this only happens if the service is
enabled, so well enclose it with the flag we mentioned above. So heres a code snippet that demonstrates
what you need to add:

if $my_service {
::tripleo::haproxy::endpoint { 'my_service':

public_virtual_ip => $public_virtual_ip,
internal_ip => hiera('my_service_vip', $controller_virtual_ip),
service_port => $ports[my_service_port],
ip_addresses => hiera('my_service_node_ips', $controller_hosts_

↪→real),
server_names => hiera('my_service_node_names', $controller_hosts_

↪→names_real),
mode => 'http',
listen_options => {

'http-request' => [
'set-header X-Forwarded-Proto https if { ssl_fc }',
'set-header X-Forwarded-Proto http if !{ ssl_fc }'],

},
public_ssl_port => $ports[my_service_ssl_port],
service_network => $my_service_network,

}
}

• The public_virtual_ip variable contains the public IP address thats used for your cloud,
and its the one that people will usually have access to externally.

• The hiera keys my_service_node_ips, my_service_vip,
my_service_node_names are automatically generated by tripleo-heat-templates.
These are other keys that youll get access to once you add the network for your service in
ServiceNetMapDefaults.

• my_service_vip is, as mentioned, automatically generated, and will point HAProxy to the
non-public VIP where other services will be able to access your service. This will usually be the
Internal API network, but it depends on your use-case.

• my_service_node_ips is, as mentioned, automatically generated, and will tell HAProxy
which nodes are hosting your service, so it will point to them. The address depends on the network
your service is listening on.

• my_service_node_names is, as mentioned, automatically generated, and will be the names
that HAProxy will use for the nodes. These are the FQDNs of the nodes that are hosting your
service.

• This example is an HTTP service, so note that we set the mode to http, and that we set the
option for HAProxy to detect if TLS was used for the request, and set an appropriate value for
the X-Forwarded-Proto HTTP header if thats the case. Not all services can read this HTTP
header, so this depends on your service. For more information on the available options and the
mode, consult the haproxy documentation.

Note: If your service is only internal and doesnt listen on the public VIP, you dont need all of the
parameters listed above, and you would instead do something like this:

1.2. Developer Documentation 18

http://www.haproxy.org/

TripleO Documentation, Release 0.0.1.dev1610

if $my_service {
::tripleo::haproxy::endpoint { 'my_service':

internal_ip => hiera('my_service_vip', $controller_virtual_ip),
service_port => $ports[my_service_port],
ip_addresses => hiera('my_service_node_ips', $controller_hosts_

↪→real),
server_names => hiera('my_service_node_names', $controller_hosts_

↪→names_real),
service_network => $my_service_network,

}
}

The most relevant bits are that we omitted the SSL port and the public_virtual_ip, since these
wont be used.

Having added this to the manifest, you should be covered for both getting your service to be proxied by
HAProxy, and letting it to TLS in the public interface for you.

Internal TLS

How it works

If you havent read the section TLS Everywhere it is highly recommended you read that first before
continuing.

As mentioned, the default CA is FreeIPA, which issues the certificates that the nodes request, and they
do the requests via certmonger.

FreeIPA needs to have the nodes registered in its database and those nodes need to be enrolled in order
to authenticate to the CA. This is already being handled for us, so theres nothing you need to do for your
service on this side.

In order to issue certificates, FreeIPA also needs to have registered a Kerberos principal for the service
(or service principal). This way it knows what service is using what certificate. The service principal
will look something like this:

<service name>/<host>.<domain>

We assume that the domain matches the kerberos realm, so specifying it is redundant.

Fortunately, one doesnt need to do much but fill in some boilerplate code in tripleo-heat-templates to get
this service principal. And this will be covered in subsequent sections.

So, with this one can finally request certificates for the service and use them.

1.2. Developer Documentation 19

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/ssl.html#tls-everywhere-for-the-overcloud

TripleO Documentation, Release 0.0.1.dev1610

Enabling internal TLS for your service

Aside from the actual certificate request, if your service is a RESTful service, getting TLS to work with
the current solution requires usually two fronts:

• To get your service to actually serve with TLS.

• To tell HAProxy to try to access your service using TLS.

This can be different for other types of services. For instance, at the time of writing this, RabbitMQ
isnt proxied by HAProxy, so there wasnt a need to configure anything in HAProxy. Another example is
MariaDB: Even though it is proxied by HAProxy, TLS is handled on the MariaDB side and HAProxy
doesnt do TLS termination, so there was no need to configure HAProxy.

Also, for services in general, there are two options for the Subject Alternative Name (SAN) for the
certificate:

1) It should be a hostname that points to a specific interface in the node.

2) It should be a hostname that points to a VIP (or a Virtual IP Address).

The usual case for a RESTful service will be the first option. HAProxy will do TLS termination, listening
on the clouds VIPs, and will then forward the request to your service trying to access it via the nodes
internal network interface (not the VIP). So for this case (#1), your service should be serving a TLS
certificate with the nodes interface as the SAN. RabbitMQ has a similar situation even if its not proxied
by HAProxy. Services try to access the RabbitMQ cluster through the individual nodes, so each broker
server has a certificate with the nodes hostname for a specific network interface as the SAN. On the
other hand, MariaDB follows the SAN pattern #2. Its terminated by HAProxy, so the services access
it through a VIP. However, MariaDB handles TLS by itself, so it ultimately serves certificates with the
hostname pointing to a VIP interface as the SAN. This way, the hostname validation works as expected.

If youre not sure how to go forward with your service, consult the TripleO team.

Services that run over httpd

Good news! Certificates are already requested for you and there is a hash where you can fetch the path
to the certificates and use them for your service.

In puppet-tripleo you need to go to the manifest that deploys the API for your service. Here, you will
add the following parameters to the class:

class tripleo::profile::base::my_service::api (
...
$my_service_network = hiera('my_service_network', undef),
$certificates_specs = hiera('apache_certificates_specs', {}),
$enable_internal_tls = hiera('enable_internal_tls', false),
...

) {

• my_service_network is a hiera key thats already generated by tripleo-heat-templates and
it references the name of the network your service is listening on. This was referenced in
the Public TLS section. Where it mentioned the addition of your services network to the
ServiceNetMapDefaults parameter. So, if this was done, youll get this key autogenerated.

• apache_certificates_specs is a hash containing the specifications for all the certificates
requested for services running over httpd. These are network-dependant, which is why we needed

1.2. Developer Documentation 20

https://github.com/openstack/puppet-tripleo

TripleO Documentation, Release 0.0.1.dev1610

the network name. Note that this also contains the paths where the keys are located in the filesys-
tem.

• enable_internal_tls is a flag that tells TripleO if TLS for the internal network is enabled.
We should base the usage of the certificates for your service on this.

In order to get the certificate and key for your application you can use the following boilerplate code:

if $enable_internal_tls {
if !$my_service_network {

fail('my_service_network is not set in the hieradata.')
}
$tls_certfile = $certificates_specs["httpd-${my_service_network}"][

↪→'service_certificate']
$tls_keyfile = $certificates_specs["httpd-${my_service_network}"][

↪→'service_key']
} else {

$tls_certfile = undef
$tls_keyfile = undef

}

If internal TLS is not enabled, we set the variables for the certificate and key to undef, this way TLS
wont be enabled. If its enabled, we get the certificate and key from the hash.

Now, having done this, we can pass in the variables to the class that deploys your service over httpd:

class { '::my_service::wsgi::apache':
ssl_cert => $tls_certfile,
ssl_key => $tls_keyfile,

}

Now, in tripleo-heat-templates, hopefully the template for your services API already uses the base profile
for apache services. To verify this, you need to look in the resources section of your template for
something like this:

ApacheServiceBase:
type: ./apache.yaml
properties:

ServiceNetMap: {get_param: ServiceNetMap}
EndpointMap: {get_param: EndpointMap}

Note that this is of type ./apache.yaml which is the template that contains the common configurations
for httpd based services.

You will also need to make sure that the ssl hieradata is set correctly. You will find it usually like this:

my_service::wsgi::apache::ssl: {get_param: EnableInternalTLS}

Where, EnableInternalTLS should be defined in the parameters section of the template.

Finally, you also need to add the metadata_settings to the output of the template. This section
will be in the same level as config_settings and step_config, and will contain the following:

metadata_settings:
get_attr: [ApacheServiceBase, role_data, metadata_settings]

Note that it merely outputs the metadata_settings section that the apache base stack already outputs.
This will give the appropriate parameters to a hook that sets the nova metadata, which in turn will be

1.2. Developer Documentation 21

https://github.com/openstack/tripleo-heat-templates

TripleO Documentation, Release 0.0.1.dev1610

taken by the novajoin service generate the service principals for httpd for the host.

See the TLS Everywhere Deploy Guide

Configuring HAProxy to use TLS for your service

Now that your service will be serving with TLS enabled, we go back to the manifests/haproxy.pp file.
You already have added the HAProxy endpoint resource for your service, so for this, you need to add
now the option to tell it to use TLS to communicate with the server backend nodes. This is done by
adding this:

if $my_service {
::tripleo::haproxy::endpoint { 'my_service':

...
member_options => union($haproxy_member_options, $internal_tls_

↪→member_options),
}

}

This adds the TLS options to the default member options we use in TripleO for HAProxy. It will tell
HAProxy to require TLS for your service if internal TLS is enabled; if its not enabled, then it wont use
TLS.

This was all the extra configuration you needed to do for HAProxy.

Internal TLS for services that dont run over httpd

If your service supports being run with TLS enabled, and its not python/eventlet-based (see Internal TLS
via a TLS-proxy). This section is for you.

In tripleo-heat-templates well need to specify the specs for doing the certificate request, and well need
to get the appropriate information to generate a service principal. To make this optional, you should add
the following to your services base template:

parameters:
...
EnableInternalTLS:

type: boolean
default: false

conditions:

internal_tls_enabled: {equals: [{get_param: EnableInternalTLS}, true]}
...

...

• EnableInternalTLS is a parameter thats passed via parameter_defaults which tells
the templates that we want to use TLS in the internal network.

• internal_tls_enabled is a condition that well furtherly use to add the relevant bits to the
output.

The next thing to do is to add the certificate specs, the relevant hieradata and the required metadata to
the output. In the roles_data output, lets modify the config_settings to add what we need:

1.2. Developer Documentation 22

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/ssl.html#tls-everywhere-for-the-overcloud
https://github.com/openstack/puppet-tripleo/blob/master/manifests/haproxy.pp
https://github.com/openstack/tripleo-heat-templates

TripleO Documentation, Release 0.0.1.dev1610

config_settings:
map_merge:

-
The regular hieradata for your service goes here.
...

-
if:
- internal_tls_enabled
- generate_service_certificates: true

my_service_certificate_specs:
service_certificate: '/etc/pki/tls/certs/my_service.crt'
service_key: '/etc/pki/tls/private/my_service.key'
hostname:

str_replace:
template: "%{hiera('fqdn_NETWORK')}"
params:
NETWORK: {get_param: [ServiceNetMap, MyServiceNetwork]}

principal:
str_replace:

template: "my_service/%{hiera('fqdn_NETWORK')}"
params:
NETWORK: {get_param: [ServiceNetMap, MyServiceNetwork]}

- {}
...
metadata_settings:

if:
- internal_tls_enabled
-

- service: my_service
network: {get_param: [ServiceNetMap, MyServiceNetwork]}
type: node

- null

• The conditional mentioned above is used in the config_settings. So, if
internal_tls_enabled evaluates to true, the hieradata necessary to enable TLS in
the internal network for your service will be added. Else, we output {}, which wont affect the
map_merge and wont add anything to the regular hieradata for your service.

• For this case, we are only requesting one certificate for the service.

• The service will be terminated by HAProxy in a conventional way, which means that the SAN
will be case #1 as described in Enabling internal TLS for your service. So the SAN will point to
the specific nodes network interface, and not the VIP.

• The ServiceNetMap contains the references to the networks every service is listening on, and
the key to get the network is the name of your service but using camelCase instead of underscores.
This value is the name of the network and if used under the config_settings section, it will
be replaced by the actual IP. Else, it will just be the network name.

• tripleo-heat-templates automatically generates hieradata that contains the different network-
dependant hostnames. They keys are in the following format:

fqdn_<network name>

• The my_service_certificate_specs key will contain the specifications for the certifi-
cate well request. They need to follow some conventions:

1.2. Developer Documentation 23

TripleO Documentation, Release 0.0.1.dev1610

– service_certificate will specify the path to the certificate file. It should be an ab-
solute path.

– service_key will specify the path to the private key file that will be used for the certifi-
cate. It should be an absolute path.

– hostname is the name that will be used both in the Common Name (CN) and the Subject
Alternative Name (SAN) of the certificate. We can get this value by using the hiera key
described above. So we first get the name of the network the service is listening on from
the ServiceNetMap and we then use str_replace to place that in a hiera call in the
appropriate format.

– principal is the service principal that will be the one used for the certificate request. We
can get this in a similar manner as we got the hostname, and prepending an identifying name
for your service. The format will be as follows:

< service identifier >/< network-based hostname >

– These are the names used by convention, and will eventually be passed to the
certmonger_certificate resource from puppet-certmonger.

• The metadata_settings section will pass some information to a metadata hook that will
create the service principal before the certificate request is done. The format as as follows:

– service: This contains the service identifier to be used in the kerberos service principal.
It should match the identifier you put in the principal section of the certificate specs.

– network: Tells the hook what network to use for the service. This will be used for the
hook and novajoin to use an appropriate hostname for the kerberos principal.

– type: Will tell the hook what type of case is this service. The available options are node
and vip. These are the cases mentioned in the Enabling internal TLS for your service for
the SANs.

Note that this is a list, which can be useful if well be creating several service principals (which
is not the case for our example). Also, if internal_tls_enabled evaluates to false, we
then output null.

• Remember to set any relevant flags or parameters that your service might need as hieradata in
config_settings. These might be things that explicitly enable TLS such as flags or paths.
But these details depend on the puppet module that deploys your service.

Note: VIP-based hostname case

If your service requires the certificate to contain a VIP-based hostname, as is the case for MariaDB. It
would instead look like the following:

metadata_settings:
if:

- internal_tls_enabled
-

- service: my_service
network: {get_param: [ServiceNetMap, MyServiceNetwork]}
type: vip

- null

1.2. Developer Documentation 24

https://github.com/earsdown/puppet-certmonger

TripleO Documentation, Release 0.0.1.dev1610

• One can get the hostname for the VIP in a similar fashion as we got the hostname for the node.
The VIP hostnames are also network based, and one can get them from a hiera key as well. It has
the following format:

cloud_name_< network name >

• The type in the metadata_settings entry is vip.

In puppet-tripleo Well create a class that does the actual certificate request and add it to the resource that
gets the certificates for all the services.

Lets create a class to do the request:

class tripleo::certmonger::my_service (
$hostname,
$service_certificate,
$service_key,
$certmonger_ca = hiera('certmonger_ca', 'local'),
$principal = undef,

) {
include ::my_service::params

$postsave_cmd = "systemctl restart ${::my_service::params::service_name}
↪→"
certmonger_certificate { 'my_service' :

ensure => 'present',
certfile => $service_certificate,
keyfile => $service_key,
hostname => $hostname,
dnsname => $hostname,
principal => $principal,
postsave_cmd => $postsave_cmd,
ca => $certmonger_ca,
wait => true,
require => Class['::certmonger'],

}

file { $service_certificate :
owner => $::my_service::params::user,
group => $::my_service::params::group,
require => Certmonger_certificate['my_service'],

}
file { $service_key :

owner => $::my_service::params::user,
group => $::my_service::params::group,
require => Certmonger_certificate['my_service'],

}

File[$service_certificate] ~> Service<| title == $::my_
↪→service::params::service_name |>
File[$service_key] ~> Service<| title == $::my_service::params::service_

↪→name |>
}

• Youll note that the parameters mostly match the certificate specs that we created before in tripleo-
heat-templates.

1.2. Developer Documentation 25

https://github.com/openstack/puppet-tripleo

TripleO Documentation, Release 0.0.1.dev1610

• By convention, well add this class in the manifests/certmonger folder.

• certmonger_ca is a value that comes from tripleo-heat-templates and tells certmonger which
CA to use.

• If its available, by convention, many puppet modules contain a manifest called params. This
usually contains the name and group that the service runs with, as well as the name of the service
in a specific distribution. So we include this.

• We do then the actual certificate request by using the certmonger_certificate provider
and passing all the relevant data for the request.

– The post-save command which is specified via the postsave_cmd is a command that will
be ran after the certificate is saved. This is useful for when certmonger has to resubmit the
request to get an updated certificate, since this way we can reload or restart the service so it
can serve the new certificate.

• Using the file resource from puppet, we set the appropriate user and group for the certificate
and keys. Fortunately, certmonger has sane defaults for the file modes, so we didnt set those here.

Having this class, we now need to add to the certmonger_user resource. This resource is in charge of
making all the certificate requests and should be available on all roles (or at least it should be added).
You would add the certificate specs as a parameter to this class:

class tripleo::profile::base::certmonger_user (
...
$my_service_certificate_specs = hiera('my_service_certificate_specs', {}

↪→),
...

) {

And finally, we call the class that does the request:

...
unless empty($my_service_certificate_specs) {

ensure_resource('class', 'tripleo::certmonger::my_service', $my_service_
↪→certificate_specs)
}
...

Note: It is also possible to do several requests for your service. See the certmonger_user source code
for examples.

Finally, you can do the same steps described in configuring-haproxy-internal-tls to make HAProxy con-
nect to your service using TLS.

1.2. Developer Documentation 26

https://github.com/openstack/puppet-tripleo/blob/master/manifests/profile/base/certmonger_user.pp
https://github.com/openstack/puppet-tripleo/blob/master/manifests/profile/base/certmonger_user.pp

TripleO Documentation, Release 0.0.1.dev1610

Internal TLS via a TLS-proxy

If you have a RESTful service that runs over python (most likely using eventlet) or if your service
requires a TLS proxy in order to have TLS in the internal network, there are extra steps to be done.

For python-based services, due to performance issues with eventlet, the best thing you can do is try to
move your service to run over httpd, and let it handle crypto instead. Then youll be able to follow the
instructions from the Services that run over httpd section above. If for any reason this cant be done at
the moment, we could still use httpd to service as a TLS proxy in the node. It would then listen on the
services port and forward all the requests to the service, which would then be listening on localhost.

In puppet-tripleo you need to go to the manifest that deploys the API for your service, and add the
following parameters:

class tripleo::profile::base::my_service::api (
...
$certificates_specs = hiera('apache_certificates_specs', {}),
$enable_internal_tls = hiera('enable_internal_tls', false),
$my_service_network = hiera('my_service_api_network', undef),
$tls_proxy_bind_ip = undef,
$tls_proxy_fqdn = undef,
$tls_proxy_port = 5123,
...

) {
...

• certificates_specs, enable_internal_tls and my_service_network have al-
ready been mentioned in the Services that run over httpd section.

• tls_proxy_bind_ip, tls_proxy_fqdn and tls_proxy_port are parameters that will
be used by the httpd-based TLS proxy. They will tell it where what IP to listen on, the FQDN
(which will be used as the servername) and the port it will use. Usually the port will match your
services port. These values are expected to be set from tripleo-heat-templates.

Next comes the code for the actual proxy:

...
if $enable_internal_tls {

if !$my_service_network {
fail('my_service_network is not set in the hieradata.')

}
$tls_certfile = $certificates_specs["httpd-${my_service_network}"][

↪→'service_certificate']
$tls_keyfile = $certificates_specs["httpd-${my_service_network}"][

↪→'service_key']

::tripleo::tls_proxy { 'my_service_proxy':
servername => $tls_proxy_fqdn,
ip => $tls_proxy_bind_ip,
port => $tls_proxy_port,
tls_cert => $tls_certfile,
tls_key => $tls_keyfile,
notify => Class['::my_service::api'],

}
}
...

1.2. Developer Documentation 27

https://github.com/openstack/puppet-tripleo

TripleO Documentation, Release 0.0.1.dev1610

• The ::tripleo::tls_proxy is the resource that will configure the TLS proxy for your ser-
vice. As you can see, it receives the certificates that come from the certificates_specs
which contain the specification for the certificates, including the paths for the keys.

• The notify is added here since we want the proxy to be set before the service.

In tripleo-heat-templates, you should modify your services template and add the following:

parameters:
...

EnableInternalTLS:
type: boolean
default: false

...
conditions:

...
use_tls_proxy: {equals : [{get_param: EnableInternalTLS}, true]}

...
resources:
...

TLSProxyBase:
type: OS::TripleO::Services::TLSProxyBase
properties:

ServiceNetMap: {get_param: ServiceNetMap}
EndpointMap: {get_param: EndpointMap}
EnableInternalTLS: {get_param: EnableInternalTLS}

• EnableInternalTLS is a parameter thats passed via parameter_defaults which tells
the templates that we want to use TLS in the internal network.

• use_tls_proxy is a condition that well use to modify the behaviour of the template depending
on whether TLS in the internal network is enabled or not.

• TLSProxyBase will make the default values from the proxys template available to where our
service is deployed. We should make sure that we combine our services hieradata with the hiera-
data coming from that resource by doing a map_merge with the config_settings:

...
config_settings:
map_merge:

- get_attr: [TLSProxyBase, role_data, config_settings]
- # Here goes our service's metadata

...

So, with this, we can tell the service to bind on localhost instead of the default interface depending if
TLS in the internal network is enabled or not. Lets now set the hieradata that the puppet module needs
in our services hieradata, which is in the config_settings section:

tripleo::profile::base::my_service::api::tls_proxy_bind_ip:
get_param: [ServiceNetMap, MyServiceNetwork]

tripleo::profile::base::my_service::api::tls_proxy_fqdn:
str_replace:

template:
"%{hiera('fqdn_$NETWORK')}"

params:
$NETWORK: {get_param: [ServiceNetMap, MyServiceNetwork]}

tripleo::profile::base::my_service::api::tls_proxy_port:

(continues on next page)

1.2. Developer Documentation 28

https://github.com/openstack/tripleo-heat-templates

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

get_param: [EndpointMap, NeutronInternal, port]
my_service::bind_host:

if:
- use_tls_proxy
- 'localhost'
- {get_param: [ServiceNetMap, MyServiceNetwork]}

• The ServiceNetMap contains the references to the networks every service is listening on, and
the key to get the network is the name of your service but using camelCase instead of underscores.
This value will be automatically replaced by the actual IP.

• tripleo-heat-templates generates automatically hieradata that contains the different network-
dependant hostnames. They keys are in the following format:

fqdn_<network name>

So, to get it, we get the network name from the ServiceNetMap, and do a str_replace in
heat that will use that network name and add it to a hiera call that will then gets us the FQDN we
need.

• The port we can easily get from the EndpointMap.

• The conditional uses the actual IP if theres no TLS in the internal network enabled and localhost
if it is.

Finally, we add the metadata_settings section to make sure we get a kerberos service principal:

metadata_settings:
get_attr: [TLSProxyBase, role_data, metadata_settings]

Summary

References:

1. https://etherpad.openstack.org/p/tripleo-composable-roles-work

2. https://review.opendev.org/#/c/245804/2/specs/mitaka/composable-services-within-roles.rst

3. https://review.opendev.org/#/q/topic:composable_service

4. https://docs.openstack.org/tripleo-docs/latest/install/advanced_deployment/template_deploy.html

5. http://hardysteven.blogspot.com.es/2015/05/tripleo-heat-templates-part-1-roles-and.html

6. http://hardysteven.blogspot.com.es/2015/05/tripleo-heat-templates-part-2-node.html

7. http://hardysteven.blogspot.com.es/2015/05/tripleo-heat-templates-part-3-cluster.html

1.2. Developer Documentation 29

https://etherpad.openstack.org/p/tripleo-composable-roles-work
https://review.opendev.org/#/c/245804/2/specs/mitaka/composable-services-within-roles.rst
https://review.opendev.org/#/q/topic:composable_service
https://docs.openstack.org/tripleo-docs/latest/install/advanced_deployment/template_deploy.html
http://hardysteven.blogspot.com.es/2015/05/tripleo-heat-templates-part-1-roles-and.html
http://hardysteven.blogspot.com.es/2015/05/tripleo-heat-templates-part-2-node.html
http://hardysteven.blogspot.com.es/2015/05/tripleo-heat-templates-part-3-cluster.html

TripleO Documentation, Release 0.0.1.dev1610

Service template sections description

As mentioned in the previous sections of the developer guide, there are several sections of the templates
output that need to be filled out for creating a service in TripleO.

In this document we will attempt to enumerate all of them and explain the reasoning behind them.

Note that you can also find useful information in the tht deployment readme.

Whats the bare-minimum?

Before, digging into details, its always good to know what the bare-minimum is. So lets look at a very
minimal service template:

heat_template_version: rocky

description: Configure Red Hat Subscription Management.

parameters:
RoleNetIpMap:

default: {}
type: json

ServiceData:
default: {}
description: Dictionary packing service data
type: json

ServiceNetMap:
default: {}
description: Mapping of service_name -> network name. Typically set

via parameter_defaults in the resource registry. This
mapping overrides those in ServiceNetMapDefaults.

type: json
RoleName:

default: ''
description: Role name on which the service is applied
type: string

RoleParameters:
default: {}
description: Parameters specific to the role
type: json

EndpointMap:
default: {}
description: Mapping of service endpoint -> protocol. Typically set

via parameter_defaults in the resource registry.
type: json

RhsmVars:
default: {}
description: Hash of ansible-role-redhat-subscription variables

used to configure RHSM.
The parameters contains sensible data like activation key or

↪→password.
hidden: true
tags:

- role_specific
type: json

(continues on next page)

1.2. Developer Documentation 30

https://opendev.org/openstack/tripleo-heat-templates/src/branch/master/deployment/README.rst

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

resources:
Merging role-specific parameters (RoleParameters) with the default

↪→parameters.
RoleParameters will have the precedence over the default parameters.
RoleParametersValue:

type: OS::Heat::Value
properties:

type: json
value:

map_replace:
- map_replace:

- vars: RhsmVars
- values: {get_param: [RoleParameters]}

- values:
RhsmVars: {get_param: RhsmVars}

outputs:
role_data:

description: Role data for the RHSM service.
value:

service_name: rhsm
config_settings:

tripleo::rhsm::firewall_rules: {}
upgrade_tasks: []
step_config: ''
host_prep_tasks:

- name: Red Hat Subscription Management configuration
vars: {get_attr: [RoleParametersValue, value, vars]}
block:
- include_role:

name: redhat-subscription

Lets go piece by piece and explain whats going on.

Version and description

As with any other heat template, you do need to specify the heat_template_version, and prefer-
ably give a description of what the stack/template does.

Parameters

Youll notice that there are a bunch of heat parameters defined in this template that are not necessarily
used. This is because service templates are created in the form of a heat resource chain object. This
type of objects can create a chain or a set of objects with the same parameters, and gather the outputs
of them. So, eventually we pass the same mandatory parameters to the chain. This happens in the
common/services.yaml file. Lets take a look and see how this is called:

ServiceChain:
type: OS::Heat::ResourceChain
properties:

resources: {get_param: Services}
concurrent: true

(continues on next page)

1.2. Developer Documentation 31

https://docs.openstack.org/heat/pike/template_guide/openstack.html#OS::Heat::ResourceChain
https://github.com/openstack/tripleo-heat-templates/blob/stable/queens/common/services.yaml#L44

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

resource_properties:
ServiceData: {get_param: ServiceData}
ServiceNetMap: {get_param: ServiceNetMap}
EndpointMap: {get_param: EndpointMap}
RoleName: {get_param: RoleName}
RoleParameters: {get_param: RoleParameters}

Here we can see that the mandatory parameters for the services are the following:

• ServiceData: Contains an entry called net_cidr_map, which is a map that has the CIDRs for
each network in your deployment.

• ServiceNetMap: Contains a mapping that tells you what network is each service configured at.
Typical entries will look like: BarbicanApiNetwork: internal_api.

• EndpointMap: Contains the keystone endpoints for each service. With this youll be able to get
what port, what protocol, and even different entries for the public, internal and admin endpoints.

• RoleName: This is the name of the role on which the service is applied. It could be one of the
default roles (e.g. Controller or Compute), or a custom role, depending on how youre deploying.

• RoleParameters: A Map containing parameters to be applied to the specific role.

So, if youre writing a service template yourself, these are the parameters you have to copy into your
template.

Aside from these parameters, you can define any other parameter yourself for the service, and in order
for your service to consume the parameter, you need to pass them via parameter_defaults.

The role_data output

This is the sole output that will be read and parsed in order to get the relevant information needed from
your service. Its value must be a map, and from the aforementioned example, it minimally contains the
following:

• service_name: This is the name of the service youre configuring. The format is lower case
letters and underscores. Setting this is quite important, since this is how TripleO reports what
services are enabled, and generates appropriate hieradata, such as a list of all services enabled,
and flags that say that your service is enabled on a certain node.

• config_settings: This will contain a map of key value pairs; the map will be written to
the hosts in the form of hieradata, which puppet can then run and use to configure your service.
Note that the hieradata will only be written on hosts that are tagged with a role that enables your
service.

• upgrade_tasks: These are ansible tasks that run when TripleO is running an upgrade with
your service enabled. If you dont have any upgrade tasks to do, you still have to specify this
output, but its enough to set it as an empty list.

• step_config: This defines what puppet manifest should be run to configure your service.
It typically is a string with the specific include statement that puppet will run. If youre not
configuring your service with puppet, then you need to set this value as an empty string. There is
an exception, however: When youre configuring a containerized service. Well dig into that later.

These are the bare-minimum sections of role_data you need to set up. However, you might have
noticed that the example we linked above has another section called host_prep_data. This section

1.2. Developer Documentation 32

TripleO Documentation, Release 0.0.1.dev1610

is not mandatory, but it is one of the several ways you can execute Ansible tasks on the host in order to
configure your service.

Ansible-related parameters

The following are sections of the service template that allow you to use Ansible to execute actions or
configure your service.

Host prep deployment (or host_prep_tasks)

This is seen as host_prep_tasks in the deployment service templates. These are Ansible tasks
that run before the configuration steps start, and before any major services are configured (such as
pacemaker). Here you would put actions such as wiping out your disk, or migrating log files.

Lets look at the output section of the example from the previous blog post:

outputs:
role_data:

description: Role data for the RHSM service.
value:

service_name: rhsm
config_settings:

tripleo::rhsm::firewall_rules: {}
upgrade_tasks: []
step_config: ''
host_prep_tasks:

- name: Red Hat Subscription Management configuration
vars: {get_attr: [RoleParametersValue, value, vars]}
block:
- include_role:

name: redhat-subscription

Here we see that an Ansible role is called directly from the host_prep_tasks section. In this case,
were setting up the Red Hat subscription for the node where this is running. We would definitely want
this to happen in the very beginning of the deployment, so host_prep_tasks is an appropriate place
to put it.

Pre Deploy Step tasks (or pre_deploy_step_tasks)

These are Ansible tasks that take place in the overcloud nodes. They are run after the network is com-
pletely setup, after the bits to prepare for containers running are completed (TCIB/Kolla files, container
engine installation and configuration). They are also run before any External deploy tasks.

1.2. Developer Documentation 33

TripleO Documentation, Release 0.0.1.dev1610

External deploy tasks

These are Ansible tasks that take place in the node where you executed the overcloud deploy. Youll find
these in the service templates in the external_deploy_tasks section. These actions are also ran
as part of the deployment steps, so youll have the step fact available in order to limit the ansible tasks
to only run on a specific step. Note that this runs on each step before the deploy steps tasks, the puppet
run, and the container deployment.

Typically youll see this used when, to configure a service, you need to execute an Ansible role that has
special requirements for the Ansible inventory.

Such is the case for deploying OpenShift on baremetal via TripleO. The Ansible role for deploy-
ing OpenShift requires several hosts and groups to exist in the inventory, so we set those up in
external_deploy_tasks:

- name: generate openshift inventory for openshift_master service
copy:

dest: "{{playbook_dir}}/openshift/inventory/{{tripleo_role_name}}_
↪→openshift_master.yml"

content: |
{% if master_nodes | count > 0%}
masters:

hosts:
{% for host in master_nodes %}
{{host.hostname}}:

{{host | combine(openshift_master_node_vars) | to_nice_yaml()
↪→| indent(6)}}

{% endfor %}
{% endif %}

{% if new_masters | count > 0 %}
new_masters:

hosts:
{% for host in new_masters %}
{{host.hostname}}:

{{host | combine(openshift_master_node_vars) | to_nice_yaml()
↪→| indent(6)}}

{% endfor %}

new_etcd:
children:

new_masters: {}
{% endif %}

etcd:
children:

masters: {}

OSEv3:
children:

masters: {}
nodes: {}
new_masters: {}
new_nodes: {}
{% if groups['openshift_glusterfs'] | default([]) %}glusterfs: {}

↪→{% endif %}

1.2. Developer Documentation 34

TripleO Documentation, Release 0.0.1.dev1610

In the case of OpenShift, Ansible itself is also called as a command from here, using variables and the
inventory thats generated in this section. This way we dont need to mix the inventory that the overcloud
deployment itself is using with the inventory that the OpenShift deployment uses.

Deploy steps tasks

These are Ansible tasks that take place in the overcloud nodes. Note that like any other service,
these tasks will only execute on the nodes whose role has this service enabled. Youll find this as the
deploy_steps_tasks section in the service templates. These actions are also ran as part of the
deployment steps, so youll have the step fact available in order to limit the ansible tasks to only run
on a specific step. Note that on each step, this runs after the external deploy tasks, but before the puppet
run and the container deployment.

Typically youll run quite simple tasks in this section, such as setting the boot parameters for the nodes.
Although, you can also run more complex roles, such as the IPSec service deployment for TripleO:

- name: IPSEC configuration on step 1
when: step == '1'
block:
- include_role:

name: tripleo-ipsec
vars:

map_merge:
- ipsec_configure_vips: false

ipsec_skip_firewall_rules: false
- {get_param: IpsecVars}

This type of deployment applies for services that are better tied to TripleOs Ansible inventory or that
dont require a specific inventory to run.

Container-related parameters

This covers the sections that allow you to write a containerized service for TripleO.

Containerized services brought a big change to TripleO. From packaging puppet manifests and rely-
ing on them for configuration, we now have to package containers, make sure the configuration ends
up in the container somehow, then run the containers. Here I wont describe the whole workflow of
how we containerized OpenStack services, but instead Ill describe what you need to know to deploy a
containerized service with TripleO.

puppet_config section

Before getting into the deployment steps where TripleO starts running services and containers, there
is a step where puppet is ran in containers and all the needed configurations are created. The
puppet_config section controls this step.

There are several options we can pass here:

• puppet_tags: This describes the puppet resources that will be allowed to run in puppet when
generating the configuration files. Note that deeper knowledge of your manifests and what runs in
puppet is required for this. Else, it might be better to generate the configuration files with Ansible
with the mechanisms described in previous sections of this document. Any service that specifies

1.2. Developer Documentation 35

TripleO Documentation, Release 0.0.1.dev1610

tags will have the default tags of 'file,concat,file_line,augeas,cron' appended
to the setting. To know what settings to set here, as mentioned, you need to know your puppet
manifests. But, for instance, for keystone, an appropriate setting would be: keystone_config.
For our etcd example, no tags are needed, since the default tags we set here are enough.

• config_volume: The name of the directory where configuration files will be generated for
this service. Youll eventually use this to know what location to bind-mount into the container to
get the configuration. So, the configuration will be persisted in: /var/lib/config-data/
puppet-generated/<config_volume>

• config_image: The name of the container image that will be used for generating configura-
tion files. This is often the same container that the runtime service uses. Some services share a
common set of config files which are generated in a common base container. Typically youll get
this from a parameter you pass to the template, e.g. <Service name>Image or <Service
name>ConfigImage. Dealing with these images requires dealing with the container image
prepare workflow. The parameter should point to the specific image to be used, and itll be pulled
from the registry as part of the deployment.

• step_config: Similarly to the step_config thats described earlier in this document, this
setting controls the puppet manifest that is ran for this service. The aforementioned puppet tags
are used along with this manifest to generate a config directory for this container.

One important thing to note is that, if youre creating a containerized service, you dont need to output
a step_config section from the roles_data output. TripleO figured out if youre creating a con-
tainerized service by checking for the existence of the docker_config section in the roles_data
output.

kolla_config section

As you might know, TripleO uses kolla to build the container images. Kolla, however, not only provides
the container definitions, but provides a rich framework to extend and configure your containers. Part of
this is the fact that it provides an entry point that receives a configuration file, with which you can modify
several things from the container on start-up. We take advantage of this in TripleO, and its exactly what
the kolla_config represents.

For each container we create, we have a relevant kolla_config entry, with a mapping key that has
the following format:

/var/lib/kolla/config_files/<container name>.json

This, contains YAML that represents how to map config files into the container. In the container, this
typically ends up mapped as /var/lib/kolla/config_files/config.jsonwhich kolla will
end up reading.

The typical configuration settings we use with this setting are the following:

• command: This defines the command well be running on the container. Typically itll be the
command that runs the server. So, in the example you see /usr/bin/etcd ..., which will
be the main process running.

• config_files: This tells kolla where to read the configuration files from, and where to per-
sist them to. Typically what this is used for is that the configuration generated by puppet is read
from the host as read-only, and mounted on /var/lib/kolla/config_files/src. Sub-
sequently, it is copied on to the right location by the kolla mechanisms. This way we make sure

1.2. Developer Documentation 36

https://docs.openstack.org/tripleo-docs/latest/install/containers_deployment/overcloud.html#preparing-overcloud-images
https://docs.openstack.org/tripleo-docs/latest/install/containers_deployment/overcloud.html#preparing-overcloud-images

TripleO Documentation, Release 0.0.1.dev1610

that the container has the right permissions for the right user, given well typically be in another
user namespace in the container.

• permissions: As you would expect, this sets up the appropriate permissions for a file or set of
files in the container.

docker_config section

This is the section where we tell TripleO what containers to start. Here, we explicitly write on which
step to start which container. Steps are set as keys with the step_<step number> format. Inside
these, we should set up keys with the specific container names. In our example, were running only the
etcd container, so we use a key called etcd to give it such a name. Paunch or tripleo_container_manage
Ansible role will read these parameters, and start the containers with those settings.

Heres an example of the container definition:

step_2:
etcd:

image: {get_param: ContainerEtcdImage}
net: host
privileged: false
restart: always
healthcheck:

test: /openstack/healthcheck
volumes:

- /var/lib/etcd:/var/lib/etcd
- /etc/localtime:/etc/localtime:ro
- /var/lib/kolla/config_files/etcd.json:/var/lib/kolla/config_files/

↪→config.json:ro
- /var/lib/config-data/puppet-generated/etcd/:/var/lib/kolla/config_

↪→files/src:ro
environment:

- KOLLA_CONFIG_STRATEGY=COPY_ALWAYS

This is what were telling TripleO to do:

• Start the container on step 2

• Use the container image coming from the ContainerEtcdImage heat parameter.

• For the container, use the hosts network.

• The container is not privileged.

• The container will use the /openstack/healthcheck endpoint for healthchecking

• We tell it what volumes to mount

– Aside from the necessary mounts, note that were bind-mounting the file /var/lib/
kolla/config_files/etcd.json on to /var/lib/kolla/config_files/
config.json. This will be read by kolla in order for the container to execute the actions
we configured in the kolla_config section.

– We also bind-mount /var/lib/config-data/puppet-generated/etcd/,
which is where the puppet ran (which was ran inside a container) persisted the needed
configuration files. We bind-mounted this to /var/lib/kolla/config_files/
src since we told kolla to copy this to the correct location inside the container on the
config_files section thats part of kolla_config.

1.2. Developer Documentation 37

https://docs.openstack.org/paunch/readme.html
https://docs.openstack.org/tripleo-ansible/latest/roles/role-tripleo_container_manage.html
https://www.linux.com/blog/learn/sysadmin/2017/5/lazy-privileged-docker-containers

TripleO Documentation, Release 0.0.1.dev1610

• Environment tells the container engine which environment variables to set

– We set KOLLA_CONFIG_STRATEGY=COPY_ALWAYS in the example, since this tells
kolla to always execute the config_files and permissions directives as part of the
kolla entry point. If we dont set this, it will only be executed the first time we run the
container.

container_puppet_tasks section

These are containerized puppet executions that are meant as bootstrapping tasks. They typically run on
a bootstrap node, meaning, they only run on one relevant node in the cluster. And are meant for actions
that you should only execute once. Examples of this are: creating keystone endpoints, creating keystone
domains, creating the database users, etc.

The format for this is quite similar to the one described in puppet_config section, except for the
fact that you can set several of these, and they also run as part of the steps (you can specify several of
these, divided by the step_<step number> keys).

Note: This was docker_puppet_tasks prior to the Train cycle.

1.2.2 Release Management

Releases Overview

Before reading this document and being involved in TripleO release management, its suggested to read
the OpenStack Release Management guide.

Most of TripleO projects follows the independent release model. We will be creating stable branches
based on our long term supported releases going forward. The details can be found on the releases
repository.

All information about previous releases can be found on https://releases.openstack.org. This page will
document the process of releasing TripleO projects.

The tagging convention can be discussed with the PTL or the Release Liaison of TripleO.

For puppet-tripleo, we also need to update metadata.json file:

"version": "X.Y.Z",

For other projects, there is no need to update anything since the release will be ready by pbr.

Note: Puppet OpenStack modules release management is documented here: https://docs.openstack.
org/puppet-openstack-guide/releases.html#how-to-release-puppet-modules

Once this is done, you can submit a patch in openstack/releases and per project to modify the YAML.
The openstack/releases project provides tooling to update these files. See the new-release comand.
You can also update the yaml files manually as necessary. Example with tripleo-heat-templates, edit
deliverables/pike/tripleo-heat-templates.yaml:

1.2. Developer Documentation 38

https://docs.openstack.org/project-team-guide/release-management.html
https://releases.openstack.org/reference/release_models.html#independent
https://opendev.org/openstack/releases/src/branch/master/deliverables/_independent
https://releases.openstack.org
https://docs.openstack.org/puppet-openstack-guide/releases.html#how-to-release-puppet-modules
https://docs.openstack.org/puppet-openstack-guide/releases.html#how-to-release-puppet-modules
https://releases.openstack.org/reference/using.html#using-new-release-command

TripleO Documentation, Release 0.0.1.dev1610

launchpad: tripleo
release-type: python-pypi
team: tripleo
type: other
repository-settings:

openstack/tripleo-heat-templates: {}
releases:

- version: 15.0.0
projects:

- repo: openstack/tripleo-heat-templates
hash: 1ffbc6cf70c8f79cb3a1e251c9b1e366843ab97c

- version: 15.1.0
projects:

- repo: openstack/tripleo-heat-templates
hash: ec8955c26a15f3c9e659b7ae08223c544820af03

- version: 16.0.0
projects:

- repo: openstack/tripleo-heat-template
hash: <MY NEW HASH>

Once the file is edited, you can submit it and OpenStack release team will review it. Note that the patch
requires +1 from TripleO PTL or TripleO Release Liaison.

The process of branching is also done by Release tools, and you need to change the YAML to specify
where we want to branch. Example with tripleo-heat-templates, edit deliverables/ocata/tripleo-heat-
templates.yaml:

launchpad: tripleo
release-type: python-pypi
team: tripleo
type: other
repository-settings:

openstack/tripleo-heat-templates: {}
branches:

- name: stable/xena
location: 16.0.0

releases:
- version: 15.0.0

projects:
- repo: openstack/tripleo-heat-templates

hash: 1ffbc6cf70c8f79cb3a1e251c9b1e366843ab97c
- version: 15.1.0

projects:
- repo: openstack/tripleo-heat-templates

hash: ec8955c26a15f3c9e659b7ae08223c544820af03
- version: 16.0.0

projects:
- repo: openstack/tripleo-heat-template

hash: <MY NEW HASH>

Keep in mind that tags, branches, release notes, announcements are generated by the tooling and nothing
has to be done manually, except what is documented here.

1.2. Developer Documentation 39

https://wiki.openstack.org/wiki/CrossProjectLiaisons#Release_management

TripleO Documentation, Release 0.0.1.dev1610

Releases for RDO

Due to TripleOs switch to the independent model, the TripleO project needs to cut tags at the end of
cycles that will not be supported in the long term. These tags are used by the RDO release process to
include a build of the TripleO rpms in the RDO release. The process to create the intermediate release
would be as follows.

Update required metadata

Some projects like puppet-tripleo and puppet-pacemaker require the metadata be updated in the repos-
itory prior to cutting a tag. If the metadata is not updated, the tagging patch to openstack/releases will
fail CI.

For puppet-tripleo and puppet-pacemaker, update the version information to represent the next tag ver-
sion (e.g. 16.1.0).

Get latest promoted content

After the previous metadata updates are available in the latest promoted content, fetch the version infor-
mation from RDO which contains the git repository hashes.

An example where this could be found is:

https://trunk.rdoproject.org/centos8-master/current-tripleo/versions.csv

Note: You will needed to adjust the centos8 to centos9 as necessary.

Prepare version tags

Based on the versions.csv data, an openstack/releases patch needs to be created to tag the release with
the provided hashes. You can determine which TripleO projects are needed by finding the projects taged
with team: tripleo. An example review. Please be aware of changes between versions and create the
appropriate version number as necessary (e.g. major, feature, or bugfix).

Note: If this is a long term release, this patch should include a stable branch.

Notify RDO team of tags

Once the release has been created, make sure the RDO team not has been notified of the new tags. They
will update the RDO release items to ensure that the given openstack release will contained the pinned
content.

1.2. Developer Documentation 40

https://specs.openstack.org/openstack/tripleo-specs/specs/xena/tripleo-independent-release.html
https://review.opendev.org/c/openstack/puppet-tripleo/+/813847
https://review.opendev.org/c/openstack/puppet-pacemaker/+/813854
https://opendev.org/openstack/releases/src/commit/fcdb1f5b556e99f25f248d38f16ad812489c9be0/deliverables/_independent/tripleo-heat-templates.yaml
https://review.opendev.org/c/openstack/releases/+/813852

TripleO Documentation, Release 0.0.1.dev1610

1.2.3 Primer python-tripleoclient and tripleo-common

This document gives an overview of how python-tripleoclient provides the cli interface for TripleO. In
particular it focuses on two key aspects of TripleO commands: where they are defined and how they
(very basically) work.

Whilst python-tripleoclient provides the CLI for TripleO, it is in tripleo-common that the logic behind a
given command resides. So interfacing with OpenStack services such as Heat, Nova or Mistral typically
happens in tripleo-common.

For this primer we will use a specific example command but the same applies to any TripleO cli com-
mand to be found in the TripleO documentation or in any local deployment (or even in TripleO CI)
logfiles.

The example used here is:

openstack overcloud container image build

This command is used to build the container images listed in the tripleo-common file over-
cloud_containers.yaml using Kolla.

See the Building Containers Deploy Guide for more information on how to use this command as an
operator.

One of the TipleO CI jobs that executes this command is the tripleo-build-containers-centos-7 job. This
job invokes the overcloud container image build command in the build.sh.j2 template:

openstack overcloud container image build \
--config-file $TRIPLEO_COMMON_PATH/container-images/overcloud_containers.
↪→yaml \
--kolla-config-file {{ workspace }}/kolla-build.conf \

The relevance of showing this is simply to serve as an example in the following sections. First we see
how to identify where in the tripleoclient code a given command is defined, and then how the command
works, highlighting a recurring pattern common to all TripleO commands.

TripleO commands: where

Luckily the location of all TripleO commands is given in the list of entry_points in the python-
tripleoclient setup.cfg file. Each key=value pair has a key derived from the TripleO command. Taking
the command, omit the initial openstack and link subcommands with underscore instead of whitespace.
That is, for the openstack overcloud container image build command the equivalent entry is over-
cloud_container_image_build:

[entry_points]
openstack.cli.extension =

tripleoclient = tripleoclient.plugin

openstack.tripleoclient.v1 =
...

overcloud_container_image_build = tripleoclient.v1.container_
↪→image:BuildImage

The value in each key=value pair provides us with the file and class name used in the tripleo-
client namespace for this comand. For overcloud_container_image_build we have tripleo-

1.2. Developer Documentation 41

https://opendev.org/openstack/python-tripleoclient/
https://opendev.org/openstack/tripleo-common/
https://opendev.org/openstack/tripleo-common/src/branch/master/container-images/overcloud_containers.yaml?id=827af753884e15326863ff2207b2ac95d4ad595b#n1
https://opendev.org/openstack/tripleo-common/src/branch/master/container-images/overcloud_containers.yaml?id=827af753884e15326863ff2207b2ac95d4ad595b#n1
https://opendev.org/openstack/kolla
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/deployment/3rd_party.html
http://zuul.opendev.org/builds?job_name=tripleo-build-containers-centos-7
https://opendev.org/openstack-infra/tripleo-ci/src/branch/master/playbooks/tripleo-buildcontainers/templates/build.sh.j2?id=69212e1cd8726396c232b493f1aec79480459666#n5
https://opendev.org/openstack/python-tripleoclient/
https://opendev.org/openstack/python-tripleoclient/
https://opendev.org/openstack/python-tripleoclient/src/branch/master/setup.cfg?id=73cc43898cfcc8b99ce736f734fc5b514f5bc6e9#n46

TripleO Documentation, Release 0.0.1.dev1610

client.v1.container_image:BuildImage, which means this command is defined in a class called
BuildImage inside the tripleoclient/v1/container_image.py file.

TripleO commands: how

Obviously each TripleO command works differently in that they are doing different things - deploy vs
upgrade the undercloud vs overcloud etc. However there is at least one commonality which we highlight
in this section. Each TripleO command class defines a get_parser function and a take_action function.

The get_parser is where all command line arguments are defined and take_action is where tripleo-
common is invoked to perform the task at hand, building container images in this case.

Looking inside the BuildImage class we find:

def get_parser(self, prog_name):
...

parser.add_argument(
"--config-file",
dest="config_files",
metavar='<yaml config file>',
default=[],
action="append",
help=_("YAML config file specifying the images to build. May be "

"specified multiple times. Order is preserved, and later "
"files will override some options in previous files. "
"Other options will append. If not specified, the default "
"set of containers will be built."),

)
parser.add_argument(

"--kolla-config-file",

Here we can see where the two arguments shown in the introduction above are defined: config-file
and kolla-config-file. You can see the default values and all other attributes for each of the command
parameters there.

Finally we can look for the take_action function to learn more about how the command actually works.
Typically the take_action function will have some validation of the provided arguments before calling
out to tripleo-common to actually do the work (build container images in this case):

from tripleo_common.image import kolla_builder
...
def take_action(self, parsed_args):
...

try:
builder = kolla_builder.KollaImageBuilder(parsed_args.config_files)
result = builder.build_images(kolla_config_files,

Here we can see the actual image build is done by the kolla_builder.KollaImageBuilder class
build_images function. Looking in tripleo-common we can follow that python namespace to find the
definition of build_images in the tripleo_common/image/kolla_builder.py file:

def build_images(self, kolla_config_files=None, excludes=[],
template_only=False, kolla_tmp_dir=None):

cmd = ['kolla-build']
...

1.2. Developer Documentation 42

https://opendev.org/openstack/python-tripleoclient/src/branch/master/tripleoclient/v1/container_image.py?id=0132e7d08240d8a9d5839cc4345574d44ec2b278#n100
https://opendev.org/openstack/python-tripleoclient/src/branch/master/tripleoclient/v1/container_image.py?id=0132e7d08240d8a9d5839cc4345574d44ec2b278#n119
https://opendev.org/openstack/python-tripleoclient/src/branch/master/tripleoclient/v1/container_image.py?id=0132e7d08240d8a9d5839cc4345574d44ec2b278#n184
https://opendev.org/openstack/python-tripleoclient/src/branch/master/tripleoclient/v1/container_image.py?id=0132e7d08240d8a9d5839cc4345574d44ec2b278#n119
https://opendev.org/openstack/python-tripleoclient/src/branch/master/tripleoclient/v1/container_image.py?id=0132e7d08240d8a9d5839cc4345574d44ec2b278#n184
https://opendev.org/openstack/python-tripleoclient/src/branch/master/tripleoclient/v1/container_image.py?id=0132e7d08240d8a9d5839cc4345574d44ec2b278#n184
https://opendev.org/openstack/tripleo-common/src/branch/master/tripleo_common/image/kolla_builder.py?id=3db41939a370ef3bbd2c6b60ca24e6e8e4b6e30a#n441

TripleO Documentation, Release 0.0.1.dev1610

1.2.4 Upgrades Development

This section is intended to give a better understanding of the upgrade/update process in TripleO. As well
as a walkthrough for developers on the way upgrade workflow enables OpenStack services upgrade.

Overcloud Major Upgrade Workflow and CLI

The purpose of this documentation is to deep-dive into the code which delivers the major upgrade work-
flow in TripleO. For information about the steps an operator needs to perform when running this upgrade
please see the operator docs.

The major upgrade workflow is delivered almost exclusively via Ansible playbook invocations on the
overcloud nodes. Heat is used to generate the Ansible playbooks (during the prepare command at the
beginning, and converge command at the end of the upgrade). The Queens_upgrade_spec may be of
interest in describing the design of the workflow.

CLI code is in python-tripleoclient, mistral workflows and actions in tripleo-common, and upgrade
tasks in tripleo-heat-templates. The following sections dive into the details top-down per individual CLI
commands which are used to deliver the major upgrade:

• openstack overcloud upgrade prepare $ARGS

• openstack overcloud upgrade run $ARGS

• openstack overcloud external-upgrade run $ARGS

• openstack overcloud upgrade converge $ARGS

You might also find it helpful to consult this high-level diagram as you read the following sections:

1.2. Developer Documentation 43

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/post_deployment/upgrade/major_upgrade.html
https://github.com/openstack/tripleo-specs/blob/master/specs/queens/tripleo_ansible_upgrades_workflow.rst
https://github.com/openstack/python-tripleoclient/blob/master/tripleoclient/v1/overcloud_upgrade.py
https://github.com/openstack/tripleo-common/blob/master/workbooks/package_update.yaml
https://github.com/openstack/tripleo-heat-templates/blob/8277d675bc9496eb164f429fa265f79252166f2d/common/deploy-steps.j2#L604

TripleO Documentation, Release 0.0.1.dev1610

openstack overcloud upgrade prepare $ARGS

The entry point for the the upgrade CLI commands, prepare, run and converge, is given in the python-
tripleoclient setup.cfg. All three are also defined in the same file, overcloud-upgrade.py.

The prepare Heat stack update does not apply any TripleO configuration and is exclusively used to
generate the Ansible playbooks that are subsequently invoked to deliver the upgrade.

As you can see the UpgradePrepare class inherits from DeployOvercloud. The reason for this is to
prevent duplication of the logic concerned with validating the configuration passed into the prepare
command (all the -e env.yaml files), as well as updating_the_swift_stored_plan with the overcloud con-
figuration.

The prepare_env_file is automatically prepended to the list of environment files passed to Heat (as spec-
ified by prepare_command_prepends). It contains resource_registry and parameter_defaults which are
intended to be in effect during the upgrade.

As a result the UpgradePrepare class inherits all the Deploy_parser_arguments, including --stack
and -e for the additional environment files. We explicitly set the update_plan_only argument so that the
Heat stack update does not get executed by the parent class and returns after completing all the template
processing.

Instead, the Heat stack update is performed by a mistral workflow. On the client side the hook is in the
update method defined in package_update.py. This invokes the package_update_plan mistral workflow
in tripleo-common. The package_update_plan workflow has a number of tasks, one of which invokes
the heat stack update using the update_stack_action.

1.2. Developer Documentation 44

../../../_images/major_upgrade.png
https://github.com/openstack/python-tripleoclient/blob/e9a68430400a6b99005c6aa675bf9bd27ed810a1/setup.cfg#L88-L90
https://github.com/openstack/python-tripleoclient/blob/f0110cdff0edcf40d8e94d4848c543310ea5c54e/tripleoclient/v1/overcloud_upgrade.py#L14
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_upgrade.py#L29
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_deploy.py#L44
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_deploy.py#L301
https://github.com/openstack/tripleo-heat-templates/blob/3ab23982a2fd3ffcad09e76f226bd4aab4040d4e/environments/lifecycle/upgrade-prepare.yaml#L4-L12
https://github.com/openstack/python-tripleoclient/blob/3d9183fc03aa96bce093e774ab4bf51655579a9c/tripleoclient/v1/overcloud_upgrade.py#L76-L79
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_deploy.py#L689-L890
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_upgrade.py#L72
https://github.com/openstack/python-tripleoclient/blob/3d9183fc03aa96bce093e774ab4bf51655579a9c/tripleoclient/workflows/package_update.py#L34
https://github.com/openstack/tripleo-common/blob/1d3aefbe2f0aac2828eba69ee9efc57a7b7bf385/workbooks/package_update.yaml#L9
https://github.com/openstack/tripleo-common/blob/1d3aefbe2f0aac2828eba69ee9efc57a7b7bf385/workbooks/package_update.yaml#L9
https://github.com/openstack/tripleo-common/blob/4d7258c2d8a521818146368568da07fd429e5a23/tripleo_common/actions/package_update.py#L100

TripleO Documentation, Release 0.0.1.dev1610

Back on the tripleoclient side, we use base_wait_for_messages to listen for messages on the Za-
qar_queue that is used by the mistral workflow.

The operator must include all environment files previously used with the overcloud deploy command. It
is especially important that the operator includes the environment file containing the references for the
target version container images.

See the operator docs for pointers to how that file is generated and for reference it will look something
like

parameter_defaults:
DockerAodhApiImage: 192.168.24.1:8787/queens/centos-binary-aodh-

↪→api:current-tripleo-rdo
DockerAodhConfigImage: 192.168.24.1:8787/queens/centos-binary-

↪→aodh-api:current-tripleo-rdo
DockerAodhEvaluatorImage: 192.168.24.1:8787/queens/centos-

↪→binary-aodh-evaluator:current-tripleo-rdo
DockerAodhListenerImage: 192.168.24.1:8787/queens/centos-binary-

↪→aodh-listener:current-tripleo-rdo

Once the Heat stack update has been completed successfully and the stack is in UPDATE_COMPLETE
state, you can download the configuration ansible playbooks using the config download cli

[stack@521-m--undercloud ~]$ source stackrc
(undercloud) [stack@521-m--undercloud ~]$ openstack overcloud
↪→config download --config-dir MYCONFIGDIR
The TripleO configuration has been successfully generated into:
↪→MYCONFIGDIR/tripleo-gep7gh-config

and you can inspect the ansible playbooks which are used by the upgrade run before executing them.

openstack overcloud upgrade run $ARGS

Unlike the first step in the workflow, the upgrade prepare, the UpgradeRun class does not inherit from
DeployOvercloud. There is no need for the operator to pass all the environment files and configuration
here. The template processing and update of the stack and swift stored plan have already taken place.
The ansible playbooks are ready to be retrieved by config download as demonstrated above. The up-
grade run operation thus will simply execute those ansible playbooks generated by the upgrade prepare
command, against the nodes specified in the parameters.

Either --nodes or --roles parameters are used to limit the ansible playbook execution to specific
nodes. Both --roles and --nodes are used by ansible with the tripleo-ansible-inventory. This
creates the ansible inventory based on the Heat stack outputs, so that for example Controller and
overcloud-controller-0 are both valid values for the ansible-playbook --limit parameter.

See overcloud upgrade run for additional information.

As documented in the major upgrade documentation and the nodes_or_roles_helptext, the operator must
use --roles for the controllers. Upgrading the controlplane, one node at a time is currently not
supported, mainly due to limitations in the pacemaker cluster upgrade which needs to occur across all
nodes in the same operation. The operator may use --roles for non controlplane nodes or may prefer
to specify one or more specific nodes by name with --nodes. In either case the value specified by the
operator is simply passed through to ansible as the limit_hosts parameter.

The --ssh-user and all other parameters are similarly collected and passed to the ansible invocation
which starts on the client side in the run_update_ansible_action method call. The --skip-tags

1.2. Developer Documentation 45

https://github.com/openstack/python-tripleoclient/blob/3d9183fc03aa96bce093e774ab4bf51655579a9c/tripleoclient/workflows/package_update.py#L38
https://github.com/openstack/tripleo-common/blob/1d3aefbe2f0aac2828eba69ee9efc57a7b7bf385/workbooks/package_update.yaml#L17
https://github.com/openstack/tripleo-common/blob/1d3aefbe2f0aac2828eba69ee9efc57a7b7bf385/workbooks/package_update.yaml#L17
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/post_deployment/upgrade/major_upgrade.html
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_upgrade.py#L94
https://github.com/openstack/tripleo-common/blob/cef9c406514fd0b01b7984b89334d8e8abd7a244/tripleo_common/inventory.py#L1
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/post_deployment/upgrade/major_upgrade.html#openstack-overcloud-upgrade-run
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_upgrade.py#L111-L131
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_upgrade.py#L207-L212
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_upgrade.py#L212-L217

TripleO Documentation, Release 0.0.1.dev1610

parameter can be used to skip certain ansible tasks with the ansible-skip-tags ansible-playbook pa-
rameter. The allowed --skip-tags values are restricted to a predefined set, validated against MA-
JOR_UPGRADE_SKIP_TAGS. Finally, the --playbook parameter as the name suggests is used to
specify the ansible playbook(s) to run. By default and as you can see in the definition, this defaults
to a special value all which causes all-upgrade-playbooks-to-run. The value of all_playbooks in that
previous reference, is stored in the MAJOR_UPGRADE_PLAYBOOKS constant.

As with the upgrade prepare, for upgrade run a mistral workflow is used to perform the main
operation, which in this case is execution of the ansible playbooks. On the client side the up-
date_nodes_workflow_invocation is where mistral is invoked and takes as workflow input the various
collected parameters described above. You can see that the update_nodes_workflow which lives in
tripleo-common has parameters defined under the input: section which correspond to the openstack
overcloud upgrade run parameters.

There are two main tasks in the update_nodes_workflow, the download-config_action which is in-
voked in a first download_config task, and the ansible-playbook_action action which is invoked in the
node_update task. This is ultimately where ansible-playbook-is-executed with processutils.execute.

Finally back on the client side we listen for messages on the run_zaqar_queue before declaring the
upgrade-run-success!

openstack overcloud external-upgrade run $ARGS

The external-upgrade run command is used to upgrade the services whose deployment (and upgrade)
procedure is not tied to execution on particular overcloud nodes. The deployment/upgrade procedures
are thus executed from the undercloud, even though a full overcloud inventory is available for use.

The external upgrade playbook first executes external_upgrade_tasks and then external_deploy_tasks.
The execution happens within the same Ansible play, so facts from external_upgrade_tasks are carried
over to external_deploy_tasks. This is a mechanism which will allow you to amend what your deploy
tasks do based on whether an upgrade is being run or not.

Often its not desirable to run the tasks for all services at the same time, so external-upgrade run supports
--tags argument to limit which tasks are run.

The mechanisms of external-upgrade and external-update commands and Ansible tasks are the same,
but two commands and task hooks are provided because generally in OpenStack we distinguish minor
update vs. major upgrade workflows. If your service only has one type of upgrade, you can make the
external_update_tasks the same as external_upgrade_tasks by using YAML anchors and references.

openstack overcloud upgrade converge $ARGS

The UpgradeConverge class like the UpgradePrepare class also inherits from the DeployOvercloud class
thus getting all of its parameters and template processing. The operator needs to pass in all Heat envi-
ronment files used as part of the upgrade prepare including the container images file.

The main objective of the upgrade converge operation is to unset the upgrade specific parameters that
have been set on the overcloud Heat stack as part of prepare. These are unset using the converge_env_file
which is included in the list of client_converge_env_files passed to the Heat stack update.

The converge applies all TripleO configuration against all overcloud nodes and thus serves as a sanity
check that the overcloud was successfully upgraded, since the same configuration will already have been

1.2. Developer Documentation 46

https://docs.ansible.com/ansible/2.4/ansible-playbook.html#cmdoption-ansible-playbook-skip-tags
https://github.com/openstack/python-tripleoclient/blob/3931606423a17c40a4458eb4df3c47cc6a829dbb/tripleoclient/constants.py#L56
https://github.com/openstack/python-tripleoclient/blob/3931606423a17c40a4458eb4df3c47cc6a829dbb/tripleoclient/constants.py#L56
https://github.com/openstack/python-tripleoclient/blob/3931606423a17c40a4458eb4df3c47cc6a829dbb/tripleoclient/utils.py#L946
https://github.com/openstack/python-tripleoclient/blob/3931606423a17c40a4458eb4df3c47cc6a829dbb/tripleoclient/constants.py#L53
https://github.com/openstack/python-tripleoclient/blob/3931606423a17c40a4458eb4df3c47cc6a829dbb/tripleoclient/workflows/package_update.py#L85
https://github.com/openstack/python-tripleoclient/blob/3931606423a17c40a4458eb4df3c47cc6a829dbb/tripleoclient/workflows/package_update.py#L85
https://github.com/openstack/tripleo-common/blob/cef9c406514fd0b01b7984b89334d8e8abd7a244/workbooks/package_update.yaml#L99-L114
https://github.com/openstack/tripleo-common/blob/cef9c406514fd0b01b7984b89334d8e8abd7a244/workbooks/package_update.yaml#L99-L114
https://github.com/openstack/tripleo-common/blob/cef9c406514fd0b01b7984b89334d8e8abd7a244/tripleo_common/actions/config.py#L65
https://github.com/openstack/tripleo-common/blob/cef9c406514fd0b01b7984b89334d8e8abd7a244/tripleo_common/actions/ansible.py#L243
https://github.com/openstack/tripleo-common/blob/cef9c406514fd0b01b7984b89334d8e8abd7a244/tripleo_common/actions/ansible.py#L533-L535
https://github.com/openstack/python-tripleoclient/blob/3931606423a17c40a4458eb4df3c47cc6a829dbb/tripleoclient/workflows/package_update.py#L89
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_upgrade.py#L219-L222
https://github.com/openstack/python-tripleoclient/blob/3931606423a17c40a4458eb4df3c47cc6a829dbb/tripleoclient/v1/overcloud_upgrade.py#L225
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_deploy.py#L44
https://github.com/openstack/tripleo-heat-templates/blob/3ab23982a2fd3ffcad09e76f226bd4aab4040d4e/environments/lifecycle/upgrade-converge.yaml#L4-L7
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_upgrade.py#L253

TripleO Documentation, Release 0.0.1.dev1610

applied. The converge will also leave the Heat stack in a good state for subsequent updates, for instance
scaling to add nodes.

As these values are set in parameter_defaults a Heat stack update is required against the overcloud Heat
stack to explicitly unset them. In particular and as pointed out in the operator_converge_docs until
converge has completed, any operations that require a Heat stack update will likely fail, as the noop
of the DeploymentSteps in the prepare_env_file in particular means none of the usual docker/puppet/*
config is applied. Setting something with parameter_defaults means it is used until explicitly unset
via parameter_defaults as that value will override any other default value specified via the tripleo-heat-
templates.

Unlike the prepare command there is no mistral workflow here and instead we rely on the parent Deploy-
Overcloud class to invoke the converge_heat_stack_update and so the implementation is also simpler.

Upgrade CLI developer workflow

This section will give some examples of a potential developer workflow for testing fixes or in-progress
gerrit reviews against python-tripleoclient, tripleo-common or tripleo-heat-templates for the upgrade
workflow. This may be useful if you are working on an upgrades related bug for example.

Making changes to the ansible playbooks

If there is a failure running one of the upgrades related ansible playbooks, you might need to examine
and if necessary fix the related ansible task. The tasks themselves live in each of the tripleo-heat-
templates service manifests, under the upgrade_tasks section of the template outputs. For example see
the containerized rabbitmq_upgrade_tasks.

If you make a change in service upgrade_tasks, then to test it you will need to

1. Patch the tripleo-heat-templates in your environment with the fix

2. Rerun openstack overcloud upgrade prepare $ARGS, so that the resulting ansible playbooks in-
clude your fix.

3. Finally run the playbooks with openstack overcloud upgrade run $ARGS.

Assuming you are using the default /usr/share/openstack-tripleo-heat-templates directory for the deploy-
ment templates you can use the following as just one example:

backup tht in case you want to revert - or just yum re-install ;
↪→)
sudo cp -r /usr/share/openstack-tripleo-heat-templates \

/usr/share/openstack-tripleo-heat-templates.ORIG
Apply patch from gerrit e.g. https://review.opendev.org/#/c/
↪→563073/
curl -4sSL 'https://review.opendev.org/changes/563073/revisions/
↪→current/patch?download' | \

base64 -d | \
sudo patch -d /usr/share/openstack-tripleo-heat-templates/ -p1

1.2. Developer Documentation 47

https://docs.openstack.org/tripleo-docs/latest/install/post_deployment/upgrade.html#openstack-overcloud-upgrade-converge
https://github.com/openstack/tripleo-heat-templates/blob/3ab23982a2fd3ffcad09e76f226bd4aab4040d4e/environments/lifecycle/upgrade-prepare.yaml#L4-L12
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_deploy.py#L44
https://github.com/openstack/python-tripleoclient/blob/c7b7b4e3dcd34f9e51686065e328e73556967bab/tripleoclient/v1/overcloud_deploy.py#L44
https://github.com/openstack/python-tripleoclient/blob/3931606423a17c40a4458eb4df3c47cc6a829dbb/tripleoclient/v1/overcloud_deploy.py#L223
https://github.com/openstack/tripleo-heat-templates/blob/master/deployment/rabbitmq/rabbitmq-messaging-rpc-pacemaker-puppet.yaml#L305

TripleO Documentation, Release 0.0.1.dev1610

Making changes to the upgrades workflow

If instead you need to add or fix something in the upgrades workflow itself, for example to handle a
new parameter needed passed through to ansible, or any other change, you will need to patch python-
tripleoclient and tripleo-common, depending on whether your fixes extend to the mistral workflow too.

There are many ways to patch your environment and the following is a different approach to the one used
in the tripleo-heat-templates above where we patched the installed templates in place. In the following
examples instead we clone tripleo-common and tripleoclient, patch them using gerrit reviews and then
re-install from source.

Note: The following example commands include complete removal and replacement of
the installed tripleoclient and tripleo-common!

Patching python-tripleoclient:

python-tripleoclient - clone source, patch from gerrit and
↪→install
git clone https://github.com/openstack/python-tripleoclient.git -
↪→b stable/queens ~/python-tripleoclient
pushd ~/python-tripleoclient

Apply patches from gerrit e.g. https://review.opendev.org/#/c/
↪→564267
curl "https://review.opendev.org/changes/564267/revisions/current/
↪→patch" | \

base64 --decode > /home/stack/"564267.patch"
patch -N -p1 -b -z .first < /home/stack/564267.patch
Remove current version and re-install
sudo rm -rf /usr/lib/python2.7/site-packages/python_tripleoclient*
sudo rm -rf /usr/lib/python2.7/site-packages/tripleoclient
sudo python setup.py clean --all install
popd

Patching tripleo-common:

Note: After switching to containerized undercloud, local tripleo-common changes to be
applied in all Mistral containers.

tripleo-common - clone from source, patch from gerrit and
↪→install
git clone https://github.com/openstack/tripleo-common -b stable/
↪→queens
pushd ~/tripleo-common
Apply patches from gerrit e.g. https://review.opendev.org/#/c/
↪→562995
curl "https://review.opendev.org/changes/562995/revisions/current/
↪→patch" | \

base64 --decode > /home/stack/"562995.patch"
patch -N -p1 -b -z .first < /home/stack/562995.patch
Remove current version and re install
sudo rm -rf /usr/lib/python2.7/site-packages/tripleo_common*

(continues on next page)

1.2. Developer Documentation 48

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

sudo python setup.py clean --all install
popd
sudo cp /usr/share/tripleo-common/sudoers /etc/sudoers.d/tripleo-
↪→common

Finally you need to update the mistral workbooks with the newly installed versions. In code block above,
the tripleo-common change at 562995 has changed package_update.yaml and so that is what we need to
update here:

mistral workbook-update /usr/share/tripleo-common/workbooks/
↪→package_update.yaml
Since entry_points.txt is affected next steps are required:
Re populate mistral db and restart services
sudo mistral-db-manage populate
sudo systemctl restart openstack-mistral-api.service
sudo systemctl restart openstack-mistral-engine.service
sudo systemctl restart openstack-mistral-executor.service

Minor version update

Assuming operator-level familiarity with the minor updates, lets look at individual pieces in more detail.

How update commands work

The following subsections describe the individual update commands:

• openstack overcloud update prepare

• openstack overcloud update run

• openstack overcloud external-update run

• openstack overcloud update converge

You might also find it helpful to consult this high-level diagram as you read:

1.2. Developer Documentation 49

https://review.opendev.org/#/c/562995

TripleO Documentation, Release 0.0.1.dev1610

openstack overcloud update prepare

The update prepare command performs a Heat stack update, mapping some resources to
OS::Heat::None in order to prevent the usual deployment config management tasks being performed
(running Puppet, starting containers, running external installers like ceph-ansible). See the update pre-
pare environment file.

The purpose of this stack update is to regenerate fresh outputs of the Heat stack. These outputs contain
Ansible playbooks and task lists which are then used in the later in the update run phase.

openstack overcloud update run

The update run command utilizes the previously generated Heat stack outputs. It downloads the play-
book yamls and their included task list yaml via the config-download mechanisms, and executes the
update steps playbook.

The command accepts --nodes or --roles argument to limit which nodes will be targeted during
a particular update run execution. Even if the limit matches multiple nodes (e.g. all nodes within one
role), the play is executed with serial: 1, meaning that all actions are finished on one node before
starting the update on another.

The play first executes update_steps_tasks.yaml which are tasks collected from the update_tasks
entry in composable services.

After the update tasks are finished, deployment workflow is is performed on the node being updated.
That means reusing host_prep_tasks.yaml and common_deploy_steps_tasks.yaml, which are executed

1.2. Developer Documentation 50

../../../_images/minor_update.png
https://github.com/openstack/tripleo-heat-templates/blob/4286727ae70b1fa4ca6656c3f035afeac6eb2a95/environments/lifecycle/update-prepare.yaml
https://github.com/openstack/tripleo-heat-templates/blob/4286727ae70b1fa4ca6656c3f035afeac6eb2a95/environments/lifecycle/update-prepare.yaml
https://github.com/openstack/tripleo-heat-templates/blob/4286727ae70b1fa4ca6656c3f035afeac6eb2a95/common/deploy-steps.j2#L558-L592

TripleO Documentation, Release 0.0.1.dev1610

like on a fresh deployment, except during minor update theyre within a play with the aforementioned
serial: 1 limiting.

Finally, post_update_tasks are executed. They are utilized by services which need to perform
something after deployment workflow during the minor update. The update of the node is complete and
the Ansible play continues to update another node.

openstack overcloud external-update run

The external-update run command is used to update the services whose deployment (and update) proce-
dure is not tied to execution on particular overcloud nodes. The deployment/update procedures are thus
executed from the undercloud, even though a full overcloud inventory is available for use.

The external update playbook first executes external_update_tasks and then external_deploy_tasks. The
execution happens within the same Ansible play, so facts from external_update_tasks are carried over
to external_deploy_tasks. This is a mechanism which will allow you to amend what your deploy tasks
do based on whether an update is being run or not.

Often its not desirable to run the tasks for all services at the same time, so external-update run supports
--tags argument to limit which tasks are run.

The mechanisms of external-upgrade and external-update commands and Ansible tasks are the same,
but two commands and task hooks are provided because generally in OpenStack we distinguish minor
update vs. major upgrade workflows. If your service only has one type of upgrade, you can make the
external_update_tasks the same as external_upgrade_tasks by using YAML anchors and references.

openstack overcloud update converge

Note: Update Converge is only required for versions less than Wallaby. Update Converge has been
removed for Wallaby and beyond.

The update converge command performs a Heat stack update, reverting the previous
OS::Heat::None resource mappings back to the values used for regular deployments and
configuration updates, and potentially also resets some parameter values. For environments with Ceph,
majority of this already happened on ceph-upgrade run, so the final update converge effectively just
resets the CephAnsiblePlaybook parameter.

See the update converge environment file.

The purpose of this stack update is to re-run config management mechanisms and assert that the over-
cloud state matches what is provided by the templates and environment files.

1.2. Developer Documentation 51

https://github.com/openstack/tripleo-heat-templates/blob/4286727ae70b1fa4ca6656c3f035afeac6eb2a95/environments/lifecycle/update-converge.yaml

TripleO Documentation, Release 0.0.1.dev1610

Writing update logic for a service

Simple config/image replacement

If the service is managed by Paunch or tripleo_container_manage Ansible role, it may be that theres no
need to write any update tasks. Paunch or tripleo_container_manage can automatically handle simple
updates: change in configuration or change of container image URL triggers automatic removal of the
old container and creation of new one with latest config and latest image. If thats all the service needs
for updates, you dont need to create any update_tasks.

Custom tasks during updates

If the service is not managed by Paunch nor tripleo_container_manage, or if the simple container re-
placement done by Paunch is not sufficient for the service update, you will need to include custom
update logic. This is done via providing these outputs in your composable service template:

• update_tasks these are executed before deployment tasks on the node being updated.

• post_update_tasks these are executed after deployment tasks on the node being updated.

Update tasks are generally meant to bring the service into a stopped state (sometimes with pre-fetched
new images, this is necessary for services managed by Pacemaker). Then the same workflow as during
deployment is used to bring the node back up into a running state, and the post-update tasks can then
perform any actions needed after the deployment workflow.

Similarly as deployment tasks, the update tasks and post-update tasks are executed in steps.

TripleO Fast Forward Upgrade (FFU) N -> N+3

For a detailed background on how the Fast Forward Upgrade (FFU) workflow was proposed please refer
to the relevant spec.

For a guide on running the FFU in your environment see the FFU Deploy Guide.

This document will explore some of the technical details of the Newton to Queens FFU specifically.

You might find it helpful to consult this high-level diagram as you read on:

1.2. Developer Documentation 52

https://opendev.org/openstack/paunch/src/branch/master/README.rst
https://docs.openstack.org/tripleo-ansible/latest/roles/role-tripleo_container_manage.html
https://opendev.org/openstack/paunch/src/branch/master/README.rst
https://docs.openstack.org/tripleo-ansible/latest/roles/role-tripleo_container_manage.html
https://github.com/openstack/tripleo-heat-templates/blob/4286727ae70b1fa4ca6656c3f035afeac6eb2a95/common/deploy-steps.j2#L17-L18
https://github.com/openstack/tripleo-specs/blob/master/specs/queens/fast-forward-upgrades.rst
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/post_deployment/upgrade/fast_forward_upgrade.html

TripleO Documentation, Release 0.0.1.dev1610

At a high level the FFU workflow consists of the following steps:

1. Perform a Minor update on the environment (both undercloud and overcloud) to bring it to the
latest Newton. This will include OS level updates, including kernel and openvswitch. As usual
for minor update the operator will reboot each node as necessary and so doing this first means the
FFU workflow doesnt (also) have to deal with node reboots later on in the process.

2. Perform 3 consecutive major upgrades of the undercloud to bring it to Queens. The under-
cloud will crucially then have the target version of the tripleo-heat-templates including the
fast_forward_upgrade_tasks that will deliver the next stages of the workflow.

3. Generate and then run the fast_forward_upgrade_playbook on the overcloud. This will:

3.1 First bring down the controlplane services on all nodes.

3.2 Then update packages, migrate databases and any other version specific tasks from
Newton to Ocata then Ocata to Pike. This happens only on a single node of each role.

4. Finally run the Pike to Queens upgrade on all nodes including the Queens upgrade tasks and
service configurations.

Step 3 above is started by first performing a Heat stack update using the Queens tripleo-heat-templates
from the Queens upgraded undercloud, but without applying any configuration. This stack update is
only used to collect the fast_forward_upgrade_tasks (ffu_tasks) from each of the services deployed in
the given environment and generate a fast_forward_upgrade_playbook ansible playbook. This playbook
is then executed to deliver steps 3.1 and 3.2 above. See below for more information about how the
ffu_tasks are compiled into the fast_forward_upgrade_playbook.

1.2. Developer Documentation 53

../../../_images/fast_fw_upgrade.png
https://docs.openstack.org/tripleo-docs/latest/install/post_deployment/package_update.html
https://review.opendev.org/#/c/499221/20/common/deploy-steps.j2@541

TripleO Documentation, Release 0.0.1.dev1610

A notable exception worthy of mention is the configuration of Ceph services which is managed by ceph-
ansible. That is, for Ceph services there is no collection of fast_forward_upgrade_tasks from the ceph
related service manifests in the tripleo-heat-templates and so Ceph is not managed by the generated
fast_forward_upgrade_playbook. Instead ceph-ansible will be invoked by the Queens deployment and
service configuration in step 4 above.

The Heat stack update performed at the start of step 3 also generates the Queens upgrade_steps_playbook
and deploy_steps_playbook ansible playbooks. One notable exception is the configuration of Ceph
services which is managed by ceph-ansible Step 4 above (Pike to Queens upgrade tasks and Queens
services configuration) is delivered through execution of these Heat stack update generated playbooks.
Ceph related upgrade and deployment will be applied here with calls to ceph-ansible.

Amongst other things, the P..Q upgrade_tasks stop and disable those systemd services that are being
migrated to run in containers. The Queens deploy steps playbook will then apply the required puppet
and docker configuration to start the containers for those services. For this to be possible the Heat stack
update which starts step 3 and that generates the ansible playbooks must include the required docker
configuration and environment files, including the latest container images and making sure to set the
to-be containerized services to refer to the equivalent docker templates for the Heat resource registry.

FFU and tripleo-heat-templates

This section will present an overview of how the fast_forward_upgrade_playbook.yaml is generated
from the tripleo-heat-templates.

FFU uses fast_forward_upgrade_tasks (ffu_tasks) to define the upgrade workflow. These are normal
ansible tasks and they are carried as a list in the outputs section of a given service manifest, see con-
tainerized neutron-api for an example.

The ffu_tasks for those services that are enabled in a given deployment are collected in the outputs
of the deploy-steps.j2 into a fast_forward_upgrade_playbook output. This is then retrieved using the
config-download mechanism and written to disk as an ansible playbook.

The fast_forward_upgrade_tasks defined for a given service can use the step and release variables to
specify when a given task should be executed. At a high level the fast_forward_upgrade_playbook
consists of two loops - there is a very good explanation in /#/c/499221 commit message, but an outer
loop for the release (first Ocata tasks then Pike tasks) and then an inner loop for the steps within each
release.

The ffu_tasks which are set to run in steps 0 to 3 are designated the
fast_forward_upgrade_prep_role_tasks and these are executed on all nodes for a given
role. Then the ffu_tasks which have steps 4 to max (currently 9) are designated the
fast_forward_upgrade_bootstrap_role_tasks and these are only executed on a single node for
each role (one controller, one compute etc).

The top level fast_forward_upgrade_playbook.yaml looks like:

- hosts: overcloud
become: true
tasks:

- include_tasks: fast_forward_upgrade_release_tasks.yaml
loop_control:

loop_var: release
with_items: {get_param: [FastForwardUpgradeReleases]}

The fast_forward_upgrade_release_tasks.yaml in turn looks like:

1.2. Developer Documentation 54

https://github.com/ceph/ceph-ansible
https://github.com/ceph/ceph-ansible
https://review.opendev.org/#/c/499221/20/common/deploy-steps.j2@541
https://github.com/ceph/ceph-ansible
https://github.com/openstack/tripleo-heat-templates/blob/82f128f15b1b1eb7bf6ac7df0c6d01e5619309eb/common/deploy-steps.j2#L528
https://github.com/openstack/tripleo-heat-templates/blob/82f128f15b1b1eb7bf6ac7df0c6d01e5619309eb/common/deploy-steps.j2#L382
https://github.com/ceph/ceph-ansible
https://github.com/ceph/ceph-ansible
https://github.com/openstack/tripleo-heat-templates/blob/82f128f15b1b1eb7bf6ac7df0c6d01e5619309eb/common/deploy-steps.j2#L382
https://docs.openstack.org/tripleo-docs/latest/install/containers_deployment/overcloud.html#preparing-the-environment
https://docs.openstack.org/tripleo-docs/latest/install/containers_deployment/overcloud.html#preparing-the-environment
https://github.com/openstack/tripleo-heat-templates/blob/750fa306ce41c949928d5a3a7253aff99dd1af8f/environments/docker.yaml#L7-L58
https://github.com/openstack/tripleo-heat-templates/blob/master/deployment/neutron/neutron-api-container-puppet.yaml#L415
https://github.com/openstack/tripleo-heat-templates/blob/master/common/deploy-steps.j2#L377
https://github.com/openstack/tripleo-common/blob/master/tripleo_common/utils/config.py
https://review.opendev.org/#/c/499221/

TripleO Documentation, Release 0.0.1.dev1610

- include_tasks: fast_forward_upgrade_prep_tasks.yaml
- include_tasks: fast_forward_upgrade_bootstrap_tasks.yaml

The fast_forward_upgrade_prep_tasks.yaml specifies the loop with sequence 0 to 3 as explained above:

- include_tasks: fast_forward_upgrade_prep_role_tasks.yaml
with_sequence: start=0 end=3
loop_control:
loop_var: step

And where the fast_forward_upgrade_prep_role_tasks.yaml includes the ffu_tasks on all nodes for each
role:

- include_tasks: Controller/fast_forward_upgrade_tasks.yaml
when: role_name == 'Controller'

- include_tasks: Compute/fast_forward_upgrade_tasks.yaml
when: role_name == 'Compute'

...etc

Similarly for the fast_forward_upgrade_bootstrap_tasks.yaml it specifies the loop sequence for the step
variable to be 4 to 9:

- include_tasks: fast_forward_upgrade_bootstrap_role_tasks.yaml
with_sequence: start=4 end=9
loop_control:
loop_var: step

And where the fast_forward_upgrade_bootstrap_role_tasks.yaml include the ffu_tasks only on a single
node for each role type:

- include_tasks: Controller/fast_forward_upgrade_tasks.yaml
when: role_name == 'Controller' and ansible_hostname == Controller[0]

- include_tasks: Compute/fast_forward_upgrade_tasks.yaml
when: role_name == 'Compute' and ansible_hostname == Compute[0]

...etc

Major upgrades & Minor updates CI coverage

This document tries to give a detailed overview of the current CI coverage for upgrades/updates jobs.
Also, it is intended as a guideline to understand how these jobs work, as well as giving some tips for
debugging.

Upgrades/Updates CI jobs

At the moment most of the upgrade jobs have been moved from upstream infrastructure to RDO Software
Factory job definition due to runtime constraints of the OpenStack infra jobs.

Each of these jobs are defined by a featureset file and a scenario file. The featureset used in a job can be
found in the last part of the job type value. This can be found in the ci job definition:

- '{trigger}-tripleo-ci-{jobname}-{release}{suffix}':
jobname: 'centos-7-containers-multinode-upgrades'

(continues on next page)

1.2. Developer Documentation 55

https://github.com/rdo-infra/review.rdoproject.org-config/blob/9668021f655e53413108f8c15988f68caa8d31ba/jobs/tripleo-upstream.yml#L802
https://github.com/rdo-infra/review.rdoproject.org-config/blob/9668021f655e53413108f8c15988f68caa8d31ba/jobs/tripleo-upstream.yml#L802
https://github.com/openstack/tripleo-quickstart/tree/master/config/general_config
https://github.com/openstack/tripleo-heat-templates/tree/master/ci/environments

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

release:
- pike
- master

suffix: ''
type: 'multinode-1ctlr-featureset011'
node: upstream-centos-7-2-node
trigger: gate

The scenario used is referenced in the featureset file, in the example above the featureset011 makes use
of the following scenarios:

composable_scenario: multinode.yaml
upgrade_composable_scenario: multinode-containers.yaml

As this job covers the upgrade from one release to another, we need to specify two scenario files. The
one used during deployment and the one used when upgrading. Each of these scenario files defines the
services deployed in the nodes.

Note: There is a matrix with the different features deployed per feature set here: featureset matrix

Currently, two types of upgrade jobs exist:

• multinode-upgrade (mixed-version): In this job, an undercloud with release N+1 is deployed,
while the overcloud is deployed with a N release. Execution time is reduced by not upgrading the
undercloud , instead the heat templates from the (N+1) undercloud are used when performing the
overcloud upgrade.

Note: If you want your patch to be tested against this job you need to add RDO Third
Party CI as reviewer or reply with the comment check-rdo experimental.

• undercloud-upgrade: This job tests the undercloud upgrade from a major release to another. The
undercloud is deployed with release N and upgraded to N+1 release. This job does not deploy an
overcloud.

Note: There is an effort to integrate the new tripleo-upgrade role into tripleo-quickstart that defines an
unified way to upgrade and update.

Upgrade/Update CI jobs, where to look

The best place to check the current CI jobs status is in the CI Status page. This webpage contains a log
of all the TripleO CI jobs, its result status, link to logs, git patch trigger and statistics about the pass/fail
rates.

To check the status of the Upgrades/Updates jobs, you need to click the TripleO CI promotion jobs link
from CI Status, where you will find the RDO cloud upgrades section:

1.2. Developer Documentation 56

https://github.com/openstack/tripleo-quickstart/blob/master/config/general_config/featureset011.yml
https://docs.openstack.org/tripleo-quickstart/latest/feature-configuration.html
https://review.opendev.org/#/q/topic:link_tripleo_upgrade
https://github.com/redhat-openstack/tripleo-upgrade
http://cistatus.tripleo.org/
http://38.145.34.234/
http://cistatus.tripleo.org/

TripleO Documentation, Release 0.0.1.dev1610

In this section the CI jobs have a color code, to show its current status in a glance:

- Red: CI job constantly failing.
- Yellow: Unstable job, frequent failures.
- Green: CI job passing consistently.

If you scroll down after pressing some of the jobs in the section you will find the CI job statistics and
the last 100 (or less, it can be edited) job executions. Each of the job executions contains:

- Date: Time and date the CI job was triggered
- Length: Job duration
- Reason: CI job result or failure reason.
- Patch: Git ref of the patch tha triggered the job.
- Logs: Link to the logs.
- Branch: Release branch used to run the job.

1.2. Developer Documentation 57

TripleO Documentation, Release 0.0.1.dev1610

Debugging Upgrade/Update CI jobs

When opening the logs from a CI job it might look a little chaotic (mainly when it is for the first time).
Its good to have an idea where you can find the logs you need, so you will be able to identify the cause
of a failure or debug some issue.

The first thing to have a look at when debugging a CI job is the console output or full log. When clicking
in the job, the following folder structure appears:

job-output.json.gz
job-output.txt.gz
logs/
zuul-info/

The job execution log is located in the job-output.txt.gz file. Once opened, a huge log will appear in
front of you. What should you look for?

(1) Find the job result

A good string to search is PLAY RECAP. At this point, all the playbooks have been executed
and a summary of the runs per node is displayed:

PLAY RECAP
↪→***
127.0.0.2 : ok=9 changed=0 unreachable=0
↪→ failed=0
localhost : ok=10 changed=3 unreachable=0
↪→ failed=0
subnode-2 : ok=3 changed=1 unreachable=0
↪→ failed=0
undercloud : ok=120 changed=78 unreachable=0
↪→ failed=1

In this case, one of the playbooks executed in the undercloud has failed. To identify which
one, we can look for the string fatal.:

fatal: [undercloud]: FAILED! => {"changed": true, "cmd": "set -o
↪→pipefail && /home/zuul/overcloud-upgrade.sh 2>&1
| awk '{ print strftime(\"%Y-%m-%d %H:%M:%S |\"), $0; fflush(); }
↪→' > overcloud_upgrade_console.log",
"delta": "0:00:39.175219", "end": "2017-11-14 16:55:47.124998",
↪→"failed": true, "rc": 1,
"start": "2017-11-14 16:55:07.949779", "stderr": "", "stdout": "",
↪→ "stdout_lines": [], "warnings": []}

From this task, we can guess that something went wrong during the overcloud upgrading
process. But, where can I find the log overcloud_upgrade_console.log referenced in the
task?

(2) Undercloud logs

From the logs directory , you need to open the logs/ folder. All undercloud logs are located
inside the undercloud/ folder. Opening it will display the following:

etc/ *configuration files*
home/ *job execution logs from the playbooks*
var/ *system/services logs*

1.2. Developer Documentation 58

TripleO Documentation, Release 0.0.1.dev1610

The log we look for is located in /home/zuul/. Most of the tasks executed in tripleo-
quickstart will store the full script as well as the execution log in this directory. So, this
is a good place to have a better understanding of what went wrong.

If the overcloud deployment or upgrade failed, you will also find two log files named:

failed_upgrade.log.txt.gz
failed_upgrade_list.log.txt.gz

The first one stores the output from the debugging command:

openstack stack failures list --long overcloud

Which prints out the reason why the deployment or upgrade failed. Although sometimes,
this information is not enough to find the root cause for the problem. The stack failures can
give you a clue of which service is causing the problem, but then youll need to investigate
the OpenStack service logs.

(3) Overcloud logs

From the logs/ folder, you can find a folder named subnode-2 which contains most of the
overcloud logs.:

apache/
ceph_conf.txt.gz
deprecations.txt.gz
devstack.journal.gz
df.txt.gz
etc/
home/
iptables.txt.gz
libvirt/
listen53.txt.gz
openvswitch/
pip2-freeze.txt.gz
ps.txt.gz
resolv_conf.txt.gz
rpm-qa.txt.gz
sudoers.d/
var/

To access the OpenStack services logs, you need to go to subnode-2/var/log/ when deploy-
ing a baremetal overcloud. If the overcloud is containerized, the service logs are stored
under subnode-2/var/log/containers.

Replicating CI jobs

Thanks to James Slagle there is now a way to reproduce TripleO CI jobs in any OpenStack cloud.
Everything is enabled by the traas project, a set of Heat templates and scripts that reproduce the TripleO
CI jobs in the same way they are being run in the Zuul gate.

When cloning the repo, you just need to set some configuration parameters. A set of sample templates
have been located under templates/example-environments. The parameters defined in this template are:

1.2. Developer Documentation 59

http://lists.openstack.org/pipermail/openstack-dev/2017-February/112993.html
https://github.com/slagle/traas
https://github.com/slagle/traas/tree/master/templates/example-environments

TripleO Documentation, Release 0.0.1.dev1610

parameters:
overcloud_flavor: [*flavor used for the overcloud instance*]
overcloud_image: [*overcloud OS image (available in cloud images)*]
key_name: [*private key used to access cloud instances*]
private_net: [*network name (it must exist and match)*]
overcloud_node_count:[*number of overcloud nodes*]
public_net: [*public net in CIDR notation*]
undercloud_image: [*undercloud OS image (available in cloud images)*]
undercloud_flavor: [*flavor used for the undercloud instance*]
toci_jobtype: [*CI job type*]
zuul_changes: [*List of patches to retrieve*]

Note: The CI job type toci_jobtype can be found in the job definition under tripleo-ci/zuul.d.

A good example to deploy a multinode job in RDO Cloud is this sample template. You can test your out
patches by appending the refs patch linked with the ^ character:

zuul_changes: <project-name>:<branch>:<ref>[^<project-name>:<branch>:<ref>
↪→]*

This allows you also to test any patch in a local environment without consuming CI resources. Or when
you want to debug an environment after a job execution.

Once the template parameters are defined, you just need to create the stack. If we would like to deploy
the rdo-cloud-env-config-download.yaml sample template we would need to run:

cd traas/
openstack stack create traas -t templates/traas.yaml \

-e templates/traas-resource-registry.yaml \
-e templates/example-environments/rdo-cloud-env-config-download.yaml

This stack will create two instances in your cloud tenant, one for undercloud and another for the over-
cloud. Once created, the stack will directly call the traas/scripts/traas.sh script which downloads all
required repositories to start executing the job.

If you want to follow up the job execution, you can ssh to the undercloud instance and tail the content
from the $HOME/tripleo-root/traas.log. All the execution will be logged in that file.

1.2. Developer Documentation 60

https://github.com/openstack-infra/tripleo-ci/blob/4042e9c225cf9dac917b8d4c3a245b8ff492056d/zuul.d/multinode-jobs.yaml#L82
https://github.com/slagle/traas/blob/master/templates/example-environments/rdo-cloud-env-config-download.yaml
https://github.com/slagle/traas/blob/master/templates/example-environments/rdo-cloud-env-config-download.yaml
https://github.com/slagle/traas/blob/fb447a585895dd783519dfec68a9728fa72b7609/scripts/traas.sh

CHAPTER

TWO

TRIPLEO ARCHITECTURE

2.1 TripleO Architecture

This document lists the main components of TripleO, and gives some description of how each component
is used. There are links to additional sources of information throughout the document.

2.1.1 Architecture Overview

TripleO is a community developed approach and set of tools for deploying, and managing an OpenStack
cloud.

TripleO

TripleO is the friendly name for OpenStack on OpenStack. It is an official OpenStack project with the
goal of allowing you to deploy and manage a production cloud onto bare metal hardware using a subset
of existing OpenStack components.

With TripleO, you start by creating an undercloud (a deployment cloud) that will contain the necessary
OpenStack components to deploy and manage an overcloud (a workload cloud). The overcloud is the
deployed solution and can represent a cloud for any purpose (e.g. production, staging, test, etc).

61

TripleO Documentation, Release 0.0.1.dev1610

TripleO leverages several existing core components of OpenStack including Nova, Ironic, Neutron, Heat,
Glance and Ceilometer to deploy OpenStack on baremetal hardware. Nova and Ironic are used in the
undercloud to manage baremetal instances that comprise the infrastructure for the overcloud. Neutron
is utilized to provide a networking environment in which to deploy the overcloud, machine images are
stored in Glance, and Ceilometer collects metrics about your overcloud.

The following diagram illustrates a physical view of how the undercloud may be hosted on one physical
server and the overcloud distributed across many physical servers.

2.1. TripleO Architecture 62

TripleO Documentation, Release 0.0.1.dev1610

SpinalStacks Inspiration

Some key aspects of SpinalStack workflow have been incorporated into TripleO, providing options to
perform introspection, benchmarking and role matching of your hardware prior to deploying OpenStack.

Hardware introspection features enable you to collect data about the properties of your hardware prior
to deployment, such that specific classes of hardware may be matched to specific roles (e.g. a special
hardware configuration for Compute or Storage roles). There is also the option to enable performance
benchmarking during this phase, such that outliers which do not match the expected performance profile
may be excluded from the deployment.

TripleO also configures servers in a similar way to SpinalStack, using stable community puppet imple-
mentations, applied in a series of steps, such that granular control and validation of the deployment is
possible

2.1.2 Benefits

Using TripleOs combination of OpenStack components, and their APIs, as the infrastructure to deploy
and operate OpenStack itself delivers several benefits:

• TripleOs APIs are the OpenStack APIs. Theyre well maintained, well documented, and come
with client libraries and command line tools. Users who invest time in learning about TripleOs
APIs are also learning about OpenStack itself, and users who are already familiar with OpenStack
will find a great deal in TripleO that they already understand.

• Using the OpenStack components allows more rapid feature development of TripleO than might
otherwise be the case; TripleO automatically inherits all the new features which are added to
Glance, Heat etc., even when the developer of the new feature didnt explicitly have TripleO in
mind.

• The same applies to bug fixes and security updates. When OpenStack developers fix bugs in the
common components, those fixes are inherited by TripleO.

• Users can invest time in integrating their own scripts and utilities with TripleOs APIs with some
confidence. Those APIs are cooperatively maintained and developed by the OpenStack commu-
nity. Theyre not at risk of being suddenly changed or retired by a single controlling vendor.

• For developers, tight integration with the OpenStack APIs provides a solid architecture, which has
gone through extensive community review.

It should be noted that not everything in TripleO is a reused OpenStack element.

2.1.3 Deployment Workflow Overview

1. Environment Preparation

• Prepare your environment (baremetal or virtual)

• Install undercloud

2. Undercloud Data Preparation

• Create images to establish the overcloud

• Register hardware nodes with undercloud

• Introspect hardware

2.1. TripleO Architecture 63

TripleO Documentation, Release 0.0.1.dev1610

• Create flavors (node profiles)

3. Deployment Planning

• Configure overcloud roles

– Assign flavor (node profile to match desired hardware specs)

– Assign image (provisioning image)

– Size the role (how many instances to deploy)

• Configure service parameters

• Create a Heat template describing the overcloud (auto-generated from above)

4. Deployment

• Use Heat to deploy your template

• Heat will use Nova to identify and reserve the appropriate nodes

• Nova will use Ironic to startup nodes and install the correct images

5. Per-node Setup

• When each node of the overcloud starts it will gather its configuration metadata from Heat
Template configuration files

• Hiera files are distributed across all nodes and Heat applies puppet manifests to configure
the services on the nodes

• Puppet runs in multiple steps, so that after each step there can be tests triggered to check
progress of the deployment and allow easier debugging.

6. Overcloud Initialization

• Services on nodes of the overcloud are registered with Keystone

2.1.4 Deployment Workflow Detail

Environment Preparation

In the first place, you need to check that your environment is ready. TripleO can deploy OpenStack
into baremetal as well as virtual environments. You need to make sure that your environment satisfies
minimum requirements for given environment type and that networking is correctly set up.

Next step is to install the undercloud. We install undercloud using Instacks script and it calls puppet
scripts in the background.

For development or proof of concept (PoC) environments, Quickstart can also be used.

2.1. TripleO Architecture 64

https://github.com/openstack/instack-undercloud
https://docs.openstack.org/tripleo-quickstart/latest/index.html

TripleO Documentation, Release 0.0.1.dev1610

Undercloud Data Preparation

Images

Before deploying the overcloud, you must first download or build images which will be installed on
each of the nodes of the overcloud. TripleO uses diskimage-builder for building these so called Golden
Images. The diskimage-builder tool takes a base image e.g. CentOS 7 and then layers additional software
via configuration scripts (called elements) on top of that. The final result is a qcow2 formatted image
with software installed but not configured.

While the diskimage-builder repository provides operating-system specific elements, ones specific to
OpenStack, e.g. nova-api, are found in tripleo-image-elements. You can add different elements to an
image to provide specific applications and services. Once all the images required to deploy the overcloud
are built, they are stored in Glance running on the undercloud.

Nodes

Deploying the overcloud requires suitable hardware. The first task is to register the available hardware
with Ironic, OpenStacks equivalent of a hypervisor for managing baremetal servers. Users can define
the hardware attributes (such as number of CPUs, RAM, disk) manually or he can leave the fields out
and run introspection of the nodes afterwards.

The sequence of events is pictured below:

• The user, via the command-line tools, or through direct API calls, registers the power management
credentials for a node with Ironic.

2.1. TripleO Architecture 65

https://github.com/openstack/diskimage-builder
http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud.qcow2
https://github.com/openstack/tripleo-image-elements

TripleO Documentation, Release 0.0.1.dev1610

• The user then instructs Ironic to reboot the node.

• Because the node is new, and not already fully registered, there are no specific PXE-boot instruc-
tions for it. In that case, the default action is to boot into an introspection ramdisk

• The introspection ramdisk probes the hardware on the node and gathers facts, including the num-
ber of CPU cores, the local disk size and the amount of RAM.

• The ramdisk posts the facts to the ironic-inspector API.

• All facts are passed and stored in the Ironic database.

• There can be performed advanced role matching via the ahc-match tool, which simply adds an
additional role categorization to Ironic based on introspected node facts and specified conditions.

Flavors

When users are creating virtual machines (VMs) in an OpenStack cloud, the flavor that they choose
specifies the capacity of the VM which should be created. The flavor defines the CPU count, the amount
of RAM, the amount of disk space etc. As long as the cloud has enough capacity to grant the users wish,
and the user hasnt reached their quota limit, the flavor acts as a set of instructions on exactly what kind
of VM to create on the users behalf.

In the undercloud, where the machines are usually physical rather than virtual (or, at least, pre-existing,
rather than created on demand), flavors have a slightly different effect. Essentially, they act as a con-
straint. Of all of the introspected hardware, only nodes which match a specified flavor are suitable for a
particular role. This can be used to ensure that the large machines with a great deal of RAM and CPU
capacity are used to run Nova in the overcloud, and the smaller machines run less demanding services,
such as Keystone.

TripleO is capable of handling flavors in two different modes.

The simpler PoC (Proof of Concept) mode is intended to enable new users to experiment, without wor-
rying about matching hardware profiles. In this mode, theres one single, global flavor, and any hardware
can match it. That effectively removes flavor matching. Users can use whatever hardware they wish.

For the second mode, named Scale because it is suited to larger scale overcloud deployments, flavor
matching is in full effect. A node will only be considered suitable for a given role if the role is associated
with a flavor which matches the capacity of the node. Nodes without a matching flavor are effectively
unusable.

This second mode allows users to ensure that their different hardware types end up running their intended
role, though requires either manual node tagging or using introspection rules to tag nodes (see Profile
Matching).

Deployment Planning

Whole part of planning your deployment is based on concept of overcloud roles. A role brings together
following things:

• An image; the software to be installed on a node

• A flavor; the size of node suited to the role

• A size; number of instances which should be deployed having given role

• A set of heat templates; instructions on how to configure the node for its task

2.1. TripleO Architecture 66

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/provisioning/profile_matching.html
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/provisioning/profile_matching.html

TripleO Documentation, Release 0.0.1.dev1610

In the case of the Compute role:

• the image must contain all the required software to boot an OS and then run the KVM hypervisor
and the Nova compute service

• the flavor (at least for a deployment which isnt a simple proof of concept), should specify that the
machine has enough CPU capacity and RAM to host several VMs concurrently

• the Heat templates will take care of ensuring that the Nova service is correctly configured on each
node when it first boots.

Currently, the roles in TripleO are very prescriptive, and in particular individual services cannot easily
be scaled independently of the Controller role (other than storage nodes). More flexibility in this regard
is planned in a future release.

Customizable things during deployment planning are:

• Number of nodes for each role

• Service parameters configuration

• Network configuration (NIC configuration options, isolated vs. single overlay)

• Ceph rbd backend options and defaults

• Ways to pass in extra configuration, e.g site-specific customizations

Deployment

Deployment to physical servers happens through a collaboration of Heat, Nova, Neutron, Glance and
Ironic.

The Heat templates and environments are served to Heat which will orchestrate the whole deployment
and it will create a stack. Stack is Heats own term for the applications that it creates. The overcloud, in
Heat terms, is a particularly complex instance of a stack.

In order for the stack to be deployed, Heat makes successive calls to Nova, OpenStacks compute ser-
vice controller. Nova depends upon Ironic, which, as described above has acquired an inventory of
introspected hardware by this stage in the process.

At this point, Nova flavors may act as a constraint, influencing the range of machines which may be
picked for deployment by the Nova scheduler. For each request to deploy a new node with a specific role,
Nova filters the list of available nodes, ensuring that the selected nodes meet the hardware requirements.

Once the target node has been selected, Ironic does the actual provisioning of the node, Ironic retrieves
the OS image associated with the role from Glance, causes the node to boot a deployment ramdisk and
then, in the typical case, exports the nodes local disk over iSCSI so that the disk can be partitioned and
the have the OS image written onto it by the Ironic Conductor.

See Ironics Understanding Baremetal Deployment for further details.

2.1. TripleO Architecture 67

http://docs.openstack.org/developer/ironic/deploy/user-guide.html#understanding-bare-metal-deployment

TripleO Documentation, Release 0.0.1.dev1610

Per-node Setup

TBD - Puppet

2.1.5 High Availability (HA)

TripleO will use Pacemaker to achieve high-availability.

Reference architecture document: https://github.com/beekhof/osp-ha-deploy

Note: Current HA solution is being developed by our community.

2.1.6 Managing the Deployment

After the overcloud deployment is completed, it will be possible to monitor, scale it out or perform basic
maintenance operations via the CLI.

Monitoring the Overcloud

When the overcloud is deployed, Ceilometer can be configured to track a set of OS metrics for each
node (system load, CPU utilization, swap usage etc.)

Additionally, Ironic exports IPMI metrics for nodes, which can also be stored in Ceilometer. This
enables checks on hardware state such as fan operation/failure and internal chassis temperatures.

The metrics which Ceilometer gathers can be queried for Ceilometers REST API, or by using the com-
mand line client.

Note: There are plans to add more operational tooling to the future release.

Scaling-out the Overcloud

The process of scaling out the overcloud by adding new nodes involves these stages:

• Making sure you have enough nodes to deploy on (or register new nodes as described in the
Undercloud Data Preparation section above).

• Calling Heat to update the stack which will apply the set of changes to the overcloud.

2.1. TripleO Architecture 68

https://github.com/beekhof/osp-ha-deploy

CHAPTER

THREE

TRIPLEO COMPONENTS

3.1 TripleO Components

This section contains a list of components that TripleO uses. The components are organized in cate-
gories, and include a basic description, useful links, and contribution information.

3.1.1 Shared Libraries

diskimage-builder

diskimage-builder is an image building tool. It is used by openstack overcloud image
build.

How to contribute

See the diskimage-builder README.rst for a further explanation of the tooling. Submit your changes
via OpenStack Gerrit (see OpenStack Developers Guide).

Useful links

• Upstream Project Documentation: https://docs.openstack.org/diskimage-builder/

• Bugs: https://bugs.launchpad.net/diskimage-builder

• Git repository: https://opendev.org/openstack/diskimage-builder/

dib-utils

dib-utils contains tools that are used by diskimage-builder.

How to contribute

Submit your changes via OpenStack Gerrit (see OpenStack Developers Guide).

Useful links

• Bugs: https://bugs.launchpad.net/diskimage-builder

• Git repository: https://opendev.org/openstack/dib-utils/

69

https://opendev.org/openstack/diskimage-builder/src/branch/master/README.rst
http://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/diskimage-builder/
https://bugs.launchpad.net/diskimage-builder
https://opendev.org/openstack/diskimage-builder/
http://docs.openstack.org/infra/manual/developers.html
https://bugs.launchpad.net/diskimage-builder
https://opendev.org/openstack/dib-utils/

TripleO Documentation, Release 0.0.1.dev1610

os-*-config

The os-*-config projects are a suite of tools used to configure instances deployed via TripleO. They
include:

• os-collect-config

• os-refresh-config

• os-apply-config

• os-net-config

How to contribute

Each tool uses tox to manage the development environment. Submit your changes via OpenStack Gerrit
(see OpenStack Developers Guide).

Useful links

• Bugs:

– os-collect-config: https://bugs.launchpad.net/os-collect-config

– os-refresh-config: https://bugs.launchpad.net/os-refresh-config

– os-apply-config: https://bugs.launchpad.net/os-apply-config

– os-net-config: https://bugs.launchpad.net/os-net-config

• Git repositories:

– os-collect-config: https://opendev.org/openstack/os-collect-config

– os-refresh-config https://opendev.org/openstack/os-refresh-config

– os-apply-config https://opendev.org/openstack/os-apply-config

– os-net-config https://opendev.org/openstack/os-net-config

tripleo-image-elements

tripleo-image-elements is a repository of diskimage-builder style elements used for installing various
software components.

How to contribute

Submit your changes via OpenStack Gerrit (see OpenStack Developers Guide).

Useful links

• Git repository: https://opendev.org/openstack/tripleo-image-elements

3.1. TripleO Components 70

https://tox.readthedocs.org/en/latest/
http://docs.openstack.org/infra/manual/developers.html
https://bugs.launchpad.net/os-collect-config
https://bugs.launchpad.net/os-refresh-config
https://bugs.launchpad.net/os-apply-config
https://bugs.launchpad.net/os-net-config
https://opendev.org/openstack/os-collect-config
https://opendev.org/openstack/os-refresh-config
https://opendev.org/openstack/os-apply-config
https://opendev.org/openstack/os-net-config
http://docs.openstack.org/infra/manual/developers.html
https://opendev.org/openstack/tripleo-image-elements

TripleO Documentation, Release 0.0.1.dev1610

3.1.2 Installer

instack

instack executes diskimage-builder style elements on the current system. This enables a current running
system to have an element applied in the same way that diskimage-builder applies the element to an
image build.

instack, in its current form, should be considered low level tooling. It is meant to be used by higher
level scripting that understands what elements and hook scripts need execution. Using instack requires
a rather in depth knowledge of the elements within diskimage-builder and tripleo-image-elements.

How to contribute

Submit your changes via OpenStack Gerrit (see OpenStack Developers Guide).

Useful links

• Git repository: https://opendev.org/openstack/instack

• Bugs: https://launchpad.net/tripleo

instack-undercloud

instack-undercloud is a TripleO style undercloud installer based around instack.

How to contribute

Submit your changes via OpenStack Gerrit (see OpenStack Developers Guide).

Useful links

• Git repository: https://opendev.org/openstack/instack-undercloud

• Bugs: https://launchpad.net/tripleo

3.1.3 Node Management

ironic

Ironic project is responsible for provisioning and managing bare metal instances.

For testing purposes Ironic can also be used for provisioning and managing virtual machines which act
as bare metal nodes via special driver pxe_ssh.

How to contribute

Ironic uses tox to manage the development environment, see the Developer Quick-Start, Ironic Devel-
oper Guidelines and OpenStack Developers Guide for details.

Useful links

• Upstream Project: https://docs.openstack.org/ironic/index.html

• Bugs: https://bugs.launchpad.net/ironic

• Blueprints: https://blueprints.launchpad.net/ironic

– Specs process should be followed for suggesting new features.

3.1. TripleO Components 71

http://docs.openstack.org/infra/manual/developers.html
https://opendev.org/openstack/instack
https://launchpad.net/tripleo
http://docs.openstack.org/infra/manual/developers.html
https://opendev.org/openstack/instack-undercloud
https://launchpad.net/tripleo
https://tox.readthedocs.org/en/latest/
https://docs.openstack.org/ironic/dev/dev-quickstart.html
https://wiki.openstack.org/wiki/Ironic/Developer_guidelines
https://wiki.openstack.org/wiki/Ironic/Developer_guidelines
http://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/ironic/index.html
https://bugs.launchpad.net/ironic
https://blueprints.launchpad.net/ironic
https://wiki.openstack.org/wiki/Ironic/Specs_Process

TripleO Documentation, Release 0.0.1.dev1610

– Approved Specs: http://specs.openstack.org/openstack/ironic-specs/

ironic inspector (former ironic-discoverd)

Ironic Inspector project is responsible for inspection of hardware properties for newly enrolled nodes
(see also ironic).

How to contribute

Ironic Inspector uses tox to manage the development environment, see upstream documentation for
details.

Useful links

• Upstream Project: https://github.com/openstack/ironic-inspector

• PyPI: https://pypi.org/project/ironic-inspector

• Bugs: https://bugs.launchpad.net/ironic-inspector

VirtualBMC

A helper command to translate IPMI calls into libvirt calls. Used for testing bare metal provisioning on
virtual environments.

How to contribute

VirtualBMC uses tox to manage the development environment in a similar way to Ironic.

Useful links

• Source: https://opendev.org/openstack/virtualbmc

• Bugs: https://bugs.launchpad.net/virtualbmc

3.1.4 Deployment & Orchestration

heat

Heat is OpenStacks orchestration tool. It reads YAML files describing the OpenStack deployments
resources (machines, their configurations etc.) and gets those resources into the desired state, often by
talking to other components (e.g. Nova).

How to contribute

• Use devstack with Heat to set up a development environment. Submit your changes via OpenStack
Gerrit (see OpenStack Developers Guide).

Useful links

• Upstream Project: https://wiki.openstack.org/wiki/Heat

• Bugs: https://bugs.launchpad.net/heat

• Blueprints: https://blueprints.launchpad.net/heat

3.1. TripleO Components 72

http://specs.openstack.org/openstack/ironic-specs/
https://tox.readthedocs.org/en/latest/
https://github.com/openstack/ironic-inspector/blob/master/CONTRIBUTING.rst
https://github.com/openstack/ironic-inspector
https://pypi.org/project/ironic-inspector
https://bugs.launchpad.net/ironic-inspector
https://tox.readthedocs.org/en/latest/
https://opendev.org/openstack/virtualbmc
https://bugs.launchpad.net/virtualbmc
https://docs.openstack.org/heat/getting_started/on_devstack.html
http://docs.openstack.org/infra/manual/developers.html
https://wiki.openstack.org/wiki/Heat
https://bugs.launchpad.net/heat
https://blueprints.launchpad.net/heat

TripleO Documentation, Release 0.0.1.dev1610

heat-templates

The heat-templates repository contains additional image elements for producing disk images ready to be
configured by Puppet via Heat.

How to contribute

• Use devtest with Puppet to set up a development environment. Submit your changes via Open-
Stack Gerrit (see OpenStack Developers Guide).

Useful links

• Upstream Project: https://opendev.org/openstack/heat-templates

• Bugs: https://bugs.launchpad.net/heat-templates

• Blueprints: https://blueprints.launchpad.net/heat-templates

tripleo-heat-templates

The tripleo-heat-templates describe the OpenStack deployment in Heat Orchestration Template YAML
files and Puppet manifests. The templates are deployed via Heat.

How to contribute

• Use devtest with Puppet to set up a development environment. Submit your changes via Open-
Stack Gerrit (see OpenStack Developers Guide).

Useful links

• Upstream Project: https://opendev.org/openstack/tripleo-heat-templates

• Bugs: https://bugs.launchpad.net/tripleo

• Blueprints: https://blueprints.launchpad.net/tripleo

nova

nova provides a cloud computing fabric controller.

How to contribute

• Read the Development Quickstart to set up a development environment. Submit your changes via
OpenStack Gerrit (see OpenStack Developers Guide).

Useful links

• Git repository: https://opendev.org/openstack/nova

• Bugs: https://bugs.launchpad.net/nova

• Blueprints: https://blueprints.launchpad.net/nova

3.1. TripleO Components 73

https://docs.openstack.org/tripleo-incubator/puppet.html
http://docs.openstack.org/infra/manual/developers.html
https://opendev.org/openstack/heat-templates
https://bugs.launchpad.net/heat-templates
https://blueprints.launchpad.net/heat-templates
https://docs.openstack.org/tripleo-incubator/puppet.html
http://docs.openstack.org/infra/manual/developers.html
https://opendev.org/openstack/tripleo-heat-templates
https://bugs.launchpad.net/tripleo
https://blueprints.launchpad.net/tripleo
https://docs.openstack.org/nova/development.environment.html
http://docs.openstack.org/infra/manual/developers.html
https://opendev.org/openstack/nova
https://bugs.launchpad.net/nova
https://blueprints.launchpad.net/nova

TripleO Documentation, Release 0.0.1.dev1610

puppet-*

The OpenStack Puppet modules are used to configure the OpenStack deployment (write configuration,
start services etc.). They are used via the tripleo-heat-templates.

How to contribute

• Use devtest with Puppet to set up a development environment. Submit your changes via Open-
Stack Gerrit (see OpenStack Developers Guide).

Useful links

• Upstream Project: https://wiki.openstack.org/wiki/Puppet

tripleo-puppet-elements

The tripleo-puppet-elements describe the contents of disk images which TripleO uses to deploy Open-
Stack. Its the same kind of elements as in tripleo-image-elements, but tripleo-puppet-elements are spe-
cific for Puppet-enabled images.

How to contribute

• Use devtest with Puppet to set up a development environment. Submit your changes via Open-
Stack Gerrit (see OpenStack Developers Guide).

Useful links

• Upstream Project: https://opendev.org/openstack/tripleo-puppet-elements

• Bugs: https://bugs.launchpad.net/tripleo

• Blueprints: https://blueprints.launchpad.net/tripleo

3.1.5 User Interfaces

python-openstackclient

The python-openstackclient is an upstream CLI tool which can manage multiple openstack services. It
wraps openstack clients like glance, nova, etc. and maps them under intuitive names like openstack
image, compute, etc.

The main value is that all services can be controlled by a single (openstack) command with consistent
syntax and behaviour.

How to contribute

• python-openstackclient uses tox to manage the development environment, see the python-
openstackclient documentation for details. Submit your changes via OpenStack Gerrit (see Open-
Stack Developers Guide).

Useful links

• Upstream Project: https://opendev.org/openstack/python-openstackclient

• Bugs: https://bugs.launchpad.net/python-openstackclient

• Blueprints: https://blueprints.launchpad.net/python-openstackclient

3.1. TripleO Components 74

https://docs.openstack.org/tripleo-incubator/puppet.html
http://docs.openstack.org/infra/manual/developers.html
https://wiki.openstack.org/wiki/Puppet
https://docs.openstack.org/tripleo-incubator/puppet.html
http://docs.openstack.org/infra/manual/developers.html
https://opendev.org/openstack/tripleo-puppet-elements
https://bugs.launchpad.net/tripleo
https://blueprints.launchpad.net/tripleo
https://tox.readthedocs.org/en/latest/
https://github.com/openstack/python-openstackclient/blob/master/README.rst
https://github.com/openstack/python-openstackclient/blob/master/README.rst
http://docs.openstack.org/infra/manual/developers.html
http://docs.openstack.org/infra/manual/developers.html
https://opendev.org/openstack/python-openstackclient
https://bugs.launchpad.net/python-openstackclient
https://blueprints.launchpad.net/python-openstackclient

TripleO Documentation, Release 0.0.1.dev1610

• Human interface guide: https://docs.openstack.org/python-openstackclient/humaninterfaceguide.
html

python-tripleoclient

The python-tripleoclient is a CLI tool embedded into python-openstackclient. It provides functions
related to instack installation and initial configuration like node introspection, overcloud image building
and uploading, etc.

How to contribute

• python-tripleoclient uses tox to manage the development environment, see the python-tripleoclient
documentation for details. Submit your changes via Gerrit.

Useful links

• Project: https://opendev.org/openstack/python-tripleoclient

tripleo-ui

TripleO UI is the web interface for TripleO.

How to contribute

• See the documentation for details.

Useful links

• Bugs: https://bugs.launchpad.net/tripleo-ui

• Blueprints: https://blueprints.launchpad.net/tripleo-ui

3.1.6 tripleo-validations

Pre and post-deployment validations for the deployment workflow.

Useful links

• Upstream Project: https://opendev.org/openstack/tripleo-validations/

• Bugs: https://bugs.launchpad.net/tripleo/+bugs?field.tag=validations

• Documentation for individual validations: https://docs.openstack.org/tripleo-validations/latest/
readme.html#existing-validations

Note: When reporting an issue, make sure you add the validations tag.

3.1. TripleO Components 75

https://docs.openstack.org/python-openstackclient/humaninterfaceguide.html
https://docs.openstack.org/python-openstackclient/humaninterfaceguide.html
https://tox.readthedocs.org/en/latest/
https://opendev.org/openstack/python-tripleoclient/src/branch/master/CONTRIBUTING.rst
https://opendev.org/openstack/python-tripleoclient/src/branch/master/CONTRIBUTING.rst
https://review.opendev.org/#/q/project:openstack/python-tripleoclient,n,z
https://opendev.org/openstack/python-tripleoclient
https://opendev.org/openstack/tripleo-ui/src/branch/master/README.md
https://bugs.launchpad.net/tripleo-ui
https://blueprints.launchpad.net/tripleo-ui
https://opendev.org/openstack/tripleo-validations/
https://bugs.launchpad.net/tripleo/+bugs?field.tag=validations
https://docs.openstack.org/tripleo-validations/latest/readme.html#existing-validations
https://docs.openstack.org/tripleo-validations/latest/readme.html#existing-validations

TripleO Documentation, Release 0.0.1.dev1610

3.1.7 Deprecated

Tuskar

The Tuskar project was responsible for planning the deployments and generating the corresponding Heat
templates. This is no longer necessary as Heat supports this composability out of the box.

The source code is available below, but please note that it should not be used for new deployments.

https://github.com/openstack/tuskar

3.1. TripleO Components 76

https://github.com/openstack/tuskar

CHAPTER

FOUR

TRIPLEO CI GUIDE

4.1 TripleO CI Guide

4.1.1 TripleO CI jobs primer

This primer aims to demonstrate where the Triple ci jobs are defined and illustrate the difference between
the check and gate queues and how jobs are executed in them. Which queue a job is executed in also
affects whether the job is defined as voting or not. Generally:

• new jobs are run in check and are non voting

• once a job is voting in check, it needs to be added to gate too.

• once a job is voting in check and gate you should add it to the promotion jobs so that tripleo
promotions (i.e. from tripleo-testing to current-tripleo) will depend on successful execution of
that job.

Once a job becomes voting it must be added to the gate queue too. If it isnt then we may end up with a
situation where something passes the voting check job and merges without being run in the gate queue.
It could be that for some reason it would have failed in the gate and thus not have merged. A common
occurrence is the check jobs run on a particular submission and pass on one day but then not actually
merge (and so run in the gate) until much later perhaps even after some days.In the meantime some
unrelated change merges in another project which would cause the job to fail in the gate, but since were
not running it there the code submission merges. This then means that the job is broken in subsequent
check runs.

Non tripleo-projects are not gated in tripleo. The promotion jobs represent the point at which we take
the latest built tripleo packages and the latest built non-tripleo projects packages (like nova, neutron etc)
and test these together. For more information about promotions refer to Promotion Stages

Where do tripleo-ci jobs live

Note: If you ever need to search for a particular job to see which file it is defined in or which tripleo
project repos it is running for you can search by name in the openstack-codesearch (e.g. that is a search
for the tripleo-ci-centos-7-scenario003-standalone job).

Note: If you ever want to see the status for a particular job with respect to how often it is failing or
passing, you can check the zuul_builds status and search by job name (again the linked example is for

77

http://codesearch.openstack.org/?q=tripleo-ci-centos-7-scenario003-standalone&i=nope&files=&repos=
http://zuul.opendev.org/builds?job_name=tripleo-ci-centos-7-scenario003-standalone

TripleO Documentation, Release 0.0.1.dev1610

scenario003-standalone).

The tripleo ci jobs live in the tripleo-ci repo and specifically in various files defined under the zuul.d
directory. As an example we can examine one of the scenario-standalone-jobs:

- job:
name: tripleo-ci-centos-7-scenario001-standalone
voting: true
parent: tripleo-ci-base-standalone
nodeset: single-centos-7-node
branches: ^(?!stable/(newton|ocata|pike|queens|rocky)).*$
vars:

featureset: '052'
standalone_ceph: true
featureset_override:

standalone_container_cli: docker
standalone_environment_files:

- 'ci/environments/scenario001-standalone.yaml'
- 'environments/low-memory-usage.yaml'

tempest_plugins:
- python-telemetry-tests-tempest
- python-heat-tests-tempest

test_white_regex: ''
tempest_workers: 1
tempest_extra_config: {'telemetry.alarm_granularity': '60'}
tempest_whitelist:

- 'tempest.api.identity.v3'
- 'tempest.scenario.test_volume_boot_pattern.TestVolumeBootPattern.

↪→test_volume_boot_pattern'
- 'telemetry_tempest_plugin.scenario.test_telemetry_integration.

↪→TestTelemetryIntegration'

As you can see the job definition consists of the unique job name followed by the rest of the zuul
variables, including whether the job is voting and which node layout (nodeset) should be used for that
job. The unique job name is then used in the zuul layout (discussed in the next section) to determine if
the job is run in check or gate or both. Since the job shown above is set as voting we can expect it to be
defined in both gate and check.

Zuul queues - gate vs check

As with all OpenStack projects there are two zuul queues to which jobs are scheduled - the check jobs
which are run each time a change is submitted and then the gate jobs which are run before a change is
merged. There is also an experimental queue but that is invoked manually.

Which queue a given job is run in is determined by the zuul layout file for the given project - e.g. here
is tripleo-heat-templates-zuul-layout. The layout file has the following general format:

- project:
templates:
.. list of templates
check:

jobs:
.. list of job names and any options for each

gate:

(continues on next page)

4.1. TripleO CI Guide 78

https://github.com/openstack-infra/tripleo-ci/tree/master/zuul.d
https://github.com/openstack-infra/tripleo-ci/blob/101074b2e804f97880440a3e62351844f390b2f2/zuul.d/standalone-jobs.yaml#L86-L88
https://github.com/openstack/tripleo-heat-templates/blob/efe9b8fa1fff7ef1828777a95eee9fe4d901f9b9/zuul.d/layout.yaml#L9

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

queue: tripleo
jobs:

.. list of job names and any options for each

The templates: section in the outline above is significant because the layout can also be defined in one
of the included templates. For example the scenario-standalone-layout defines the check/gate layout for
the tripleo-standalone-scenarios-full template which is then included by the projects that want the jobs
defined in that template to execute in the manner it specifies.

Where do tripleo promotion jobs live

Note: If you even need to find the definition for a particular promotion job you can search for it by
name using the rdo-codesearch.

The tripleo promotions jobs are not defined in the tripleo-ci but instead live in the rdo-jobs repository.
For more information about the promotion pipeline in TripleO refer to the Promotion Stages

Similar to the tripleo-ci jobs, they are defined in various files under the rdo-jobs-zuul.d directory and
the job definitions look very similar to the tripleo-ci ones - for example the periodic-tripleo-ci-centos-7-
multinode-1ctlr-featureset010-master:

- job:
name: periodic-tripleo-ci-centos-7-multinode-1ctlr-featureset010-master
parent: tripleo-ci-base-multinode-periodic
vars:

nodes: 1ctlr
featureset: '010'
release: master

If you even need to find the definition for a particular promotion job you can search for it by name using
the rdo-codesearch.

Contacting CI team

When in need you can contact the TripleO CI team members on one of the two irc channels on OFTC
#tripleo by mentioning @oooq keyword in your message as team members get notified about such
messages. It is good to remember that those nicknames with |ruck and |rover suffix are on duty to
look for CI status.

4.1.2 Reproduce CI jobs for debugging and development

Knowing that at times (perhaps always) manipulating zuul jobs to do your bidding can be frustrating.
Perhaps you are trying to reproduce a bug, test a patch, or just bored on a Sunday afternoon. I wanted to
briefly remind folks of their options.

4.1. TripleO CI Guide 79

https://github.com/openstack-infra/tripleo-ci/blob/7333a6fc8ff3990a971a661a817e30ae25e06374/zuul.d/standalone-jobs.yaml#L77-L79
https://codesearch.rdoproject.org/?q=periodic-tripleo-ci-centos-7-multinode-1ctlr-featureset010-master&i=nope&files=&repos=
https://github.com/rdo-infra/rdo-jobs
https://github.com/rdo-infra/rdo-jobs/tree/master/zuul.d
https://github.com/rdo-infra/rdo-jobs/blob/76daaff19a464614a002655bc85db4080607f1bf/zuul.d/multinode-jobs.yaml#L148
https://github.com/rdo-infra/rdo-jobs/blob/76daaff19a464614a002655bc85db4080607f1bf/zuul.d/multinode-jobs.yaml#L148
https://codesearch.rdoproject.org/?q=periodic-tripleo-ci-centos-7-multinode-1ctlr-featureset010-master&i=nope&files=&repos=

TripleO Documentation, Release 0.0.1.dev1610

RDOs zuul:

RDOs zuul is setup to directly inherit from upstream zuul. Any TripleO job that executes upstream
should be rerunable in RDOs zuul. A distinct advantage here is that you can ask RDO admins to hold
the job for you, get your ssh keys on the box and debug the live environment. Its good stuff. To hold a
node, ask your friends in #rhos-ops

Use testproject: Some documentation can be found here:

upstream job example:

- project:
name: testproject
check:

jobs:
- tripleo-ci-centos-8-content-provider
- tripleo-ci-centos-8-containers-multinode:

dependencies:
- tripleo-ci-centos-8-content-provider

gate:
jobs: []

periodic job, perhaps recreating a CIX issue example:

- project:
name: testproject
check:

jobs:
- tripleo-ci-centos-8-scenario002-standalone:

vars:
timeout: 22000

- periodic-tripleo-ci-centos-8-standalone-full-tempest-scenario-
↪→master:

vars:
timeout: 22000
force_periodic: true

- periodic-tripleo-ci-centos-8-standalone-full-tempest-scenario-
↪→victoria:

vars:
timeout: 22000
force_periodic: true

- periodic-tripleo-ci-centos-8-standalone-full-tempest-scenario-
↪→ussuri:

vars:
timeout: 22000
force_periodic: true

gate:
jobs: []

4.1. TripleO CI Guide 80

https://docs.openstack.org/tripleo-docs/latest/ci/chasing_promotions.html#hack-the-promotion-with-testproject

TripleO Documentation, Release 0.0.1.dev1610

Remember that depends-on can bring in any upstream changes.

• Here is an example commit message:

Test jobs with new ovn package

Test jobs with new ovn package

Depends-On: https://review.opendev.org/c/openstack/openstack-tempest-
↪→skiplist/+/775493

Change-Id: I7b392acc4690199caa78cac90956e717105f4c6e

Local zuul:

Setting up zuul and friends locally is a much heavier lift than your first option. Instructions and scripts
to help you are available in any upstream TripleO job, and here

A basic readme for the logs can be found directly in the logs directory of any tripleo job.

• Basic Readme

• Job reproduce

If you are familiar w/ zuul and friends, containers, etc.. this could be a good option for you and your
team. There are a lot of moving parts and its complicated, well because its complicated. A good way to
become more familiar with zuul would be to try out zuuls tutorial

zuul-runner:

A long hard fought battle of persuasion and influence has been fought with the maintainers of the zuul
project. The blueprints and specs have merged. The projects status is not complete as there are many
unmerged patches to date.

Other Options:

Finally, if you are not attempting to recreate, test, play with an upstream tripleo job and just want to
develop code there is another option. A lot of developers find tripleo-lab to be quite useful. Many devels
have their own patterns as well, what works for you is fine.

Summary:

For what its worth imho using testproject jobs is an efficient, low barrier to getting things done with
upstream TripleO jobs. Ill be updating the documentation and references to try and help over the next
few days, patches are welcome :)

4.1. TripleO CI Guide 81

https://github.com/rdo-infra/ansible-role-tripleo-ci-reproducer
https://opendev.org/openstack/tripleo-ci/src/branch/master/docs/tripleo-quickstart-logs.html
https://opendev.org/openstack/tripleo-quickstart-extras/src/branch/master/roles/create-zuul-based-reproducer/templates/README-reproducer-zuul-based-quickstart.html.j2
https://github.com/cjeanner/tripleo-lab

TripleO Documentation, Release 0.0.1.dev1610

4.1.3 How to add a TripleO job to your projects check pipeline

To ensure a non-TripleO projects changes work with TripleO an additional check job can be added to
the projects job definitions in OpenStacks project config

Project Config Example

In this case well use openstack/neutron as an example to understand how this works. Note that this is
only an example and this job may not be appropriate for your project, we will cover how to pick a job
later on in this documentation. Browse through the layout.yaml file in the project-config repository until
you find:

- name: openstack/neutron
template:

- name: merge-check
- ...
- ...

check:
- ...
- ...
- gate-tripleo-ci-centos-7-nonha-multinode-oooq-nv

The above configuration will run the TripleO job gate-tripleo-ci-centos-7-nonha-multinode-oooq-nv
without voting (nv). This type of job is used to inform the reviewers of the patch whether or not the
change under review works with TripleO.

How to pick which job to execute for any given OpenStack project

TripleO can deploy a number of different OpenStack services. To best utilize the available upstream
CI resources TripleO uses the same concept as the puppet-openstack-integration project to define how
services are deployed. The TripleO documentation regarding services can be found here. Review the
TripleO documentation and find a scenario that includes the services that your project requires to be
tested. Once you have determined which scenario to use you are ready to pick a TripleO check job.

The following is a list of available check jobs:

gate-tripleo-ci-centos-7-scenario001-multinode-oooq
gate-tripleo-ci-centos-7-scenario001-multinode-oooq-puppet
gate-tripleo-ci-centos-7-scenario001-multinode-oooq-container
gate-tripleo-ci-centos-7-scenario002-multinode-oooq
gate-tripleo-ci-centos-7-scenario002-multinode-oooq-puppet
gate-tripleo-ci-centos-7-scenario002-multinode-oooq-container
gate-tripleo-ci-centos-7-scenario003-multinode-oooq
gate-tripleo-ci-centos-7-scenario003-multinode-oooq-puppet
gate-tripleo-ci-centos-7-scenario003-multinode-oooq-container
gate-tripleo-ci-centos-7-scenario004-multinode-oooq
gate-tripleo-ci-centos-7-scenario004-multinode-oooq-puppet
gate-tripleo-ci-centos-7-scenario004-multinode-oooq-container
gate-tripleo-ci-centos-7-nonha-multinode-oooq
gate-tripleo-ci-centos-7-containers-multinode

Note over time additional scenarios will be added and will follow the same pattern as the job names
listed above.

4.1. TripleO CI Guide 82

https://github.com/openstack-infra/project-config
https://github.com/openstack-infra/project-config/blob/master/zuul/layout.yaml
https://github.com/openstack/puppet-openstack-integration
https://github.com/openstack/tripleo-heat-templates/blob/master/README.rst#service-testing-matrix

TripleO Documentation, Release 0.0.1.dev1610

Adding a new non-voting check job

Find your project in layout.yaml. An example of a project will look like the following example:

- name: openstack/$project
template:

- ...
- ...

Note $project is the name of your project.

Under the section named check, add the job that best suits your project. Be sure to add -nv to the job
name to ensure the job does not vote:

check:
- ...
- ...
- $job-nv

Enabling voting jobs

If your project is interested in gating your project with a voting version of a TripleO job, you can follow
the openstack/mistral projects example in layout.yaml

For example:

- name: openstack/mistral
template:

-name: merge-check
- ...
- ...

check:
- ...
- ...
- gate-tripleo-ci-centos-7-scenario003-multinode-oooq-puppet

gate:
- gate-tripleo-ci-centos-7-scenario003-multinode-oooq-puppet

Note the example does not append -nv as a suffix to the job name

Troubleshooting a failed job

When your newly added job fails, you may want to download its logs for a local inspection and root
cause analysis. Use the tripleo-ci gethelogs script for that.

4.1. TripleO CI Guide 83

https://github.com/openstack-infra/project-config/blob/master/zuul/layout.yaml
https://github.com/openstack-infra/project-config/blob/master/zuul/layout.yaml
https://github.com/openstack-infra/tripleo-ci/blob/master/scripts/getthelogs

TripleO Documentation, Release 0.0.1.dev1610

Enabling tempest tests notification

There is a way to get notifications by email when a job finishes to running tempest. People interested to
receive these notifications can submit a patch to add their email address in this config file. Instructions
can be found here.

featureset override

In TripleO CI, we test each patchset using different jobs. These jobs are defined using featureset config
files. Each featureset config file is mapped to a job template that is defined in tripleo-ci. Tempest tests
are basically triggered in scenario jobs in order to post validate the a particular scenario deployment.
The set of tempest tests that run for a given TripleO CI job is defined in the featureset config files. You
may want to run a popular TripleO CI job with a custom set of Tempest tests and override the default
Tempest run. This can be accomplished through adding the featureset_overrides var to zuul job config
vars: section. The allowed featureset_override are defined in the tripleo-ci run-test role. This setting
allows projects to override featureset post deployment configuration. Some of the overridable settings
are:

• run_tempest: To run tempest or not (true|false).

• tempest_whitelist: List of tests you want to be executed.

• test_black_regex: Set of tempest tests to skip.

• tempest_format: To run tempest using different format (packages, containers, venv).

• tempest_extra_config: A dict of additional tempest config to be overridden.

• tempest_plugins: A list of tempest plugins needs to be installed.

• standalone_environment_files: List of environment files to be overriden by the featureset config-
uration on standalone deployment. The environment file should exist in tripleo-heat-templates
repo.

• test_white_regex: Regex to be used by tempest

• tempest_workers: Numbers of parallel workers to run

• standalone_container_cli: Container cli to use

• tempest_private_net_provider_type: The Neutron type driver that should be used by tempest tests.

For a given job tripleo-ci-centos-7-scenario001-multinode-oooq-container, you can create a new ab-
stract layer job and overrides the tempest tests:

- job:
name: scn001-multinode-oooq-container-custom-tempest
parent: tripleo-ci-centos-7-scenario001-multinode-oooq-container
...
vars:

featureset_override:
run_tempest: true
tempest_whitelist:

- 'tempest.scenario.test_volume_boot_pattern.
↪→TestVolumeBootPattern.test_volume_boot_pattern'

test_black_regex:
- 'keystone_tempest_plugin'

(continues on next page)

4.1. TripleO CI Guide 84

https://github.com/openstack/tripleo-quickstart-extras/blob/master/roles/validate-tempest/files/tempestmail/config.yaml
https://github.com/openstack/tripleo-quickstart-extras/blob/master/roles/validate-tempest/files/tempestmail/README.md
https://opendev.org/openstack/tripleo-quickstart/src/branch/master/config/general_config
https://opendev.org/openstack/tripleo-quickstart/src/branch/master/config/general_config
https://opendev.org/openstack-infra/tripleo-ci/src/branch/master/zuul.d
https://opendev.org/openstack/tripleo-quickstart/src/branch/master/config/general_config
https://opendev.org/openstack/tripleo-ci/src/commit/5a902b351f3728a95e4a989527178c66815bdc54/roles/run-test/tasks/main.yaml#L8

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

tempest_format: 'containers'
tempest_extra_config: {'compute-feature-enabled.attach_encrypted_

↪→volume': 'True',
'auth.tempest_roles': '"Member"'}

tempest_plugins:
- 'python2-keystone-tests-tempest'
- 'python2-cinder-tests-tempest'

tempest_workers: 1
test_white_regex:

- 'tempest.api.identity'
- 'keystone_tempest_plugin'

standalone_environment_files:
- 'environments/low-memory-usage.yaml'
- 'ci/environments/scenario003-standalone.yaml'

standalone_container_cli: docker

In a similar way, for skipping Tempest run for the scenario001 job, you can do something like:

- job:
name: scn001-multinode-oooq-container-skip-tempest
parent: tripleo-ci-centos-7-scenario001-multinode-oooq-container
...
vars:

featureset_override:
run_tempest: false

Below is the list of jobs based on tripleo-puppet-ci-centos-7-standalone which uses featureset_override
and run specific tempest tests against puppet projects:

• puppet-nova

– job name: puppet-nova-tripleo-standalone

– tempest_test: compute

• puppet-horizon

– job name: puppet-horizon-tripleo-standalone

– tempest_test: horizon

• puppet-keystone

– job name: puppet-keystone-tripleo-standalone

– tempest_test: keystone_tempest_plugin & identity

• puppet-glance

– job name: puppet-glance-tripleo-standalone

– tempest_test: image

• puppet-cinder

– job name: puppet-cinder-tripleo-standalone

– tempest_test: volume & cinder_tempest_tests

• puppet-neutron

4.1. TripleO CI Guide 85

TripleO Documentation, Release 0.0.1.dev1610

– job name: puppet-neutron-tripleo-standalone

– tempest_test: neutron_tempest_tests & network

• puppet-swift

– job name: puppet-swift-tripleo-standalone

– tempest_test: object_storage

4.1.4 Standalone Scenario jobs

This section gives an overview and some details on the standalone scenario ci jobs. The standalone
deployment is intended as a one node development environment for TripleO. - see the Standalone Deploy
Guide for more information on setting up a standalone environment.

A scenario is a concept used in TripleO to describe a collection of services - see the service-testing-
matrix for more information about each scenario and the services deployed there. We combine the two
to define the standalone scenario jobs.

These are intended to give developers faster feedback (the jobs are relatively fast to complete) and allow
us to have better coverage across services by defining a number of scenarios. Crucially the standalone
scenario jobs allow us to increase coverage without further increasing our resource usage footprint with
eachjob only taking a single node. See this openstack-dev-thread for background around the move from
the multinode jobs to the more resource friendly standalone versions.

Where

The standalone scenario jobs (hereafter referred to as just standalone in this document), are defined in
the tripleo-ci/zuul.d/standalone.yaml file. Besides the definitions for each of the scenario00X-standalone
jobs, this file also carries the tripleo-standalone-scenarios-full_project-template which defines the zuul
layout and files: sections for the standalone jobs in a central location.

Thus, the jobs are consumed by other projects across tripleo by inclusion of the template in their respec-
tive zuul layout file, for example tripleo-heat-templates and tripleo-common.

Besides the job definitions in the tripleo-ci repo, the other main part of the standalone jobs is a ser-
vice environment file, which lives in the tripleo-heat-templates-ci/environments. As you can see in
scenario001-env, scenario002-env, scenario003-env and scenario004-env that is where we define the
services and parameters that are part of a given scenario.

How

The standalone jobs are special in that they differ from traditional multinode jobs by having a shared
featureset rather than requiring a dedicated featureset for each job. Some of the standalone scenarios, no-
tably scenario012 will end up having a dedicated-featureset however in most cases the base standalone-
featureset052 can be re-used for the different scenarios. Notably you can see that scenario001-job,
scenario002-job, scenario003-job and scenario004-job job definitions are all using the same standalone-
featureset052.

Given that we use the same featureset the main differentiator between these standalone jobs is the
scenario environment file, which we pass using featureset_override (see How to add a TripleO job
to your projects check pipeline). For example in the scenario001 job we point to the scenario001-
standalone.yaml (scenario001-env):

4.1. TripleO CI Guide 86

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/deployment/standalone.html
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/deployment/standalone.html
https://github.com/openstack/tripleo-heat-templates/blob/master/README.rst#service-testing-matrix
https://github.com/openstack/tripleo-heat-templates/blob/master/README.rst#service-testing-matrix
http://lists.openstack.org/pipermail/openstack-dev/2018-October/136192.html
https://github.com/openstack-infra/tripleo-ci/blob/master/zuul.d/standalone-jobs.yaml
https://github.com/openstack-infra/tripleo-ci/blob/75ff68608baab31f6ac9e5395a9841c08c62e092/zuul.d/standalone-jobs.yaml#L78-L80
https://github.com/openstack/tripleo-heat-templates/blob/d5298e2f7936bcb5ca7d41466d024fe6958ce177/zuul.d/layout.yaml#L8
https://github.com/openstack/tripleo-common/blob/026ed7d9e041c92956aa9db59e881f6632eed2f2/zuul.d/layout.yaml#L14
https://github.com/openstack/tripleo-heat-templates/tree/master/ci/environments
https://github.com/openstack/tripleo-heat-templates/blob/1c46d1850a8de89daeecd96f2f5288336e3778f8/ci/environments/scenario001-standalone.yaml#L1
https://github.com/openstack/tripleo-heat-templates/blob/1c46d1850a8de89daeecd96f2f5288336e3778f8/ci/environments/scenario002-standalone.yaml#L1
https://github.com/openstack/tripleo-heat-templates/blob/1c46d1850a8de89daeecd96f2f5288336e3778f8/ci/environments/scenario003-standalone.yaml#L1
https://github.com/openstack/tripleo-heat-templates/blob/1c46d1850a8de89daeecd96f2f5288336e3778f8/ci/environments/scenario004-standalone.yaml#L1
https://review.opendev.org/634723
https://review.opendev.org/636355
https://github.com/openstack/tripleo-quickstart/blob/6585d6320ca4f0c37ae62dfc60fe2eb0cd42647c/config/general_config/featureset052.yml#L2
https://github.com/openstack/tripleo-quickstart/blob/6585d6320ca4f0c37ae62dfc60fe2eb0cd42647c/config/general_config/featureset052.yml#L2
https://github.com/openstack-infra/tripleo-ci/blob/1d890565feeeea6ce637cf0384da822926480f07/zuul.d/standalone-jobs.yaml#L376
https://github.com/openstack-infra/tripleo-ci/blob/1d890565feeeea6ce637cf0384da822926480f07/zuul.d/standalone-jobs.yaml#L401
https://github.com/openstack-infra/tripleo-ci/blob/1d890565feeeea6ce637cf0384da822926480f07/zuul.d/standalone-jobs.yaml#L426
https://github.com/openstack-infra/tripleo-ci/blob/1d890565feeeea6ce637cf0384da822926480f07/zuul.d/standalone-jobs.yaml#L448
https://github.com/openstack/tripleo-quickstart/blob/6585d6320ca4f0c37ae62dfc60fe2eb0cd42647c/config/general_config/featureset052.yml#L2
https://github.com/openstack/tripleo-quickstart/blob/6585d6320ca4f0c37ae62dfc60fe2eb0cd42647c/config/general_config/featureset052.yml#L2
https://github.com/openstack/tripleo-heat-templates/blob/1c46d1850a8de89daeecd96f2f5288336e3778f8/ci/environments/scenario001-standalone.yaml#L1

TripleO Documentation, Release 0.0.1.dev1610

- job:
name: tripleo-ci-centos-7-scenario001-standalone
voting: true
parent: tripleo-ci-base-standalone
nodeset: single-centos-7-node
branches: ^(?!stable/(newton|ocata|pike|queens|rocky)).*$
vars:

featureset: '052'
standalone_ceph: true
featureset_override:

standalone_container_cli: docker
standalone_environment_files:
- 'environments/low-memory-usage.yaml'
- 'ci/environments/scenario001-standalone.yaml'

...

Finally we use a task in the tripleo-ci-run-test-role to pass the scenario environment file into the stan-
dalone deployment command using the standalone role standalone_custom_env_files parameter.

4.1.5 Baremetal jobs

This section gives an overview and some details on the baremetal CI jobs. The baremetal deployment
is intended as a multinode real world production-like environment for TripleO. - see Baremetal deploy
guide for more information on setting up a baremetal environment.

The baremetal jobs, previously running in the RDO Phase 2 of the promotion pipeline from Jenkins
servers, now are triggered from an internal Software Factory instance of Zuul. These promotion jobs
testing containers built on tripleo-ci-testing hashes run on real baremetal hardware, report to dlrn and
can be included in the TripleO promotion criteria.

The goal is to give developers feedback on real deployments and allow us to have better coverage on
issues seen in production environments. It also allows an approximation of OVB jobs running in RDO
cloud in order to get an apples-to-apples comparison to eliminate infra issues.

Where

The hardware is maintained internally and cannot be accessed by upstream Zuul or RDO Cloud. The in-
ternal Software Factory instance provides a version of infra upstream tools as Zuul, Gerrit and Nodepool
for running the defined baremetal jobs. Refer to Software Factory Documentation for more details.

The jobs will use hardware_environments/<env name>/instackenv.json file and the hard-
ware_environments/<env name>/network_configs/single_nic_vlans settings file. These configurations
are explored in more detail below.

4.1. TripleO CI Guide 87

https://github.com/openstack-infra/tripleo-ci/blob/1d890565feeeea6ce637cf0384da822926480f07/roles/run-test/tasks/main.yaml#L26-L36
https://github.com/openstack/tripleo-quickstart-extras/blob/def233448d2ae8ed5bcc6d286f5cf8378f7cf7ec/roles/standalone/templates/standalone.sh.j2#L9
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/provisioning/index.html
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/provisioning/index.html
https://softwarefactory-project.io/docs/index.html

TripleO Documentation, Release 0.0.1.dev1610

How

The baremetal job workflow is described as follows:

1. The baremetal jobs are triggered in the periodic pipeline and initially run on a Nodepool node that
can be called as executor, where the job starts executing its playbooks and roles.

2. The job sshs to the baremetal machine which will host the undercloud vm and creates a new vm
on which the undercloud will be installed and set up.

3. Finally the undercloud VM deploys the overcloud on real baremetal nodes defined in the instack-
env.json configuration over pxe boot.

This workflow for baremetal jobs is illustrated in the following figure:

00
5B

00
4E

00
6F

00
74

00
73

00
75

00
70

00
70

00
6F

00
72

00
74

00
65

00
64

00
62

00
79

00
76

00
69

00
65

00
77

00
65

00
72

00
5D

00
5B

00
4E

00
6F

00
74

00
73

00
75

00
70

00
70

00
6F

00
72

00
74

00
65

00
64

00
62

00
79

00
76

00
69

00
65

00
77

00
65

00
72

00
5D

00
5B

00
4E

00
6F

00
74

00
73

00
75

00
70

00
70

00
6F

00
72

00
74

00
65

00
64

00
62

00
79

00
76

00
69

00
65

00
77

00
65

00
72

00
5D

00
5B

00
4E

00
6F

00
74

00
73

00
75

00
70

00
70

00
6F

00
72

00
74

00
65

00
64

00
62

00
79

00
76

00
69

00
65

00
77

00
65

00
72

00
5D

00
5B

00
4E

00
6F

00
74

00
73

00
75

00
70

00
70

00
6F

00
72

00
74

00
65

00
64

00
62

00
79

00
76

00
69

00
65

00
77

00
65

00
72

00
5D

0
B
00
4E

00
6F

00
74

00
73

00
75

00
70

00
70

00
6F

00
72

00
74

00
65

00
64

00
62

00
79

00
76

00
69

00
65

00
77

00
65

00
72

00
5D

00
5B

00
4E

00
6F

00
74

00
73

00
75

00
70

00
70

00
6F

00
72

00
74

00
65

00
64

00
62

00
79

00
76

00
69

00
65

00
77

00
65

00
72

00
5D

00
5A

00
75

00
75

00
6C

00
6F

00
74

00
73

00
75

00
70

00
70

00
6F

00
72

00
74

00
65

00
64

00
62

00
79

00
76

00
69

00
65

00
77

00
65

00
72

00
5D

0
3
00
6F

00
6C

00
6F

00
72

00
3D

00
22

00
23

00
33

00
33

00
33

00
33

00
33

00
33

00
22

00
3E

00
49

00
6E

00
74

00
65

00
72

00
6E

00
61

00
6C

00
53

00
6F

00
66

00
74

00
77

00
61

00
72

00
65

00
46

00
61

00
63

00
74

00
6F

00
72

00
79

00
3C

00
2F

00
66

00
6F

00
6E

00
74

00
3E

00
5B

00
4E

00
6F

00
74

00
73

00
75

00
70

00
70

00
6F

00
72

00
74

00
65

00
64

00
62

00
79

00
76

00
69

00
65

00
77

00
65

00
72

00
5D

Parenting from upstream and RDO repos

Jobs that run from internal Zuul can parent off, and use resources (jobs, roles etc.) from, upstream
(review.opendev.org) and RDO (review.rdoproject.org) repos. As such, duplication can be kept to a
minimum and jobs that run internally on baremetal hardware can maintain parity with OVB jobs run in
RDO Cloud.

For example, a base TripleO CI job in Zuul

- job:
name: tripleo-ci-base-baremetal
abstract: true
description: |

Base abstract job for Baremetal TripleO
parent: tripleo-ci-base
nodeset: tripleo-baremetal-centos-7-primary
attempts: 1
required-projects:

- rdo-jobs
roles:

- zuul: rdo-jobs
pre-run:

- playbooks/configure-mirrors.yaml
- playbooks/copy-env-vars-baremetal.yaml

vars:
must be overridden
undercloud: <undercloud>

(continues on next page)

4.1. TripleO CI Guide 88

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

environment_infra: baremetal
environment_type: baremetal
playbooks:
- baremetal-prep-virthost.yml
- baremetal-full-undercloud.yml
- baremetal-full-overcloud-prep.yml
- baremetal-full-overcloud.yml
- baremetal-full-overcloud-validate.yml
tags:
- all

Now adding the dlrn reporting

- job:
name: tripleo-ci-base-baremetal-dlrn
parent: tripleo-ci-base-baremetal
abstract: true
description: |

Base abstract job to do DLRN reporting
required-projects:

- config
roles:

- zuul: config
pre-run:

- playbooks/dlrn/pre-dlrn.yaml
post-run:

- playbooks/dlrn/post-dlrn.yaml
secrets:

- dlrnapi

Example of a specific hardware job in Zuul:

Note that multiple jobs cannot be run on the hardware concurrently. The base job is modified to include
semaphore https://zuul-ci.org/docs/zuul/user/config.html#semaphore to run each only one at a time

- job:
name: tripleo-ci-base-baremetal-dlrn-my_env
abstract: true
parent: tripleo-ci-base-baremetal-dlrn
vars:

baremetal_env_vars: >-
{{ local_working_dir }}/hardware_environments/my_env/<truncated_

↪→path>/env_settings.yml
undercloud: <my_env-undercloud-baremetal-host-address>

semaphore:
name: my_env

- job:
name: periodic-tripleo-ci-centos-7-baremetal-3ctlr_1comp-featureset001-

↪→master
parent: tripleo-ci-base-baremetal-dlrn-my_env
vars:

nodes: 3ctlr_1comp
featureset: '001'
release: master

4.1. TripleO CI Guide 89

https://zuul-ci.org/docs/zuul/user/config.html#semaphore

TripleO Documentation, Release 0.0.1.dev1610

Hardware Settings

An example of hardware settings for baremetal environment my_env is shown below:

hardware_environments / my_env / network_configs / single_nic_vlans / env_settings.yml

environment_type: my_env

undercloud.conf settings
undercloud_network_cidr: 10.10.10.0/26
undercloud_local_ip: 10.10.10.1/26
undercloud_network_gateway: 10.10.10.100
undercloud_undercloud_public_vip: 10.10.10.2
undercloud_undercloud_admin_vip: 10.10.10.3
undercloud_local_interface: eth1
undercloud_masquerade_network: 10.10.10.0/26
undercloud_dhcp_start: 10.10.10.5
undercloud_dhcp_end: 10.10.10.24
undercloud_inspection_iprange: 10.10.10.25,10.10.10.39
undercloud_undercloud_nameservers: 10.10.10.200
network_isolation_ipv4_cidr: 10.10.10.64/26
undercloud_external_network_cidr: 10.10.10.64/26

undercloud vm settings
virthost_provisioning_interface: eno2
virthost_provisioning_ip: 10.10.10.4
virthost_provisioning_netmask: 255.255.255.192
virthost_provisioning_hwaddr: FF:FF:FF:FF:FF:FF
virthost_ext_provision_interface: eno1

undercloud_memory: 28672
undercloud_disk: 80
undercloud_vcpu: 8

undercloud_instackenv_template: >-
{{ local_working_dir }}/hardware_environments/my_env/instackenv.json

undercloud_type: virtual
step_introspect: true
introspect: true

network-environment.yaml settings
network_environment_args:
InternalApiNetCidr: 172.21.33.0/24
StorageNetCidr: 172.21.36.0/24
StorageMgmtNetCidr: 172.21.35.0/24
TenantNetCidr: 172.16.0.0/24
ExternalNetCidr: 10.10.10.64/26
BondInterfaceOvsOptions: "mode=4 lacp_rate=fast"
InternalApiAllocationPools: [{'start': '172.21.33.10', 'end': '172.21.
↪→33.200'}]
StorageAllocationPools: [{'start': '172.21.36.10', 'end': '172.21.36.
↪→200'}]
StorageMgmtAllocationPools: [{'start': '172.21.35.10', 'end': '172.21.
↪→35.200'}]
TenantAllocationPools: [{'start': '172.16.0.10', 'end': '172.16.0.200
↪→'}]

(continues on next page)

4.1. TripleO CI Guide 90

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

Leave room for floating IPs starting at .128
ExternalAllocationPools: [{'start': '10.10.10.101', 'end': '10.10.10.
↪→120'}]
ExternalInterfaceDefaultRoute: 10.10.10.130
InternalApiNetworkVlanID: 1272
StorageNetworkVlanID: 1273
StorageMgmtNetworkVlanID: 1274
ExternalNetworkVlanID: 113
TenantNetworkVlanID: 1275
NeutronExternalNetworkBridge: "''"
PublicVirtualFixedIPs: [{"ip_address": "10.10.10.90"}]
ControlPlaneSubnetCidr: "26"
ControlPlaneDefaultRoute: 10.10.10.1
EC2MetadataIp: 10.10.10.1
DnsServers: ["8.8.8.8", "8.8.4.4"]
NtpServer: ["216.239.35.12","time.google.com","0.north-america.pool.
↪→ntp.org"]

step_root_device_size: false
step_install_upstream_ipxe: false
hw_env: my_env
enable_vbmc: false

hardware_environments / my_env / instackenv.json

{
"nodes": [

{
"pm_password": "<passwd>",
"pm_type": "ipmi",
"mac": [
"FF:FF:FF:FF:FF:FF"
],
"cpu": "12",
"memory": "32768",
"disk": "558",
"arch": "x86_64",
"pm_user": "Administrator",
"pm_addr": "10.1.1.11"

},
{

"pm_password": "<passwd>",
"pm_type": "ipmi",
"mac": [
"FF:FF:FF:FF:FF:FF"
],
"cpu": "12",
"memory": "32768",
"disk": "558",
"arch": "x86_64",
"pm_user": "Administrator",
"pm_addr": "10.1.1.12"

},
{

"pm_password": "<passwd>",
"pm_type": "ipmi",

(continues on next page)

4.1. TripleO CI Guide 91

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

"mac": [
"FF:FF:FF:FF:FF:FF"
],
"cpu": "12",
"memory": "32768",
"disk": "558",
"arch": "x86_64",
"pm_user": "Administrator",
"pm_addr": "10.1.1.13"

},
{

"pm_password": "<passwd>",
"pm_type": "ipmi",
"mac": [
"FF:FF:FF:FF:FF:FF"
],
"cpu": "12",
"memory": "32768",
"disk": "558",
"arch": "x86_64",
"pm_user": "Administrator",
"pm_addr": "10.1.1.14"

}
]
}

4.1.6 How the TripleO-RDO Pipelines Promotions Work

Building consumable RDO repos and images involves various stages. Each stage takes inputs and out-
puts artifacts. This document explains the stages comprising the promotion pipelines, and the tools used
to create and manage the resulting artifacts.

What is DLRN?

DLRN is a tool to build RPM packages from each commit to a set of OpenStack-related git repositories
that are included in RDO. DLRN builds are run through CI and to detect packaging issues with the
upstream branches of these Openstack projects.

DLRN Artifacts - Hashes and Repos

When a DLRN build completes, it produces a new hash and related repo version. For example,
the Pike builds on CentOS are available at: https://trunk.rdoproject.org/centos7-pike/. The builds
are placed in directories by DLRN hash. Each directory contains the RPMs as well as a repo
file https://trunk.rdoproject.org/centos7-pike/current-tripleo/delorean.repo and a commit.yaml file
https://trunk.rdoproject.org/centos7-pike/current-tripleo/commit.yaml.

There are some standard links that are updated as the builds complete and pass stages of CI. Examples
are these links are:

• https://trunk.rdoproject.org/centos7-pike/current/

• https://trunk.rdoproject.org/centos7-pike/consistent/

4.1. TripleO CI Guide 92

https://trunk.rdoproject.org/centos7-pike/
https://trunk.rdoproject.org/centos7-pike/current-tripleo/delorean.repo
https://trunk.rdoproject.org/centos7-pike/current-tripleo/commit.yaml
https://trunk.rdoproject.org/centos7-pike/current/
https://trunk.rdoproject.org/centos7-pike/consistent/

TripleO Documentation, Release 0.0.1.dev1610

• https://trunk.rdoproject.org/centos7-pike/current-tripleo/

• https://trunk.rdoproject.org/centos7-pike/current-tripleo-rdo/

• https://trunk.rdoproject.org/centos7-pike/current-tripleo-rdo-internal/

• https://trunk.rdoproject.org/centos7-pike/tripleo-ci-testing/

The above links will be referenced in the sections below.

Promoting through the Stages - DLRN API

DLRN API Client

The DLRN API client enables users to query repo status, upload new hashes and create promotions.
Calls to the dlrnapi_client retrieve the inputs to stages and upload artifacts after stages.

For example:

$ dlrnapi --url https://trunk.rdoproject.org/api-centos-master-uc \
promotion-get --promote-name tripleo-ci-testing

[{'commit_hash': 'ec650aa2c8ce952e4a33651190301494178ac562',
'distro_hash': '9a7acc684265872ff288a11610614c3b5739939b',
'promote_name': 'tripleo-ci-testing',
'timestamp': 1506427440},
{'commit_hash': 'ec650aa2c8ce952e4a33651190301494178ac562',

[..]

$ dlrnapi --url https://trunk.rdoproject.org/api-centos-master-uc \
repo-status --commit-hash ec650aa2c8ce952e4a33651190301494178ac562 \
--distro-hash 9a7acc684265872ff288a11610614c3b5739939b

[{'commit_hash': 'ec650aa2c8ce952e4a33651190301494178ac562',
'distro_hash': '9a7acc684265872ff288a11610614c3b5739939b',
'in_progress': False,
'job_id': 'consistent',
'notes': '',
'success': True,
'timestamp': 1506409403,
'url': ''},
{'commit_hash': 'ec650aa2c8ce952e4a33651190301494178ac562',
'distro_hash': '9a7acc684265872ff288a11610614c3b5739939b',
'in_progress': False,
'job_id': 'periodic-singlenode-featureset023',
'notes': '',
'success': True,
'timestamp': 1506414726,
'url': 'https://logs.rdoproject.org/openstack-periodic-4hr/periodic-
↪→tripleo-centos-7-master-containers-build/8a76883'},
{'commit_hash': 'ec650aa2c8ce952e4a33651190301494178ac562',

[..]

4.1. TripleO CI Guide 93

https://trunk.rdoproject.org/centos7-pike/current-tripleo/
https://trunk.rdoproject.org/centos7-pike/current-tripleo-rdo/
https://trunk.rdoproject.org/centos7-pike/current-tripleo-rdo-internal/
https://trunk.rdoproject.org/centos7-pike/tripleo-ci-testing/
https://github.com/softwarefactory-project/DLRN/blob/master/doc/source/api.rst
https://github.com/softwarefactory-project/dlrnapi_client/

TripleO Documentation, Release 0.0.1.dev1610

DLRN API Promoter

The DLRN API Promoter script is a Python script that, based on the information in an input config file,
will promote an existing DLRN link to another link, provided the required tests return successful results.

For example, the master ini config file is passed to the promoter script to promote the
current-tripleo link to current-tripleo-rdo. See the sections above where both these
links (for Pike) were shown.

In the RDO Phase 1 pipeline, the tests listed under the [current-tripleo-rdo] are run with the
current-tripleo hash. Each test reports its success status to the DLRN API endpoint for the
Master release, api-centos-master-uc.

If each test reports SUCCESS: true, the content of the current-tripleo will become the new
content of the current-tripleo-rdo hash.

For complete documentation on how to run the Promoter script see: https://github.com/rdo-infra/
ci-config/blob/master/ci-scripts/dlrnapi_promoter/README.md

Pushing RDO containers to docker.io

The DLRN Promoter script calls the container push playbook to push the RDO containers at
each stage to docker.io. Note that the above docker.io link shows containers tagged with
tripleo-ci-testing, current-tripleo and current-tripleo-rdo.

DLRN API Promoter Server

It is recommended that the Promoter script is run from a dedicated server. The promoter-setup repo
contains the Ansible playbook used to setup the promoter-server in the RDO Cloud environment. This
playbook allows the promoter script server to be rebuilt as required.

4.1.7 TripleO CI Promotions

This section introduces the concept of promotions in TripleO. In short, a promotion happens when we
can certify the latest version of all packages required for a TripleO deployment of OpenStack as being
in a good state and without regressions.

The certification consists of running Zuul CI jobs with the latest packages built from source for TripleO
code (list of TripleO repos at1) and the latest packages built from source for non-tripleo code. If the tests
are successful, then the result is certified as current-tripleo, ready to be consumed by the TripleO CI
check and gate jobs (see2 for more information about check and gate).

This process is continuous as new code is merged into the various repos. Every time we get a successful
completion of the promotion CI jobs, the tested content is promoted to be the new current-tripleo,
hence the name this workflow is known by. At a given time, the latest current-tripleo is the baseline by
which we test all new code submissions to the TripleO project.

1 List of TripleO repos
2 TripleO Check and Gate jobs

4.1. TripleO CI Guide 94

https://github.com/rdo-infra/ci-config/tree/master/ci-scripts/dlrnapi_promoter
https://github.com/rdo-infra/ci-config/blob/master/ci-scripts/dlrnapi_promoter/config/master.ini
https://github.com/rdo-infra/ci-config/blob/master/ci-scripts/dlrnapi_promoter/dlrnapi_promoter.py
https://github.com/rdo-infra/ci-config/blob/master/ci-scripts/dlrnapi_promoter/README.md
https://github.com/rdo-infra/ci-config/blob/master/ci-scripts/dlrnapi_promoter/README.md
https://github.com/rdo-infra/ci-config/blob/master/ci-scripts/container-push/container-push.yml
https://hub.docker.com/r/tripleopike/centos-binary-heat-api/tags/
https://github.com/rdo-infra/ci-config/tree/master/ci-scripts/promoter-setup
https://releases.openstack.org/teams/tripleo.html
https://docs.openstack.org/tripleo-docs/latest/ci/ci_primer.html#zuul-queues-gate-vs-check

TripleO Documentation, Release 0.0.1.dev1610

TripleO vs non-tripleo repos

All proposed code submissions across the various tripleo repos are gated by the TripleO community
which owns and manages the zuul check and gate jobs for those repos.

However, we cannot gate changes to anything outside TripleO, including all the OpenStack projects used
by TripleO as well as any dependencies such as Open vSwitch or Pacemaker.

Even though we cannot gate on those external repos, the promotion process allows us to test our TripleO
code with their latest versions. If there are regressions or any other bugs (and assuming ideal test
coverage) the promotion jobs will fail accordingly allowing the TripleO CI team to investigate and file
launchpad bugs so the issue(s) can be addressed.

RDO DLRN & Promotion Criteria

TripleO CI jobs consume packages built by the RDO DLRN service (delorean) so we first introduce it
here. An overview is given on the RDO project site at3.

In short, RDO DLRN builds RPMs from source and publishes the resulting packages and repos. Each
build or repo is identifiable using a unique build ID.

RDO DLRN assigns named tags to particular build IDs. You can see all of these named tags by browsing
at the RDO DLRN package root, for example for Centos8 master branch at4. Of particular importance
to the TripleO promotion workflow are:

* current

* consistent

* component-ci-testing

* promoted-components

* tripleo-ci-testing

* current-tripleo

The list of tags in the order given above gives the logical progression through the TripleO promotion
workflow.

The build ID referenced by each of those named tags is constantly updated as new content is promoted
to become the new named tag.

A general pattern in DLRN is that current is applied to the very latest build, that is, the latest commits to
a particular repo. A new current build is generated periodically (e.g. every half hour). The consistent
tag represents the latest version of packages where there were no errors encountered during the build for
any of those (i.e. all packages were built successfully). The consistent build is what TripleO consumes
as the entry point to the TripleO promotion workflow.

One last point to be made about RDO DLRN is that after the TripleO promotion CI jobs are executed
against a particular DLRN build ID, the results are reported back to DLRN. For example, you can query
using the build ID at5 to get the list of jobs that were executed against that specific content, together with
the results for each.

The list of jobs that are required to pass before we can promote a particular build is known as the
promotion criteria. In order to promote, TripleO queries the DLRN API to get the results for a particular

3 RDO DLRN Overview @ rdoproject.org
4 Index of RDO DLRN builds for Centos 8 master @ rdoproject.org
5 Query RDO DLRN by build ID @ rdoproject.org

4.1. TripleO CI Guide 95

https://www.rdoproject.org/what/dlrn/
https://trunk.rdoproject.org/centos8-master/
https://trunk.rdoproject.org/api-centos8-master-uc/api/civotes_agg_detail.html?ref_hash=4c59f98669a605fd62278142ef6b8939

TripleO Documentation, Release 0.0.1.dev1610

build and compares the passing jobs to the promotion criteria, before promoting or rejecting that content
accordingly. You can find the master centos8 promotion criteria at6 for example.

The TripleO Promotion Pipelines

A pipeline refers to a series of Zuul CI jobs and what we refer to as the TripleO promotion workflow is
actually a number of interconnected pipelines. At the highest level conceptually these are grouped into
either Component or Integration pipelines. The output of the Component pipeline serves as input to the
Integration pipeline.

A Component is a conceptual grouping of packages related by functional area (with respect to an Open-
Stack deployment). This grouping is enforced in practice by the RDO DLRN server and the current list
of all components can be found at7. For example, you can expect to find the openstack-nova- packages
within the Compute component.

The Component pipeline actually consists of a number of individual pipelines, one for each of the
components. The starting point for each of these is the latest consistent build of the component packages
and we will go into more detail about the flow inside the component pipelines in the following section.

A successful run of the jobs for the given component allows us to certify that content as being the new
promoted-components, ready to be used as input to the Integration pipeline. The Integration pipeline
qualifies the result of the components tested together and when that is successful we can promote to a
new current-tripleo. This is shown conceptually for a subset of components here:

In the diagram above, you can see the component pipeline at the top with the compute, cinder and
security components. This feeds into the integration pipeline in the bottom half of the diagram where
promoted-components will be tested together and if successful produce the new current-tripleo.

The Component Promotion Pipeline

As noted above, the Component pipeline is actually a series of individual pipelines, one for each com-
ponent. While these all operate and promote in the same way, they do so independently of each other.
So the latest compute/promoted-components may be much newer than the latest security/promoted-
components, if the latter is failing to promote for example. The following flowchart shows the progres-
sion of the RDO DLRN tags through a single component pipeline while in practice this flow is repeated
in parallel per component.

As illustrated above, the entry point to the component pipelines is the latest consistent build from RDO
DLRN. Once a day a periodic job tags the latest consistent build as component-ci-testing. For exam-
ple you can see the history for the baremetal component job at8 descriptively named periodic-tripleo-
centos-8-master-component-baremetal-promote-consistent-to-component-ci-testing.

After this job has completed the content marked as component-ci-testing becomes the new candidate
for promotion to be passed through the component CI jobs. The component-ci-testing repo content is
tested with the latest current-tripleo repos of everything else. Remember that at a given time current-
tripleo is the known good baseline by which we test all new content and the same applies to new content
tested in the component pipelines.

As an example of the component CI jobs, you can see the history for the baremetal component standalone
job at9. If you navigate to the logs/undercloud/etc/yum.repos.d/ directory for one of those job runs you

6 Centos8 current-tripleo promotion criteria at time of writing
7 Centos8 RDO DLRN components @ rdoproject.org
8 Zuul job history periodic-tripleo-centos-8-master-component-baremetal-promote-consistent-to-component-ci-testing
9 Zuul job history periodic-tripleo-ci-centos-8-standalone-baremetal-master

4.1. TripleO CI Guide 96

https://github.com/rdo-infra/ci-config/blob/a3120dbefa9034b1f0c0057bec74623e32bd4ac3/ci-scripts/dlrnapi_promoter/config/CentOS-8/master.ini#L21
https://trunk.rdoproject.org/centos8-master/component/
https://review.rdoproject.org/zuul/builds?job_name=periodic-tripleo-centos-8-master-component-baremetal-promote-consistent-to-component-ci-testing
https://review.rdoproject.org/zuul/builds?job_name=periodic-tripleo-ci-centos-8-standalone-baremetal-master

TripleO Documentation, Release 0.0.1.dev1610

will see (at least) the following repos:

• delorean.repo - which provides the latest current-tripleo content

• baremetal-component.repo - which provides the component-ci-testing content that we are trying
to promote.

You may notice that the trick allowing the baremetal-component.repo to have precedence for the pack-
ages it provides is to set the repo priority accordingly (1 for the component and 20 for delorean.repo).

Another periodic job checks the result of the component-ci-testing job runs and if the component
promotion criteria is satisfied the candidate content is promoted and tagged as the new promoted-
components. You can find the promotion criteria for Centos8 master components at10.

As an example the history for the zuul job that handles promotion to promoted-components for the
cinder component can be found at11

You can explore the latest content tagged as promoted-components for the compute component at12.
All the component promoted-components are aggregated into one repo that can be found at13 and looks
like the following:

[delorean-component-baremetal]
name=delorean-openstack-ironic-9999119f737cd39206df3d73e23e5f47933a6f32
baseurl=https://trunk.rdoproject.org/centos8/component/baremetal/99/99/
↪→9999119f737cd39206df3d73e23e5f47933a6f32_1b0aff0d
enabled=1
gpgcheck=0
priority=1

[delorean-component-cinder]
name=delorean-openstack-cinder-482e6a3cc5cca697b54ee1d853a4eca6e6f3cfc7
baseurl=https://trunk.rdoproject.org/centos8/component/cinder/48/2e/
↪→482e6a3cc5cca697b54ee1d853a4eca6e6f3cfc7_ae00ff8c
enabled=1
gpgcheck=0
priority=1

Every time a component promotes a new component/promoted-components the aggregated
promoted-components delorean.repo on the RDO DLRN server is updated with the new content.

This promoted-components repo is used as the starting point for the TripleO Integration promotion
pipeline.

10 Centos8 master promoted-components promotion critiera at time of writing
11 Zuul job history periodic-tripleo-centos-8-master-component-cinder-promote-to-promoted-components
12 Compute promoted-components @ rdoproject.org
13 Centos8 master promoted-components delorean.repo @ rdoproject.org

4.1. TripleO CI Guide 97

https://github.com/rdo-infra/ci-config/blob/a22de83f4c0f78f3d3555bfba2511fedc3919d3e/ci-scripts/dlrnapi_promoter/config/CentOS-8/component/master.yaml#L18-L21
https://review.rdoproject.org/zuul/builds?job_name=periodic-tripleo-centos-8-master-component-cinder-promote-to-promoted-components
https://trunk.rdoproject.org/centos8-master/component/compute/promoted-components
https://trunk.rdoproject.org/centos8-master/promoted-components/delorean.repo

TripleO Documentation, Release 0.0.1.dev1610

The Integration Promotion Pipeline

The Integration pipeline as the name suggests is the integration point where we test new content from
all components together. The consolidated promoted-components delorean.repo produced by the com-
ponent pipeline is tested with a series of CI jobs. If the jobs listed in the promotion criteria pass, we
promote that content and tag it as current-tripleo.

As can be seen in the flowchart above, the promoted-components content is periodically promoted
(pinned) to tripleo-ci-testing, which becomes the new promotion candidate to be tested. You can find
the build history for the job that promotes to tripleo-ci-testing for Centos 8 master, descriptively named
periodic-tripleo-centos-8-master-promote-promoted-components-to-tripleo-ci-testing, at14.

First the tripleo-ci-testing content is used to build containers and overcloud deployment images and
these are pushed to RDO cloud to be used by the rest of the jobs in the integration pipeline.

The periodic promotion jobs are then executed with the results being reported back to DLRN. If the right
jobs pass according to the promotion criteria then the tripleo-ci-testing content is promoted and tagged
to become the new current-tripleo.

An important distinction in the integration pipeline compared to the promotion pipeline is in the final
promotion of content. In the component pipeline the promoted-components content is tagged by a
periodic Zuul job as described above. For the Integration pipeline however, the promotion to current-
tripleo happens with the use of a dedicated service. This service is known to the tripleo-ci squad by a
few names including the promotion server, the promoter server and the promoter.

In short the promoter periodically queries delorean for the results of the last few tripleo-ci-testing runs.
It compares the results to the promotion criteria and if successful it re-tags the container and overcloud
deployment images as current-tripleo and pushes back to RDO cloud (as well as to the quay.io and
docker registries). It also talks to the DLRN server and retags the successful tripleo-ci-testing repo as
the new current-tripleo. You can read more about the promoter with links to the code at15.

References

4.1.8 emit-releases-file and releases.sh

The emit-releases-file tool is a python script that lives in the tripleo-ci repo under the
scripts/emit_releases_file directory. This script produces an output file called releases.sh containing
shell variable export commands. These shell variables set the release name and hash for the installation
and target (versions) of a given job. For example, installing latest stable branch (currently stein) and
upgrading to master. The hash is the delorean repo hash from which the packages used in the job are to
be installed.

The contents of releases.sh will differ depending on the type of upgrade or update operation being per-
formed by a given job and this is ultimately determined by the featureset. Each upgrade or update related
featureset sets boolean variables that signal the type of upgrade performed. For example featureset050
is used for undercloud upgrade and it sets:

undercloud_upgrade: true

The releases.sh for an undercloud upgrade job looks like:
14 Zuul job history periodic-tripleo-centos-8-master-promote-promoted-components-to-tripleo-ci-testing
15 TripleO CI docs Promotion Server and Criteria

4.1. TripleO CI Guide 98

https://opendev.org/openstack/tripleo-ci/src/commit/91c836da76f6f28a5c7545b6a96bf6a9c0d2289e/scripts/emit_releases_file
https://opendev.org/openstack/tripleo-quickstart/src/commit/b90b5a51df5104da35adf42a7d7fb5f7bc603eca/config/general_config/featureset050.yml#L18
https://review.rdoproject.org/zuul/builds?job_name=periodic-tripleo-centos-8-master-promote-promoted-components-to-tripleo-ci-testing
https://docs.openstack.org/tripleo-docs/latest/ci/chasing_promotions.html#promotion-server-and-criteria

TripleO Documentation, Release 0.0.1.dev1610

#!/bin/env bash
export UNDERCLOUD_INSTALL_RELEASE="stein"
export UNDERCLOUD_INSTALL_HASH="c5b283cab4999921135b3815cd4e051b43999bce_
↪→5b53d5ba"
export UNDERCLOUD_TARGET_RELEASE="master"
export UNDERCLOUD_TARGET_HASH="be90d93c3c5f77f428d12a9a8a2ef97b9dada8f3_
↪→5b53d5ba"
export OVERCLOUD_DEPLOY_RELEASE="master"
export OVERCLOUD_DEPLOY_HASH="be90d93c3c5f77f428d12a9a8a2ef97b9dada8f3_
↪→5b53d5ba"
export OVERCLOUD_TARGET_RELEASE="master"
export OVERCLOUD_TARGET_HASH="be90d93c3c5f77f428d12a9a8a2ef97b9dada8f3_
↪→5b53d5ba"
export STANDALONE_DEPLOY_RELEASE="master"
export STANDALONE_DEPLOY_HASH="be90d93c3c5f77f428d12a9a8a2ef97b9dada8f3_
↪→5b53d5ba"
export STANDALONE_DEPLOY_NEWEST_HASH=
↪→"b4c2270cc6bec2aaa3018e55173017c6428237a5_3eee5076"
export STANDALONE_TARGET_RELEASE="master"
export STANDALONE_TARGET_NEWEST_HASH=
↪→"b4c2270cc6bec2aaa3018e55173017c6428237a5_3eee5076"
export STANDALONE_TARGET_HASH="be90d93c3c5f77f428d12a9a8a2ef97b9dada8f3_
↪→5b53d5ba"

As can be seen there are three different groups of keys set: UNDERCLOUD_INSTALL and UNDER-
CLOUD_TARGET is one group, then OVERCLOUD_DEPLOY and OVERCLOUD_TARGET, and fi-
nally STANDALONE_DEPLOY and STANDALONE_TARGET. For each of those groups we have the
_RELEASE name and delorean _HASH. Since the example above is generated from an undercloud up-
grade job/featureset only the undercloud related values are set correctly. The values for OVERCLOUD_
and STANDALONE_ are set to the default values with both _DEPLOY and _TARGET referring to mas-
ter.

Where is releases.sh used

The releases script is not used for all CI jobs or even for all upgrades related jobs. There is a conditional
in the tripleo-ci run-test role which determines the list of jobs for which we use emit-releases-file. In
future we may remove this conditional altogether.

Once it is determined that the releases.sh file will be used, a list of extra RELEASE_ARGS is com-
piled to be passed into the subsequent quickstart playbook invocations. An example of what these
RELEASE_ARGS looks like is:

--extra-vars @/home/zuul/workspace/.quickstart/config/release/tripleo-ci/
↪→CentOS-7/master.yml -e dlrn_
↪→hash=be90d93c3c5f77f428d12a9a8a2ef97b9dada8f3_5b53d5ba -e get_build_
↪→command=be90d93c3c5f77f428d12a9a8a2ef97b9dada8f3_5b53d5ba

The RELEASE_ARGS are resolved by a helper function get_extra_vars_from_release. As you can see
this function uses the release name passed in via the _RELEASE value from the releases.sh to set the
right release configuration file from the tripleo-quickstart config/release/ directory which sets variables
for the ansible execution. It also sets the dlrn_hash which is used to setup the right repo and thus versions
of packages and finally the get_build_command is used to make sure we have the right containers for
the job.

4.1. TripleO CI Guide 99

https://opendev.org/openstack/tripleo-ci/src/commit/93768b46eec9cf3767fef23c186806e660f69395/roles/run-test/templates/toci_gate_test.sh.j2#L124
https://opendev.org/openstack/tripleo-ci/src/commit/91c836da76f6f28a5c7545b6a96bf6a9c0d2289e/roles/run-test/templates/toci_quickstart.sh.j2#L66
https://opendev.org/openstack/tripleo-ci/src/commit/91c836da76f6f28a5c7545b6a96bf6a9c0d2289e/roles/run-test/templates/toci_quickstart.sh.j2#L66
https://opendev.org/openstack/tripleo-ci/src/commit/91c836da76f6f28a5c7545b6a96bf6a9c0d2289e/roles/run-test/templates/toci_quickstart.sh.j2#L130
https://opendev.org/openstack/tripleo-ci/src/commit/91c836da76f6f28a5c7545b6a96bf6a9c0d2289e/roles/run-test/templates/oooq_common_functions.sh.j2#L155
https://opendev.org/openstack/tripleo-quickstart/src/commit/b90b5a51df5104da35adf42a7d7fb5f7bc603eca/config/release

TripleO Documentation, Release 0.0.1.dev1610

As you can see in the list of compiled RELEASE_ARGS the INSTALL or TARGET are passed in to the
get_extra_vars_from_release function, depending on the playbook:

declare -A RELEASE_ARGS=(
["multinode-undercloud.yml"]=$(get_extra_vars_from_release \

$UNDERCLOUD_INSTALL_RELEASE $UNDERCLOUD_INSTALL_HASH)
["multinode-undercloud-upgrade.yml"]=$(get_extra_vars_from_release \

$UNDERCLOUD_TARGET_RELEASE $UNDERCLOUD_TARGET_HASH)

So for the multinode-undercloud.yml use INSTALL_RELEASE but for multinode-undercloud-
upgrade.yml use TARGET_RELEASE and HASH.

4.1.9 TripleO CI ruck|rover primer

The tripleo-squad divides their work across 3 week sprints. During sprint planning 2 members of the
team are nominated as the ruck and rover. You can easily identify these unfortunate souls in OFTC
#oooq with ruck or rover in their irc nick.

In short the ruck and rover are tasked with keeping the lights on for a given TripleO CI sprint. This
means:

• ensuring gate queues are green to keep TripleO patches merging.

• ensuring promotion jobs are green to keep TripleO up to date with the rest of OpenStack and
everything else that isnt TripleO! Target is bugs filed + escalated + fixed for promotion at least
once a week.

The ruck|rover concept adopted by Tripleo CI are taken from Australian Rules Football. The ruck
monitors the queue and files bugs, and the rover picks up those bugs and runs with them until theyre
fixed.

This document is a primer for anyone new to the TripleO CI squad or otherwise interested in how the
ruck|rover of the TripleO CI squad operate. See the CI Team Structure document for general information
about how the (rest of the) TripleO CI team is organised and operates in a given sprint.

Ruck

The ruck monitors the various jobs across the various tripleo related repos both upstream tripleo-ci and
rdo-infra jobs and periodics for promotions. The grafana dashboard at http://cockpit-ci.tripleo.org/ is
one of the tools used by the ruck to monitor jobs (and many other things, more info on grafana below).

Any new issues are triaged by collecting logs from multiple instances of the error (i.e. same error in
different jobs or different runs of the same job). The ruck monitors the failing jobs and files bugs for all
known or confirmed things currently affecting TripleO CI.

Launchpad is used as the bug tracker - here is a list of recently created Tripleo launchpad bugs. When
filing a new bug, the ruck will add the appropriate tag(s):

• ci: a general tag for all ci related bugs - any bug about a failing CI job should have this.

• alert: critical bugs e.g. something that affects a great number of jobs. This tag causes the bug to
be advertised in irc OFTC #tripleo.

• tempest: bug is tempest related - failing tests or other tempest related error.

• ci-reproducer: related to the zuul based job reproducer

4.1. TripleO CI Guide 100

https://docs.openstack.org/tripleo-docs/latest/ci/ci_primer.html
https://docs.openstack.org/tripleo-docs/latest/ci/stages-overview.html
https://en.wikipedia.org/wiki/Follower_(Australian_rules_football)
https://specs.openstack.org/openstack/tripleo-specs/specs/policy/ci-team-structure.html
http://cockpit-ci.tripleo.org/
https://bugs.launchpad.net/tripleo/+bugs?orderby=-datecreated&start=0
https://opendev.org/openstack/tripleo-quickstart-extras/src/branch/master/roles/create-zuul-based-reproducer/README.md

TripleO Documentation, Release 0.0.1.dev1610

• promotion-blocker: this is used when the failing job(s) is in the promotion criteria (more on that
below).

For the periodic promotion jobs the ruck must ensure that the jobs defined as being in promotion criteria
are passing. The criteria is simply a list of jobs which must pass for a promotion to occur (see the
promotion docs for more info on the promotion stages in TripleO). This list is maintained in a file per
branch in the ci-config-dlrnapi-promoter-config directory. For tripleo-ci promotions we are interested
in promotions from current to current-tripleo (see promotion). Thus, looking at master.ini at time of
writing for example:

[current-tripleo]
periodic-singlenode-featuresetcontainers-build
periodic-tripleo-ci-centos-7-ovb-3ctlr_1comp-featureset001-master
periodic-tripleo-ci-centos-7-ovb-1ctlr_1comp-featureset002-master-upload
periodic-tripleo-ci-centos-7-multinode-1ctlr-featureset010-master
periodic-tripleo-ci-centos-7-scenario001-standalone-master
...

The above means that for a promotion to happen all the jobs defined under current-tripleo must pass.
Obviously this list changes over time as jobs are created and retired. It is sometimes necessary to
temporarily skip a job from that list (which is why you may see some jobs commented out with #).

Rover

The rover then takes the bugs filed by the ruck and tries to fix them. That is not to say that the rover is
expected or indeed able to fix all encountered things! Really the expectation is that the rover has a root
cause, or at least understands where the bug is coming from (e.g. which service).

In some cases bugs are fixed once a new version of some service is released (and in tripleo-ci jobs after a
promotion if it is a non tripleo service/project). In this case the rover is expected to know what that fix is
and do everything they can to make it available in the jobs. This will range from posting gerrit reviews
to bump some service version in requirements.txt through to simply harrassing the right folks ;) in the
relevant TripleO Squad.

In other cases bugs may be deprioritized - for example if the job is non voting or is not in the promotion
criteria then any related bugs are less likely to be getting the rovers attention. If you are interested in
such jobs or bugs then you should go to #OFTC oooq channel and find the folks with ruck or rover in
their nick and harrass them about it!

Of course for other cases there are bona fide bugs with the TripleO CI code that the rover is expected to
fix. To avoid being overwhelmed time management is hugely important for the rover especially under
high load. As a general rule the rover should not spend any more than half a day (or four hours) on any
particular bug. Once this threshold is passed the rover should reach out and escalate to any component
experts.

Under lighter load the rover is encouraged to help with any open bugs perhaps those ongoing issues with
lower priority (e.g. non-voting jobs) and even non CI bugs in TripleO or any other relevant OpenStack
component.

4.1. TripleO CI Guide 101

https://docs.openstack.org/tripleo-docs/latest/ci/stages-overview.html
https://github.com/rdo-infra/ci-config/blob/master/ci-scripts/dlrnapi_promoter/config/CentOS-7/
https://docs.openstack.org/tripleo-docs/latest/ci/stages-overview.html
https://github.com/rdo-infra/ci-config/blob/7e8c40e2b2b686cc2d1d3e86cf8f9cbbd646a1c3/ci-scripts/dlrnapi_promoter/config/CentOS-7/master.ini#L16-L43
https://docs.openstack.org/tripleo-docs/latest/ci/stages-overview.html
https://docs.openstack.org/tripleo-docs/latest/contributor/index.html#squads
https://opendev.org/openstack/tripleo-ci/src/branch/master/README.rst

TripleO Documentation, Release 0.0.1.dev1610

Tools

The TripleO squad has developed two main tools to help the ruck and rover do their job efficiently. They
are known within the squad as grafana and sova (the names of the underlying code in each case):

• grafana: http://cockpit-ci.tripleo.org/

• sova: http://cistatus.tripleo.org/

• etherpad: $varies

The ruck|rover are encouraged to use an etherpad that is kept up to date for any ongoing issues actively
being worked on. Besides allowing coordination between ruck and rover themselves (the TripleO CI
team is distributed across a number of time zones) one other use case is to allow tripleo-devs to check
if the reason a particular job is failing on their code review is known or if they need to go harrass the
ruck|rover about it in OFTC #oooq. The location of the current ruck|rover etherpad is given in grafana
(see below).

Sova

In sova you can see for each of check, gate, and promotions a list of all jobs, grouped by functionality
(ovb or containers) as well as by branch in the case of promotion jobs. By clicking on a particular job
you can see the most recent failures and successes with link to logs for more investigation. Sova tries to
determine where and how the a job fails and reports that accordingly as shown below.

4.1. TripleO CI Guide 102

http://cockpit-ci.tripleo.org/
http://cistatus.tripleo.org/

TripleO Documentation, Release 0.0.1.dev1610

Grafana

Grafana is used to track many things and is also constantly evolving so we highlight only a few main
data points here. The top of the dashboard has some meters showing the overall health of CI.

Fig. 1: As can be seen left to right - the Upstream Zuul queue gives the time a review waits before being
picked up by zuul for jobs to run against it, the Upstream gate jobs shows the number of failing gate jobs
in the last 24 hours, Upstream CI stats shows the ratio of passing to failing jobs as a Pie chart (anything
above 80% pass is good) and finally a list of the latest failing gate jobs with links. At the bottom left
there is a link to the current ruck rover etherpad.

Grafana is also useful for tracking promotions across branches.

Finally grafana tracks a list of all running jobs hilighting the failures in red.

4.1. TripleO CI Guide 103

TripleO Documentation, Release 0.0.1.dev1610

Fig. 2: As seen above on the left hand side and from top to bottom - the latest promotions for master,
stein, rocky, queens and pike as bar charts. The bars represent promotions and height shows the number
of promotions on that day.

4.1.10 Chasing CI promotions

The purpose of this document is to go into more detail about the TripleO promotion from the point of
view of the ci-squad ruck|rover.

There is other documentation in this repo which covers the stages of the Tripleo-CI promotion pipeline
in promotion-stages-overview and also about relevant tooling such as the dlrn-api-promoter.

Ensuring promotions are happening regularly (including for all current stable/ branches) is one of the
biggest responsibilities of the ruck|rover. As explained in promotion-stages-overview the CI promotion
represents the point at which we test all the tripleo-* things against the rest of openstack. The require-
ment is that there is a successful promotion (more on that below) at least once a week. Otherwise the
branch will be considered in the red as in master promotion is red or we are red for stein promotion
meaning was no promotion in (at least) 7 days for that branch.

Successful promotion

So what does it actually mean to have a successful promotion. In short:

• The TripleO periodic jobs have to run to completion and

• The periodic jobs in the promotion criteria must pass and

• The promoter server must be running in order to actually notice the job results and promote!

Each of these is explained in more detail below.

4.1. TripleO CI Guide 104

ruck_rover_primer.html
stages-overview.html
dlrn-promoter-overview.html
stages-overview.html

TripleO Documentation, Release 0.0.1.dev1610

TripleO periodic jobs

The TripleO periodic jobs are ci jobs that are executed in one of the TripleO periodic pipelines. At time
of writing we have four periodic pipelines defined in the config repo zuul pipelines:

* openstack-periodic-master

* openstack-periodic-latest-released

* openstack-periodic-24hr

* openstack-periodic-wednesday-weekend

These pipelines are periodic because unlike the check and gate pipelines (see ci jobs for more on those)
jobs that run on each submitted code review, periodic jobs are executed periodically, at an interval given
in cron syntax as you can see in the definitions at config repo zuul pipelines):

- pipeline:
name: openstack-periodic-master
post-review: true
description: Jobs in this queue are triggered to run every few hours.
manager: independent
precedence: high
trigger:

timer:
- time: '10 0,12,18 * * *'

As can be seen at time of writing the openstack-periodic-master jobs will run three times every day, at
10 minutes after midnight, noon and 6pm.

The four pipelines correspond to the four latest releases of OpenStack. The openstack-periodic-master
runs jobs for master promotion, openstack-periodic-latest-released runs jobs for the latest stable branch
promotion, openstack-periodic-24hr runs jobs for the stable branch before that and finally openstack-
periodic-wednesday-weekend runs jobs for the stable branch before that.

You can see the full list of jobs that are executed in the pipelines in the rdo-infra periodic zuul layout.

It is important to finally highlight a common pattern in the pipeline layout. In each case the first job that
must complete is the promote-consistent-to-tripleo-ci-testing which is where we take the latest consistent
hash and mark it as tripleo-ci-testing to become our new candidate (see promotion-stages-overview) to
be used by the rest of the jobs in our pipeline. You will note that this is the only job that doesnt have any
dependency:

...
- periodic-tripleo-ci-rhel-8-ovb-3ctlr_1comp-featureset001-master:

dependencies:
- periodic-tripleo-rhel-8-buildimage-ironic-python-agent-master
- periodic-tripleo-rhel-8-master-containers-build-push

- periodic-tripleo-centos-7-master-promote-consistent-to-tripleo-ci-testing
...

Then the containers and overcloud image build jobs must complete and only then we finally run the rest
of the jobs. These ordering requirements are expressed using dependencies in the layout:

...
- periodic-tripleo-rhel-8-buildimage-overcloud-full-master:

dependencies:
- periodic-tripleo-centos-7-master-promote-consistent-to-tripleo-ci-

↪→testing

(continues on next page)

4.1. TripleO CI Guide 105

https://docs.openstack.org/tripleo-docs/latest/ci/ci_primer.html#where-do-tripleo-promotion-jobs-live
https://github.com/rdo-infra/review.rdoproject.org-config/blob/0fd16d0badb13e02460d3b2e3213db4af7f027e0/zuul.d/upstream.yaml#L84-L157
https://docs.openstack.org/tripleo-docs/latest/ci/ci_primer.html#where-do-tripleo-promotion-jobs-live
https://github.com/rdo-infra/review.rdoproject.org-config/blob/0fd16d0badb13e02460d3b2e3213db4af7f027e0/zuul.d/upstream.yaml#L84-L157
https://review.rdoproject.org/zuul/builds?pipeline=openstack-periodic-master
https://review.rdoproject.org/zuul/builds?pipeline=openstack-periodic-latest-released
https://review.rdoproject.org/zuul/builds?pipeline=openstack-periodic-24hr
https://review.rdoproject.org/zuul/builds?pipeline=openstack-periodic-wednesday-weekend
https://review.rdoproject.org/zuul/builds?pipeline=openstack-periodic-wednesday-weekend
https://github.com/rdo-infra/review.rdoproject.org-config/blob/0fd16d0badb13e02460d3b2e3213db4af7f027e0/zuul.d/tripleo.yaml#L74-L424
stages-overview.html

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

- periodic-tripleo-rhel-8-buildimage-ironic-python-agent-master:
dependencies:

- periodic-tripleo-centos-7-master-promote-consistent-to-tripleo-ci-
↪→testing
- periodic-tripleo-ci-centos-7-ovb-1ctlr_1comp-featureset002-master-upload:

dependencies:
- periodic-tripleo-centos-7-master-containers-build-push

..

As can be seen above the build image jobs depend on the promote-consistent job and then everything
else in the layout depends on the container build job.

Promotion Server and Criteria

The promotion server is maintained by the Tripleo-CI squad at a secret location (!) and it runs the code
from the DLRN API Promoter as a service. In short, the job of this service is to fetch the latest hashes
from the RDO delorean service and then query the state of the periodic jobs using that particular hash.

The main input to the promotion server is the configuration which defines the promotion criteria. This
is the list of jobs that must pass so that we can declare a successful promotion:

[current-tripleo]
periodic-tripleo-centos-7-master-containers-build-push
periodic-tripleo-ci-centos-7-ovb-3ctlr_1comp-featureset001-master
periodic-tripleo-ci-centos-7-ovb-1ctlr_1comp-featureset002-master-upload
periodic-tripleo-ci-centos-7-multinode-1ctlr-featureset010-master
periodic-tripleo-ci-centos-7-scenario001-standalone-master
periodic-tripleo-ci-centos-7-scenario002-standalone-master
periodic-tripleo-ci-centos-7-scenario003-standalone-master
...

The promoter service queries the delorean service for the results of those jobs (for a given hash) and if
they are all found to be in SUCCESS then the hash can be promoted to become the new current-tripleo.

It is a common practice for TripleO CI ruck or rover to check the indexed promoter service logs to see
why a given promotion is not successful for example or when debugging issues with the promotion code
itself.

Hack the promotion with testproject

Finally testproject and the ability to run individual periodic jobs on demand is an important part of the
ruck|rover toolbox. In some cases you may want to run a job for verification of a given launchpad bug
that affects perioric jobs.

However another important use is when the ruck|rover notice that one of the jobs in criteria failed on
something they (now) know how to fix, or on some unrelated/transient issue. Instead of waiting another
6 or however many hours for the next periodic to run, you can try to run the job yourself using testpro-
ject. If the job is successful in testproject and it is the only job missing from criteria then posting the
testproject review can also mean directly causing the promotion to happen.

You first need to checkout testproject:

4.1. TripleO CI Guide 106

https://github.com/rdo-infra/ci-config/blob/master/ci-scripts/dlrnapi_promoter/README.md
https://trunk.rdoproject.org/centos7-master-head/report.html
https://github.com/rdo-infra/ci-config/blob/4bc3261c4ce644829a317c1bd85c1d645cb96cbd/ci-scripts/dlrnapi_promoter/config/CentOS-7/master.ini#L16
https://trunk.rdoproject.org/centos7-master/current-tripleo/delorean.repo
http://promoter.rdoproject.org/
https://review.rdoproject.org/r/#/q/project:testproject

TripleO Documentation, Release 0.0.1.dev1610

git clone https://review.rdoproject.org/r/testproject
cd testproject
vim .zuul.layout

To post a testproject review you simply need to add a .zuul.layout_ file:

- project:
check:

jobs:
- periodic-tripleo-centos-7-train-containers-build-push:

vars:
force_periodic: true

So the above would run the periodic-tripleo-centos-7-train-containers-build-push. Note the required
force_periodic variable which causes the job to run as though it is in the periodic pipeline, rather than in
the check pipeline which you will use in testproject.

An example is there and if you need to include a known fix you can simply have a Depends-On in the
commit message.

Specifying a particular hash

Jobs in the periodic promotion pipelines are using the tripleo-ci-testing repo as described in the
promotion-stages-overview, since that is the candidate we are trying to promote to current-tripleo. The
tripleo-ci-testing and all other named tags in tripleo, are associated with a particular hash that identifies
the delorean repo. For example looking at centos7 master tripleo-ci-testing at time of writing we see:

[delorean]
name=delorean-tripleo-ansible-544864ccc03b053317f5408b0c0349a42723ce73
baseurl=https://trunk.rdoproject.org/centos7/54/48/
↪→544864ccc03b053317f5408b0c0349a42723ce73_ebb98bd9
enabled=1
gpgcheck=0
priority=1

So the centos7 master tripleo-ci-testing hash is 544864ccc03b053317f5408b0c0349a42723ce73_ebb98bd9a.
The corrresponding repo is given by the baseurl above and if you navigate to that URL with your
browser you can see the list of packages used in the jobs. Thus, the job specified in the example above
for testproject periodic-tripleo-centos-7-train-containers-build-push would use whatever the current
tripleo-ci-testing points to.

However it is possible to override the particular hash (and thus repo) used by a job you run with testpro-
ject, using the dlrn_hash_tag featureset_override:

- project:
check:

jobs:
- periodic-tripleo-ci-centos-7-ovb-1ctlr_1comp-featureset002-train-

↪→upload:
vars:

force_periodic: true
featureset_override:
dlrn_hash_tag: 4b32d316befe0919fd98a147d84086bc0907677a_

↪→046903a2

4.1. TripleO CI Guide 107

https://review.rdoproject.org/r/#/c/23502/
stages-overview.html
https://trunk.rdoproject.org/centos7-master/tripleo-ci-testing/delorean.repo

TripleO Documentation, Release 0.0.1.dev1610

Thus, in the example above the periodic-tripleo-ci-centos-7-ovb-1ctlr_1comp-featureset002-train-
upload job would run with the hash: 4b32d316befe0919fd98a147d84086bc0907677a_046903a2 regard-
less of the current value of tripleo-ci-testing.

The most common reason for overriding the hash in this way is when we notice that a particular job
failed during one of the recent periodic pipeline runs. Looking at one of the indexed promoter service
logs you may notice something like the following text:

2020-02-21 03:57:07,458 31360 INFO promoter Skipping promotion of centos7-
↪→master
{'timestamp': 1582243926, 'distro_hash':
↪→'ebb98bd9545e026f033683143ae39e9e236b3671',
'promote_name': 'tripleo-ci-testing', 'user': 'review_rdoproject_org',
'repo_url': 'https://trunk.rdoproject.org/centos7/54/48/
↪→544864ccc03b053317f5408b0c0349a42723ce73_ebb98bd9',
'full_hash': '544864ccc03b053317f5408b0c0349a42723ce73_ebb98bd9',
'repo_hash': '544864ccc03b053317f5408b0c0349a42723ce73_ebb98bd9',
'commit_hash': '544864ccc03b053317f5408b0c0349a42723ce73'}
from tripleo-ci-testing to current-tripleo,
missing successful jobs: [u'periodic-tripleo-ci-centos-7-ovb-3ctlr_1comp-
↪→featureset035-master',
u'periodic-tripleo-ci-centos-7-ovb-3ctlr_1comp-featureset001-master']

In particular note the last line missing successful jobs. This means that for the hash
544864ccc03b053317f5408b0c0349a42723ce73_ebb98bd9 a promotion could not happen, because in
this particular run, those two identified jobs were failed. If the jobs were fixed in the meantime or you
now know how to fix them and get a good result, you could re-run those with testproject specifying the
particular hash. If they execute successfully then on the next run the promoter will promote that hash to
become the new current-tripleo.

4.1.11 Gating github projects using TripleO CI jobs

In TripleO deployment, we consume OpenStack and non-openstack projects. In order to catch issues
early, every patchset of the OpenStack projects is gated with TripleO CI jobs using Zuul.

With the help of an RDO software factory instance, we can also now gate non-openstack projects hosted
on Github.

ceph-ansible and podman are the two non-openstack projects which are heavily used in TripleO deploy-
ments and are hosted on github and for which we have enabled TripleO CI jobs via github pull requests
as described below.

Jobs running against ceph-ansible

ceph-ansible is used to deploy Ceph in standalone scenario 1 and 4 jobs. These jobs are defined in
rdo-jobs repo.

On any ceph-ansible pull request, A user can trigger these jobs by leaving a comment with check-rdo on
a pull request. It is currently done manually by the OpenStack developers.

Then, those jobs will appear in the RDO software factory Zuul status page under github-check pipeline.

On merged patches, periodic jobs are also triggered in openstack-periodic-weekend pipeline.

4.1. TripleO CI Guide 108

http://promoter.rdoproject.org/
http://promoter.rdoproject.org/
https://github.com/ceph/ceph-ansible
https://github.com/rdo-infra/rdo-jobs/blob/master/zuul.d/ceph-ansible.yaml
https://review.rdoproject.org/zuul/status
https://review.rdoproject.org/zuul/builds?pipeline=openstack-periodic-weekend&project=ceph%2Fceph-ansible

TripleO Documentation, Release 0.0.1.dev1610

Jobs running against podman

In TripleO, OpenStack services are running in containers. The container lifecycle, healthcheck and
execution is managed via systemd using paunch. Paunch under the hood uses podman.

The podman utility comes from libpod project.

Currently on each libpod pull request, tripleo ci based jobs get triggered automatically and get queued
in github-check pipeline in RDO software factory Zuul instance.

TripleO jobs related to podman are defined in rdo-jobs-repo.

For gating libpod project, we run keystone based scenario000 minimal tripleo deployment job which
tests the functionality of podman with keystone services. It takes 30 mins to finish the tripleo deploy-
ment.

Below is the example job definition for scenario000-job:

- job:
name: tripleo-podman-integration-rhel-8-scenario000-standalone
parent: tripleo-ci-base-standalone-periodic
nodeset: single-rhel-8-node
branches: ^master$
run: playbooks/podman/install-podman-rpm.yaml
required-projects:

- name: github.com/containers/libpod
vars:

featureset: '052'
release: master
registry_login_enabled: false
featureset_override:

standalone_environment_files:
- 'environments/low-memory-usage.yaml'
- 'ci/environments/scenario000-standalone.yaml'
- 'environments/podman.yaml'

run_tempest: false
use_os_tempest: false

For re-running the tripleo jobs on libpod pull request, we can add check-github comment on the libpod
pull requests itself.

On merged patches, periodic jobs also get triggerd in openstack-regular rdo-job-pipeline.

Report bugs when Jobs start failing

TripleO Jobs running against libpod and ceph-ansible projects might fail due to issue in libpod/ceph-
ansible or in TripleO itself.

Once the status of any job is FAILED or POST_FAILURE or RETRY_LIMIT. Click on the job link and it
will open the build result page. Then click on log_url, click on the job-output.txt. It contains the results
of ansible playbook runs. Look for ERROR or failed messages. If looks something obvious. Please go
ahead and create the bug on launchpad against tripleo project with all the information.

Once the bug is created, please add depcheck tag on the filed launchpad bug. This tag is explicitly used
for listing bugs related to TripleO CI job failure against ceph-ansible and podman projects.

4.1. TripleO CI Guide 109

https://github.com/containers/libpod
https://github.com/rdo-infra/rdo-jobs/blob/master/zuul.d/podman.yaml
https://github.com/rdo-infra/rdo-jobs/blob/0186d637063c7e410ab9e0afc91b266c19e92473/zuul.d/podman.yaml#L50-L67
https://review.rdoproject.org/zuul/builds?pipeline=openstack-regular&project=containers%2Flibpod
https://bugs.launchpad.net/tripleo/+filebug

TripleO Documentation, Release 0.0.1.dev1610

check-rdo vs check-github

check-rdo and check-github comments are used to trigger TripleO based zuul jobs against github projects
(ceph-ansible/podman) s pull requests.

Note: On commenting check-rdo or check-github, not all jobs will appears in the github-manual
pipeline. It depends whether the jobs are configured in the particular pipeline to get triggered. If the jobs
are not defined there then, nothing will happen.

check-rdo

It is used against ceph-ansible pull requests especially. The jobs will be gets triggered and land in
github-check pipeline.

check-github

If a TripleO job fails against ceph-ansible or podman PRs, then it can be relaunched using check-github
comment. The job will appear in github-manual pipeline.

Using Depends-On on ceph-ansible/podman pull requests

One can also create/put OpenStack or RDO gerrit reviews against ceph-ansible/podman pull requests by
putting Depends-On: <openstack/rdo gerrit review link> in the first message of the github pull request.

4.1.12 Content Provider Jobs

This section gives an overview and some details about the content provider zuul jobs. They are so called
because they consist of a parent job that builds containers which are then consumed by any number of
child jobs. Thus the parent jobs are the content provider for the child jobs.

Why Do We Need Content Providers?

The content provider jobs were added by the Tripleo CI squad during the Victoria development cycle.
Prior to this check and gate tripleo-ci jobs running on review.opendev.org code submissions were pulling
the promoted current-tripleo containers from docker.io.

Having all jobs pull directly from a remote registry obviously puts a strain on resources; consider mul-
tiple jobs per code submission with tens of container pulls for each. We have over time been affected
by a number of issues related to the container pulls (such as timeouts) that would cause jobs to fail and
block the gates. Furthermore, docker has recently announced that requests will be rate limited to one or
two hundred pull requests per six hours (without and with authentication respectively) on the free plan
effective 01 November 2020.

In anticipation of this the TripleO CI squad has moved all jobs to the new content provider architecture.

4.1. TripleO CI Guide 110

https://github.com/ceph/ceph-ansible/pull/3576
ci_primer.html
https://www.docker.com/blog/scaling-docker-to-serve-millions-more-developers-network-egress/

TripleO Documentation, Release 0.0.1.dev1610

The Content Provider

The main task executed by the content provider job is to build the containers needed to deploy TripleO.
This is achieved with a collection of ansible plays defined in the multinode-standalone-pre.yml tripleo-
quickstart-extras playbook.

Once built, the content provider then needs to make those containers available for use by the child
jobs. The build-container role itself as invoked in multinode-standalone-pre.yml ensures containers are
pushed to the a local registry on the content provider node. However the child job will need to know the
IP address on which they can reach that registry.

To achieve this we use the zuul_return module that allows for a parent job to return data for consumption
within child jobs. We set the required zuul_return data in the run-provider.yml playbook:

- name: Set registry IP address
zuul_return:

data:
zuul:

pause: true
registry_ip_address: "{{ hostvars[groups.all[0]].ansible_host }}"
provider_dlrn_hash: "{{ dlrn_hash|default('') }}"
provider_dlrn_hash_tag: "{{ dlrn_hash_tag|default('') }}"
provider_job_branch: "{{ provider_job_branch }}"
registry_ip_address_branch: "{{ registry_ip_address_branch }}"
provider_dlrn_hash_branch: "{{ provider_dlrn_hash_branch }}"

tags:
- skip_ansible_lint

Child jobs retrieve the IP address for the content provider container registry via the reg-
istry_ip_address_branch dictionary. This contains a mapping between the release (master, victoria,
ussuri etc) and the IP address of the content provider container registry with images for that release. For
example:

registry_ip_address_branch:
master: 38.145.33.72

Most jobs will only ever have one release in this dictionary but upgrade jobs will require two (more on
that later). Note that besides setting the zuul_return data the task above sets the zuul pause: true. As the
name suggests, this allows the parent content provider job to be paused until all children have executed.

Given all the above, it should be of little surprise ;) that the content provider zuul job definition is as
follows (at time of writing):

- job:
name: tripleo-ci-centos-8-content-provider
parent: tripleo-ci-base-standalone-centos-8
branches: ^(?!stable/(newton|ocata|pike|queens|rocky|stein)).*$
run:

- playbooks/tripleo-ci/run-v3.yaml
- playbooks/tripleo-ci/run-provider.yml

vars:
featureset: '052'
provider_job: true
build_container_images: true
ib_create_web_repo: true
playbooks:

(continues on next page)

4.1. TripleO CI Guide 111

https://opendev.org/openstack/tripleo-quickstart-extras/src/commit/e61200fec8acccb3d5fe20f68b64156a3daadb8a/playbooks/multinode-standalone-pre.yml
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/roles/build-containers/tasks/main.yaml#L265-L270
https://opendev.org/openstack/tripleo-quickstart-extras/src/commit/e61200fec8acccb3d5fe20f68b64156a3daadb8a/playbooks/multinode-standalone-pre.yml
https://zuul-ci.org/docs/zuul/reference/jobs.html?highlight=zuul_return#return-values
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/playbooks/tripleo-ci/run-provider.yml#L56
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/playbooks/tripleo-ci/run-provider.yml#L26
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/playbooks/tripleo-ci/run-provider.yml#L26
https://zuul-ci.org/docs/zuul/reference/jobs.html?highlight=pause#pausing-the-job
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/zuul.d/standalone-jobs.yaml#L1032

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

- quickstart.yml
- multinode-standalone-pre.yml

It uses the same featureset as the standalone job. Notice the multinode-standalone-pre.yml passed to
tripleo-quickstart for execution. The run-provider.yml playbook is executed as the last of the zuul run
plays.

Finally, one other important task performed by the content provider job is to build any dependent
changes (i.e. depends-on in the code submission). This is done with build-test-packages invoked in
the multinode-standalone-pre.yml. We ensure that the built repo is available to child jobs by setting
the ib_create_web_repo variable when built-test-packages is invoked by a provider job. This makes the
repo availabe via a HTTP server on the content provider node that consumers then retrieve as described
below.

The Content Consumers

The child jobs or content consumers must use the container registry available from the content provider.
To do this we set the docker_registry_host variable using the job.registry_ip_address_branch zuul_data
returned from the parent content provider.

Any dependent changes built by build-test-packages are installed into consumer jobs using the install-
built-repo playbook. This has been added into the appropriate base job definitions as a pre-run: play.

Finally, in order to make a given zuul job a consumer job we must set the content provider as dependency
and pass the relevant variables. For example in order to run tripleo-ci-centos-8-scenario001-standalone
as a consumer job:

- tripleo-ci-centos-8-content-provider
- tripleo-ci-centos-8-scenario001-standalone:

files: *scen1_files
vars: &consumer_vars

consumer_job: true
build_container_images: false
tags:

- standalone
dependencies:

- tripleo-ci-centos-8-content-provider

Upgrade Jobs

Upgrade jobs are a special case because they require content from more than one release. For instance
tripleo-ci-centos-8-standalone-upgrade-ussuri will deploy train containers and then upgrade to ussuri
containers.

To achieve this we use two content provider jobs as dependencies for the upgrade jobs that require them
(not all do):

- tripleo-ci-centos-8-standalone-upgrade:
vars: *consumer_vars
dependencies:

- tripleo-ci-centos-8-content-provider
- tripleo-ci-centos-8-content-provider-ussuri

4.1. TripleO CI Guide 112

https://github.com/openstack/tripleo-quickstart/blob/671893a60467ad76359eaaf2199c55b64cc20702/config/general_config/featureset052.yml#L2
https://opendev.org/openstack/tripleo-quickstart-extras/src/commit/e61200fec8acccb3d5fe20f68b64156a3daadb8a/playbooks/multinode-standalone-pre.yml
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/playbooks/tripleo-ci/run-provider.yml#L56
https://opendev.org/openstack/tripleo-quickstart-extras/src/branch/master/roles/build-test-packages/
https://opendev.org/openstack/tripleo-quickstart-extras/src/commit/e61200fec8acccb3d5fe20f68b64156a3daadb8a/playbooks/multinode-standalone-pre.yml
https://opendev.org/openstack/tripleo-quickstart-extras/src/commit/e61200fec8acccb3d5fe20f68b64156a3daadb8a/roles/install-built-repo/defaults/main.yml#L11
https://opendev.org/openstack/tripleo-quickstart-extras/src/commit/e61200fec8acccb3d5fe20f68b64156a3daadb8a/roles/install-built-repo/templates/install-built-repo.sh.j2#L17-L23
https://opendev.org/openstack/tripleo-quickstart-extras/src/commit/e61200fec8acccb3d5fe20f68b64156a3daadb8a/roles/install-built-repo/templates/install-built-repo.sh.j2#L17-L23
https://opendev.org/openstack/tripleo-quickstart-extras/src/commit/e61200fec8acccb3d5fe20f68b64156a3daadb8a/roles/extras-common/defaults/main.yml#L44
https://opendev.org/openstack/tripleo-quickstart-extras/src/branch/master/roles/build-test-packages/
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/playbooks/tripleo-ci/install-built-repo.yml#L16-L27
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/playbooks/tripleo-ci/install-built-repo.yml#L16-L27
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/zuul.d/base.yaml#L184
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/zuul.d/standalone-jobs.yaml#L483-L492
https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/zuul.d/standalone-jobs.yaml#L483-L492

TripleO Documentation, Release 0.0.1.dev1610

As shown earlier in this document the registry_ip_address_branch dictionary maps release to the appro-
priate registry. This is set by each of the two parent jobs and once both have executed the dictionary will
contain more than one entry. For example:

registry_ip_address_branch:
master: 213.32.75.192
ussuri: 158.69.75.154

The consumer upgrade jobs then use the appropriate registry for the deployment or upgrade part of the
test.

4.1.13 TripleO Dependency Pipeline

This section introduces the TripleO Dependency Pipeline. The dependency pipeline is what the TripleO
CI team calls the series of zuul CI jobs that aim to catch problems in deployment dependencies.

A dependency is any package that is not directly related to the deployment of OpenStack itself, such
as OpenvSwitch, podman, buildah, pacemaker and ansible. Each time, these projects release a newer
version, it breaks the OpenStack deployment and CI.

Currently we have promotion and component pipeline set up to detect OpenStack projects related issues
early.

In order to detect the breakages from non-openstack projects, TripleO dependency pipeline comes into
existance. we have added two types of pipeline:

• packages coming from specific module

• packages coming from specific repo

The configurations for each pipeline can be found under tripleo-
quickstart/src/branch/master/config/release/dependency_ci/<module/repo name>/repo_config.yaml.

Current OpenStack Dependency Pipeline jobs

• openstack-dependencies-containertools - for testing container tools dependencies

• openstack-dependencies-centos8stream - for testing base operating system dependencies coming
from CentOS-8 stream repo.

• openstack-dependencies-openvswitch - for testing OVS and OVN dependencies coming from
NFV sig repo.

UnderStanding Module dependency pipeline

Under openstack-dependencies-containertools pipeline, We test the latest podman/buildah version
comes from container tools RHEL-8 module.

The release specific configuration for containertools pipeline can be found here:

dependency_modules:
- module_name: container-tools

control_version: 2.0
test_version: rhel8

(continues on next page)

4.1. TripleO CI Guide 113

https://opendev.org/openstack/tripleo-ci/src/commit/fbaaa3324712b9a718ce17c82bb190d09cca95be/playbooks/tripleo-ci/run-provider.yml#L26
https://docs.openstack.org/tripleo-docs/latest/ci/stages-overview.html
https://opendev.org/openstack/tripleo-quickstart/src/branch/master/config/release/dependency_ci/container-tools/repo_config.yaml

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

dep_repo_cmd_after: |
sudo dnf repolist;
sudo dnf module list;
{% for item in dependency_modules %}
sudo dnf module disable {{ item.module_name }}:{{ item.control_version }}

↪→ -y;
sudo dnf module enable {{ item.module_name }}:{{ item.test_version }} -y;
{% endfor %}
sudo dnf clean metadata
sudo dnf clean all;
sudo dnf update -y;

What do the above terms mean: * module_name: Name of the DNF module to pull packages from *
control_version: Name of the version to disable for the particular module * test_version: Name of the
version to enable for the particular module

In the above cases, it is going to test container-tools module in which it will disable container-tools:2.0
and enable container-tools:rhel8 module. All the container-tools packages will be coming here.

The above config is used by get-dependency-module-content.yaml to enable or disable the above module
during the deployment.

• jobs running in openstack-dependencies-containertools pipeline on review.rdoproject.org.
* periodic-tripleo-ci-centos-8-standalone-container-tools-master * periodic-tripleo-ci-centos-8-
standalone-container-tools-container-build-master

The job definitions are defined under rdo-jobs/zuul.d/dependencies-jobs.yaml and their triggers are de-
fined here: rdo-jobs/zuul.d/project-templates-dependencies.yaml.

UnderStanding package dependency pipeline

openstack-dependencies-openvswitch is a package dependency pipeline where we tests OVS and OVN
packages coming from NFV sig.

Here is the config for the openvswitch dependency pipeline:

add_repos:
- type: generic

reponame: openvswitch-next
filename: "openvswitch-next.repo"
baseurl: "https://buildlogs.centos.org/centos/8/nfv/x86_64/openvswitch-

↪→2/"
update_container: false

dependency_override_repos:
- centos-nfv-openvswitch,http://mirror.centos.org/centos/8/nfv/x86_64/

↪→openvswitch-2/
dep_repo_cmd_after: |

{% if dependency_override_repos is defined %}
{% for item in dependency_override_repos %}
sudo dnf config-manager --set-disabled {{ item.split(',')[0] }}
{% endfor %}
sudo dnf clean metadata;
sudo dnf clean all;
sudo dnf update -y;
{% endif %}

4.1. TripleO CI Guide 114

https://github.com/rdo-infra/rdo-jobs/blob/master/playbooks/dependency/get-dependency-module-content.yaml
https://review.rdoproject.org/zuul/builds?pipeline=openstack-dependencies-containertools
https://github.com/rdo-infra/rdo-jobs/blob/master/zuul.d/dependencies-jobs.yaml
https://github.com/rdo-infra/rdo-jobs/blob/master/zuul.d/project-templates-dependencies.yaml
https://opendev.org/openstack/tripleo-quickstart/src/branch/master/config/release/dependency_ci/openvswitch/repo_config.yaml

TripleO Documentation, Release 0.0.1.dev1610

What do the above terms mean? * add_repos: This is the test repo i.e. the one that is bringing
us a newer than normal version of the package we are testing, OpenvSwitch in this case. * depen-
dency_override_repos: It is used to disable or override a particular repo.

In the above case, openvswitch-next.repo repo will get generated due to repo setup and will disables the
centos-nfv-openvswitch repo.

Before the deployment, rdo-jobs/dependency/get-dependency-repo-content.yaml playbook is used to set
particular release file (in this case it is config/release/dependency_ci/openvswitch/repo_config.yaml) and
then generate a diff of packages from dependency_override_repos and new repos added by add_repos
option.

Below are the jobs running in openstack-dependencies-openvswitch pipeline on review.rdoproject.org.

openstack-dependencies-openvswitch:
jobs:

- periodic-tripleo-ci-centos-8-standalone-openvswitch-container-build-
↪→master:

dependencies:
- periodic-tripleo-ci-centos-8-standalone-master

- periodic-tripleo-ci-centos-8-scenario007-standalone-openvswitch-
↪→container-build-master:

dependencies:
- periodic-tripleo-ci-centos-8-scenario007-standalone-master

- periodic-tripleo-ci-centos-8-standalone-master:
vars:

force_periodic: false
- periodic-tripleo-ci-centos-8-scenario007-standalone-master:

vars:
force_periodic: false

Ensuring correct module or repo is used

Once a jobs runs and finishes in the dependency pipeline, we need to navigate to job log url. Under
logs/undercloud/home/zuul directory, we can see two log files:

• control_repoquery_list.log.txt.gz - Contains a list of new packages coming from newly added
repos.

• control_test_diff_table.log.txt.gz - contains a diff of the packages coming from new repo and
overridden repo

All the above operation is done rdo-jobs/playbooks/dependency/diff-control-test.yaml playbook which
uses compare_rpms project from ci-config/ci-scripts/infra-setup/roles/rrcockpit/files.

4.1. TripleO CI Guide 115

https://review.rdoproject.org/zuul/builds?pipeline=openstack-dependencies-openvswitch
https://github.com/rdo-infra/rdo-jobs/blob/master/playbooks/dependency/diff-control-test.yaml
https://github.com/rdo-infra/ci-config/tree/master/ci-scripts/infra-setup/roles/rrcockpit/files/compare_rpms

CHAPTER

FIVE

INSTALL GUIDE

5.1 TripleO Install Guide

5.1.1 TripleO Introduction

TripleO is an OpenStack Deployment & Management tool.

Architecture

With TripleO, you start by creating an undercloud (an actual operator facing deployment cloud) that
will contain the necessary OpenStack components to deploy and manage an overcloud (an actual tenant
facing workload cloud). The overcloud is the deployed solution and can represent a cloud for any
purpose (e.g. production, staging, test, etc). The operator can choose any of available Overcloud Roles
(controller, compute, etc.) they want to deploy to the environment.

Go to TripleO Architecture to learn more.

Components

TripleO is composed of set of official OpenStack components accompanied by few other open source
plugins which increase TripleOs capabilities.

Go to TripleO Components to learn more.

Deployment Guide

See additional information about how to deploy TripleO in the Deploy Guide.

5.1.2 Deploy Guide

The installation instructions have been moved to the TripleO Deploy Guide.

116

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/

TripleO Documentation, Release 0.0.1.dev1610

5.1.3 (DEPRECATED) Basic Deployment (UI)

Note: The tripleo-ui is no longer available as of Stein. This documentation is deprecated.

This document will show you how to access the TripleO UI and perform a simple deployment with some
customizations. Validations are automatically run at every step to help uncover potential issues early.

Prepare Your Environment

The UI is installed by default with the undercloud. You can confirm this by opening undercloud.
conf and checking for:

enable_ui = true
enable_validations = true

The validations are optional but strongly recommended.

1. Make sure you have your environment ready and undercloud running:

• Environment Setup

• Undercloud Installation

1. Make sure the images are uploaded in Glance on the undercloud:

• Get Images

• Upload Images

5.1. TripleO Install Guide 117

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/environments/index.html
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/deployment/install_undercloud.html
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/deployment/install_overcloud.html#get-images
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/deployment/install_overcloud.html#upload-images

TripleO Documentation, Release 0.0.1.dev1610

Access the UI

The UI is accessible on the undercloud URL. With the default settings the URLs may look like the
following, depending on whether the undercloud was set up with SSL:

• http://192.168.24.1:3000 if it was not

• https://192.168.24.2 if set up with SSL

The username is admin and the password can be obtained by running the following command on the
undercloud:

$ sudo hiera keystone::admin_password

Note: On an undercloud deployed without SSL, the UI and API endpoints are deployed on the control
plane which may not be routable. In this case you will need to create a tunnel or use a tool such as
sshuttle to be able to use the UI from a local browser:

sshuttle -r user@undercloud 192.168.24.0/24

Virtual

If you cannot directly access the undercloud (for example because the undercloud is installed in a VM
on a remote lab host), you will need to create a tunnel and make some configuration changes in order to
access the UI locally.

1. Open the tunnel from the virt host, to the undercloud:

ssh -Nf user@undercloud -L 0.0.0.0:443:192.168.24.2:443 # If SSL
ssh -Nf user@undercloud -L 0.0.0.0:3000:192.168.24.1:3000 # If no SSL

Note: Quickstart started creating the tunnel automatically during Pike. If using an older version
you will have to create the tunnel manually, for example:

ssh -F /root/.quickstart/ssh.config.ansible undercloud -L 0.0.0.
↪→0:443:192.168.24.2:443

2. Edit the UI config on the undercloud to replace the undercloud IP with your virt host name, for
example:

sudo sed -i.bak s/192.168.24.2/virthost/ /var/www/openstack-tripleo-
↪→ui/dist/tripleo_ui_config.js

Additionally, make sure all the API endpoints are commented out in this file.

Note: Changes to tripleo_ui_config.js are overwritten on undercloud upgrades.

3. You may have to open port 3000 or 443 on your virt host.

Stable Branch

5.1. TripleO Install Guide 118

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/ssl.html#undercloud-ssl
http://192.168.24.1:3000
https://192.168.24.2

TripleO Documentation, Release 0.0.1.dev1610

Newton

Starting in Ocata, all the API ports are proxied through 3000 (non-SSL) or 443 (SSL).
If using Newton, you will need to ensure ports for all the API endpoints specified in
tripleo_ui_config.js are open and accessible. If using SSL with self-signed certificates,
Firefox will also require a SSL certificate exception to be accepted for every port.

4. The UI should now be accessible at http://virthost:3000 or https://virthost.

Manage Plans

A default plan named overcloud is created during the undercloud installation, based on the default
tripleo-heat-templates installed on the system. This plan can be customized and deployed.

It is also possible to create and manage additional plans in parallel, in order to test different configura-
tions.

By clicking on Manage Deployments beside the deployment name, you can perform actions on plans
such as create, export, delete, etc.

Note: There can be confusion with node assignments when switching between plans, particularly in
previous releases like Newton. If doing work with multiple plans, ensure the Node counts are what you
expect before starting the deployment, for example by navigating to Edit Configuration -> Parameters.

Manage Nodes

Register Nodes

Navigate to the Nodes tab in the top bar and click on the Register Nodes button. New nodes can be
added in two ways:

• Importing an instackenv.json file

• Importing an instackenv.json file

• Manually defining nodes via the Add New button.

Introspect Nodes

Introspection is a required step when deploying from the UI. Once the nodes are registered and in the
manageable provision state, select the nodes and click on the Introspect Nodes button.

5.1. TripleO Install Guide 119

http://virthost:3000
https://virthost
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/environments/baremetal.html#instackenv-json

TripleO Documentation, Release 0.0.1.dev1610

Provide Nodes

Once introspection is completed, nodes need to be provided in order to move to the available state
and be available for deployments. Select the nodes and click on the Provide Nodes button.

Note: For more information about node states, see Node States.

Tag Nodes

Nodes need to be tagged to match a specific profile/role before they can be used in a deployment. Select
the nodes you want to assign a profile to, then click on Tag Nodes (the option may be in a dropdown
menu).

Stable Branch

In Newton and Ocata, node assignment and node tagging are done at the same time when assigning
nodes on the Deployment Plan page.

Configure the Deployment

On the Deployment Plan tab, you can configure both the overall deployment, as well as specific roles.

Clicking on the Edit Configuration link displays the list of environments available and their descrip-
tion, based on the templates provided in the plan. After enabling environments as desired, click on
Save Changes and navigate to the Parameters tab. Once saved, the enabled environments will also be
configurable on this tab.

The Parameters tab lets you set configuration options for the deployment in general, as well as for each
individual environment.

Stable Branch

Newton

In Newton it was not possible to configure individual environments. The environment templates should
be updated directly with the required parameters before uploading a new plan.

Individual roles can also be configured by clicking on the Pencil icon beside the role name on each card.

Stable Branch

Newton

5.1. TripleO Install Guide 120

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/provisioning/node_states.html

TripleO Documentation, Release 0.0.1.dev1610

In Newton, you may need to assign at least one node to the role before the related configuration options
are loaded.

Assign Nodes

The second number on each card indicates the number of nodes tagged with this particular profile. The
number of nodes manually assigned via the number picker will be deployed.

Stable Branch

In Newton and Ocata, nodes are tagged as part of assigning a node to a profile. This can cause issues
when switching deployment plans, as the node counts displayed on the card may not match the value
actually stored in the plan. You can correct this by clicking on Edit Configuration -> Parameters and
checking/updating the node counts for ControllerCount, ComputeCount, etc.

Additionally, when using custom roles you should make sure to unassign the nodes associated with these
roles before deleting the plan, as the role cards are displayed based on the roles in the current plan only.
Therefore it is not possible to unassign a node which is associated with a role that does not exist in the
current plan.

Deploy the Overcloud

Click on the Deploy button.

You may see a warning if not all validations passed. While this is expected in resources-constrained
virtual environments, it is recommended to check the failed validations carefully before proceeding.

The View detailed information link shows the details for all the Heat resources being de-
ployed.

Post-Deployment

Once the deployment completes, the progress bar will be replaced with information about the overcloud
such as the IP address and login credentials.

If the deployment failed, information about the failure will be displayed.

Virtual

To access the overcloud, you will need to update your tunnel in order to access the new URL. For
example, if your overcloud information is as such:

Overcloud IP address: 192.168.24.12
Username: admin
Password: zzzzzz

Assuming you deployed the overcloud with SSL enabled, you could create the following tunnel from
your virt host to the undercloud:

5.1. TripleO Install Guide 121

TripleO Documentation, Release 0.0.1.dev1610

ssh -Nf user@undercloud -L 0.0.0.0:1234:192.168.24.12:443

After opening port 1234 on your virt host, you should be able to access the overcloud by navigating to
https://virthost:1234.

5.1.4 Feature Configuration

Documentation on how to enable and configure various features available in TripleO.

(DEPRECATED) Deploying OpenShift

Note: This functionality was removed as of Train.

You can use TripleO to deploy OpenShift clusters onto baremetal nodes. TripleO deploys the operating
system onto the nodes and uses openshift-ansible to then configure OpenShift. TripleO can also be used
to manage the baremetal nodes.

Define the OpenShift roles

TripleO installs OpenShift services using composable roles for OpenShiftMaster, OpenShiftWorker, and
OpenShiftInfra. When you import a baremetal node using instackenv.json, you can tag it to use a certain
composable role. See Custom Roles for more information.

1. Generate the OpenShift roles:

openstack overcloud roles generate -o /home/stack/openshift_roles_data.
↪→yaml \
OpenShiftMaster OpenShiftWorker OpenShiftInfra

2. View the OpenShift roles:

openstack overcloud role list

The result should include entries for OpenShiftMaster, OpenShiftWorker, and OpenShiftInfra.

3. See more information on the OpenShiftMaster role:

openstack overcloud role show OpenShiftMaster

Note: For development or PoC environments that are more resource-constrained, it is possible to use the
OpenShiftAllInOne role to collocate the different OpenShift services on the same node. The all-in-one
role is not recommended for production.

5.1. TripleO Install Guide 122

https://virthost:1234
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/custom_roles.html

TripleO Documentation, Release 0.0.1.dev1610

Create the OpenShift profiles

This procedure describes how to enroll a physical node as an OpenShift node.

1. Create a flavor for each OpenShift role. You will need to adjust this values to suit your require-
ments:

openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 --swap
↪→500 m1.OpenShiftMaster
openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 --swap
↪→500 m1.OpenShiftWorker
openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 --swap
↪→500 m1.OpenShiftInfra

2. Map the flavors to the required profile:

openstack flavor set --property "capabilities:profile"="OpenShiftMaster" \
--property "capabilities:boot_option"="local" m1.OpenShiftMaster

openstack flavor set --property "capabilities:profile"="OpenShiftWorker" \
--property "capabilities:boot_option"="local" m1.OpenShiftWorker

openstack flavor set --property "capabilities:profile"="OpenShiftInfra" \
--property "capabilities:boot_option"="local" m1.OpenShiftInfra

3. Add your nodes to instackenv.json. You will need to define them to use the capabilities field. For
example:

[{
"arch":"x86_64",
"cpu":"4",
"disk":"60",
"mac":[

"00:0c:29:9f:5f:05"
],
"memory":"16384",
"pm_type":"ipmi",
"capabilities":"profile:OpenShiftMaster",
"name": "OpenShiftMaster_1"

},
{

"arch":"x86_64",
"cpu":"4",
"disk":"60",
"mac":[

"00:0c:29:91:b9:2d"
],
"memory":"16384",
"pm_type":"ipmi",
"capabilities":"profile:OpenShiftWorker",
"name": "OpenShiftWorker_1"

},
{

"arch":"x86_64",
"cpu":"4",
"disk":"60",
"mac":[

"00:0c:29:91:b9:6a"

(continues on next page)

5.1. TripleO Install Guide 123

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

],
"memory":"16384",
"pm_type":"ipmi",
"capabilities":"profile:OpenShiftInfra",
"name": "OpenShiftInfra_1"

}]

4. Import and introspect the TripleO nodes as you normally would for your deployment. For exam-
ple:

openstack overcloud node import ~/instackenv.json
openstack overcloud node introspect --all-manageable --provide

5. Verify the overcloud nodes have assigned the correct profile

openstack overcloud profiles list
+--------------------------------------+--------------------+--------------
↪→---+-----------------+-------------------+
| Node UUID | Node Name | Provision
↪→State | Current Profile | Possible Profiles |
+--------------------------------------+--------------------+--------------
↪→---+-----------------+-------------------+
| 72b2b1fc-6ba4-4779-aac8-cc47f126424d | openshift-worker01 | available
↪→ | OpenShiftWorker | |
| d64dc690-a84d-42dd-a88d-2c588d2ee67f | openshift-worker02 | available
↪→ | OpenShiftWorker | |
| 74d2fd8b-a336-40bb-97a1-adda531286d9 | openshift-worker03 | available
↪→ | OpenShiftWorker | |
| 0eb17ec6-4e5d-4776-a080-ca2fdcd38e37 | openshift-infra02 | available
↪→ | OpenShiftInfra | |
| 92603094-ba7c-4294-a6ac-81f8271ce83e | openshift-infra03 | available
↪→ | OpenShiftInfra | |
| b925469f-72ec-45fb-a403-b7debfcf59d3 | openshift-master01 | available
↪→ | OpenShiftMaster | |
| 7e9e80f4-ad65-46e1-b6b4-4cbfa2eb7ea7 | openshift-master02 | available
↪→ | OpenShiftMaster | |
| c2bcdd3f-38c3-491b-b971-134cab9c4171 | openshift-master03 | available
↪→ | OpenShiftMaster | |
| ece0ef2f-6cc8-4912-bc00-ffb3561e0e00 | openshift-infra01 | available
↪→ | OpenShiftInfra | |
| d3a17110-88cf-4930-ad9a-2b955477aa6c | openshift-custom01 | available
↪→ | None | |
| 07041e7f-a101-4edb-bae1-06d9964fc215 | openshift-custom02 | available
↪→ | None | |
+--------------------------------------+--------------------+--------------
↪→---+-----------------+-------------------+

5.1. TripleO Install Guide 124

TripleO Documentation, Release 0.0.1.dev1610

Configure the container registry

Follow container image preparation to configure TripleO for the container image preparation.

This generally means generating a /home/stack/containers-prepare-parameter.yaml file:

openstack tripleo container image prepare default \
--local-push-destination \
--output-env-file containers-prepare-parameter.yaml

Define the OpenShift environment

Create the openshift_env.yaml file. This file will define the OpenShift-related settings that TripleO will
later apply as part of the openstack overcloud deploy procedure. You will need to update these values to
suit your deployment:

Parameter_defaults:
by default TripleO assigns the VIP random from the allocation pool
by using the FixedIPs we can set the VIPs to predictable IPs before
↪→starting the deployment
CloudName: public.openshift.localdomain
PublicVirtualFixedIPs: [{'ip_address':'10.0.0.200'}]

CloudNameInternal: internal.openshift.localdomain
InternalApiVirtualFixedIPs: [{'ip_address':'172.17.1.200'}]

CloudDomain: openshift.localdomain

Required for CNS deployments only
OpenShiftInfraParameters:

OpenShiftGlusterDisks:
- /dev/sdb

Required for CNS deployments only
OpenShiftWorkerParameters:

OpenShiftGlusterDisks:
- /dev/sdb
- /dev/sdc

ControlPlaneDefaultRoute: 192.168.24.1
EC2MetadataIp: 192.168.24.1
ControlPlaneSubnetCidr: 24

The DNS server below should have entries for resolving
{internal,public,apps}.openshift.localdomain names
DnsServers:

- 10.0.0.90

OpenShiftGlobalVariables:

openshift_master_identity_providers:
- name: 'htpasswd_auth'

login: 'true'
challenge: 'true'
kind: 'HTPasswdPasswordIdentityProvider'

(continues on next page)

5.1. TripleO Install Guide 125

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/deployment/container_image_prepare.html

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

openshift_master_htpasswd_users:
sysadmin: '$apr1$jpBOUqeU$X4jUsMyCHOOp8TFYtPq0v1'

#openshift_master_cluster_hostname should match the CloudNameInternal
↪→parameter

openshift_master_cluster_hostname: internal.openshift.localdomain

#openshift_master_cluster_public_hostname should match the CloudName
↪→parameter

openshift_master_cluster_public_hostname: public.openshift.localdomain

openshift_master_default_subdomain: apps.openshift.localdomain

For custom networks or customer interfaces, it is necessary to use custom network interface templates:

resource_registry:
OS::TripleO::OpenShiftMaster::Net::SoftwareConfig: /home/stack/master-

↪→nic.yaml
OS::TripleO::OpenShiftWorker::Net::SoftwareConfig: /home/stack/worker-

↪→nic.yaml
OS::TripleO::OpenShiftInfra::Net::SoftwareConfig: /home/stack/infra-

↪→nic.yaml

Deploy OpenShift nodes

As a result of the previous steps, you will have three new YAML files:

• openshift_env.yaml

• openshift_roles_data.yaml

• containers-default-parameters.yaml

For a custom network deployments, maybe it is necessary NICs and network templates like:

• master-nic.yaml

• infra-nic.yaml

• worker-nic.yaml

• network_data_openshift.yaml

Add these YAML files to your openstack overcloud deploy command.

An example for CNS deployments:

openstack overcloud deploy \
--stack openshift \
--templates \
-r /home/stack/openshift_roles_data.yaml \
-n /usr/share/openstack-tripleo-heat-templates/network_data_openshift.

↪→yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-

↪→isolation.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/openshift.

↪→yaml \
(continues on next page)

5.1. TripleO Install Guide 126

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

-e /usr/share/openstack-tripleo-heat-templates/environments/openshift-
↪→cns.yaml \
-e /home/stack/openshift_env.yaml \
-e /home/stack/containers-prepare-parameter.yaml

An example for non-CNS deployments:

openstack overcloud deploy \
--stack openshift \
--templates \
-r /home/stack/openshift_roles_data.yaml \
-n /usr/share/openstack-tripleo-heat-templates/network_data_openshift.

↪→yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-

↪→isolation.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/openshift.

↪→yaml \
-e /home/stack/openshift_env.yaml \
-e /home/stack/containers-prepare-parameter.yaml

Deployment for custom networks or interfaces, it is necessary to specify them. For example:

openstack overcloud deploy \
--stack openshift \
--templates \
-r /home/stack/openshift_roles_data.yaml \
-n /home/stack/network_data_openshift.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-

↪→isolation.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/openshift.

↪→yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/openshift-

↪→cns.yaml \
-e /home/stack/openshift_env.yaml \
-e /home/stack/containers-prepare-parameter.yaml \
-e /home/stack/custom-nics.yaml

Review the OpenShift deployment

Once the overcloud deploy procedure has completed, you can review the state of your OpenShift nodes.

1. List all your baremetal nodes. You should expect to see your master, infra, and worker nodes.

openstack baremetal node list

2. Locate the OpenShift node:

openstack server list

3. SSH to the OpenShift node. For example:

ssh heat-admin@192.168.122.43

4. Change to root user:

5.1. TripleO Install Guide 127

TripleO Documentation, Release 0.0.1.dev1610

sudo -i

5. Review the container orchestration configuration:

cat .kube/config

6. Login to OpenShift:

oc login -u admin

7. Review any existing projects:

oc get projects

8. Review the OpenShift status:

oc status

9. Logout from OpenShift:

oc logout

Deploy a test app using OpenShift

This procedure describes how to create a test application in your new OpenShift deployment.

1. Login as a developer:

$ oc login -u developer
Logged into "https://192.168.64.3:8443" as "developer" using existing
↪→credentials.
You have one project on this server: "myproject"
Using project "myproject".

2. Create a new project:

$ oc new-project test-project
Now using project "test-project" on server "https://192.168.64.3:8443
↪→".

You can add applications to this project with the new-app command. For example, to build a new
example application in Ruby try:

$ oc new-app centos/ruby-22-centos7~https://github.com/openshift/ruby-
↪→ex.git

3. Create a new app. This example creates a CakePHP application:

$ oc new-app https://github.com/sclorg/cakephp-ex
--> Found image 9dd8c80 (29 hours old) in image stream "openshift/php
↪→" under tag "7.1" for "php"

Apache 2.4 with PHP 7.1

(continues on next page)

5.1. TripleO Install Guide 128

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

PHP 7.1 available as container is a base platform for building
↪→and running various PHP 7.1 applications and frameworks. PHP is an
↪→HTML-embedded scripting language. PHP attempts to make it easy for
↪→developers to write dynamically generated web pages. PHP also
↪→offers built-in database integration for several commercial and non-
↪→commercial database management systems, so writing a database-
↪→enabled webpage with PHP is fairly simple. The most common use of
↪→PHP coding is probably as a replacement for CGI scripts.

Tags: builder, php, php71, rh-php71

* The source repository appears to match: php

* A source build using source code from https://github.com/sclorg/
↪→cakephp-ex will be created

* The resulting image will be pushed to image stream "cakephp-
↪→ex:latest"

* Use 'start-build' to trigger a new build

* This image will be deployed in deployment config "cakephp-ex"

* Ports 8080/tcp, 8443/tcp will be load balanced by service
↪→"cakephp-ex"

* Other containers can access this service through the hostname
↪→"cakephp-ex"

--> Creating resources ...
imagestream "cakephp-ex" created
buildconfig "cakephp-ex" created
deploymentconfig "cakephp-ex" created
service "cakephp-ex" created

--> Success
Build scheduled, use 'oc logs -f bc/cakephp-ex' to track its

↪→progress.
Application is not exposed. You can expose services to the

↪→outside world by executing one or more of the commands below:
'oc expose svc/cakephp-ex'
Run 'oc status' to view your app.

4. Review the new app:

$ oc status --suggest
In project test-project on server https://192.168.64.3:8443

svc/cakephp-ex - 172.30.171.214 ports 8080, 8443
dc/cakephp-ex deploys istag/cakephp-ex:latest <-

bc/cakephp-ex source builds https://github.com/sclorg/cakephp-ex
↪→on openshift/php:7.1

build #1 running for 52 seconds - e0f0247: Merge pull request
↪→#105 from jeffdyoung/ppc64le (Honza Horak <hhorak@redhat.com>)

deployment #1 waiting on image or update

Info:

* dc/cakephp-ex has no readiness probe to verify pods are ready to
↪→accept traffic or ensure deployment is successful.

try: oc set probe dc/cakephp-ex --readiness ...

* dc/cakephp-ex has no liveness probe to verify pods are still
↪→running.

try: oc set probe dc/cakephp-ex --liveness ...
(continues on next page)

5.1. TripleO Install Guide 129

TripleO Documentation, Release 0.0.1.dev1610

(continued from previous page)

View details with 'oc describe <resource>/<name>' or list everything
↪→with 'oc get all'.

5. Review the pods:

$ oc get pods
NAME READY STATUS RESTARTS AGE
cakephp-ex-1-build 1/1 Running 0 1m

6. Logout from OpenShift:

$ oc logout

5.1.5 Custom Configurations

Documentation on how to deploy custom configurations with TripleO.

Exporting Deployment Plans

Exporting a deployment plan enables you to quickly retrieve the contents of an existing deployment
plan. A deployment plan consists of the heat templates and the environment files used to deploy an
overcloud, as well as the plan-environment.yaml file which holds the plan metadata. Exporting a plan
can be useful if you want to use an existing plan as a starting point for further customizations (instead
of starting from scratch with a fresh copy of tripleo-heat-templates).

Exporting a plan using the CLI

To export a plan using the CLI, use the following command:

$ openstack overcloud plan export <plan_name>

E.g:

$ openstack overcloud plan export overcloud

will export the default plan called overcloud. By default, a tarball named overcloud.tar.gz
containing the plan files will be created in the current directory. If you would like to use a custom file
name, you can specify it using the --output-file option.

5.1. TripleO Install Guide 130

https://github.com/openstack/tripleo-heat-templates/blob/master/plan-environment.yaml
https://github.com/openstack/tripleo-heat-templates

TripleO Documentation, Release 0.0.1.dev1610

Exporting a plan using the UI

To export a plan using the UI, navigate to the Plans page using the All Plans link from the Plans
tab. Then open the kebab menu of the plan you want to export and click the Export link. This will
trigger the plan export workflow and after the plan export completes you will be presented with a link to
download the plan tarball.

5.1. TripleO Install Guide 131

CHAPTER

SIX

UPGRADES/UPDATES/FFWD-UPGRADE

6.1 Upgrade, Update, FFWD Upgrade Guide

132

CHAPTER

SEVEN

DOCUMENTATION CONVENTIONS

Some steps in the following instructions only apply to certain environments, such as deployments to real
baremetal and deployments using Red Hat Enterprise Linux (RHEL). These steps are marked as follows:

RHEL

Step that should only be run when using RHEL

RHEL Portal Registration

Step that should only be run when using RHEL Portal Registration

RHEL Satellite Registration

Step that should only be run when using RHEL Satellite Registration

CentOS

Step that should only be run when using CentOS

Baremetal

Step that should only be run when deploying to baremetal

Virtual

Step that should only be run when deploying to virtual machines

Ceph

Step that should only be run when deploying Ceph for use by the Overcloud

Stable Branch

133

TripleO Documentation, Release 0.0.1.dev1610

Step that should only be run when choosing to use components from their stable branches rather than
using packages/source based on current master.

Yoga

Step that should only be run when installing from the Yoga stable branch.

Zed

Step that should only be run when installing from the Zed stable branch.

2023.1 Antelope (SLURP)

Step that should only be run when installing from the 2023.1 Antelope (SLURP) stable branch.

2023.2 Bobcat

Step that should only be run when installing from the 2023.2 Bobcat stable branch.

Validations

Steps that will run the pre and post-deployment validations

Optional Feature

Step that is optional. A deployment can be done without these steps, but they may provide useful
additional functionality.

Any such steps should not be run if the target environment does not match the section marking.

134

	Contributor Guide
	TripleO Contributor Guide
	Information for New Developers
	How to Contribute
	Core maintainers
	Squads

	Developer Documentation
	Composable services tutorial
	Release Management
	Primer python-tripleoclient and tripleo-common
	Upgrades Development

	TripleO Architecture
	TripleO Architecture
	Architecture Overview
	Benefits
	Deployment Workflow Overview
	Deployment Workflow Detail
	High Availability (HA)
	Managing the Deployment

	TripleO Components
	TripleO Components
	Shared Libraries
	Installer
	Node Management
	Deployment & Orchestration
	User Interfaces
	tripleo-validations
	Deprecated

	Tripleo CI Guide
	TripleO CI Guide
	TripleO CI jobs primer
	Reproduce CI jobs for debugging and development
	How to add a TripleO job to your projects check pipeline
	Standalone Scenario jobs
	Baremetal jobs
	How the TripleO-RDO Pipelines’ Promotions Work
	TripleO CI Promotions
	emit-releases-file and releases.sh
	TripleO CI ruck|rover primer
	Chasing CI promotions
	Gating github projects using TripleO CI jobs
	Content Provider Jobs
	TripleO Dependency Pipeline

	Install Guide
	TripleO Install Guide
	TripleO Introduction
	Deploy Guide
	(DEPRECATED) Basic Deployment (UI)
	Feature Configuration
	Custom Configurations

	Upgrades/Updates/FFWD-Upgrade
	Upgrade, Update, FFWD Upgrade Guide

	Documentation Conventions

