Swift Documentation
Release 2.30.2.dev8

Swift Team

Aug 03, 2024

1 Getting Started

1.1
1.2
1.3
1.4

2.1
22
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221
222

3.1
3.2
33
34
3.5
3.6
3.7

System Requirements
Development
CLI client and SDK library
Production

Overview and Concepts
Object Storage API overview
Swift Architectural Overview
TheRings.
Storage Policies
The Account Reaper
The Auth System
Access Control Lists (ACLs)
Replication
Rate Limiting
Large Object Support
GlobalClusters
Container to Container Synchronization
Expiring Object Support
CORS.
Cross-domain Policy File
Erasure Code Support

Object Encryption

Using Swift as Backing Store for Service Data

Container Sharding

Building a Consistent Hashing Ring
Modifying Ring Partition Power

Associated Projects

Contributor Documentation
Contributing to OpenStack Swift
Swift Design Principles
Recommended workflow
Notes on Testing
Ideas
Community

Review Guidelines

CONTENTS

...................... 11

Developer Documentation

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Development Guidelines
SAIO (Swift AllInOne) o e
First Contribution to Swift
Adding Storage Policies to an Existing SAIO
Auth Server and Middleware L
Middleware and Metadata e
Pluggable On-Disk Back-end APIs,
Auditor Watchers oL

Administrator Documentation

5.1
52
53
54
5.5
5.6
5.7
5.8
59
5.10

Instructions for a Multiple Server Swift Installation
Deployment Guide e e
Apache Deployment Guide e
Administrators Guideo e
Dedicated replicationnetwork L L
Logs o e e e e e
Swift Ops Runbook
OpenStack Swift Administrator Guide oL
Object Storage Install Guide
Configuration Documentation L o

Object Storage vl REST API Documentation

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Discoverability e e e e
Authentication L L e
Container qUOLAS o L e e e e e e e e e e e
Object versioning i e e e e e e e e e e e e e
Large objects L e e e e e
Temporary URL middleware,
Form POST middleware
Use Content-Encoding metadata
Use the Content-Disposition metadata
Pseudo-hierarchical folders and directories
Page through large lists of containers or objects
Serialized response formats oL
Create static website
Objectexpiration L e e e e e
Bulkdelete e

S3 Compatibility Info

7.1

S3/Swift REST API Comparison Matrix

OpenStack End User Guide

Source Documentation

9.1
9.2
9.3
94
9.5
9.6
9.7

Partitioned Consistent HashRing
Proxy . . . o e

163
163
168
206
210
212
221
227
253

257
257
257
268
272
299
310
313
350
374
416

443
443
444
445
445
451
456
459
462
462
463
465
467
469
471
471

475
475

477

0.8 Middleware e e e e e e e e
9.9 Object Audit Watchers e

10 Indices and tables
Python Module Index

Index

758
759
761

763

Swift Documentation, Release 2.30.2.dev8

Swift is a highly available, distributed, eventually consistent object/blob store. Organizations can use
Swift to store lots of data efficiently, safely, and cheaply.

This documentation is generated by the Sphinx toolkit and lives in the source tree. Additional docu-
mentation on Swift and other components of OpenStack can be found on the OpenStack wiki and at
http://docs.openstack.org.

Note: If youre looking for associated projects that enhance or use Swift, please see the Associated
Projects page.

CONTENTS 1

http://wiki.openstack.org
http://docs.openstack.org

Swift Documentation, Release 2.30.2.dev8

2 CONTENTS

CHAPTER
ONE

GETTING STARTED

1.1 System Requirements

Swift development currently targets Ubuntu Server 16.04, but should work on most Linux platforms.
Swift is written in Python and has these dependencies:

* Python (2.7 or 3.6-3.9)

* rsync 3.x

* liberasurecode

* The Python packages listed in the requirements file

 Testing additionally requires the test dependencies

* Testing requires these distribution packages

1.2 Development

To get started with development with Swift, or to just play around, the following docs will be useful:
* Swift All in One - Set up a VM with Swift installed
* Development Guidelines
* First Contribution to Swift

* Associated Projects

1.3 CLI client and SDK library

There are many clients in the ecosystem. The official CLI and SDK is python-swiftclient.
* Source code

* Python Package Index

https://opendev.org/openstack/liberasurecode/
https://github.com/openstack/swift/blob/master/requirements.txt
https://github.com/openstack/swift/blob/master/test-requirements.txt
https://github.com/openstack/swift/blob/master/bindep.txt
https://opendev.org/openstack/python-swiftclient
https://pypi.org/project/python-swiftclient

Swift Documentation, Release 2.30.2.dev8

1.4 Production

If you want to set up and configure Swift for a production cluster, the following doc should be useful:

* Multiple Server Swift Installation

4 Chapter 1. Getting Started

CHAPTER
TWO

OVERVIEW AND CONCEPTS

2.1 Object Storage API overview

OpenStack Object Storage is a highly available, distributed, eventually consistent object/blob store. You
create, modify, and get objects and metadata by using the Object Storage API, which is implemented as
a set of Representational State Transfer (REST) web services.

For an introduction to OpenStack Object Storage, see the OpenStack Swift Administrator Guide.

You use the HTTPS (SSL) protocol to interact with Object Storage, and you use standard HTTP calls
to perform API operations. You can also use language-specific APIs, which use the RESTful API, that
make it easier for you to integrate into your applications.

To assert your right to access and change data in an account, you identify yourself to Object Storage by us-
ing an authentication token. To get a token, you present your credentials to an authentication service. The
authentication service returns a token and the URL for the account. Depending on which authentication
service that you use, the URL for the account appears in:

* OpenStack Identity Service. The URL is defined in the service catalog.
* Tempauth. The URL is provided in the X-Storage-Url response header.
In both cases, the URL is the full URL and includes the account resource.

The Object Storage API supports the standard, non-serialized response format, which is the default, and
both JSON and XML serialized response formats.

The Object Storage system organizes data in a hierarchy, as follows:
* Account. Represents the top-level of the hierarchy.

Your service provider creates your account and you own all resources in that account. The ac-
count defines a namespace for containers. A container might have the same name in two different
accounts.

In the OpenStack environment, account is synonymous with a project or tenant.

* Container. Defines a namespace for objects. An object with the same name in two different
containers represents two different objects. You can create any number of containers within an
account.

In addition to containing objects, you can also use the container to control access to objects by
using an access control list (ACL). You cannot store an ACL with individual objects.

In addition, you configure and control many other features, such as object versioning, at the con-
tainer level.

Swift Documentation, Release 2.30.2.dev8

You can bulk-delete up to 10,000 containers in a single request.

You can set a storage policy on a container with predefined names and definitions from your cloud
provider.

* Object. Stores data content, such as documents, images, and so on. You can also store custom
metadata with an object.

With the Object Storage API, you can:

— Store an unlimited number of objects. Each object can be as large as 5 GB, which is the
default. You can configure the maximum object size.

— Upload and store objects of any size with large object creation.

— Use cross-origin resource sharing to manage object security.

— Compress files using content-encoding metadata.

— Opverride browser behavior for an object using content-disposition metadata.
— Schedule objects for deletion.

— Bulk-delete up to 10,000 objects in a single request.

— Auto-extract archive files.

— Generate a URL that provides time-limited GET access to an object.

— Upload objects directly to the Object Storage system from a browser by using form POST
middleware.

— Create symbolic links to other objects.
The account, container, and object hierarchy affects the way you interact with the Object Storage API.

Specifically, the resource path reflects this structure and has this format:

/vl/{account}/{container}/{object}

For example, for the flowers/rose. jpg object in the images container in the 12345678912345 ac-
count, the resource path is:

/v1/12345678912345/images/flowers/rose. jpg

Notice that the object name contains the / character. This slash does not indicate that Object Storage has
a sub-hierarchy called flowers because containers do not store objects in actual sub-folders. However,
the inclusion of / or a similar convention inside object names enables you to create pseudo-hierarchical
folders and directories.

For example, if the endpoint for Object Storage is objects.mycloud. com, the returned URLishttps:/
/objects.mycloud.com/v1/12345678912345.

To access a container, append the container name to the resource path.
To access an object, append the container and the object name to the path.

If you have a large number of containers or objects, you can use query parameters to page through large
lists of containers or objects. Use the marker, 1imit, and end_marker query parameters to control how
many items are returned in a list and where the list starts or ends. If you want to page through in reverse
order, you can use the query parameter reverse, noting that your marker and end_markers should be

6 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

switched when applied to a reverse listing. L.e, for a list of objects [a, b, c, d, e] the non-reversed
could be:

/v1l/{account}/{container}/?marker=a&end_marker=d
b
C

However, when reversed marker and end_marker are applied to a reversed list:

/vl/{account}/{container}/?marker=d&end_marker=a&reverse=on

C
b

Object Storage HTTP requests have the following default constraints. Your service provider might use
different default values.

ltem Maximum value | Notes

Number of HTTP headers 90

Length of HTTP headers 4096 bytes

Length per HTTP request line | 8192 bytes

Length of HTTP request 5GB

Length of container names 256 bytes Cannot contain the / character.

Length of object names 1024 bytes By default, there are no character restrictions.

You must UTF-8-encode and then URL-encode container and object names before you call the API
binding. If you use an API binding that performs the URL-encoding for you, do not URL-encode the
names before you call the API binding. Otherwise, you double-encode these names. Check the length
restrictions against the URL-encoded string.

The API Reference describes the operations that you can perform with the Object Storage API:
 Storage accounts: Use to perform account-level tasks.

Lists containers for a specified account. Creates, updates, and deletes account metadata. Shows
account metadata.

 Storage containers: Use to perform container-level tasks.

Lists objects in a specified container. Creates, shows details for, and deletes containers. Creates,
updates, shows, and deletes container metadata.

 Storage objects: Use to perform object-level tasks.

Creates, replaces, shows details for, and deletes objects. Copies objects with another object with a
new or different name. Updates object metadata.

2.1. Object Storage API overview 7

https://docs.openstack.org/api-ref/object-store/index.html#accounts
https://docs.openstack.org/api-ref/object-store/index.html#containers
https://docs.openstack.org/api-ref/object-store/index.html#objects

Swift Documentation, Release 2.30.2.dev8

2.2 Swift Architectural Overview

2.2.1 Proxy Server

The Proxy Server is responsible for tying together the rest of the Swift architecture. For each request,
it will look up the location of the account, container, or object in the ring (see below) and route the
request accordingly. For Erasure Code type policies, the Proxy Server is also responsible for encoding
and decoding object data. See Erasure Code Support for complete information on Erasure Code support.
The public API is also exposed through the Proxy Server.

A large number of failures are also handled in the Proxy Server. For example, if a server is unavailable
for an object PUT, it will ask the ring for a handoff server and route there instead.

When objects are streamed to or from an object server, they are streamed directly through the proxy
server to or from the user the proxy server does not spool them.

2.2.2 The Ring

A ring represents a mapping between the names of entities stored on disk and their physical location.
There are separate rings for accounts, containers, and one object ring per storage policy. When other
components need to perform any operation on an object, container, or account, they need to interact with
the appropriate ring to determine its location in the cluster.

The Ring maintains this mapping using zones, devices, partitions, and replicas. Each partition in the
ring is replicated, by default, 3 times across the cluster, and the locations for a partition are stored in the
mapping maintained by the ring. The ring is also responsible for determining which devices are used for
handoff in failure scenarios.

The replicas of each partition will be isolated onto as many distinct regions, zones, servers and devices as
the capacity of these failure domains allow. If there are less failure domains at a given tier than replicas of
the partition assigned within a tier (e.g. a 3 replica cluster with 2 servers), or the available capacity across
the failure domains within a tier are not well balanced it will not be possible to achieve both even capacity
distribution (balance) as well as complete isolation of replicas across failure domains (dispersion). When
this occurs the ring management tools will display a warning so that the operator can evaluate the cluster
topology.

Data is evenly distributed across the capacity available in the cluster as described by the devices weight.
Weights can be used to balance the distribution of partitions on drives across the cluster. This can be
useful, for example, when different sized drives are used in a cluster. Device weights can also be used
when adding or removing capacity or failure domains to control how many partitions are reassigned
during a rebalance to be moved as soon as replication bandwidth allows.

Note: Prior to Swift 2.1.0 it was not possible to restrict partition movement by device weight when
adding new failure domains, and would allow extremely unbalanced rings. The greedy dispersion algo-
rithm is now subject to the constraints of the physical capacity in the system, but can be adjusted with-in
reason via the overload option. Artificially unbalancing the partition assignment without respect to ca-
pacity can introduce unexpected full devices when a given failure domain does not physically support its
share of the used capacity in the tier.

When partitions need to be moved around (for example if a device is added to the cluster), the ring ensures
that a minimum number of partitions are moved at a time, and only one replica of a partition is moved at

8 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

a time.

The ring is used by the Proxy server and several background processes (like replication). See The Rings
for complete information on the ring.

2.2.3 Storage Policies

Storage Policies provide a way for object storage providers to differentiate service levels, features and
behaviors of a Swift deployment. Each Storage Policy configured in Swift is exposed to the client via
an abstract name. Each device in the system is assigned to one or more Storage Policies. This is accom-
plished through the use of multiple object rings, where each Storage Policy has an independent object
ring, which may include a subset of hardware implementing a particular differentiation.

For example, one might have the default policy with 3x replication, and create a second policy which,
when applied to new containers only uses 2x replication. Another might add SSDs to a set of storage
nodes and create a performance tier storage policy for certain containers to have their objects stored there.
Yet another might be the use of Erasure Coding to define a cold-storage tier.

This mapping is then exposed on a per-container basis, where each container can be assigned a specific
storage policy when it is created, which remains in effect for the lifetime of the container. Applications
require minimal awareness of storage policies to use them; once a container has been created with a
specific policy, all objects stored in it will be done so in accordance with that policy.

The Storage Policies feature is implemented throughout the entire code base so it is an important concept
in understanding Swift architecture.

See Storage Policies for complete information on storage policies.

2.2.4 Object Server

The Object Server is a very simple blob storage server that can store, retrieve and delete objects stored
on local devices. Objects are stored as binary files on the filesystem with metadata stored in the files
extended attributes (xattrs). This requires that the underlying filesystem choice for object servers support
xattrs on files. Some filesystems, like ext3, have xattrs turned off by default.

Each object is stored using a path derived from the object names hash and the operations timestamp. Last
write always wins, and ensures that the latest object version will be served. A deletion is also treated as
a version of the file (a O byte file ending with .ts, which stands for tombstone). This ensures that deleted
files are replicated correctly and older versions dont magically reappear due to failure scenarios.

2.2.5 Container Server

The Container Servers primary job is to handle listings of objects. It doesnt know where those objects are,
just what objects are in a specific container. The listings are stored as sqlite database files, and replicated
across the cluster similar to how objects are. Statistics are also tracked that include the total number of
objects, and total storage usage for that container.

2.2. Swift Architectural Overview 9

Swift Documentation, Release 2.30.2.dev8

2.2.6 Account Server

The Account Server is very similar to the Container Server, excepting that it is responsible for listings of
containers rather than objects.

2.2.7 Replication

Replication is designed to keep the system in a consistent state in the face of temporary error conditions
like network outages or drive failures.

The replication processes compare local data with each remote copy to ensure they all contain the latest
version. Object replication uses a hash list to quickly compare subsections of each partition, and container
and account replication use a combination of hashes and shared high water marks.

Replication updates are push based. For object replication, updating is just a matter of rsyncing files to
the peer. Account and container replication push missing records over HTTP or rsync whole database
files.

The replicator also ensures that data is removed from the system. When an item (object, container,
or account) is deleted, a tombstone is set as the latest version of the item. The replicator will see the
tombstone and ensure that the item is removed from the entire system.

See Replication for complete information on replication.

2.2.8 Reconstruction

The reconstructor is used by Erasure Code policies and is analogous to the replicator for Replication type
policies. See Erasure Code Support for complete information on both Erasure Code support as well as
the reconstructor.

2.2.9 Updaters

There are times when container or account data can not be immediately updated. This usually occurs
during failure scenarios or periods of high load. If an update fails, the update is queued locally on the
filesystem, and the updater will process the failed updates. This is where an eventual consistency window
will most likely come in to play. For example, suppose a container server is under load and a new object
is put in to the system. The object will be immediately available for reads as soon as the proxy server
responds to the client with success. However, the container server did not update the object listing, and
so the update would be queued for a later update. Container listings, therefore, may not immediately
contain the object.

In practice, the consistency window is only as large as the frequency at which the updater runs and may
not even be noticed as the proxy server will route listing requests to the first container server which
responds. The server under load may not be the one that serves subsequent listing requests one of the
other two replicas may handle the listing.

10 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

2.2.10 Auditors

Auditors crawl the local server checking the integrity of the objects, containers, and accounts. If corrup-
tion is found (in the case of bit rot, for example), the file is quarantined, and replication will replace the
bad file from another replica. If other errors are found they are logged (for example, an objects listing
cant be found on any container server it should be).

2.3 The Rings

The rings determine where data should reside in the cluster. There is a separate ring for account databases,
container databases, and individual object storage policies but each ring works in the same way. These
rings are externally managed. The server processes themselves do not modify the rings; they are instead
given new rings modified by other tools.

The ring uses a configurable number of bits from the MDS5 hash of an items path as a partition index that
designates the device(s) on which that item should be stored. The number of bits kept from the hash is
known as the partition power, and 2 to the partition power indicates the partition count. Partitioning the
full MD5 hash ring allows the cluster components to process resources in batches. This ends up either
more efficient or at least less complex than working with each item separately or the entire cluster all at
once.

Another configurable value is the replica count, which indicates how many devices to assign for each
partition in the ring. By having multiple devices responsible for each partition, the cluster can recover
from drive or network failures.

Devices are added to the ring to describe the capacity available for partition replica assignments. Devices
are placed into failure domains consisting of region, zone, and server. Regions can be used to describe
geographical systems characterized by lower bandwidth or higher latency between machines in different
regions. Many rings will consist of only a single region. Zones can be used to group devices based
on physical locations, power separations, network separations, or any other attribute that would lessen
multiple replicas being unavailable at the same time.

Devices are given a weight which describes the relative storage capacity contributed by the device in
comparison to other devices.

When building a ring, replicas for each partition will be assigned to devices according to the devices
weights. Additionally, each replica of a partition will preferentially be assigned to a device whose failure
domain does not already have a replica for that partition. Only a single replica of a partition may be
assigned to each device - you must have at least as many devices as replicas.

2.3.1 Ring Builder

The rings are built and managed manually by a utility called the ring-builder. The ring-builder assigns
partitions to devices and writes an optimized structure to a gzipped, serialized file on disk for shipping out
to the servers. The server processes check the modification time of the file occasionally and reload their
in-memory copies of the ring structure as needed. Because of how the ring-builder manages changes to
the ring, using a slightly older ring usually just means that for a subset of the partitions the device for one
of the replicas will be incorrect, which can be easily worked around.

The ring-builder also keeps a separate builder file which includes the ring information as well as addi-
tional data required to build future rings. It is very important to keep multiple backup copies of these

2.3. The Rings 11

Swift Documentation, Release 2.30.2.dev8

builder files. One option is to copy the builder files out to every server while copying the ring files them-
selves. Another is to upload the builder files into the cluster itself. Complete loss of a builder file will
mean creating a new ring from scratch, nearly all partitions will end up assigned to different devices, and
therefore nearly all data stored will have to be replicated to new locations. So, recovery from a builder
file loss is possible, but data will definitely be unreachable for an extended time.

2.3.2 Ring Data Structure
The ring data structure consists of three top level fields: a list of devices in the cluster, a list of lists of

device ids indicating partition to device assignments, and an integer indicating the number of bits to shift
an MDS5 hash to calculate the partition for the hash.

List of Devices

The list of devices is known internally to the Ring class as devs. Each item in the list of devices is a
dictionary with the following keys:

id integer | The index into the list of devices.

zone integer | The zone in which the device resides.

region | integer | The region in which the zone resides.

weight | float The relative weight of the device in comparison to other devices. This usually

corresponds directly to the amount of disk space the device has compared to other
devices. For instance a device with 1 terabyte of space might have a weight of
100.0 and another device with 2 terabytes of space might have a weight of 200.0.
This weight can also be used to bring back into balance a device that has ended
up with more or less data than desired over time. A good average weight of 100.0
allows flexibility in lowering the weight later if necessary.

ip string The IP address or hostname of the server containing the device.

port int The TCP port on which the server process listens to serve requests for the device.
device | string The on-disk name of the device on the server. For example: sdbl

meta string A general-use field for storing additional information for the device. This infor-

mation isnt used directly by the server processes, but can be useful in debugging.
For example, the date and time of installation and hardware manufacturer could
be stored here.

Note: The list of devices may contain holes, or indexes set to None, for devices that have been removed
from the cluster. However, device ids are reused. Device ids are reused to avoid potentially running out
of device id slots when there are available slots (from prior removal of devices). A consequence of this
device id reuse is that the device id (integer value) does not necessarily correspond with the chronology
of when the device was added to the ring. Also, some devices may be temporarily disabled by setting
their weight to 0.0. To obtain a list of active devices (for uptime polling, for example) the Python code
would look like:

12 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Partition Assignment List

The partition assignment list is known internally to the Ring class as _replica2part2dev_id. This is
a list of array('H')s, one for each replica. Each array('H') has a length equal to the partition count
for the ring. Each integer in the array('H') is an index into the above list of devices.

So, to create a list of device dictionaries assigned to a partition, the Python code would look like:

array('H') is used for memory conservation as there may be millions of partitions.

Partition Shift Value

The partition shift value is known internally to the Ring class as _part_shift. This value is used to
shift an MD5 hash of an items path to calculate the partition on which the data for that item should reside.
Only the top four bytes of the hash are used in this process. For example, to compute the partition for the
path /account/container/object, the Python code might look like:

For a ring generated with partition power P, the partition shift value is 32 - P.

Fractional Replicas
A ring is not restricted to having an integer number of replicas. In order to support the gradual changing
of replica counts, the ring is able to have a real number of replicas.

When the number of replicas is not an integer, the last element of _replica2part2dev_id will have a
length that is less than the partition count for the ring. This means that some partitions will have more
replicas than others. For example, if a ring has 3.25 replicas, then 25% of its partitions will have four
replicas, while the remaining 75% will have just three.

Dispersion
With each rebalance, the ring builder calculates a dispersion metric. This is the percentage of partitions
in the ring that have too many replicas within a particular failure domain.

For example, if you have three servers in a cluster but two replicas for a partition get placed onto the same
server, that partition will count towards the dispersion metric.

A lower dispersion value is better, and the value can be used to find the proper value for overload.

2.3. The Rings 13

Swift Documentation, Release 2.30.2.dev8

Overload

The ring builder tries to keep replicas as far apart as possible while still respecting device weights. When
it cant do both, the overload factor determines what happens. Each device may take some extra fraction
of its desired partitions to allow for replica dispersion; once that extra fraction is exhausted, replicas will
be placed closer together than is optimal for durability.

Essentially, the overload factor lets the operator trade off replica dispersion (durability) against device
balance (uniform disk usage).

The default overload factor is 0, so device weights will be strictly followed.

With an overload factor of 0.1, each device will accept 10% more partitions than it otherwise would,
but only if needed to maintain dispersion.

Example: Consider a 3-node cluster of machines with equal-size disks; let node A have 12 disks, node
B have 12 disks, and node C have only 11 disks. Let the ring have an overload factor of 0.1 (10%).

Without the overload, some partitions would end up with replicas only on nodes A and B. However,
with the overload, every device is willing to accept up to 10% more partitions for the sake of dispersion.
The missing disk in C means there is one disks worth of partitions that would like to spread across the
remaining 11 disks, which gives each disk in C an extra 9.09% load. Since this is less than the 10%
overload, there is one replica of each partition on each node.

However, this does mean that the disks in node C will have more data on them than the disks in nodes
A and B. If 80% full is the warning threshold for the cluster, node Cs disks will reach 80% full while A
and Bs disks are only 72.7% full.

2.3.3 Partition & Replica Terminology

All descriptions of consistent hashing describe the process of breaking the keyspace up into multiple
ranges (vnodes, buckets, etc.) - many more than the number of nodes to which keys in the keyspace must
be assigned. Swift calls these ranges partitions - they are partitions of the total keyspace.

Each partition will have multiple replicas. Every replica of each partition must be assigned to a device in
the ring. When describing a specific replica of a partition (like when its assigned a device) it is described
as a part-replica in that it is a specific replica of the specific partition. A single device will likely be
assigned different replicas from many partitions, but it may not be assigned multiple replicas of a single
partition.

The total number of partitions in a ring is calculated as 2 ** <part-power>. The total number of
part-replicas in a ring is calculated as <replica-count> * 2 ** <part-power>.

When considering a devices weight it is useful to describe the number of part-replicas it would like to
be assigned. A single device, regardless of weight, will never hold more than 2 ** <part-power>
part-replicas because it can not have more than one replica of any partition assigned. The number of
part-replicas a device can take by weights is calculated as its parts-wanted. The true number of part-
replicas assigned to a device can be compared to its parts-wanted similarly to a calculation of percentage
error - this deviation in the observed result from the idealized target is called a devices balance.

When considering a devices failure domain it is useful to describe the number of part-replicas it would
like to be assigned. The number of part-replicas wanted in a failure domain of a tier is the sum of the
part-replicas wanted in the failure domains of its sub-tier. However, collectively when the total number
of part-replicas in a failure domain exceeds or is equal to 2 ** <part-power> it is most obvious that
its no longer sufficient to consider only the number of total part-replicas, but rather the fraction of each
replicas partitions. Consider for example a ring with 3 replicas and 3 servers: while dispersion requires

14 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

that each server hold only of the total part-replicas, placement is additionally constrained to require 1.0
replica of each partition per server. It would not be sufficient to satisfy dispersion if two devices on one
of the servers each held a replica of a single partition, while another server held none. By considering
a decimal fraction of one replicas worth of partitions in a failure domain we can derive the total part-
replicas wanted in a failure domain (1.0 * 2 ** <part-power>). Additionally we infer more about
which part-replicas must go in the failure domain. Consider a ring with three replicas and two zones,
each with two servers (four servers total). The three replicas worth of partitions will be assigned into
two failure domains at the zone tier. Each zone must hold more than one replica of some partitions.
We represent this improper fraction of a replicas worth of partitions in decimal formas 1.5 (3.0 / 2).
This tells us not only the number of total partitions (1.5 * 2 ** <part-power>) but also that each
partition must have at least one replica in this failure domain (in fact 8.5 of the partitions will have 2
replicas). Within each zone the two servers will hold 0. 75 of a replicas worth of partitions - this is equal
both to the fraction of a replicas worth of partitions assigned to each zone (1.5) divided evenly among
the number of failure domains in its sub-tier (2 servers in each zone, i.e. 1.5 / 2) but also the total
number of replicas (3.0) divided evenly among the total number of failure domains in the server tier (2
servers (E 2 zones =4, i.e. 3.0 / 4). It is useful to consider that each server in this ring will hold only
0.75 of a replicas worth of partitions which tells that any server should have at most one replica of a
given partition assigned. In the interests of brevity, some variable names will often refer to the concept
representing the fraction of a replicas worth of partitions in decimal form as replicanths - this is meant
to invoke connotations similar to ordinal numbers as applied to fractions, but generalized to a replica
instead of a four*th* or a fif*th*. The n was probably thrown in because of Blade Runner.

2.3.4 Building the Ring

First the ring builder calculates the replicanths wanted at each tier in the rings topology based on weight.

Then the ring builder calculates the replicanths wanted at each tier in the rings topology based on disper-
sion.

Then the ring builder calculates the maximum deviation on a single device between its weighted repli-
canths and wanted replicanths.

Next we interpolate between the two replicanth values (weighted & wanted) at each tier using the specified
overload (up to the maximum required overload). Its a linear interpolation, similar to solving for a point
on a line between two points - we calculate the slope across the max required overload and then calculate
the intersection of the line with the desired overload. This becomes the target.

From the target we calculate the minimum and maximum number of replicas any partition may have in
a tier. This becomes the replica-plan.

Finally, we calculate the number of partitions that should ideally be assigned to each device based the
replica-plan.

On initial balance (i.e., the first time partitions are placed to generate a ring) we must assign each replica
of each partition to the device that desires the most partitions excluding any devices that already have
their maximum number of replicas of that partition assigned to some parent tier of that devices failure
domain.

When building a new ring based on an old ring, the desired number of partitions each device wants
is recalculated from the current replica-plan. Next the partitions to be reassigned are gathered up. Any
removed devices have all their assigned partitions unassigned and added to the gathered list. Any partition
replicas that (due to the addition of new devices) can be spread out for better durability are unassigned
and added to the gathered list. Any devices that have more partitions than they now desire have random

2.3. The Rings 15

Swift Documentation, Release 2.30.2.dev8

partitions unassigned from them and added to the gathered list. Lastly, the gathered partitions are then
reassigned to devices using a similar method as in the initial assignment described above.

Whenever a partition has a replica reassigned, the time of the reassignment is recorded. This is taken
into account when gathering partitions to reassign so that no partition is moved twice in a configurable
amount of time. This configurable amount of time is known internally to the RingBuilder class as
min_part_hours. This restriction is ignored for replicas of partitions on devices that have been re-
moved, as device removal should only happens on device failure and theres no choice but to make a
reassignment.

The above processes dont always perfectly rebalance a ring due to the random nature of gathering par-
titions for reassignment. To help reach a more balanced ring, the rebalance process is repeated a fixed
number of times until the replica-plan is fulfilled or unable to be fulfilled (indicating we probably cant
get perfect balance due to too many partitions recently moved).

2.3.5 Composite Rings

See Composite Ring Builder.

swift-ring-composer (Experimental)

swift-ring-composer is an experimental tool for building a composite ring file from other existing
component ring builder files. Its CLI, name or implementation may change or be removed altogether in
future versions of Swift.

Currently its interface is similar to that of the swift-ring-builder. The command structure takes the
form of:

where <composite builder file> is a special builder which stores a json blob of composite ring
metadata. This metadata describes the component RingBuilders used in the composite ring, their order
and version.

There are currently 2 sub-commands: show and compose. The show sub-command takes no additional
arguments and displays the current contents of of the composite builder file:

The compose sub-command is the one that actually stitches the component ring builders together to
create both the composite ring file and composite builder file. The command takes the form:

\

There may look like there is a lot going on there but its actually quite simple. The compose command
takes in the list of builders to stitch together and the filename for the composite ring file via the --output
option. The --force option overrides checks on the ring composition.

To change ring devices, first add or remove devices from the component ring builders and then use the
compose sub-command to create a new composite ring file.

16 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Note: swift-ring-builder cannot be used to inspect the generated composite ring file because there
is no conventional builder file corresponding to the composite ring file name. You can either program-
matically look inside the composite ring file using the swift ring classes or create a temporary builder
file from the composite ring file using:

Do not use this builder file to manage ring devices.

For further details use:

2.3.6 Ring Builder Analyzer

This is a tool for analyzing how well the ring builder performs its job in a particular scenario. It is
intended to help developers quantify any improvements or regressions in the ring builder; it is probably
not useful to others.

The ring builder analyzer takes a scenario file containing some initial parameters for a ring builder plus a
certain number of rounds. In each round, some modifications are made to the builder, e.g. add a device,
remove a device, change a devices weight. Then, the builder is repeatedly rebalanced until it settles down.
Data about that round is printed, and the next round begins.

Scenarios are specified in JSON. Example scenario for a gradual device addition:

(continues on next page)

2.3. The Rings 17

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

2.3.7 History

The ring code went through many iterations before arriving at what it is now and while it has largely
been stable, the algorithm has seen a few tweaks or perhaps even fundamentally changed as new ideas
emerge. This section will try to describe the previous ideas attempted and attempt to explain why they
were discarded.

A live ring option was considered where each server could maintain its own copy of the ring and the
servers would use a gossip protocol to communicate the changes they made. This was discarded as too
complex and error prone to code correctly in the project timespan available. One bug could easily gossip
bad data out to the entire cluster and be difficult to recover from. Having an externally managed ring
simplifies the process, allows full validation of data before its shipped out to the servers, and guarantees
each server is using aring from the same timeline. It also means that the servers themselves arent spending
a lot of resources maintaining rings.

A couple of ring server options were considered. One was where all ring lookups would be done by
calling a service on a separate server or set of servers, but this was discarded due to the latency involved.
Another was much like the current process but where servers could submit change requests to the ring
server to have a new ring built and shipped back out to the servers. This was discarded due to project time
constraints and because ring changes are currently infrequent enough that manual control was sufficient.
However, lack of quick automatic ring changes did mean that other components of the system had to be
coded to handle devices being unavailable for a period of hours until someone could manually update the
ring.

The current ring process has each replica of a partition independently assigned to a device. A version
of the ring that used a third of the memory was tried, where the first replica of a partition was directly
assigned and the other two were determined by walking the ring until finding additional devices in other
zones. This was discarded due to the loss of control over how many replicas for a given partition moved

18 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

at once. Keeping each replica independent allows for moving only one partition replica within a given
time window (except due to device failures). Using the additional memory was deemed a good trade-off
for moving data around the cluster much less often.

Another ring design was tried where the partition to device assignments werent stored in a big list in
memory but instead each device was assigned a set of hashes, or anchors. The partition would be de-
termined from the data items hash and the nearest device anchors would determine where the replicas
should be stored. However, to get reasonable distribution of data each device had to have a lot of anchors
and walking through those anchors to find replicas started to add up. In the end, the memory savings
wasnt that great and more processing power was used, so the idea was discarded.

A completely non-partitioned ring was also tried but discarded as the partitioning helps many other
components of the system, especially replication. Replication can be attempted and retried in a partition
batch with the other replicas rather than each data item independently attempted and retried. Hashes of
directory structures can be calculated and compared with other replicas to reduce directory walking and
network traffic.

Partitioning and independently assigning partition replicas also allowed for the best-balanced cluster.
The best of the other strategies tended to give §10% variance on device balance with devices of equal
weight and §15% with devices of varying weights. The current strategy allows us to get $3% and $§8%
respectively.

Various hashing algorithms were tried. SHA offers better security, but the ring doesnt need to be cryp-
tographically secure and SHA is slower. Murmur was much faster, but MD5 was built-in and hash com-
putation is a small percentage of the overall request handling time. In all, once it was decided the servers
wouldnt be maintaining the rings themselves anyway and only doing hash lookups, MD5 was chosen for
its general availability, good distribution, and adequate speed.

The placement algorithm has seen a number of behavioral changes for unbalanceable rings. The ring
builder wants to keep replicas as far apart as possible while still respecting device weights. In most
cases, the ring builder can achieve both, but sometimes they conflict. At first, the behavior was to keep
the replicas far apart and ignore device weight, but that made it impossible to gradually go from one
region to two, or from two to three. Then it was changed to favor device weight over dispersion, but that
wasnt so good for rings that were close to balanceable, like 3 machines with 60TB, 60TB, and 57TB of
disk space; operators were expecting one replica per machine, but didnt always get it. After that, overload
was added to the ring builder so that operators could choose a balance between dispersion and device
weights. In time the overload concept was improved and made more accurate.

For more background on consistent hashing rings, please see Building a Consistent Hashing Ring.

2.4 Storage Policies

Storage Policies allow for some level of segmenting the cluster for various purposes through the creation
of multiple object rings. The Storage Policies feature is implemented throughout the entire code base so
it is an important concept in understanding Swift architecture.

As described in The Rings, Swift uses modified hashing rings to determine where data should reside in
the cluster. There is a separate ring for account databases, container databases, and there is also one object
ring per storage policy. Each object ring behaves exactly the same way and is maintained in the same
manner, but with policies, different devices can belong to different rings. By supporting multiple object
rings, Swift allows the application and/or deployer to essentially segregate the object storage within a
single cluster. There are many reasons why this might be desirable:

2.4. Storage Policies 19

Swift Documentation, Release 2.30.2.dev8

* Different levels of durability: If a provider wants to offer, for example, 2x replication and 3x repli-
cation but doesnt want to maintain 2 separate clusters, they would setup a 2x and a 3x replication
policy and assign the nodes to their respective rings. Furthermore, if a provider wanted to offer a
cold storage tier, they could create an erasure coded policy.

» Performance: Just as SSDs can be used as the exclusive members of an account or database ring, an
SSD-only object ring can be created as well and used to implement a low-latency/high performance
policy.

* Collecting nodes into group: Different object rings may have different physical servers so that

objects in specific storage policies are always placed in a particular data center or geography.

* Different Storage implementations: Another example would be to collect together a set of nodes
that use a different Diskfile (e.g., Kinetic, GlusterFS) and use a policy to direct traffic just to those
nodes.

* Different read and write affinity settings: proxy-servers can be configured to use different read and
write affinity options for each policy. See Per policy configuration for more details.

Note: Today, Swift supports two different policy types: Replication and Erasure Code. See Erasure
Code Support for details.

Also note that Diskfile refers to backend object storage plug-in architecture. See Pluggable On-Disk
Back-end APIs for details.

2.4.1 Containers and Policies

Policies are implemented at the container level. There are many advantages to this approach, not the least
of which is how easy it makes life on applications that want to take advantage of them. It also ensures
that Storage Policies remain a core feature of Swift independent of the auth implementation. Policies
were not implemented at the account/auth layer because it would require changes to all auth systems in
use by Swift deployers. Each container has a new special immutable metadata element called the storage
policy index. Note that internally, Swift relies on policy indexes and not policy names. Policy names
exist for human readability and translation is managed in the proxy. When a container is created, one
new optional header is supported to specify the policy name. If no name is specified, the default policy
is used (and if no other policies defined, Policy-0 is considered the default). We will be covering the
difference between default and Policy-0 in the next section.

Policies are assigned when a container is created. Once a container has been assigned a policy, it cannot be
changed (unless it is deleted/recreated). The implications on data placement/movement for large datasets
would make this a task best left for applications to perform. Therefore, if a container has an existing
policy of, for example 3x replication, and one wanted to migrate that data to an Erasure Code policy, the
application would create another container specifying the other policy parameters and then simply move
the data from one container to the other. Policies apply on a per container basis allowing for minimal
application awareness; once a container has been created with a specific policy, all objects stored in it
will be done so in accordance with that policy. If a container with a specific name is deleted (requires
the container be empty) a new container may be created with the same name without any restriction on
storage policy enforced by the deleted container which previously shared the same name.

Containers have a many-to-one relationship with policies meaning that any number of containers can
share one policy. There is no limit to how many containers can use a specific policy.

20 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

The notion of associating a ring with a container introduces an interesting scenario: What would happen
if 2 containers of the same name were created with different Storage Policies on either side of a network
outage at the same time? Furthermore, what would happen if objects were placed in those containers,
a whole bunch of them, and then later the network outage was restored? Well, without special care it
would be a big problem as an application could end up using the wrong ring to try and find an object.
Luckily there is a solution for this problem, a daemon known as the Container Reconciler works tirelessly
to identify and rectify this potential scenario.

2.4.2 Container Reconciler

Because atomicity of container creation cannot be enforced in a distributed eventually consistent system,
object writes into the wrong storage policy must be eventually merged into the correct storage policy by
an asynchronous daemon. Recovery from object writes during a network partition which resulted in a
split brain container created with different storage policies are handled by the swift-container-reconciler
daemon.

The container reconciler works off a queue similar to the object-expirer. The queue is populated dur-
ing container-replication. It is never considered incorrect to enqueue an object to be evaluated by the
container-reconciler because if there is nothing wrong with the location of the object the reconciler will
simply dequeue it. The container-reconciler queue is an indexed log for the real location of an object for
which a discrepancy in the storage policy of the container was discovered.

To determine the correct storage policy of a container, it is necessary to update the status_changed_at field
in the container_stat table when a container changes status from deleted to re-created. This transaction
log allows the container-replicator to update the correct storage policy both when replicating a container
and handling REPLICATE requests.

Because each object write is a separate distributed transaction it is not possible to determine the cor-
rectness of the storage policy for each object write with respect to the entire transaction log at a given
container database. As such, container databases will always record the object write regardless of the
storage policy on a per object row basis. Object byte and count stats are tracked per storage policy in
each container and reconciled using normal object row merge semantics.

The object rows are ensured to be fully durable during replication using the normal container replication.
After the container replicator pushes its object rows to available primary nodes any misplaced object
rows are bulk loaded into containers based off the object timestamp under the .misplaced_objects
system account. The rows are initially written to a handoff container on the local node, and at the end of
the replication pass the .misplaced_objects containers are replicated to the correct primary nodes.

The container-reconciler processes the .misplaced_objects containers in descending order and reaps
its containers as the objects represented by the rows are successfully reconciled. The container-reconciler
will always validate the correct storage policy for enqueued objects using direct container HEAD requests
which are accelerated via caching.

Because failure of individual storage nodes in aggregate is assumed to be common at scale, the container-
reconciler will make forward progress with a simple quorum majority. During a combination of failures
and rebalances it is possible that a quorum could provide an incomplete record of the correct storage
policy - so an object write may have to be applied more than once. Because storage nodes and container
databases will not process writes with an X-Timestamp less than or equal to their existing record when
objects writes are re-applied their timestamp is slightly incremented. In order for this increment to be
applied transparently to the client a second vector of time has been added to Swift for internal use. See
Timestamp.

As the reconciler applies object writes to the correct storage policy it cleans up writes which no longer

2.4. Storage Policies 21

Swift Documentation, Release 2.30.2.dev8

apply to the incorrect storage policy and removes the rows from the .misplaced_objects containers.
After all rows have been successfully processed it sleeps and will periodically check for newly enqueued
rows to be discovered during container replication.

2.4.3 Default versus Policy-0

Storage Policies is a versatile feature intended to support both new and pre-existing clusters with the
same level of flexibility. For that reason, we introduce the Policy-0 concept which is not the same as
the default policy. As you will see when we begin to configure policies, each policy has a single name
and an arbitrary number of aliases (human friendly, configurable) as well as an index (or simply policy
number). Swift reserves index 0 to map to the object ring thats present in all installations (e.g., /etc/
swift/object.ring.gz). You can name this policy anything you like, and if no policies are defined
it will report itself as Policy-0, however you cannot change the index as there must always be a policy
with index 0.

Another important concept is the default policy which can be any policy in the cluster. The default policy
is the policy that is automatically chosen when a container creation request is sent without a storage
policy being specified. Configuring Policies describes how to set the default policy. The difference from
Policy-0 is subtle but extremely important. Policy-0 is what is used by Swift when accessing pre-
storage-policy containers which wont have a policy - in this case we would not use the default as it might
not have the same policy as legacy containers. When no other policies are defined, Swift will always
choose Policy-0 as the default.

In other words, default means create using this policy if nothing else is specified and Policy-0 means use
the legacy policy if a container doesnt have one which really means use object.ring.gz for lookups.

Note: With the Storage Policy based code, its not possible to create a container that doesnt have a policy.
If nothing is provided, Swift will still select the default and assign it to the container. For containers
created before Storage Policies were introduced, the legacy Policy-0 will be used.

2.4.4 Deprecating Policies

There will be times when a policy is no longer desired; however simply deleting the policy and associated
rings would be problematic for existing data. In order to ensure that resources are not orphaned in the
cluster (left on disk but no longer accessible) and to provide proper messaging to applications when
a policy needs to be retired, the notion of deprecation is used. Configuring Policies describes how to
deprecate a policy.

Swifts behavior with deprecated policies is as follows:
* The deprecated policy will not appear in /info

* PUT/GET/DELETE/POST/HEAD are still allowed on the pre-existing containers created with a
deprecated policy

* Clients will get an 400 Bad Request error when trying to create a new container using the depre-
cated policy

* Clients still have access to policy statistics via HEAD on pre-existing containers

22 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Note: A policy cannot be both the default and deprecated. If you deprecate the default policy, you must
specify a new default.

You can also use the deprecated feature to rollout new policies. If you want to test a new storage policy
before making it generally available you could deprecate the policy when you initially roll it the new
configuration and rings to all nodes. Being deprecated will render it innate and unable to be used. To test
it you will need to create a container with that storage policy; which will require a single proxy instance
(or a set of proxy-servers which are only internally accessible) that has been one-off configured with the
new policy NOT marked deprecated. Once the container has been created with the new storage policy
any client authorized to use that container will be able to add and access data stored in that container
in the new storage policy. When satisfied you can roll out a new swift.conf which does not mark the
policy as deprecated to all nodes.

2.4.5 Configuring Policies

Note: See Adding Storage Policies to an Existing SAIO for a step by step guide on adding a policy to
the SAIO setup.

It is important that the deployer have a solid understanding of the semantics for configuring policies.
Configuring a policy is a three-step process:

1. Edit your /etc/swift/swift.conf file to define your new policy.
2. Create the corresponding policy object ring file.

3. (Optional) Create policy-specific proxy-server configuration settings.

Defining a policy

Each policy is defined by a section in the /etc/swift/swift.conf file. The section name must be of
the form [storage-policy:<N>] where <N> is the policy index. Theres no reason other than readabil-
ity that policy indexes be sequential but the following rules are enforced:

* Ifapolicy with index 0 is not declared and no other policies are defined, Swift will create a default
policy with index 0.

* The policy index must be a non-negative integer.

* Policy indexes must be unique.

Warning: The index of a policy should never be changed once a policy has been created and used.
Changing a policy index may cause loss of access to data.

Each policy section contains the following options:
* name = <policy_name> (required)
— The primary name of the policy.

— Policy names are case insensitive.

2.4. Storage Policies 23

Swift Documentation, Release 2.30.2.dev8

e aliases

¢ default

Policy names must contain only letters, digits or a dash.

Policy names must be unique.

Policy names can be changed.

The name Policy-0 can only be used for the policy with index 0.

To avoid confusion with policy indexes it is strongly recommended that policy names
are not numbers (e.g. 1). However, for backwards compatibility, names that are numbers
are supported.

= <policy_name>[, <policy_name>, ...] (optional)
A comma-separated list of alternative names for the policy.
The default value is an empty list (i.e. no aliases).

All alias names must follow the rules for the name option.
Aliases can be added to and removed from the list.

Aliases can be useful to retain support for old primary names if the primary name is
changed.

= [true|false] (optional)
If true then this policy will be used when the client does not specify a policy.
The default value is false.

The default policy can be changed at any time, by setting default = true in the de-
sired policy section.

If no policy is declared as the default and no other policies are defined, the policy with
index O is set as the default;

Otherwise, exactly one policy must be declared default.
Deprecated policies cannot be declared the default.

See Default versus Policy-0 for more information.

» deprecated = [true]|false] (optional)

If true then new containers cannot be created using this policy.
The default value is false.

Any policy may be deprecated by adding the deprecated option to the desired policy
section. However, a deprecated policy may not also be declared the default. Therefore,
since there must always be a default policy, there must also always be at least one policy
which is not deprecated.

See Deprecating Policies for more information.

* policy_type = [replication|erasure_coding] (optional)

The option policy_type is used to distinguish between different policy types.
The default value is replication.

When defining an EC policy use the value erasure_coding.

e diskfile_module = <entry point> (optional)

24

Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

— The option diskfile_module is used to load an alternate backend object storage plug-
in architecture.

— The default value is egg: swift#replication. fsor egg:swift#erasure_coding.
fs depending on the policy type. The scheme and package name are optionals and
default to egg and swift.

The EC policy type has additional required options. See Using an Erasure Code Policy for details.

The following is an example of a properly configured swift.conf file. See Adding Storage Policies to
an Existing SAIO for full instructions on setting up an all-in-one with this example configuration.:

Creating a ring

Once swift.conf is configured for a new policy, a new ring must be created. The ring tools are not
policy name aware so its critical that the correct policy index be used when creating the new policys ring
file. Additional object rings are created using swift-ring-builder in the same manner as the legacy
ring except that -N is appended after the word object in the builder file name, where N matches the
policy index used in swift.conf. So, to create the ring for policy index 1:

Continue to use the same naming convention when using swift-ring-builder to add devices, rebal-
ance etc. This naming convention is also used in the pattern for per-policy storage node data directories.

Note: The same drives can indeed be used for multiple policies and the details of how thats managed on
disk will be covered in a later section, its important to understand the implications of such a configuration
before setting one up. Make sure its really what you want to do, in many cases it will be, but in others
maybe not.

2.4. Storage Policies 25

Swift Documentation, Release 2.30.2.dev8

Proxy server configuration (optional)

The Proxy Server configuration options related to read and write affinity may optionally be overridden
for individual storage policies. See Per policy configuration for more details.

2.4.6 Using Policies

Using policies is very simple - a policy is only specified when a container is initially created. There are
no other API changes. Creating a container can be done without any special policy information:

\

Which will result in a container created that is associated with the policy name gold assuming were using
the swift.conf example from above. It would use gold because it was specified as the default. Now, when
we put an object into this container, it will get placed on nodes that are part of the ring we created for
policy gold.

If we wanted to explicitly state that we wanted policy gold the command would simply need to include a
new header as shown below:

And thats it! The application does not need to specify the policy name ever again. There are some illegal
operations however:

* If an invalid (typo, non-existent) policy is specified: 400 Bad Request
* if you try to change the policy either via PUT or POST: 409 Conflict

If youd like to see how the storage in the cluster is being used, simply HEAD the account and youll see
not only the cumulative numbers, as before, but per policy statistics as well. In the example below theres
3 objects total with two of them in policy gold and one in policy silver:

\

and your results will include (some output removed for readability):

26 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

2.4.7 Under the Hood

Now that weve explained a little about what Policies are and how to configure/use them, lets explore how
Storage Policies fit in at the nuts-n-bolts level.

Parsing and Configuring

The module, Storage Policy, is responsible for parsing the swift.conf file, validating the input, and
creating a global collection of configured policies via class StoragePolicyCollection. This collec-
tion is made up of policies of class StoragePolicy. The collection class includes handy functions
for getting to a policy either by name or by index , getting info about the policies, etc. Theres also
one very important function, get_object_ring (). Object rings are members of the StoragePolicy
class and are actually not instantiated until the load_ring() method is called. Any caller anywhere in
the code base that needs to access an object ring must use the POLICIES global singleton to access the
get_object_ring() function and provide the policy index which will call load_ring() if needed;
however, when starting request handling services such as the Proxy Server rings are proactively loaded
to provide moderate protection against a mis-configuration resulting in a run time error. The global is
instantiated when Swift starts and provides a mechanism to patch policies for the test code.

Middleware

Middleware can take advantage of policies through the POLICIES global and by importing
get_container_info() to gain access to the policy index associated with the container in question.
From the index it can then use the POLICIES singleton to grab the right ring. For example, List End-
points is policy aware using the means just described. Another example is Recon which will report the
md5 sums for all of the rings.

Proxy Server

The Proxy Server modules role in Storage Policies is essentially to make sure the correct ring is used as
its member element. Before policies, the one object ring would be instantiated when the Application
class was instantiated and could be overridden by test code via init parameter. With policies, however,
there is no init parameter and the Application class instead depends on the POLICIES global singleton
to retrieve the ring which is instantiated the first time its needed. So, instead of an object ring member
of the Application class, there is an accessor function, get_object_ring(), that gets the ring from
POLICIES.

In general, when any module running on the proxy requires an object ring, it does so via first getting the
policy index from the cached container info. The exception is during container creation where it uses
the policy name from the request header to look up policy index from the POLICIES global. Once the
proxy has determined the policy index, it can use the get_object_ring () method described earlier to
gain access to the correct ring. It then has the responsibility of passing the index information, not the
policy name, on to the back-end servers via the header X -Backend-Storage-Policy-Index. Going
the other way, the proxy also strips the index out of headers that go back to clients, and makes sure they
only see the friendly policy names.

2.4. Storage Policies 27

Swift Documentation, Release 2.30.2.dev8

On Disk Storage

Policies each have their own directories on the back-end servers and are identified by their storage policy
indexes. Organizing the back-end directory structures by policy index helps keep track of things and also
allows for sharing of disks between policies which may or may not make sense depending on the needs
of the provider. More on this later, but for now be aware of the following directory naming convention:

* /objects maps to objects associated with Policy-0

* /objects-N maps to storage policy index #N

* /async_pending maps to async pending update for Policy-0

* /async_pending-N maps to async pending update for storage policy index #N

* /tmp maps to the DiskFile temporary directory for Policy-0

» /tmp-N maps to the DiskFile temporary directory for policy index #N

e /quarantined/objects maps to the quarantine directory for Policy-0

* /quarantined/objects-N maps to the quarantine directory for policy index #N

Note that these directory names are actually owned by the specific Diskfile implementation, the names
shown above are used by the default Diskfile.

Object Server

The Object Server is not involved with selecting the storage policy placement directly. However, because
of how back-end directory structures are setup for policies, as described earlier, the object server modules
do play arole. When the object server gets a Diskfile, it passes in the policy index and leaves the actual
directory naming/structure mechanisms to Diskfile. By passing in the index, the instance of Diskfile
being used will assure that data is properly located in the tree based on its policy.

For the same reason, the Object Updater also is policy aware. As previously described, different policies
use different async pending directories so the updater needs to know how to scan them appropriately.

The Object Replicator is policy aware in that, depending on the policy, it may have to do drastically
different things, or maybe not. For example, the difference in handling a replication job for 2x versus 3x
is trivial; however, the difference in handling replication between 3x and erasure code is most definitely
not. In fact, the term replication really isnt appropriate for some policies like erasure code; however, the
majority of the framework for collecting and processing jobs is common. Thus, those functions in the
replicator are leveraged for all policies and then there is policy specific code required for each policy,
added when the policy is defined if needed.

The ssync functionality is policy aware for the same reason. Some of the other modules may not obviously
be affected, but the back-end directory structure owned by Diskfile requires the policy index parameter.
Therefore ssync being policy aware really means passing the policy index along. See ssync_sender
and ssync_receiver for more information on ssync.

For Diskfile itself, being policy aware is all about managing the back-end structure using the provided
policy index. In other words, callers who get a Diskfile instance provide a policy index and Diskfiles
job is to keep data separated via this index (however it chooses) such that policies can share the same
media/nodes if desired. The included implementation of Diskfile lays out the directory structure de-
scribed earlier but thats owned within Diskfile; external modules have no visibility into that detail. A
common function is provided to map various directory names and/or strings based on their policy index.

28 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

For example Diskfile defines get_data_dir () which builds off of a generic get_policy_string()
to consistently build policy aware strings for various usage.

Container Server

The Container Server plays a very important role in Storage Policies, it is responsible for handling the
assignment of a policy to a container and the prevention of bad things like changing policies or picking
the wrong policy to use when nothing is specified (recall earlier discussion on Policy-0 versus default).

The Container Updater is policy aware, however its job is very simple, to pass the policy index along to
the Account Server via a request header.

The Container Backend is responsible for both altering existing DB schema as well as assuring new DBs
are created with a schema that supports storage policies. The on-demand migration of container schemas
allows Swift to upgrade without downtime (sqlites alter statements are fast regardless of row count). To
support rolling upgrades (and downgrades) the incompatible schema changes to the container_stat
table are made to a container_info table, and the container_stat table is replaced with a view that
includes an INSTEAD OF UPDATE trigger which makes it behave like the old table.

The policy index is stored here for use in reporting information about the container as well as managing
split-brain scenario induced discrepancies between containers and their storage policies. Furthermore,
during split-brain, containers must be prepared to track object updates from multiple policies so the
object table also includes a storage_policy_index column. Per-policy object counts and bytes are
updated in the policy_stat table using INSERT and DELETE triggers similar to the pre-policy triggers
that updated container_stat directly.

The Container Replicator daemon will pro-actively migrate legacy schemas as part of its normal consis-
tency checking process when it updates the reconciler_sync_point entry in the container_info
table. This ensures that read heavy containers which do not encounter any writes will still get migrated
to be fully compatible with the post-storage-policy queries without having to fall back and retry queries
with the legacy schema to service container read requests.

The Container Sync functionality only needs to be policy aware in that it accesses the object rings. There-
fore, it needs to pull the policy index out of the container information and use it to select the appropriate
object ring from the POLICIES global.

Account Server

The Account Servers role in Storage Policies is really limited to reporting. When a HEAD request is made
on an account (see example provided earlier), the account server is provided with the storage policy index
and builds the object_count and byte_count information for the client on a per policy basis.

The account servers are able to report per-storage-policy object and byte counts because of some policy
specific DB schema changes. A policy specific table, policy_stat, maintains information on a per
policy basis (one row per policy) in the same manner in which the account_stat table does. The
account_stat table still serves the same purpose and is not replaced by policy_stat, it holds the
total account stats whereas policy_stat just has the break downs. The backend is also responsible for
migrating pre-storage-policy accounts by altering the DB schema and populating the policy_stat table
for Policy-0 with current account_stat data at that point in time.

The per-storage-policy object and byte counts are not updated with each object PUT and DELETE
request, instead container updates to the account server are performed asynchronously by the
swift-container-updater.

2.4. Storage Policies 29

Swift Documentation, Release 2.30.2.dev8

Upgrading and Confirming Functionality

Upgrading to a version of Swift that has Storage Policy support is not difficult, in fact, the cluster admin-
istrator isnt required to make any special configuration changes to get going. Swift will automatically
begin using the existing object ring as both the default ring and the Policy-0 ring. Adding the declaration
of policy 0 is totally optional and in its absence, the name given to the implicit policy 0 will be Policy-0.
Lets say for testing purposes that you wanted to take an existing cluster that already has lots of data on
it and upgrade to Swift with Storage Policies. From there you want to go ahead and create a policy and
test a few things out. All you need to do is:

1. Upgrade all of your Swift nodes to a policy-aware version of Swift

2. Define your policies in /etc/swift/swift.conf

3. Create the corresponding object rings

4. Create containers and objects and confirm their placement is as expected

For a specific example that takes you through these steps, please see Adding Storage Policies to an Existing
SAIO

Note: If you downgrade from a Storage Policy enabled version of Swift to an older version that doesnt
support policies, you will not be able to access any data stored in policies other than the policy with index 0
but those objects WILL appear in container listings (possibly as duplicates if there was a network partition
and un-reconciled objects). It is EXTREMELY important that you perform any necessary integration
testing on the upgraded deployment before enabling an additional storage policy to ensure a consistent
API experience for your clients. DO NOT downgrade to a version of Swift that does not support storage
policies once you expose multiple storage policies.

2.5 The Account Reaper

The Account Reaper removes data from deleted accounts in the background.

An account is marked for deletion by a reseller issuing a DELETE request on the accounts storage URL.
This simply puts the value DELETED into the status column of the account_stat table in the account
database (and replicas), indicating the data for the account should be deleted later.

There is normally no set retention time and no undelete; it is assumed the reseller will implement such
features and only call DELETE on the account once it is truly desired the accounts data be removed.
However, in order to protect the Swift cluster accounts from an improper or mistaken delete request,
you can set a delay_reaping value in the [account-reaper] section of the account-server.conf to delay
the actual deletion of data. At this time, there is no utility to undelete an account; one would have to
update the account database replicas directly, setting the status column to an empty string and updating
the put_timestamp to be greater than the delete_timestamp. (On the TODO list is writing a utility to
perform this task, preferably through a REST call.)

The account reaper runs on each account server and scans the server occasionally for account databases
marked for deletion. It will only trigger on accounts that server is the primary node for, so that multiple
account servers arent all trying to do the same work at the same time. Using multiple servers to delete one
account might improve deletion speed, but requires coordination so they arent duplicating effort. Speed
really isnt as much of a concern with data deletion and large accounts arent deleted that often.

30 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

The deletion process for an account itself is pretty straightforward. For each container in the account,
each object is deleted and then the container is deleted. Any deletion requests that fail wont stop the
overall process, but will cause the overall process to fail eventually (for example, if an object delete times
out, the container wont be able to be deleted later and therefore the account wont be deleted either). The
overall process continues even on a failure so that it doesnt get hung up reclaiming cluster space because
of one troublesome spot. The account reaper will keep trying to delete an account until it eventually
becomes empty, at which point the database reclaim process within the db_replicator will eventually
remove the database files.

Sometimes a persistent error state can prevent some object or container from being deleted. If this hap-
pens, you will see a message such as Account <name> has not been reaped since <date> in the log. You
can control when this is logged with the reap_warn_after value in the [account-reaper] section of the
account-server.conf file. By default this is 30 days.

2.5.1 History

At first, a simple approach of deleting an account through completely external calls was considered as
it required no changes to the system. All data would simply be deleted in the same way the actual user
would, through the public REST API. However, the downside was that it would use proxy resources and
log everything when it didnt really need to. Also, it would likely need a dedicated server or two, just for
issuing the delete requests.

A completely bottom-up approach was also considered, where the object and container servers would
occasionally scan the data they held and check if the account was deleted, removing the data if so. The
upside was the speed of reclamation with no impact on the proxies or logging, but the downside was that
nearly 100% of the scanning would result in no action creating a lot of I/O load for no reason.

A more container server centric approach was also considered, where the account server would mark
all the containers for deletion and the container servers would delete the objects in each container and
then themselves. This has the benefit of still speedy reclamation for accounts with a lot of containers,
but has the downside of a pretty big load spike. The process could be slowed down to alleviate the load
spike possibility, but then the benefit of speedy reclamation is lost and whats left is just a more complex
process. Also, scanning all the containers for those marked for deletion when the majority wouldnt be
seemed wasteful. The db_replicator could do this work while performing its replication scan, but it would
have to spawn and track deletion processes which seemed needlessly complex.

In the end, an account server centric approach seemed best, as described above.

2.6 The Auth System

2.6.1 Overview

Swift supports a number of auth systems that share the following common characteristics:

* The authentication/authorization part can be an external system or a subsystem run within Swift
as WSGI middleware

* The user of Swift passes in an auth token with each request
» Swift validates each token with the external auth system or auth subsystem and caches the result

* The token does not change from request to request, but does expire

2.6. The Auth System 31

Swift Documentation, Release 2.30.2.dev8

The token can be passed into Swift using the X-Auth-Token or the X-Storage-Token header. Both have
the same format: just a simple string representing the token. Some auth systems use UUID tokens, some
an MD5 hash of something unique, some use something else but the salient point is that the token is a
string which can be sent as-is back to the auth system for validation.

Swift will make calls to the auth system, giving the auth token to be validated. For a valid token, the auth
system responds with an overall expiration time in seconds from now. To avoid the overhead in validating
the same token over and over again, Swift will cache the token for a configurable time, but no longer than
the expiration time.

The Swift project includes two auth systems:
o TempAuth
* Keystone Auth

It is also possible to write your own auth system as described in Extending Auth.

2.6.2 TempAuth

TempAuth is used primarily in Swifts functional test environment and can be used in other test environ-
ments (such as SAIO (Swift All In One)). It is not recommended to use TempAuth in a production system.
However, TempAuth is fully functional and can be used as a model to develop your own auth system.

TempAuth has the concept of admin and non-admin users within an account. Admin users can do any-
thing within the account. Non-admin users can only perform read operations. However, some privileged
metadata such as X-Container-Sync-Key is not accessible to non-admin users.

Users with the special group .reseller_admin can operate on any account. For an example usage
please see swift.common.middleware.tempauth. If a request is coming from a reseller the auth
system sets the request environ reseller_request to True. This can be used by other middlewares.

Other users may be granted the ability to perform operations on an account or container via ACLs. Tem-
pAuth supports two types of ACL:

¢ Per container ACLs based on the containers X-Container-Read and X-Container-Write meta-
data. See Container ACLs for more information.

e Per account ACLs based on the accounts X-Account-Access-Control metadata. For more in-
formation see Account ACLs.

TempAuth will now allow OPTIONS requests to go through without a token.

The TempAuth middleware is responsible for creating its own tokens. A user makes a request containing
their username and password and TempAuth responds with a token. This token is then used to perform
subsequent requests on the users account, containers and objects.

32 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

2.6.3 Keystone Auth

Swift is able to authenticate against OpenStack Keystone. In this environment, Keystone is responsible
for creating and validating tokens. The KeystoneAuth middleware is responsible for implementing the
auth system within Swift as described here.

The KeystoneAuth middleware supports per container based ACLs on the containers X-Container-Read
and X-Container-Write metadata. For more information see Container ACLs.

The account-level ACL is not supported by Keystone auth.

In order to use the keystoneauth middleware the auth_token middleware from KeystoneMiddleware
will need to be configured.

The authtoken middleware performs the authentication token validation and retrieves actual user au-
thentication information. It can be found in the KeystoneMiddleware distribution.

The KeystoneAuth middleware performs authorization and mapping the Keystone roles to Swifts ACLs.

Configuring Swift to use Keystone

Configuring Swift to use Keystone is relatively straightforward. The first step is to ensure that you have
the auth_token middleware installed. It can either be dropped in your python path or installed via the
KeystoneMiddleware package.

You need at first make sure you have a service endpoint of type object-store in Keystone pointing to
your Swift proxy. For example having this in your /etc/keystone/default_catalog.templates

catalog.RegionOne.object_store.name = Swift Service
catalog.RegionOne.object_store.publicURL = http://swiftproxy:8080/v1/AUTH_
~$(tenant_id)s

catalog.RegionOne.object_store.adminURL = http://swiftproxy:8080/
catalog.RegionOne.object_store.internalURL = http://swiftproxy:8080/v1/AUTH_
—$(tenant_id)s

On your Swift proxy server you will want to adjust your main pipeline and add auth_token and key-
stoneauth in your /etc/swift/proxy-server.conf like this

add the configuration for the authtoken middleware:

(continues on next page)

2.6. The Auth System 33

https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/keystonemiddleware/latest/
https://docs.openstack.org/keystonemiddleware/latest/
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/keystonemiddleware/latest/

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

The actual values for these variables will need to be set depending on your situation, but in short:

www_authenticate_uri should point to a Keystone service from which users may retrieve to-
kens. This value is used in the WWW-Authenticate header that auth_token sends with any denial
response.

auth_url points to the Keystone Admin service. This information is used by the middleware
to actually query Keystone about the validity of the authentication tokens. It is not necessary to
append any Keystone API version number to this URI.

The auth credentials (project_domain_id, user_domain_id, username, project_name,
password) will be used to retrieve an admin token. That token will be used to authorize user
tokens behind the scenes. These credentials must match the Keystone credentials for the Swift
service. The example values shown here assume a user named swift with admin role on a project
named service, both being in the Keystone domain with id default. Refer to the KeystoneMiddle-
ware documentation for other examples.

cache is set to swift.cache. This means that the middleware will get the Swift memcache from
the request environment.

include_service_catalog defaults to True if not set. This means that when validating a token,
the service catalog is retrieved and stored in the X-Service-Catalog header. Since Swift does
not use the X-Service-Catalog header, there is no point in getting the service catalog. We
recommend you set include_service_catalog to False.

Note:

The authtoken config variable delay_auth_decision must be set to True. The default is

False, but that breaks public access, StaticWeb, FormPost, TempURL, and authenticated capabilities
requests (using Discoverability).

and you can finally add the keystoneauth configuration. Here is a simple configuration:

Use an appropriate list of roles in operator_roles. For example, in some systems, the role _member_ or
Member is used to indicate that the user is allowed to operate on project resources.

34

Chapter 2. Overview and Concepts

https://docs.openstack.org/keystonemiddleware/latest/middlewarearchitecture.html#configuration
https://docs.openstack.org/keystonemiddleware/latest/middlewarearchitecture.html#configuration

Swift Documentation, Release 2.30.2.dev8

OpenStack Service Using Composite Tokens

Some OpenStack services such as Cinder and Glance may use a service account. In this mode, you
configure a separate account where the service stores project data that it manages. This account is not
used directly by the end-user. Instead, all access is done through the service.

To access the service account, the service must present two tokens: one from the end-user and another
from its own service user. Only when both tokens are present can the account be accessed. This section
describes how to set the configuration options to correctly control access to both the normal and service
accounts.

In this example, end users use the AUTH_ prefix in account names, whereas services use the SERVICE_
prefix:

The actual values for these variable will need to be set depending on your situation as follows:

* The first item in the reseller_prefix list must match Keystones endpoint (see /etc/keystone/
default_catalog.templates above). Normally this is AUTH.

* The second item in the reseller_prefix list is the prefix used by the OpenStack services(s). You
must configure this value (SERVICE in the example) with whatever the other OpenStack service(s)
use.

* Set the operator_roles option to contain a role or roles that end-users have on projects they use.

» Set the SERVICE_service_roles value to a role or roles that only the OpenStack service user has.
Do not use a role that is assigned to normal end users. In this example, the role service is used.
The service user is granted this role to a single project only. You do not need to make the service
user a member of every project.

This configuration works as follows:

* The end-user presents a user token to an OpenStack service. The service then makes a Swift request
to the account with the SERVICE prefix.

* The service forwards the original user token with the request. It also adds its own service token.

Swift validates both tokens. When validated, the user token gives the admin or swiftoperator
role(s). When validated, the service token gives the service role.

» Swift interprets the above configuration as follows:
— Did the user token provide one of the roles listed in operator_roles?

— Did the service token have the service role as described by the SERVICE_service_roles
options.

* If both conditions are met, the request is granted. Otherwise, Swift rejects the request.

In the above example, all services share the same account. You can separate each service into its own
account. For example, the following provides a dedicated account for each of the Glance and Cinder
services. In addition, you must assign the glance_service and cinder_service to the appropriate
service users:

2.6. The Auth System 35

Swift Documentation, Release 2.30.2.dev8

Access control using keystoneauth

By default the only users able to perform operations (e.g. create a container) on an account are those
having a Keystone role for the corresponding Keystone project that matches one of the roles specified in
the operator_roles option.

Users who have one of the operator_roles will be able to set container ACLs to grant other
users permission to read and/or write objects in specific containers, using X-Container-Read and
X-Container-Write headers respectively. In addition to the ACL formats described here, key-
stoneauth supports ACLs using the format:

where other_project_id is the UUID of a Keystone project and other_user_id is the UUID of a
Keystone user. This will allow the other user to access a container provided their token is scoped on
the other project. Both other_project_id and other_user_id may be replaced with the wildcard
character * which will match any project or user respectively.

Be sure to use Keystone UUIDs rather than names in container ACLs.

Note: For backwards compatibility, keystoneauth will by default grant container ACLs expressed as
other_project_name:other_user_name (i.e. using Keystone names rather than UUIDs) in the spe-
cial case when both the other project and the other user are in Keystones default domain and the project
being accessed is also in the default domain.

For further information see KeystoneAuth

Users with the Keystone role defined in reseller_admin_role (ResellerAdmin by default) can op-
erate on any account. The auth system sets the request environ reseller_request to True if a request is
coming from a user with this role. This can be used by other middlewares.

Troubleshooting tips for keystoneauth deployment

Some common mistakes can result in API requests failing when first deploying keystone with Swift:
* Incorrect configuration of the Swift endpoint in the Keystone service.

By default, keystoneauth expects the account part of a URL to have the form
AUTH_<keystone_project_id>. Sometimes the AUTH_ prefix is missed when configur-
ing Swift endpoints in Keystone, as described in the Install Guide. This is easily diagnosed by
inspecting the proxy-server log file for a failed request URL and checking that the URL includes
the AUTH_ prefix (or whatever reseller prefix may have been configured for keystoneauth):

36 Chapter 2. Overview and Concepts

http://docs.openstack.org/

Swift Documentation, Release 2.30.2.dev8

* Incorrect configuration of the authtoken middleware options in the Swift proxy server.

The authtoken middleware communicates with the Keystone service to validate tokens that
are presented with client requests. To do this authtoken must authenticate itself with Key-
stone using the credentials configured in the [filter:authtoken] section of /etc/swift/
proxy-server.conf. Errors in these credentials can result in authtoken failing to validate
tokens and may be revealed in the proxy server logs by a message such as:

Note: More detailed log messaging may be seen by setting the authtoken option log_level =
debug.

The authtoken configuration options may be checked by attempting to use them to communicate
directly with Keystone using an openstack command line. For example, given the authtoken
configuration sample shown in Configuring Swift to use Keystone, the following command should
return a service catalog:

If this openstack command fails then it is likely that there is a problem with the authtoken
configuration.

2.6. The Auth System 37

Swift Documentation, Release 2.30.2.dev8

2.6.4 Extending Auth

TempAuth is written as wsgi middleware, so implementing your own auth is as easy as writing new wsgi
middleware, and plugging it in to the proxy server.

See Auth Server and Middleware for detailed information on extending the auth system.

2.7 Access Control Lists (ACLs)

Normally to create, read and modify containers and objects, you must have the appropriate roles on the
project associated with the account, i.e., you must be the owner of the account. However, an owner can
grant access to other users by using an Access Control List (ACL).

There are two types of ACLs:

* Container ACLs. These are specified on a container and apply to that container only and the objects
in the container.

* Account ACLs. These are specified at the account level and apply to all containers and objects in
the account.

2.7.1 Container ACLs

Container ACLs are stored in the X-Container-Write and X-Container-Read metadata. The scope
of the ACL is limited to the container where the metadata is set and the objects in the container. In
addition:

* X-Container-Write grants the ability to perform PUT, POST and DELETE operations on ob-
jects within a container. It does not grant the ability to perform POST or DELETE operations on the
container itself. Some ACL elements also grant the ability to perform HEAD or GET operations
on the container.

* X-Container-Read grants the ability to perform GET and HEAD operations on objects within a
container. Some of the ACL elements also grant the ability to perform HEAD or GET operations
on the container itself. However, a container ACL does not allow access to privileged metadata
(such as X-Container-Sync-Key).

Container ACLs use the V1 ACL syntax which is a comma separated string of elements as shown in the
following example:

Spaces may occur between elements as shown in the following example:

However, these spaces are removed from the value stored in the X-Container-Write and
X-Container-Read metadata. In addition, the .r: string can be written as .referrer:, but is stored
as .r:.

While all auth systems use the same syntax, the meaning of some elements is different because of the
different concepts used by different auth systems as explained in the following sections:

e Common ACL Elements

38 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

* Keystone Auth ACL Elements
» TempAuth ACL Elements

Common ACL Elements
The following table describes elements of an ACL that are supported by both Keystone auth and

TempAuth. These elements should only be used with X-Container-Read (with the exception of .
rlistings, an error will occur if used with X-Container-Write):

Ele- Description
ment
Ik Any user has access to objects. No token is required in the request.

.r:<referréFhe referrer is granted access to objects. The referrer is identified by the Referer request
header in the request. No token is required.

xIi- This syntax (with - prepended to the referrer) is supported. However, it does not deny access
<referrersif another element (e.g., . r:*) grants access.

alist- | Any user can perform a HEAD or GET operation on the container provided the user also
ings has read access on objects (e.g., also has .r:* or .r:<referrer>. No token is required.

Keystone Auth ACL Elements

The following table describes elements of an ACL that are supported only by Keystone auth. Keystone
auth also supports the elements described in Common ACL Elements.

A token must be included in the request for any of these ACL elements to take effect.

Ele- Description
ment
<project- The specified user, provided a token scoped to the project is included in the request, is granted
id>:<useraccess. Access to the container is also granted when used in X-Container-Read.

id>
<project- Any user with a role in the specified Keystone project has access. A token scoped to the
id>:* | project must be included in the request. Access to the container is also granted when used
in X-Container-Read.

*:<user{ The specified user has access. A token for the user (scoped to any project) must be included
id> in the request. Access to the container is also granted when used in X-Container-Read.

* ok Any user has access. Access to the container is also granted when used in
X-Container-Read. The *: * element differs from the .r:* element because *: * requires
that a valid token is included in the request whereas .r:* does not require a token. In addi-
tion, .r:* does not grant access to the container listing.

<role_nameuser with the specified role name on the project within which the container is stored is
granted access. A user token scoped to the project must be included in the request. Access
to the container is also granted when used in X-Container-Read.

Note: Keystone project (tenant) or user names (i.e., <project-name>:<user-name>) must no longer
be used because with the introduction of domains in Keystone, names are not globally unique. You should
use user and project ids instead.

2.7. Access Control Lists (ACLSs) 39

Swift Documentation, Release 2.30.2.dev8

For backwards compatibility, ACLs using names will be granted by keystoneauth when it can be estab-
lished that the grantee project, the grantee user and the project being accessed are either not yet in a
domain (e.g. the X-Auth-Token has been obtained via the Keystone V2 API) or are all in the default
domain to which legacy accounts would have been migrated.

TempAuth ACL Elements

The following table describes elements of an ACL that are supported only by TempAuth. TempAuth auth
also supports the elements described in Common ACL Elements.

Ele- Description

ment

<user- The named user is granted access. The wildcard (*) character is not supported. A token
name> from the user must be included in the request.

2.7.2 Container ACL Examples

Container ACLs may be set by including X-Container-Write and/or X-Container-Read headers
with a PUT or a POST request to the container URL. The following examples use the swift command
line client which support these headers being set via its --write-acl and --read-acl options.

Example: Public Container

The following allows anybody to list objects in the www container and download objects. The users do
not need to include a token in their request. This ACL is commonly referred to as making the container
public. It is useful when used with StaticWeb:

Example: Shared Writable Container

The following allows anybody to upload or download objects. However, to download an object, the exact
name of the object must be known since users cannot list the objects in the container. The users must
include a Keystone token in the upload request. However, it does not need to be scoped to the project
associated with the container:

40 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Example: Sharing a Container with Project Members

The following allows any member of the 77b8£82565f14814bece56e50c4c240f project to up-
load and download objects or to list the contents of the www container. A token scoped to the
77b8£82565f14814bece56e50c4c240f project must be included in the request:

Example: Sharing a Container with Users having a specified Role

The following allows any user that has been assigned the my_read_access_role on the project within
which the www container is stored to download objects or to list the contents of the www container. A user
token scoped to the project must be included in the download or list request:

Example: Allowing a Referrer Domain to Download Objects

The following allows any request from the example.com domain to access an object in the container:

However, the request from the user must contain the appropriate Referer header as shown in this example
request:

curl -i $publicURL/www/document --head -H "Referer: http://www.example.com/
—~index.html"

Note: The Referer header is included in requests by many browsers. However, since it is easy to create
a request with any desired value in the Referer header, the referrer ACL has very weak security.

Example: Sharing a Container with Another User

Sharing a Container with another user requires the knowledge of few parameters regarding the users.
The sharing user must know:

e the OpenStack user id of the other user
The sharing user must communicate to the other user:

* the name of the shared container

* the OS_STORAGE_URL

Usually the OS_STORAGE_URL is not exposed directly to the user because the swift client by default
automatically construct the 0S_STORAGE_URL based on the User credential.

We assume that in the current directory there are the two client environment script for the two users
sharing.openrc and other.openrc.

2.7. Access Control Lists (ACLs) 41

Swift Documentation, Release 2.30.2.dev8

The sharing.openrc should be similar to the following:

sharing

password
projectName
https://identityHost:portNumber/v2.0

tenantIDString
regionName
/path/to/cacertFile

The other.openrc should be similar to the following:

other

otherPassword
otherProjectName
https://identityHost:portNumber/v2.0

tenantIDString
regionName
/path/to/cacertFile

For more information see using the OpenStack RC file

First we figure out the other user id:

. other.openrc
OUID="$(openstack user show --format json "${OS_USERNAME}" | jq -r .id)"

or alternatively:

Then we figure out the storage url of the sharing user:

Running as the sharing user create a shared container named shared in read-only mode with the other
user using the proper acl:

Running as the sharing user create and upload a test file:

Running as the other user list the files in the shared container:

42 Chapter 2. Overview and Concepts

https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html

Swift Documentation, Release 2.30.2.dev8

Running as the other user download the shared container in the /tmp directory:

2.7.3 Account ACLs

Note: Account ACLs are not currently supported by Keystone auth

The X-Account-Access-Control header is used to specify account-level ACLs in a format specific
to the auth system. These headers are visible and settable only by account owners (those for whom
swift_owner is true). Behavior of account ACLs is auth-system-dependent. In the case of TempAuth,
if an authenticated user has membership in a group which is listed in the ACL, then the user is allowed
the access level of that ACL.

Account ACLs use the V2 ACL syntax, which is a JSON dictionary with keys named admin, read-write,
and read-only. (Note the case sensitivity.) An example value for the X-Account-Access-Control
header looks like this, where a, b and c are user names:

Keys may be absent (as shown in above example).

The recommended way to generate ACL strings is as follows:

Using the format_acl() method will ensure that JSON is encoded as ASCII (using e.g.
ul234 for Unicode). = While its permissible to manually send curl commands containing
X-Account-Access-Control headers, you should exercise caution when doing so, due to the potential
for human error.

Within the JSON dictionary stored in X-Account-Access-Control, the keys have the following mean-
ings:

2.7. Access Control Lists (ACLSs) 43

Swift Documentation, Release 2.30.2.dev8

Ac- | Description
cess
Leve
read-| These identities can read everything (except privileged headers) in the account. Specifically, a
only | user with read-only account access can get a list of containers in the account, list the contents
of any container, retrieve any object, and see the (non-privileged) headers of the account, any
container, or any object.

read-| These identities can read or write (or create) any container. A user with read-write account
write| access can create new containers, set any unprivileged container headers, overwrite objects,
delete containers, etc. A read-write user can NOT set account headers (or perform any
PUT/POST/DELETE requests on the account).

ad- | These identities have swift_owner privileges. A user with admin account access can do any-
min | thing the account owner can, including setting account headers and any privileged headers and
thus granting read-only, read-write, or admin access to other users.

For more details, see swift.common.middleware.tempauth. For details on the ACL format, see
swift.common.middleware.acl.

2.8 Replication

Because each replica in Swift functions independently, and clients generally require only a simple ma-
jority of nodes responding to consider an operation successful, transient failures like network partitions
can quickly cause replicas to diverge. These differences are eventually reconciled by asynchronous,
peer-to-peer replicator processes. The replicator processes traverse their local filesystems, concurrently
performing operations in a manner that balances load across physical disks.

Replication uses a push model, with records and files generally only being copied from local to remote
replicas. This is important because data on the node may not belong there (as in the case of handoffs and
ring changes), and a replicator cant know what data exists elsewhere in the cluster that it should pull in.
Its the duty of any node that contains data to ensure that data gets to where it belongs. Replica placement
is handled by the ring.

Every deleted record or file in the system is marked by a tombstone, so that deletions can be replicated
alongside creations. The replication process cleans up tombstones after a time period known as the
consistency window. The consistency window encompasses replication duration and how long transient
failure can remove a node from the cluster. Tombstone cleanup must be tied to replication to reach replica
convergence.

If a replicator detects that a remote drive has failed, the replicator uses the get_more_nodes interface
for the ring to choose an alternate node with which to synchronize. The replicator can maintain desired
levels of replication in the face of disk failures, though some replicas may not be in an immediately usable
location. Note that the replicator doesnt maintain desired levels of replication when other failures, such
as entire node failures, occur because most failure are transient.

Replication is an area of active development, and likely rife with potential improvements to speed and
correctness.

There are two major classes of replicator - the db replicator, which replicates accounts and containers,
and the object replicator, which replicates object data.

44 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

2.8.1 DB Replication

The first step performed by db replication is a low-cost hash comparison to determine whether two repli-
cas already match. Under normal operation, this check is able to verify that most databases in the system
are already synchronized very quickly. If the hashes differ, the replicator brings the databases in sync by
sharing records added since the last sync point.

This sync point is a high water mark noting the last record at which two databases were known to be
in sync, and is stored in each database as a tuple of the remote database id and record id. Database ids
are unique amongst all replicas of the database, and record ids are monotonically increasing integers.
After all new records have been pushed to the remote database, the entire sync table of the local database
is pushed, so the remote database can guarantee that it is in sync with everything with which the local
database has previously synchronized.

If a replica is found to be missing entirely, the whole local database file is transmitted to the peer using
rsync(1) and vested with a new unique id.

In practice, DB replication can process hundreds of databases per concurrency setting per second (up
to the number of available CPUs or disks) and is bound by the number of DB transactions that must be
performed.

2.8.2 Object Replication

The initial implementation of object replication simply performed an rsync to push data from a local
partition to all remote servers it was expected to exist on. While this performed adequately at small
scale, replication times skyrocketed once directory structures could no longer be held in RAM. We now
use a modification of this scheme in which a hash of the contents for each suffix directory is saved to a
per-partition hashes file. The hash for a suffix directory is invalidated when the contents of that suffix
directory are modified.

The object replication process reads in these hash files, calculating any invalidated hashes. It then trans-
mits the hashes to each remote server that should hold the partition, and only suffix directories with
differing hashes on the remote server are rsynced. After pushing files to the remote server, the replica-
tion process notifies it to recalculate hashes for the rsynced suffix directories.

Performance of object replication is generally bound by the number of uncached directories it has to
traverse, usually as a result of invalidated suffix directory hashes. Using write volume and partition
counts from our running systems, it was designed so that around 2% of the hash space on a normal node
will be invalidated per day, which has experimentally given us acceptable replication speeds.

Work continues with a new ssync method where rsync is not used at all and instead all-Swift code is used
to transfer the objects. At first, this ssync will just strive to emulate the rsync behavior. Once deemed
stable it will open the way for future improvements in replication since well be able to easily add code in
the replication path instead of trying to alter the rsync code base and distributing such modifications.

One of the first improvements planned is an index.db that will replace the hashes.pkl. This will allow
quicker updates to that data as well as more streamlined queries. Quite likely well implement a better
scheme than the current one hashes.pkl uses (hash-trees, that sort of thing).

Another improvement planned all along the way is separating the local disk structure from the protocol
path structure. This separation will allow ring resizing at some point, or at least ring-doubling.

Note that for objects being stored with an Erasure Code policy, the replicator daemon is not involved.
Instead, the reconstructor is used by Erasure Code policies and is analogous to the replicator for Repli-

2.8. Replication 45

Swift Documentation, Release 2.30.2.dev8

cation type policies. See Erasure Code Support for complete information on both Erasure Code support
as well as the reconstructor.

2.8.3 Hashes.pkli

The hashes.pkl file is a key element for both replication and reconstruction (for Erasure Coding). Both
daemons use this file to determine if any kind of action is required between nodes that are participating in
the durability scheme. The file itself is a pickled dictionary with slightly different formats depending on
whether the policy is Replication or Erasure Code. In either case, however, the same basic information
is provided between the nodes. The dictionary contains a dictionary where the key is a suffix directory
name and the value is the MD5 hash of the directory listing for that suffix. In this manner, the daemon
can quickly identify differences between local and remote suffix directories on a per partition basis as the
scope of any one hashes.pkl file is a partition directory.

For Erasure Code policies, there is a little more information required. An objects hash directory may
contain multiple fragments of a single object in the event that the node is acting as a handoff or perhaps if
arebalance is underway. Each fragment of an object is stored with a fragment index, so the hashes.pkl for
an Erasure Code partition will still be a dictionary keyed on the suffix directory name, however, the value
is another dictionary keyed on the fragment index with subsequent MD5 hashes for each one as values.
Some files within an object hash directory dont require a fragment index so None is used to represent
those. Below are examples of what these dictionaries might look like.

Replication hashes.pkl:

Erasure Code hashes.pkl:

2.8.4 Dedicated replication network

Swift has support for using dedicated network for replication traffic. For more information see Overview
of dedicated replication network.

2.9 Rate Limiting

Rate limiting in Swift is implemented as a pluggable middleware. Rate limiting is performed on requests
that result in database writes to the account and container sqlite dbs. It uses memcached and is dependent
on the proxy servers having highly synchronized time. The rate limits are limited by the accuracy of the
proxy server clocks.

46 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

2.9.1 Configuration

All configuration is optional. If no account or container limits are provided there will be no rate limiting.
Configuration available:

Option De- | Description
fault
clock_accuracy000| Represents how accurate the proxy servers system clocks are with each other.
1000 means that all the proxies clock are accurate to each other within 1 mil-
lisecond. No ratelimit should be higher than the clock accuracy.
max_sleep_tiné) secdps will immediately return a 498 response if the necessary sleep time ever
exceeds the given max_sleep_time_seconds.

log_sleep_timé) sedoiidsallow visibility into rate limiting set this value > 0 and all sleeps greater than
the number will be logged.

rate_buffer_seSonds Number of seconds the rate counter can drop and be allowed to catch up (at a
faster than listed rate). A larger number will result in larger spikes in rate but
better average accuracy.

ac- 0 If set, will limit PUT and DELETE requests to /account_name/container_name.
count_ratelimit Number is in requests per second.

con- When set with container_ratelimit_x = r: for containers of size x, limit requests
tainer_ratelimit_sizge per second to r. Will limit PUT, DELETE, and POST requests to /a/c/o.

con- When set with container_listing_ratelimit_x = r: for containers of size x, limit

tainer_listing_ratelimistiigerequests per second to r. Will limit GET requests to /a/c.

The container rate limits are linearly interpolated from the values given. A sample container rate limiting
could be:

container_ratelimit_100 = 100
container_ratelimit_200 = 50
container_ratelimit_500 = 20

This would result in

Container Size | Rate Limit
0-99 No limiting
100 100

150 75

500 20

1000 20

2.9.2 Account Specific Ratelimiting

The above ratelimiting is to prevent the many writes to a single container bottleneck from causing a
problem. There could also be a problem where a single account is just using too much of the clusters
resources. In this case, the container ratelimits may not help because the customer could be doing thou-
sands of reqgs/sec to distributed containers each getting a small fraction of the total so those limits would
never trigger. If a system administrator notices this, he/she can set the X-Account-Sysmeta-Global-Write-
Ratelimit on an account and that will limit the total number of write requests (PUT, POST, DELETE,

2.9. Rate Limiting 47

Swift Documentation, Release 2.30.2.dev8

COPY) that account can do for the whole account. This limit will be in addition to the applicable ac-
count/container limits from above. This header will be hidden from the user, because of the gatekeeper
middleware, and can only be set using a direct client to the account nodes. It accepts a float value and
will only limit requests if the value is > 0.

2.9.3 Black/White-listing

To blacklist or whitelist an account set:
X-Account-Sysmeta-Global-Write-Ratelimit: BLACKLIST
or

X-Account-Sysmeta-Global-Write-Ratelimit: WHITELIST

in the account headers.

2.10 Large Object Support

2.10.1 Overview

Swift has a limit on the size of a single uploaded object; by default this is SGB. However, the download
size of a single object is virtually unlimited with the concept of segmentation. Segments of the larger
object are uploaded and a special manifest file is created that, when downloaded, sends all the segments
concatenated as a single object. This also offers much greater upload speed with the possibility of parallel
uploads of the segments.

2.10.2 Dynamic Large Objects

Middleware that will provide Dynamic Large Object (DLO) support.

Using swift

The quickest way to try out this feature is use the swift Swift Tool included with the python-swiftclient
library. You can use the -S option to specify the segment size to use when splitting a large file. For
example:

This would split the large_file into 1G segments and begin uploading those segments in parallel. Once
all the segments have been uploaded, swift will then create the manifest file so the segments can be
downloaded as one.

So now, the following swift command would download the entire large object:

swift command uses a strict convention for its segmented object support. In the above ex-
ample it will upload all the segments into a second container named test_container_segments.
These segments will have names like large_file/1290206778.25/21474836480/00000000,
large_file/1290206778.25/21474836480/00000001, etc.

48 Chapter 2. Overview and Concepts

http://github.com/openstack/python-swiftclient

Swift Documentation, Release 2.30.2.dev8

The main benefit for using a separate container is that the main container listings will not
be polluted with all the segment names. The reason for using the segment name format of
<name>/<timestamp>/<size>/<segment> is so that an upload of a new file with the same name wont
overwrite the contents of the first until the last moment when the manifest file is updated.

swift will manage these segment files for you, deleting old segments on deletes and overwrites, etc.
You can override this behavior with the --1eave-segments option if desired; this is useful if you want
to have multiple versions of the same large object available.

Direct API

You can also work with the segments and manifests directly with HTTP requests instead of having swift
do that for you. You can just upload the segments like you would any other object and the manifest is just
a zero-byte (not enforced) file with an extra X-Object-Manifest header.

All the object segments need to be in the same container, have a common object name prefix, and sort
in the order in which they should be concatenated. Object names are sorted lexicographically as UTF-8
byte strings. They dont have to be in the same container as the manifest file will be, which is useful to
keep container listings clean as explained above with swift.

The manifest file is simply a zero-byte (not enforced) file with the extra X-Object-Manifest:
<container>/<prefix> header, where <container> is the container the object segments are in and
<prefix> is the common prefix for all the segments.

It is best to upload all the segments first and then create or update the manifest. In this way, the full
object wont be available for downloading until the upload is complete. Also, you can upload a new set
of segments to a second location and then update the manifest to point to this new location. During
the upload of the new segments, the original manifest will still be available to download the first set of
segments.

Note: When updating a manifest object using a POST request, a X-Object-Manifest header must be
included for the object to continue to behave as a manifest object.

The manifest file should have no content. However, this is not enforced. If the manifest path itself
conforms to container/prefix specified in X-Object-Manifest, and if manifest has some content/data
in it, it would also be considered as segment and manifests content will be part of the concatenated GET
response. The order of concatenation follows the usual DLO logic which is - the order of concatenation
adheres to order returned when segment names are sorted.

Heres an example using curl with tiny 1-byte segments:

o (continues on next page)

2.10. Large Object Support 49

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

class swift.common.middleware.dlo.GetContext (dlo, logger)

Bases: swift.common.wsgi.WSGIContext

get_or_head_response (req, x_object_manifest)

Parameters
e req users request
» x_object_manifest asunquoted, native string

handle_request (req, start_response)

Take a GET or HEAD request, and if it is for a dynamic large object manifest, return an
appropriate response.

Otherwise, simply pass it through.

2.10.3 Static Large Objects

Middleware that will provide Static Large Object (SLO) support.

This feature is very similar to Dynamic Large Object (DLO) support in that it allows the user to upload
many objects concurrently and afterwards download them as a single object. It is different in that it does
not rely on eventually consistent container listings to do so. Instead, a user defined manifest of the object
segments is used.

Uploading the Manifest

After the user has uploaded the objects to be concatenated, a manifest is uploaded. The request must be
a PUT with the query parameter:

?multipart-manifest=put

The body of this request will be an ordered list of segment descriptions in JSON format. The data to be
supplied for each segment is either:

Key Description

path the path to the segment object (not including account) /container/object_name

etag (optional) the ETag given back when the segment object was PUT

size_bytey (optional) the size of the complete segment object in bytes

range (optional) the (inclusive) range within the object to use as a segment. If omitted, the entire
object is used

50 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Key | Description
data | base64-encoded data to be returned

Note: At least one object-backed segment must be included. If youd like to create a manifest consisting
purely of data segments, consider uploading a normal object instead.

The format of the list will be:

The number of object-backed segments is limited to max_manifest_segments (configurable in proxy-
server.conf, default 1000). Each segment must be at least 1 byte. On upload, the middleware will head
every object-backed segment passed in to verify:

1. the segment exists (i.e. the HEAD was successful);

2. the segment meets minimum size requirements;

3. if the user provided a non-null etag, the etag matches;

4. if the user provided a non-null size_bytes, the size_bytes matches; and
5

. if the user provided a range, it is a singular, syntactically correct range that is satisfiable given the
size of the object referenced.

For inlined data segments, the middleware verifies each is valid, non-empty base64-encoded binary data.
Note that data segments do not count against max_manifest_segments.

Note that the etag and size_bytes keys are optional; if omitted, the verification is not performed. If
any of the objects fail to verify (not found, size/etag mismatch, below minimum size, invalid range) then
the user will receive a 4xx error response. If everything does match, the user will receive a 2xx response
and the SLO object is ready for downloading.

Note that large manifests may take a long time to verify; historically, clients would need to use a long
read timeout for the connection to give Swift enough time to send a final 201 Created or 400 Bad
Request response. Now, clients should use the query parameters:

?multipart-manifest=put&heartbeat=on

to request that Swift send an immediate 202 Accepted response and periodic whitespace to keep the
connection alive. A final response code will appear in the body. The format of the response body defaults
to text/plain but can be either json or xml depending on the Accept header. An example body is as
follows:

(continues on next page)

2.10. Large Object Support 51

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

Or, as a json response:

Behind the scenes, on success, a JSON manifest generated from the user input is sent to object servers
with an extra X-Static-Large-Object: True header and a modified Content-Type. The items in
this manifest will include the etag and size_bytes for each segment, regardless of whether the client
specified them for verification. The parameter swift_bytes=$total_size will be appended to the
existing Content-Type, where $total_size is the sum of all the included segments size_bytes.
This extra parameter will be hidden from the user.

Manifest files can reference objects in separate containers, which will improve concurrent upload speed.
Objects can be referenced by multiple manifests. The segments of a SLO manifest can even be other SLO
manifests. Treat them as any other object i.e., use the Etag and Content-Length given on the PUT of
the sub-SLO in the manifest to the parent SLO.

While uploading a manifest, a user can send Etag for verification. It needs to be mdS of the segments
etags, if there is no range specified. For example, if the manifest to be uploaded looks like this:

The Etag of the above manifest would be md5 of etagoftheobjectsegmentl and
etagoftheobjectsegment2. This could be computed in the following way:

If a manifest to be uploaded with a segment range looks like this:

While computing the Etag of the above manifest, internally each segments etag will be taken in the form
of etagvalue:rangevalue;. Hence the Etag of the above manifest would be:

52 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

For the purposes of Etag computations, inlined data segments are considered to have an etag of the md5
of the raw data (i.e., not base64-encoded).

Range Specification

Users now have the ability to specify ranges for SLO segments. Users can include an optional range
field in segment descriptions to specify which bytes from the underlying object should be used for the
segment data. Only one range may be specified per segment.

Note: The etag and size_bytes fields still describe the backing object as a whole.

If a user uploads this manifest:

The segment will consist of the first 1048576 bytes of /con/obj_seg_1, followed by bytes 513 through
1550000 (inclusive) of /con/obj_seg_2, and finally bytes 2095104 through 2097152 (i.e., the last 2048
bytes) of /con/obj_seg_1.

Note: The minimum sized range is 1 byte. This is the same as the minimum segment size.

Inline Data Specification

When uploading a manifest, users can include data segments that should be included along with objects.
The data in these segments must be base64-encoded binary data and will be included in the etag of the
resulting large object exactly as if that data had been uploaded and referenced as separate objects.

Note: This feature is primarily aimed at reducing the need for storing many tiny objects, and as such
any supplied data must fit within the maximum manifest size (default is 8MiB). This maximum size can
be configured via max_manifest_size in proxy-server.conf.

2.10. Large Object Support 53

Swift Documentation, Release 2.30.2.dev8

Retrieving a Large Object

A GET request to the manifest object will return the concatenation of the objects from the manifest much
like DLO. If any of the segments from the manifest are not found or their Etag/Content-Length have
changed since upload, the connection will drop. In this case a 409 Conflict will be logged in the proxy
logs and the user will receive incomplete results. Note that this will be enforced regardless of whether
the user performed per-segment validation during upload.

The headers from this GET or HEAD request will return the metadata attached to the manifest object itself
with some exceptions:

Header Value

Content-Length the total size of the SLO (the sum of the sizes of the segments in the manifest)
X-Static-Large- the string True

Object

Etag the etag of the SLO (generated the same way as DLO)

A GET request with the query parameter:

?multipart-manifest=get

will return a transformed version of the original manifest, containing additional fields and different key
names. For example, the first manifest in the example above would look like this:

As you can see, some of the fields are renamed compared to the put request: path is name, etag is hash,
size_bytes is bytes. The range field remains the same (if present).

A GET request with the query parameters:

?multipart-manifest=get&format=raw

will return the contents of the original manifest as it was sent by the client. The main purpose for both
calls is solely debugging.

When the manifest object is uploaded you are more or less guaranteed that every segment in the manifest
exists and matched the specifications. However, there is nothing that prevents the user from breaking the
SLO download by deleting/replacing a segment referenced in the manifest. It is left to the user to use
caution in handling the segments.

54 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Deleting a Large Object

A DELETE request will just delete the manifest object itself. The segment data referenced by the manifest
will remain unchanged.

A DELETE with a query parameter:

?multipart-manifest=delete

will delete all the segments referenced in the manifest and then the manifest itself. The failure response
will be similar to the bulk delete middleware.

A DELETE with the query parameters:

?multipart-manifest=delete&async=yes

will schedule all the segments referenced in the manifest to be deleted asynchronously and then delete
the manifest itself. Note that segments will continue to appear in listings and be counted for quotas until
they are cleaned up by the object-expirer. This option is only available when all segments are in the same
container and none of them are nested SLOs.

Modifying a Large Object

PUT and POST requests will work as expected; PUTs will just overwrite the manifest object for example.

Container Listings

In a container listing the size listed for SLO manifest objects will be the total_size of the concatenated
segments in the manifest. The overall X-Container-Bytes-Used for the container (and subsequently
for the account) will not reflect total_size of the manifest but the actual size of the JSON data stored.
The reason for this somewhat confusing discrepancy is we want the container listing to reflect the size of
the manifest object when it is downloaded. We do not, however, want to count the bytes-used twice (for
both the manifest and the segments its referring to) in the container and account metadata which can be
used for stats and billing purposes.

class swift.common.middleware.slo.SloGetContext (slo)

Bases: swift.common.wsgi.WSGIContext

convert_segment_listing(resp_headers, resp_iter)

Converts the manifest data to match with the format that was put in through ?multipart-
manifest=put

Parameters
» resp_headers response headers
» resp_iter aresponse iterable

handle_slo_get_or_head(req, start_response)

Takes a request and a start_response callable and does the normal WSGI thing with them.
Returns an iterator suitable for sending up the WSGI chain.

Parameters

2.10. Large Object Support 55

Swift Documentation, Release 2.30.2.dev8

* req Request object; is a GET or HEAD request aimed at what may (or may
not) be a static large object manifest.

* start_response WSGI start_response callable

class swift.common.middleware.slo.StaticLargeObject (app, conf,
max_manifest_segments=1000,
max_manifest_size=8388608,
vield_frequency=10,
allow_async_delete=False)

Bases: object
StaticLargeObject Middleware
See above for a full description.
The proxy logs created for any subrequests made will have swift.source set to SLO.
Parameters
e app The next WSGI filter or app in the paste.deploy chain.
» conf The configuration dict for the middleware.

* max_manifest_segments The maximum number of segments allowed in
newly-created static large objects.

* max_manifest_size The maximum size (in bytes) of newly-created static-
large-object manifests.

* yield_frequency If the client included heartbeat=on in the query param-
eters when creating a new static large object, the period of time to wait between
sending whitespace to keep the connection alive.

get_segments_to_delete_iter(req)

A generator function to be used to delete all the segments and sub-segments referenced in a
manifest.

Parameters req a Request with an SLO manifest in path
Raises
» HTTPPreconditionFailed on invalid UTFS in request path

» HTTPBadRequest on too many buffered sub segments and on invalid SLO
manifest path

get_slo_segments (obj_name, req)

Performs a Request and returns the SLO manifests segments.
Parameters
* obj_name the name of the object being deleted, as /container/object
e req the base Request
Raises

* HTTPServerError on unable to load obj_name or on unable to load the
SLO manifest data.

» HTTPBadRequest on not an SLO manifest

56 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

» HTTPNotFound on SLO manifest not found
Returns SLO manifests segments

handle_multipart_delete(req)

Will delete all the segments in the SLO manifest and then, if successful, will delete the man-
ifest file.

Parameters req a Request with an obj in path
Returns swob.Response whose app_iter set to Bulk.handle_delete_iter

handle_multipart_get_or_head(req, start_response)
Handles the GET or HEAD of a SLO manifest.

The response body (only on GET, of course) will consist of the concatenation of the segments.
Parameters
* req a Request with a path referencing an object
* start_response WSGI start_response callable
Raises HttpException on errors

handle_multipart_put (req, start_response)

Will handle the PUT of a SLO manifest. Heads every object in manifest to check if is valid
and if so will save a manifest generated from the user input. Uses WSGIContext to call self
and start_response and returns a WSGI iterator.

Parameters

* req a Request with an obj in path

» start_response WSGI start_response callable
Raises HttpException on errors

swift.common.middleware.slo.parse_and_validate_input (req_body, req_path)

Given a request body, parses it and returns a list of dictionaries.

The output structure is nearly the same as the input structure, but it is not an exact copy. Given a
valid object-backed input dictionary d_in, its corresponding output dictionary d_out will be as
follows:

* d_out[etag] == d_in[etag]
* d_out[path] == d_in[path]
* d_in[size_bytes] can be a string (12) or an integer (12), but d_out[size_bytes] is an integer.

* (optional) d_in[range] is a string of the form M-N, M-, or -N, where M and N are non-negative
integers. d_out[range] is the corresponding swob.Range object. If d_in does not have a key
range, neither will d_out.

Inlined data dictionaries will have any extraneous padding stripped.

Raises HTTPException on parse errors or semantic errors (e.g. bogus JSON structure,
syntactically invalid ranges)

Returns a list of dictionaries on success

2.10. Large Object Support 57

Swift Documentation, Release 2.30.2.dev8

2.10.4 Direct API

SLO support centers around the user generated manifest file. After the user has uploaded the segments
into their account a manifest file needs to be built and uploaded. All object segments, must be at least 1
byte in size. Please see the SLO docs for Static Large Objects further details.

2.10.5 Additional Notes

e With a GET or HEAD of a manifest file, the X-Object-Manifest: <container>/<prefix>
header will be returned with the concatenated object so you can tell where its getting its segments
from.

* When updating a manifest object using a POST request, a X-Object-Manifest header must be
included for the object to continue to behave as a manifest object.

* The responses Content-Length for a GET or HEAD on the manifest file will be the sum of all the
segments in the <container>/<prefix> listing, dynamically. So, uploading additional segments
after the manifest is created will cause the concatenated object to be that much larger; theres no
need to recreate the manifest file.

* The responses Content-Type for a GET or HEAD on the manifest will be the same as the
Content-Type set during the PUT request that created the manifest. You can easily change the
Content-Type by reissuing the PUT.

* The responses ETag for a GET or HEAD on the manifest file will be the MD5 sum of the concatenated
string of ETags for each of the segments in the manifest (for DLO, from the listing <container>/
<prefix>). Usually in Swift the ETag is the MD5 sum of the contents of the object, and that
holds true for each segment independently. But its not meaningful to generate such an ETag for
the manifest itself so this method was chosen to at least offer change detection.

Note: If you are using the container sync feature you will need to ensure both your manifest file and
your segment files are synced if they happen to be in different containers.

2.10.6 History

Dynamic large object support has gone through various iterations before settling on this implementation.

The primary factor driving the limitation of object size in Swift is maintaining balance among the parti-
tions of the ring. To maintain an even dispersion of disk usage throughout the cluster the obvious storage
pattern was to simply split larger objects into smaller segments, which could then be glued together
during a read.

Before the introduction of large object support some applications were already splitting their uploads
into segments and re-assembling them on the client side after retrieving the individual pieces. This
design allowed the client to support backup and archiving of large data sets, but was also frequently
employed to improve performance or reduce errors due to network interruption. The major disadvantage
of this method is that knowledge of the original partitioning scheme is required to properly reassemble
the object, which is not practical for some use cases, such as CDN origination.

In order to eliminate any barrier to entry for clients wanting to store objects larger than SGB, initially we
also prototyped fully transparent support for large object uploads. A fully transparent implementation
would support a larger max size by automatically splitting objects into segments during upload within

58 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

the proxy without any changes to the client API. All segments were completely hidden from the client
APL

This solution introduced a number of challenging failure conditions into the cluster, wouldnt provide the
client with any option to do parallel uploads, and had no basis for a resume feature. The transparent
implementation was deemed just too complex for the benefit.

The current user manifest design was chosen in order to provide a transparent download of large objects
to the client and still provide the uploading client a clean API to support segmented uploads.

To meet an many use cases as possible Swift supports two types of large object manifests. Dynamic and
static large object manifests both support the same idea of allowing the user to upload many segments to
be later downloaded as a single file.

Dynamic large objects rely on a container listing to provide the manifest. This has the advantage of
allowing the user to add/removes segments from the manifest at any time. It has the disadvantage of
relying on eventually consistent container listings. All three copies of the container dbs must be updated
for a complete list to be guaranteed. Also, all segments must be in a single container, which can limit
concurrent upload speed.

Static large objects rely on a user provided manifest file. A user can upload objects into multiple con-
tainers and then reference those objects (segments) in a self generated manifest file. Future GETs to that
file will download the concatenation of the specified segments. This has the advantage of being able to
immediately download the complete object once the manifest has been successfully PUT. Being able to
upload segments into separate containers also improves concurrent upload speed. It has the disadvantage
that the manifest is finalized once PUT. Any changes to it means it has to be replaced.

Between these two methods the user has great flexibility in how (s)he chooses to upload and retrieve
large objects to Swift. Swift does not, however, stop the user from harming themselves. In both cases
the segments are deletable by the user at any time. If a segment was deleted by mistake, a dynamic large
object, having no way of knowing it was ever there, would happily ignore the deleted file and the user
will get an incomplete file. A static large object would, when failing to retrieve the object specified in
the manifest, drop the connection and the user would receive partial results.

2.11 Global Clusters

2.11.1 Overview

Swifts default configuration is currently designed to work in a single region, where a region is defined
as a group of machines with high-bandwidth, low-latency links between them. However, configuration
options exist that make running a performant multi-region Swift cluster possible.

For the rest of this section, we will assume a two-region Swift cluster: region 1 in San Francisco (SF),
and region 2 in New York (NY). Each region shall contain within it 3 zones, numbered 1, 2, and 3, for a
total of 6 zones.

2.11. Global Clusters 59

Swift Documentation, Release 2.30.2.dev8

2.11.2 Configuring Global Clusters

Note: The proxy-server configuration options described below can be given generic settings in the
[app:proxy-server] configuration section and/or given specific settings for individual policies using
Per policy configuration.

read_affinity

This setting, combined with sorting_method setting, makes the proxy server prefer local backend servers
for GET and HEAD requests over non-local ones. For example, it is preferable for an SF proxy server to
service object GET requests by talking to SF object servers, as the client will receive lower latency and
higher throughput.

By default, Swift randomly chooses one of the three replicas to give to the client, thereby spreading the
load evenly. In the case of a geographically-distributed cluster, the administrator is likely to prioritize
keeping traffic local over even distribution of results. This is where the read_affinity setting comes in.

Example:

This will make the proxy attempt to service GET and HEAD requests from backends in region 1 before
contacting any backends in region 2. However, if no region 1 backends are available (due to replica
placement, failed hardware, or other reasons), then the proxy will fall back to backend servers in other
regions.

Example:

This will make the proxy attempt to service GET and HEAD requests from backends in region 1 zone 1,
then backends in region 1, then any other backends. If a proxy is physically close to a particular zone or
zones, this can provide bandwidth savings. For example, if a zone corresponds to servers in a particular
rack, and the proxy server is in that same rack, then setting read_affinity to prefer reads from within the
rack will result in less traffic between the top-of-rack switches.

The read_affinity setting may contain any number of region/zone specifiers; the priority number (after
the equals sign) determines the ordering in which backend servers will be contacted. A lower number
means higher priority.

Note that read_affinity only affects the ordering of primary nodes (see ring docs for definition of primary
node), not the ordering of handoff nodes.

60 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

write_affinity

This setting makes the proxy server prefer local backend servers for object PUT requests over non-local
ones. For example, it may be preferable for an SF proxy server to service object PUT requests by talking
to SF object servers, as the client will receive lower latency and higher throughput. However, if this
setting is used, note that a NY proxy server handling a GET request for an object that was PUT using
write affinity may have to fetch it across the WAN link, as the object wont immediately have any replicas
in NY. However, replication will move the objects replicas to their proper homes in both SF and NY.

One potential issue with write_affinity is, end user may get 404 error when deleting objects before repli-
cation. The write_affinity_handoff_delete_count setting is used together with write_affinity in order to
solve that issue. With its default configuration, Swift will calculate the proper number of handoff nodes
to send requests to.

Note that only object PUT/DELETE requests are affected by the write_affinity setting; POST, GET,
HEAD, OPTIONS, and account/container PUT requests are not affected.

This setting lets you trade data distribution for throughput. If write_affinity is enabled, then object repli-
cas will initially be stored all within a particular region or zone, thereby decreasing the quality of the data
distribution, but the replicas will be distributed over fast WAN links, giving higher throughput to clients.
Note that the replicators will eventually move objects to their proper, well-distributed homes.

The write_affinity setting is useful only when you dont typically read objects immediately after writing
them. For example, consider a workload of mainly backups: if you have a bunch of machines in NY that
periodically write backups to Swift, then odds are that you dont then immediately read those backups in
SF. If your workload doesnt look like that, then you probably shouldnt use write_affinity.

The write_affinity_node_count setting is only useful in conjunction with write_affinity; it governs how
many local object servers will be tried before falling back to non-local ones.

Example:

Assuming 3 replicas, this configuration will make object PUTs try storing the objects replicas on up to
6 disks (2 * replicas) in region 1 (r1). Proxy server tries to find 3 devices for storing the object. While
a device is unavailable, it queries the ring for the 4th device and so on until 6th device. If the 6th disk
is still unavailable, the last replica will be sent to other region. It doesnt mean therell have 6 replicas in
region 1.

You should be aware that, if you have data coming into SF faster than your replicators are transferring it
to N, then your clusters data distribution will get worse and worse over time as objects pile up in SF. If
this happens, it is recommended to disable write_affinity and simply let object PUTs traverse the WAN
link, as that will naturally limit the object growth rate to what your WAN link can handle.

2.11. Global Clusters 61

Swift Documentation, Release 2.30.2.dev8

2.12 Container to Container Synchronization

2.12.1 Overview

Swift has a feature where all the contents of a container can be mirrored to another container through
background synchronization. Swift cluster operators configure their cluster to allow/accept sync requests
to/from other clusters, and the user specifies where to sync their container to along with a secret synchro-
nization key.

Note: If you are using the Large Objects feature and syncing to another cluster then you will need to
ensure that manifest files and segment files are synced. If segment files are in a different container than
their manifest then both the manifests container and the segments container must be synced. The target
container for synced segment files must always have the same name as their source container in order for
them to be resolved by synced manifests.

Be aware that manifest files may be synced before segment files even if they are in the same container
and were created after the segment files.

In the case of Static Large Objects, a GET request for a manifest whose segments have yet to be completely
synced will fail with none or only part of the large object content being returned.

In the case of Dynamic Large Objects, a GET request for a manifest whose segments have yet to be
completely synced will either fail or return unexpected (and most likely incorrect) content.

Note: If you are using encryption middleware in the cluster from which objects are being synced, then
you should follow the instructions for Container sync configuration to be compatible with encryption.

Note: If you are using symlink middleware in the cluster from which objects are being synced, then you
should follow the instructions for Container sync configuration to be compatible with symlinks.

Be aware that symlinks may be synced before their targets even if they are in the same container and were
created after the target objects. In such cases, a GET for the symlink will fail with a 404 Not Found
error. If the target has been overwritten, a GET may produce an older version (for dynamic links) or a
409 Conflict error (for static links).

2.12.2 Configuring Container Sync

Create a container-sync-realms. conf file specifying the allowable clusters and their information:

(continues on next page)

62 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

Each section name is the name of a sync realm. A sync realm is a set of clusters that have agreed to allow
container syncing with each other. Realm names will be considered case insensitive.

key is the overall cluster-to-cluster key used in combination with the external users key that they set on
their containers X-Container-Sync-Key metadata header values. These keys will be used to sign each
request the container sync daemon makes and used to validate each incoming container sync request.

key?2 is optional and is an additional key incoming requests will be checked against. This is so you can
rotate keys if you wish; you move the existing key to key2 and make a new key value.

Any values in the realm section whose names begin with cluster_ will indicate the name and endpoint
of a cluster and will be used by external users in their containers X-Container-Sync-To metadata
header values with the format //realm_name/cluster_name/account_name/container_name.
Realm and cluster names are considered case insensitive.

The endpoint is what the container sync daemon will use when sending out requests to that cluster. Keep
in mind this endpoint must be reachable by all container servers, since that is where the container sync
daemon runs. Note that the endpoint ends with /v1/ and that the container sync daemon will then add
the account/container/obj name after that.

Distribute this container-sync-realms. conf file to all your proxy servers and container servers.

You also need to add the container_sync middleware to your proxy pipeline. It needs to be after any
memcache middleware and before any auth middleware. The [filter:container_sync] section only
needs the use item. For example:

The container sync daemon will use an internal client to sync objects. Even if you dont configure the
internal client, the container sync daemon will work with default configuration. The default configuration
is the same as internal-client.conf-sample. If you want to configure the internal client, please
update internal_client_conf_pathincontainer-server.conf. The configuration file at the path
will be used for the internal client.

2.12.3 Old-Style: Configuring a Clusters Allowable Sync Hosts

This section is for the old-style of using container sync. See the previous section, Configuring Container
Sync, for the new-style.

With the old-style, the Swift cluster operator must allow synchronization with a set of hosts before the
user can enable container synchronization. First, the backend container server needs to be given this list
of hosts in the container-server. conf file:

2.12. Container to Container Synchronization 63

Swift Documentation, Release 2.30.2.dev8

2.12.4 Logging Container Sync

Currently, log processing is the only way to track sync progress, problems, and even just general activity
for container synchronization. In that light, you may wish to set the above log_ options to direct the
container-sync logs to a different file for easier monitoring. Additionally, it should be noted there is no
way for an end user to monitor sync progress or detect problems other than HEADing both containers
and comparing the overall information.

2.12.5 Container Sync Statistics
Container Sync INFO level logs contain activity metrics and accounting information for insightful track-
ing. Currently two different statistics are collected:

About once an hour or so, accumulated statistics of all operations performed by Container Sync are
reported to the log file with the following format:

time last report time

sync number of containers with sync turned on that were successfully synced

delete number of successful DELETE object requests to the target cluster

put number of successful PUT object request to the target cluster

skip number of containers whose sync has been turned off, but are not yet cleared from the sync store
fail number of containers with failure (due to exception, timeout or other reason)

For each container synced, per container statistics are reported with the following format:

—

(continues on next page)

64 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

|

container account/container statistics are for

start report start time

end report end time

puts number of successful PUT object requests to the target container

posts N/A (0)

deletes number of successful DELETE object requests to the target container

bytes number of bytes sent over the network to the target container

pointl progress indication - the containers x_container_sync_point1l

point2 progress indication - the containers x_container_sync_point2

total number of objects processed at the container

It is possible that more than one server syncs a container, therefore log files from all servers need to be

evaluated

2.12.6 Using the swift tool to set up synchronized containers

Note: The swift tool is available from the python-swiftclient library.

Note: You must be the account admin on the account to set synchronization targets and keys.

You simply tell each container where to sync to and give it a secret synchronization key. First, lets get
the account details for our two cluster accounts:

$ swift -A

StorageURL:
Auth Token:
Account:
Containers:
Objects:
Bytes:

$ swift -A

StorageURL:
Auth Token:
Account:
Containers:
Objects:
Bytes:

http://clusterl/auth/v1.0 -U test:tester -K testing stat -v
http://clusterl/v1/AUTH_208d1854-e475-4500-b315-81de645d060e
AUTH_tkd5359e46£f9e419fa193dbd367£3cd19
AUTH_208d1854-e475-4500-b315-81de645d060e
0
0
0

http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 stat -v
http://cluster2/v1/AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c
AUTH_tk816alaaf403c49adb92ecfca2f88e430
AUTH_33cdcad8-09fb-4940-90da-0£f00cbf21c7c
0
0
0

Now, lets make our first container and tell it to synchronize to a second well make next:

2.12. Container to Container Synchronization 65

http://github.com/openstack/python-swiftclient

Swift Documentation, Release 2.30.2.dev8

$ swift -A http://clusterl/auth/v1.0 -U test:tester -K testing post \

-t '//realm_name/clustername2/AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c/
—,container2' \

-k 'secret' containerl

The -t indicates the cluster to sync to, which is the realm name of the section from
container-sync-realms.conf, followed by the cluster name from that section (without the cluster_
prefix), followed by the account and container names we want to sync to. The -k specifies the se-
cret key the two containers will share for synchronization; this is the user key, the cluster key in
container-sync-realms.conf will also be used behind the scenes.

Now, well do something similar for the second clusters container:

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 post \
-t '//realm_name/clusternamel/AUTH_208d1854-e475-4500-b315-81de645d060e/
—scontainerl' \
-k 'secret' container2

Thats it. Now we can upload a bunch of stuff to the first container and watch as it gets synchronized over
to the second:

$ swift -A http://clusterl/auth/v1.0 -U test:tester -K testing \
upload containerl .

photo002.png

photo004.png

photo001.png

photo003.png

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 \
list container?2

[Nothing there yet, so we wait a bit...]

Note: If youre an operator running SA/O (Swift All In One) and just testing, each time you configure
a container for synchronization and place objects in the source container you will need to ensure that
container-sync runs before attempting to retrieve objects from the target container. That is, you need to
run:

Now expect to see objects copied from the first container to the second:

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 \
list container?

photo001.png

photo002.png

photo003.png

photo004.png

You can also set up a chain of synced containers if you want more than two. Youd point 1 -> 2, then 2 ->

66 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

3, and finally 3 -> 1 for three containers. Theyd all need to share the same secret synchronization key.

2.12.7 Using curl (or other tools) instead

So whats swift doing behind the scenes? Nothing overly complicated. It translates the -t <value>
option into an X-Container-Sync-To: <value> header and the -k <value> option into an
X-Container-Sync-Key: <value> header.

For instance, when we created the first container above and told it to synchronize to the second, we could
have used this curl command:

$ curl -i -X POST -H 'X-Auth-Token: AUTH_tkd5359e46ff9e419fa193dbd367£f3cd19' \
-H 'X-Container-Sync-To: //realm_name/clustername2/AUTH_33cdcad8-09fb-4940-

- 90da-0f00cbf21c7c/container2' \
-H 'X-Container-Sync-Key: secret' \
'http://clusterl/v1/AUTH_208d1854-e475-4500-b315-81de645d060e/containerl’

HTTP/1.1 204 No Content

Content-Length: 0

Content-Type: text/plain; charset=UTF-8

Date: Thu, 24 Feb 2011 22:39:14 GMT

2.12.8 Old-Style: Using the swift tool to set up synchronized containers

Note: The swift tool is available from the python-swiftclient library.

Note: You must be the account admin on the account to set synchronization targets and keys.

This is for the old-style of container syncing using allowed_sync_hosts.

You simply tell each container where to sync to and give it a secret synchronization key. First, lets get
the account details for our two cluster accounts:

$ swift -A http://clusterl/auth/v1.0 -U test:tester -K testing stat -v
StorageURL: http://clusterl/v1/AUTH_208d1854-e475-4500-b315-81de645d060e
Auth Token: AUTH_tkd5359e46ff9e419fa193dbd367£3cd19
Account: AUTH_208d1854-e475-4500-b315-81de645d060e
Containers: 0
Objects: ©
Bytes: @

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 stat -v
StorageURL: http://cluster2/v1/AUTH_33cdcad8-09fb-4940-90da-0f00chbf21c7c
Auth Token: AUTH_tk8l6alaaf403c49adb92ecfca2f88e430
Account: AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c
Containers: 0
Objects: O
Bytes: 0

2.12. Container to Container Synchronization 67

http://github.com/openstack/python-swiftclient

Swift Documentation, Release 2.30.2.dev8

Now, lets make our first container and tell it to synchronize to a second well make next:

$ swift -A http://clusterl/auth/v1.0 -U test:tester -K testing post \
-t 'http://cluster2/v1/AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c/container?2
<\

-k 'secret' containerl

The -t indicates the URL to sync to, which is the StorageURL from cluster2 we retrieved above plus the
container name. The -k specifies the secret key the two containers will share for synchronization. Now,
well do something similar for the second clusters container:

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 post \
-t 'http://clusterl/v1/AUTH_208d1854-e475-4500-b315-81de645d060e/containerl
<"\

-k 'secret' container?2

Thats it. Now we can upload a bunch of stuff to the first container and watch as it gets synchronized over
to the second:

$ swift -A http://clusterl/auth/v1.0 -U test:tester -K testing \
upload containerl .

photo002.png

photo004.png

photo001.png

photo003.png

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 \
list container2

[Nothing there yet, so we wait a bit...]
[If you're an operator running SAIO and just testing, you may need to
run 'swift-init container-sync once' to perform a sync scan.]

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 \
list container2

photo001.png

photo002.png

photo003.png

photo004.png

You can also set up a chain of synced containers if you want more than two. Youd point 1 -> 2, then 2 ->
3, and finally 3 -> 1 for three containers. Theyd all need to share the same secret synchronization key.

68 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

2.12.9 Old-Style: Using curl (or other tools) instead

This is for the old-style of container syncing using allowed_sync_hosts.

So whats swift doing behind the scenes? Nothing overly complicated. It translates the -t <value>
option into an X-Container-Sync-To: <value> header and the -k <value> option into an
X-Container-Sync-Key: <value> header.

For instance, when we created the first container above and told it to synchronize to the second, we could
have used this curl command:

$ curl -i -X POST -H 'X-Auth-Token: AUTH_tkd5359e46£ff9e419fa193dbd367£f3cd19' \
-H 'X-Container-Sync-To: http://cluster2/v1/AUTH_33cdcad8-09fb-4940-90da-

—0f00cbf21c7c/container2’ \
-H 'X-Container-Sync-Key: secret' \
'http://clusterl/v1/AUTH_208d1854-e475-4500-b315-81de645d060e/containerl’

HTTP/1.1 204 No Content

Content-Length: 0

Content-Type: text/plain; charset=UTF-8

Date: Thu, 24 Feb 2011 22:39:14 GMT

2.12.10 Whats going on behind the scenes, in the cluster?

Container ring devices have a directory called containers, where container databases reside. In
addition to containers, each container ring device also has a directory called sync-containers.
sync-containers holds symlinks to container databases that were configured for container sync using
x-container-sync-to and x-container-sync-key metadata keys.

The swift-container-sync process does the job of sending updates to the remote container. This is done
by scanning sync-containers for container databases. For each container db found, newer rows since
the last sync will trigger PUTs or DELETE:S to the other container.

sync-containers is maintained as follows: Whenever the container-server processes a PUT or a POST
request that carries x-container-sync-to and x-container-sync-key metadata keys the server
creates a symlink to the container database in sync-containers. Whenever the container server deletes
a synced container, the appropriate symlink is deleted from sync-containers.

In addition to the container-server, the container-replicator process does the job of identifying containers
that should be synchronized. This is done by scanning the local devices for container databases and
checking for x-container-sync-to and x-container-sync-key metadata values. If they exist then
a symlink to the container database is created in a sync-containers sub-directory on the same device.

Similarly, when the container sync metadata keys are deleted, the container server and container-
replicator would take care of deleting the symlinks from sync-containers.

Note: The swift-container-sync process runs on each container server in the cluster and talks to the proxy
servers (or load balancers) in the remote cluster. Therefore, the container servers must be permitted to
initiate outbound connections to the remote proxy servers (or load balancers).

The actual syncing is slightly more complicated to make use of the three (or number-of-replicas) main
nodes for a container without each trying to do the exact same work but also without missing work if one
node happens to be down.

2.12. Container to Container Synchronization 69

Swift Documentation, Release 2.30.2.dev8

Two sync points are kept in each container database. When syncing a container, the container-sync
process figures out which replica of the container it has. In a standard 3-replica scenario, the process will
have either replica number 0, 1, or 2. This is used to figure out which rows belong to this sync process
and which ones dont.

An example may help. Assume a replica count of 3 and database row IDs are 1..6. Also, assume that
container-sync is running on this container for the first time, hence SP1 = SP2 = -1.

First, the container-sync process looks for rows with id between SP1 and SP2. Since this is the first run,
SP1 = SP2 = -1, and there arent any such rows.

Second, the container-sync process looks for rows with id greater than SP1, and syncs those rows which
it owns. Ownership is based on the hash of the object name, so its not always guaranteed to be exactly
one out of every three rows, but it usually gets close. For the sake of example, lets say that this process
ends up owning rows 2 and 5.

Once its finished trying to sync those rows, it updates SP1 to be the biggest row-id that its seen, which is
6 in this example.

While all that was going on, clients uploaded new objects into the container, creating new rows in the
database.

On the next run, the container-sync starts off looking at rows with ids between SP1 and SP2. This time,
there are a bunch of them. The sync process try to sync all of them. If it succeeds, it will set SP2 to equal
SP1. If it fails, it will set SP2 to the failed object and will continue to try all other objects till SP1, setting
SP2 to the first object that failed.

Under normal circumstances, the container-sync processes will have already taken care of synchronizing
all rows, between SP1 and SP2, resulting in a set of quick checks. However, if one of the sync processes
failed for some reason, then this is a vital fallback to make sure all the objects in the container get syn-
chronized. Without this seemingly-redundant work, any container-sync failure results in unsynchronized

70 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

objects. Note that the container sync will persistently retry to sync any faulty object until success, while
logging each failure.

Once its done with the fallback rows, and assuming no faults occurred, SP2 is advanced to SP1.

Then, rows with row ID greater than SP1 are synchronized (provided this container-sync process is re-
sponsible for them), and SP1 is moved up to the greatest row ID seen.

2.13 Expiring Object Support

The swift-object-expirer offers scheduled deletion of objects. The Swift client would use the
X-Delete-At or X-Delete-After headers during an object PUT or POST and the cluster would au-
tomatically quit serving that object at the specified time and would shortly thereafter remove the object
from the system.

The X-Delete-At header takes a Unix Epoch timestamp, in integer form; for example: 1317070737
represents Mon Sep 26 20:58:57 2011 UTC.

The X-Delete-After header takes a positive integer number of seconds. The proxy server that receives
the request will convert this header into an X-Delete-At header using the request timestamp plus the
value given.

If both the X-Delete-At and X-Delete-After headers are sent with a request then the
X-Delete-After header will take precedence.

As expiring objects are added to the system, the object servers will record the expirations in a hidden
.expiring_objects account for the swift-object-expirer to handle later.

Usually, just one instance of the swift-object-expirer daemon needs to run for a cluster. This isnt
exactly automatic failover high availability, but if this daemon doesnt run for a few hours it should not
be any real issue. The expired-but-not-yet-deleted objects will still 404 Not Found if someone tries to
GET or HEAD them and theyll just be deleted a bit later when the daemon is restarted.

By default, the swift-object-expirer daemon will run with a concurrency of 1. Increase this value
to get more concurrency. A concurrency of 1 may not be enough to delete expiring objects in a timely
fashion for a particular Swift cluster.

It is possible to run multiple daemons to do different parts of the work if a single process with a concur-
rency of more than 1 is not enough (see the sample config file for details).

To run the swift-object-expirer as multiple processes, set processes to the number of processes
(either in the config file or on the command line). Then run one process for each part. Use process
to specify the part of the work to be done by a process using the command line or the config. So, for

2.13. Expiring Object Support 7

Swift Documentation, Release 2.30.2.dev8

example, if youd like to run three processes, set processes to 3 and run three processes with process
set to 0, 1, and 2 for the three processes. If multiple processes are used, its necessary to run one for each
part of the work or that part of the work will not be done.

By default the daemon looks for two different config files. When launching, the process searches for the
[object-expirer] section in the

/etc/swift/object-server.conf config. If the section or the config is missing it will then look for
and use the /etc/swift/object-expirer.conf config. The latter config file is considered deprecated
and is searched for to aid in cluster upgrades.

2.13.1 Upgrading impact: General Task Queue vs Legacy Queue

The expirer daemon will be moving to a new general task-queue based design that will divide the work
across all object servers, as such only expirers defined in the object-server config will be able to use
the new system. The parameters in both files are identical except for a new option in the object-server
[object-expirer] section, dequeue_from_legacy which when set to True will tell the expirer that
in addition to using the new task queueing system to also check the legacy (soon to be deprecated) queue.

Note: The new task-queue system has not been completed yet. So an expirers with
dequeue_from_legacy set to False will currently do nothing.

By default dequeue_from_legacy will be False, it is necessary to be set to True explicitly while
migrating from the old expiring queue.

Any expirer using the old config /etc/swift/object-expirer.conf will not use the new general
task queue. Itll ignore the dequeue_£from_legacy and will only check the legacy queue. Meaning itll
run as a legacy expirer.

Why is this important? If you are currently running object-expirers on nodes that are not object storage
nodes, then for the time being they will still work but only by dequeuing from the old queue. When
the new general task queue is introduced, expirers will be required to run on the object servers so that
any new objects added can be removed. If youre in this situation, you can safely setup the new expirer
section in the object-server. conf to deal with the new queue and leave the legacy expirers running
elsewhere.

However, if your old expirers are running on the object-servers, the most common topology, then you
would add the new section to all object servers, to deal the new queue. In order to maintain the same
number of expirers checking the legacy queue, pick the same number of nodes as you previously had and
turn on dequeue_from_legacy on those nodes only. Also note on these nodes youd need to keep the
legacy process and processes options to maintain the concurrency level for the legacy queue.

Note: Be careful not to enable dequeue_from_legacy on too many expirers as all legacy tasks are
stored in a single hidden account and the same hidden containers. On a large cluster one may inadvertently
overload the acccount/container servers handling the legacy expirer queue.

Here is a quick sample of the object-expirer section required in the object-server.conf:

(continues on next page)

72 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

log_level = INFO
log_address = /dev/log

300

If this true, expirer execute tasks in legacy expirer task queue

processes can only be used in conjunction with ‘dequeue_from_legacy’.

So this option is ignored if dequeue_from_legacy=false.

processes is how many parts to divide the legacy work into, one part per
process that will be doing the work

processes set 0 means that a single legacy process will be doing all the.
—work

processes can also be specified on the command line and will override the
config value

processes = 0

HOH W R W

process can only be used in conjunction with ‘dequeue_from_legacy’.

So this option is ignored if dequeue_from_legacy=false.

process is which of the parts a particular legacy process will work on
process can also be specified on the command line and will override the.

—config

value

process is '"zero based", if you want to use 3 processes, you should run
processes with process set to 0, 1, and 2

process = 0

300

H*

request_tries is the number of times the expirer's internal client will
attempt any given request in the event of failure. The default is 3.
request_tries = 3

concurrency is the level of concurrency to use to do the work, this value
must be set to at least 1
concurrency = 1

H*

The expirer will re-attempt expiring if the source object is not available
up to reclaim_age seconds before it gives up and deletes the entry in the
queue.

reclaim_age = 604800

H R W% R

And for completeness, here is a quick sample of the legacy object-expirer.conf file:

swift_dir = /etc/swift
user = swift
You can specify default log routing here if you want:

(continues on next page)

2.13. Expiring Object Support 73

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

Note: When running legacy expirers, the daemon needs to run on a machine with access to all the
backend servers in the cluster, but does not need proxy server or public access. The daemon will use its
own internal proxy code instance to access the backend servers.

2.14 CORS

CORS is a mechanism to allow code running in a browser (Javascript for example) make requests to a
domain other than the one from where it originated.

Swift supports CORS requests to containers and objects.

CORS metadata is held on the container only. The values given apply to the container itself and all objects

within it.

The supported headers are,

Metadata

Use

X-Container-Meta-Access-
Control-Allow-Origin

Origins to be allowed to make Cross Origin Requests, space sep-
arated.

X-Container-Meta-Access-
Control-Max-Age

Max age for the Origin to hold the preflight results.

X-Container-Meta-Access-
Control-Expose-Headers

Headers exposed to the user agent (e.g. browser) in the actual
request response. Space separated.

In addition the values set in container metadata, some cluster-wide values may also be configured using
the strict_cors_mode, cors_allow_origin and cors_expose_headers in proxy-server.conf.

74

Chapter 2. Overview and Concepts

https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS

Swift Documentation, Release 2.30.2.dev8

See proxy-server.conf-sample for more information.

Before a browser issues an actual request it may issue a preflight request. The preflight request is an
OPTIONS call to verify the Origin is allowed to make the request. The sequence of events are,

* Browser makes OPTIONS request to Swift
» Swift returns 200/401 to browser based on allowed origins
 If 200, browser makes the actual request to Swift, i.e. PUT, POST, DELETE, HEAD, GET

When a browser receives a response to an actual request it only exposes those headers listed in the
Access-Control-Expose-Headers header. By default Swift returns the following values for this
header,

* simple response headers as listed on http://www.w3.org/TR/cors/#simple-response-header

* the headers etag, x-timestamp, x-trans-id, x-openstack-request-id

* all metadata headers (X-Container-Meta-* for containers and X-Object-Meta-* for objects)
e headers listed in X-Container-Meta-Access-Control-Expose-Headers

* headers configured using the cors_expose_headers option in proxy-server.conf

Note: An OPTIONS request to a symlink object will respond with the options for the symlink only, the
request will not be redirected to the target object. Therefore, if the symlinks target object is in another
container with CORS settings, the response will not reflect the settings.

2.14.1 Sample Javascript

To see some CORS Javascript in action download the fest CORS page (source below). Host it on a
webserver and take note of the protocol and hostname (origin) youll be using to request the page, e.g.
http://localhost.

Locate a container youd like to query. Needless to say the Swift cluster hosting this con-
tainer should have CORS support. Append the origin of the test page to the containers
X-Container-Meta-Access-Control-Allow-Origin header,:

\

At this point the container is now accessible to CORS clients hosted on http://localhost. Open the test
CORS page in your browser.

1. Populate the Token field

2. Populate the URL field with the URL of either a container or object
3. Select the request method

4. Hit Submit

Assuming the request succeeds you should see the response header and body. If something went wrong
the response status will be 0.

2.14. CORS 75

https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS#Preflighted_requests
http://www.w3.org/TR/cors/#simple-response-header
http://localhost
http://localhost

Swift Documentation, Release 2.30.2.dev8

2.14.2 Test CORS Page

A sample cross-site test page is located in the project source tree doc/source/test-cors.html.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Test CORS</title>
</head>
<body>

Token
<input id="token" type="text" size="64">

Method

<select id="method">
<option value="GET">GET</option>
<option value="HEAD">HEAD</option>
<option value="POST">POST</option>
<option value="DELETE">DELETE</option>
<option value="PUT">PUT</option>

</select>

URL (Container or Object)
<input id="url" size="64" type="text">

—

<input id="submit" type="button" value="Submit" onclick="submit(); return.
—false;">

<pre id="response_headers"></pre>
<p>

<hr>

<pre id="response_body"></pre>

<script type="text/javascript'>
function submit() {
var token = document.getElementById('token').value;
var method = document.getElementById('method').value;
var url = document.getElementById('url').value;

document.getElementById('response_headers').textContent = null;
document.getElementById('response_body').textContent = null;

var request = new XMLHttpRequest();

request.onreadystatechange = function (oEvent) {
if (request.readyState == 4) {

responseHeaders = 'Status: ' + request.status;

responseHeaders = responseHeaders + '\nStatus Text: ' +.
—request.statusText;

responseHeaders = responseHeaders + '\n\n' + request.
—getAllResponseHeaders(); (continues on next page)

76 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

document.getElementById('response_headers').textContent =_.
—responseHeaders;
document.getElementById('response_body').textContent =_
—request.responseText;
}
}

request.open(method, url);

if (token != '") {
// custom headers always trigger a pre-flight request
request.setRequestHeader('X-Auth-Token', token);

}

request.send(null);

}

</script>

</body>
</html>

2.15 Cross-domain Policy File

A cross-domain policy file allows web pages hosted elsewhere to use client side technologies such as
Flash, Java and Silverlight to interact with the Swift API.

See http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html for a description of the
purpose and structure of the cross-domain policy file. The cross-domain policy file is installed in the
root of a web server (i.e., the path is /crossdomain.xml).

The crossdomain middleware responds to a path of /crossdomain.xml with an XML document such as:

<?xml version="1.0"?7>

<IDOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/xml/dtds/cross-

—domain-policy.dtd" >

<cross-domain-policy>
<allow-access-from domain=

</cross-domain-policy>

nween

secure="false" />

You should use a policy appropriate to your site. The examples and the default policy are provided to
indicate how to syntactically construct a cross domain policy file they are not recommendations.

2.15. Cross-domain Policy File 77

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html

Swift Documentation, Release 2.30.2.dev8

2.15.1 Configuration

To enable this middleware, add it to the pipeline in your proxy-server.conf file. It should be added before
any authentication (e.g., tempauth or keystone) middleware. In this example ellipsis () indicate other
middleware you may have chosen to use:

And add a filter section, such as:

For continuation lines, put some whitespace before the continuation text. Ensure you put a completely
blank line to terminate the cross_domain_policy value.

The cross_domain_policy name/value is optional. If omitted, the policy defaults as if you had specified:

2.16 Erasure Code Support

2.16.1 History and Theory of Operation

Theres a lot of good material out there on Erasure Code (EC) theory, this short introduction is just meant
to provide some basic context to help the reader better understand the implementation in Swift.

Erasure Coding for storage applications grew out of Coding Theory as far back as the 1960s with the
Reed-Solomon codes. These codes have been used for years in applications ranging from CDs to DVDs
to general communications and, yes, even in the space program starting with Voyager! The basic idea is
that some amount of data is broken up into smaller pieces called fragments and coded in such a way that
it can be transmitted with the ability to tolerate the loss of some number of the coded fragments. Thats
where the word erasure comes in, if you transmit 14 fragments and only 13 are received then one of them
is said to be erased. The word erasure provides an important distinction with EC; it isnt about detecting
errors, its about dealing with failures. Another important element of EC is that the number of erasures
that can be tolerated can be adjusted to meet the needs of the application.

At a high level EC works by using a specific scheme to break up a single data buffer into several smaller
data buffers then, depending on the scheme, performing some encoding operation on that data in order
to generate additional information. So you end up with more data than you started with and that extra
data is often called parity. Note that there are many, many different encoding techniques that vary both
in how they organize and manipulate the data as well by what means they use to calculate parity. For
example, one scheme might rely on Galois Field Arithmetic while others may work with only XOR. The
number of variations and details about their differences are well beyond the scope of this introduction,
but we will talk more about a few of them when we get into the implementation of EC in Swift.

78 Chapter 2. Overview and Concepts

http://www.ssrc.ucsc.edu/Papers/plank-fast13.pdf

Swift Documentation, Release 2.30.2.dev8

Overview of EC Support in Swift

First and foremost, from an application perspective EC support is totally transparent. There are no EC
related external API; a container is simply created using a Storage Policy defined to use EC and then
interaction with the cluster is the same as any other durability policy.

EC is implemented in Swift as a Storage Policy, see Storage Policies for complete details on Storage
Policies. Because support is implemented as a Storage Policy, all of the storage devices associated with
your clusters EC capability can be isolated. It is entirely possible to share devices between storage poli-
cies, but for EC it may make more sense to not only use separate devices but possibly even entire nodes
dedicated for EC.

Which direction one chooses depends on why the EC policy is being deployed. If, for example, there
is a production replication policy in place already and the goal is to add a cold storage tier such that
the existing nodes performing replication are impacted as little as possible, adding a new set of nodes
dedicated to EC might make the most sense but also incurs the most cost. On the other hand, if EC
is being added as a capability to provide additional durability for a specific set of applications and the
existing infrastructure is well suited for EC (sufficient number of nodes, zones for the EC scheme that is
chosen) then leveraging the existing infrastructure such that the EC ring shares nodes with the replication
ring makes the most sense. These are some of the main considerations:

» Layout of existing infrastructure.
* Cost of adding dedicated EC nodes (or just dedicated EC devices).
* Intended usage model(s).

The Swift code base does not include any of the algorithms necessary to perform the actual encoding
and decoding of data; that is left to external libraries. The Storage Policies architecture is leveraged to
enable EC on a per container basis the object rings are still used to determine the placement of EC data
fragments. Although there are several code paths that are unique to an operation associated with an EC
policy, an external dependency to an Erasure Code library is what Swift counts on to perform the low
level EC functions. The use of an external library allows for maximum flexibility as there are a significant
number of options out there, each with its owns pros and cons that can vary greatly from one use case to
another.

PyECLib: External Erasure Code Library

PyECLib is a Python Erasure Coding Library originally designed and written as part of the effort to
add EC support to the Swift project, however it is an independent project. The library provides a well-
defined and simple Python interface and internally implements a plug-in architecture allowing it to take
advantage of many well-known C libraries such as:

* Jerasure and GFComplete at http://jerasure.org.
* Intel(R) ISA-L at http://01.org/intel%0C2%AE-storage-acceleration-library-open-source-version.
* Or write your own!

PyECLib uses a C based library called liberasurecode to implement the plug in infrastructure; libera-
surecode is available at:

* liberasurecode: https://github.com/openstack/liberasurecode

PyECLib itself therefore allows for not only choice but further extensibility as well. PyECLib also comes
with a handy utility to help determine the best algorithm to use based on the equipment that will be used

2.16. Erasure Code Support 79

http://jerasure.org
http://01.org/intel%C2%AE-storage-acceleration-library-open-source-version
https://github.com/openstack/liberasurecode

Swift Documentation, Release 2.30.2.dev8

(processors and server configurations may vary in performance per algorithm). More on this will be
covered in the configuration section. PyECLib is included as a Swift requirement.

For complete details see PyECLib

Storing and Retrieving Objects

We will discuss the details of how PUT and GET work in the Under the Hood section later on. The key
point here is that all of the erasure code work goes on behind the scenes; this summary is a high level
information overview only.

The PUT flow looks like this:
1. The proxy server streams in an object and buffers up a segment of data (size is configurable).
2. The proxy server calls on PyECLib to encode the data into smaller fragments.
3. The proxy streams the encoded fragments out to the storage nodes based on ring locations.
4. Repeat until the client is done sending data.
5. The client is notified of completion when a quorum is met.
The GET flow looks like this:
1. The proxy server makes simultaneous requests to participating nodes.
2. As soon as the proxy has the fragments it needs, it calls on PyECLib to decode the data.
3. The proxy streams the decoded data it has back to the client.
4. Repeat until the proxy is done sending data back to the client.

It may sound like, from this high level overview, that using EC is going to cause an explosion in the
number of actual files stored in each nodes local file system. Although it is true that more files will
be stored (because an object is broken into pieces), the implementation works to minimize this where
possible, more details are available in the Under the Hood section.

Handoff Nodes

In EC policies, similarly to replication, handoff nodes are a set of storage nodes used to augment the list
of primary nodes responsible for storing an erasure coded object. These handoff nodes are used in the
event that one or more of the primaries are unavailable. Handoff nodes are still selected with an attempt
to achieve maximum separation of the data being placed.

Reconstruction

For an EC policy, reconstruction is analogous to the process of replication for a replication type pol-
icy essentially the reconstructor replaces the replicator for EC policy types. The basic framework of
reconstruction is very similar to that of replication with a few notable exceptions:

* Because EC does not actually replicate partitions, it needs to operate at a finer granularity than
what is provided with rsync, therefore EC leverages much of ssync behind the scenes (you do not
need to manually configure ssync).

80 Chapter 2. Overview and Concepts

https://github.com/openstack/pyeclib

Swift Documentation, Release 2.30.2.dev8

* Once a pair of nodes has determined the need to replace a missing object fragment, instead of
pushing over a copy like replication would do, the reconstructor has to read in enough surviving
fragments from other nodes and perform a local reconstruction before it has the correct data to
push to the other node.

* A reconstructor does not talk to all other reconstructors in the set of nodes responsible for an EC
partition, this would be far too chatty, instead each reconstructor is responsible for syncing with
the partitions closest two neighbors (closest meaning left and right on the ring).

Note: EC work (encode and decode) takes place both on the proxy nodes, for PUT/GET operations, as
well as on the storage nodes for reconstruction. As with replication, reconstruction can be the result of
rebalancing, bit-rot, drive failure or reverting data from a hand-off node back to its primary.

2.16.2 Performance Considerations

In general, EC has different performance characteristics than replicated data. EC requires substantially
more CPU to read and write data, and is more suited for larger objects that are not frequently accessed
(e.g. backups).

Operators are encouraged to characterize the performance of various EC schemes and share their obser-
vations with the developer community.

2.16.3 Using an Erasure Code Policy

To use an EC policy, the administrator simply needs to define an EC policy in swift.conf and cre-
ate/configure the associated object ring. An example of how an EC policy can be setup is shown below:

Lets take a closer look at each configuration parameter:
* name: This is a standard storage policy parameter. See Storage Policies for details.
* policy_type: Set this to erasure_coding to indicate that this is an EC policy.

* ec_type: Set this value according to the available options in the selected PyECLib back-end. This
specifies the EC scheme that is to be used. For example the option shown here selects Vandermonde
Reed-Solomon encoding while an option of flat_xor_hd_3 would select Flat-XOR based HD
combination codes. See the PyECLib page for full details.

* ec_num_data_fragments: The total number of fragments that will be comprised of data.
* ec_num_parity_fragments: The total number of fragments that will be comprised of parity.

* ec_object_segment_size: The amount of data that will be buffered up before feeding a segment
into the encoder/decoder. The default value is 1048576.

2.16. Erasure Code Support 81

https://github.com/openstack/pyeclib

Swift Documentation, Release 2.30.2.dev8

When PyECLib encodes an object, it will break it into N fragments. However, what is important during
configuration, is how many of those are data and how many are parity. So in the example above, PyECLib
will actually break an object in 14 different fragments, 10 of them will be made up of actual object data
and 4 of them will be made of parity data (calculations depending on ec_type).

When deciding which devices to use in the EC policys object ring, be sure to carefully consider the perfor-
mance impacts. Running some performance benchmarking in a test environment for your configuration
is highly recommended before deployment.

To create the EC policys object ring, the only difference in the usage of the swift-ring-builder
create command is the replicas parameter. The replicas value is the number of fragments
spread across the object servers associated with the ring; replicas must be equal to the sum of
ec_num_data_fragments and ec_num_parity_fragments. For example:

Note that in this example the replicas value of 14 is based on the sum of 10 EC data fragments and 4
EC parity fragments.

Once you have configured your EC policy in swift.conf and created your object ring, your application is
ready to start using EC simply by creating a container with the specified policy name and interacting as
usual.

Note: Its important to note that once you have deployed a policy and have created objects with that
policy, these configurations options cannot be changed. In case a change in the configuration is desired,
you must create a new policy and migrate the data to a new container.

Warning: Using isa_l_rs_vand with more than 4 parity fragments creates fragments which
may in some circumstances fail to reconstruct properly or (with liberasurecode < 1.3.1) reconstruct
corrupted data. New policies that need large numbers of parity fragments should consider using
isa_l_rs_cauchy. Any existing affected policies must be marked deprecated, and data in contain-
ers with that policy should be migrated to a new policy.

Migrating Between Policies

A common usage of EC is to migrate less commonly accessed data from a more expensive but lower
latency policy such as replication. When an application determines that it wants to move data from a
replication policy to an EC policy, it simply needs to move the data from the replicated container to an
EC container that was created with the target durability policy.

82 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

2.16.4 Global EC
The following recommendations are made when deploying an EC policy that spans multiple regions in
a Global Cluster:

* The global EC policy should use EC Duplication in conjunction with a Composite Ring, as de-
scribed below.

* Proxy servers should be configured to use read affinity to prefer reading from their local region for
the global EC policy. Per policy configuration allows this to be configured for individual policies.

Note: Before deploying a Global EC policy, consideration should be given to the Known Issues, in
particular the relatively poor performance anticipated from the object-reconstructor.

EC Duplication

EC Duplication enables Swift to make duplicated copies of fragments of erasure coded objects. If an EC
storage policy is configured with a non-default ec_duplication_factor of N > 1, then the policy
will create N duplicates of each unique fragment that is returned from the configured EC engine.

Duplication of EC fragments is optimal for Global EC storage policies, which require dispersion of
fragment data across failure domains. Without fragment duplication, common EC parameters will not
distribute enough unique fragments between large failure domains to allow for a rebuild using fragments
from any one domain. For example a uniformly distributed 10+4 EC policy schema would place 7
fragments in each of two failure domains, which is less in each failure domain than the 10 fragments
needed to rebuild a missing fragment.

Without fragment duplication, an EC policy schema must be adjusted to include additional parity frag-
ments in order to guarantee the number of fragments in each failure domain is greater than the number
required to rebuild. For example, a uniformly distributed 10+18 EC policy schema would place 14 frag-
ments in each of two failure domains, which is more than sufficient in each failure domain to rebuild
a missing fragment. However, empirical testing has shown encoding a schema with num_parity >
num_data (such as 10+18) is less efficient than using duplication of fragments. EC fragment duplication
enables Swifts Global EC to maintain more independence between failure domains without sacrificing
efficiency on read/write or rebuild!

The ec_duplication_factor option may be configured in swift.conf in each storage-policy sec-
tion. The option may be omitted - the default value is 1 (i.e. no duplication):

2.16. Erasure Code Support 83

Swift Documentation, Release 2.30.2.dev8

Warning: EC duplication is intended for use with Global EC policies. To ensure independent
availability of data in all regions, the ec_duplication_factor option should only be used in con-
junction with Composite Rings, as described in this document.

In this example, a 10+4 schema and a duplication factor of 2 will result in (10+4)x2 = 28 frag-
ments being stored (we will use the shorthand 10+4x2 to denote that policy configuration) . The
ring for this policy should be configured with 28 replicas (i.e. (ec_num_data_fragments +
ec_num_parity_fragments) * ec_duplication_factor). A 10+4x2 schema can allow a multi-
region deployment to rebuild an object to full durability even when more than 14 fragments are un-
available. This is advantageous with respect to a 10+18 configuration not only because reads from data
fragments will be more common and more efficient, but also because a 10+4x2 can grow into a 10+4x3
to expand into another region.

EC duplication with composite rings

It is recommended that EC Duplication is used with Composite Rings in order to disperse duplicate
fragments across regions.

When EC duplication is used, it is highly desirable to have one duplicate of each fragment placed in each
region. This ensures that a set of ec_num_data_fragments unique fragments (the minimum needed to
reconstruct an object) can always be assembled from a single region. This in turn means that objects are
robust in the event of an entire region becoming unavailable.

This can be achieved by using a composite ring with the following properties:

* The number of component rings in the composite ring is equal to the ec_duplication_factor
for the policy.

* Each component ring has a number of replicas that is equal to the sum of
ec_num_data_fragments and ec_num_parity_fragments.

* Each component ring is populated with devices in a unique region.

This arrangement results in each component ring in the composite ring, and therefore each region, having
one copy of each fragment.

For example, consider a Swift cluster with two regions, regionl and region2 and a 4+2x2 EC policy
schema. This policy should use a composite ring with two component rings, ring1l and ring2, having
devices exclusively in regions regionl and region2 respectively. Each component ring should have
replicas = 6. As aresult, the first 6 fragments for an object will always be placed in ringl (i.e. in
regionl) and the second 6 duplicate fragments will always be placed in ring2 (i.e. in region2).

Conversely, a conventional ring spanning the two regions may give a suboptimal distribution of duplicates
across the regions; it is possible for duplicates of the same fragment to be placed in the same region, and
consequently for another region to have no copies of that fragment. This may make it impossible to
assemble a set of ec_num_data_fragments unique fragments from a single region. For example, the
conventional ring could have a pathologically sub-optimal placement such as:

(continues on next page)

84 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

In this case, the object cannot be reconstructed from a single region; regionl has only the fragments
with index ®, 2, 4 and region2 has the other 3 indexes, but we need 4 unique indexes to be able to
rebuild an object.

Node Selection Strategy for Reads

Proxy servers require a set of unique fragment indexes to decode the original object when handling a GET
request to an EC policy. With a conventional EC policy, this is very likely to be the outcome of reading
fragments from a random selection of backend nodes. With an EC Duplication policy it is significantly
more likely that responses from a random selection of backend nodes might include some duplicated
fragments.

For this reason it is strongly recommended that EC Duplication always be deployed in combination with
Composite Rings and proxy server read affinity.

Under normal conditions with the recommended deployment, read affinity will cause a proxy server to
first attempt to read fragments from nodes in its local region. These fragments are guaranteed to be
unique with respect to each other. Even if there are a small number of local failures, unique local parity
fragments will make up the difference. However, should enough local primary storage nodes fail, such
that sufficient unique fragments are not available in the local region, a global EC cluster will proceed
to read fragments from the other region(s). Random reads from the remote region are not guaranteed
to return unique fragments; with EC Duplication there is a significantly high probability that the proxy
server will encounter a fragment that is a duplicate of one it has already found in the local region. The
proxy server will ignore these and make additional requests until it accumulates the required set of unique
fragments, potentially searching all the primary and handoff locations in the local and remote regions
before ultimately failing the read.

A global EC deployment configured as recommended is therefore extremely resilient. However, under
extreme failure conditions read handling can be inefficient because nodes in other regions are guaranteed
to have some fragments which are duplicates of those the proxy server has already received. Work is in
progress to improve the proxy server node selection strategy such that when it is necessary to read from
other regions, nodes that are likely to have useful fragments are preferred over those that are likely to
return a duplicate.

2.16. Erasure Code Support 85

Swift Documentation, Release 2.30.2.dev8

Known Issues

Efficient Cross Region Rebuild

Work is also in progress to improve the object-reconstructor efficiency for Global EC policies. Unlike
the proxy server, the reconstructor does not apply any read affinity settings when gathering fragments.
It is therefore likely to receive duplicated fragments (i.e. make wasted backend GET requests) while
performing every fragment reconstruction.

Additionally, other reconstructor optimisations for Global EC are under investigation:

* Since fragments are duplicated between regions it may in some cases be more attractive to restore
failed fragments from their duplicates in another region instead of rebuilding them from other
fragments in the local region.

* Conversely, to avoid WAN transfer it may be more attractive to rebuild fragments from local parity.

* During rebalance it will always be more attractive to revert a fragment from its old-primary to its
new primary rather than rebuilding or transferring a duplicate from the remote region.

2.16.5 Under the Hood

Now that weve explained a little about EC support in Swift and how to configure and use it, lets explore
how EC fits in at the nuts-n-bolts level.

Terminology

The term fragment has been used already to describe the output of the EC process (a series of fragments)
however we need to define some other key terms here before going any deeper. Without paying special
attention to using the correct terms consistently, it is very easy to get confused in a hurry!

* chunk: HTTP chunks received over wire (term not used to describe any EC specific operation).

* segment: Not to be confused with SLO/DLO use of the word, in EC we call a segment a series of
consecutive HTTP chunks buffered up before performing an EC operation.

* fragment: Data and parity fragments are generated when erasure coding transformation is applied
to a segment.

* EC archive: A concatenation of EC fragments; to a storage node this looks like an object.
* ec_ndata: Number of EC data fragments.

* ec_nparity: Number of EC parity fragments.

86 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Middleware

Middleware remains unchanged. For most middleware (e.g., SLO/DLO) the fact that the proxy is frag-
menting incoming objects is transparent. For list endpoints, however, it is a bit different. A caller of list
endpoints will get back the locations of all of the fragments. The caller will be unable to re-assemble the
original object with this information, however the node locations may still prove to be useful information
for some applications.

On Disk Storage

EC archives are stored on disk in their respective objects-N directory based on their policy index. See
Storage Policies for details on per policy directory information.

In addition to the object timestamp, the filenames of EC archives encode other information related to the
archive:

* The fragment archive index. This is required for a few reasons. For one, it allows us to store
fragment archives of different indexes on the same storage node which is not typical however it is
possible in many circumstances. Without unique filenames for the different EC archive files in a
set, we would be at risk of overwriting one archive of index n with another of index m in some
scenarios.

The index is appended to the filename just before the .data extension. For example, the filename
for a fragment archive storing the 5th fragment would be:

* The durable state of the archive. The meaning of this will be described in more detail later, but
a fragment archive that is considered durable has an additional #d string included in its filename
immediately before the .data extension. For example:

A policy-specific transformation function is therefore used to build the archive filename. These
functions are implemented in the diskfile module as methods of policy specific sub classes of
BaseDiskFileManager.

The transformation function for the replication policy is simply a NOP.

Note: In older versions the durable state of an archive was represented by an additional file called the
.durable file instead of the #d substring in the .data filename. The .durable for the example above
would be:

2.16. Erasure Code Support 87

Swift Documentation, Release 2.30.2.dev8

Proxy Server

High Level

The Proxy Server handles Erasure Coding in a different manner than replication, therefore there are
several code paths unique to EC policies either though sub classing or simple conditionals. Taking a
closer look at the PUT and the GET paths will help make this clearer. But first, a high level overview of
how an object flows through the system:

Object

Objact Node 6

Object Node 1

Swift Proxy

S t N, Fragment 1 Segment N, Fragment &

— Buffered object stream - next
EC Segment Size bytes

Segment 3, Fragment 1 Segment 3, Fragment &

Segment 2, Fragment 1 Segment 2, Fragment 6

Segment 1, Fragment 1

PyECLib Encode(] - Segment 1, Fragment 6 ~

egment is encoded and sent to obij fragments,
appended to the ent 1o build a EC fregment archive. nds with a 16-byte ebject etag.

/ \

Object u?éc 1

1l ===

Object Node 6

Swift Dbject = Fragment Archive (etag, len) Fragment Archive Mames include Fragment Index

Note how:
* Incoming objects are buffered into segments at the proxy.
» Segments are erasure coded into fragments at the proxy.

» The proxy stripes fragments across participating nodes such that the on-disk stored files that we
call a fragment archive is appended with each new fragment.

This scheme makes it possible to minimize the number of on-disk files given our segmenting and frag-
menting.

Multi_Phase Conversation

Multi-part MIME document support is used to allow the proxy to engage in a handshake conversation
with the storage node for processing PUT requests. This is required for a few different reasons.

1. From the perspective of the storage node, a fragment archive is really just another object, we need
a mechanism to send down the original object etag after all fragment archives have landed.

2. Without introducing strong consistency semantics, the proxy needs a mechanism to know when
a quorum of fragment archives have actually made it to disk before it can inform the client of a
successful PUT.

MIME supports a conversation between the proxy and the storage nodes for every PUT. This provides
us with the ability to handle a PUT in one connection and assure that we have the essence of a 2 phase
commit, basically having the proxy communicate back to the storage nodes once it has confirmation that
a quorum of fragment archives in the set have been written.

88 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

For the first phase of the conversation the proxy requires a quorum of ec_ndata + 1 fragment archives to
be successfully put to storage nodes. This ensures that the object could still be reconstructed even if one
of the fragment archives becomes unavailable. As described above, each fragment archive file is named:

where ts is the timestamp and frag_index is the fragment archive index.

During the second phase of the conversation the proxy communicates a confirmation to storage nodes that
the fragment archive quorum has been achieved. This causes each storage node to rename the fragment
archive written in the first phase of the conversation to include the substring #d in its name:

This indicates to the object server that this fragment archive is durable and that there is a set of data files
that are durable at timestamp ts.

For the second phase of the conversation the proxy requires a quorum of ec_ndata + 1 successful commits
on storage nodes. This ensures that there are sufficient committed fragment archives for the object to
be reconstructed even if one becomes unavailable. The reconstructor ensures that the durable state is
replicated on storage nodes where it may be missing.

Note that the completion of the commit phase of the conversation is also a signal for the object server
to go ahead and immediately delete older timestamp files for this object. This is critical as we do not
want to delete the older object until the storage node has confirmation from the proxy, via the multi-phase
conversation, that the other nodes have landed enough for a quorum.

The basic flow looks like this:

1. The Proxy Server erasure codes and streams the object fragments (ec_ndata + ec_nparity) to the
storage nodes.

2. The storage nodes store objects as EC archives and upon finishing object data/metadata write, send
a 1st-phase response to proxy.

3. Upon quorum of storage nodes responses, the proxy initiates 2nd-phase by sending commit con-
firmations to object servers.

4. Upon receipt of commit message, object servers rename .data files to include the #d substring,
indicating successful PUT, and send a final response to the proxy server.

5. The proxy waits for ec_ndata + 1 object servers to respond with a success (2xx) status before
responding to the client with a successful status.

Here is a high level example of what the conversation looks like:

(continues on next page)

2.16. Erasure Code Support 89

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

A few key points on the durable state of a fragment archive:

* A durable fragment archive means that there exist sufficient other fragment archives elsewhere in
the cluster (durable and/or non-durable) to reconstruct the object.

* When a proxy does a GET, it will require at least one object server to respond with a fragment
archive is durable before reconstructing and returning the object to the client.

Partial PUT Failures

A partial PUT failure has a few different modes. In one scenario the Proxy Server is alive through the
entire PUT conversation. This is a very straightforward case. The client will receive a good response
if and only if a quorum of fragment archives were successfully landed on their storage nodes. In this
case the Reconstructor will discover the missing fragment archives, perform a reconstruction and deliver
those fragment archives to their nodes.

The more interesting case is what happens if the proxy dies in the middle of a conversation. If it turns
out that a quorum had been met and the commit phase of the conversation finished, its as simple as the
previous case in that the reconstructor will repair things. However, if the commit didnt get a chance to
happen then some number of the storage nodes have .data files on them (fragment archives) but none of
them knows whether there are enough elsewhere for the entire object to be reconstructed. In this case
the client will not have received a 2xx response so there is no issue there, however, it is left to the storage
nodes to clean up the stale fragment archives. Work is ongoing in this area to enable the proxy to play
arole in reviving these fragment archives, however, for the current release, a proxy failure after the start
of a conversation but before the commit message will simply result in a PUT failure.

90 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

GET

The GET for EC is different enough from replication that subclassing the BaseObjectController to the
ECObjectController enables an efficient way to implement the high level steps described earlier:

1. The proxy server makes simultaneous requests to ec_ndata primary object server nodes with goal
of finding a set of ec_ndata distinct EC archives at the same timestamp, and an indication from at
least one object server that a durable fragment archive exists for that timestamp. If this goal is not
achieved with the first ec_ndata requests then the proxy server continues to issue requests to the
remaining primary nodes and then handoff nodes.

2. Assoon as the proxy server has found a usable set of ec_ndata EC archives, it starts to call PyECLib
to decode fragments as they are returned by the object server nodes.

3. The proxy server creates Etag and content length headers for the client response since each EC
archives metadata is valid only for that archive.

4. The proxy streams the decoded data it has back to the client.

Note that the proxy does not require all objects servers to have a durable fragment archive to return in
response to a GET. The proxy will be satisfied if just one object server has a durable fragment archive
at the same timestamp as EC archives returned from other object servers. This means that the proxy can
successfully GET an object that had missing durable state on some nodes when it was PUT (i.e. a partial
PUT failure occurred).

Note also that an object server may inform the proxy server that it has more than one EC archive for
different timestamps and/or fragment indexes, which may cause the proxy server to issue multiple requests
for distinct EC archives to that object server. (This situation can temporarily occur after a ring rebalance
when a handoff node storing an archive has become a primary node and received its primary archive but
not yet moved the handoff archive to its primary node.)

The proxy may receive EC archives having different timestamps, and may receive several EC archives
having the same index. The proxy therefore ensures that it has sufficient EC archives with the same
timestamp and distinct fragment indexes before considering a GET to be successful.

Object Server

The Object Server, like the Proxy Server, supports MIME conversations as described in the proxy section
earlier. This includes processing of the commit message and decoding various sections of the MIME
document to extract the footer which includes things like the entire object etag.

DiskFile

Erasure code policies use subclassed ECDiskFile, ECDiskFileWriter, ECDiskFileReader and
ECDiskFileManager to implement EC specific handling of on disk files. This includes things like
file name manipulation to include the fragment index and durable state in the filename, construction of
EC specific hashes.pkl file to include fragment index information, etc.

2.16. Erasure Code Support 91

Swift Documentation, Release 2.30.2.dev8

Metadata

There are few different categories of metadata that are associated with EC:

System Metadata: EC has a set of object level system metadata that it attaches to each of the EC archives.
The metadata is for internal use only:

* X-Object-Sysmeta-EC-Etag: The Etag of the original object.

* X-Object-Sysmeta-EC-Content-Length: The content length of the original object.

* X-Object-Sysmeta-EC-Frag-Index: The fragment index for the object.

* X-Object-Sysmeta-EC-Scheme: Description of the EC policy used to encode the object.
* X-Object-Sysmeta-EC-Segment-Size: The segment size used for the object.

User Metadata: User metadata is unaffected by EC, however, a full copy of the user metadata is stored
with every EC archive. This is required as the reconstructor needs this information and each reconstructor
only communicates with its closest neighbors on the ring.

PyECLib Metadata: PyECLib stores a small amount of metadata on a per fragment basis. This metadata
is not documented here as it is opaque to Swift.

Database Updates

As account and container rings are not associated with a Storage Policy, there is no change to how these
database updates occur when using an EC policy.

The Reconstructor

The Reconstructor performs analogous functions to the replicator:
1. Recovering from disk drive failure.
2. Moving data around because of a rebalance.
3. Reverting data back to a primary from a handoff.
4. Recovering fragment archives from bit rot discovered by the auditor.

However, under the hood it operates quite differently. The following are some of the key elements in
understanding how the reconstructor operates.

Unlike the replicator, the work that the reconstructor does is not always as easy to break down into the
2 basic tasks of synchronize or revert (move data from handoff back to primary) because of the fact that
one storage node can house fragment archives of various indexes and each index really "belongs" to a
different node. So, whereas when the replicator is reverting data from a handoff it has just one node
to send its data to, the reconstructor can have several. Additionally, it is not always the case that the
processing of a particular suffix directory means one or the other job type for the entire directory (as it
does for replication). The scenarios that create these mixed situations can be pretty complex so we will
just focus on what the reconstructor does here and not a detailed explanation of why.

92 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Job Construction and Processing

Because of the nature of the work it has to do as described above, the reconstructor builds jobs for a
single job processor. The job itself contains all of the information needed for the processor to execute the
job which may be a synchronization or a data reversion. There may be a mix of jobs that perform both
of these operations on the same suffix directory.

Jobs are constructed on a per-partition basis and then per-fragment-index basis. That is, there will be
one job for every fragment index in a partition. Performing this construction "up front" like this helps
minimize the interaction between nodes collecting hashes.pkl information.

Once a set of jobs for a partition has been constructed, those jobs are sent off to threads for execution.
The single job processor then performs the necessary actions, working closely with ssync to carry out its
instructions. For data reversion, the actual objects themselves are cleaned up via the ssync module and
once that partitions set of jobs is complete, the reconstructor will attempt to remove the relevant directory
structures.

Job construction must account for a variety of scenarios, including:

1. A partition directory with all fragment indexes matching the local node index. This is the case
where everything is where it belongs and we just need to compare hashes and sync if needed. Here
we simply sync with our partners.

2. A partition directory with at least one local fragment index and mix of others. Here we need to
sync with our partners where fragment indexes matches the local_id, all others are syncd with their
home nodes and then deleted.

3. A partition directory with no local fragment index and just one or more of others. Here we sync
with just the home nodes for the fragment indexes that we have and then all the local archives are
deleted. This is the basic handoff reversion case.

Note: A "home node" is the node where the fragment index encoded in the fragment archives filename
matches the node index of a node in the primary partition list.

Node Communication

The replicators talk to all nodes who have a copy of their object, typically just 2 other nodes. For EC,
having each reconstructor node talk to all nodes would incur a large amount of overhead as there will
typically be a much larger number of nodes participating in the EC scheme. Therefore, the reconstructor
is built to talk to its adjacent nodes on the ring only. These nodes are typically referred to as partners.

Reconstruction

Reconstruction can be thought of sort of like replication but with an extra step in the middle. The recon-
structor is hard-wired to use ssync to determine what is missing and desired by the other side. However,
before an object is sent over the wire it needs to be reconstructed from the remaining fragments as the
local fragment is just that - a different fragment index than what the other end is asking for.

Thus, there are hooks in ssync for EC based policies. One case would be for basic reconstruction which,
at a high level, looks like this:

2.16. Erasure Code Support 93

Swift Documentation, Release 2.30.2.dev8

* Determine which nodes need to be contacted to collect other EC archives needed to perform re-
construction.

» Update the etag and fragment index metadata elements of the newly constructed fragment archive.

* Establish a connection to the target nodes and give ssync a DiskFileLike class from which it can
stream data.

The reader in this class gathers fragments from the nodes and uses PyECLib to reconstruct each segment
before yielding data back to ssync. Essentially what this means is that data is buffered, in memory, on a
per segment basis at the node performing reconstruction and each segment is dynamically reconstructed
and delivered to ssync_sender where the send_put () method will ship them on over. The sender is
then responsible for deleting the objects as they are sent in the case of data reversion.

The Auditor

Because the auditor already operates on a per storage policy basis, there are no specific auditor changes
associated with EC. Each EC archive looks like, and is treated like, a regular object from the perspective
of the auditor. Therefore, if the auditor finds bit-rot in an EC archive, it simply quarantines it and the
reconstructor will take care of the rest just as the replicator does for replication policies.

2.17 Object Encryption

Swift supports the optional encryption of object data at rest on storage nodes. The encryption of object
data is intended to mitigate the risk of users data being read if an unauthorised party were to gain physical
access to a disk.

Note: Swifts data-at-rest encryption accepts plaintext object data from the client, encrypts it in the
cluster, and stores the encrypted data. This protects object data from inadvertently being exposed if a
data drive leaves the Swift cluster. If a user wishes to ensure that the plaintext data is always encrypted
while in transit and in storage, it is strongly recommended that the data be encrypted before sending it to
the Swift cluster. Encrypting on the client side is the only way to ensure that the data is fully encrypted
for its entire lifecycle.

Encryption of data at rest is implemented by middleware that may be included in the proxy server WSGI
pipeline. The feature is internal to a Swift cluster and not exposed through the API. Clients are unaware
that data is encrypted by this feature internally to the Swift service; internally encrypted data should
never be returned to clients via the Swift APL

The following data are encrypted while at rest in Swift:
* Object content i.e. the content of an object PUT requests body
* The entity tag (ETag) of objects that have non-zero content

* All custom user object metadata values i.e. metadata sent using X-Object-Meta- prefixed headers
with PUT or POST requests

Any data or metadata not included in the list above are not encrypted, including:
* Account, container and object names

¢ Account and container custom user metadata values

94 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

* All custom user metadata names
* Object Content-Type values
* Object size

* System metadata

Note: This feature is intended to provide confidentiality of data that is at rest i.e. to protect user data
from being read by an attacker that gains access to disks on which object data is stored.

This feature is not intended to prevent undetectable modification of user data at rest.

This feature is not intended to protect against an attacker that gains access to Swifts internal network
connections, or gains access to key material or is able to modify the Swift code running on Swift nodes.

2.17.1 Deployment and operation

Encryption is deployed by adding two middleware filters to the proxy server WSGI pipeline and including
their respective filter configuration sections in the proxy-server.conf file. Additional steps are required if
the container sync feature is being used.

The keymaster and encryption middleware filters must be to the right of all other middleware in the
pipeline apart from the final proxy-logging middleware, and in the order shown in this example:

See the proxy-server.conf-sample file for further details on the middleware configuration options.

Keymaster middleware

The keymaster middleware must be configured with a root secret before it is used. By default the key-
master middleware will use the root secret configured using the encryption_root_secret option in
the middleware filter section of the proxy-server.conf file, for example:

Root secret values MUST be at least 44 valid base-64 characters and should be consistent across all proxy
servers. The minimum length of 44 has been chosen because it is the length of a base-64 encoded 32
byte value.

2.17. Object Encryption 95

Swift Documentation, Release 2.30.2.dev8

Note: The encryption_root_secret option holds the master secret key used for encryption. The
security of all encrypted data critically depends on this key and it should therefore be set to a high-entropy
value. For example, a suitable encryption_root_secret may be obtained by base-64 encoding a 32
byte (or longer) value generated by a cryptographically secure random number generator.

The encryption_root_secret value is necessary to recover any encrypted data from the storage sys-
tem, and therefore, it must be guarded against accidental loss. Its value (and consequently, the proxy-
server.conf file) should not be stored on any disk that is in any account, container or object ring.

The encryption_root_secret value should not be changed once deployed. Doing so would prevent
Swift from properly decrypting data that was encrypted using the former value, and would therefore result
in the loss of that data.

One method for generating a suitable value for encryption_root_secret is to use the openssl com-
mand line tool:

Separate keymaster configuration file

The encryption_root_secret option may alternatively be specified in a separate config file at a path
specified by the keymaster_config_path option, for example:

This has the advantage of allowing multiple processes which need to be encryption-aware (for example,
proxy-server and container-sync) to share the same config file, ensuring that consistent encryption keys
are used by those processes. It also allows the keymaster configuration file to have different permissions
than the proxy-server.conf file.

A separate keymaster config file should have a [keymaster] section containing the
encryption_root_secret option:

Note: Alternative keymaster middleware is available to retrieve encryption root secrets from an external
key management system such as Barbican rather than storing root secrets in configuration files.

Once deployed, the encryption filter will by default encrypt object data and metadata when handling
PUT and POST requests and decrypt object data and metadata when handling GET and HEAD requests.
COPY requests are transformed into GET and PUT requests by the Server Side Copy middleware be-
fore reaching the encryption middleware and as a result object data and metadata is decrypted and re-
encrypted when copied.

96 Chapter 2. Overview and Concepts

https://docs.openstack.org/barbican

Swift Documentation, Release 2.30.2.dev8

Changing the encryption root secret

From time to time it may be desirable to change the root secret that is used to derive encryption keys for
new data written to the cluster. The keymaster middleware allows alternative root secrets to be specified
in its configuration using options of the form:

where secret_id is a unique identifier for the root secret and secret value is a value that meets the
requirements for a root secret described above.

Only one root secret is used to encrypt new data at any moment in time. This root secret is specified
using the active_root_secret_id option. If specified, the value of this option should be one of the
configured root secret secret_id values; otherwise the value of encryption_root_secret will be
taken as the default active root secret.

Note: The active root secret is only used to derive keys for new data written to the cluster. Changing
the active root secret does not cause any existing data to be re-encrypted.

Existing encrypted data will be decrypted using the root secret that was active when that data was writ-
ten. All previous active root secrets must therefore remain in the middleware configuration in order for
decryption of existing data to succeed. Existing encrypted data will reference previous root secret by the
secret_id so it must be kept consistent in the configuration.

Note: Do not remove or change any previously active <secret value> or <secret_id>.

For example, the following keymaster configuration file specifies three root secrets, with the value of
encryption_root_secret_2 being the current active root secret:

Note: To ensure there is no loss of data availability, deploying a new key to your cluster requires a two-
stage config change. First, add the new key to the encryption_root_secret_<secret_id> option
and restart the proxy-server. Do this for all proxies. Next, set the active_root_secret_id option to
the new secret id and restart the proxy. Again, do this for all proxies. This process ensures that all proxies
will have the new key available for decryption before any proxy uses it for encryption.

2.17. Object Encryption 97

Swift Documentation, Release 2.30.2.dev8

Encryption middleware

Once deployed, the encryption filter will by default encrypt object data and metadata when handling
PUT and POST requests and decrypt object data and metadata when handling GET and HEAD requests.
COPY requests are transformed into GET and PUT requests by the Server Side Copy middleware be-
fore reaching the encryption middleware and as a result object data and metadata is decrypted and re-
encrypted when copied.

Encryption Root Secret in External Key Management System

The benefits of using a dedicated system for storing the encryption root secret include the auditing and
access control infrastructure that are already in place in such a system, and the fact that an encryption root
secret stored in a key management system (KMS) may be backed by a hardware security module (HSM)
for additional security. Another significant benefit of storing the root encryption secret in an external
KMS is that it is in this case never stored on a disk in the Swift cluster.

Swift supports fetching encryption root secrets from a Barbican service or a KMIP service using the
kms_keymaster or kmip_keymaster middleware respectively.

Encryption Root Secret in a Barbican KMS

Make sure the required dependencies are installed for retrieving an encryption root secret from an external
KMS. This can be done when installing Swift (add the -e flag to install as a development version) by
changing to the Swift directory and running the following command to install Swift together with the
kms_keymaster extra dependencies:

Another way to install the dependencies is by making sure the following lines exist in the requirements.txt
file, and installing them using pip install -r requirements.txt:

Note: If any of the required packages is already installed, the --upgrade flag may be required for the
pip commands in order for the required minimum version to be installed.

To make use of an encryption root secret stored in an external KMS, replace the keymaster middleware
with the kms_keymaster middleware in the proxy server WSGI pipeline in proxy-server.conf, in the order
shown in this example:

and add a section to the same file:

98 Chapter 2. Overview and Concepts

https://docs.openstack.org/barbican
https://www.oasis-open.org/committees/kmip/

Swift Documentation, Release 2.30.2.dev8

Create or edit the file file_with_kms_keymaster_config referenced above. For further details on the mid-
dleware configuration options, see the keymaster.conf-sample file. An example of the content of this file,
with optional parameters omitted, is below:

The encryption root secret shall be created and stored in the external key management system before it
can be used by the keymaster. It shall be stored as a symmetric key, with content type application/
octet-stream, base64 content encoding, AES algorithm, bit length 256, and secret type symmetric.
The mode ctr may also be stored for informational purposes - it is not currently checked by the keymaster.

The following command can be used to store the currently configured encryption_root_secret value
from the proxy-server.conf file in Barbican:

Alternatively, the existing root secret can also be stored in Barbican using curl.

Note: The credentials used to store the secret in Barbican shall be the same ones that the proxy server
uses to retrieve the secret, i.e., the ones configured in the keymaster.conf file. For clarity reasons the
commands shown here omit the credentials - they may be specified explicitly, or in environment variables.

Instead of using an existing root secret, Barbican can also be asked to generate a new 256-bit root secret,
with content type application/octet-stream and algorithm AES (the mode parameter is currently
optional):

The order create creates an asynchronous request to create the actual secret. The order can be re-
trieved using openstack secret order get, and once the order completes successfully, the output
will show the key id of the generated root secret. Keys currently stored in Barbican can be listed using
the openstack secret list command.

Note: Both the order (the asynchronous request for creating or storing a secret), and the actual secret
itself, have similar unique identifiers. Once the order has been completed, the key id is shown in the
output of the order get command.

The keymaster uses the explicitly configured username and password (and project name etc.) from the
keymaster.conf file for retrieving the encryption root secret from an external key management system.
The Castellan library is used to communicate with Barbican.

2.17. Object Encryption 929

https://docs.openstack.org/api-guide/key-manager/secrets.html
https://docs.openstack.org/castellan/latest/

Swift Documentation, Release 2.30.2.dev8

For the proxy server, reading the encryption root secret directly from the proxy-server.conf file, from
the keymaster.conf file pointed to from the proxy-server.conf file, or from an external key management
system such as Barbican, are all functionally equivalent. In case reading the encryption root secret from
the external key management system fails, the proxy server will not start up. If the encryption root secret
is retrieved successfully, it is cached in memory in the proxy server.

For further details on the configuration options, see the [filter:kms_keymaster] section in the proxy-
server.conf-sample file, and the keymaster.conf-sample file.

Encryption Root Secret in a KMIP service

This middleware enables Swift to fetch a root secret from a KMIP service. The root secret is expected to
have been previously created in the KMIP service and is referenced by its unique identifier. The secret
should be an AES-256 symmetric key.

To use this middleware Swift must be installed with the extra required dependencies:

Add the -e flag to install as a development version.

Edit the swift proxy-server.conf file to insert the middleware in the wsgi pipeline, replacing any other
keymaster middleware:

and add a new filter section:

Apart from use and key_id the options are as defined for a PyKMIP client. The authoritative definition
of these options can be found at https://pykmip.readthedocs.io/en/latest/client.html.

The value of the key_id option should be the unique identifier for a secret that will be retrieved from the
KMIP service.

The keymaster configuration can alternatively be defined in a separate config file by using the
keymaster_config_path option:

100 Chapter 2. Overview and Concepts

https://www.oasis-open.org/committees/kmip/
https://www.oasis-open.org/committees/kmip/
https://pykmip.readthedocs.io/en/latest/client.html
https://www.oasis-open.org/committees/kmip/

Swift Documentation, Release 2.30.2.dev8

In this case, the filter:kmip_keymaster section should contain no other options than use and
keymaster_config_path. All other options should be defined in the separate config file in a section
named kmip_keymaster. For example:

Changing the encryption root secret of external KMSs

Because the KMS and KMIP keymasters derive from the default KeyMaster they also have to ability to
define multiple keys. The only difference is the key option names. Instead of using the form encryp-
tion_root_secret_<secret_id> both external KMSs use key_id_<secret_id>, as it is an extension of their
existing configuration. For example:

Other then that, the process is the same as Changing the encryption root secret.

Upgrade Considerations
When upgrading an existing cluster to deploy encryption, the following sequence of steps is recom-
mended:

1. Upgrade all object servers

2. Upgrade all proxy servers

3. Add keymaster and encryption middlewares to every proxy servers middleware pipeline
with the encryption disable_encryption option set to True and the keymaster
encryption_root_secret value set as described above.

4. If required, follow the steps for Container sync configuration.
5. Finally, change the encryption disable_encryption option to False

Objects that existed in the cluster prior to the keymaster and encryption middlewares being deployed
are still readable with GET and HEAD requests. The content of those objects will not be encrypted
unless they are written again by a PUT or COPY request. Any user metadata of those objects will not be
encrypted unless it is written again by a PUT, POST or COPY request.

2.17. Object Encryption 101

Swift Documentation, Release 2.30.2.dev8

Disabling Encryption

Once deployed, the keymaster and encryption middlewares should not be removed from the pipeline.
To do so will cause encrypted object data and/or metadata to be returned in response to GET or HEAD
requests for objects that were previously encrypted.

Encryption of inbound object data may be disabled by setting the encryption disable_encryption
option to True, in which case existing encrypted objects will remain encrypted but new data written
with PUT, POST or COPY requests will not be encrypted. The keymaster and encryption middlewares
should remain in the pipeline even when encryption of new objects is not required. The encryption
middleware is needed to handle GET requests for objects that may have been previously encrypted. The
keymaster is needed to provide keys for those requests.

Container sync configuration

If container sync is being used then the keymaster and encryption middlewares must be added to the
container sync internal client pipeline. The following configuration steps are required:

1. Create a custom internal client configuration file for container sync (if one is not already in
use) based on the sample file internal-client.conf-sample. For example, copy internal-client.conf-
sample to /etc/swift/container-sync-client.conf.

2. Modify this file to include the middlewares in the pipeline in the same way as described above for
the proxy server.

3. Modify the container-sync section of all container server config files to point to this internal client
config file using the internal_client_conf_path option. For example:

Note: The encryption_root_secret value is necessary to recover any encrypted data from the stor-
age system, and therefore, it must be guarded against accidental loss. Its value (and consequently, the
custom internal client configuration file) should not be stored on any disk that is in any account, container
or object ring.

Note: These container sync configuration steps will be necessary for container sync probe tests to pass
if the encryption middlewares are included in the proxy pipeline of a test cluster.

2.17.2 Implementation

Encryption scheme

Plaintext data is encrypted to ciphertext using the AES cipher with 256-bit keys implemented by the
python cryptography package. The cipher is used in counter (CTR) mode so that any byte or range of
bytes in the ciphertext may be decrypted independently of any other bytes in the ciphertext. This enables
very simple handling of ranged GETs.

In general an item of unencrypted data, plaintext, is transformed to an item of encrypted data,
ciphertext:

102 Chapter 2. Overview and Concepts

https://pypi.org/project/cryptography

Swift Documentation, Release 2.30.2.dev8

where E is the encryption function, k is an encryption key and iv is a unique initialization vector (IV) cho-
sen for each encryption context. For example, the object body is one encryption context with a randomly
chosen IV. The IV is stored as metadata of the encrypted item so that it is available for decryption:

where D is the decryption function.

The implementation of CTR mode follows NIST SP800-38A, and the full IV passed to the encryption or
decryption function serves as the initial counter block.

In general any encrypted item has accompanying crypto-metadata that describes the IV and the cipher
algorithm used for the encryption:

This crypto-metadata is stored either with the ciphertext (for user metadata and etags) or as a separate
header (for object bodies).

Key management

A keymaster middleware is responsible for providing the keys required for each encryption and decryp-
tion operation. Two keys are required when handling object requests: a container key that is uniquely
associated with the container path and an object key that is uniquely associated with the object path.
These keys are made available to the encryption middleware via a callback function that the keymaster
installs in the WSGI request environ.

The current keymaster implementation derives container and object keys from the
encryption_root_secret in a deterministic way by constructing a SHA256 HMAC using the
encryption_root_secret as a key and the container or object path as a message, for example:

Other strategies for providing object and container keys may be employed by future implementations of
alternative keymaster middleware.

During each object PUT, a random key is generated to encrypt the object body. This random key is
then encrypted using the object key provided by the keymaster. This makes it safe to store the encrypted
random key alongside the encrypted object data and metadata.

This process of key wrapping enables more efficient re-keying events when the object key may need to
be replaced and consequently any data encrypted using that key must be re-encrypted. Key wrapping
minimizes the amount of data encrypted using those keys to just other randomly chosen keys which can
be re-wrapped efficiently without needing to re-encrypt the larger amounts of data that were encrypted
using the random keys.

Note: Re-keying is not currently implemented. Key wrapping is implemented in anticipation of future
re-keying operations.

2.17. Object Encryption 103

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

Swift Documentation, Release 2.30.2.dev8

Encryption middleware

The encryption middleware is composed of an encrypter component and a decrypter component.

Encrypter operation

Custom user metadata

The encrypter encrypts each item of custom user metadata using the object key provided by the keymaster
and an IV that is randomly chosen for that metadata item. The encrypted values are stored as Object
Transient-Sysmeta with associated crypto-metadata appended to the encrypted value. For example:

are transformed to:

The unencrypted custom user metadata headers are removed.

Object body

Encryption of an object body is performed using a randomly chosen body key and a randomly chosen
Iv:

The body_key is wrapped using the object key provided by the keymaster and a randomly chosen IV:

The encrypter stores the associated crypto-metadata in a system metadata header:

Note that in this case there is an extra item of crypto-metadata which stores the wrapped body key and
its IV.

104 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Entity tag

While encrypting the object body the encrypter also calculates the ETag (md5 digest) of the plaintext
body. This value is encrypted using the object key provided by the keymaster and a randomly chosen
IV, and saved as an item of system metadata, with associated crypto-metadata appended to the encrypted
value:

The encrypter also forces an encrypted version of the plaintext ETag to be sent with container updates
by adding an update override header to the PUT request. The associated crypto-metadata is appended to
the encrypted ETag value of this update override header:

The container key is used for this encryption so that the decrypter is able to decrypt the ETags in container
listings when handling a container request, since object keys may not be available in that context.

Since the plaintext ETag value is only known once the encrypter has completed
processing the entire object body, the X-Object-Sysmeta-Crypto-Etag and
X-Object-Sysmeta-Container-Update-Override-Etag headers are sent after the encrypted
object body using the proxy servers support for request footers.

Conditional Requests

In general, an object server evaluates conditional requests with If[-None] -Match headers by comparing
values listed in an If[-None] -Match header against the ETag that is stored in the object metadata. This
is not possible when the ETag stored in object metadata has been encrypted. The encrypter therefore
calculates an HMAC using the object key and the ETag while handling object PUT requests, and stores
this under the metadata key X-Object-Sysmeta-Crypto-Etag-Mac:

Like other ETag-related metadata, this is sent after the encrypted object body using the proxy servers
support for request footers.

The encrypter similarly calculates an HMAC for each ETag value included in If[-None]-Match
headers of conditional GET or HEAD requests, and appends these to the If[-None]-Match header.
The encrypter also sets the X-Backend-Etag-Is-At header to point to the previously stored
X-Object-Sysmeta-Crypto-Etag-Mac metadata so that the object server evaluates the conditional
request by comparing the HMAC values included in the Tf[-None]-Match with the value stored under
X-Object-Sysmeta-Crypto-Etag-Mac. For example, given a conditional request with header:

the encrypter would transform the request headers to include:

2.17. Object Encryption 105

Swift Documentation, Release 2.30.2.dev8

This enables the object server to perform an encrypted comparison to check whether the ETags match,
without leaking the ETag itself or leaking information about the object body.

Decrypter operation

For each GET or HEAD request to an object, the decrypter inspects the response for encrypted items
(revealed by crypto-metadata headers), and if any are discovered then it will:

1. Fetch the object and container keys from the keymaster via its callback
2. Decrypt the X-Object-Sysmeta-Crypto-Etag value
3. Decrypt the X-Object-Sysmeta-Container-Update-Override-Etag value
4. Decrypt metadata header values using the object key
5. Decrypt the wrapped body key found in X-Object-Sysmeta-Crypto-Body-Meta
6. Decrypt the body using the body key
For each GET request to a container that would include ETags in its response body, the decrypter will:
1. GET the response body with the container listing
2. Fetch the container key from the keymaster via its callback

3. Decrypt any encrypted ETag entries in the container listing using the container key

Impact on other Swift services and features

Encryption has no impact on Versioned Writes other than that any previously unencrypted objects will be
encrypted as they are copied to or from the versions container. Keymaster and encryption middlewares
should be placed after versioned_writes in the proxy server pipeline, as described in Deployment and
operation.

Container Sync uses an internal client to GET objects that are to be syncd. This internal client must be
configured to use the keymaster and encryption middlewares as described above.

Encryption has no impact on the object-auditor service. Since the ETag header saved with the object at
rest is the md5 sum of the encrypted object body then the auditor will verify that encrypted data is valid.

Encryption has no impact on the object-expirer service. X-Delete-At and X-Delete-After headers
are not encrypted.

Encryption has no impact on the object-replicator and object-reconstructor services. These services are
unaware of the object or EC fragment data being encrypted.

Encryption has no impact on the container-reconciler service. The container-reconciler uses an internal
client to move objects between different policy rings. The reconcilers pipeline MUST NOT have encryp-
tion enabled. The destination object has the same URL as the source object and the object is moved
without re-encryption.

106 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Considerations for developers

Developers should be aware that keymaster and encryption middlewares rely on the path of an object
remaining unchanged. The included keymaster derives keys for containers and objects based on their
paths and the encryption_root_secret. The keymaster does not rely on object metadata to inform
its generation of keys for GET and HEAD requests because when handling Conditional Requests it is
required to provide the object key before any metadata has been read from the object.

Developers should therefore give careful consideration to any new features that would relocate object
data and metadata within a Swift cluster by means that do not cause the object data and metadata to pass
through the encryption middlewares in the proxy pipeline and be re-encrypted.

The crypto-metadata associated with each encrypted item does include some key_id metadata that is
provided by the keymaster and contains the path used to derive keys. This key_id metadata is persisted
in anticipation of future scenarios when it may be necessary to decrypt an object that has been relocated
without re-encrypting, in which case the metadata could be used to derive the keys that were used for
encryption. However, this alone is not sufficient to handle conditional requests and to decrypt container
listings where objects have been relocated, and further work will be required to solve those issues.

2.18 Using Swift as Backing Store for Service Data

2.18.1 Background

This section provides guidance to OpenStack Service developers for how to store your users data in Swift.
An example of this is that a user requests that Nova save a snapshot of a VM. Nova passes the request to
Glance, Glance writes the image to a Swift container as a set of objects.

Throughout this section, the following terminology and concepts are used:

» User or end-user. This is a person making a request that will result in an OpenStack Service making
a request to Swift.

* Project (also known as Tenant). This is the unit of resource ownership. While data such as snapshot
images or block volume backups may be stored as a result of an end-users request, the reality is
that these are project data.

» Service. This is a program or system used by end-users. Specifically, it is any program or system
that is capable of receiving end-users tokens and validating the token with the Keystone Service
and has a need to store data in Swift. Glance and Cinder are examples of such Services.

» Service User. This is a Keystone user that has been assigned to a Service. This allows the Service
to generate and use its own tokens so that it can interact with other Services as itself.

» Service Project. This is a project (tenant) that is associated with a Service. There may be a single
project shared by many Services or there may be a project dedicated to each Service. In this
document, the main purpose of the Service Project is to allow the system operator to configure
specific roles for each Service User.

2.18. Using Swift as Backing Store for Service Data 107

Swift Documentation, Release 2.30.2.dev8

2.18.2 Alternate Backing Store Schemes

There are three schemes described here:

* Dedicated Service Account (Single Tenant)

Your Service has a dedicated Service Project (hence a single dedicated Swift account). Data for
all users and projects are stored in this account. Your Service must have a user assigned to it (the
Service User). When you have data to store on behalf of one of your users, you use the Service
User credentials to get a token for the Service Project and request Swift to store the data in the
Service Project.

With this scheme, data for all users is stored in a single account. This is transparent to your users
and since the credentials for the Service User are typically not shared with anyone, your users
cannot access their data by making a request directly to Swift. However, since data belonging to
all users is stored in one account, it presents a single point of vulnerably to accidental deletion or
a leak of the service-user credentials.

Multi Project (Multi Tenant)

Data belonging to a project is stored in the Swift account associated with the project. Users make
requests to your Service using a token scoped to a project in the normal way. You can then use this
same token to store the user data in the projects Swift account.

The effect is that data is stored in multiple projects (aka tenants). Hence this scheme has been
known as the multi tenant scheme.

With this scheme, access is controlled by Keystone. The users must have a role that allows them
to perform the request to your Service. In addition, they must have a role that also allows them
to store data in the Swift account. By default, the admin or swiftoperator roles are used for this
purpose (specific systems may use other role names). If the user does not have the appropriate
roles, when your Service attempts to access Swift, the operation will fail.

Since you are using the users token to access the data, it follows that the user can use the same token
to access Swift directly bypassing your Service. When end-users are browsing containers, they will
also see your Services containers and objects and may potentially delete the data. Conversely, there
is no single account where all data so leakage of credentials will only affect a single project/tenant.

Service Prefix Account

Data belonging to a project is stored in a Swift account associated with the project. This is similar
to the Multi Project scheme described above. However, the Swift account is different than the
account that users access. Specifically, it has a different account prefix. For example, for the
project 1234, the user account is named AUTH_1234. Your Service uses a different account, for
example, SERVICE_1234.

To access the SERVICE_1234 account, you must present two tokens: the users token is put in the
X-Auth-Token header. You present your Services token in the X-Service-Token header. Swift is
configured such that only when both tokens are presented will it allow access. Specifically, the
user cannot bypass your Service because they only have their own token. Conversely, your Service
can only access the data while it has a copy of the users token the Services token by itself will not
grant access.

The data stored in the Service Prefix Account cannot be seen by end-users. So they cannot delete
this data they can only access the data if they make a request through your Service. The data is
also more secure. To make an unauthorized access, someone would need to compromise both an

108

Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

end-users and your Service User credentials. Even then, this would only expose one project not
other projects.

The Service Prefix Account scheme combines features of the Dedicated Service Account and Multi
Project schemes. It has the private, dedicated, characteristics of the Dedicated Service Account scheme
but does not present a single point of attack. Using the Service Prefix Account scheme is a little more
involved than the other schemes, so the rest of this document describes it more detail.

2.18.3 Service Prefix Account Overview

The following diagram shows the flow through the system from the end-user, to your Service and then
onto Swift:

The sequence of events and actions are as follows:
* Request arrives at your Service

* The <user-token> is validated by the keystonemiddleware.auth_token middleware. The users
role(s) are used to determine if the user can perform the request. See The Auth System for technical
information on the authentication system.

* As part of this request, your Service needs to access Swift (either to write or read a container or
object). In this example, you want to perform a PUT on <container>/<object>.

e In the wsgi environment, the auth_token module will have populated the
HTTP_X_SERVICE_CATALOG item. This lists the Swift endpoint and account. This is
something such as https://<netloc>/v1/AUTH_1234 where AUTH_ is a prefix and 1234 is the
project id.

* The AUTH_ prefix is the default value. However, your system may use a different prefix. To deter-
mine the actual prefix, search for the first underscore (_) character in the account name. If there is
no underscore character in the account name, this means there is no prefix.

* Your Service should have a configuration parameter that provides the appropriate prefix to use for
storing data in Swift. There is more discussion of this below, but for now assume the prefix is
SERVICE_.

* Replace the prefix (AUTH_ in above examples) in the path with SERVICE_, so the full URL to access
the object becomes https://<netloc>/v1/SERVICE_1234/<container>/<object>.

* Make the request to Swift, using this URL. In the X-Auth-Token header place a copy of the <user-
token>. In the X-Service-Token header, place your Services token. If you use python-swiftclient

2.18. Using Swift as Backing Store for Service Data 109

https:/
https:/

Swift Documentation, Release 2.30.2.dev8

you can achieve this by:
— Putting the URL in the preauthurl parameter
— Putting the <user-token> in preauthtoken parameter

— Adding the X-Service-Token to the headers parameter

Using the HTTP_X_ SERVICE_CATALOG to get Swift Account Name

The auth_token middleware populates the wsgi environment with information when it validates the users
token. The HTTP_X_SERVICE_CATALOG item is a JSON string containing details of the OpenStack
endpoints. For Swift, this also contains the projects Swift account name. Here is an example of a catalog
entry for Swift:

To get the End-users account:
* Look for an entry with type of object-store

* If there are several regions, there will be several endpoints. Use the appropriate region name and
select the publicURL item.

* The Swift account name is the final item in the path (AUTH_1234 in this example).

Getting a Service Token

A Service Token is no different than any other token and is requested from Keystone using user credentials
and project in the usual way. The core requirement is that your Service User has the appropriate role. In
practice:

* Your Service must have a user assigned to it (the Service User).
* Your Service has a project assigned to it (the Service Project).

* The Service User must have a role on the Service Project. This role is distinct from any of the
normal end-user roles.

110 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

* The role used must the role configured in the /etc/swift/proxy-server.conf. This is the
<prefix>_service_roles option. In this example, the role is the service role:

The service role should only be granted to OpenStack Services. It should not be granted to users.

Single or multiple Service Prefixes?

Most of the examples used in this document used a single prefix. The prefix, SERVICE was used. By
using a single prefix, an operator is allowing all OpenStack Services to share the same account for data
associated with a given project. For test systems or deployments well protected on private firewalled
networks, this is appropriate.

However, if one Service is compromised, that Service can access data created by another Service. To
prevent this, multiple Service Prefixes may be used. This also requires that the operator configure multiple
service roles. For example, in a system that has Glance and Cinder, the following Swift configuration
could be used:

The Service User for Glance would be granted the image_service role on its Service Project and the
Cinder Service user is granted the block_service role on its project. In this scheme, if the Cinder
Service was compromised, it would not be able to access any Glance data.

Container Naming
Since a single Service Prefix is possible, container names should be prefixed with a unique string to

prevent name clashes. We suggest you use the service type field (as used in the service catalog). For
example, The Glance Service would use image as a prefix.

2.19 Container Sharding

Container sharding is an operator controlled feature that may be used to shard very large container
databases into a number of smaller shard containers

Note: It is strongly recommended that operators gain experience of sharding containers in a non-
production cluster before using in production.

The sharding process involves moving all sharding container database records via the container repli-
cation engine; the time taken to complete sharding is dependent upon the existing cluster load and the
performance of the container database being sharded.

2.19. Container Sharding 111

Swift Documentation, Release 2.30.2.dev8

There is currently no documented process for reversing the sharding process once sharding has been
enabled.

2.19.1 Background

The metadata for each container in Swift is stored in an SQLite database. This metadata includes: infor-
mation about the container such as its name, modification time and current object count; user metadata
that may been written to the container by clients; a record of every object in the container. The container
database object records are used to generate container listings in response to container GET requests;
each object record stores the objects name, size, hash and content-type as well as associated timestamps.

As the number of objects in a container increases then the number of object records in the container
database increases. Eventually the container database performance starts to degrade and the time taken
to update an object record increases. This can result in object updates timing out, with a corresponding
increase in the backlog of pending asynchronous updates on object servers. Container databases are
typically replicated on several nodes and any database performance degradation can also result in longer
container replication times.

The point at which container database performance starts to degrade depends upon the choice of hardware
in the container ring. Anecdotal evidence suggests that containers with tens of millions of object records
have noticeably degraded performance.

This performance degradation can be avoided by ensuring that clients use an object naming scheme that
disperses objects across a number of containers thereby distributing load across a number of container
databases. However, that is not always desirable nor is it under the control of the cluster operator.

Swifts container sharding feature provides the operator with a mechanism to distribute the load on a
single client-visible container across multiple, hidden, shard containers, each of which stores a subset of
the containers object records. Clients are unaware of container sharding; clients continue to use the same
API to access a container that, if sharded, maps to a number of shard containers within the Swift cluster.

2.19.2 Deployment and operation
Upgrade Considerations

It is essential that all servers in a Swift cluster have been upgraded to support the container sharding
feature before attempting to shard a container.

Identifying containers in need of sharding

Container sharding is currently initiated by the swift-manage-shard-ranges CLI tool described be-
low. Operators must first identify containers that are candidates for sharding. To assist with this, the
container-sharder daemon inspects the size of containers that it visits and writes a list of sharding can-
didates to recon cache. For example:

(continues on next page)

112 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

A container is considered to be a sharding candidate if its object count is greater than or equal to the
shard_container_threshold option. The number of candidates reported is limited to a number con-
figured by the recon_candidates_limit option such that only the largest candidate containers are
included in the sharding_candidates data.

swift-manage-shard-ranges CLI tool

The swift-manage-shard-ranges tool provides commands for initiating sharding of a container.
swift-manage-shard-ranges operates directly on a container database file.

Note: swift-manage-shard-ranges mustonly be used on one replica of a container database to avoid
inconsistent results. The modifications made by swift-manage-shard-ranges will be automatically
copied to other replicas of the container database via normal replication processes.

There are three steps in the process of initiating sharding, each of which may be performed in isolation
or, as shown below, using a single command.

1. The £ind sub-command scans the container database to identify how many shard containers will
be required and which objects they will manage. Each shard container manages a range of the
object namespace defined by a lower and upper bound. The maximum number of objects to be
allocated to each shard container is specified on the command line. For example:

§$ swift-manage-shard-ranges <path_to_db> find 500000
Loaded db broker for AUTH_test/cl.
[
{
"index": O,
"lower": "",
"object_count": 500000,
"upper": "o0_01086834"
3,
{
"index": 1,
"lower": "0_01086834",
"object_count": 500000,
"upper": "0_01586834"
3,

(continues on next page)

2.19. Container Sharding 113

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

{
"index": 2,
"lower": "o0_01586834",
"object_count": 500000,
"upper": "o0_02087570"
3,
{
"index": 3,
"lower": "o_02087570",
"object_count": 500000,
"upper": "o0_02587572"
3,
{
"index": 4,
"lower": "o0_02587572",
"object_count": 500000,
"upper": "0_03087572"
3,
{
"index": 5,
"lower": "o_03087572",
"object_count”: 500000,
"upper": "o0_03587572"
3,
{
"index": 6,
"lower": "o0_03587572",
"object_count": 349194,
"upper": ""
3

]
Found 7 ranges in 4.37222s (total object count 3349194)

This command returns a list of shard ranges each of which describes the namespace to be managed
by a shard container. No other action is taken by this command and the container database is un-
changed. The output may be redirected to a file for subsequent retrieval by the replace command.
For example:

$ swift-manage-shard-ranges <path_to_db> find 500000 > my_shard_ranges
Loaded db broker for AUTH_test/cl.
Found 7 ranges in 2.448s (total object count 3349194)

2. The replace sub-command deletes any shard ranges that might already be in the container
database and inserts shard ranges from a given file. The file contents should be in the format
generated by the find sub-command. For example:
$ swift-manage-shard-ranges <path_to_db> replace my_shard_ranges
Loaded db broker for AUTH_test/cl.

No shard ranges found to delete.
Injected 7 shard ranges.
(continues on next page)
114 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

Run container-replicator to replicate them to other nodes.
Use the enable sub-command to enable sharding.

The container database is modified to store the shard ranges, but the container will not start sharding
until sharding is enabled. The info sub-command may be used to inspect the state of the container
database at any point, and the show sub-command may be used to display the inserted shard ranges.

Shard ranges stored in the container database may be replaced using the replace sub-command.
This will first delete all existing shard ranges before storing new shard ranges. Shard ranges may
also be deleted from the container database using the delete sub-command.

Shard ranges should not be replaced or deleted using swift-manage-shard-ranges once the
next step of enabling sharding has been taken.

3. The enable sub-command enables the container for sharding. The sharder daemon and/or con-
tainer replicator daemon will replicate shard ranges to other replicas of the container DB and the
sharder daemon will proceed to shard the container. This process may take some time depending
on the size of the container, the number of shard ranges and the underlying hardware.

Note: Once the enable sub-command has been used there is no supported mechanism to revert
sharding. Do not use swift-manage-shard-ranges to make any further changes to the shard
ranges in the container DB.

For example:

$ swift-manage-shard-ranges <path_to_db> enable

Loaded db broker for AUTH_test/cl.

Container moved to state 'sharding' with epoch 1525345093.22908.
Run container-sharder on all nodes to shard the container.

This does not shard the container - sharding is performed by the container-sharder daemon - but
sets the necessary state in the database for the daemon to subsequently start the sharding process.

The epoch value displayed in the output is the time at which sharding was enabled. When the
container-sharder daemon starts sharding this container it creates a new container database file
using the epoch in the filename to distinguish it from the retiring DB that is being sharded.

All three steps may be performed with one sub-command:

$ swift-manage-shard-ranges <path_to_db> find_and_replace 500000 --enable --
—force

Loaded db broker for AUTH_test/cl.

No shard ranges found to delete.

Injected 7 shard ranges.

Run container-replicator to replicate them to other nodes.

Container moved to state 'sharding' with epoch 1525345669.46153.

Run container-sharder on all nodes to shard the container.

exception swift.cli.manage_shard_ranges.GapsFoundException
Bases: swift.cli.manage_shard_ranges.ManageShardRangesException

2.19. Container Sharding 115

Swift Documentation, Release 2.30.2.dev8

exception swift.cli.manage_shard_ranges.InvalidSolutionException(msg,
acceptor_path,
overlap-
ping_donors)

Bases: swift.cli.manage_shard_ranges.ManageShardRangesException

exception swift.cli.manage_shard_ranges.InvalidStateException

Bases: swift.cli.manage_shard_ranges.ManageShardRangesException

exception swift.cli.manage_shard_ranges.ManageShardRangesException

Bases: Exception

container-sharder daemon

Once sharding has been enabled for a container, the act of sharding is performed by the Con-
tainer Sharder. The Container Sharder daemon must be running on all container servers. The
container-sharder daemon periodically visits each container database to perform any container
sharding tasks that are required.

The container-sharder daemon requires a [container-sharder] config section to exist in the
container server configuration file; a sample config section is shown in the container-server.conf-sample
file.

Note: The auto_shard option is currently NOT recommended for production systems and should be
set to false (the default value).

Several of the [container-sharder] config options are only significant when the auto_shard
option is enabled. This option enables the container-sharder daemon to automatically identify
containers that are candidates for sharding and initiate the sharding process, instead of using the
swift-manage-shard-ranges tool.

The container sharder uses an internal client and therefore requires an internal client configura-
tion file to exist. By default the internal-client configuration file is expected to be found at
Jetc/swift/internal-client.conf. An alternative location for the configuration file may be specified using
the internal_client_conf_path option in the [container-sharder] config section.

The content of the internal-client configuration file should be the same as the internal-client.conf-sample
file. In particular, the internal-client configuration should have:

in the [proxy-server] section.

A container database may require several visits by the container-sharder daemon before it is fully
sharded. On each visit the container-sharder daemon will move a subset of object records to new
shard containers by cleaving new shard container databases from the original. By default, two shards are
processed per visit; this number may be configured by the cleave_batch_size option.

The container-sharder daemon periodically writes progress data for containers that are being sharded
to recon cache. For example:

116 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

This example indicates that from a total of 7 shard ranges, 2 have been cleaved whereas 5 remain in
created state waiting to be cleaved.

Shard containers are created in an internal account and not visible to clients. By default, shard containers
for an account AUTH_test are created in the internal account . shards_AUTH_test.

Once a container has started sharding, object updates to that container may be redirected to the shard
container. The container-sharder daemon is also responsible for sending updates of a shards object
count and bytes_used to the original container so that aggegrate object count and bytes used values can
be returned in responses to client requests.

Note: The container-sharder daemon must continue to run on all container servers in order for
shards object stats updates to be generated.

2.19.3 Under the hood

2.19. Container Sharding 117

Swift Documentation, Release 2.30.2.dev8

Terminology

Name | Description

Root The original container that lives in the users account. It holds references to its shard con-
con- tainers.

tainer
Re- The original database file that is to be sharded.
tiring
DB
Fresh | A database file that will replace the retiring database.
DB
Epoch | A timestamp at which the fresh DB is created; the epoch value is embedded in the fresh DB
filename.

Shard | A range of the object namespace defined by a lower bound and upper bound.

range
Shard | A container that holds object records for a shard range. Shard containers exist in a hidden

con- account mirroring the users account.

tainer

Parent | The container from which a shard container has been cleaved. When first sharding a root
con- container each shards parent container will be the root container. When sharding a shard
tainer | container each shards parent container will be the sharding shard container.

Mis- Items that dont belong in a containers shard range. These will be moved to their correct
placed | location by the container-sharder.

ob-

jects

Cleav- | The act of moving object records within a shard range to a shard container database.
ing
Shrink-| The act of merging a small shard container into another shard container in order to delete
ing the small shard container.

Donor | The shard range that is shrinking away.

Ac- The shard range into which a donor is merged.

ceptor

Finding shard ranges

The end goal of sharding a container is to replace the original container database which has grown very
large with a number of shard container databases, each of which is responsible for storing a range of
the entire object namespace. The first step towards achieving this is to identify an appropriate set of
contiguous object namespaces, known as shard ranges, each of which contains a similar sized portion of
the containers current object content.

Shard ranges cannot simply be selected by sharding the namespace uniformly, because object names are
not guaranteed to be distributed uniformly. If the container were naively sharded into two shard ranges,
one containing all object names up to m and the other containing all object names beyond m, then if all
object names actually start with o the outcome would be an extremely unbalanced pair of shard containers.

It is also too simplistic to assume that every container that requires sharding can be sharded into two.
This might be the goal in the ideal world, but in practice there will be containers that have grown very
large and should be sharded into many shards. Furthermore, the time required to find the exact mid-point
of the existing object names in a large SQLite database would increase with container size.

118 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

For these reasons, shard ranges of size N are found by searching for the Nth object in the database table,
sorted by object name, and then searching for the (2 * N)th object, and so on until all objects have been
searched. For a container that has exactly 2N objects, the end result is the same as sharding the container
at the midpoint of its object names. In practice sharding would typically be enabled for containers with
great than 2N objects and more than two shard ranges will be found, the last one probably containing
less than N objects. With containers having large multiples of N objects, shard ranges can be identified
in batches which enables more scalable solution.

To illustrate this process, consider a very large container in a user account acct that is a candidate for
sharding:

|
|
|
| cont
|
|
|

The swift-manage-shard-ranges CLI tool tool £find sub-command searches the object table for the Nth
object whose name will become the upper bound of the first shard range, and the lower bound of the
second shard range. The lower bound of the first shard range is the empty string.

For the purposes of this example the first upper bound is cat:

cont

cat giraffe

swift-manage-shard-ranges CLI tool continues to search the container to find further shard ranges, with
the final upper bound also being the empty string.

Enabling sharding

Once shard ranges have been found the swift-manage-shard-ranges CLI tool replace sub-command is
used to insert them into the shard_ranges table of the container database. In addition to its lower and
upper bounds, each shard range is given a unique name.

The enable sub-command then creates some final state required to initiate sharding the container, in-
cluding a special shard range record referred to as the containers own_shard_range whose name is equal
to the containers path. This is used to keep a record of the object namespace that the container covers,
which for user containers is always the entire namespace. Sharding of the container will only begin when
its own shard ranges state has been set to SHARDING.

2.19. Container Sharding 119

Swift Documentation, Release 2.30.2.dev8

The ShardRange class
The ShardRange class provides methods for interactng with the attributes and state of a shard range.
The class encapsulates the following properties:

* The name of the shard range which is also the name of the shard container used to hold object
records in its namespace.

* Lower and upper bounds which define the object namespace of the shard range.
* A deleted flag.

* A timestamp at which the bounds and deleted flag were last modified.

* The object stats for the shard range i.e. object count and bytes used.

* A timestamp at which the object stats were last modified.

* The state of the shard range, and an epoch, which is the timestamp used in the shard containers
database file name.

* A timestamp at which the state and epoch were last modified.
A shard range progresses through the following states:

* FOUND: the shard range has been identified in the container that is to be sharded but no resources
have been created for it.

* CREATED: a shard container has been created to store the contents of the shard range.

* CLEAVED: the sharding containers contents for the shard range have been copied to the shard
container from at least one replica of the sharding container.

* ACTIVE: a sharding containers constituent shard ranges are moved to this state when all shard
ranges in the sharding container have been cleaved.

* SHRINKING: the shard range has been enabled for shrinking; or
* SHARDING: the shard range has been enabled for sharding into further sub-shards.

* SHARDED: the shard range has completed sharding or shrinking; the container will typically now
have a number of constituent ACTIVE shard ranges.

Note: Shard range state represents the most advanced state of the shard range on any replica of the
container. For example, a shard range in CLEAVED state may not have completed cleaving on all replicas
but has cleaved on at least one replica.

Fresh and retiring database files

As alluded to earlier, writing to a large container causes increased latency for the container servers. Once
sharding has been initiated on a container it is desirable to stop writing to the large database; ultimately
it will be unlinked. This is primarily achieved by redirecting object updates to new shard containers as
they are created (see Redirecting object updates below), but some object updates may still need to be
accepted by the root container and other container metadata must still be modifiable.

To render the large retiring database effectively read-only, when the container-sharder daemon finds a
container with a set of shard range records, including an own_shard_range, it first creates a fresh database
file which will ultimately replace the existing retiring database. For a retiring DB whose filename is:

120 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

the fresh database file name is of the form:

where epoch is a timestamp stored in the containers own_shard_range.

The fresh DB has a copy of the shard ranges table from the retiring DB and all other container metadata
apart from the object records. Once a fresh DB file has been created it is used to store any new object
updates and no more object records are written to the retiring DB file.

Once the sharding process has completed, the retiring DB file will be unlinked leaving only the fresh DB
file in the containers directory. There are therefore three states that the container DB directory may be in
during the sharding process: UNSHARDED, SHARDING and SHARDED.

S — > [y

v

R e

N S
v v

FE R 33 R

If the container ever shrink to the point that is has no shards then the fresh DB starts to store object
records, behaving the same as an unsharded container. This is known as the COLLAPSED state.

In summary, the DB states that any container replica may be in are:

 UNSHARDED - In this state there is just one standard container database. All containers are
originally in this state.

* SHARDING - There are now two databases, the retiring database and a fresh database. The fresh
database stores any metadata, container level stats, an object holding table, and a table that stores
shard ranges.

2.19. Container Sharding 121

Swift Documentation, Release 2.30.2.dev8

* SHARDED - There is only one database, the fresh database, which has one or more shard ranges
in addition to its own shard range. The retiring database has been unlinked.

* COLLAPSED - There is only one database, the fresh database, which has only its own shard range
and store object records.

Note: DB state is unique to each replica of a container and is not necessarily synchronised with shard
range state.

Creating shard containers

The container-sharder daemon next creates a shard container for each shard range using the shard range
name as the name of the shard container:

/.shards_acct

[cont—568d8e-<ts>—0 J [cont-750ed3-<ts>-1 J

Each shard container has an own_shard_range record which has the lower and upper bounds of the object
namespace for which it is responsible, and a reference to the sharding user container, which is referred to
as the root_container. Unlike the root_container, the shard containers own_shard_range does not cover
the entire namepsace.

A shard range name takes the form <shard_a>/<shard_c> where <shard_a> is a hidden account and
<shard_c> is a container name that is derived from the root container.

The account name <shard_a> used for shard containers is formed by prefixing the user account with the
string .shards_. This avoids namespace collisions and also keeps all the shard containers out of view
from users of the account.

The container name for each shard container has the form:

where root container name is the name of the user container to which the contents of the shard container
belong, parent container is the name of the container from which the shard is being cleaved, timestamp
is the time at which the shard range was created and shard index is the position of the shard range in the
name-ordered list of shard ranges for the parent container.

When sharding a user container the parent container name will be the same as the root container. However,
if a shard container grows to a size that it requires sharding, then the parent container name for its shards
will be the name of the sharding shard container.

122 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

For example, consider a user container with path AUTH_user/c which is sharded into two shard contain-
ers whose name will be:

If the first shard container is subsequently sharded into a further two shard containers then they will be
named:

This naming scheme guarantees that shards, and shards of shards, each have a unique name of bounded
length.

Cleaving shard containers

Having created empty shard containers the sharder daemon will proceed to cleave objects from the retiring
database to each shard range. Cleaving occurs in batches of two (by default) shard ranges, so if a container
has more than two shard ranges then the daemon must visit it multiple times to complete cleaving.

To cleave a shard range the daemon creates a shard database for the shard container on a local device.
This device may be one of the shard containers primary nodes but often it will not. Object records from
the corresponding shard range namespace are then copied from the retiring DB to this shard DB.

Swifts container replication mechanism is then used to replicate the shard DB to its primary nodes.
Checks are made to ensure that the new shard container DB has been replicated to a sufficient number
of its primary nodes before it is considered to have been successfully cleaved. By default the daemon
requires successful replication of a new shard broker to at least a quorum of the container rings replica
count, but this requirement can be tuned using the shard_replication_quorum option.

Once a shard range has been successfully cleaved from a retiring database the daemon transitions its
state to CLEAVED. It should be noted that this state transition occurs as soon as any one of the retiring
DB replicas has cleaved the shard range, and therefore does not imply that all retiring DB replicas have
cleaved that range. The significance of the state transition is that the shard container is now considered
suitable for contributing to object listings, since its contents are present on a quorum of its primary nodes
and are the same as at least one of the retiring DBs for that namespace.

Once a shard range is in the CLEAVED state, the requirement for successful cleaving of other instances of
the retirng DB may optionally be relaxed since it is not so imperative that their contents are replicated
immediately to their primary nodes. The existing_shard_replication_quorum option can be used
to reduce the quorum required for a cleaved shard range to be considered successfully replicated by the
sharder daemon.

Note: Once cleaved, shard container DBs will continue to be replicated by the normal container-
replicator daemon so that they will eventually be fully replicated to all primary nodes regardless of
any replication quorum options used by the sharder daemon.

The cleaving progress of each replica of a retiring DB must be tracked independently of the shard range
state. This is done using a per-DB CleavingContext object that maintains a cleaving cursor for the retiring
DB that it is associated with. The cleaving cursor is simply the upper bound of the last shard range to
have been cleaved from that particular retiring DB.

2.19. Container Sharding 123

Swift Documentation, Release 2.30.2.dev8

Each CleavingContext is stored in the sharding containers sysmeta under a key that is the id of the retiring
DB. Since all container DB files have a unique id, this guarantees that each retiring DB will have a unique
CleavingContext. Furthermore, if the retiring DB file is changed, for example by an rsync_then_merge
replication operation which might change the contents of the DBs object table, then it will get a new
unique CleavingContext.

A CleavingContext maintains other state that is used to ensure that a retiring DB is only considered to be
fully cleaved, and ready to be deleted, if all of its object rows have been cleaved to a shard range.

Once all shard ranges have been cleaved from the retiring DB it is deleted. The container is now repre-
sented by the fresh DB which has a table of shard range records that point to the shard containers that
store the containers object records.

Redirecting object updates

Once a shard container exists, object updates arising from new client requests and async pending files
are directed to the shard container instead of the root container. This takes load off of the root container.

For a sharded (or partially sharded) container, when the proxy receives a new object request it issues a
GET request to the container for data describing a shard container to which the object update should be
sent. The proxy then annotates the object request with the shard container location so that the object
server will forward object updates to the shard container. If those updates fail then the async pending file
that is written on the object server contains the shard container location.

When the object updater processes async pending files for previously failed object updates, it may not
find a shard container location. In this case the updater sends the update to the root container, which
returns a redirection response with the shard container location.

Note: Object updates are directed to shard containers as soon as they exist, even if the retiring DB object
records have not yet been cleaved to the shard container. This prevents further writes to the retiring DB
and also avoids the fresh DB being polluted by new object updates. The goal is to ultimately have all
object records in the shard containers and none in the root container.

Building container listings

Listing requests for a sharded container are handled by querying the shard containers for components of
the listing. The proxy forwards the client listing request to the root container, as it would for an unsharded
container, but the container server responds with a list of shard ranges rather than objects. The proxy then
queries each shard container in namespace order for their listing, until either the listing length limit is
reached or all shard ranges have been listed.

While a container is still in the process of sharding, only cleaved shard ranges are used when building a
container listing. Shard ranges that have not yet cleaved will not have any object records from the root
container. The root container continues to provide listings for the uncleaved part of its namespace.

Note: New object updates are redirected to shard containers that have not yet been cleaved. These
updates will not therefore be included in container listings until their shard range has been cleaved.

124 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Example request redirection

As an example, consider a sharding container in which 3 shard ranges have been found ending in cat,
giraffe and igloo. Their respective shard containers have been created so update requests for objects up
to igloo are redirected to the appropriate shard container. The root DB continues to handle listing requests
and update requests for any object name beyond igloo.

cont (r{etiring db)
]

'

cat giraffe igloo

~_ 7

{cont—568d8e-<ts>-0 } {cont—750ed3-<ts>-1} {cont-4ec28d-<ts>-2 }

mn_megpt "cat" - "giraffe" "giraffe" - "igloo"

The sharder daemon cleaves objects from the retiring DB to the shard range DBs; it also moves any
misplaced objects from the root containers fresh DB to the shard DB. Cleaving progress is represented by
the blue line. Once the first shard range has been cleaved listing requests for that namespace are directed
to the shard container. The root container still provides listings for the remainder of the namespace.

cont (|J|etiring db)
|

__F__

cat giraffe igloo

~_ ~_ ~_

cont-568d8e-<ts>-0 } [cont—750ed3-<ts>—1 } {cont-4ec28d-<ts>-2 }

e ueath “cat" - "giraffe" "giraffe" - "igloo"

The process continues: the sharder cleaves the next range and a new range is found with upper bound of
linux. Now the root container only needs to handle listing requests up to giraffe and update requests for
objects whose name is greater than linux. Load will continue to diminish on the root DB and be dispersed
across the shard DBs.

2.19. Container Sharding 125

Swift Documentation, Release 2.30.2.dev8

I
I
I | | [J o0 |
| [| | cont (retiring db)
| L |] |
|
I

cat girafe igloo linux

| /.shards_acct

| ~ ~

I

:[cont—568d8e-<ts>-0 J[cont-750ed3-<ts>-1 J[cont-4ec28d-<ts>-2 | cont-aef34f-<ts>-3 |

[
' " “cat" "cat" - "giraffe" "giraffe" - "igloo" "igloo" - "linux" J'

Container replication

Shard range records are replicated between container DB replicas in much the same way as object records
are for unsharded containers. However, the usual replication of object records between replicas of a
container is halted as soon as a container is capable of being sharded. Instead, object records are moved
to their new locations in shard containers. This avoids unnecessary replication traffic between container
replicas.

To facilitate this, shard ranges are both pushed and pulled during replication, prior to any attempt to
replicate objects. This means that the node initiating replication learns about shard ranges from the
destination node early during the replication process and is able to skip object replication if it discovers
that it has shard ranges and is able to shard.

Note: When the destination DB for container replication is missing then the complete_rsync replication
mechanism is still used and in this case only both object records and shard range records are copied to
the destination node.

Container deletion

Sharded containers may be deleted by a DELETE request just like an unsharded container. A sharded
container must be empty before it can be deleted which implies that all of its shard containers must have
reported that they are empty.

Shard containers are not immediately deleted when their root container is deleted; the shard containers
remain undeleted so that they are able to continue to receive object updates that might arrive after the
root container has been deleted. Shard containers continue to update their deleted root container with
their object stats. If a shard container does receive object updates that cause it to no longer be empty then
the root container will no longer be considered deleted once that shard container sends an object stats
update.

126 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Sharding a shard container

A shard container may grow to a size that requires it to be sharded. swift-manage-shard-ranges
may be used to identify shard ranges within a shard container and enable sharding in the same way as
for a root container. When a shard is sharding it notifies the root container of its shard ranges so that the
root container can start to redirect object updates to the new sub-shards. When the shard has completed
sharding the root is aware of all the new sub-shards and the sharding shard deletes its shard range record
in the root container shard ranges table. At this point the root container is aware of all the new sub-shards
which collectively cover the namespace of the now-deleted shard.

There is no hierarchy of shards beyond the root container and its immediate shards. When a shard shards,
its sub-shards are effectively re-parented with the root container.

Shrinking a shard container

A shard containers contents may reduce to a point where the shard container is no longer required. If
this happens then the shard container may be shrunk into another shard range. Shrinking is achieved in a
similar way to sharding: an acceptor shard range is written to the shrinking shard containers shard ranges
table; unlike sharding, where shard ranges each cover a subset of the sharding containers namespace, the
acceptor shard range is a superset of the shrinking shard range.

Once given an acceptor shard range the shrinking shard will cleave itself to its acceptor, and then delete
itself from the root container shard ranges table.

2.20 Building a Consistent Hashing Ring

2.20.1 Authored by Greg Holt, February 2011

This is a compilation of five posts I made earlier discussing how to build a consistent hashing ring. The
posts seemed to be accessed quite frequently, so Ive gathered them all here on one page for easier reading.

Note: This is an historical document; as such, all code examples are Python 2. If this makes you squirm,
think of it as pseudo-code. Regardless of implementation language, the state of the art in consistent-
hashing and distributed systems more generally has advanced. We hope that this introduction from first
principles will still prove informative, particularly with regard to how data is distributed within a Swift
cluster.

Part 1

Consistent Hashing is a term used to describe a process where data is distributed using a hashing algo-
rithm to determine its location. Using only the hash of the id of the data you can determine exactly where
that data should be. This mapping of hashes to locations is usually termed a ring.

Probably the simplest hash is just a modulus of the id. For instance, if all ids are numbers and you have
two machines you wish to distribute data to, you could just put all odd numbered ids on one machine and
even numbered ids on the other. Assuming you have a balanced number of odd and even numbered ids,
and a balanced data size per id, your data would be balanced between the two machines.

2.20. Building a Consistent Hashing Ring 127

Swift Documentation, Release 2.30.2.dev8

Since data ids are often textual names and not numbers, like paths for files or URLSs, it makes sense
to use a real hashing algorithm to convert the names to numbers first. Using MD35 for instance,
the hash of the name mom.png is 4559al12e3e8da7c2186250c2f292e3af and the hash of dad.png is
096edcc4107e9e18d6a03a43b3853bea. Now, using the modulus, we can place mom.jpg on the odd ma-
chine and dad.png on the even one. Another benefit of using a hashing algorithm like MDS5 is that the
resulting hashes have a known even distribution, meaning your ids will be evenly distributed without
worrying about keeping the id values themselves evenly distributed.

Here is a simple example of this in action:

So thats not bad at all; less than a percent over/under for distribution per node. In the next part of
this series well examine where modulus distribution causes problems and how to improve our ring to
overcome them.

128 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

Part 2

In Part 1 of this series, we did a simple test of using the modulus of a hash to locate data. We saw very
good distribution, but thats only part of the story. Distributed systems not only need to distribute load,
but they often also need to grow as more and more data is placed in it.

So lets imagine we have a 100 node system up and running using our previous algorithm, but its starting
to get full so we want to add another node. When we add that 101st node to our algorithm we notice that
many ids now map to different nodes than they previously did. Were going to have to shuffle a ton of data
around our system to get it all into place again.

Lets examine whats happened on a much smaller scale: just 2 nodes again, node O gets even ids and node
1 gets odd ids. So data id 100 would map to node 0, data id 101 to node 1, data id 102 to node 0, etc.
This is simply node = id % 2. Now we add a third node (node 2) for more space, so we want node = id
% 3. So now data id 100 maps to node id 1, data id 101 to node 2, and data id 102 to node 0. So we have
to move data for 2 of our 3 ids so they can be found again.

Lets examine this at a larger scale:

Wow, thats severe. Wed have to shuffle around 99% of our data just to increase our capacity 1%! We
need a new algorithm that combats this behavior.

This is where the ring really comes in. We can assign ranges of hashes directly to nodes and then use
an algorithm that minimizes the changes to those ranges. Back to our small scale, lets say our ids range
from 0 to 999. We have two nodes and well assign data ids 0499 to node 0 and 500999 to node 1. Later,
when we add node 2, we can take half the data ids from node 0 and half from node 1, minimizing the
amount of data that needs to move.

Lets examine this at a larger scale:

(continues on next page)

2.20. Building a Consistent Hashing Ring 129

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

Okay, that is better. But still, moving 50% of our data to add 1% capacity is not very good. If we examine
what happened more closely well see what is an accordion effect. We shrunk node Os range a bit to give
to the new node, but that shifted all the other nodes ranges by the same amount.

We can minimize the change to a nodes assigned range by assigning several smaller ranges instead of the
single broad range we were before. This can be done by creating virtual nodes for each node. So 100
nodes might have 1000 virtual nodes. Lets examine how that might work.

(continues on next page)

130 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

There we go, we added 1% capacity and only moved 0.9% of existing data. The vnode_range_starts list
seems a bit out of place though. Its values are calculated and never change for the lifetime of the cluster,
so lets optimize that out.

(continues on next page)

2.20. Building a Consistent Hashing Ring 131

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

There we go. In the next part of this series, will further examine the algorithms limitations and how to
improve on it.

Part 3

In Part 2 of this series, we reached an algorithm that performed well even when adding new nodes to
the cluster. We used 1000 virtual nodes that could be independently assigned to nodes, allowing us to
minimize the amount of data moved when a node was added.

The number of virtual nodes puts a cap on how many real nodes you can have. For example, if you have
1000 virtual nodes and you try to add a 1001st real node, you cant assign a virtual node to it without
leaving another real node with no assignment, leaving you with just 1000 active real nodes still.

Unfortunately, the number of virtual nodes created at the beginning can never change for the life of the
cluster without a lot of careful work. For example, you could double the virtual node count by splitting
each existing virtual node in half and assigning both halves to the same real node. However, if the real
node uses the virtual nodes id to optimally store the data (for example, all data might be stored in /[virtual
node id]/[data id]) it would have to move data around locally to reflect the change. And it would have
to resolve data using both the new and old locations while the moves were taking place, making atomic
operations difficult or impossible.

Lets continue with this assumption that changing the virtual node count is more work than its worth, but
keep in mind that some applications might be fine with this.

The easiest way to deal with this limitation is to make the limit high enough that it wont matter. For
instance, if we decide our cluster will never exceed 60,000 real nodes, we can just make 60,000 virtual
nodes.

Also, we should include in our calculations the relative size of our nodes. For instance, a year from
now we might have real nodes that can handle twice the capacity of our current nodes. So wed want to
assign twice the virtual nodes to those future nodes, so maybe we should raise our virtual node estimate
to 120,000.

132 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

A good rule to follow might be to calculate 100 virtual nodes to each real node at maximum capacity.
This would allow you to alter the load on any given node by 1%, even at max capacity, which is pretty
fine tuning. So now were at 6,000,000 virtual nodes for a max capacity cluster of 60,000 real nodes.

6 million virtual nodes seems like a lot, and it might seem like wed use up way too much memory. But
the only structure this affects is the virtual node to real node mapping. The base amount of memory
required would be 6 million times 2 bytes (to store a real node id from 0 to 65,535). 12 megabytes of
memory just isnt that much to use these days.

Even with all the overhead of flexible data types, things arent that bad. I changed the code from the
previous part in this series to have 60,000 real and 6,000,000 virtual nodes, changed the list to an array(H),
and python topped out at 27m of resident memory and that includes two rings.

To change terminology a bit, were going to start calling these virtual nodes partitions. This will make
it a bit easier to discern between the two types of nodes weve been talking about so far. Also, it makes
sense to talk about partitions as they are really just unchanging sections of the hash space.

Were also going to always keep the partition count a power of two. This makes it easy to just use bit
manipulation on the hash to determine the partition rather than modulus. It isnt much faster, but it is a
little. So, heres our updated ring code, using 8,388,608 (2 ** 23) partitions and 65,536 nodes. Weve
upped the sample data id set and checked the distribution to make sure we havent broken anything.

2.20. Building a Consistent Hashing Ring 133

Swift Documentation, Release 2.30.2.dev8

Hmm. +10% seems a bit high, but I reran with 65,536 partitions and 256 nodes and got +0.4% so its just
that our sample size (100m) is too small for our number of partitions (8m). Itll take way too long to run
experiments with an even larger sample size, so lets reduce back down to these lesser numbers. (To be
certain, I reran at the full version with a 10 billion data id sample set and got +1%, but it took 6.5 hours
to run.)

In the next part of this series, well talk about how to increase the durability of our data in the cluster.

Part 4

In Part 3 of this series, we just further discussed partitions (virtual nodes) and cleaned up our code a
bit based on that. Now, lets talk about how to increase the durability and availability of our data in the
cluster.

For many distributed data stores, durability is quite important. Either RAID arrays or individually distinct
copies of data are required. While RAID will increase the durability, it does nothing to increase the
availability if the RAID machine crashes, the data may be safe but inaccessible until repairs are done.
If we keep distinct copies of the data on different machines and a machine crashes, the other copies will
still be available while we repair the broken machine.

An easy way to gain this multiple copy durability/availability is to just use multiple rings and groups
of nodes. For instance, to achieve the industry standard of three copies, youd split the nodes into three
groups and each group would have its own ring and each would receive a copy of each data item. This
can work well enough, but has the drawback that expanding capacity requires adding three nodes at a
time and that losing one node essentially lowers capacity by three times that nodes capacity.

Instead, lets use a different, but common, approach of meeting our requirements with a single ring. This
can be done by walking the ring from the starting point and looking for additional distinct nodes. Heres
code that supports a variable number of replicas (set to 3 for testing):

(continues on next page)

134 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

Thats pretty good; less than 1% over/under. While this works well, there are a couple of problems.

First, because of how weve initially assigned the partitions to nodes, all the partitions for a given node
have their extra copies on the same other two nodes. The problem here is that when a machine fails, the
load on these other nodes will jump by that amount. Itd be better if we initially shuffied the partition
assignment to distribute the failover load better.

The other problem is a bit harder to explain, but deals with physical separation of machines. Imagine you
can only put 16 machines in a rack in your datacenter. The 256 nodes weve been using would fill 16 racks.
With our current code, if a rack goes out (power problem, network issue, etc.) there is a good chance
some data will have all three copies in that rack, becoming inaccessible. We can fix this shortcoming by
adding the concept of zones to our nodes, and then ensuring that replicas are stored in distinct zones.

(continues on next page)

2.20. Building a Consistent Hashing Ring 135

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

10000000
while len
0
while and len
1
IH 1
for in range(2
0
0
for in range
str
L} >I 1
str 0
0 1
0 1
for in range(1
while in and \
in
1
if
0
1
1 1
1 1
print '%d: Desired data ids per node'
max
100.0
print '%d: Most data ids on one node, %.02f%% over' \
min
100.0
print '%d: Least data ids on one node, %.02f%% under' \
print '%d: Desired data ids per zone'
max
100.0
print '%d: Most data ids in one zone, %.02f%% over' \
min
(continues on next page)
136 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

So the shuffle and zone distinctions affected our distribution some, but still definitely good enough. This
test took about 64 seconds to run on my machine.

Theres a completely alternate, and quite common, way of accomplishing these same requirements. This
alternate method doesnt use partitions at all, but instead just assigns anchors to the nodes within the hash
space. Finding the first node for a given hash just involves walking this anchor ring for the next node, and
finding additional nodes works similarly as before. To attain the equivalent of our virtual nodes, each
real node is assigned multiple anchors.

(continues on next page)

2.20. Building a Consistent Hashing Ring 137

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

This test took over 15 minutes to run! Unfortunately, this method also gives much less control over
the distribution. To get better distribution, you have to add more virtual nodes, which eats up more
memory and takes even more time to build the ring and perform distinct node lookups. The most common
operation, data id lookup, can be improved (by predetermining each virtual nodes failover nodes, for

138 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

instance) but it starts off so far behind our first approach that well just stick with that.

In the next part of this series, well start to wrap all this up into a useful Python module.
Part 5
In Part 4 of this series, we ended up with a multiple copy, distinctly zoned ring. Or at least the start of

it. In this final part well package the code up into a useable Python module and then add one last feature.
First, lets separate the ring itself from the building of the data for the ring and its testing.

(continues on next page)

2.20. Building a Consistent Hashing Ring 139

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

print '%.02fs to build ring'
return

def test_ring

10000000
for in range
for in
'id' \
'id' 0 1
'zone' \
'zone' 0 1
print '%ds to test ring'
\
len
print '%d: Desired data ids per node'
max
\
100.0

print '%d: Most data ids on one node, %.02f%% over' \

min
\
100.0
print '%d: Least data ids on one node, %.02f%% under' \
\
len(set 'zone'] for n in
\
print '%d: Desired data ids per zone'
max
\
100.0
print '%d: Most data ids in one zone, %.02f%% over' \
min
\
100.0
print '%d: Least data ids in one zone, %.02f%% under' \
if '__main__"'
16
3

(continues on next page)

140 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

It takes a bit longer to test our ring, but thats mostly because of the switch to dictionaries from arrays for
various items. Having node dictionaries is nice because you can attach any node information you want
directly there (ip addresses, tcp ports, drive paths, etc.). But were still on track for further testing; our
distribution is still good.

Now, lets add our one last feature to our ring: the concept of weights. Weights are useful because the
nodes you add later in a rings life are likely to have more capacity than those you have at the outset. For
this test, well make half our nodes have twice the weight. Well have to change build_ring to give more
partitions to the nodes with more weight and well change test_ring to take into account these weights.
Since weve changed so much Ill just post the entire module again:

(continues on next page)

2.20. Building a Consistent Hashing Ring 141

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

self 32

def get_nodes(self

str
ST
0 self
self
self 0
for in range(l, self
while self in and \
self self in
1
if len(self
0
self
self 1
return [self for n in
def build_ring
2
\
float (sum 'weight'] for n in
for in
'"desired_parts' \
'weight'
g
for in range(2
for in
if 'desired_parts' 1
'"desired_parts' 1
Yid'
break
else
for in
if '"desired_parts' 0
'desired_parts' 1
id"
break

print '%.02fs to build ring'
return

def test_ring

10000000

(continues on next page)

142 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

for in range
for in
'id’ \
'id' 0 1
'zone' \
'zone' 0 1
print '%ds to test ring'
float (sum 'weight'] for n in
0
0
for in
\
'weight'
id"
if 0
100.0
if
else
100.0
if
print '%.02f%% max node over'
print '%.02f%% max node under'
0
0
for in set 'zone'] for n in
sum 'weight'] for n in
if 'zone'
\
if 0
100.0
if
else
100.0
if

print '%.02f%% max zone over'
print '%.02f%% max zone under'

if ' __main__"
16

256

(continues on next page)

2.20. Building a Consistent Hashing Ring 143

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

So things are still good, even though we have differently weighted nodes. I ran another test with this code
using random weights from 1 to 100 and got over/under values for nodes of 7.35%/18.12% and zones of
0.24%/0.22%, still pretty good considering the crazy weight ranges.

Summary

Hopefully this series has been a good introduction to building a ring. This code is essentially how the
OpenStack Swift ring works, except that Swifts ring has lots of additional optimizations, such as stor-
ing each replica assignment separately, and lots of extra features for building, validating, and otherwise
working with rings.

2.21 Modifying Ring Partition Power

The ring partition power determines the on-disk location of data files and is selected when creating a
new ring. In normal operation, it is a fixed value. This is because a different partition power results in a
different on-disk location for all data files.

However, increasing the partition power by 1 can be done by choosing locations that are on the same
disk. As a result, we can create hard-links for both the new and old locations, avoiding data movement
without impacting availability.

To enable a partition power change without interrupting user access, object servers need to be aware of
it in advance. Therefore a partition power change needs to be done in multiple steps.

Note: Do not increase the partition power on account and container rings. Increasing the partition power
is only supported for object rings. Trying to increase the part_power for account and container rings will
result in unavailability, maybe even data loss.

144 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

2.21.1 Caveats

Before increasing the partition power, consider the possible drawbacks. There are a few caveats when
increasing the partition power:

* Almost all diskfiles in the cluster need to be relinked then cleaned up, and all partition directories
need to be rehashed. This imposes significant I/O load on object servers, which may impact client
requests. Consider using cgroups, ionice, or even just the built-in --files-per-second rate-
limiting to reduce client impact.

* Object replicators and reconstructors will skip affected policies during the partition power increase.
Replicators are not aware of hard-links, and would simply copy the content; this would result in
heavy data movement and the worst case would be that all data is stored twice.

* Due to the fact that each object will now be hard linked from two locations, many more inodes
will be used temporarily - expect around twice the amount. You need to check the free inode count
before increasing the partition power. Even after the increase is complete and extra hardlinks are
cleaned up, expect increased inode usage since there will be twice as many partition and suffix
directories.

* Also, object auditors might read each object twice before cleanup removes the second hard link.

* Due to the new inodes more memory is needed to cache them, and your object servers should have
plenty of available memory to avoid running out of inode cache. Setting vfs_cache_pressure
to 1 might help with that.

¢ All nodes in the cluster must run at least Swift version 2.13.0 or later.

Due to these caveats you should only increase the partition power if really needed, i.e. if the number of
partitions per disk is extremely low and the data is distributed unevenly across disks.

2.21.2 1. Prepare partition power increase

The swift-ring-builder is used to prepare the ring for an upcoming partition power increase. It will store
a new variable next_part_power with the current partition power + 1. Object servers recognize this,
and hard links to the new location will be created (or deleted) on every PUT or DELETE. This will make
it possible to access newly written objects using the future partition power:

Now you need to copy the updated .ring.gz to all nodes. Already existing data needs to be relinked too;
therefore an operator has to run a relinker command on all object servers in this phase:

Note: Start relinking after all the servers re-read the modified ring files, which normally happens within
15 seconds after writing a modified ring. Also, make sure the modified rings are pushed to all nodes
running object services (replicators, reconstructors and reconcilers)- they have to skip the policy during
relinking.

Note: The relinking command must run as the same user as the daemon processes (usually swift). It will

2.21. Modifying Ring Partition Power 145

Swift Documentation, Release 2.30.2.dev8

create files and directories that must be manipulable by the daemon processes (server, auditor, replicator,
). If necessary, the --user option may be used to drop privileges.

Relinking might take some time; while there is no data copied or actually moved, the tool still needs to
walk the whole file system and create new hard links as required.

2.21.3 2. Increase partition power

Now that all existing data can be found using the new location, its time to actually increase the partition
power itself:

Now you need to copy the updated .ring.gz again to all nodes. Object servers are now using the new,
increased partition power and no longer create additional hard links.

Note: The object servers will create additional hard links for each modified or new object, and this
requires more inodes.

Note: If you decide you dont want to increase the partition power, you should instead cancel the increase.
It is not possible to revert this operation once started. To abort the partition power increase, execute
the following commands, copy the updated .ring.gz files to all nodes and continue with 3. Cleanup
afterwards:

2.21.4 3. Cleanup

Existing hard links in the old locations need to be removed, and a cleanup tool is provided to do this. Run
the following command on each storage node:

Note: The cleanup must be finished within your object servers reclaim_age period (which is by default
1 week). Otherwise objects that have been overwritten between step #1 and step #2 and deleted afterwards
cant be cleaned up anymore. You may want to increase your reclaim_age before or during relinking.

Afterwards it is required to update the rings one last time to inform servers that all steps to increase the
partition power are done, and replicators should resume their job:

Now you need to copy the updated .ring.gz again to all nodes.

146 Chapter 2. Overview and Concepts

Swift Documentation, Release 2.30.2.dev8

2.21.5 Background

An existing object that is currently located on partition X will be placed either on partition 2*X or 2*X+1
after the partition power is increased. The reason for this is the Ring.get_part() method, that does a bitwise
shift to the right.

To avoid actual data movement to different disks or even nodes, the allocation of partitions to nodes needs
to be changed. The allocation is pairwise due to the above mentioned new partition scheme. Therefore
devices are allocated like this, with the partition being the index and the value being the device id:

There is a helper method to compute the new path, and the following example shows the mapping between
old and new location:

Using the original partition power (14) it returned the same path; however after an increase to 15 it returns
the new path, and the new partition is 2*X+1 in this case.

2.22 Associated Projects

2.22.1 Application Bindings

* OpenStack supported binding:
— Python-SwiftClient
* Unofficial libraries and bindings:

- PHP

2.22. Associated Projects 147

https://pypi.org/project/python-swiftclient

Swift Documentation, Release 2.30.2.dev8

PHP-opencloud - Official Rackspace PHP bindings that should work for other Swift
deployments too.

— Ruby
% swift_client - Small but powerful Ruby client to interact with OpenStack Swift

% nightcrawler_swift - This Ruby gem teleports your assets to an OpenStack Swift
bucket/container

* swift storage - Simple OpenStack Swift storage client.
- Java

% libcloud - Apache Libcloud - a unified interface in Python for different clouds with Open-
Stack Swift support.

% jclouds - Java library offering bindings for all OpenStack projects

% java-openstack-swift - Java bindings for OpenStack Swift

% javaswift - Collection of Java tools for Swift
— Bash

% supload - Bash script to upload file to cloud storage based on OpenStack Swift APL
- NET

% openstacknetsdk.org - An OpenStack Cloud SDK for Microsoft .NET.
- Go

% Go language bindings

% Gophercloud an OpenStack SDK for Go

2.22.2 Authentication

» Keystone - Official Identity Service for OpenStack.
* Swauth - RETIRED: An alternative Swift authentication service that only requires Swift itself.
* Basicauth - HTTP Basic authentication support (keystone backed).

2.22.3 Command Line Access

» Swiftly - Alternate command line access to Swift with direct (no proxy) access capabilities as well.

148 Chapter 2. Overview and Concepts

http://php-opencloud.com
https://github.com/mrkamel/swift_client
https://github.com/tulios/nightcrawler_swift
https://rubygems.org/gems/swift-storage
http://libcloud.apache.org
http://jclouds.apache.org/guides/openstack/
https://github.com/iterate-ch/java-openstack-swift
http://javaswift.org/
https://github.com/selectel/supload
http://www.openstacknetsdk.org
https://github.com/ncw/swift
https://godoc.org/github.com/gophercloud/gophercloud
https://opendev.org/openstack/keystone
https://opendev.org/x/swauth/
https://github.com/CloudVPS/swift-basicauth
https://github.com/gholt/swiftly

Swift Documentation, Release 2.30.2.dev8

2.22.4 Log Processing

* slogging - Basic stats and logging tools.

2.22.5 Monitoring & Statistics

* Swift Informant - Swift proxy Middleware to send events to a statsd instance.

» Swift Inspector - Swift middleware to relay information about a request back to the client.
2.22.6 Content Distribution Network Integration

* SOS - Swift Origin Server.

2.22.7 Alternative API

» ProxyFS - Integrated file and object access for Swift object storage

* SwiftHLM - a middleware for using OpenStack Swift with tape and other high latency media
storage backends.

2.22.8 Benchmarking/Load Generators

* getput - getput tool suite

e COSbench - COSbench tool suite

2.22.9 Custom Logger Hooks

* swift-sentry - Sentry exception reporting for Swift

2.22.10 Storage Backends (DiskFile APl implementations)
» Swift-on-File - Enables objects created using Swift API to be accessed as files on a POSIX filesys-
tem and vice versa.

 swift-scality-backend - Scality sproxyd object server implementation for Swift.

2.22.11 Developer Tools

* SAIO bash scripts - Well commented simple bash scripts for Swift all in one setup.

 vagrant-swift-all-in-one - Quickly setup a standard development environment using Vagrant and
Chef cookbooks in an Ubuntu virtual machine.

* SAIO Ansible playbook - Quickly setup a standard development environment using Vagrant and
Ansible in a Fedora virtual machine (with built-in Swift-on-File support).

* Multi Swift - Bash scripts to spin up multiple Swift clusters sharing the same hardware

2.22. Associated Projects 149

https://opendev.org/x/slogging
https://github.com/pandemicsyn/swift-informant
https://github.com/hurricanerix/swift-inspector
https://github.com/dpgoetz/sos
https://github.com/NVIDIA/proxyfs
https://github.com/ibm-research/SwiftHLM
https://github.com/markseger/getput
https://github.com/intel-cloud/cosbench
https://github.com/pandemicsyn/swift-sentry
https://opendev.org/x/swiftonfile
https://github.com/scality/ScalitySproxydSwift
https://github.com/ntata/swift-setup-scripts
https://github.com/NVIDIA/vagrant-swift-all-in-one
https://github.com/thiagodasilva/ansible-saio
https://opendev.org/x/swiftonfile
https://github.com/ntata/multi-swift-POC

Swift Documentation, Release 2.30.2.dev8

2.22.12 Other

Glance - Provides services for discovering, registering, and retrieving virtual machine images (for
OpenStack Compute [Nova], for example).

Django Swiftbrowser - Simple Django web app to access OpenStack Swift.

Swift-account-stats - Swift-account-stats is a tool to report statistics on Swift usage at tenant and
global levels.

PyECLIb - High-level erasure code library used by Swift
liberasurecode - Low-level erasure code library used by PyECLib
Swift Browser - JavaScript interface for Swift

swift-ui - OpenStack Swift web browser

swiftbackmeup - Utility that allows one to create backups and upload them to OpenStack Swift

150

Chapter 2. Overview and Concepts

https://opendev.org/openstack/glance
https://github.com/cschwede/django-swiftbrowser
https://github.com/redhat-cip/swift-account-stats
https://opendev.org/openstack/pyeclib
https://opendev.org/openstack/liberasurecode
https://github.com/mgeisler/swift-browser
https://github.com/fanatic/swift-ui
https://github.com/redhat-cip/swiftbackmeup

CHAPTER
THREE

CONTRIBUTOR DOCUMENTATION

3.1 Contributing to OpenStack Swift

3.1.1 Who is a Contributor?

Put simply, if you improve Swift, youre a contributor. The easiest way to improve the project is to tell us
where theres a bug. In other words, filing a bug is a valuable and helpful way to contribute to the project.

Once a bug has been filed, someone will work on writing a patch to fix the bug. Perhaps youd like to fix
a bug. Writing code to fix a bug or add new functionality is tremendously important.

Once code has been written, it is submitted upstream for review. All code, even that written by the most
senior members of the community, must pass code review and all tests before it can be included in the
project. Reviewing proposed patches is a very helpful way to be a contributor.

Swift is nothing without the community behind it. Wed love to welcome you to our community. Come
find us in #openstack-swift on OFTC IRC or on the OpenStack dev mailing list.

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

If you want more Swift related project documentation make sure you checkout the Swift developer (con-
tributor) documentation at https://docs.openstack.org/swift/latest/

Filing a Bug

Filing a bug is the easiest way to contribute. We use Launchpad as a bug tracker; you can find currently-
tracked bugs at https://bugs.launchpad.net/swift. Use the Report a bug link to file a new bug.

If you find something in Swift that doesnt match the documentation or doesnt meet your expectations with
how it should work, please let us know. Of course, if you ever get an error (like a Traceback message in
the logs), we definitely want to know about that. Well do our best to diagnose any problem and patch it
as soon as possible.

A bug report, at minimum, should describe what you were doing that caused the bug. Swift broke, pls fix
is not helpful. Instead, something like When I restarted syslog, Swift started logging traceback messages
is very helpful. The goal is that we can reproduce the bug and isolate the issue in order to apply a fix. If
you dont have full details, thats ok. Anything you can provide is helpful.

You may have noticed that there are many tracked bugs, but not all of them have been confirmed. If you
take a look at an old bug report and you can reproduce the issue described, please leave a comment on
the bug about that. It lets us all know that the bug is very likely to be valid.

151

https://docs.openstack.org/contributors/
https://docs.openstack.org/swift/latest/
https://bugs.launchpad.net/swift
https://bugs.launchpad.net/swift/+filebug

Swift Documentation, Release 2.30.2.dev8

Reviewing Someone Elses Code

All code reviews in OpenStack projects are done on https://review.opendev.org/. Reviewing patches is
one of the most effective ways you can contribute to the community.

Weve written REVIEW_GUIDELINES.rst (found in this source tree) to help you give good reviews.

https://wiki.openstack.org/wiki/Swift/PriorityReviews is a starting point to find what reviews are priority
in the community.

3.1.2 What do | work on?

If youre looking for a way to write and contribute code, but youre not sure what to work on, check out the
wishlist bugs in the bug tracker. These are normally smaller items that someone took the time to write
down but didnt have time to implement.

And please join #openstack-swift on OFTC IRC to tell us what youre working on.

3.1.3 Getting Started

https://docs.openstack.org/swift/latest/first_contribution_swift.html

Once those steps have been completed, changes to OpenStack should be submitted for review via the
Gerrit tool, following the workflow documented at http://docs.openstack.org/infra/manual/developers.
html#development-workflow.

Gerrit is the review system used in the OpenStack projects. Were sorry, but we wont be able to respond
to pull requests submitted through GitHub.

Bugs should be filed on Launchpad, not in GitHubs issue tracker.

3.2 Swift Design Principles

* The Zen of Python

» Simple Scales

* Minimal dependencies

* Re-use existing tools and libraries when reasonable

* Leverage the economies of scale

* Small, loosely coupled RESTful services

* No single points of failure

* Start with the use case

 then design from the cluster operator up

* If you havent argued about it, you dont have the right answer yet :)

* If it is your first implementation, you probably arent done yet :)

152 Chapter 3. Contributor Documentation

https://review.opendev.org/
https://wiki.openstack.org/wiki/Swift/PriorityReviews
https://docs.openstack.org/swift/latest/first_contribution_swift.html
http://docs.openstack.org/infra/manual/developers.html#development-workflow
http://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/swift
http://legacy.python.org/dev/peps/pep-0020/

Swift Documentation, Release 2.30.2.dev8

Please dont feel offended by difference of opinion. Be prepared to advocate for your change and iterate
on it based on feedback. Reach out to other people working on the project on IRC or the mailing list - we
want to help.

3.3 Recommended workflow

e Set up a Swift All-In-One VM(SAIO).

* Make your changes. Docs and tests for your patch must land before or with your patch.

* Run unit tests, functional tests, probe tests ./.unittests ./.functests ./.probetests
* Run tox (no command-line args needed)

* git review

3.4 Notes on Testing

Running the tests above against Swift in your development environment (ie your SAIO) will catch most
issues. Any patch you propose is expected to be both tested and documented and all tests should pass.

If you want to run just a subset of the tests while you are developing, you can use nosetests:

To check which parts of your code are being exercised by a test, you can run tox and then point your
browser to swift/cover/index.html:

Swifts unit tests are designed to test small parts of the code in isolation. The functional tests validate
that the entire system is working from an external perspective (they are black-box tests). You can even
run functional tests against public Swift endpoints. The probetests are designed to test much of Swifts
internal processes. For example, a test may write data, intentionally corrupt it, and then ensure that the
correct processes detect and repair it.

When your patch is submitted for code review, it will automatically be tested on the OpenStack CI in-
frastructure. In addition to many of the tests above, it will also be tested by several other OpenStack test
jobs.

Once your patch has been reviewed and approved by core reviewers and has passed all automated tests,
it will be merged into the Swift source tree.

3.3. Recommended workflow 153

http://eavesdrop.openstack.org/irclogs/%23openstack-swift/
http://lists.openstack.org/pipermail/openstack-discuss/
https://docs.openstack.org/swift/latest/development_saio.html

Swift Documentation, Release 2.30.2.dev8

3.5 Ideas

https://wiki.openstack.org/wiki/Swift/ideas

If youre working on something, its a very good idea to write down what youre thinking about. This lets
others get up to speed, helps you collaborate, and serves as a great record for future reference. Write
down your thoughts somewhere and put a link to it here. It doesnt matter what form your thoughts are in;
use whatever is best for you. Your document should include why your idea is needed and your thoughts
on particular design choices and tradeoffs. Please include some contact information (ideally, your IRC
nick) so that people can collaborate with you.

3.6 Community

3.6.1 Communication

IRC People working on the Swift project may be found in the #openstack-swift channel on OFTC
during working hours in their timezone. The channel is logged, so if you ask a question when no
one is around, you can check the log to see if its been answered: http://eavesdrop.openstack.org/
irclogs/%?23openstack-swift/

weekly meeting This is a Swift team meeting. The discussion in this meeting is about all things related
to the Swift project:

* time: http://eavesdrop.openstack.org/#Swift_Team_Meeting
* agenda: https://wiki.openstack.org/wiki/Meetings/Swift

mailing list We use the openstack-discuss @lists.openstack.org mailing list for asynchronous discussions
or to communicate with other OpenStack teams. Use the prefix [swift] in your subject line (its
a high-volume list, so most people use email filters).

More information about the mailing list, including how to subscribe and read the archives, can be
found at: http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

3.6.2 Contacting the Core Team

The swift-core team is an active group of contributors who are responsible for directing and maintaining
the Swift project. As a new contributor, your interaction with this group will be mostly through code
reviews, because only members of swift-core can approve a code change to be merged into the code
repository. But the swift-core team also spend time on IRC so feel free to drop in to ask questions or just
to meet us.

Note: Although your contribution will require reviews by members of swift-core, these arent the only
people whose reviews matter. Anyone with a gerrit account can post reviews, so you can ask other
developers you know to review your code and you can review theirs. (A good way to learn your way
around the codebase is to review other peoples patches.)

If youre thinking, Im new at this, how can I possibly provide a helpful review?, take a look at How to
Review Changes the OpenStack Way.

Or for more specifically in a Swift context read Review Guidelines

154 Chapter 3. Contributor Documentation

https://wiki.openstack.org/wiki/Swift/ideas
http://eavesdrop.openstack.org/irclogs/%23openstack-swift/
http://eavesdrop.openstack.org/irclogs/%23openstack-swift/
http://eavesdrop.openstack.org/#Swift_Team_Meeting
https://wiki.openstack.org/wiki/Meetings/Swift
mailto:openstack-discuss@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html

Swift Documentation, Release 2.30.2.dev8

You can learn more about the role of core reviewers in the OpenStack governance documentation: https:
/ldocs.openstack.org/contributors/common/governance.html#core-reviewer

The membership list of swift-core is maintained in gerrit: https://review.opendev.org/#/admin/groups/
24, members

You can also find the members of the swift-core team at the Swift weekly meetings.

3.6.3 Getting Your Patch Merged
Understanding how reviewers review and what they look for will help getting your code merged. See
Swift Review Guidelines for how we review code.

Keep in mind that reviewers are also human; if something feels stalled, then come and poke us on IRC
or add it to our meeting agenda.

3.6.4 Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

3.7 Review Guidelines

Effective code review is a skill like any other professional skill you develop with experience. Effective
code review requires trust. No one is perfect. Everyone makes mistakes. Trust builds over time.

This document will enumerate behaviors commonly observed and associated with competent reviews of
changes purposed to the Swift code base. No one is expected to follow these steps. Guidelines are not
rules, not all behaviors will be relevant in all situations.

Code review is collaboration, not judgement.

—Alistair Coles

3.7.1 Checkout the Change

You will need to have a copy of the change in an environment where you can freely edit and experiment
with the code in order to provide a non-superficial review. Superficial reviews are not terribly helpful.
Always try to be helpful. ;)

Check out the change so that you may begin.

Commonly, git review -d <change-id>

3.7. Review Guidelines 155

https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://review.opendev.org/#/admin/groups/24,members
https://review.opendev.org/#/admin/groups/24,members
https://docs.openstack.org/project-team-guide/ptl.html

Swift Documentation, Release 2.30.2.dev8

3.7.2 Run it

Imagine that you submit a patch to Swift, and a reviewer starts to take a look at it. Your commit message
on the patch claims that it fixes a bug or adds a feature, but as soon as the reviewer downloads it locally
and tries to test it, a severe and obvious error shows up. Something like a syntax error or a missing
dependency.

Did you even run this? is the review comment all contributors dread.

Reviewers in particular need to be fearful merging changes that just dont work - or at least fail in fre-
quently common enough scenarios to be considered horribly broken. A comment in our review that says
roughly I ran this on my machine and observed description of behavior change is supposed
to achieve is the most powerful defense we have against the terrible scorn from our fellow Swift de-
velopers and operators when we accidentally merge bad code.

If youre doing a fair amount of reviews - you will participate in merging a change that will break my
clusters - its cool - Ill do it to you at some point too (sorry about that). But when either of us go look at
the reviews to understand the process gap that allowed this to happen - it better not be just because we
were too lazy to check it out and run it before it got merged.

Or be warned, you may receive, the dreaded
Did you even run this?

Im sorry, I know its rough. ;)

3.7.3 Consider edge cases very seriously

Saying that should rarely happen is the same as saying that will happen
—Douglas Crockford

Scale is an amazingly abusive partner. If you contribute changes to Swift your code is running - in
production - at scale - and your bugs cannot hide. I wish on all of us that our bugs may be exceptionally
rare - meaning they only happen in extremely unlikely edge cases. For example, bad things that happen
only 1 out of every 10K times an op is performed will be discovered in minutes. Bad things that happen
only 1 out of every one billion times something happens will be observed - by multiple deployments -
over the course of a release. Bad things that happen 1/100 times some op is performed are considered
horribly broken. Tests must exhaustively exercise possible scenarios. Every system call and network
connection will raise an error and timeout - where will that Exception be caught?

3.7.4 Run the tests

Yes, I know Gerrit does this already. You can do it foo. You might not need to re-run all the tests on your
machine - it depends on the change. But, if youre not sure which will be most useful - running all of them
best - unit - functional - probe. If you cant reliably get all tests passing in your development environment
you will not be able to do effective reviews. Whatever tests/suites you are able to exercise/validate on
your machine against your config you should mention in your review comments so that other reviewers
might choose to do other testing locally when they have the change checked out.

e.g.

I went ahead and ran probe/test_object_metadata_replication.py on my machine with both
sync_method = rsync and sync_method = ssync - that works for me - but I didnt try it with
object_post_as_copy = false

156 Chapter 3. Contributor Documentation

Swift Documentation, Release 2.30.2.dev8

3.7.5 Maintainable Code is Obvious

Style is an important component to review. The goal is maintainability.

However, keep in mind that generally style, readability and maintainability are orthogonal to the suitabil-
ity of a change for merge. A critical bug fix may be a well written pythonic masterpiece of style - or it
may be a hack-y ugly mess that will absolutely need to be cleaned up at some point - but it absolutely
should merge because: CRITICAL. BUG. FIX.

You should comment inline to praise code that is obvious. You should comment inline to highlight code
that you found to be obfuscated.

Unfortunately readability is often subjective. We should remember that its probably just our own personal
preference. Rather than a comment that says You should use a list comprehension here - rewrite the code
as a list comprehension, run the specific tests that hit the relevant section to validate your code is correct,
then leave a comment that says:

I find this more readable:
diff with working tested code

If the author (or another reviewer) agrees - its possible the change will get updated to include that im-
provement before it is merged; or it may happen in a follow-up change.

However, remember that style is non-material - it is useful to provide (via diff) suggestions to improve
maintainability as part of your review - but if the suggestion is functionally equivalent - it is by definition
optional.

3.7.6 Commit Messages

Read the commit message thoroughly before you begin the review.

Commit messages must answer the why and the what for - more so than the how or what it does. Com-
monly this will take the form of a short description:

* What is broken - without this change
* What is impossible to do with Swift - without this change
* What is slower/worse/harder - without this change

If youre not able to discern why a change is being made or how it would be used - you may have to ask
for more details before you can successfully review it.

Commit messages need to have a high consistent quality. While many things under source control can
be fixed and improved in a follow-up change - commit messages are forever. Luckily its easy to fix minor
mistakes using the in-line edit feature in Gerrit! If you can avoid ever having to ask someone to change
a commit message you will find yourself an amazingly happier and more productive reviewer.

Also commit messages should follow the OpenStack Commit Message guidelines, including references
to relevant impact tags or bug numbers. You should hand out links to the OpenStack Commit Message
guidelines liberally via comments when fixing commit messages during review.

Here you go: GitCommitMessages

3.7. Review Guidelines 157

https://wiki.openstack.org/wiki/GitCommitMessages#Summary_of_Git_commit_message_structure

Swift Documentation, Release 2.30.2.dev8

3.7.7 New Tests

New tests should be added for all code changes. Historically you should expect good changes to have a
diff line count ratio of at least 2:1 tests to code. Even if a change has to fix a lot of existing tests, if a
change does not include any new tests it probably should not merge.

If a change includes a good ratio of test changes and adds new tests - you should say so in your review
comments.

If it does not - you should write some!

and offer them to the patch author as a diff indicating to them that something like these tests Im providing

as an example will need to be included in this change before it is suitable to merge. Bonus points if you
include suggestions for the author as to how they might improve or expand upon the tests stubs you
provide.

Be very careful about asking an author to add a test for a small change before attempting to do so yourself.
Its quite possible there is a lack of existing test infrastructure needed to develop a concise and clear
test - the author of a small change may not be the best person to introduce a large amount of new test
infrastructure. Also, most of the time remember its harder to write the test than the change - if the author
is unable to develop a test for their change on their own you may prevent a useful change from being
merged. At a minimum you should suggest a specific unit test that you think they should be able to copy
and modify to exercise the behavior in their change. If youre not sure if such a test exists - replace their
change with an Exception and run tests until you find one that blows up.

3.7.8 Documentation

Most changes should include documentation. New functions and code should have Docstrings. Tests
should obviate new or changed behaviors with descriptive and meaningful phrases. New features should
include changes to the documentation tree. New config options should be documented in example configs.
The commit message should document the change for the change log.

Always point out typos or grammar mistakes when you see them in review, but also consider that if you
were able to recognize the intent of the statement - documentation with typos may be easier to iterate and
improve on than nothing.

If a change does not have adequate documentation it may not be suitable to merge. If a change includes
incorrect or misleading documentation or is contrary to existing documentation is probably is not suitable
to merge.

Every change could have better documentation.

Like with tests, a patch isnt done until it has docs. Any patch that adds a new feature, changes behavior,
updates configs, or in any other way is different than previous behavior requires docs. manpages, sample
configs, docstrings, descriptive prose in the source tree, etc.

158 Chapter 3. Contributor Documentation

Swift Documentation, Release 2.30.2.dev8

3.7.9 Reviewers Write Code

Reviews have been shown to provide many benefits - one of which is shared ownership. After providing
a positive review you should understand how the change works. Doing this will probably require you to
play with the change.

You might functionally test the change in various scenarios. You may need to write a new unit test to
validate the change will degrade gracefully under failure. You might have to write a script to exercise the
change under some superficial load. You might have to break the change and validate the new tests fail
and provide useful errors. You might have to step through some critical section of the code in a debugger
to understand when all the possible branches are exercised in tests.

When youre done with your review an artifact of your effort will be observable in the piles of code and
scripts and diffs you wrote while reviewing. You should make sure to capture those artifacts in a paste
or gist and include them in your review comments so that others may reference them.
e.g.

When I broke the change like this:

diff

it blew up like this:

unit test failure

Its not uncommon that a review takes more time than writing a change - hopefully the author also spent
as much time as you did validating their change but thats not really in your control. When you provide a
positive review you should be sure you understand the change - even seemingly trivial changes will take
time to consider the ramifications.

3.7.10 Leave Comments

Leave. Lots. Of. Comments.
A popular web comic has stated that WTFs/Minute is the only valid measurement of code quality.

If something initially strikes you as questionable - you should jot down a note so you can loop back
around to it.

However, because of the distributed nature of authors and reviewers its imperative that you try your best
to answer your own questions as part of your review.

Do not say Does this blow up if it gets called when xyz - rather try and find a test that specifically covers
that condition and mention it in the comment so others can find it more quickly. Or if you can find no
such test, add one to demonstrate the failure, and include a diff in a comment. Hopefully you can say |
thought this would blow up, so I wrote this test, but it seems fine.

But if your initial reaction is I dont understand this or How does this even work? you should notate it and
explain whatever you were able to figure out in order to help subsequent reviewers more quickly identify
and grok the subtle or complex issues.

Because you will be leaving lots of comments - many of which are potentially not highlighting anything
specific - it is VERY important to leave a good summary. Your summary should include details of how
you reviewed the change. You may include what you liked most, or least.

If you are leaving a negative score ideally you should provide clear instructions on how the change could
be modified such that it would be suitable for merge - again diffs work best.

3.7. Review Guidelines 159

http://www.osnews.com/images/comics/wtfm.jpg

Swift Documentation, Release 2.30.2.dev8

3.7.11 Scoring

Scoring is subjective. Try to realize youre making a judgment call.

A positive score means you believe Swift would be undeniably better off with this code merged than it
would be going one more second without this change running in production immediately. It is indeed
high praise - you should be sure.

A negative score means that to the best of your abilities you have not been able to your satisfaction, to
justify the value of a change against the cost of its deficiencies and risks. It is a surprisingly difficult
chore to be confident about the value of unproven code or a not well understood use-case in an uncertain
world, and unfortunately all too easy with a thorough review to uncover our defects, and be reminded of
the risk of regression.

Reviewers must try very hard first and foremost to keep master stable.

If you can demonstrate a change has an incorrect behavior its almost without exception that the change
must be revised to fix the defect before merging rather than letting it in and having to also file a bug.

Every commit must be deployable to production.

Beyond that - almost any change might be merge-able depending on its merits! Here are some tips you
might be able to use to find more changes that should merge!

1. Fixing bugs is HUGELY valuable - the only thing which has a higher cost than the value of fixing a
bug - is adding a new bug - if its broken and this change makes it fixed (without breaking anything
else) you have a winner!

2. Features are INCREDIBLY difficult to justify their value against the cost of increased complexity,
lowered maintainability, risk of regression, or new defects. Try to focus on what is impossible
without the feature - when you make the impossible possible, things are better. Make things better.

3. Purely test/doc changes, complex refactoring, or mechanical cleanups are quite nuanced because
theres less concrete objective value. Ive seen lots of these kind of changes get lost to the backlog.
Ive also seen some success where multiple authors have collaborated to push-over a change rather
than provide a review ultimately resulting in a quorum of three or more authors who all agree there
is a lot of value in the change - however subjective.

Because the bar is high - most reviews will end with a negative score.

However, for non-material grievances (nits) - you should feel confident in a positive review if the change is
otherwise complete correct and undeniably makes Swift better (not perfect, better). If you see something
worth fixing you should point it out in review comments, but when applying a score consider if it need
be fixed before the change is suitable to merge vs. fixing it in a follow up change? Consider if the
change makes Swift so undeniably better and it was deployed in production without making any additional
changes would it still be correct and complete? Would releasing the change to production without any
additional follow up make it more difficult to maintain and continue to improve Swift?

Endeavor to leave a positive or negative score on every change you review.

Use your best judgment.

160 Chapter 3. Contributor Documentation

Swift Documentation, Release 2.30.2.dev8

3.7.12 A note on Swift Core Maintainers

Swift Core maintainers may provide positive reviews scores that look different from your reviews - a +2
instead of a +1.

But its exactly the same as your +1.

It means the change has been thoroughly and positively reviewed. The only reason its different is to
help identify changes which have received multiple competent and positive reviews. If you consistently
provide competent reviews you run a VERY high risk of being approached to have your future positive
review scores changed from a +1 to +2 in order to make it easier to identify changes which need to get
merged.

Ideally a review from a core maintainer should provide a clear path forward for the patch author. If you
dont know how to proceed respond to the reviewers comments on the change and ask for help. Wed love
to try and help.

3.7. Review Guidelines 161

Swift Documentation, Release 2.30.2.dev8

162 Chapter 3. Contributor Documentation

CHAPTER
FOUR

DEVELOPER DOCUMENTATION

4.1 Development Guidelines

4.1.1 Coding Guidelines

For the most part we try to follow PEP 8 guidelines which can be viewed here: http://www.python.org/
dev/peps/pep-0008/

4.1.2 Testing Guidelines

Swift has a comprehensive suite of tests and pep8 checks that are run on all submitted code, and it is
recommended that developers execute the tests themselves to catch regressions early. Developers are
also expected to keep the test suite up-to-date with any submitted code changes.

Swifts tests and pep8 checks can be executed in an isolated environment with tox: http://tox.testrun.org/
To execute the tests:

* Ensure pip and virtualenv are upgraded to satisfy the version requirements listed in the Open-
Stack global requirements:

Install tox:

Generate list of distribution packages to install for testing:

Now install these packages using your distribution package manager like apt-get, dnf, yum, or
Zypper.

* Run tox from the root of the swift repo:

163

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://tox.testrun.org/
https://github.com/openstack/requirements/blob/master/global-requirements.txt

Swift Documentation, Release 2.30.2.dev8

Note: If you installed using cd ~/swift; sudo python setup.py develop, you may need to do
cd ~/swift; sudo chown -R ${USER}:${USER} swift.egg-info prior to running tox.

* By default tox will run all of the unit test and pep8 checks listed in the tox.ini file envlist
option. A subset of the test environments can be specified on the tox command line or by setting
the TOXENV environment variable. For example, to run only the pep8 checks and python2.7 unit
tests use:

or:

Note: As of tox version 2.0.0, most environment variables are not automatically passed to the test
environment. Swifts tox.ini overrides this default behavior so that variable names matching SWIFT_*
and *_proxy will be passed, but you may need to run tox --recreate for this to take effect after
upgrading from tox <2.0.0.

Conversely, if you do not want those environment variables to be passed to the test environment then you
will need to unset them before calling tox.

Also, if you ever encounter DistributionNotFound, try to use tox --recreate or remove the .tox
directory to force tox to recreate the dependency list.

Swifts tests require having an XFS directory available in /tmp or in the TMPDIR environment variable.

Swifts functional tests may be executed against a SA/O (Swift All In One) or other running Swift cluster
using the command:

The endpoint and authorization credentials to be used by functional tests should be configured in the
test.conf file as described in the section Setting up scripts for running Swift.

The environment variable SWIFT_TEST_POLICY may be set to specify a particular storage policy name
that will be used for testing. When set, tests that would otherwise not specify a policy or choose a random
policy from those available will instead use the policy specified. Tests that use more than one policy will
include the specified policy in the set of policies used. The specified policy must be available on the
cluster under test.

For example, this command would run the functional tests using policy silver:

To run a single functional test, use the --no-discover option together with a path to a specific test
method, for example:

164 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

In-process functional testing

If the test. conf file is not found then the functional test framework will instantiate a set of Swift servers
in the same process that executes the functional tests. This in-process test mode may also be enabled (or
disabled) by setting the environment variable SWIFT_TEST_IN_PROCESS to a true (or false) value prior
to executing tox -e func.

When using the in-process test mode some server configuration options may be set using environment
variables:

* the optional in-memory object server may be selected by setting the environment variable
SWIFT_TEST_IN_MEMORY_OBJ to a true value.

* encryption may be added to the proxy pipeline by setting the environment variable
SWIFT_TEST_IN_PROCESS_CONF_LOADER to encryption.

* a 241 EC policy may be installed as the default policy by setting the environment variable
SWIFT_TEST_IN_PROCESS_CONF_LOADER to ec.

* logging to stdout may be enabled by setting SWIFT_TEST_DEBUG_LOGS.

For example, this command would run the in-process mode functional tests with encryption enabled in
the proxy-server:

This particular example may also be run using the func-encryption tox environment:

The tox.ini file also specifies test environments for running other in-process functional test configura-
tions, e.g.:

To debug the functional tests, use the in-process test mode and pass the --pdb flag to tox:

\

The in-process test mode searches for proxy-server. conf and swift.conf config files from which it
copies config options and overrides some options to suit in process testing. The search will first look for
config files in a <custom_conf_source_dir> that may optionally be specified using the environment
variable:

If SWIFT_TEST_IN_PROCESS_CONF_DIR is not set, or if a config file is not found in
<custom_conf_source_dir>, the search will then look in the etc/ directory in the source tree.
If the config file is still not found, the corresponding sample config file from etc/ is used (e.g.
proxy-server.conf-sample or swift.conf-sample).

When using the in-process test mode SWIFT_TEST_POLICY may be set to specify a particular storage
policy name that will be used for testing as described above. When set, this policy must exist in the

4.1. Development Guidelines 165

Swift Documentation, Release 2.30.2.dev8

swift.conf file and its corresponding ring file must exist in <custom_conf_source_dir> (if speci-
fied) or etc/. The test setup will set the specified policy to be the default and use its ring file properties
for constructing the test object ring. This allows in-process testing to be run against various policy types
and ring files.

For example, this command would run the in-process mode functional tests using config files found in
$HOME/my_tests and policy silver:

SWIFT_TEST_IN_PROCESS=1 SWIFT_TEST_IN_PROCESS_CONF_DIR=$HOME/my_tests \
SWIFT_TEST_POLICY=silver tox -e func

S3 API cross-compatibility tests

The cross-compatibility tests in directory test/s3api are intended to verify that the Swift S3 API behaves
in the same way as the AWS S3 API. They should pass when run against either a Swift endpoint (with
S3 API enabled) or an AWS S3 endpoint.

To run against an AWS S3 endpoint, the /etc/swift/test.conf file must be edited to provide AWS
key IDs and secrets. Alternatively, an AWS CLI style credentials file can be loaded by setting the
SWIFT_TEST_AWS_CONFIG_FILE environment variable, e.g.:

Note: When using SWIFT_TEST_AWS_CONFIG_FILE, the region defaults to us-east-1 and only the
default credentials are loaded.

4.1.3 Coding Style

Swift uses flake8 with the OpenStack hacking module to enforce coding style.
Install flake8 and hacking with pip or by the packages of your Operating System.
Itis advised to integrate flake8-+hacking with your editor to get it automated and not get caught by Jenkins.

For example for Vim the syntastic plugin can do this for you.

4.1.4 Documentation Guidelines
The documentation in docstrings should follow the PEP 257 conventions (as mentioned in the PEP 8
guidelines).
More specifically:
1. Triple quotes should be used for all docstrings.
2. If the docstring is simple and fits on one line, then just use one line.

3. For docstrings that take multiple lines, there should be a newline after the opening quotes, and
before the closing quotes.

166 Chapter 4. Developer Documentation

https://pypi.org/project/hacking
https://github.com/scrooloose/syntastic

Swift Documentation, Release 2.30.2.dev8

4. Sphinx is used to build documentation, so use the restructured text markup to designate parameters,
return values, etc. Documentation on the sphinx specific markup can be found here: http://sphinx.
pocoo.org/markup/index.html

To build documentation run:

and then browse to doc/build/html/index.html. These docs are auto-generated after every commit and
available online at https://docs.openstack.org/swift/latest/.

4.1.5 Manpages

For sanity check of your change in manpage, use this command in the root of your Swift repo:

4.1.6 License and Copyright
You can have the following copyright and license statement at the top of each source file. Copyright
assignment is optional.

New files should contain the current year. Substantial updates can have another year added, and date
ranges are not needed.:

4.1. Development Guidelines 167

http://sphinx.pocoo.org/markup/index.html
http://sphinx.pocoo.org/markup/index.html
https://docs.openstack.org/swift/latest/

Swift Documentation, Release 2.30.2.dev8

4.2 SAIO (Swift All In One)

Note: This guide assumes an existing Linux server. A physical machine or VM will work. We recom-
mend configuring it with at least 2GB of memory and 40GB of storage space. We recommend using a
VM in order to isolate Swift and its dependencies from other projects you may be working on.

4.2.1 Instructions for setting up a development VM
This section documents setting up a virtual machine for doing Swift development. The virtual machine
will emulate running a four node Swift cluster. To begin:
* Get a Linux system server image, this guide will cover:
— Ubuntu 14.04, 16.04 LTS
— CentOS 7
— Fedora
— OpenSuse

* Create guest virtual machine from the image.

4.2.2 Whats in a <your-user-name>

Much of the configuration described in this guide requires escalated administrator (root) privileges;
however, we assume that administrator logs in as an unprivileged user and can use sudo to run privileged
commands.

Swift processes also run under a separate user and group, set by configuration option, and refer-
enced as <your-user-name>:<your-group-name>. The default user is swift, which may not ex-
ist on your system. These instructions are intended to allow a developer to use his/her username for
<your-user-name>:<your-group-name>.

Note: For OpenSuse users, a users primary group is users, so you have 2 options:
* Change ${USER}: ${USER} to ${USER}:users in all references of this guide; or

* Create a group for your username and add yourself to it:

sudo groupadd ${USER} && sudo gpasswd -a ${USER} ${USER} && newgrp ${USER}

168 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

4.2.3 Installing dependencies

* On apt based systems:

\
\
\
\
\
\
* On CentOS (requires additional repositories):
\
\
\
\
\
\
\
* On Fedora:
2\
\
\
\
\
\
\
¢ On OpenSuse:
\
\
\
\
\
4.2. SAIO (Swift All In One) 169

Swift Documentation, Release 2.30.2.dev8

Note: This installs necessary system dependencies and most of the python dependencies. Later in the
process setuptools/distribute or pip will install and/or upgrade packages.

4.2.4 Configuring storage

Swift requires some space on XFS filesystems to store data and run tests.

Choose either Using a partition for storage or Using a loopback device for storage.
Using a partition for storage

If you are going to use a separate partition for Swift data, be sure to add another device when creating
the VM, and follow these instructions:

Note: The disk does not have to be /dev/sdbl (for example, it could be /dev/vdb1l) however the
mount point should still be /mnt/sdb1.

1. Set up a single partition on the device (this will wipe the drive):

2. Create an XFS file system on the partition:

3. Find the UUID of the new partition:

4. Edit /etc/£fstab and add:

5. Create the Swift data mount point and test that mounting works:

6. Next, skip to Common Post-Device Setup.

170 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

Using a loopback device for storage

If you want to use a loopback device instead of another partition, follow these instructions:

1. Create the file for the loopback device:

Modity size specified in the truncate command to make a larger or smaller partition as needed

2. Edit /etc/fstab and add:

3. Create the Swift data mount point and test that mounting works:

Common Post-Device Setup

1. Create the individualized data links:

sudo mkdir /mnt/sdbl/1 /mnt/sdbl/2 /mnt/sdbl/3 /mnt/sdbl/4

sudo chown ${USER}:${USER} /mnt/sdbl/*

for x in {1..4}; do sudo 1ln -s /mnt/sdbl/$x /srv/$x; done

sudo mkdir -p /srv/1/node/sdbl /srv/1/node/sdb5 \
/srv/2/node/sdb2 /srv/2/node/sdb6 \
/srv/3/node/sdb3 /srv/3/node/sdb7 \
/srv/4/node/sdb4 /srv/4/node/sdb8

sudo mkdir -p /var/run/swift

sudo mkdir -p /var/cache/swift /var/cache/swift2 \
/var/cache/swift3 /var/cache/swift4

sudo chown -R ${USER}:${USER} /var/run/swift

sudo chown -R ${USER}:${USER} /var/cache/swift*

Make sure to include the trailing slash after /srv/$x/

for x in {1..4}; do sudo chown -R ${USER}:${USER} /srv/$x/; done

Note: We create the mount points and mount the loopback file under /mnt/sdb1. This file will
contain one directory per simulated Swift node, each owned by the current Swift user.

We then create symlinks to these directories under /srv. If the disk sdb or loopback file is un-
mounted, files will not be written under /srv/*, because the symbolic link destination /mnt/sdb1/*
will not exist. This prevents disk sync operations from writing to the root partition in the event a
drive is unmounted.

2. Restore appropriate permissions on reboot.

* On traditional Linux systems, add the following lines to /etc/rc.local (before the exit
0):

4.2. SAIO (Swift All In One) 171

Swift Documentation, Release 2.30.2.dev8

* On CentOS and Fedora we can use systemd (rc.local is deprecated):

cat << EOF |sudo tee /etc/tmpfiles.d/swift.conf
d /var/cache/swift 0755 ${USER} ${USER} - -

d /var/cache/swift2 0755 ${USER} ${USER} - -

d /var/cache/swift3 0755 ${USER} ${USER} - -

d /var/cache/swift4 0755 ${USER} ${USER} - -

d /var/run/swift 0755 ${USER} ${USER} - -

EOF

* On OpenSuse place the lines in /etc/init.d/boot.local.

Note: On some systems the rc file might need to be an executable shell script.

Creating an XFS tmp dir

Tests require having a directory available on an XFS filesystem. By default the tests use /tmp, however
this can be pointed elsewhere with the TMPDIR environment variable.

Note: If your root filesystem is XFS, you can skip this section if /tmp is just a directory and not a
mounted tmpfs. Or you could simply point to any existing directory owned by your user by specifying it
with the TMPDIR environment variable.

If your root filesystem is not XFS, you should create a loopback device, format it with XFS and mount it.
You can mount it over /tmp or to another location and specify it with the TYPDIR environment variable.

* Create the file for the tmp loopback device:

* To mount the tmp loopback device at /tmp, do the following:

— To persist this, edit and add the following to /etc/fstab:

* To mount the tmp loopback at an alternate location (for example, /mnt/tmp), do the following:

172 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

sudo mkdir -p /mnt/tmp
sudo mount -o loop,noatime /srv/swift-tmp /mnt/tmp
sudo chown ${USER}:${USER} /mnt/tmp

— To persist this, edit and add the following to /etc/fstab:

— Set your TMPDIR environment dir so that Swift looks in the right location:

export TMPDIR=/mnt/tmp
echo "export TMPDIR=/mnt/tmp" >> $HOME/.bashrc

4.2.5 Getting the code

1.

Check out the python-swiftclient repo:

cd $HOME; git clone https://opendev.org/openstack/python-swiftclient.git

Build a development installation of python-swiftclient:

cd $HOME/python-swiftclient; sudo python setup.py develop; cd -

Ubuntu 12.04 users need to install python-swiftclients dependencies before the installation of
python-swiftclient. This is due to a bug in an older version of setup tools:

cd $HOME/python-swiftclient; sudo pip install -r requirements.txt; sudo.
—python setup.py develop; cd -

. Check out the Swift repo:

Build a development installation of Swift:

cd $HOME/swift; sudo pip install --no-binary cryptography -r requirements.
—txt; sudo python setup.py develop; cd -

Note: Due to a difference in how 1libssl.so is named in OpenSuse vs. other Linux distros
the wheel/binary wont work; thus we use --no-binary cryptography to build cryptography
locally.

Fedora users might have to perform the following if development installation of Swift fails:

Install Swifts test dependencies:

cd $HOME/swift; sudo pip install -r test-requirements.txt

4.2. SAIO (Swift All In One) 173

Swift Documentation, Release 2.30.2.dev8

4.2.6 Setting up rsync

1. Create /etc/rsyncd.conf:

sudo cp $HOME/swift/doc/saio/rsyncd.conf /etc/
sudo sed -i "s/<your-user-name>/${USER}/" /etc/rsyncd.conf

Here is the default rsyncd. conf file contents maintained in the repo that is copied and fixed up
above:

(continues on next page)

174 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

. Enable rsync daemon

* On Ubuntu, edit the following line in /etc/default/rsync:

Note: You might have to create the file to perform the edits.

* On CentOS and Fedora, enable the systemd service:

* On OpenSuse, nothing needs to happen here.

4.2.

SAIO (Swift All In One) 175

Swift Documentation, Release 2.30.2.dev8

3. On platforms with SELinux in Enforcing mode, either set to Permissive:

Or just allow rsync full access:

4. Start the rsync daemon

5. Verify rsync is accepting connections for all servers:

¢ On Ubuntu 14.04, run:

e On Ubuntu 16.04, run:

On CentOS, Fedora and OpenSuse, run:

On other xinetd based systems simply run:

You should see the following output from the above command:

176

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

4.2.7 Starting memcached

On non-Ubuntu distros you need to ensure memcached is running:

or:

The tempauth middleware stores tokens in memcached. If memcached is not running, tokens cannot be
validated, and accessing Swift becomes impossible.

4.2.8 Optional: Setting up rsyslog for individual logging
Fedora and OpenSuse may not have rsyslog installed, in which case you will need to install it if you want
to use individual logging.
1. Install rsyslogd
¢ On Fedora:

* On OpenSuse:

2. Install the Swift rsyslogd configuration:

sudo cp $HOME/swift/doc/saio/rsyslog.d/10-swift.conf /etc/rsyslog.d/

Be sure to review that conf file to determine if you want all the logs in one file vs. all the logs
separated out, and if you want hourly logs for stats processing. For convenience, we provide its
default contents below:

(continues on next page)

4.2. SAIO (Swift All In One) 177

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

3. Edit /etc/rsyslog.conf and make the following change (usually in the GLOBAL DIREC-
TIVES section):

$PrivDropToGroup adm

4. If using hourly logs (see above) perform:

Otherwise perform:

5. Setup the logging directory and start syslog:
* On Ubuntu:

* On CentOS, Fedora and OpenSuse:

178 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

4.2.9 Configuring each node

After performing the following steps, be sure to verify that Swift has access to resulting configuration
files (sample configuration files are provided with all defaults in line-by-line comments).

1. Optionally remove an existing swift directory:

2. Populate the /etc/swift directory itself:

cd $HOME/swift/doc; sudo cp -r saio/swift /etc/swift; cd -
sudo chown -R ${USER}:${USER} /etc/swift

3. Update <your-user-name> references in the Swift config files:

\

The contents of the configuration files provided by executing the above commands are as follows:

1. /etc/swift/swift.conf

2. /etc/swift/proxy-server.conf

(continues on next page)

4.2. SAIO (Swift All In One) 179

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

log_facility = LOG_LOCAL1
eventlet_debug true

[pipeline:main]

Yes, proxy-logging appears twice. This is so that

middleware-originated requests get logged too.

pipeline = catch_errors gatekeeper healthcheck proxy-logging cache etag-
—quoter listing_formats bulk tempurl ratelimit crossdomain container_
—sync tempauth staticweb copy container-quotas account-quotas slo dlo.
—versioned_writes symlink proxy-logging proxy-server

[filter:catch_errors]
use egg:swift#catch_errors

[filter:healthcheck]
use egg:swift#healthcheck

[filter:proxy-logging]
use = egg:swift#proxy_logging

[filter:bulk]
use = egg:swift#bulk

[filter:ratelimit]
use egg:swift#ratelimit

[filter:crossdomain]
use egg:swift#crossdomain

[filter:dlo]
use = egg:swift#dlo

[filter:slo]
use egg:swift#slo
allow_async_delete True

[filter:container_sync]
use egg:swift#container_sync
current //saio/saio_endpoint

[filter:tempurl]
use egg:swift#tempurl

[filter:tempauth]

use egg:swift#tempauth

user_admin_admin = admin .admin .reseller_admin
user_test_tester testing .admin
user_test_tester2 testing2 .admin
user_test_tester3 testing3

(continues on next page)

180

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

user_test2_tester?2 testing2 .admin

[filter:staticweb]
use egg:swift#staticweb

[filter:account-quotas]
use egg:swift#account_quotas

[filter:container-quotas]
use = egg:swift#container_quotas

[filter:cache]
use egg:swift#memcache

[filter:etag-quoter]
use egg:swift#etag_quoter
enable_by_default false

[filter:gatekeeper]
use egg:swift#gatekeeper

[filter:versioned_writes]

use egg:swift#versioned_writes
allow_versioned_writes true
allow_object_versioning = true

[filter:copy]
use egg:swift#copy

[filter:listing_formats]
use = egg:swift#listing_formats

[filter:domain_remap]
use egg:swift#domain_remap

[filter:symlink]
use egg:swift#symlink

To enable, add the s3api middleware to the pipeline before tempauth
[filter:s3api]

use = egg:swift#s3api

s3_acl yes

check_bucket_owner = yes

cors_preflight_allow_origin

Example to create root secret: ‘openssl rand -base64 32°
[filter:keymaster]

use egg:swift#keymaster

encryption_root_secret changeme/changeme/changeme/changeme/change/=

(continues on next page)

4.2. SAIO (Swift All In One) 181

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

To enable use of encryption add both middlewares to pipeline, example:
<other middleware> keymaster encryption proxy-logging proxy-server
[filter:encryption]

use egg:swift#encryption

[app:proxy-server]

use = egg:swift#proxy
allow_account_management true
account_autocreate = true

. /etc/swift/object-expirer.conf

[DEFAULT]

swift_dir = /etc/swift

user = <your-user-name>

You can specify default log routing here if you want:

log_name = object-expirer

log_facility = LOG_LOCAL6

log_level INFO

#log_address = /dev/log

#

comma separated list of functions to call to setup custom log handlers.
functions get passed: conf, name, log_to_console, log_route, fmt,.
—~logger,

adapted_logger

log_custom_handlers =

If set, log_udp_host will override log_address
log_udp_host =
log_udp_port = 514

You can enable StatsD logging here:
log_statsd_host =

log_statsd_port = 8125
log_statsd_default_sample_rate = 1.0
log_statsd_sample_rate_factor = 1.0
log_statsd_metric_prefix =

O W R T W W T W W W R K

[object-expirer]

interval 300

report_interval = 300

concurrency is the level of concurrency to use to do the work, this,
—value

must be set to at least 1

concurrency = 1

processes is how many parts to divide the work into, one part per.
—process

that will be doing the work

(continues on next page)

182

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

processes set 0 means that a single process will be doing all the work
processes can also be specified on the command line and will override.
—the

config value

processes = 0

process is which of the parts a particular process will work on

process can also be specified on the command line and will override the.
—config

value

process is "zero based", if you want to use 3 processes, you should run
processes with process set to 0, 1, and 2

process = 0

[pipeline:main]
pipeline catch_errors cache proxy-server

[app:proxy-server]
use egg:swift#proxy
See proxy-server.conf-sample for options

[filter:cache]
use egg:swift#memcache
See proxy-server.conf-sample for options

[filter:catch_errors]
use egg:swift#catch_errors
See proxy-server.conf-sample for options

4. /etc/swift/container-sync-realms.conf

[saio]

key = changeme

key?2 changeme

cluster_saio_endpoint http://127.0.0.1:8080/v1/

5. /etc/swift/account-server/1.conf

[DEFAULT]

devices = /srv/1/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.1
bind_port 6212

workers 1

user = <your-user-name>
log_facility LOG_LOCAL2
recon_cache_path /var/cache/swift
eventlet_debug true

[pipeline:main]

(continues on next page)

4.2. SAIO (Swift All In One) 183

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

pipeline = healthcheck recon account-server

[app:account-server]
use = egg:swift#account

[filter:recon]
use egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[account-replicator]

[account-auditor]

[account-reaper]

rsync_module {replication_ip}::account{replication_port}

6. /etc/swift/container-server/1.conf

[DEFAULT]

devices = /srv/1/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.1
bind_port 6211

workers 1

user = <your-user-name>
log_facility = LOG_LOCAL?2
recon_cache_path /var/cache/swift
eventlet_debug true

[pipeline:main]
pipeline healthcheck recon container-server

[app:container-server]
use egg:swift#container

[filter:recon]
use egg:swift#recon

[filter:healthcheck]
use egg:swift#healthcheck

[container-replicator]

[container-updater]

rsync_module {replication_ip}::container{replication_port}

(continues on next page)

184 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

[container-auditor]
[container-sync]

[container-sharder]

auto_shard true

rsync_module {replication_ip}::container{replication_port}

This is intentionally much smaller than the default of 1,000,000 so.
—tests

can run in a reasonable amount of time

shard_container_threshold 100

The probe tests make explicit assumptions about the batch sizes
shard_scanner_batch_size 10

cleave_batch_size 2

. /etc/swift/container-reconciler/1.conf

[DEFAULT]

swift_dir = /etc/swift

user = <your-user-name>

You can specify default log routing here if you want:
log_name = swift

log_facility = LOG_LOCAL®

log_level = INFO

log_address = /dev/log

comma separated list of functions to call to setup custom log handlers.
functions get passed: conf, name, log_to_console, log_route, fmt,.,
~logger,

adapted_logger

log_custom_handlers =

O W OB OH W™ R W

If set, log_udp_host will override log_address
log_udp_host =
log_udp_port = 514

You can enable StatsD logging here:
log_statsd_host =

log_statsd_port = 8125
log_statsd_default_sample_rate = 1.0
log_statsd_sample_rate_factor = 1.0
log_statsd_metric_prefix =

HHOoH OH W W W W W W W W W R

[container-reconciler]
reclaim_age = 604800
interval = 300

request_tries = 3
processes 4

process 0

(continues on next page)

. SAIO (Swift All In One) 185

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

[pipeline:main]
pipeline catch_errors proxy-logging cache proxy-server

[app:proxy-server]
use = egg:swift#proxy
See proxy-server.conf-sample for options

[filter:cache]
use = egg:swift#memcache
See proxy-server.conf-sample for options

[filter:proxy-logging]
use egg:swift#proxy_logging

[filter:catch_errors]
use egg:swift#catch_errors
See proxy-server.conf-sample for options

. /etc/swift/object-server/1.conf

[DEFAULT]

devices /srv/1/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.1
bind_port 6210

workers 1

user = <your-user-name>
log_facility = LOG_LOCAL?2
recon_cache_path /var/cache/swift
eventlet_debug true

[pipeline:main]
pipeline = healthcheck recon object-server

[app:object-server]
use = egg:swift#object

[filter:recon]
use egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[object-replicator]
rsync_module {replication_ip}::object{replication_port}

[object-reconstructor]

(continues on next page)

186

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

10.

(continued from previous page)

[object-updater]
[object-auditor]

[object-relinker]

/etc/swift/account-server/2.conf

[DEFAULT]

devices = /srv/2/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.2
bind_port 6222

workers 1

user = <your-user-name>
log_facility = LOG_LOCAL3
recon_cache_path /var/cache/swift2
eventlet_debug true

[pipeline:main]
pipeline = healthcheck recon account-server

[app:account-server]
use egg:swift#account

[filter:recon]
use egg:swift#recon

[filter:healthcheck]
use egg:swift#healthcheck

[account-replicator]
rsync_module {replication_ip}::account{replication_port}

[account-auditor]

[account-reaper]

/etc/swift/container-server/2.conf

[DEFAULT]

devices = /srv/2/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.2
bind_port 6221

workers 1

user = <your-user-name>

(continues on next page)

4.2.

SAIO (Swift All In One) 187

Swift Documentation, Release 2.30.2.dev8

11.

(continued from previous page)

log_facility = LOG_LOCAL3
recon_cache_path /var/cache/swift2
eventlet_debug true

[pipeline:main]
pipeline healthcheck recon container-server

[app:container-server]
use egg:swift#container

[filter:recon]
use egg:swift#recon

[filter:healthcheck]
use egg:swift#healthcheck

[container-replicator]
rsync_module {replication_ip}::container{replication_port}

[container-updater]
[container-auditor]
[container-sync]

[container-sharder]

auto_shard true

rsync_module {replication_ip}::container{replication_port}

This is intentionally much smaller than the default of 1,000,000 so.
—tests

can run in a reasonable amount of time

shard_container_threshold 100

The probe tests make explicit assumptions about the batch sizes
shard_scanner_batch_size 10

cleave_batch_size 2

/etc/swift/container-reconciler/2.conf

[DEFAULT]

swift_dir = /etc/swift

user = <your-user-name>

You can specify default log routing here if you want:
log_name = swift

log_facility = LOG_LOCAL®

log_level = INFO

log_address = /dev/log

comma separated list of functions to call to setup custom log handlers.
functions get passed: conf, name, log_to_console, log_route, fmt,.
—logger,

S TR R S N N S RS

(continues on next page)

188

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

12.

(continued from previous page)

adapted_logger
log_custom_handlers =

If set, log_udp_host will override log_address
log_udp_host =
log_udp_port = 514

You can enable StatsD logging here:
log_statsd_host =

log_statsd_port = 8125
log_statsd_default_sample_rate = 1.0
log_statsd_sample_rate_factor = 1.0
log_statsd_metric_prefix =

O W R T W R T W™ W W R W

[container-reconciler]
reclaim_age = 604800
interval = 300

request_tries = 3
processes 4

process 1

[pipeline:main]
pipeline catch_errors proxy-logging cache proxy-server

[app:proxy-server]
use = egg:swift#proxy
See proxy-server.conf-sample for options

[filter:cache]
use = egg:swift#memcache
See proxy-server.conf-sample for options

[filter:proxy-logging]
use egg:swift#proxy_logging

[filter:catch_errors]
use egg:swift#catch_errors
See proxy-server.conf-sample for options

/etc/swift/object-server/2.conf

[DEFAULT]

devices /srv/2/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.2
bind_port 6220

workers 1

user = <your-user-name>

(continues on next page)

4.2.

SAIO (Swift All In One) 189

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

log_facility = LOG_LOCAL3
recon_cache_path /var/cache/swift2
eventlet_debug true

[pipeline:main]
pipeline = healthcheck recon object-server

[app:object-server]
use = egg:swift#object

[filter:recon]
use egg:swift#recon

[filter:healthcheck]
use egg:swift#healthcheck

[object-replicator]
rsync_module {replication_ip}::object{replication_port}

[object-reconstructor]
[object-updater]
[object-auditor]

[object-relinker]

13. /etc/swift/account-server/3.conf

[DEFAULT]

devices /srv/3/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.3
bind_port 6232

workers 1

user = <your-user-name>
log_facility = LOG_LOCAL4
recon_cache_path /var/cache/swift3
eventlet_debug true

[pipeline:main]
pipeline healthcheck recon account-server

[app:account-server]
use egg:swift#account

[filter:recon]
use egg:swift#recon

(continues on next page)

190 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

[filter:healthcheck]
use egg:swift#healthcheck

[account-replicator]
rsync_module {replication_ip}::account{replication_port}

[account-auditor]

[account-reaper]

14. /etc/swift/container-server/3.conf

[DEFAULT]

devices = /srv/3/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.3
bind_port 6231

workers 1

user = <your-user-name>
log_facility LOG_LOCAL4
recon_cache_path /var/cache/swift3
eventlet_debug true

[pipeline:main]
pipeline healthcheck recon container-server

[app:container-server]
use egg:swift#container

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use egg:swift#healthcheck

[container-replicator]
rsync_module {replication_ip}::container{replication_port}

[container-updater]
[container-auditor]
[container-sync]

[container-sharder]

auto_shard = true
rsync_module {replication_ip}::container{replication_port}

(continues on next page)

4.2. SAIO (Swift All In One) 191

Swift Documentation, Release 2.30.2.dev8

15.

(continued from previous page)

This is intentionally much smaller than the default of 1,000,000 so.
—tests

can run in a reasonable amount of time

shard_container_threshold 100

The probe tests make explicit assumptions about the batch sizes
shard_scanner_batch_size 10

cleave_batch_size 2

/etc/swift/container-reconciler/3.conf

[DEFAULT]

swift_dir = /etc/swift

user = <your-user-name>

You can specify default log routing here if you want:
log_name = swift

log_facility = LOG_LOCAL®

log_level = INFO

log_address = /dev/log

comma separated list of functions to call to setup custom log handlers.
functions get passed: conf, name, log_to_console, log_route, fmt,.
—logger,

adapted_logger

log_custom_handlers =

FHOFH W R OH W™ R W

If set, log_udp_host will override log_address
log_udp_host =
log_udp_port = 514

You can enable StatsD logging here:
log_statsd_host =

log_statsd_port = 8125
log_statsd_default_sample_rate = 1.0
log_statsd_sample_rate_factor = 1.0
log_statsd_metric_prefix =

SR T TR T T R I R T

[container-reconciler]
reclaim_age = 604800
interval = 300

request_tries = 3
processes 4

process 2

[pipeline:main]
pipeline catch_errors proxy-logging cache proxy-server

[app:proxy-server]
use egg:swift#proxy
See proxy-server.conf-sample for options

(continues on next page)

192

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

[filter:cache]
use = egg:swift#memcache
See proxy-server.conf-sample for options

[filter:proxy-logging]
use egg:swift#proxy_logging

[filter:catch_errors]
use = egg:swift#catch_errors
See proxy-server.conf-sample for options

16. /etc/swift/object-server/3.conf

[DEFAULT]

devices /srv/3/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.3
bind_port 6230

workers 1

user = <your-user-name>
log_facility = LOG_LOCAL4
recon_cache_path = /var/cache/swift3
eventlet_debug true

[pipeline:main]
pipeline = healthcheck recon object-server

[app:object-server]
use = egg:swift#object

[filter:recon]
use egg:swift#recon

[filter:healthcheck]
use egg:swift#healthcheck

[object-replicator]
rsync_module {replication_ip}::object{replication_port}

[object-reconstructor]
[object-updater]

[object-auditor]

[object-relinker]

17. /etc/swift/account-server/4.conf

4.2. SAIO (Swift All In One)

193

Swift Documentation, Release 2.30.2.dev8

18.

[DEFAULT]

devices = /srv/4/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.4
bind_port 6242

workers 1

user = <your-user-name>
log_facility = LOG_LOCALS
recon_cache_path /var/cache/swift4
eventlet_debug true

[pipeline:main]
pipeline healthcheck recon account-server

[app:account-server]
use egg:swift#account

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use egg:swift#healthcheck

[account-replicator]
rsync_module {replication_ip}::account{replication_port}

[account-auditor]

[account-reaper]

/etc/swift/container-server/4.conf

[DEFAULT]

devices /srv/4/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.4
bind_port 6241

workers 1

user = <your-user-name>
log_facility = LOG_LOCALS
recon_cache_path = /var/cache/swift4
eventlet_debug true

[pipeline:main]
pipeline = healthcheck recon container-server

[app:container-server]
use egg:swift#container

(continues on next page)

194

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

[filter:recon]
use egg:swift#recon

[filter:healthcheck]
use egg:swift#healthcheck

[container-replicator]
rsync_module {replication_ip}::container{replication_port}

[container-updater]
[container-auditor]
[container-sync]

[container-sharder]

auto_shard true

rsync_module {replication_ip}::container{replication_port}

This is intentionally much smaller than the default of 1,000,000 so.
—tests

can run in a reasonable amount of time

shard_container_threshold 100

The probe tests make explicit assumptions about the batch sizes
shard_scanner_batch_size 10

cleave_batch_size 2

19. /etc/swift/container-reconciler/4.conf

[DEFAULT]

swift_dir = /etc/swift

user = <your-user-name>

You can specify default log routing here if you want:
log_name = swift

log_facility = LOG_LOCAL®

log_level = INFO

log_address = /dev/log

comma separated list of functions to call to setup custom log handlers.
functions get passed: conf, name, log_to_console, log_route, fmt,.
~logger,

adapted_logger

log_custom_handlers =

FHOH OB R OH K R R

If set, log_udp_host will override log_address
log_udp_host =
log_udp_port = 514

O W R OH K R R

You can enable StatsD logging here:

(continues on next page)

4.2. SAIO (Swift All In One) 195

Swift Documentation, Release 2.30.2.dev8

20.

(continued from previous page)

log_statsd_host
log_statsd_port = 8125

log_statsd_default_sample_rate = 1.0
log_statsd_sample_rate_factor = 1.0
log_statsd_metric_prefix =

[container-reconciler]
reclaim_age = 604800
interval = 300

request_tries = 3
processes 4

process 3

[pipeline:main]

pipeline catch_errors proxy-logging cache proxy-server

[app:proxy-server]
use egg:swift#proxy
See proxy-server.conf-sample for options

[filter:cache]
use egg:swift#memcache
See proxy-server.conf-sample for options

[filter:proxy-logging]
use egg:swift#proxy_logging

[filter:catch_errors]
use egg:swift#catch_errors
See proxy-server.conf-sample for options

/etc/swift/object-server/4.conf

[DEFAULT]

devices = /srv/4/node
mount_check = false
disable_fallocate true
bind_ip 127.0.0.4
bind_port 6240

workers 1

user = <your-user-name>
log_facility = LOG_LOCALS5
recon_cache_path /var/cache/swift4
eventlet_debug true

[pipeline:main]
pipeline healthcheck recon object-server

[app:object-server]

(continues on next page)

196

Chapter 4.

Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

4.2.10 Setting up scripts for running Swift

1. Copy the SAIO scripts for resetting the environment:

mkdir -p $HOME/bin
cd $HOME/swift/doc; cp saio/bin/* $HOME/bin; cd -
chmod +x $HOME/bin/*

2. Edit the $HOME/bin/resetswift script

The template resetswift script looks like the following:

-e

swift-init all
swift-orphans -a 0 -k KILL

sudo find /var/log/swift -type f -exec rm -f
cut -d -f2 /proc/mounts | grep -q /mnt/sdbl
sudo umount /mnt/sdbl

—

sudo mkfs.xfs -f
sudo mount /mnt/sdbl
sudo mkdir /mnt/sdbl/1 /mnt/sdbl/2 /mnt/sdbl/3 /mnt/sdbl/4

(continues on next page)

4.2. SAIO (Swift All In One) 197

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

sudo chown : /mnt/sdbl/*
mkdir -p /srv/1/node/sdbl /srv/1/node/sdb5
/srv/2/node/sdb2 /srv/2/node/sdb6
/srv/3/node/sdb3 /srv/3/node/sdb?7
/srv/4/node/sdb4 /srv/4/node/sdb8
sudo rm -f /var/log/debug /var/log/messages /var/log/rsyncd.log /var/log/
—syslog
find /var/cache/swift* -type f -name *.recon -exec rm -f

sudo systemctl restart rsyslog
sudo systemctl restart memcached

sudo service rsyslog restart
sudo service memcached restart

If you did not set up rsyslog for individual logging, remove the find /var/log/swift... line:

sed -i "/find \/var\/log\/swift/d" $HOME/bin/resetswift

. Install the sample configuration file for running tests:

cp $HOME/swift/test/sample.conf /etc/swift/test.conf

The template test.conf looks like the following

(continues on next page)

198

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

And "allow_account_management" should not be set "true".
#auth_version = 3
#auth_uri = http://localhost:5000/v3/

Used by s3api functional tests, which don't contact auth directly
#s3_storage_url = http://127.0.0.1:8080/
#s3_region = us-east-1

Primary functional test account (needs admin access to the account)
account = test

username = tester

password = testing

s3_access_key = test:tester

s3_secret_key = testing

User on a second account (needs admin access to the account)
account2 test2

username2 tester?

password?2 testing2

User on same account as first, but without admin access
username3 testers3

password3 = testing3

s3api requires the same account with the primary one and different.,
—users

one swift owner:

s3_access_key2 test:tester?2

s3_secret_key2 testing2

one unprivileged:

s3_access_key3 test:tester3

s3_secret_key3 = testing3

Fourth user is required for keystone v3 specific tests.
Account must be in a non-default domain.

#account4 = test4

#username4 = tester4

#password4 = testing4

#domain4 = test-domain

Fifth user is required for service token-specific tests.

The account must be different from the primary test account.

The user must not have a group (tempauth) or role (keystoneauth) on
the primary test account. The user must have a group/role that is.

—unique

and not given to the primary tester and is specified in the options
<prefix>_require_group (tempauth) or <prefix>_service_roles.,

— (keystoneauth) .

#account5 = test5

#username5 = tester5

(continues on next page)

4.2.

SAIO (Swift All In One) 199

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

#password5 = testingh

The service_prefix option is used for service token-specific tests.
If service_prefix or username5 above is not supplied, the tests are.
—skipped.

To set the value and enable the service token tests, look at the

reseller_prefix option in /etc/swift/proxy-server.conf. There must be.
—at

least two prefixes. If not, add a prefix as follows (where we add.
—SERVICE):

reseller_prefix = AUTH, SERVICE

The service_prefix must match the <prefix> used in <prefix>_require_
—group

(tempauth) or <prefix>_service_roles (keystoneauth); for example:

SERVICE_require_group = service

SERVICE_service_roles = service

Note: Do not enable service token tests if the first prefix in

reseller_prefix is the empty prefix AND the primary functional test
account contains an underscore.

#service_prefix = SERVICE

Sixth user is required for access control tests.

Account must have a role for reseller_admin_role(keystoneauth).
#account6 = test

#username6 = tester6

#password6 = testing6

collate C

Only necessary if a pre-existing server uses self-signed certificate
insecure no

Tests that are dependent on domain_remap middleware being installed.
—~also

require one of the domain_remap storage_domain values to be specified.
—here,

otherwise those tests will be skipped.

storage_domain

[unit_test]
fake_syslog = False

[probe_test]

check_server_timeout = 30

validate_rsync = false

proxy_base_url = http://localhost:8080

[swift-constraints]
The functional test runner will try to use the constraint values.

c_\pr'nv-i ded 1n

(continues on next page)

200

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

4.2.11 Configure environment variables for Swift

1. Add an environment variable for running tests below:

echo "export SWIFT_TEST_CONFIG_FILE=/etc/swift/test.conf" >> $HOME/.bashrc

2. Be sure that your PATH includes the bin directory:

echo "export PATH=${PATH}:$HOME/bin" >> $HOME/.bashrc

3. If you are using a loopback device for Swift Storage, add an environment var to substitute /dev/

4.2. SAIO (Swift All In One) 201

Swift Documentation, Release 2.30.2.dev8

sdb1 with /srv/swift-disk:

echo "export SAIO_BLOCK_DEVICE=/srv/swift-disk" >> $HOME/.bashrc

If you are using a device other than /dev/sdb1 for Swift storage (for example, /dev/vdbl), add
an environment var to substitute it:

echo "export SAIO_BLOCK_DEVICE=/dev/vdbl" >> $HOME/.bashrc

TMPDIR environment var to set it:

. If you are using a location other than /tmp for Swift tmp data (for example, /mnt/tmp), add

export TMPDIR=/mnt/tmp
echo "export TMPDIR=/mnt/tmp" >> $HOME/.bashrc

Source the above environment variables into your current environment:

. $HOME/ .bashrc

4.2.12 Constructing initial rings

1. Construct the initial rings using the provided script:

The remakerings script looks like the following:

-e

/etc/swift

rm -f *.builder *.ring.gz

swift-ring-builder

object.builder

Create

backups/*.builder backups/*.ring.gz

swift-ring-builder object.builder add r1z1-127.0.0.1:6210/sdbl
swift-ring-builder object.builder add rl1z2-127.0.0.2:6220/sdb2
swift-ring-builder object.builder add r1z3-127.0.0.3:6230/sdb3
swift-ring-builder object.builder add r1z4-127.0.0.4:6240/sdb4
swift-ring-builder object.builder rebalance

swift-ring-builder object-1.builder create

swift-ring-builder object-1.builder add r1z1-127.0.0.1:6210/sdbl
swift-ring-builder object-1.builder add r1z2-127.0.0.2:6220/sdb2
swift-ring-builder object-1.builder add r1z3-127.0.0.3:6230/sdb3
swift-ring-builder object-1.builder add r1z4-127.0.0.4:6240/sdb4
swift-ring-builder object-1.builder rebalance

swift-ring-builder object-2.builder create

swift-ring-builder object-2.builder add r1z1-127.0.0.1:6210/sdbl
swift-ring-builder object-2.builder add r1z1-127.0.0.1:6210/sdb5
swift-ring-builder object-2.builder add r1z2-127.0.0.2:6220/sdb2

(continues on next page)

202

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

swift-ring-builder object-2.builder add r1z2-127.0.0.2:6220/sdb6
swift-ring-builder object-2.builder add r1z3-127.0.0.3:6230/sdb3
swift-ring-builder object-2.builder add r1z3-127.0.0.3:6230/sdb7
swift-ring-builder object-2.builder add r1z4-127.0.0.4:6240/sdb4
swift-ring-builder object-2.builder add rl1z4-127.0.0.4:6240/sdb8

swift-ring-builder object-2.builder rebalance
swift-ring-builder container.builder create
swift-ring-builder container.builder add rlzl-127.
swift-ring-builder container.builder add rilz2-127.
swift-ring-builder container.builder add rl1z3-127.
swift-ring-builder container.builder add rilz4-127.
swift-ring-builder container.builder rebalance
swift-ring-builder account.builder create

.1:6211/sdbl
.2:6221/sdb2
.3:6231/sdb3
.4:6241/sdb4

[— I — N —]
[— I — I —]

swift-ring-builder account.builder add rl1z1-127.0.0.1:6212/sdbl
swift-ring-builder account.builder add r1z2-127.0.0.2:6222/sdb2
swift-ring-builder account.builder add r1z3-127.0.0.3:6232/sdb3
swift-ring-builder account.builder add r1z4-127.0.0.4:6242/sdb4

swift-ring-builder account.builder rebalance

You can expect the output from this command to produce the following. Note that 3 object rings
are created in order to test storage policies and EC in the SAIO environment. The EC ring is the
only one with all 8 devices. There are also two replication rings, one for 3x replication and another
for 2x replication, but those rings only use 4 devices:

[}

(continues on next page)

4.2. SAIO (Swift All In One) 203

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

[}

2. Read more about Storage Policies and your SAIO Adding Storage Policies to an Existing SAIO

4.2.13 Testing Swift

1. Verify the unit tests run:

$HOME/swift/.unittests

Note that the unit tests do not require any Swift daemons running.

2. Start the main Swift daemon processes (proxy, account, container, and object):

(The Unable to increase file descriptor limit. Running as non-root? warnings
are expected and ok.)

The startmain script looks like the following:

204 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

-e

swift-init main start

3. Get an X-Storage-Url and X-Auth-Token:

4. Check that you can GET account:

5. Check that swift command provided by the python-swiftclient package works:

6. Verify the functional tests run:

$HOME/swift/.functests

(Note: functional tests will first delete everything in the configured accounts.)

7. Verify the probe tests run:

$HOME/swift/.probetests

(Note: probe tests will reset your environment as they call resetswift for each test.)

4.2.14 Debugging Issues

If all doesnt go as planned, and tests fail, or you cant auth, or something doesnt work, here are some good
starting places to look for issues:

1. Everything is logged using system facilities usually in /var/log/syslog, but possibly in /var/
log/messages on e.g. Fedora so that is a good first place to look for errors (most likely python
tracebacks).

2. Make sure all of the server processes are running. For the base functionality, the Proxy, Account,
Container, and Object servers should be running.

3. If one of the servers are not running, and no errors are logged to syslog, it may be useful to try to
start the server manually, for example: swift-object-server /etc/swift/object-server/
1.conf will start the object server. If there are problems not showing up in syslog, then you will
likely see the traceback on startup.

4. If you need to, you can turn off syslog for unit tests. This can be useful for environments where
/dev/1og is unavailable, or which cannot rate limit (unit tests generate a lot of logs very quickly).
Open the file SWIFT_TEST_CONFIG_FILE points to, and change the value of fake_syslog to
True.

4.2. SAIO (Swift All In One) 205

Swift Documentation, Release 2.30.2.dev8

5. If you encounter a 401 Unauthorized when following Step 12 where you check that you can
GET account, use sudo service memcached status and check if memcache is running. If
memcache is not running, start it using sudo service memcached start. Once memcache is
running, rerun GET account.

4.2.15 Known Issues

Listed here are some gotchas that you may run into when using or testing your SAIO:

1. fallocate_reserve - in most cases a SAIO doesnt have a very large XFS partition so having fallocate
enabled and fallocate_reserve set can cause issues, specifically when trying to run the functional
tests. For this reason fallocate has been turned off on the object-servers in the SAIO. If you want to
play with the fallocate_reserve settings then know that functional tests will fail unless you change
the max_file_size constraint to something more reasonable then the default (5G). Ideally youd
make it 1/4 of your XFS file system size so the tests can pass.

4.3 First Contribution to Swift

4.3.1 Getting Swift

Swifts source code is hosted on github and managed with git. The current trunk can be checked out like
this:

This will clone the Swift repository under your account.
A source tarball for the latest release of Swift is available on the launchpad project page.
Prebuilt packages for Ubuntu and RHEL variants are available.

» Swift Ubuntu Packages

» Swift RDO Packages

4.3.2 Source Control Setup

Swift uses git for source control. The OpenStack Developers Guide describes the steps for setting up
Git and all the necessary accounts for contributing code to Swift.

4.3.3 Changes to Swift

Once you have the source code and source control set up, you can make your changes to Swift.

206 Chapter 4. Developer Documentation

https://launchpad.net/swift
https://launchpad.net/ubuntu/+source/swift
https://www.rdoproject.org/documentation/repositories/
http://docs.openstack.org/infra/manual/developers.html

Swift Documentation, Release 2.30.2.dev8

4.3.4 Testing

The Development Guidelines describe the testing requirements before submitting Swift code.

In summary, you can execute tox from the swift home directory (where you checked out the source code):

Tox will present tests results. Notice that in the beginning, it is very common to break many coding style
guidelines.

4.3.5 Proposing changes to Swift

The OpenStack Developers Guide describes the most common git commands that you will need.
Following is a list of the commands that you need to know for your first contribution to Swift:

To clone a copy of Swift:

Under the swift directory, set up the Gerrit repository. The following command configures the repository
to know about Gerrit and installs the Change-Id commit hook. You only need to do this once:

To create your development branch (substitute branch_name for a name of your choice:

To check the files that have been updated in your branch:

To check the differences between your branch and the repository:

Assuming you have not added new files, you commit all your changes using:

Read the Summary of Git commit message structure for best practices on writing the commit message.
When you are ready to send your changes for review use:

If successful, Git response message will contain a URL you can use to track your changes.

If you need to make further changes to the same review, you can commit them using:

This will commit the changes under the same set of changes you issued earlier. Notice that in order to
send your latest version for review, you will still need to call:

4.3. First Contribution to Swift 207

http://docs.openstack.org/infra/manual/developers.html
https://wiki.openstack.org/wiki/GitCommitMessages?%22Summary%20of%20Git%20commit%20message%20structure%22#Summary_of_Git_commit_message_structure

Swift Documentation, Release 2.30.2.dev8

4.3.6 Tracking your changes
After proposing changes to Swift, you can track them at https://review.opendev.org. After logging in, you

will see a dashboard of Outgoing reviews for changes you have proposed, Incoming reviews for changes
you are reviewing, and Recently closed changes for which you were either a reviewer or owner.

4.3.7 Post rebase instructions

After rebasing, the following steps should be performed to rebuild the swift installation. Note that these
commands should be performed from the root of the swift repo directory (e.g. $HOME/swift/):

If using TOX, depending on the changes made during the rebase, you may need to rebuild the TOX
environment (generally this will be the case if test-requirements.txt was updated such that a new version
of a package is required), this can be accomplished using the -r argument to the TOX cli:

You can include any of the other TOX arguments as well, for example, to run the pep8 suite and rebuild
the TOX environment the following can be used:

The rebuild option only needs to be specified once for a particular build (e.g. pep8), that is further
invocations of the same build will not require this until the next rebase.

4.3.8 Troubleshooting

You may run into the following errors when starting Swift if you rebase your commit using:

(continues on next page)

208 Chapter 4. Developer Documentation

https://review.opendev.org

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

"/usr/lib/python2.7/dist-packages/pkg_resources.py" 628, in.
raise
2.3.1

(where XXX represents a dev version of Swift).

"/usr/local/bin/swift-proxy-server" 10, in

"/home/swift/swift/bin/swift-proxy-server" 23, in

'proxy-server'

"/home/swift/swift/swift/common/wsgi.py" 888, in

"/home/swift/swift/swift/common/wsgi.py" 390, in

"/home/swift/swift/swift/proxy/server.py" 602, in

"/home/swift/swift/swift/common/wsgi.py" 329, in

self

"/usr/lib/python2.7/dist-packages/paste/deploy/loadwsgi.py" o
296, in

"/usr/lib/python2.7/dist-packages/paste/deploy/loadwsgi.py" o
328, in

return

"/usr/lib/python2.7/dist-packages/paste/deploy/loadwsgi.py" o
620, in

"/usr/lib/python2.7/dist-packages/paste/deploy/loadwsgi.py" o

for in or '(no entry points)'
'versioned_writes' not in 'swift' (dir

This happens because git rebase will retrieve code for a different version of Swift in the development
stream, but the start scripts under /usr/local/bin have not been updated. The solution is to follow the

steps described in the Post rebase instructions section.

4.3. First Contribution to Swift

209

Swift Documentation, Release 2.30.2.dev8

4.4 Adding Storage Policies to an Existing SAIO

Depending on when you downloaded your SAIO environment, it may already be prepared with two
storage policies that enable some basic functional tests. In the event that you are adding a storage policy
to an existing installation, however, the following section will walk you through the steps for setting up
Storage Policies. Note that configuring more than one storage policy on your development environment
is recommended but optional. Enabling multiple Storage Policies is very easy regardless of whether you
are working with an existing installation or starting a brand new one.

Now we will create two policies - the first one will be a standard triple replication policy that we will
also explicitly set as the default and the second will be setup for reduced replication using a factor of 2x.
We will call the first one gold and the second one silver. In this example both policies map to the same
devices because its also important for this sample implementation to be simple and easy to understand
and adding a bunch of new devices isnt really required to implement a usable set of policies.

1. To define your policies, add the following to your /etc/swift/swift.conf file:

See Storage Policies for detailed information on swift.conf policy options.

2. To create the object ring for the silver policy (index 1), add the following to your bin/
remakerings script and re-run it (your script may already have these changes):

swift-ring-builder object-1.builder create

swift-ring-builder object-1.builder add r1z1-127.0.0.1:6210/sdbl
swift-ring-builder object-1.builder add r1z2-127.0.0.1:6220/sdb2
swift-ring-builder object-1.builder add r1z3-127.0.0.1:6230/sdb3
swift-ring-builder object-1.builder add r1z4-127.0.0.1:6240/sdb4

swift-ring-builder object-1.builder rebalance

Note that the reduced replication of the silver policy is only a function of the replication parameter
in the swift-ring-builder create command and is not specified in /etc/swift/swift.
conf.

3. Copy etc/container-reconciler.conf-sample to /etc/swift/
container-reconciler.conf and fix the user option:

cp etc/container-reconciler.conf-sample /etc/swift/container-reconciler.
—conf
sed -i /etc/swift/container-reconciler.conf

210 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

4.4.1 Using Policies

Setting up Storage Policies was very simple, and using them is even simpler. In this section, we will run
some commands to create a few containers with different policies and store objects in them and see how
Storage Policies effect placement of data in Swift.

1. We will be using the list_endpoints middleware to confirm object locations, so enable that now
in your proxy-server.conf file by adding it to the pipeline and including the filter section as
shown below (be sure to restart your proxy after making these changes):

2. Check to see that your policies are reported via /info:

swift -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K testing info

You should see this: (only showing the policy output here):

policies: [{'aliases': 'gold, yellow, orange', 'default': True,
'name': 'gold'}, {'aliases': 'silver', 'name': 'silver'}]

3. Now create a container without specifying a policy, it will use the default, gold and then put a test
object in it (create the file file®. txt with your favorite editor with some content):

curl -v -X PUT -H
http://127.0.0.1:8080/v1/AUTH_test/myCont®

curl -X PUT -v -T file®.txt -H
http://127.0.0.1:8080/v1/AUTH_test/myCont®/file®.txt

4. Now confirm placement of the object with the List Endpoints middleware:

curl -X GET -v http://127.0.0.1:8080/endpoints/AUTH_test/myCont0®/file0.txt

You should see this: (note placement on expected devices):

5. Create a container using policy silver and put a different file in it:

curl -v -X PUT -H -H

http://127.0.0.1:8080/v1/AUTH_test/myCont1l
curl -X PUT -v -T filel.txt -H
http://127.0.0.1:8080/v1/AUTH_test/myContl/

6. Confirm placement of the object for policy silver:

4.4. Adding Storage Policies to an Existing SAIO 211

Swift Documentation, Release 2.30.2.dev8

curl -X GET -v http://127.0.0.1:8080/endpoints/AUTH_test/myContl/filel.txt

You should see this: (note placement on expected devices):

7. Confirm account information with HEAD, make sure that your container-updater service is running
and has executed once since you performed the PUTs or the account database wont be updated yet:

curl -i -X HEAD -H
http://127.0.0.1:8080/v1/AUTH_test

You should see something like this (note that total and per policy stats object sizes will vary):

HTTP/1.1 204 No Content

Content-Length: ©

X-Account-Object-Count: 2

X-Account-Bytes-Used: 174
X-Account-Container-Count: 2
X-Account-Storage-Policy-Gold-Object-Count: 1
X-Account-Storage-Policy-Gold-Bytes-Used: 84
X-Account-Storage-Policy-Silver-Object-Count: 1
X-Account-Storage-Policy-Silver-Bytes-Used: 90
X-Timestamp: 1397230339.71525

Content-Type: text/plain; charset=utf-8
Accept-Ranges: bytes

X-Trans-Id: tx96e7496b19bb44abb55a3-0053482c75
X-Openstack-Request-Id: tx96e7496b19bb44abb55a3-0053482c75
Date: Fri, 11 Apr 2014 17:55:01 GMT

4.5 Auth Server and Middleware

4.5.1 Creating Your Own Auth Server and Middleware

The included swift/common/middleware/tempauth.py is a good example of how to create an auth sub-
system with proxy server auth middleware. The main points are that the auth middleware can reject
requests up front, before they ever get to the Swift Proxy application, and afterwards when the proxy
issues callbacks to verify authorization.

Its generally good to separate the authentication and authorization procedures. Authentication verifies
that a request actually comes from who it says it does. Authorization verifies the who has access to the
resource(s) the request wants.

Authentication is performed on the request before it ever gets to the Swift Proxy application. The identity
information is gleaned from the request, validated in some way, and the validation information is added
to the WSGI environment as needed by the future authorization procedure. What exactly is added to
the WSGI environment is solely dependent on what the installed authorization procedures need; the
Swift Proxy application itself needs no specific information, it just passes it along. Convention has
environ[REMOTE_USER] set to the authenticated user string but often more information is needed than
just that.

212 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

The included TempAuth will set the REMOTE_USER to a comma separated list of groups the user
belongs to. The first group will be the users group, a group that only the user belongs to. The second
group will be the accounts group, a group that includes all users for that auth account (different than the
storage account). The third group is optional and is the storage account string. If the user does not have
admin access to the account, the third group will be omitted.

It is highly recommended that authentication server implementers prefix their tokens and Swift storage
accounts they create with a configurable reseller prefix (AUTH_ by default with the included TempAuth).
This prefix will avoid conflicts with other authentication servers that might be using the same Swift
cluster. Otherwise, the Swift cluster will have to try all the resellers until one validates a token or all fail.

A restriction with group names is that no group name should begin with a period . as that is reserved for
internal Swift use (such as the .r for referrer designations as youll see later).

Example Authentication with TempAuth:
» Token AUTH_tkabcd is given to the TempAuth middleware in a requests X-Auth-Token header.

* The TempAuth middleware validates the token AUTH_tkabcd and discovers it matches the tester
user within the test account for the storage account AUTH_storage_xyz.

* The TempAuth middleware sets the REMOTE_USER to test:tester,test, AUTH_storage_xyz

* Now this user will have full access (via authorization procedures later) to the AUTH_storage_xyz
Swift storage account and access to containers in other storage accounts, provided the storage
account begins with the same AUTH_ reseller prefix and the container has an ACL specifying at
least one of those three groups.

Authorization is performed through callbacks by the Swift Proxy server to the WSGI environments
swift.authorize value, if one is set. The swift.authorize value should simply be a function that takes a Re-
quest as an argument and returns None if access is granted or returns a callable(environ, start_response) if
access is denied. This callable is a standard WSGI callable. Generally, you should return 403 Forbidden
for requests by an authenticated user and 401 Unauthorized for an unauthenticated request. For example,
heres an authorize function that only allows GETs (in this case youd probably return 405 Method Not
Allowed, but ignore that for the moment).:

Adding the swift.authorize callback is often done by the authentication middleware as authentication and
authorization are often paired together. But, you could create separate authorization middleware that
simply sets the callback before passing on the request. To continue our example above:

(continues on next page)

4.5. Auth Server and Middleware 213

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

The Swift Proxy server will call swift.authorize after some initial work, but before truly trying to process
the request. Positive authorization at this point will cause the request to be fully processed immediately.
A denial at this point will immediately send the denial response for most operations.

But for some operations that might be approved with more information, the additional information will be
gathered and added to the WSGI environment and then swift.authorize will be called once more. These
are called delay_denial requests and currently include container read requests and object read and write
requests. For these requests, the read or write access control string (X-Container-Read and X-Container-
Write) will be fetched and set as the acl attribute in the Request passed to swift.authorize.

The delay_denial procedures allow skipping possibly expensive access control string retrievals for re-
quests that can be approved without that information, such as administrator or account owner requests.

To further our example, we now will approve all requests that have the access control string set to same
value as the authenticated user string. Note that you probably wouldnt do this exactly as the access control
string represents a list rather than a single user, but itll suffice for this example:

(continues on next page)

214 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

The access control string has a standard format included with Swift, though this can be overridden if
desired. The standard format can be parsed with swift.common.middleware.acl.parse_acl which con-
verts the string into two arrays of strings: (referrers, groups). The referrers allow comparing the re-
quests Referer header to control access. The groups allow comparing the request.remote_user (or other
sources of group information) to control access. Checking referrer access can be accomplished by using
the swift.common.middleware.acl.referrer_allowed function. Checking group access is usually a simple
string comparison.

Lets continue our example to use parse_acl and referrer_allowed. Now well only allow GETs after a
referrer check and any requests after a group check:

(continues on next page)

4.5. Auth Server and Middleware 215

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

The access control strings are set with PUTs and POSTs to containers with the X-Container-Read and
X-Container-Write headers. Swift allows these strings to be set to any value, though its very useful to
validate that the strings meet the desired format and return a useful error to the user if they dont.

To support this validation, the Swift Proxy application will call the WSGI environments swift.clean_acl
callback whenever one of these headers is to be written. The callback should take a header name and
value as its arguments. It should return the cleaned value to save if valid or raise a ValueError with a
reasonable error message if not.

There is an included swift.common.middleware.acl.clean_acl that validates the standard Swift format.
Lets improve our example by making use of that:

(continues on next page)

216 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

Now, if you want to override the format for access control strings youll have to provide your own clean_acl
function and youll have to do your own parsing and authorization checking for that format. Its highly
recommended you use the standard format simply to support the widest range of external tools, but
sometimes thats less important than meeting certain ACL requirements.

4.5.2 Integrating With repoze.what

Heres an example of integration with repoze.what, though honestly Im no repoze.what expert by any
stretch; this is just included here to hopefully give folks a start on their own code if they want to use
repoze.what:

(continues on next page)

4.5. Auth Server and Middleware 217

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

return self

def authorize(self
if not
return self

if
return None
try

except
return self

return None
def denied_response(self
if

return
else

return

class DevIdentifier(object

getattr

def __init__(self

self
def identify(self

return {'token'

'"HTTP_X_AUTH_TOKEN'

def remember(self

return
def forget(self

return

class DevAuthenticator(object

1, 4, True

'acl', None

"HTTP_X_STORAGE_TOKEN'

def __init__(self
self
self "ip', '127.0.0.1'
self int 'port', 11000
self \
'ssl', 'false' in ('true', 'on', '1', 'yes'
self 'prefix', '/’
self float 'node_timeout', 10

(continues on next page)

218

Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

def authenticate(self

'token'

if not
return None

'devauth/%s'
if
if

return
with self

'%stoken/%s

if 204
float

return
return None

class DevChallenger(object

def __init__(self

self

def challenge(self
def no_challenge
str
return
return

class DevGroupSourceAdapter

def __init__(self
super
self

def _get_all_sections(self
return self

def _get_section_items(self

return self

self
self

self

'x-auth-ttl'

'x-auth-user'

self

_init__

'"GET'
self

(continues on next page)

4.5. Auth Server and Middleware

219

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

def _find_sections(self

return 'repoze.what.userid' ,
def _include_items(self
self
def _exclude_items(self
for in
self
def _item_is_included(self
return in self
def _create_section(self
self set
def _edit_section(self
self self
del self
def _delete_section(self
del self
def _section_exists(self
return self
class DevPermissionSourceAdapter
def __init__(self
super self) . __init__
self
def _get_all_sections(self
return self
def _get_section_items(self
return self
def _find_sections(self
return set for in self
if in
def _include_items(self
self
def _exclude_items(self
for in
(continues on next page)
220 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

4.5.3 Allowing CORS with Auth

Cross Origin Resource Sharing (CORS) require that the auth system allow the OPTIONS method to pass
through without a token. The preflight request will make an OPTIONS call against the object or container
and will not work if the auth system stops it. See TempAuth for an example of how OPTIONS requests
are handled.

4.6 Middleware and Metadata

4.6.1 Using Middleware

Python WSGI Middleware (or just middleware) can be used to wrap the request and response of a Python
WSGI application (i.e. a webapp, or REST/HTTP API), like Swifts WSGI servers (proxy-server, account-
server, container-server, object-server). Swift uses middleware to add (sometimes optional) behaviors to
the Swift WSGI servers.

4.6. Middleware and Metadata 221

http://www.python.org/dev/peps/pep-0333/#middleware-components-that-play-both-sides

Swift Documentation, Release 2.30.2.dev8

Middleware can be added to the Swift WSGI servers by modifying their paste configuration file. The
majority of Swift middleware is applied to the Proxy Server.

Given the following basic configuration:

You could add the Healthcheck middleware by adding a section for that filter and adding it to the pipeline:

Some middleware is required and will be inserted into your pipeline automatically by core swift code
(e.g. the proxy-server will insert CatchErrors and GateKeeper at the start of the pipeline if they are
not already present). You can see which features are available on a given Swift endpoint (including
middleware) using the Discoverability interface.

4.6.2 Creating Your Own Middleware

The best way to see how to write middleware is to look at examples.

Many optional features in Swift are implemented as Middleware and provided in swift.common.
middleware, but Swift middleware may be packaged and distributed as a separate project. Some exam-
ples are listed on the Associated Projects page.

A contrived middleware example that modifies request behavior by inspecting custom HTTP headers (e.g.
X-Webhook) and uses System Metadata to persist data to backend storage as well as common patterns
like a get_container_info() cache/query and wsgify () decorator is presented below:

(continues on next page)

222 Chapter 4. Developer Documentation

http://pythonpaste.org/

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

from eventlet import
import six
if

from eventlet.green.urllib import
else
from eventlet.green import

x-container-sysmeta-webhook

class WebhookMiddleware(object
def __init__(self

self
self
Owsgify
def __call__(self
None
try

except ValueError
not an object request
pass

if 'x-webhook' in

as

'container' 'webhook'

'webhook'

4, 4, True

translate user's request header to sysmeta

'x-webhook'

if 'x-remove-webhook' in

\

empty value will tombstone sysmeta

L}

account and object storage will ignore x-container-sysmeta-*

self
if and

and 'PUT'
self

container_info may have our new sysmeta key

if

'sysmeta’

'webhook'

create a POST request with obj name as body

with 20
try

except (Exception
self

'failed POST to webhook %s'

else
self

(continues on next page)

4.6. Middleware and Metadata

223

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

In practice this middleware will call the URL stored on the container as X-Webhook on all successful
object uploads.

If this example was at <swift-repo>/swift/common/middleware/webhook.py - you could add it
to your proxy by creating a new filter section and adding it to the pipeline:

Most python packages expose middleware as entrypoints. See PasteDeploy documentation for more
information about the syntax of the use option. All middleware included with Swift is installed to support
the egg:swift syntax.

Middleware may advertize its availability and capabilities via Swifts Discoverability support by using
register_swift_info():

224 Chapter 4. Developer Documentation

http://pythonpaste.org/deploy/#egg-uris

Swift Documentation, Release 2.30.2.dev8

If a middleware handles sensitive information in headers or query parameters that may need redaction
when logging, use the register_sensitive_header() and register_sensitive_param() func-
tions. This should be done in the filter factory:

4.6.3 Swift Metadata

Generally speaking metadata is information about a resource that is associated with the resource but is
not the data contained in the resource itself - which is set and retrieved via HTTP headers. (e.g. the
Content-Type of a Swift object that is returned in HTTP response headers)

All user resources in Swift (i.e. account, container, objects) can have user metadata associated with them.
Middleware may also persist custom metadata to accounts and containers safely using System Metadata.
Some core Swift features which predate sysmeta have added exceptions for custom non-user metadata
headers (e.g. ACLs, Large Object Support)

User Metadata

User metadata takes the form of X-<type>-Meta-<key>: <value>, where <type> depends on the
resources type (i.e. Account, Container, Object) and <key> and <value> are set by the client.

User metadata should generally be reserved for use by the client or client applications. A perfect example
use-case for user metadata is python-swiftclients X-Object-Meta-Mtime which it stores on object it
uploads to implement its --changed option which will only upload files that have changed since the last
upload.

New middleware should avoid storing metadata within the User Metadata namespace to avoid potential
conflict with existing user metadata when introducing new metadata keys. An example of legacy mid-
dleware that borrows the user metadata namespace is 7TempURL. An example of middleware which uses
custom non-user metadata to avoid the user metadata namespace is Static Large Objects.

User metadata that is stored by a PUT or POST request to a container or account resource persists until it is
explicitly removed by a subsequent PUT or POST request that includes a header X-<type>-Meta-<key>
with no value or a header X-Remove-<type>-Meta-<key>: <ignored-value>. In the latter case
the <ignored-value> is not stored. All user metadata stored with an account or container resource is
deleted when the account or container is deleted.

User metadata that is stored with an object resource has a different semantic; object user metadata persists
until any subsequent PUT or POST request is made to the same object, at which point all user metadata
stored with that object is deleted en-masse and replaced with any user metadata included with the PUT
or POST request. As a result, it is not possible to update a subset of the user metadata items stored with
an object while leaving some items unchanged.

4.6. Middleware and Metadata 225

https://opendev.org/openstack/python-swiftclient

Swift Documentation, Release 2.30.2.dev8

System Metadata

System metadata takes the form of X-<type>-Sysmeta-<key>: <value>, where <type> depends
on the resources type (i.e. Account, Container, Object) and <key> and <value> are set by trusted code
running in a Swift WSGI Server.

All headers on client requests in the form of X-<type>-Sysmeta-<key> will be dropped from the
request before being processed by any middleware. All headers on responses from back-end systems
in the form of X-<type>-Sysmeta-<key> will be removed after all middlewares have processed the
response but before the response is sent to the client. See GareKeeper middleware for more information.

System metadata provides a means to store potentially private custom metadata with associated Swift
resources in a safe and secure fashion without actually having to plumb custom metadata through the
core swift servers. The incoming filtering ensures that the namespace can not be modified directly by
client requests, and the outgoing filter ensures that removing middleware that uses a specific system
metadata key renders it benign. New middleware should take advantage of system metadata.

System metadata may be set on accounts and containers by including headers with a PUT or POST
request. Where a header name matches the name of an existing item of system metadata, the value of the
existing item will be updated. Otherwise existing items are preserved. A system metadata header with
an empty value will cause any existing item with the same name to be deleted.

System metadata may be set on objects using only PUT requests. All items of existing system metadata
will be deleted and replaced en-masse by any system metadata headers included with the PUT request.
System metadata is neither updated nor deleted by a POST request: updating individual items of system
metadata with a POST request is not yet supported in the same way that updating individual items of
user metadata is not supported. In cases where middleware needs to store its own metadata with a POST
request, it may use Object Transient Sysmeta.

Object Transient-Sysmeta

If middleware needs to store object metadata with a POST request it may do so using headers of the form
X-Object-Transient-Sysmeta-<key>: <value>.

All headers on client requests in the form of X-Object-Transient-Sysmeta-<key> will be dropped
from the request before being processed by any middleware. All headers on responses from back-end
systems in the form of X-Object-Transient-Sysmeta-<key> will be removed after all middlewares
have processed the response but before the response is sent to the client. See GateKeeper middleware
for more information.

Transient-sysmeta updates on an object have the same semantic as user metadata updates on an object
(see User Metadata) i.e. whenever any PUT or POST request is made to an object, all existing items of
transient-sysmeta are deleted en-masse and replaced with any transient-sysmeta included with the PUT
or POST request. Transient-sysmeta set by a middleware is therefore prone to deletion by a subsequent
client-generated POST request unless the middleware is careful to include its transient-sysmeta with
every POST. Likewise, user metadata set by a client is prone to deletion by a subsequent middleware-
generated POST request, and for that reason middleware should avoid generating POST requests that are
independent of any client request.

Transient-sysmeta deliberately uses a different header prefix to user metadata so that middlewares can
avoid potential conflict with user metadata keys.

Transient-sysmeta deliberately uses a different header prefix to system metadata to emphasize the fact
that the data is only persisted until a subsequent POST.

226 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

4.7 Pluggable On-Disk Back-end APls

The internal REST API used between the proxy server and the account, container and object server is
almost identical to public Swift REST API, but with a few internal extensions (for example, update an
account with a new container).

The pluggable back-end APIs for the three REST API servers (account, container, object) abstracts the
needs for servicing the various REST APIs from the details of how data is laid out and stored on-disk.

The APIs are documented in the reference implementations for all three servers. For historical reasons,
the object server backend reference implementation module is named diskfile, while the account and
container server backend reference implementation modules are named appropriately.

This API is still under development and not yet finalized.

4.7.1 Back-end API for Account Server REST APlIs

Pluggable Back-end for Account Server

class swift.account.backend.AccountBroker (db_file, timeout=25, logger=None,
account=None, container=None,
pending_timeout=None, stale_reads_ok=False,
skip_commits=False)

Encapsulates working with an account database.

create_account_stat_table(conn, put_timestamp)

Create account_stat table which is specific to the account DB. Not a part of Pluggable Back-
ends, internal to the baseline code.

Parameters
* conn DB connection object
* put_timestamp put timestamp

create_container_table(conn)

Create container table which is specific to the account DB.
Parameters conn DB connection object

create_policy_stat_table(conn)

Create policy_stat table which is specific to the account DB. Not a part of Pluggable Back-
ends, internal to the baseline code.

Parameters conn DB connection object

empty ()
Check if the account DB is empty.

Returns True if the database has no active containers.

get_info()
Get global data for the account.

Returns dict with keys: account, created_at, put_timestamp, delete_timestamp,
status_changed_at, container_count, object_count, bytes_used, hash, id

4.7. Pluggable On-Disk Back-end APIs 227

Swift Documentation, Release 2.30.2.dev8

get_policy_stats(do_migrations=False)
Get global policy stats for the account.

Parameters do_migrations boolean, if True the policy stat dicts will always in-
clude the container_count key; otherwise it may be omitted on legacy databases
until they are migrated.

Returns dict of policy stats where the key is the policy index and the value is a
dictionary like {object_count: M, bytes_used: N, container_count: L}

is_status_deleted()
Only returns true if the status field is set to DELETED.

list_containers_iter (limit, marker, end_marker, prefix, delimiter, reverse=False,
allow_reserved=False)

Get a list of containers sorted by name starting at marker onward, up to limit entries. Entries
will begin with the prefix and will not have the delimiter after the prefix.

Parameters

e limit maximum number of entries to get

» marker marker query

» end_marker end marker query

» prefix prefix query

* delimiter delimiter for query

* reverse reverse the result order.

* allow_reserved exclude names with reserved-byte by default
Returns list of tuples of (name, object_count, bytes_used, put_timestamp, 0)

make_tuple_for_pickle(record)

Turn this db record dict into the format this service uses for pending pickles.

merge_items (item_list, source=None)

Merge items into the container table.
Parameters

* item_list list of dictionaries of { name, put_timestamp, delete_timestamp,
object_count, bytes_used, deleted, storage_policy_index}

» source if defined, update incoming_sync with the source

put_container (name, put_timestamp, delete_timestamp, object_count, bytes_used,
storage_policy_index)

Create a container with the given attributes.
Parameters
* name name of the container to create (a native string)
* put_timestamp put_timestamp of the container to create
* delete_timestamp delete_timestamp of the container to create

* object_count number of objects in the container

228 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

* bytes_used number of bytes used by the container

* storage_policy_index the storage policy for this container

4.7.2 Back-end API for Container Server REST APlIs

Pluggable Back-ends for Container Server

class swift.container.backend.ContainerBroker (db_file, timeout=25, logger=None,
account=None, container=None,
pending_timeout=None,
stale_reads_ok=Fualse,
skip_commits=False,
force_db_file=False)

Encapsulates working with a container database.
Note that this may involve multiple on-disk DB files if the container becomes sharded:

* _db_file is the path to the legacy container DB name, i.e. <hash>.db. This file should
exist for an initialised broker that has never been sharded, but will not exist once a container
has been sharded.

» db_files is a list of existing db files for the broker. This list should have at least one entry
for an initialised broker, and should have two entries while a broker is in SHARDING state.

» db_file is the path to whichever db is currently authoritative for the container. Depend-
ing on the containers state, this may not be the same as the db_file argument given to
__init__(Q), unless force_db_£file is True in which case db_file is always equal to the
db_file argument given to __init__Q).

* pending_file is always equal to _db_file extended with .pending, i.e. <hash>.db.
pending.

classmethod create_broker (device_path, part, account, container, logger=None,
epoch=None, put_timestamp=None,
storage_policy_index=None)

Create a ContainerBroker instance. If the db doesnt exist, initialize the db file.
Parameters
* device_path device path
e part partition number
* account account name string
* container container name string
* logger alogger instance
» epoch a timestamp to include in the db filename
* put_timestamp initial timestamp if broker needs to be initialized
» storage_policy_index the storage policy index

Returns a tuple of (broker, initialized) where broker is an instance of
swift.container.backend.ContainerBroker and initialized is True
if the db file was initialized, False otherwise.

4.7. Pluggable On-Disk Back-end APIs 229

Swift Documentation, Release 2.30.2.dev8

create_container_info_table(conn, put_timestamp, storage_policy_index)

Create the container_info table which is specific to the container DB. Not a part of Pluggable
Back-ends, internal to the baseline code. Also creates the container_stat view.

Parameters
* conn DB connection object
* put_timestamp put timestamp
» storage_policy_index storage policy index

create_object_table(conn)

Create the object table which is specific to the container DB. Not a part of Pluggable Back-
ends, internal to the baseline code.

Parameters conn DB connection object

create_policy_stat_table(conn, storage_policy_index=0)
Create policy_stat table.

Parameters
* conn DB connection object

» storage_policy_index the policy_index the container is being created
with

create_shard_range_table (conn)
Create the shard_range table which is specific to the container DB.
Parameters conn DB connection object

property db_file

Get the path to the primary db file for this broker. This is typically the db file for the most
recent sharding epoch. However, if no db files exist on disk, or if force_db_file was True
when the broker was constructed, then the primary db file is the file passed to the broker
constructor.

Returns A path to a db file; the file does not necessarily exist.

property db_files
Gets the cached list of valid db files that exist on disk for this broker.

The cached list may be refreshed by calling reload_db_files().
Returns A list of paths to db files ordered by ascending epoch; the list may be
empty.

delete_object (name, timestamp, storage_policy_index=0)
Mark an object deleted.

Parameters
* name object name to be deleted
* timestamp timestamp when the object was marked as deleted

» storage_policy_index the storage policy index for the object

230 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

empty ()
Check if container DB is empty.
This method uses more stringent checks on object count than is_deleted(): this method
checks that there are no objects in any policy; if the container is in the process of sharding

then both fresh and retiring databases are checked to be empty; if a root container has shard
ranges then they are checked to be empty.

Returns True if the database has no active objects, False otherwise

enable_sharding(epoch)
Updates this brokers own shard range with the given epoch, sets its state to SHARDING and
persists it in the DB.
Parameters epoch a Timestamp

Returns the brokers updated own shard range.

find_shard_ranges (shard_size, limit=- 1, existing_ranges=None, minimum_shard_size=1)
Scans the container db for shard ranges. Scanning will start at the upper bound of the any
existing_ranges that are given, otherwise at ShardRange . MIN. Scanning will stop when
limit shard ranges have been found or when no more shard ranges can be found. In the
latter case, the upper bound of the final shard range will be equal to the upper bound of the
container namespace.

This method does not modify the state of the db; callers are responsible for persisting any
shard range data in the db.

Parameters
» shard_size the size of each shard range

* limit the maximum number of shard points to be found; a negative value
(default) implies no limit.

* existing_ranges an optional list of existing ShardRanges; if given, this
list should be sorted in order of upper bounds; the scan for new shard ranges
will start at the upper bound of the last existing ShardRange.

* minimum_shard_size Minimum size of the final shard range. If this
is greater than one then the final shard range may be extended to more
than shard_size in order to avoid a further shard range with less mini-
mum_shard_size rows.

Returns a tuple; the first value in the tuple is a list of dicts each having keys {index,
lower, upper, object_count} in order of ascending upper; the second value in
the tuple is a boolean which is True if the last shard range has been found, False
otherwise.

get_all_shard_range_data()

Returns a list of all shard range data, including own shard range and deleted shard ranges.
Returns A list of dict representations of a ShardRange.

get_brokers()

Return a list of brokers for component dbs. The list has two entries while the db state is
sharding: the first entry is a broker for the retiring db with skip_commits set to True; the

4.7. Pluggable On-Disk Back-end APIs 231

Swift Documentation, Release 2.30.2.dev8

second entry is a broker for the fresh db with skip_commits set to False. For any other db
state the list has one entry.

Returns a list of ContainerBroker

get_db_state()
Returns the current state of on disk db files.
get_info()

Get global data for the container.

Returns dict with keys: account, container, created_at, put_timestamp,
delete_timestamp, status, status_changed_at, object_count,
bytes_used, reported_put_timestamp, reported_delete_timestamp, re-
ported_object_count, reported_bytes_used, hash, id, Xx_container_sync_pointl,
X_container_sync_point2, and storage_policy_index, db_state.

get_info_is_deleted()

Get the is_deleted status and info for the container.

Returns a tuple, in the form (info, is_deleted) info is a dict as returned by get_info
and is_deleted is a boolean.

get_misplaced_since(start, count)

Get a list of objects which are in a storage policy different from the containers storage policy.
Parameters
* start last reconciler sync point
e count maximum number of entries to get

Returns list of dicts with keys: name, created_at, size, content_type, etag, stor-
age_policy_index

get_objects (limit=None, marker=", end_marker=", include_deleted=None,
since_row=None)

Returns a list of objects, including deleted objects, in all policies. Each object in the list
is described by a dict with keys {name, created_at, size, content_type, etag, deleted, stor-
age_policy_index}.

Parameters
e limit maximum number of entries to get

» marker if set, objects with names less than or equal to this value will not be
included in the list.

* end_marker if set, objects with names greater than or equal to this value
will not be included in the list.

* include_deleted if True, include only deleted objects; if False, include
only undeleted objects; otherwise (default), include both deleted and un-
deleted objects.

* since_row include only items whose ROWID is greater than the given row
id; by default all rows are included.

Returns a list of dicts, each describing an object.

232 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

get_own_shard_range (no_default=False)

Returns a shard range representing this brokers own shard range. If no such range has been
persisted in the brokers shard ranges table then a default shard range representing the entire
namespace will be returned.

The returned shard range will be updated with the current object stats for this broker and a
meta timestamp set to the current time. For these values to be persisted the caller must merge
the shard range.

Parameters no_default if True and the brokers own shard range is not found in
the shard ranges table then None is returned, otherwise a default shard range is
returned.

Returns an instance of ShardRange

get_replication_info()

Get information about the DB required for replication.

Returns dict containing keys from get_info plus max_row and metadata

Note:: get_infos <db_contains_type>_count is translated to just count and metadata is
the raw string.

get_shard_ranges (marker=None, end_marker=None, includes=None, reverse=Fulse,

include_deleted=False, states=None, include_own=False,
exclude_others=False, fill_gaps=False)

Returns a list of persisted shard ranges.

Parameters

marker restricts the returned list to shard ranges whose namespace includes
or is greater than the marker value.

end_marker restricts the returned list to shard ranges whose namespace
includes or is less than the end_marker value.

includes restricts the returned list to the shard range that includes the given
value; if includes is specified then marker and end_marker are ignored.

reverse reverse the result order.
include_deleted include items that have the delete marker set

states if specified, restricts the returned list to shard ranges that have the
given state(s); can be a list of ints or a single int.

include_own boolean that governs whether the row whose name matches
the brokers path is included in the returned list. If True, that row is included,
otherwise it is not included. Default is False.

exclude_others boolean that governs whether the rows whose names do
not match the brokers path are included in the returned list. If True, those
rows are not included, otherwise they are included. Default is False.

fill_gaps if True, insert a modified copy of own shard range to fill any
gap between the end of any found shard ranges and the upper bound of own
shard range. Gaps enclosed within the found shard ranges are not filled.

Returns a list of instances of swift.common.utils.ShardRange

4.7. Pluggable On-Disk Back-end APIs

233

Swift Documentation, Release 2.30.2.dev8

get_shard_usage()

Get the aggregate object stats for all shard ranges in states ACTIVE, SHARDING or
SHRINKING.

Returns a dict with keys {bytes_used, object_count}

get_sharding_sysmeta (key=None)

Returns sharding specific info from the brokers metadata.

Parameters key if given the value stored under key in the sharding info will be
returned.

Returns either a dict of sharding info or the value stored under key in that dict.

get_sharding_sysmeta_with_timestamps()

Returns sharding specific info from the brokers metadata with timestamps.

Parameters key if given the value stored under key in the sharding info will be
returned.

Returns a dict of sharding info with their timestamps.

is_reclaimable (now, reclaim_age)

Check if the broker abstraction is empty, and has been marked deleted for at least a reclaim
age.

is_root_container()

Returns True if this container is a root container, False otherwise.
A root container is a container that is not a shard of another container.

list_objects_iter (limit, marker, end_marker, prefix, delimiter, path=None,
storage_policy_index=0, reverse=False, include_deleted=False,
since_row=None, transform_func=None, all_policies=False,
allow_reserved=Fualse)

Get a list of objects sorted by name starting at marker onward, up to limit entries. Entries
will begin with the prefix and will not have the delimiter after the prefix.

Parameters
e limit maximum number of entries to get
» marker marker query
* end_marker end marker query
» prefix prefix query
» delimiter delimiter for query
» path if defined, will set the prefix and delimiter based on the path
* storage_policy_index storage policy index for query
* reverse reverse the result order.

* include_deleted if True, include only deleted objects; if False (default),
include only undeleted objects; otherwise, include both deleted and un-
deleted objects.

234 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

* since_row include only items whose ROWID is greater than the given row
id; by default all rows are included.

» transform_func an optional function that if given will be called for each
object to get a transformed version of the object to include in the list-
ing; should have same signature as _transform_record(); defaults to
_transform_record().

* all_policies if True, include objects for all storage policies ignoring any
value given for storage_policy_index

* allow_reserved exclude names with reserved-byte by default
Returns list of tuples of (name, created_at, size, content_type, etag, deleted)

make_tuple_for_pickle(record)

Turn this db record dict into the format this service uses for pending pickles.

merge_items (item_list, source=None)

Merge items into the object table.
Parameters

* item_list list of dictionaries of {name, created_at, size, content_type,
etag, deleted, storage_policy_index, ctype_timestamp, meta_timestamp}

* source if defined, update incoming_sync with the source

merge_shard_ranges (shard_ranges)

Merge shard ranges into the shard range table.

Parameters shard_ranges a shard range or a list of shard ranges; each shard
range should be an instance of ShardRange or a dict representation of a shard
range having SHARD_RANGE_KEYS.

put_object (name, timestamp, size, content_type, etag, deleted=0, storage_policy_index=0,
ctype_timestamp=None, meta_timestamp=None)

Creates an object in the DB with its metadata.
Parameters
* name object name to be created
* timestamp timestamp of when the object was created
* size object size
* content_type object content-type
* etag object etag

* deleted if True, marks the object as deleted and sets the deleted_at times-
tamp to timestamp

» storage_policy_index the storage policy index for the object
* ctype_timestamp timestamp of when content_type was last updated

* meta_timestamp timestamp of when metadata was last updated

4.7. Pluggable On-Disk Back-end APIs 235

Swift Documentation, Release 2.30.2.dev8

reload_db_files()
Reloads the cached list of valid on disk db files for this broker.

remove_objects (lower, upper, max_row=None)

Removes object records in the given namespace range from the object table.
Note that objects are removed regardless of their storage_policy_index.
Parameters

* lower defines the lower bound of object names that will be removed; names
greater than this value will be removed; names less than or equal to this value
will not be removed.

» upper defines the upper bound of object names that will be removed; names
less than or equal to this value will be removed; names greater than this value
will not be removed. The empty string is interpreted as there being no upper
bound.

* max_row if specified only rows less than or equal to max_row will be re-
moved

reported (put_timestamp, delete_timestamp, object_count, bytes_used)

Update reported stats, available with containers get_info.
Parameters
* put_timestamp put_timestamp to update
* delete_timestamp delete_timestamp to update
* object_count object_count to update
* bytes_used bytes_used to update

classmethod resolve_shard_range_states(states)
Given a list of values each of which may be the name of a state, the number of a state, or an
alias, return the set of state numbers described by the list.

The following alias values are supported: listing maps to all states that are considered valid
when listing objects; updating maps to all states that are considered valid for redirecting an
object update; auditing maps to all states that are considered valid for a shard container that
is updating its own shard range table from a root (this currently maps to all states except
FOUND).

Parameters states alist of values each of which may be the name of a state, the
number of a state, or an alias

Returns a set of integer state numbers, or None if no states are given

Raises ValueError if any value in the given list is neither a valid state nor a valid
alias

set_sharded_state()
Unlinks the brokers retiring DB file.

Returns True if the retiring DB was successfully unlinked, False otherwise.

236 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

set_sharding_state()

Creates and initializes a fresh DB file in preparation for sharding a retiring DB. The brokers
own shard range must have an epoch timestamp for this method to succeed.

Returns True if the fresh DB was successfully created, False otherwise.

set_sharding_sysmeta(key, value)

Updates the brokers metadata stored under the given key prefixed with a sharding specific
namespace.

Parameters
* key metadata key in the sharding metadata namespace.
* value metadata value

set_storage_policy_index(policy_index, timestamp=None)
Update the container_stat policy_index and status_changed_at.
sharding_initiated()

Returns True if a broker has shard range state that would be necessary for sharding to have
been initiated, False otherwise.

sharding_required()

Returns True if a broker has shard range state that would be necessary for sharding to have
been initiated but has not yet completed sharding, False otherwise.

swift.container.backend.merge_shards (shard_data, existing)

Compares shard_data with existing and updates shard_data with any items of existing
that take precedence over the corresponding item in shard_data.

Parameters

» shard_data adict representation of shard range that may be modified by this
method.

* existing a dict representation of shard range.

Returns True if shard data has any item(s) that are considered to take precedence
over the corresponding item in existing

swift.container.backend.update_new_item_from_existing(new_item, existing)

Compare the data and meta related timestamps of a new object item with the timestamps of an
existing object record, and update the new item with data and/or meta related attributes from the
existing record if their timestamps are newer.

The multiple timestamps are encoded into a single string for storing in the created_at column of
the objects db table.

Parameters
* new_item A dict of object update attributes
* existing A dict of existing object attributes

Returns True if any attributes of the new item dict were found to be newer than the
existing and therefore not updated, otherwise False implying that the updated item
is equal to the existing.

4.7. Pluggable On-Disk Back-end APIs 237

Swift Documentation, Release 2.30.2.dev8

4.7.3 Back-end API for Object Server REST APIs

Disk File Interface for the Swift Object Server

The DiskFile, DiskFileWriter and DiskFileReader classes combined define the on-disk abstraction layer
for supporting the object server REST API interfaces (excluding REPLICATE). Other implementations
wishing to provide an alternative backend for the object server must implement the three classes. An
example alternative implementation can be found in the mem_server.py and mem_diskfile.py modules
along size this one.

The DiskFileManager is a reference implemenation specific class and is not part of the backend API.

The remaining methods in this module are considered implementation specific and are also not considered
part of the backend API.

class swift.obj.diskfile.AuditLocation(path, device, partition, policy)
Represents an object location to be audited.

Other than being a bucket of data, the only useful thing this does is stringify to a filesystem path
so the auditors logs look okay.

class swift.obj.diskfile.BaseDiskFile (mgr, device_path, partition, account=None,
container=None, obj=None, _datadir=None,
policy=None, use_splice=False, pipe_size=None,
open_expired=False, next_part_power=None,
**kwargs)

Manage object files.

This specific implementation manages object files on a disk formatted with a POSIX-compliant
file system that supports extended attributes as metadata on a file or directory.

Note: The arguments to the constructor are considered implementation specific. The API does
not define the constructor arguments.

The following path format is used for data file locations: <de-
vices_path/<device_dir>/<datadir>/<partdir>/<suffixdir>/<hashdir>/ <datafile>.<ext>

Parameters
* mgr associated DiskFileManager instance
* device_path path to the target device or drive
e partition partition on the device in which the object lives
* account account name for the object
* container container name for the object
* obj object name for the object
e _datadir override the full datadir otherwise constructed here
* policy the StoragePolicy instance
* use_splice if true, use zero-copy splice() to send data

» pipe_size size of pipe buffer used in zero-copy operations

238 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

» open_expired if True, open() will not raise a DiskFileExpired if object is
expired

* next_part_power the next partition power to be used
create(size=None)

Context manager to create a file. We create a temporary file first, and then return a Disk-
FileWriter object to encapsulate the state.

Note: An implementation is not required to perform on-disk preallocations even if the pa-
rameter is specified. But if it does and it fails, it must raise a DiskFileNoSpace exception.

Parameters size optional initial size of file to explicitly allocate on disk

Raises DiskFileNoSpace if a size is specified and allocation fails
delete (timestamp)
Delete the object.

This implementation creates a tombstone file using the given timestamp, and removes any

older versions of the object file. Any file that has an older timestamp than timestamp will be
deleted.

Note: An implementation is free to use or ignore the timestamp parameter.

Parameters timestamp timestamp to compare with each file

Raises DiskFileError this implementation will raise the same errors as the cre-
ate() method.

property durable_timestamp
Provides the timestamp of the newest data file found in the object directory.
Returns A Timestamp instance, or None if no data file was found.

Raises DiskFileNotOpen if the open() method has not been previously called on
this instance.

get_datafile_metadata()

Provide the datafile metadata for a previously opened object as a dictionary. This is metadata

that was included when the object was first PUT, and does not include metadata set by any
subsequent POST.

Returns objects datafile metadata dictionary

Raises DiskFileNotOpen if the swift.obj.diskfile.DiskFile.open()
method was not previously invoked

get_metadata()
Provide the metadata for a previously opened object as a dictionary.

Returns objects metadata dictionary

Raises DiskFileNotOpen if the swift.obj.diskfile.DiskFile.open()
method was not previously invoked

4.7. Pluggable On-Disk Back-end APIs 239

Swift Documentation, Release 2.30.2.dev8

get_metafile_metadata()

Provide the metafile metadata for a previously opened object as a dictionary. This is metadata
that was written by a POST and does not include any persistent metadata that was set by the
original PUT.

Returns objects .meta file metadata dictionary, or None if there is no .meta file

Raises DiskFileNotOpen if the swift.obj.diskfile.DiskFile.open()
method was not previously invoked

open(modernize=False, current_time=None)

Open the object.

This implementation opens the data file representing the object, reads the associated metadata
in the extended attributes, additionally combining metadata from fast-POST .mefa files.

Parameters

* modernize if set, update this diskfile to the latest format. Currently, this
means adding metadata checksums if none are present.

* current_time Unix time used in checking expiration. If not present, the
current time will be used.

Note: An implementation is allowed to raise any of the following exceptions, but is only
required to raise DiskFileNotExist when the object representation does not exist.

Raises
* DiskFileCollision on name mis-match with metadata
» DiskFileNotExist if the object does not exist
» DiskFileDeleted if the object was previously deleted

» DiskFileQuarantined if while reading metadata of the file some data did
pass cross checks

Returns itself for use as a context manager

read_metadata(current_time=None)

Return the metadata for an object without requiring the caller to open the object first.

Parameters current_time Unix time used in checking expiration. If not present,
the current time will be used.

Returns metadata dictionary for an object

Raises DiskFileError this implementation will raise the same errors as the
open() method.
reader (keep_cache=False, _quarantine_hook=<function BaseDiskFile.<lambda»)
Return a swift.common.swob.Response class compatible app_iter object as defined by
swift.obj.diskfile.DiskFileReader.

For this implementation, the responsibility of closing the open file is passed to the swift.
obj.diskfile.DiskFileReader object.

240 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

Parameters
* keep_cache callers preference for keeping data read in the OS buffer cache

* _quarantine_hook 1-arg callable called when obj quarantined; the arg is
the reason for quarantine. Default is to ignore it. Not needed by the REST
layer.

Returns a swift.obj.diskfile.DiskFileReader object

write_metadata(metadata)

Write a block of metadata to an object without requiring the caller to create the object first.
Supports fast-POST behavior semantics.

Parameters metadata dictionary of metadata to be associated with the object

Raises DiskFileError this implementation will raise the same errors as the cre-
ate() method.

class swift.obj.diskfile.BaseDiskFileManager (conf, logger)

Management class for devices, providing common place for shared parameters and methods not
provided by the DiskFile class (which primarily services the object server REST API layer).

The get_diskfile() method is how this implementation creates a DiskFile object.

Note: This class is reference implementation specific and not part of the pluggable on-disk back-
end APL

Note: TODO(portante): Not sure what the right name to recommend here, as manager seemed
generic enough, though suggestions are welcome.

Parameters
e conf caller provided configuration object
* logger caller provided logger

cleanup_ondisk_files(hsh_path, **kwargs)

Clean up on-disk files that are obsolete and gather the set of valid on-disk files for an object.
Parameters
* hsh_path object hash path

» frag_index if set, search for a specific fragment index .data file, otherwise
accept the first valid .data file

Returns a dict that may contain: valid on disk files keyed by their filename exten-
sion; a list of obsolete files stored under the key obsolete; a list of files remaining
in the directory, reverse sorted, stored under the key files.

static consolidate_hashes (partition_dir)

Take whats in hashes.pkl and hashes.invalid, combine them, write the result back to
hashes.pkl, and clear out hashes.invalid.

4.7. Pluggable On-Disk Back-end APIs 241

Swift Documentation, Release 2.30.2.dev8

Parameters partition_dir absolute path to partition dir containing hashes.pkl
and hashes.invalid

Returns a dict, the suffix hashes (if any), the key valid will be False if hashes.pkl
is corrupt, cannot be read or does not exist

construct_dev_path(device)

Construct the path to a device without checking if it is mounted.
Parameters device name of target device
Returns full path to the device

get_dev_path(device, mount_check=None)

Return the path to a device, first checking to see if either it is a proper mount point, or at least
a directory depending on the mount_check configuration option.

Parameters
» device name of target device

e mount_check whether or not to check mountedness of device. Defaults to
bool(self.mount_check).

Returns full path to the device, None if the path to the device is not a proper mount
point or directory.

get_diskfile(device, partition, account, container, obj, policy, **kwargs)

Returns a BaseDiskFile instance for an object based on the objects partition, path parts and
policy.

Parameters
* device name of target device
* partition partition on device in which the object lives
* account account name for the object
* container container name for the object
* obj object name for the object
» policy the StoragePolicy instance

get_diskfile_and_filenames_from_hash(device, partition, object_hash, policy,

**kwargs)

Returns a tuple of (a DiskFile instance for an object at the given object_hash, the basenames
of the files in the objects hash dir). Just in case someone thinks of refactoring, be sure Disk-
FileDeleted is not raised, but the DiskFile instance representing the tombstoned object is
returned instead.

Parameters
» device name of target device
* partition partition on the device in which the object lives
» object_hash the hash of an object path

» policy the StoragePolicy instance

242 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

Raises DiskFileNotExist if the object does not exist
Returns a tuple comprising (an instance of BaseDiskFile, a list of file basenames)

get_diskfile_from_audit_location(audit location)

Returns a BaseDiskFile instance for an object at the given AuditLocation.
Parameters audit_location object location to be audited

get_diskfile_from_hash(device, partition, object_hash, policy, **kwargs)

Returns a DiskFile instance for an object at the given object_hash. Justin case someone thinks
of refactoring, be sure DiskFileDeleted is not raised, but the DiskFile instance representing
the tombstoned object is returned instead.

Parameters
* device name of target device
* partition partition on the device in which the object lives
» object_hash the hash of an object path
» policy the StoragePolicy instance
Raises DiskFileNotExist if the object does not exist
Returns an instance of BaseDiskFile

get_hashes (device, partition, suffixes, policy, skip_rehash=False)

Parameters
* device name of target device
* partition partition name
» suffixes a list of suffix directories to be recalculated
» policy the StoragePolicy instance
» skip_rehash just mark the suffixes dirty; return None
Returns a dictionary that maps suffix directories

get_ondisk_files(files, datadir, verify=True, policy=None, **kwargs)

Given a simple list of files names, determine the files that constitute a valid fileset i.e. a set
of files that defines the state of an object, and determine the files that are obsolete and could
be deleted. Note that some files may fall into neither category.

If a file is considered part of a valid fileset then its info dict will be added to the results dict,
keyed by <extension>_info. Any files that are no longer required will have their info dicts
added to a list stored under the key obsolete.

The results dict will always contain entries with keys ts_file, data_file and meta_file. Their
values will be the fully qualified path to a file of the corresponding type if there is such a file
in the valid fileset, or None.

Parameters
e files alist of file names.

» datadir directory name files are from; this is used to construct file paths in
the results, but the datadir is not modified by this method.

4.7. Pluggable On-Disk Back-end APIs 243

Swift Documentation, Release 2.30.2.dev8

» verify if True verify that the ondisk file contract has not been violated,
otherwise do not verify.

* policy storage policy used to store the files. Used to validate fragment
indexes for EC policies.

Returns

a dict that will contain keys: ts_file -> path to a .ts file or None data_file ->
path to a .data file or None meta_file -> path to a .meta file or None ctype_file
-> path to a .meta file or None

and may contain keys: ts_info -> a file info dict for a .ts file data_info -> a file
info dict for a .data file meta_info -> a file info dict for a .meta file ctype_info
-> afile info dict for a .meta file which contains the content-type value unex-
pected -> a list of file paths for unexpected files possible_reclaim -> a list of
file info dicts for possible reclaimable files obsolete -> a list of file info dicts
for obsolete files

static invalidate_hashsuffix_dir)

Invalidates the hash for a suffix_dir in the partitions hashes file.
Parameters suffix_dir absolute path to suffix dir whose hash needs invalidating

make_on_disk_filename (timestamp, ext=None, ctype_timestamp=None, *a, **kw)

Returns filename for given timestamp.
Parameters
* timestamp the object timestamp, an instance of Timestamp

* ext an optional string representing a file extension to be appended to the
returned file name

* ctype_timestamp an optional content-type timestamp, an instance of
Timestamp

Returns a file name

object_audit_location_generator (policy, device_dirs=None, auditor_type="ALL")

Yield an AuditLocation for all objects stored under device_dirs.
Parameters
» policy the StoragePolicy instance
* device_dirs directory of target device
e auditor_type either ALL or ZBF

parse_on_disk_filename (filename, policy)

Parse an on disk file name.
Parameters
» filename the file name including extension
» policy storage policy used to store the file
Returns

a dict, with keys for timestamp, ext and ctype_timestamp:

244 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

* timestamp is a Timestamp
* ctype_timestamp is a Timestamp or None for .meta files, otherwise None

* extis a string, the file extension including the leading dot or the empty string
if the filename has no extension.

Subclasses may override this method to add further keys to the returned dict.
Raises DiskFileError if any part of the filename is not able to be validated.

partition_lock(device, policy, partition, name=None, timeout=None)
A context manager that will lock on the partition given.

Parameters
* device device targeted by the lock request
» policy policy targeted by the lock request
» partition partition targeted by the lock request

Raises PartitionLockTimeout If the lock on the partition cannot be granted
within the configured timeout.

pickle_async_update(device, account, container, obj, data, timestamp, policy)

Write data describing a container update notification to a pickle file in the async_pending
directory.

Parameters
» device name of target device
* account account name for the object
» container container name for the object
* obj object name for the object
» data update data to be written to pickle file
* timestamp a Timestamp
* policy the StoragePolicy instance

static quarantine_renamer (device_path, corrupted_file_path)

In the case that a file is corrupted, move it to a quarantined area to allow replication to fix it.
Params device_path The path to the device the corrupted file is on.
Params corrupted_file_path The path to the file you want quarantined.
Returns path (str) of directory the file was moved to

Raises OSError re-raises non errno.EEXIST / errno. ENOTEMPTY exceptions
from rename

replication_lock(device, policy, partition)

A context manager that will lock on the partition and, if configured to do so, on the device
given.

Parameters

* device name of target device

4.7. Pluggable On-Disk Back-end APIs 245

Swift Documentation, Release 2.30.2.dev8

* policy policy targeted by the replication request
* partition partition targeted by the replication request

Raises ReplicationLockTimeout If the lock on the device cannot be granted
within the configured timeout.

yield_hashes (device, partition, policy, suffixes=None, **kwargs)

Yields tuples of (hash_only, timestamps) for object information stored for the given device,
partition, and (optionally) suffixes. If suffixes is None, all stored suffixes will be searched for
object hashes. Note that if suffixes is not None but empty, such as [], then nothing will be
yielded.

timestamps is a dict which may contain items mapping:
* ts_data -> timestamp of data or tombstone file,
* ts_meta -> timestamp of meta file, if one exists

* ts_ctype -> timestamp of meta file containing most recent content-type value, if
one exists

e durable -> True if data file at ts_data is durable, False otherwise
where timestamps are instances of Timestamp
Parameters
* device name of target device
* partition partition name
» policy the StoragePolicy instance
» suffixes optional list of suffix directories to be searched

yield_suffixes(device, partition, policy)
Yields tuples of (full_path, suffix_only) for suffixes stored on the given device and partition.

Parameters
* device name of target device
* partition partition name
» policy the StoragePolicy instance

class swift.obj.diskfile.BaseDiskFileReader (fp, data_file, obj_size, etag, disk_chunk_size,
keep_cache_size, device_path, logger,
quarantine_hook, use_splice, pipe_size,
diskfile, keep_cache=False)

Encapsulation of the WSGI read context for servicing GET REST API requests. Serves as the
context manager object for the swift.obj.diskfile.DiskFileclasss swift.obj.diskfile.
DiskFile.reader () method.

Note: The quarantining behavior of this method is considered implementation specific, and is not
required of the APIL.

246 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

Note: The arguments to the constructor are considered implementation specific. The API does
not define the constructor arguments.

Parameters
» fp open file object pointer reference
» data_file on-disk data file name for the object
* obj_size verified on-disk size of the object
* etag expected metadata etag value for entire file
» disk_chunk_size size of reads from disk in bytes
* keep_cache_size maximum object size that will be kept in cache
* device_path on-disk device path, used when quarantining an obj
* logger logger caller wants this object to use
* quarantine_hook 1-arg callable called w/reason when quarantined
» use_splice if true, use zero-copy splice() to send data
* pipe_size size of pipe buffer used in zero-copy operations
o diskfile the diskfile creating this DiskFileReader instance
* keep_cache should resulting reads be kept in the buffer cache
app_iter_range (start, stop)
Returns an iterator over the data file for range (start, stop)
app_iter_ranges (ranges, content_type, boundary, size)

Returns an iterator over the data file for a set of ranges

close()
Close the open file handle if present.

For this specific implementation, this method will handle quarantining the file if necessary.

zero_copy_send (wsockfd)
Does some magic with splice() and tee() to move stuff from disk to network without ever
touching userspace.
Parameters wsockfd file descriptor (integer) of the socket out which to send data
class swift.obj.diskfile.BaseDiskFileWriter (name, datadir, size, bytes_per_sync, diskfile,
next_part_power)

Encapsulation of the write context for servicing PUT REST API requests. Serves as the con-
text manager object for the swift.obj.diskfile.DiskFile classs swift.obj.diskfile.
DiskFile.create() method.

Note: It is the responsibility of the swift.obj.diskfile.DiskFile.create() method con-
text manager to close the open file descriptor.

4.7. Pluggable On-Disk Back-end APIs 247

Swift Documentation, Release 2.30.2.dev8

Note: The arguments to the constructor are considered implementation specific. The API does
not define the constructor arguments.

Parameters
* name name of object from REST API

* datadir on-disk directory object will end up in on swift.obj.diskfile.
DiskFilelWiriter.put()

» fd open file descriptor of temporary file to receive data

» tmppath full path name of the opened file descriptor

* bytes_per_sync number bytes written between sync calls
» diskfile the diskfile creating this DiskFileWriter instance
* next_part_power the next partition power to be used

chunks_finished ()
Expose internal stats about written chunks.

Returns a tuple, (upload_size, etag)

commit (timestamp)

Perform any operations necessary to mark the object as durable. For replication policy type
this is a no-op.

Parameters timestamp object put timestamp, an instance of Timestamp

put (metadata)
Finalize writing the file on disk.

Parameters metadata dictionary of metadata to be associated with the object

write(chunk)

Write a chunk of data to disk. All invocations of this method must come before invoking the
:func:

For this implementation, the data is written into a temporary file.
Parameters chunk the chunk of data to write as a string object

class swift.obj.diskfile.DiskFile (mgr, device_path, partition, account=None,
container=None, obj=None, _datadir=None,
policy=None, use_splice=False, pipe_size=None,
open_expired=False, next_part_power=None, **kwargs)

reader_cls
alias of swift.obj.diskfile.DiskFileReader

writer_cls
alias of swift.obj.diskfile.DiskFileliriter

class swift.obj.diskfile.DiskFileManager (conf, logger)

248 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

diskfile_cls
alias of swift.obj.diskfile.DiskFile

class swift.obj.diskfile.DiskFileReader (fp, data_file, obj_size, etag, disk_chunk_size,
keep_cache_size, device_path, logger,
quarantine_hook, use_splice, pipe_size, diskfile,
keep_cache=False)

class swift.obj.diskfile.DiskFileWriter (name, datadir, size, bytes_per_sync, diskfile,
next_part_power)

put (metadata)
Finalize writing the file on disk.
Parameters metadata dictionary of metadata to be associated with the object
class swift.obj.diskfile.ECDiskFile(*args, **kwargs)
property durable_timestamp
Provides the timestamp of the newest durable file found in the object directory.
Returns A Timestamp instance, or None if no durable file was found.

Raises DiskFileNotOpen if the open() method has not been previously called on
this instance.

property fragments

Provides information about all fragments that were found in the object directory, including
fragments without a matching durable file, and including any fragment chosen to construct
the opened diskfile.

Returns A dict mapping <Timestamp instance> -> <list of frag indexes>, or None
if the diskfile has not been opened or no fragments were found.

purge (timestamp, frag_index, nondurable_purge_delay=0, meta_timestamp=None)
Remove a tombstone file matching the specified timestamp or datafile matching the specified
timestamp and fragment index from the object directory.

This provides the EC reconstructor/ssync process with a way to remove a tombstone or frag-
ment from a handoff node after reverting it to its primary node.

The hash will be invalidated, and if empty the hsh_path will be removed immediately.
Parameters
* timestamp the object timestamp, an instance of Timestamp
» frag_index fragment archive index, must be a whole number or None.

» nondurable_purge_delay only remove a non-durable data file if its been
on disk longer than this many seconds.

* meta_timestamp if not None then remove any meta file with this timestamp

reader_cls
alias of swift.obj.diskfile.ECDiskFileReader

writer_cls
alias of swift.obj.diskfile.ECDiskFileliriter

4.7. Pluggable On-Disk Back-end APIs 249

Swift Documentation, Release 2.30.2.dev8

class swift.obj.diskfile.ECDiskFileManager (conf, logger)
diskfile_cls
alias of swift.obj.diskfile.ECDiskFile

make_on_disk_filename (timestamp, ext=None, frag_index=None, ctype_timestamp=None,
durable=Fualse, *a, **kw)

Returns the EC specific filename for given timestamp.
Parameters
* timestamp the object timestamp, an instance of Timestamp

* ext an optional string representing a file extension to be appended to the
returned file name

» frag_index afragment archive index, used with .data extension only, must
be a whole number.

* ctype_timestamp an optional content-type timestamp, an instance of
Timestamp

e durable if True then include a durable marker in data filename.
Returns a file name

Raises DiskFileError if ext==.data and the kwarg frag_index is not a whole
number

parse_on_disk_filename (filename, policy)

Returns timestamp(s) and other info extracted from a policy specific file name. For EC policy
the data file name includes a fragment index and possibly a durable marker, both of which
must be stripped off to retrieve the timestamp.

Parameters filename the file name including extension
Returns
a dict, with keys for timestamp, frag_index, durable, ext and
ctype_timestamp:
* timestamp is a Timestamp
* frag_index is an int or None
* ctype_timestamp is a Timestamp or None for .meta files, otherwise None

* extis a string, the file extension including the leading dot or the empty string
if the filename has no extension

e durable is a boolean that is True if the filename is a data file that includes a
durable marker
Raises DiskFileError if any part of the filename is not able to be validated.

validate_fragment_index (frag_index, policy=None)

Return int representation of frag_index, or raise a DiskFileError if frag_index is not a whole
number.

Parameters

250 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

» frag_index a fragment archive index
* policy storage policy used to validate the index against

class swift.obj.diskfile.ECDiskFileReader (fp, data_file, obj_size, etag, disk_chunk_size,
keep_cache_size, device_path, logger,
quarantine_hook, use_splice, pipe_size, diskfile,
keep_cache=False)

class swift.obj.diskfile.ECDiskFileWriter (name, datadir, size, bytes_per_sync, diskfile,
next_part_power)

commi t (timestamp)

Finalize put by renaming the object data file to include a durable marker. We do this for EC
policy because it requires a 2-phase put commit confirmation.

Parameters timestamp object put timestamp, an instance of Timestamp

Raises DiskFileError if the diskfile frag_index has not been set (either during
initialisation or a call to put())

put (metadata)

The only difference between this method and the replication policy DiskFileWriter method
is adding the frag index to the metadata.

Parameters metadata dictionary of metadata to be associated with object

swift.obj.diskfile.consolidate_hashes (partition_dir)

Take whats in hashes.pkl and hashes.invalid, combine them, write the result back to hashes.pkl,
and clear out hashes.invalid.

Parameters partition_dir absolute path to partition dir containing hashes.pkl and
hashes.invalid

Returns a dict, the suffix hashes (if any), the key valid will be False if hashes.pkl is
corrupt, cannot be read or does not exist

swift.obj.diskfile.extract_policy(obj_path)

Extracts the policy for an object (based on the name of the objects directory) given the device-
relative path to the object. Returns None in the event that the path is malformed in some way.

The device-relative path is everything after the mount point; for example:
/srv/node/d42/objects-5/30/179/ 485dc017205a81df3af616d917¢90179/1401811134.873649.data
would have device-relative path:
objects-5/30/179/485dc017205a81df3af616d917¢90179/1401811134.873649.data

Parameters obj_path device-relative path of an object, or the full path

Returns a BaseStoragePolicy or None

swift.obj.diskfile.get_async_dir(policy_or_index)
Get the async dir for the given policy.

Parameters policy_or_index StoragePolicy instance, or an index (string or int);
if None, the legacy Policy-0 is assumed.

Returns async_pending or async_pending-<N> as appropriate

4.7. Pluggable On-Disk Back-end APIs 251

Swift Documentation, Release 2.30.2.dev8

swift.obj.diskfile.get_data_dir(policy_or_index)
Get the data dir for the given policy.

Parameters policy_or_index StoragePolicy instance, or an index (string or int);
if None, the legacy Policy-0 is assumed.

Returns objects or objects-<N> as appropriate

swift.obj.diskfile.get_part_path(dev_path, policy, partition)

Given the device path, policy, and partition, returns the full path to the partition

swift.obj.diskfile.get_tmp_dir(policy_or_index)
Get the temp dir for the given policy.

Parameters policy_or_index StoragePolicy instance, or an index (string or int);
if None, the legacy Policy-0 is assumed.

Returns tmp or tmp-<N> as appropriate

swift.obj.diskfile.invalidate_hashCsuffix_dir)

Invalidates the hash for a suffix_dir in the partitions hashes file.
Parameters suffix_dir absolute path to suffix dir whose hash needs invalidating

swift.obj.diskfile.object_audit_location_generator (devices, datadir,
mount_check=True, logger=None,
device_dirs=None,
auditor_type="ALL")

Given a devices path (e.g. /srv/node), yield an AuditLocation for all objects stored under that
directory for the given datadir (policy), if device_dirs isnt set. If device_dirs is set, only yield Au-
ditLocation for the objects under the entries in device_dirs. The AuditLocation only knows the path
to the hash directory, not to the .data file therein (if any). This is to avoid a double listdir(hash_dir);
the DiskFile object will always do one, so we dont.

Parameters
* devices parent directory of the devices to be audited
* datadir objects directory
» mount_check flag to check if a mount check should be performed on devices
* logger alogger object
* device_dirs a list of directories under devices to traverse
e auditor_type either ALL or ZBF

swift.obj.diskfile.quarantine_renamer (device_path, corrupted_file_path)

In the case that a file is corrupted, move it to a quarantined area to allow replication to fix it.
Params device_path The path to the device the corrupted file is on.
Params corrupted_file_path The path to the file you want quarantined.
Returns path (str) of directory the file was moved to

Raises OSError re-raises non errno.EEXIST / errno. ENOTEMPTY exceptions from
rename

252 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

swift.obj.diskfile.read_hashes(partition_dir)
Read the existing hashes.pkl

Returns a dict, the suffix hashes (if any), the key valid will be False if hashes.pkl is
corrupt, cannot be read or does not exist

swift.obj.diskfile.read_metadata(fd, add_missing_checksum=False)

Helper function to read the pickled metadata from an object file.
Parameters
» fd file descriptor or filename to load the metadata from
* add_missing_checksum if set and checksum is missing, add it
Returns dictionary of metadata

swift.obj.diskfile.relink_paths(target_path, new_target_path, ignore_missing=True)

Hard-links a file located in target_path using the second path new_target_path. Creates
intermediate directories if required.

Parameters
e target_path current absolute filename
e new_target_path new absolute filename for the hardlink

* ignore_missing if True then no exception is raised if the link could not
be made because target_path did not exist, otherwise an OSError will be
raised.

Raises OSError if the hard link could not be created, unless the intended hard link
already exists or the target_path does not exist and must_exist if False.

Returns True if the link was created by the call to this method, False otherwise.

swift.obj.diskfile.write_hashes(partition_dir, hashes)
Write hashes to hashes.pkl

The updated key is added to hashes before it is written.

swift.obj.diskfile.write_metadata(fd, metadata, xattr_size=65536)

Helper function to write pickled metadata for an object file.
Parameters
» fd file descriptor or filename to write the metadata

* metadata metadata to write

4.8 Auditor Watchers

4.8.1 Overview

The duty of auditors is to guard Swift against corruption in the storage media. But because auditors
crawl all objects, they can be used to program Swift to operate on every object. It is done through an API
known as watcher.

4.8. Auditor Watchers 253

Swift Documentation, Release 2.30.2.dev8

Watchers do not have any private view into the cluster. An operator can write a standalone program that
walks the directories and performs any desired inspection or maintenance. What watcher brings to the
table is a framework to do the same job easily, under resource restrictions already in place for the auditor.

Operations performed by watchers are often site-specific, or else they would be incorporated into Swift
already. However, the code in the tree provides a reference implementation for convenience. It is located
in swift/obj/watchers/dark_data.py and implements so-called Dark Data Watcher.

Currently, only object auditor supports the watchers.

4.8.2 The API class

The implementation of a watcher is a Python class that may look like this:

Arguments to watcher methods are passed as keyword arguments, and methods are expected to consume
new, unknown arguments.

The method __init__() is used to save configuration and logger at the start of the plug-in.

The method start() is invoked when auditor starts a pass. It usually resets counters. The argument au-
ditor_type is string of ALL or ZBF, according to the type of the auditor running the watcher. Watchers
that talk to the network tend to hang off the ALL-type auditor, the lightweight ones are okay with the
ZBF-type.

The method end() is the closing bracket for start(). It is typically used to log something, or dump some
statistics.

The method see_object() is called when auditor completed an audit of an object. This is where most of
the work is done.

The protocol for see_object() allows it to raise a special exception, QuarantienRequested. Auditor catches
it and quarantines the object. In general, its okay for watcher methods to throw exceptions, so an author
of a watcher plugin does not have to catch them explicitly with a try:; they can be just permitted to bubble
up naturally.

254 Chapter 4. Developer Documentation

Swift Documentation, Release 2.30.2.dev8

4.8.3 Loading the plugins

Swift auditor loads watcher classes from eggs, so it is necessary to wrap the class and provide it an entry
point:

$ cat /usr/lib/python3.8/site-p*/mywatcher*egg-info/entry_points.txt
[mywatcher.mysection]
mywatcherentry = mywatcher:MyWatcher

Operator tells Swift auditor what plugins to load by adding them to object-server.conf in the section
[object-auditor]. It is also possible to pass parameters, arriving in the argument conf{ } of method start():

Do not forget to remove the watcher from auditors when done. Although the APl itself is very lightweight,
it is common for watchers to incur a significant performance penalty: they can talk to networked services
or access additional objects.

4.8.4 Dark Data Watcher

The watcher API is assumed to be under development. Operators who need extensions are welcome to
report any needs for more arguments to see_object().

The Dark Data watcher has been provided as an example. If an operator wants to create their own watcher,
start by copying the provided example template swift/obj/watchers/dark_data.py and see if it is
sufficient.

4.8. Auditor Watchers 255

Swift Documentation, Release 2.30.2.dev8

256 Chapter 4. Developer Documentation

CHAPTER
FIVE

ADMINISTRATOR DOCUMENTATION

5.1 Instructions for a Multiple Server Swift Installation

Please refer to the latest official OpenStack Installation Guides for the most up-to-date documentation.

5.1.1 Current Install Guides

* Object Storage installation guide for OpenStack Ocata

* Object Storage installation guide for OpenStack Newton

5.2 Deployment Guide

This document provides general guidance for deploying and configuring Swift. Detailed descriptions of
configuration options can be found in the configuration documentation.

5.2.1 Hardware Considerations

Swift is designed to run on commodity hardware. RAID on the storage drives is not required and not
recommended. Swifts disk usage pattern is the worst case possible for RAID, and performance degrades
very quickly using RAID 5 or 6.

5.2.2 Deployment Options
The Swift services run completely autonomously, which provides for a lot of flexibility when architecting
the hardware deployment for Swift. The 4 main services are:

1. Proxy Services

2. Object Services

3. Container Services

4. Account Services

The Proxy Services are more CPU and network I/O intensive. If you are using 10g networking to the
proxy, or are terminating SSL traffic at the proxy, greater CPU power will be required.

The Object, Container, and Account Services (Storage Services) are more disk and network I/O intensive.

257

https://docs.openstack.org/latest/install/
https://docs.openstack.org/project-install-guide/object-storage/ocata/
https://docs.openstack.org/project-install-guide/object-storage/newton/

Swift Documentation, Release 2.30.2.dev8

The easiest deployment is to install all services on each server. There is nothing wrong with doing this,
as it scales each service out horizontally.

Alternatively, one set of servers may be dedicated to the Proxy Services and a different set of servers
dedicated to the Storage Services. This allows faster networking to be configured to the proxy than the
storage servers, and keeps load balancing to the proxies more manageable. Storage Services scale out
horizontally as storage servers are added, and the overall API throughput can be scaled by adding more
proxies.

If you need more throughput to either Account or Container Services, they may each be deployed to their
own servers. For example you might use faster (but more expensive) SAS or even SSD drives to get faster
disk I/O to the databases.

A high-availability (HA) deployment of Swift requires that multiple proxy servers are deployed and re-
quests are load-balanced between them. Each proxy server instance is stateless and able to respond to
requests for the entire cluster.

Load balancing and network design is left as an exercise to the reader, but this is a very important part
of the cluster, so time should be spent designing the network for a Swift cluster.

5.2.3 Web Front End Options

Swift comes with an integral web front end. However, it can also be deployed as a request processor of
an Apache?2 using mod_wsgi as described in Apache Deployment Guide.

5.2.4 Preparing the Ring

The first step is to determine the number of partitions that will be in the ring. We recommend that there
be a minimum of 100 partitions per drive to insure even distribution across the drives. A good starting
point might be to figure out the maximum number of drives the cluster will contain, and then multiply
by 100, and then round up to the nearest power of two.

For example, imagine we are building a cluster that will have no more than 5,000 drives. That would
mean that we would have a total number of 500,000 partitions, which is pretty close to 219, rounded up.

It is also a good idea to keep the number of partitions small (relatively). The more partitions there are,
the more work that has to be done by the replicators and other backend jobs and the more memory the
rings consume in process. The goal is to find a good balance between small rings and maximum cluster
size.

The next step is to determine the number of replicas to store of the data. Currently it is recommended to
use 3 (as this is the only value that has been tested). The higher the number, the more storage that is used
but the less likely you are to lose data.

It is also important to determine how many zones the cluster should have. It is recommended to start
with a minimum of 5 zones. You can start with fewer, but our testing has shown that having at least five
zones is optimal when failures occur. We also recommend trying to configure the zones at as high a level
as possible to create as much isolation as possible. Some example things to take into consideration can
include physical location, power availability, and network connectivity. For example, in a small cluster
you might decide to split the zones up by cabinet, with each cabinet having its own power and network
connectivity. The zone concept is very abstract, so feel free to use it in whatever way best isolates your
data from failure. Each zone exists in a region.

258 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

A region is also an abstract concept that may be used to distinguish between geographically separated
areas as well as can be used within same datacenter. Regions and zones are referenced by a positive
integer.

You can now start building the ring with:

This will start the ring build process creating the <builder_file> with 2”<part_power> partitions.
<min_part_hours> is the time in hours before a specific partition can be moved in succession (24 is
a good value for this).

Devices can be added to the ring with:

This will add a device to the ring where <builder_file> is the name of the builder file that was created
previously, <region> is the number of the region the zone is in, <zone> is the number of the zone this
device is in, <ip> is the ip address of the server the device is in, <port> is the port number that the server
is running on, <device_name> is the name of the device on the server (for example: sdbl), <meta> is
a string of metadata for the device (optional), and <weight> is a float weight that determines how many
partitions are put on the device relative to the rest of the devices in the cluster (a good starting point is
100.0 x TB on the drive).Add each device that will be initially in the cluster.

Once all of the devices are added to the ring, run:

This will distribute the partitions across the drives in the ring. It is important whenever making changes
to the ring to make all the changes required before running rebalance. This will ensure that the ring stays
as balanced as possible, and as few partitions are moved as possible.

The above process should be done to make a ring for each storage service (Account, Container and
Object). The builder files will be needed in future changes to the ring, so it is very important that these
be kept and backed up. The resulting .tar.gz ring file should be pushed to all of the servers in the cluster.
For more information about building rings, running swift-ring-builder with no options will display help
text with available commands and options. More information on how the ring works internally can be
found in the Ring Overview.

5.2.5 Running object-servers Per Disk

The lack of true asynchronous file I/O on Linux leaves the object-server workers vulnerable to misbehav-
ing disks. Because any object-server worker can service a request for any disk, and a slow I/O request
blocks the eventlet hub, a single slow disk can impair an entire storage node. This also prevents object
servers from fully utilizing all their disks during heavy load.

Another way to get full I/O isolation is to give each disk on a storage node a different port in the storage
policy rings. Then set the servers_per_port option in the object-server config. NOTE: while the purpose
of this config setting is to run one or more object-server worker processes per disk, the implementation
just runs object-servers per unique port of local devices in the rings. The deployer must combine this
option with appropriately-configured rings to benefit from this feature.

5.2. Deployment Guide 259

Swift Documentation, Release 2.30.2.dev8

Heres an example (abbreviated) old-style ring (2 node cluster with 2 disks each):

And heres the same ring set up for servers_per_port:

When migrating from normal to servers_per_port, perform these steps in order:

1.
2.
3.

Upgrade Swift code to a version capable of doing servers_per_port.
Enable servers_per_port with a value greater than zero.

Restart swift-object-server processes with a SIGHUP. At this point, you will have the
servers_per_port number of swift-object-server processes serving all requests for all
disks on each node. This preserves availability, but you should perform the next step as quickly as
possible.

Push out new rings that actually have different ports per disk on each server. One of the ports in
the new ring should be the same as the port used in the old ring (6200 in the example above). This
will cover existing proxy-server processes who havent loaded the new ring yet. They can still talk
to any storage node regardless of whether or not that storage node has loaded the ring and started
object-server processes on the new ports.

If you do not run a separate object-server for replication, then this setting must be available to the object-
replicator and object-reconstructor (i.e. appear in the [DEFAULT] config section).

260

Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

5.2.6 General Service Configuration

Most Swift services fall into two categories. Swifts wsgi servers and background daemons.

For more information specific to the configuration of Swifts wsgi servers with paste deploy see General
Server Configuration.

Configuration for servers and daemons can be expressed together in the same file for each type of server,
or separately. If a required section for the service trying to start is missing there will be an error. The
sections not used by the service are ignored.

Consider the example of an object storage node. By convention, configuration for the object-server,
object-updater, object-replicator, object-auditor, and object-reconstructor exist in a single file /etc/
swift/object-server.conf:

Swift services expect a configuration path as the first argument:

$ swift-object-auditor
Usage: swift-object-auditor CONFIG [options]

Error: missing config path argument

If you omit the object-auditor section this file could not be used as the configuration path when starting
the swift-object-auditor daecmon:

$ swift-object-auditor /etc/swift/object-server.conf
Unable to find object-auditor config section in /etc/swift/object-server.conf

If the configuration path is a directory instead of a file all of the files in the directory with the file extension
.conf will be combined to generate the configuration object which is delivered to the Swift service. This
is referred to generally as directory based configuration.

Directory based configuration leverages ConfigParsers native multi-file support. Files ending in .conf in
the given directory are parsed in lexicographical order. Filenames starting with . are ignored. A mixture
of file and directory configuration paths is not supported - if the configuration path is a file only that file
will be parsed.

The Swift service management tool swift-init has adopted the convention of looking for /etc/
swift/{type}-server.conf.d/ if the file /etc/swift/{type}-server.conf file does not exist.

5.2. Deployment Guide 261

Swift Documentation, Release 2.30.2.dev8

When using directory based configuration, if the same option under the same section appears more than
once in different files, the last value parsed is said to override previous occurrences. You can ensure
proper override precedence by prefixing the files in the configuration directory with numerical values.:

You can inspect the resulting combined configuration object using the swift-config command line
tool

5.2.7 General Server Configuration
Swift uses paste.deploy (https://pypi.org/project/Paste/) to manage server configurations. Detailed de-
scriptions of configuration options can be found in the configuration documentation.

Default configuration options are set in the [DEFAULT] section, and any options specified there can be
overridden in any of the other sections BUT ONLY BY USING THE SYNTAX set option_name =
value. This is the unfortunate way paste.deploy works and Ill try to explain it in full.

First, heres an example paste.deploy configuration file:

The resulting configuration that myapp receives is:

(continues on next page)

262 Chapter 5. Administrator Documentation

https://pypi.org/project/Paste/

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

So, namel got the global value which is fine since its only in the DEFAULT section anyway.

name?2 got the global value from DEFAULT even though it appears to be overridden in the app:myapp
subsection. This is just the unfortunate way paste.deploy works (at least at the time of this writing.)

name3 got the local value from the app :myapp subsection because it is using the special paste.deploy
syntax of set option_name = value. So, if you want a default value for most app/filters but want to
override it in one subsection, this is how you do it.

name4 got the global value from DEFAULT since its only in that section anyway. But, since we used the
set syntax in the DEFAULT section even though we shouldnt, notice we also got a set name4 variable.
Weird, but probably not harmful.

name5 got the local value from the app :myapp subsection since its only there anyway, but notice that it
is in the global configuration and not the local configuration. This is because we used the set syntax to
set the value. Again, weird, but not harmful since Swift just treats the two sets of configuration values as
one set anyway.

nameb6 got the local value from app:myapp subsection since its only there, and since we didnt use the
set syntax, its only in the local configuration and not the global one. Though, as indicated above, there
is no special distinction with Swift.

Thats quite an explanation for something that should be so much simpler, but it might be important to
know how paste.deploy interprets configuration files. The main rule to remember when working with
Swift configuration files is:

Note: Use the set option_name = value syntax in subsections if the option is also set in the
[DEFAULT] section. Dont get in the habit of always using the set syntax or youll probably mess up
your non-paste.deploy configuration files.

Per policy configuration
Some proxy-server configuration options may be overridden for individual Storage Policies by including
per-policy config section(s). These options are:

e sorting_method

e read_affinity

e write_affinity

e write_affinity_node_count

e write_affinity_handoff_ delete_count

The per-policy config section name must be of the form:

5.2. Deployment Guide 263

Swift Documentation, Release 2.30.2.dev8

Note: The per-policy config section name should refer to the policy index, not the policy name.

Note: The first part of proxy-server config section name must match the name of the proxy-server config
section. This is typically proxy-server as shown above, but if different then the names of any per-policy
config sections must be changed accordingly.

The value of an option specified in a per-policy section will override any value given in the proxy-server
section for that policy only. Otherwise the value of these options will be that specified in the proxy-server
section.

For example, the following section provides policy-specific options for a policy with index 3:

Note: It is recommended that per-policy config options are not included in the [DEFAULT] section. If
they are then the following behavior applies.

Per-policy config sections will inherit options in the [DEFAULT] section of the config file, and any such
inheritance will take precedence over inheriting options from the proxy-server config section.

Per-policy config section options will override options in the [DEFAULT] section. Unlike the behavior de-
scribed under General Server Configuration for paste-deploy filter and app sections, the set keyword
is not required for options to override in per-policy config sections.

For example, given the following settings in a config file:

would result in policy with index ® having settings:

264 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

e read_affinity = r0=100 (inherited from the [DEFAULT] section)
* write_affinity = rl (specified in the policy O section)

and any other policy would have the default settings of:
* read_affinity = r1=100 (set in the proxy-server section)

e write_affinity = r0 (inherited from the [DEFAULT] section)

Proxy Middlewares

Many features in Swift are implemented as middleware in the proxy-server pipeline. See Middleware
and the proxy-server.conf-sample file for more information. In particular, the use of some type of
authentication and authorization middleware is highly recommended.

5.2.8 Memcached Considerations

Several of the Services rely on Memcached for caching certain types of lookups, such as auth tokens, and
container/account existence. Swift does not do any caching of actual object data. Memcached should
be able to run on any servers that have available RAM and CPU. Typically Memcached is run on the
proxy servers. The memcache_servers config option in the proxy-server.conf should contain all
memcached servers.

Shard Range Listing Cache

When a container gets sharded the root container will still be the primary entry point to many container
requests, as it provides the list of shards. To take load off the root container Swift by default caches the
list of shards returned.

As the number of shards for a root container grows to more than 3k the memcache default max size of
IMB can be reached.

If you over-run your max configured memcache size youll see messages like:

When you see these messages your root containers are getting hammered and probably returning 503
reponses to clients. Override the default 1MB limit to SMB with something like:

Memcache has a stats sizes option that can point out the current size usage. As this reaches the
current max an increase might be in order:

5.2. Deployment Guide 265

Swift Documentation, Release 2.30.2.dev8

5.2.9 System Time

Time may be relative but it is relatively important for Swift! Swift uses timestamps to determine which is
the most recent version of an object. It is very important for the system time on each server in the cluster
to by synced as closely as possible (more so for the proxy server, but in general it is a good idea for all
the servers). Typical deployments use NTP with a local NTP server to ensure that the system times are
as close as possible. This should also be monitored to ensure that the times do not vary too much.

5.2.10 General Service Tuning

Most services support either a workers or concurrency value in the settings. This allows the services
to make effective use of the cores available. A good starting point is to set the concurrency level for the
proxy and storage services to 2 times the number of cores available. If more than one service is sharing
a server, then some experimentation may be needed to find the best balance.

For example, one operator reported using the following settings in a production Swift cluster:

* Proxy servers have dual quad core processors (i.e. 8 cores); testing has shown 16 workers to be a
pretty good balance when saturating a 10g network and gives good CPU utilization.

» Storage server processes all run together on the same servers. These servers have dual quad core
processors, for 8 cores total. The Account, Container, and Object servers are run with 8 work-
ers each. Most of the background jobs are run at a concurrency of 1, with the exception of the
replicators which are run at a concurrency of 2.

The max_clients parameter can be used to adjust the number of client requests an individual worker
accepts for processing. The fewer requests being processed at one time, the less likely a request that
consumes the workers CPU time, or blocks in the OS, will negatively impact other requests. The more
requests being processed at one time, the more likely one worker can utilize network and disk capacity.

On systems that have more cores, and more memory, where one can afford to run more workers, raising
the number of workers and lowering the maximum number of clients serviced per worker can lessen the
impact of CPU intensive or stalled requests.

The nice_priority parameter can be used to set program scheduling priority. The ionice_class
and ionice_priority parameters can be used to set I/O scheduling class and priority on the systems
that use an I/O scheduler that supports I/O priorities. As at kernel 2.6.17 the only such scheduler is the
Completely Fair Queuing (CFQ) I/O scheduler. If you run your Storage servers all together on the same
servers, you can slow down the auditors or prioritize object-server I/O via these parameters (but probably
do not need to change it on the proxy). It is a new feature and the best practices are still being developed.
On some systems it may be required to run the daemons as root. For more info also see setpriority(2)
and ioprio_set(2).

The above configuration setting should be taken as suggestions and testing of configuration settings
should be done to ensure best utilization of CPU, network connectivity, and disk I/O.

266 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

5.2.11 Filesystem Considerations

Swift is designed to be mostly filesystem agnosticthe only requirement being that the filesystem supports
extended attributes (xattrs). After thorough testing with our use cases and hardware configurations, XFS
was the best all-around choice. If you decide to use a filesystem other than XFS, we highly recommend
thorough testing.

For distros with more recent kernels (for example Ubuntu 12.04 Precise), we recommend using the default
settings (including the default inode size of 256 bytes) when creating the file system:

In the last couple of years, XFS has made great improvements in how inodes are allocated and used.
Using the default inode size no longer has an impact on performance.

For distros with older kernels (for example Ubuntu 10.04 Lucid), some settings can dramatically impact
performance. We recommend the following when creating the file system:

Setting the inode size is important, as XFS stores xattr data in the inode. If the metadata is too large to
fit in the inode, a new extent is created, which can cause quite a performance problem. Upping the inode
size to 1024 bytes provides enough room to write the default metadata, plus a little headroom.

The following example mount options are recommended when using XFS:

We do not recommend running Swift on RAID, but if you are using RAID it is also important to make
sure that the proper sunit and swidth settings get set so that XFS can make most efficient use of the RAID
array.

For a standard Swift install, all data drives are mounted directly under /srv/node (as can be seen in the
above example of mounting label D1 as /srv/node/d1). If you choose to mount the drives in another
directory, be sure to set the devices config option in all of the server configs to point to the correct
directory.

The mount points for each drive in /srv/node/ should be owned by the root user almost exclusively
(root:root 755). This is required to prevent rsync from syncing files into the root drive in the event a
drive is unmounted.

Swift uses system calls to reserve space for new objects being written into the system. If your filesystem
does not support fallocate() or posix_fallocate(), be sure to set the disable_fallocate =
true config parameter in account, container, and object server configs.

Most current Linux distributions ship with a default installation of updatedb. This tool runs periodically
and updates the file name database that is used by the GNU locate tool. However, including Swift object
and container database files is most likely not required and the periodic update affects the performance
quite a bit. To disable the inclusion of these files add the path where Swift stores its data to the setting
PRUNEPATHS in /etc/updatedb.conf:

5.2. Deployment Guide 267

Swift Documentation, Release 2.30.2.dev8

5.2.12 General System Tuning

The following changes have been found to be useful when running Swift on Ubuntu Server 10.04.

The following settings should be in /etc/sysctl.conf:

To load the updated sysctl settings, run sudo sysctl -p.

A note about changing the TIME_WAIT values. By default the OS will hold a port open for 60 seconds
to ensure that any remaining packets can be received. During high usage, and with the number of con-
nections that are created, it is easy to run out of ports. We can change this since we are in control of the
network. If you are not in control of the network, or do not expect high loads, then you may not want to
adjust those values.

5.2.13 Logging Considerations

Swift is set up to log directly to syslog. Every service can be configured with the 1og_facility option
to set the syslog log facility destination. We recommended using syslog-ng to route the logs to specific
log files locally on the server and also to remote log collecting servers. Additionally, custom log handlers
can be used via the custom_log_handlers setting.

5.3 Apache Deployment Guide

5.3.1 Web Front End Considerations

Swift can be configured to work both using an integral web front-end and using a full-fledged Web Server
such as the Apache2 (HTTPD) web server. The integral web front-end is a wsgi mini Web Server which
opens up its own socket and serves http requests directly. The incoming requests accepted by the integral
web front-end are then forwarded to a wsgi application (the core swift) for further handling, possibly via
wsgi middleware sub-components.

client<->integral web front-end<->middleware<->core swift

To gain full advantage of Apache2, Swift can alternatively be configured to work as a request processor of
the Apache2 server. This alternative deployment scenario uses mod_wsgi of Apache?2 to forward requests
to the swift wsgi application and middleware.

client<->Apache2 with mod_wsgi<>middleware<->core swift

The integral web front-end offers simplicity and requires minimal configuration. It is also the web front-
end most commonly used with Swift. Additionally, the integral web front-end includes support for re-

268 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

ceiving chunked transfer encoding from a client, presently not supported by Apache2 in the operation

mode described here.

The use of Apache? offers new ways to extend Swift and integrate it with existing authentication, admin-
istration and control systems. A single Apache?2 server can serve as the web front end of any number of
swift servers residing on a swift node. For example when a storage node offers account, container and

object services, a single Apache2 server can serve as the web front end of all three services.

The apache variant described here was tested as part of an IBM research work. It was found that following
tuning, the Apache? offer generally equivalent performance to that offered by the integral web front-end.

Alternative to Apache?2, other web servers may be used, but were never tested.

5.3.2 Apache2 Setup

Both Apache2 and mod-wsgi needs to be installed on the system. Ubuntu comes with Apache?2 installed.

Install mod-wsgi using:

Create a directory for the Apache2 wsgi files:

Create a working directory for the wsgi processes:

Create a file for each service under /srv/www/swift.

For a proxy service create /srv/www/swift/proxy-server.wsgi:

For an account service create /srv/www/swift/account-server.wsgi:

For an container service create /srv/www/swift/container-server.wsgi:

For an object service create /srv/www/swift/object-server.wsgi:

5.3. Apache Deployment Guide

269

Swift Documentation, Release 2.30.2.dev8

Create a /etc/apache2/conf.d/swift_wsgi.conf configuration file that will define a port and Vir-
tual Host per each local service. For example an Apache?2 serving as a web front end of a proxy service:

Notice that when using Apache the limit on the maximal object size should be imposed by Apache using
the LimitRequestBody rather by the swift proxy. Note also that the LimitRequestBody should indicate
the same value as indicated by max_file_size located in both /etc/swift/swift.conf and in /etc/
swift/test.conf. The Swift default value for max_file_size (when not present) is 5368709122. For
example an Apache?2 serving as a web front end of a storage node:

(continues on next page)

270 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

Enable the newly configured Virtual Hosts:

Next, stop, test and start Apache2 again:

Edit the tests config file and add:

5.3. Apache Deployment Guide

271

Swift Documentation, Release 2.30.2.dev8

Also check to see that the file includes max_file_size of the same value as used for the LimitRequestBody
in the apache config file above.

We are done. You may run functional tests to test - e.g.:

5.4 Administrators Guide

5.4.1 Defining Storage Policies

Defining your Storage Policies is very easy to do with Swift. It is important that the administrator un-
derstand the concepts behind Storage Policies before actually creating and using them in order to get the
most benefit out of the feature and, more importantly, to avoid having to make unnecessary changes once
a set of policies have been deployed to a cluster.

It is highly recommended that the reader fully read and comprehend Storage Policies before proceeding
with administration of policies. Plan carefully and it is suggested that experimentation be done first on
a non-production cluster to be certain that the desired configuration meets the needs of the users. See
Upgrading and Confirming Functionality before planning the upgrade of your existing deployment.

Following is a high level view of the very few steps it takes to configure policies once you have decided
what you want to do:

1. Define your policies in /etc/swift/swift.conf
2. Create the corresponding object rings
3. Communicate the names of the Storage Policies to cluster users

For a specific example that takes you through these steps, please see Adding Storage Policies to an Existing
SAIO

5.4.2 Managing the Rings

You may build the storage rings on any server with the appropriate version of Swift installed. Once
built or changed (rebalanced), you must distribute the rings to all the servers in the cluster. Storage
rings contain information about all the Swift storage partitions and how they are distributed between the
different nodes and disks.

Swift 1.6.0 is the last version to use a Python pickle format. Subsequent versions use a different serial-
ization format. Rings generated by Swift versions 1.6.0 and earlier may be read by any version, but
rings generated after 1.6.0 may only be read by Swift versions greater than 1.6.0. So when upgrading
from version 1.6.0 or earlier to a version greater than 1.6.0, either upgrade Swift on your ring building
server last after all Swift nodes have been successfully upgraded, or refrain from generating rings until
all Swift nodes have been successfully upgraded.

272 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

If you need to downgrade from a version of Swift greater than 1.6.0 to a version less than or equal to
1.6.0, first downgrade your ring-building server, generate new rings, push them out, then continue with
the rest of the downgrade.

For more information see 7The Rings.

Removing a device from the ring:

swift-ring-builder <builder-file> remove <ip_address>/<device_name>

Removing a server from the ring:

swift-ring-builder <builder-file> remove <ip_address>

Adding devices to the ring:
See Preparing the Ring

See what devices for a server are in the ring:

swift-ring-builder <builder-file> search <ip_address>

Once you are done with all changes to the ring, the changes need to be committed:

swift-ring-builder <builder-file> rebalance

Once the new rings are built, they should be pushed out to all the servers in the cluster.

Optionally, if invoked as swift-ring-builder-safe the directory containing the specified builder file will
be locked (via a .lock file in the parent directory). This provides a basic safe guard against multiple
instances of the swift-ring-builder (or other utilities that observe this lock) from attempting to write to
or read the builder/ring files while operations are in progress. This can be useful in environments where
ring management has been automated but the operator still needs to interact with the rings manually.

If the ring builder is not producing the balances that you are expecting, you can gain visibility into what
its doing with the --debug flag.:

swift-ring-builder <builder-file> rebalance --debug

This produces a great deal of output that is mostly useful if you are either (a) attempting to fix the ring
builder, or (b) filing a bug against the ring builder.

You may notice in the rebalance output a dispersion number. What this number means is explained in
Dispersion but in essence is the percentage of partitions in the ring that have too many replicas within a
particular failure domain. You can ask swift-ring-builder what the dispersion is with:

swift-ring-builder <builder-file> dispersion

This will give you the percentage again, if you want a detailed view of the dispersion simply add a
--verbose:

swift-ring-builder <builder-file> dispersion --verbose

This will not only display the percentage but will also display a dispersion table that lists partition dis-
persion by tier. You can use this table to figure out were you need to add capacity or to help tune an
Overload value.

5.4. Administrators Guide 273

Swift Documentation, Release 2.30.2.dev8

Now lets take an example with 1 region, 3 zones and 4 devices. Each device has the same weight, and
the dispersion --verbose might show the following:

Dispersion is 16.666667, Balance is 0.000000, Overload is 0.00%
Required overload is 33.333333%
Worst tier is 33.333333 (rlz3)

Tier Parts % Max 0 1 2 3
rl 768 0.00 3 0 0 0 256
rlzl 192 0.00 1 64 192 0 0
r1z1-127.0.0.1 192 0.00 1 64 192 0 0
r1z1-127.0.0.1/sda 192 0.00 1 64 192 0 0
rlz2 192 0.00 1 64 192 0 0
r1z2-127.0.0.2 192 0.00 1 64 192 0 0
r1z2-127.0.0.2/sda 192 0.00 1 64 192 0 0
rilz3 384 33.33 1 0 128 128 0
r1z3-127.0.0.3 384 33.33 1 0 128 128 0
r1z3-127.0.0.3/sda 192 0.00 1 64 192 0 0
r1z3-127.0.0.3/sdb 192 0.00 1 64 192 0 0

The first line reports that there are 256 partitions with 3 copies in region 1; and this is an expected output
in this case (single region with 3 replicas) as reported by the Max value.

However, there is some imbalance in the cluster, more precisely in zone 3. The Max reports a maximum
of 1 copy in this zone; however 50.00% of the partitions are storing 2 replicas in this zone (which is
somewhat expected, because there are more disks in this zone).

You can now either add more capacity to the other zones, decrease the total weight in zone 3 or set the
overload to a value greater than 33.333333% - only as much overload as needed will be used.

5.4.3 Scripting Ring Creation

You can create scripts to create the account and container rings and rebalance. Heres an example script
for the Account ring. Use similar commands to create a make-container-ring.sh script on the proxy server
node.

1. Create a script file called make-account-ring.sh on the proxy server node with the following con-
tent:

#!/bin/bash

cd /etc/swift

rm -f account.builder account.ring.gz backups/account.builder backups/
—account.ring.gz

swift-ring-builder account.builder create 18 3 1

swift-ring-builder account.builder add rlzl-<account-server-1>:6202/sdbl 1
swift-ring-builder account.builder add rlz2-<account-server-2>:6202/sdbl 1
swift-ring-builder account.builder rebalance

You need to replace the values of <account-server-1>, <account-server-2>, etc. with the IP ad-
dresses of the account servers used in your setup. You can have as many account servers as you
need. All account servers are assumed to be listening on port 6202, and have a storage device
called sdb1 (this is a directory name created under /drives when we setup the account server). The

274 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

z1, 72, etc. designate zones, and you can choose whether you put devices in the same or different
zones. The r1 designates the region, with different regions specified as r1, r2, etc.

2. Make the script file executable and run it to create the account ring file:

chmod +x make-account-ring.sh
sudo ./make-account-ring.sh

3. Copy the resulting ring file /etc/swift/account.ring.gz to all the account server nodes in your Swift
environment, and put them in the /etc/swift directory on these nodes. Make sure that every time
you change the account ring configuration, you copy the resulting ring file to all the account nodes.

5.4.4 Handling System Updates

It is recommended that system updates and reboots are done a zone at a time. This allows the update to
happen, and for the Swift cluster to stay available and responsive to requests. It is also advisable when
updating a zone, let it run for a while before updating the other zones to make sure the update doesnt
have any adverse effects.

5.4.5 Handling Drive Failure

In the event that a drive has failed, the first step is to make sure the drive is unmounted. This will make it
easier for Swift to work around the failure until it has been resolved. If the drive is going to be replaced
immediately, then it is just best to replace the drive, format it, remount it, and let replication fill it up.

After the drive is unmounted, make sure the mount point is owned by root (root:root 755). This ensures
that rsync will not try to replicate into the root drive once the failed drive is unmounted.

If the drive cant be replaced immediately, then it is best to leave it unmounted, and set the device weight
to 0. This will allow all the replicas that were on that drive to be replicated elsewhere until the drive is
replaced. Once the drive is replaced, the device weight can be increased again. Setting the device weight
to 0 instead of removing the drive from the ring gives Swift the chance to replicate data from the failing
disk too (in case it is still possible to read some of the data).

Setting the device weight to 0 (or removing a failed drive from the ring) has another benefit: all partitions
that were stored on the failed drive are distributed over the remaining disks in the cluster, and each disk
only needs to store a few new partitions. This is much faster compared to replicating all partitions to a
single, new disk. It decreases the time to recover from a degraded number of replicas significantly, and
becomes more and more important with bigger disks.

5.4.6 Handling Server Failure

If a server is having hardware issues, it is a good idea to make sure the Swift services are not running.
This will allow Swift to work around the failure while you troubleshoot.

If the server just needs a reboot, or a small amount of work that should only last a couple of hours, then it
is probably best to let Swift work around the failure and get the machine fixed and back online. When the
machine comes back online, replication will make sure that anything that is missing during the downtime
will get updated.

If the server has more serious issues, then it is probably best to remove all of the servers devices from the
ring. Once the server has been repaired and is back online, the servers devices can be added back into

5.4. Administrators Guide 275

Swift Documentation, Release 2.30.2.dev8

the ring. It is important that the devices are reformatted before putting them back into the ring as it is
likely to be responsible for a different set of partitions than before.

5.4.7 Detecting Failed Drives

It has been our experience that when a drive is about to fail, error messages will spew into
/var/log/kern.log. There is a script called swift-drive-audit that can be run via cron to watch for bad
drives. If errors are detected, it will unmount the bad drive, so that Swift can work around it. The script
takes a configuration file with the following settings:

[drive-audit]

Option Default Description

user swift Drop privileges to this user for non-root tasks

log_facility LOG_LOCAISyslog log facility

log_level INFO Log level

device_dir /srv/node Directory devices are mounted under

minutes 60 Number of minutes to look back in /var/log/kern.log

error_limit 1 Number of errors to find before a device is unmounted

log_file_pattern/var/log/kern® Location of the log file with globbing pattern to check against device
errors

regex_pattern_|X(see below) | Regular expression patterns to be used to locate device blocks with
errors in the log file

The default regex pattern used to locate device blocks with errors are berrorb. *b(sd[a-z]{1,2}d?)b and
b(sd[a-z]{1,2}d?)b.*berrorb. One is able to overwrite the default above by providing new expressions
using the format regex_pattern_X = regex_expression, where X is a number.

This script has been tested on Ubuntu 10.04 and Ubuntu 12.04, so if you are using a different distro or
OS, some care should be taken before using in production.

5.4.8 Preventing Disk Full Scenarios

Prevent disk full scenarios by ensuring that the proxy-server blocks PUT requests and rsync prevents
replication to the specific drives.

You can prevent proxy-server PUT requests to low space disks by ensuring fallocate_reserve is
set in account-server.conf, container-server.conf, and object-server.conf. By default,
fallocate_reserve is set to 1%. In the object server, this blocks PUT requests that would leave the
free disk space below 1% of the disk. In the account and container servers, this blocks operations that
will increase account or container database size once the free disk space falls below 1%.

Setting fallocate_reserve is highly recommended to avoid filling disks to 100%. When Swifts disks
are completely full, all requests involving those disks will fail, including DELETE requests that would
otherwise free up space. This is because object deletion includes the creation of a zero-byte tombstone
(-.ts) to record the time of the deletion for replication purposes; this happens prior to deletion of the objects
data. On a completely-full filesystem, that zero-byte .ts file cannot be created, so the DELETE request
will fail and the disk will remain completely full. If fallocate_reserve is set, then the filesystem will
have enough space to create the zero-byte .ts file, and thus the deletion of the object will succeed and free
up some space.

276 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

In order to prevent rsync replication to specific drives, firstly setup rsync_module per disk in your
object-replicator. Set this in object-server.conf:

Set the individual drives in rsync.conf. For example:

Finally, monitor the disk space of each disk and adjust the rsync max connections per drive to -1.
We recommend utilising your existing monitoring solution to achieve this. The following is an example
script:

(continues on next page)

5.4. Administrators Guide 277

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

For the above script to work, ensure /etc/rsync.d/ conf files are included, by specifying &include
in your rsync. conf file:

Use this in conjunction with a cron job to periodically run the script, for example:

5.4.9 Dispersion Report

There is a swift-dispersion-report tool for measuring overall cluster health. This is accomplished by
checking if a set of deliberately distributed containers and objects are currently in their proper places
within the cluster.

For instance, a common deployment has three replicas of each object. The health of that object can be
measured by checking if each replica is in its proper place. If only 2 of the 3 is in place the objects heath
can be said to be at 66.66%, where 100% would be perfect.

A single objects health, especially an older object, usually reflects the health of that entire partition the
object is in. If we make enough objects on a distinct percentage of the partitions in the cluster, we can
get a pretty valid estimate of the overall cluster health. In practice, about 1% partition coverage seems to
balance well between accuracy and the amount of time it takes to gather results.

The first thing that needs to be done to provide this health value is create a new account solely for this
usage. Next, we need to place the containers and objects throughout the system so that they are on distinct
partitions. The swift-dispersion-populate tool does this by making up random container and object names
until they fall on distinct partitions. Last, and repeatedly for the life of the cluster, we need to run the
swift-dispersion-report tool to check the health of each of these containers and objects.

These tools need direct access to the entire cluster and to the ring files (installing them on a proxy server
will probably do). Both swift-dispersion-populate and swift-dispersion-report use the same configuration
file, /etc/swift/dispersion.conf. Example conf file:

There are also options for the conf file for specifying the dispersion coverage (defaults to 1%), retries,
concurrency, etc. though usually the defaults are fine. If you want to use keystone v3 for authentication
there are options like auth_version, user_domain_name, project_domain_name and project_name.

278 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

Once the configuration is in place, run swift-dispersion-populate to populate the containers and objects
throughout the cluster.

Now that those containers and objects are in place, you can run swift-dispersion-report to get a dispersion
report, or the overall health of the cluster. Here is an example of a cluster in perfect health:

$ swift-dispersion-report

Queried 2621 containers for dispersion reporting, 19s, 0 retries
100.00% of container copies found (7863 of 7863)

Sample represents 1.00% of the container partition space

Queried 2619 objects for dispersion reporting, 7s, 0 retries
100.00% of object copies found (7857 of 7857)
Sample represents 1.00% of the object partition space

Now Ill deliberately double the weight of a device in the object ring (with replication turned off) and
rerun the dispersion report to show what impact that has:

$ swift-ring-builder object.builder set_weight d® 200
$ swift-ring-builder object.builder rebalance

$ swift-dispersion-report

Queried 2621 containers for dispersion reporting, 8s, 0 retries
100.00% of container copies found (7863 of 7863)

Sample represents 1.00% of the container partition space

Queried 2619 objects for dispersion reporting, 7s, 0 retries
There were 1763 partitions missing one copy.

77.56% of object copies found (6094 of 7857)

Sample represents 1.00% of the object partition space

You can see the health of the objects in the cluster has gone down significantly. Of course, I only have
four devices in this test environment, in a production environment with many many devices the impact
of one device change is much less. Next, Ill run the replicators to get everything put back into place and
then rerun the dispersion report:

. start object replicators and monitor logs until they're caught up ...
$ swift-dispersion-report
Queried 2621 containers for dispersion reporting, 17s, 0 retries
100.00% of container copies found (7863 of 7863)
Sample represents 1.00% of the container partition space

Queried 2619 objects for dispersion reporting, 7s, 0 retries
100.00% of object copies found (7857 of 7857)
Sample represents 1.00% of the object partition space

You can also run the report for only containers or objects:

$ swift-dispersion-report --container-only

Queried 2621 containers for dispersion reporting, 17s, 0 retries
100.00% of container copies found (7863 of 7863)

Sample represents 1.00% of the container partition space

(continues on next page)

5.4. Administrators Guide 279

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

$ swift-dispersion-report --object-only

Queried 2619 objects for dispersion reporting, 7s, 0 retries
100.00% of object copies found (7857 of 7857)

Sample represents 1.00% of the object partition space

Alternatively, the dispersion report can also be output in JSON format. This allows it to be more easily
consumed by third party utilities:

$ swift-dispersion-report -j

{"object": {"retries:": 0, "missing_two": 0, "copies_found": 7863, "missing_
—one": 0, "copies_expected": 7863, "pct_found": 100.0, "overlapping": O,
—'"missing_all": 0}, "container": {"retries:": 0, "missing_two": 0, "copies_

—found": 12534, "missing_one": 0, "copies_expected": 12534, "pct_found": 100.
-0, "overlapping": 15, "missing_all": 0}}

Note that you may select which storage policy to use by setting the option policy-name silver or -P
silver (silver is the example policy name here). If no policy is specified, the default will be used per the
swift.conf file. When you specify a policy the containers created also include the policy index, thus even
when running a container_only report, you will need to specify the policy not using the default.

5.4.10 Geographically Distributed Swift Considerations

Swift provides two features that may be used to distribute replicas of objects across multiple geographi-
cally distributed data-centers: with Global Clusters object replicas may be dispersed across devices from
different data-centers by using regions in ring device descriptors; with Container to Container Synchro-
nization objects may be copied between independent Swift clusters in each data-center. The operation
and configuration of each are described in their respective documentation. The following points should
be considered when selecting the feature that is most appropriate for a particular use case:

1. Global Clusters allows the distribution of object replicas across data-centers to be controlled by
the cluster operator on per-policy basis, since the distribution is determined by the assignment of
devices from each data-center in each policys ring file. With Container Sync the end user controls
the distribution of objects across clusters on a per-container basis.

2. Global Clusters requires an operator to coordinate ring deployments across multiple data-centers.
Container Sync allows for independent management of separate Swift clusters in each data-center,
and for existing Swift clusters to be used as peers in Container Sync relationships without deploying
new policies/rings.

3. Global Clusters seamlessly supports features that may rely on cross-container operations such as
large objects and versioned writes. Container Sync requires the end user to ensure that all required
containers are syncd for these features to work in all data-centers.

4. Global Clusters makes objects available for GET or HEAD requests in both data-centers even if a
replica of the object has not yet been asynchronously migrated between data-centers, by forward-
ing requests between data-centers. Container Sync is unable to serve requests for an object in a
particular data-center until the asynchronous sync process has copied the object to that data-center.

5. Global Clusters may require less storage capacity than Container Sync to achieve equivalent dura-
bility of objects in each data-center. Global Clusters can restore replicas that are lost or corrupted in
one data-center using replicas from other data-centers. Container Sync requires each data-center

280 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

to independently manage the durability of objects, which may result in each data-center storing
more replicas than with Global Clusters.

6. Global Clusters execute all account/container metadata updates synchronously to ac-
count/container replicas in all data-centers, which may incur delays when making updates
across WANSs. Container Sync only copies objects between data-centers and all Swift internal
traffic is confined to each data-center.

7. Global Clusters does not yet guarantee the availability of objects stored in Erasure Coded policies
when one data-center is offline. With Container Sync the availability of objects in each data-center
is independent of the state of other data-centers once objects have been synced. Container Sync
also allows objects to be stored using different policy types in different data-centers.

Checking handoff partition distribution

You can check if handoff partitions are piling up on a server by comparing the expected number of
partitions with the actual number on your disks. First get the number of partitions that are currently
assigned to a server using the dispersion command from swift-ring-builder:

swift-ring-builder sample.builder dispersion --verbose
Dispersion is 0.000000, Balance is 0.000000, Overload is 0.00%
Required overload is 0.000000%

Tier Parts % Max 0 1 2 3
rl 8192 0.00 2 0 0 8192 0
rlzl 4096 0.00 1 4096 4096 0 0
r1z1-172.16.10.1 4096 0.00 1 4096 4096 0 0
r1z1-172.16.10.1/sdal 4096 0.00 1 4096 4096 0 0
rlz2 4096 0.00 1 4096 4096 0 0
r1z2-172.16.10.2 4096 0.00 1 4096 4096 0 0
rlz2-172.16.10.2/sdal 4096 0.00 1 4096 4096 0 0
rilz3 4096 0.00 1 4096 4096 0 0
r1z3-172.16.10.3 4096 0.00 1 4096 4096 0 0
r1z3-172.16.10.3/sdal 4096 0.00 1 4096 4096 0 0
rlz4 4096 0.00 1 4096 4096 0 0
r1z4-172.16.20.4 4096 0.00 1 4096 4096 0 0
r1z4-172.16.20.4/sdal 4096 0.00 1 4096 4096 0 0
r2 8192 0.00 2 ® 8192 0 0
r2zl 4096 0.00 1 4096 4096 0 0
r2z1-172.16.20.1 4096 0.00 1 4096 4096 0 0
r2z1-172.16.20.1/sdal 4096 0.00 1 4096 4096 0 0
r2z2 4096 0.00 1 4096 4096 0 0
r2z2-172.16.20.2 4096 0.00 1 4096 4096 0 0
r2z2-172.16.20.2/sdal 4096 0.00 1 4096 4096 0 0

As you can see from the output, each server should store 4096 partitions, and each region should store
8192 partitions. This example used a partition power of 13 and 3 replicas.

With write_affinity enabled it is expected to have a higher number of partitions on disk compared to
the value reported by the swift-ring-builder dispersion command. The number of additional (handoft)
partitions in region r1 depends on your cluster size, the amount of incoming data as well as the replication

5.4. Administrators Guide 281

Swift Documentation, Release 2.30.2.dev8

speed.

Lets use the example from above with 6 nodes in 2 regions, and write_affinity configured to write to
region rl first. swift-ring-builder reported that each node should store 4096 partitions:

Expected partitions for region r2: 8192
Handoffs stored across 4 nodes in region rl: 8192 / 4 =32048
Maximum number of partitions on each server in region rl: 2048 + 4096 = 6144

Worst case is that handoff partitions in region 1 are populated with new object replicas faster than repli-
cation is able to move them to region 2. In that case you will see ~ 6144 partitions per server in region
rl. Your actual number should be lower and between 4096 and 6144 partitions (preferably on the lower
side).

Now count the number of object partitions on a given server in region 1, for example on 172.16.10.1.
Note that the pathnames might be different; /srv/node/ is the default mount location, and objects applies
only to storage policy 0 (storage policy 1 would use objects-1 and so on):

find -L /srv/node/ -maxdepth 3 -type d -wholename "*objects/*" | wc -1

If this number is always on the upper end of the expected partition number range (4096 to 6144) or
increasing you should check your replication speed and maybe even disable write_affinity. Please refer to
the next section how to collect metrics from Swift, and especially swift-recon -r how to check replication
stats.

5.4.11 Cluster Telemetry and Monitoring

Various metrics and telemetry can be obtained from the account, container, and object servers using
the recon server middleware and the swift-recon cli. To do so update your account, container, or object
servers pipelines to include recon and add the associated filter config.

object-server.conf sample:

container-server.conf sample:

account-server.conf sample:

282 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

The recon_cache_path simply sets the directory where stats for a few items will be stored. Depending
on the method of deployment you may need to create this directory manually and ensure that Swift has
read/write access.

Finally, if you also wish to track asynchronous pending on your object servers you will need to setup a
cronjob to run the swift-recon-cron script periodically on your object servers:

*®/5 * % * * gyift /usr/bin/swift-recon-cron /etc/swift/object-server.conf

Once the recon middleware is enabled, a GET request for /recon/<metric> to the backend object server
will return a JSON-formatted response:

fhines@ubuntu:~$ curl -i http://localhost:6230/recon/async
HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 20

Date: Tue, 18 Oct 2011 21:03:01 GMT

{"async_pending": 0}

Note that the default port for the object server is 6200, except on a Swift All-In-One installation, which
uses 6210, 6220, 6230, and 6240.

The following metrics and telemetry are currently exposed:

5.4. Administrators Guide 283

Swift Documentation, Release 2.30.2.dev8

Request URI Description

/recon/load returns 1,5, and 15 minute load average

/recon/mem returns /proc/meminfo

/recon/mounted returns ALL currently mounted filesystems

/recon/unmounted returns all unmounted drives if mount_check = True

/recon/diskusage returns disk utilization for storage devices

/recon/driveaudit returns # of drive audit errors

/recon/ringmd5 returns object/container/account ring md5sums

/recon/swiftconfmd5 returns swift.conf mdSsum

/recon/quarantined returns # of quarantined objects/accounts/containers

/recon/sockstat returns consumable info from /proc/net/sockstat|6

/recon/devices returns list of devices and devices dir i.e. /srv/node

/recon/async returns count of async pending

/recon/replication returns object replication info (for backward compatibility)

/re- returns replication info for given type (account, container, object)

con/replication/<type>

/recon/auditor/<type> | returns auditor stats on last reported scan for given type (account, container,
object)

/recon/updater/<type> | returns last updater sweep times for given type (container, object)

/recon/expirer/object returns time elapsed and number of objects deleted during last object expirer
sweep

/recon/version returns Swift version

/recon/time returns node time

Note that object_replication_last and object_replication_time in object replication info are considered to
be transitional and will be removed in the subsequent releases. Use replication_last and replication_time
instead.

This information can also be queried via the swift-recon command line utility:

fhines@ubuntu:~$ swift-recon -h
Usage:
usage: swift-recon <server_type> [-v] [--suppress] [-a] [-r] [-u] [-d]
[-R] [-1] [-T] [--md5] [--auditor] [--updater] [--expirer] [--
—sockstat]

<server_type> account|container|object
Defaults to object server.

ex: swift-recon container -1 --auditor

Options:
-h, --help show this help message and exit
-v, --verbose Print verbose info
--suppress Suppress most connection related errors
-a, --async Get async stats
-r, --replication Get replication stats
-R, --reconstruction Get reconstruction stats
--auditor Get auditor stats

(continues on next page)

284 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

(continued from previous page)

--updater Get updater stats

--expirer Get expirer stats

-u, --unmounted Check cluster for unmounted devices

-d, --diskusage Get disk usage stats

-1, --loadstats Get cluster load average stats

-q, --quarantined Get cluster quarantine stats

--md5 Get md5sum of servers ring and compare to local copy
--sockstat Get cluster socket usage stats

-T, --time Check time synchronization

--all Perform all checks. Equal to

-arudlqT --md5 --sockstat --auditor --updater
--expirer --driveaudit --validate-servers
-z ZONE, --zone=ZONE Only query servers in specified zone
-t SECONDS, --timeout=SECONDS
Time to wait for a response from a server
--swiftdir=SWIFTDIR Default = /etc/swift

For example, to obtain container replication info from all hosts in zone 3:

fhines@ubuntu:~$ swift-recon container -r --zone 3

--> Starting reconnaissance on 1 hosts

[2012-04-02 02:45:48] Checking on replication

[failure] low: 0.000, high: 0.000, avg: 0.000, reported: 1

[success] low: 486.000, high: 486.000, avg: 486.000, reported: 1
[replication_time] low: 20.853, high: 20.853, avg: 20.853, reported: 1
[attempted] low: 243.000, high: 243.000, avg: 243.000, reported: 1

5.4.12 Reporting Metrics to StatsD

If you have a StatsD server running, Swift may be configured to send it real-time operational metrics. To
enable this, set the following configuration entries (see the sample configuration files):

If log_statsd_host is not set, this feature is disabled. The default values for the other settings are given
above. The log_statsd_host can be a hostname, an IPv4 address, or an IPv6 address (not surrounded
with brackets, as this is unnecessary since the port is specified separately). If a hostname resolves to an
IPv4 address, an IPv4 socket will be used to send StatsD UDP packets, even if the hostname would also
resolve to an IPv6 address.

The sample rate is a real number between 0 and 1 which defines the probability of sending a sample for
any given event or timing measurement. This sample rate is sent with each sample to StatsD and used to
multiply the value. For example, with a sample rate of 0.5, StatsD will multiply that counters value by 2
when flushing the metric to an upstream monitoring system (Graphite, Ganglia, etc.).

5.4. Administrators Guide 285

https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://graphiteapp.org/
http://ganglia.sourceforge.net/

Swift Documentation, Release 2.30.2.dev8

Some relatively high-frequency metrics have a default sample rate less than one. If you want to override
the default sample rate for all metrics whose default sample rate is not specified in the Swift source, you
may set log_statsd_default_sample_rate to a value less than one. This is NOT recommended (see next
paragraph). A better way to reduce StatsD load is to adjust log_statsd_sample_rate_factor to a value less
than one. The log_statsd_sample_rate_factor is multiplied to any sample rate (either the global default
or one specified by the actual metric logging call in the Swift source) prior to handling. In other words,
this one tunable can lower the frequency of all StatsD logging by a proportional amount.

To get the best data, start with the default log_statsd_default_sample_rate and
log_statsd_sample_rate_factor values of 1 and only lower log_statsd_sample_rate_factor if needed.
The log_statsd_default_sample_rate should not be used and remains for backward compatibility only.

The metric prefix will be prepended to every metric sent to the StatsD server For example, with:

the metric proxy-server.errors would be sent to StatsD as proxy0l.proxy-server.errors. This is useful for
differentiating different servers when sending statistics to a central StatsD server. If you run a local StatsD
server per node, you could configure a per-node metrics prefix there and leave log_statsd_metric_prefix
blank.

Note that metrics reported to StatsD are counters or timing data (which are sent in units of millisec-
onds). StatsD usually expands timing data out to min, max, avg, count, and 90th percentile per timing
metric, but the details of this behavior will depend on the configuration of your StatsD server. Some
important gauge metrics may still need to be collected using another method. For example, the object-
server.async_pendings StatsD metric counts the generation of async_pendings in real-time, but will not
tell you the current number of async_pending container updates on disk at any point in time.

Note also that the set of metrics collected, their names, and their semantics are not locked down and will
change over time.

Metrics for account-auditor:

Metric Name Description

account-auditor.errors | Count of audit runs (across all account databases) which caught an Excep-
tion.

account-auditor.passes | Count of individual account databases which passed audit.

account- Count of individual account databases which failed audit.

auditor.failures

account-auditor.timing | Timing data for individual account database audits.

Metrics for account-reaper:

286 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

Metric Name

Description

account- Count of devices failing the mount check.

reaper.errors

account- Timing data for each reap_account() call.

reaper.timing

account- Count of HTTP return codes from various operations (e.g. object listing, con-

reaper.return_codes.X|

tainer deletion, etc.). The value for X is the first digit of the return code (2 for
201, 4 for 404, etc.).

reaper.containers_del

account- Count of failures to delete a container.
reaper.containers_failures
account- Count of containers successfully deleted.

eted

account-

reaper.containers_remn

Count of containers which failed to delete with zero successes.
aining

account-
reaper.containers_po.

Count of containers which failed to delete with at least one success.
sibly_remaining

account-
reaper.objects_failure

Count of failures to delete an object.
\)

account-

reaper.objects_deleted

Count of objects successfully deleted.
/

account-

reaper.objects_remain

Count of objects which failed to delete with zero successes.
ing

account-
reaper.objects_possib

Count of objects which failed to delete with at least one success.
y_remaining

Metrics for account-server (Not Found is not considered an error and requests which increment errors
are not included in the timing data):

5.4. Administrators

Guide 287

Swift Documentation

, Release 2.30.2.dev8

Metric Name

Description

account-
server.DELETE.errors.

Timing data for each DELETE request resulting in an error: bad request, not
rimimgnted, missing timestamp.

account-
server. DELETE.timing

Timing data for each DELETE request not resulting in an error.

account-
server.PUT.errors.timin

Timing data for each PUT request resulting in an error: bad request, not
gmounted, conflict, recently-deleted.

account- Timing data for each PUT request not resulting in an error.
server.PUT.timing
account- Timing data for each HEAD request resulting in an error: bad request, not

server.HEAD.errors.tin|

rimgounted.

account- Timing data for each HEAD request not resulting in an error.
server. HEAD.timing
account- Timing data for each GET request resulting in an error: bad request, not

server.GET.errors.timin

gmounted, bad delimiter, account listing limit too high, bad accept header.

account- Timing data for each GET request not resulting in an error.
server.GET.timing

account- Timing data for each REPLICATE request resulting in an error: bad request,
server.REPLICATE. errpmotimiengnted.

account- Timing data for each REPLICATE request not resulting in an error.
server.REPLICATE.timjng

account- Timing data for each POST request resulting in an error: bad request, bad or

server.POST.errors.tim

mmissing timestamp, not mounted.

account-
server.POST.timing

Timing data for each POST request not resulting in an error.

Metrics for account-replicator:

288

Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

Metric Name | Description

account- Count of syncs handled by sending differing rows.

replicator.diffs

account- Count of diffs operations which failed because max_diffs was hit.
replicator.diff_caps

account- Count of accounts found to be in sync.

replicator.no_changes

account- Count of accounts found to be in sync via hash comparison (broker.merge_syncs was
replicator. hashinaatleek).

account- Count of completely missing accounts which were sent via rsync.

replicator.rsyngs

account- Count of syncs handled by sending entire database via rsync.
replicator.remojte_merges

account- Count of database replication attempts.

replicator.attempts

account- Count of database replication attempts which failed due to corruption (quarantined)
replicator.failureor inability to read as well as attempts to individual nodes which failed.

account- Count of databases on <device> deleted because the delete_timestamp was greater

replicator.removéhandhdput_timestamp and the database had no rows or because it was successfully
synced to other locations and doesnt belong here anymore.

account- Count of replication attempts to an individual node which were successful.
replicator.succésses

account- Timing data for each database replication attempt not resulting in a failure.
replicator.timing

Metrics for container-auditor:

Metric Name Description

container- Incremented when an Exception is caught in an audit pass (only once per
auditor.errors pass, max).

container- Count of individual containers passing an audit.

auditor.passes

container- Count of individual containers failing an audit.

auditor.failures

container- Timing data for each container audit.

auditor.timing

Metrics for container-replicator:

5.4. Administrators Guide 289

Swift Documentation, Release 2.30.2.dev8

Metric Name | Description

container- Count of syncs handled by sending differing rows.

replicator.diffs

container- Count of diffs operations which failed because max_diffs was hit.

replicator.diff_daps

container- Count of containers found to be in sync.

replicator.no_changes

container- Count of containers found to be in sync via hash comparison (broker.merge_syncs

replicator.hashimovekasalled).

container- Count of completely missing containers where were sent via rsync.

replicator.rsyncls

container- Count of syncs handled by sending entire database via rsync.

replicator.remote_merges

container- Count of database replication attempts.

replicator.attempts

container- Count of database replication attempts which failed due to corruption (quarantined)

replicator.failureor inability to read as well as attempts to individual nodes which failed.

container- Count of databases deleted on <device> because the delete_timestamp was greater

replicator.remoyethamléhvégput_timestamp and the database had no rows or because it was successfully
synced to other locations and doesnt belong here anymore.

container- Count of replication attempts to an individual node which were successful.

replicator.successes

container- Timing data for each database replication attempt not resulting in a failure.

replicator.timing

Metrics for container-server (Not Found is not considered an error and requests which increment errors
are not included in the timing data):

290 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

Metric Name

Description

container-
server. DELETE.errors.timing

Timing data for DELETE request errors: bad request, not mounted,
missing timestamp, conflict.

container- Timing data for each DELETE request not resulting in an error.
server. DELETE.timing
container- Timing data for PUT request errors: bad request, missing timestamp,

server.PUT.errors.timing

not mounted, conflict.

container-server.PUT.timing

Timing data for each PUT request not resulting in an error.

container-
server.HEAD.errors.timing

Timing data for HEAD request errors: bad request, not mounted.

container- Timing data for each HEAD request not resulting in an error.
server. HEAD.timing
container- Timing data for GET request errors: bad request, not mounted, pa-

server.GET.errors.timing

rameters not utf8, bad accept header.

container-server.GET.timing

Timing data for each GET request not resulting in an error.

container-

server.REPLICATE.errors.timingiounted.

Timing data for REPLICATE request errors: bad request, not

container-
server.REPLICATE.timing

Timing data for each REPLICATE request not resulting in an error.

container-
server.POST.errors.timing

Timing data for POST request errors: bad request, bad x-container-
sync-to, not mounted.

container-
server.POST.timing

Timing data for each POST request not resulting in an error.

Metrics for container-sync:

Metric Name

Description

container-sync.skips

Count of containers skipped because they dont have syncing enabled.

container-sync.failures

Count of failures syncing of individual containers.

container-sync.syncs

Count of individual containers synced successfully.

container-sync.deletes

Count of container database rows synced by deletion.

container-
sync.deletes.timing

Timing data for each container database row synchronization via dele-
tion.

container-sync.puts

Count of container database rows synced by Putting.

container-sync.puts.timing

Timing data for each container database row synchronization via
Putting.

Metrics for container-updater:

Metric Name Description

container- Count of containers which successfully updated their account.

updater.successels

container- Count of containers which failed to update their account.

updater.failures

container- Count of containers which didnt need to update their account.

updater.no_changes

container- Timing data for processing a container; only includes timing for containers which
updater.timing | needed to update their accounts (i.e. successes and failures but not no_changes).

5.4. Administrators Guide

291

Swift Documentation, Release 2.30.2.dev8

Metrics for object-auditor:
Metric Description
Name
object- Count of objects failing audit and quarantined.
auditor.quarantines
object- Count of errors encountered while auditing objects.
auditor.errors
object- Timing data for each object audit (does not include any rate-limiting sleep
auditor.timing| time for max_files_per_second, but does include rate-limiting sleep time for
max_bytes_per_second).

Metrics for object-expirer:

Metric Name Description

object- Count of objects expired.

expirer.objects

object- Count of errors encountered while attempting to expire an object.
expirer.errors

object- Timing data for each object expiration attempt, including ones resulting in an
expirer.timing error.

Metrics for object-reconstructor:

Metric Name Description

object- A count of partitions on <device> which were reconstructed and synced to an-

reconstructor.partitiothde latedeoneraudetley-didnt belong on this node. This metric is tracked per-
device to allow for quiescence detection for object reconstruction activity on each
device.

object- Timing data for partitions reconstructed and synced to another node because they

reconstructor.partitididde leedairging this node. This metric is not tracked per device.

object- A count of partitions on <device> which were reconstructed and synced to an-

reconstructor.partitiothep durde;omat. eldevbedong on this node. As with delete.count, this metric is
tracked per-device.

object- Timing data for partitions reconstructed which also belong on this node. This

reconstructor.partitionetqpdasenootivagked per-device.

object- Count of suffix directories whose hash (of filenames) was recalculated.

reconstructor.suffix.hashes

object- Count of suffix directories reconstructed with ssync.

reconstructor.suffix.syncs

Metrics for object-replicator:

292

Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

Metric Name Description
object- A count of partitions on <device> which were replicated to another node because
replicator.partition, dbleyedidmtbeltmgcerr this node. This metric is tracked per-device to allow for
quiescence detection for object replication activity on each device.

object- Timing data for partitions replicated to another node because they didnt belong
replicator.partition, debethisimandg. This metric is not tracked per device.
object- A count of partitions on <device> which were replicated to another node, but also
replicator.partition, upelotegconnhis dodeeAs with delete.count, this metric is tracked per-device.
object- Timing data for partitions replicated which also belong on this node. This metric
replicator.partition, vipdwe ttiackegl per-device.
object- Count of suffix directories whose hash (of filenames) was recalculated.
replicator.suffix.hashes
object- Count of suffix directories replicated with rsync.
replicator.suffix.syncs

Metrics for object-server:

5.4. Administrators Guide 293

Swift Documentation, Release 2.30.2.dev8

Metric Name

Description

object- Count of objects (files) found bad and moved to quarantine.

server.quarantines

object- Count of container updates saved as async_pendings (may result from PUT or
server.async_pendingdELETE requests).

object- Timing data for POST request errors: bad request, missing timestamp, delete-at
server.POST.errors|timipgst, not mounted.

object- Timing data for each POST request not resulting in an error.
server.POST.timing

object- Timing data for PUT request errors: bad request, not mounted, missing times-

server.PUT.errors.t,

imtamgp, object creation constraint violation, delete-at in past.

object- Count of object PUTs which exceeded max_upload_time.

server.PUT.timeout,

object- Timing data for each PUT request not resulting in an error.

server.PUT.timing

object- Timing data per kB transferred (ms/kB) for each non-zero-byte PUT request on
server.PUT.<device>eavhidgvice. Monitoring problematic devices, higher is bad.

object- Timing data for GET request errors: bad request, not mounted, header times-

server.GET. errors.t,

imamgps before the epoch, precondition failed. File errors resulting in a quarantine
are not counted here.

object- Timing data for each GET request not resulting in an error. Includes requests
server.GET.timing | which couldnt find the object (including disk errors resulting in file quarantine).
object- Timing data for HEAD request errors: bad request, not mounted.

server.HEAD.error.

5.timing

object-
server.HEAD.timin

Timing data for each HEAD request not resulting in an error. Includes requests
g which couldnt find the object (including disk errors resulting in file quarantine).

object-
server. DELETE.ern

Timing data for DELETE request errors: bad request, missing timestamp, not
omeimied, precondition failed. Includes requests which couldnt find or match the
object.

object-
server. DELETE.tim

Timing data for each DELETE request not resulting in an error.
ing

object-
server.REPLICATE

Timing data for REPLICATE request errors: bad request, not mounted.
Lerrors.timing

object-
server.REPLICATE

Timing data for each REPLICATE request not resulting in an error.
.timing

Metrics for object-updater:

294

Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

Metric Description

Name

object- Count of drives not mounted or async_pending files with an unexpected name.

updater.errors

object- Timing data for object sweeps to flush async_pending container updates. Does not

updater.timinginclude object sweeps which did not find an existing async_pending storage directory.

object- Count of async_pending container updates which were corrupted and moved to quar-

updater.quarantitine.

object- Count of successful container updates.

updater.successes

object- Count of failed container updates.

updater.failuyes

object- Count of async_pending files unlinked. An async_pending file is unlinked either

updater.unlinkwhen it is successfully processed or when the replicator sees that there is a newer
async_pending file for the same object.

Metrics for proxy-server (in the table, <type> is the proxy-server controller responsible for the request
and will be one of account, container, or object):

Metric Name

Description

proxy- Count of errors encountered while serving requests before the controller type is

server.errors determined. Includes invalid Content-Length, errors finding the internal controller
to handle the request, invalid utf8, and bad URLs.

proxy- Count of node hand-offs; only tracked if log_handoffs is set in the proxy-server

server.<type>.hqratuffigount

Pproxy-

server.<type>.hqnidafft il tliopnoxy-server config.

Count of times only hand-off locations were utilized; only tracked if log_handoffs

proxy-

server.<type>.cl

Count of client timeouts (client did not read within client_timeout seconds during
ieaGlilieandid not supply data within client_timeout seconds during a PUT).

proxy-

server.<type>.cl

Count of detected client disconnects during PUT operations (does NOT include
ieedtudhcBnaeptions in the proxy-server which caused a client disconnect).

Metrics for proxy-logging middleware (in the table, <type> is either the proxy-server controller re-
sponsible for the request: account, container, object, or the string SOS if the request came from the

Swift Origin Server middleware.

The <verb> portion will be one of GET, HEAD, POST, PUT,

DELETE, COPY, OPTIONS, or BAD_METHOD. The list of valid HTTP methods is configurable via
the log_statsd_valid_http_methods config variable and the default setting yields the above behavior):

Metric Name

Description

Pproxy-

server.<type=>.<verb=

Timing data for requests, start to finish. The <status> portion is the numeric
. HsFdiRsstatimiesgde for the request (e.g. 200 or 404).

proxy-

byte.timing

server.<type>.GET.<

Timing data up to completion of sending the response headers (only for GET
stacmresfpr<status> and <type> are as for the main timing metric.

proxy-

server.<type>.<verb>

This counter metric is the sum of bytes transferred in (from clients) and out (to
. €liemsy=forfeequests. The <type>, <verb>, and <status> portions of the metric
are just like the main timing metric.

The proxy-logging middleware also groups these metrics by policy. The <policy-index> portion repre-

5.4. Admini

strators Guide 295

https://github.com/dpgoetz/sos

Swift Documentation, Release 2.30.2.dev8

sents a policy index):

Metric Name Description

proxy-server.object.policy.<policy- Timing data for requests, aggregated by policy index.
index>.<verb>.<status>.timing

proxy-server.object.policy.<policy- Timing data up to completion of sending the response
index>.GET.<status>.first-byte.timing headers, aggregated by policy index.
proxy-server.object.policy.<policy- Sum of bytes transferred in and out, aggregated by pol-
index>.<verb>.<status>.xfer icy index.

Metrics for tempauth middleware (in the table, <reseller_prefix> represents the actual configured re-
seller_prefix or NONE if the reseller_prefix is the empty string):

Metric Name Description

tem- Count of regular requests which were denied with HTTPUnau-
pauth.<reseller_prefix>.unauthorized thorized.

tem- Count of regular requests which were denied with HTTPFor-
pauth.<reseller_prefix>.forbidden bidden.

tem- Count of token requests which were denied.
pauth.<reseller_prefix>.token_denied

tempauth.<reseller_prefix>.errors Count of errors.

5.4.13 Debugging Tips and Tools

When a request is made to Swift, it is given a unique transaction id. This id should be in every log line
that has to do with that request. This can be useful when looking at all the services that are hit by a single
request.

If you need to know where a specific account, container or object is in the cluster, swift-get-nodes will
show the location where each replica should be.

If you are looking at an object on the server and need more info, swift-object-info will display the account,
container, replica locations and metadata of the object.

If you are looking at a container on the server and need more info, swift-container-info will display all
the information like the account, container, replica locations and metadata of the container.

If you are looking at an account on the server and need more info, swift-account-info will display the
account, replica locations and metadata of the account.

If you want to audit the data for an account, swift-account-audit can be used to crawl the account, checking
that all containers and objects can be found.

296 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

5.4.14 Managing Services

Swift services are generally managed with swift-init. the general usage is swift-init <service>
<command>, where service is the Swift service to manage (for example object, container, account, proxy)
and command is one of:

Command Description

start Start the service

stop Stop the service

restart Restart the service

shutdown Attempt to gracefully shutdown the service
reload Attempt to gracefully restart the service
reload-seamless | Attempt to seamlessly restart the service

A graceful shutdown or reload will allow all server workers to finish any current requests before exiting.
The parent server process exits immediately.

A seamless reload will make new configuration settings active, with no window where client requests
fail due to there being no active listen socket. The parent server process will re-exec itself, retaining its
existing PID. After the re-execed parent server process binds its listen sockets, the old listen sockets are
closed and old server workers finish any current requests before exiting.

There is also a special case of swift-init all <command>, which will run the command for all swift
services.

In cases where there are multiple configs for a service, a specific config can be managed with
swift-init <service>.<config> <command>. For example, when a separate replication network
is used, there might be /etc/swift/object-server/public.conf for the object server and /etc/
swift/object-server/replication.conf for the replication services. In this case, the replication
services could be restarted with swift-init object-server.replication restart.

5.4.15 Object Auditor

On system failures, the XFS file system can sometimes truncate files its trying to write and produce
zero-byte files. The object-auditor will catch these problems but in the case of a system crash it would
be advisable to run an extra, less rate limited sweep to check for these specific files. You can run this
command as follows:

-z means to only check for zero-byte files at 1000 files per second.

At times it is useful to be able to run the object auditor on a specific device or set of devices. You can
run the object-auditor as follows:

This will run the object auditor on only the sda and sdb devices. This param accepts a comma separated
list of values.

5.4. Administrators Guide 297

Swift Documentation, Release 2.30.2.dev8

5.4.16 Object Replicator

At times it is useful to be able to run the object replicator on a specific device or partition. You can run
the object-replicator as follows:

This will run the object replicator on only the sda and sdb devices. You can likewise run that command
with --partitions. Both params accept a comma separated list of values. If both are specified they
will be ANDed together. These can only be run in once mode.

5.4.17 Swift Orphans

Swift Orphans are processes left over after a reload of a Swift server.

For example, when upgrading a proxy server you would probably finish with a swift-init
proxy-server reload or /etc/init.d/swift-proxy reload. This kills the parent proxy server
process and leaves the child processes running to finish processing whatever requests they might be han-
dling at the time. It then starts up a new parent proxy server process and its children to handle new
incoming requests. This allows zero-downtime upgrades with no impact to existing requests.

The orphaned child processes may take a while to exit, depending on the length of the requests they were
handling. However, sometimes an old process can be hung up due to some bug or hardware issue. In
these cases, these orphaned processes will hang around forever. swift-orphans can be used to find and
kill these orphans.

swift-orphans with no arguments will just list the orphans it finds that were started more than 24
hours ago. You shouldnt really check for orphans until 24 hours after you perform a reload, as some
requests can take a long time to process. swift-orphans -k TERM will send the SIG_TERM signal to
the orphans processes, or you can kill -TERM the pids yourself if you prefer.

You can run swift-orphans --help for more options.

5.4.18 Swift Oldies

Swift Oldies are processes that have just been around for a long time. Theres nothing necessarily wrong
with this, but it might indicate a hung process if you regularly upgrade and reload/restart services. You
might have so many servers that you dont notice when a reload/restart fails; swift-oldies can help
with this.

For example, if you upgraded and reloaded/restarted everything 2 days ago, and youve already cleaned
up any orphans with swift-orphans, you can run swift-oldies -a 48 to find any Swift processes
still around that were started more than 2 days ago and then investigate them accordingly.

298 Chapter 5. Administrator Documentation

Swift Documentation, Release 2.30.2.dev8

5.4.19 Custom Log Handlers

Swift supports setting up custom log handlers for services by specifying a comma-separated list of func-
tions to invoke when logging is setup. It does so via the 1log_custom_handlers configuration option.
Logger hooks invoked are passed the same arguments as Swifts get_logger function (as well as the get-
Logger and LogAdapter object):

Name Description

conf Configuration dict to read settings from

name Name of the logger received

log_to_console | (optional) Write log messages to console on stderr
log_route Route for the logging received

fmt Override log format received

logger The logging.getLogger object

adapted_logger | The LogAdapter object

A basic example that sets up a custom logger might look like the following:

See Custom Logger Hooks for sample use cases.

5.4.20 Securing OpenStack Swift

Please refer to the security guide at https://docs.openstack.org/security-guide and in particular the Object
Storage section.

5.5 Dedicated replication network

5.5.1 Summary

Swifts replication process is essential for consistency and availability of data. By default, replication
activity will use the same network interface as other cluster operations. However, if a replication interface
is set in the ring for a node, that node will send replication traffic on its designated separate replication
network interface. Replication traffic includes REPLICATE requests and rsync traffic.

To separate the cluster-internal replication traffic from client traffic, separate replication servers can be
used. These replication servers are based on the standa