
Sushy Tools Documentation
Release 1.3.1.dev15

OpenStack Foundation

Feb 19, 2025

CONTENTS

1 Documentation 3
1.1 Installation . 3
1.2 Configuring emulators . 3
1.3 Using Redfish emulators . 9
1.4 Contributing . 26

2 Indices and tables 27

i

ii

Sushy Tools Documentation, Release 1.3.1.dev15

This is a set of simple simulation tools aimed at supporting the development and testing of the Redfish
protocol implementations and, in particular, the Sushy library (https://docs.openstack.org/sushy/). It is
not designed for use outside of development and testing environments. Please do not run sushy-tools in a
production environment of any kind.

The package ships two simulators - the static Redfish responder and the virtual Redfish BMC (which is
backed by libvirt or OpenStack cloud).

The static Redfish responder is a simple REST API server which responds with the same things to client
queries. It is effectively read-only.

The virtual Redfish BMC resembles the real Redfish-controlled bare metal machine to some extent. Some
client queries are translated to commands that actually control VM instances simulating bare metal hard-
ware. However, some of the Redfish commands just return static content, never touching the virtualization
backend and in this regard, the virtual Redfish BMC is similar to the static Redfish responder.

• Free software: Apache license

• Documentation: https://docs.openstack.org/sushy-tools

• Source: http://opendev.org/openstack/sushy-tools

• Bugs: https://storyboard.openstack.org/#!/project/openstack/sushy-tools

CONTENTS 1

https://docs.openstack.org/sushy/
https://docs.openstack.org/sushy-tools
http://opendev.org/openstack/sushy-tools
https://storyboard.openstack.org/#!/project/openstack/sushy-tools

Sushy Tools Documentation, Release 1.3.1.dev15

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

1.1 Installation
The sushy-tools Python package can be downloaded and installed with pip:

$ pip install sushy-tools

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv sushy-tools

$ pip install sushy-tools

The Virtual Redfish BMC tool relies upon one or more hypervisors to mimic bare metal nodes. Depending
on the virtualization backend you are planning to use, certain third-party dependencies should also be
installed.

The dependencies for the virtualization backends that should be installed for the corresponding drivers to
become operational are:

• libvirt-python for the libvirt driver

• openstacksdk for the nova driver

Note

The dependencies for at least one virtualization backend should be satisfied to have the Virtual Redfish
BMC emulator operational.

1.2 Configuring emulators

1.2.1 Running emulators in the background
The emulators run as interactive processes attached to the terminal by default. You can create systemd
services to run the emulators in the background. For each emulator, create a systemd unit file, and update
<full-path> to the sushy-static or sushy-emulator binary, and adjust the arguments as necessary,
for example:

[Unit]

Description=Sushy Libvirt emulator

After=syslog.target

(continues on next page)

3

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)
[Service]

Type=simple

ExecStart=/<full-path>/sushy-emulator --port 8000 --libvirt-uri "qemu:///

↪→system"

StandardOutput=syslog

StandardError=syslog

If you want to run the emulators with different configurations, for example, the sushy-static emulator
with different mockup files, then create a new systemd unit file.

You can also use gunicorn to run sushy-emulator, for example:

ExecStart=/usr/bin/gunicorn sushy_tools.emulator.main:app

1.2.2 Using configuration file
Besides command-line options, sushy-emulator can be configured via a configuration file. This tool uses
the Flask application configuration infrastructure. Emulator-specific configuration options are prefixed with
SUSHY_EMULATOR_ to make sure that they don’t collide with Flask’s own configuration options.

The configuration file itself can be specified through the SUSHY_EMULATOR_CONFIG environment vari-
able.

The full list of supported options and their meanings can be found in the sample configuration file:

sushy emulator configuration file built on top of Flask application

configuration infrastructure: http://flask.pocoo.org/docs/config/

Listen on all local IP interfaces

SUSHY_EMULATOR_LISTEN_IP = u''

Bind to TCP port 8000

SUSHY_EMULATOR_LISTEN_PORT = 8000

Serve this SSL certificate to the clients

SUSHY_EMULATOR_SSL_CERT = None

If SSL certificate is being served, this is its RSA private key

SUSHY_EMULATOR_SSL_KEY = None

If authentication is desired, set this to an htpasswd file.

SUSHY_EMULATOR_AUTH_FILE = None

The OpenStack cloud ID to use. This option enables OpenStack driver.

SUSHY_EMULATOR_OS_CLOUD = None

If image should created via file upload instead of web-download based␣

↪→image

import OpenStack cloud virtual media

SUSHY_EMULATOR_OS_VMEDIA_IMAGE_FILE_UPLOAD = False

(continues on next page)

4 Chapter 1. Documentation

http://flask.pocoo.org/docs/config/

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)
The OpenStack cloud ID to use for Ironic. This option enables Ironic␣

↪→driver.

SUSHY_EMULATOR_IRONIC_CLOUD = None

The libvirt URI to use. This option enables libvirt driver.

SUSHY_EMULATOR_LIBVIRT_URI = u'qemu:///system'

Instruct the libvirt driver to ignore any instructions to set the boot␣

↪→device,

allowing the UEFI firmware to instead rely on the EFI Boot Manager.

Note: This sets the legacy boot element to dev="fd" and relies on the␣

↪→floppy

not existing. It likely won't work if your VM has a floppy drive.

SUSHY_EMULATOR_IGNORE_BOOT_DEVICE = False

The map of firmware loaders dependent on the boot mode and system

architecture. Ideally the x86_64 loader will be capable of secure boot or␣

↪→not

based on the chosen nvram.

SUSHY_EMULATOR_BOOT_LOADER_MAP = {

'UEFI': {

'x86_64': u'/usr/share/OVMF/OVMF_CODE.secboot.fd',

'aarch64': u'/usr/share/AAVMF/AAVMF_CODE.fd'

},

'Legacy': {

'x86_64': None,

'aarch64': None

}

}

nvram templates to use on x86_64 to enable or disable secure boot

SUSHY_EMULATOR_SECURE_BOOT_ENABLED_NVRAM = '/usr/share/OVMF/OVMF_VARS.

↪→secboot.fd'

SUSHY_EMULATOR_SECURE_BOOT_DISABLED_NVRAM = '/usr/share/OVMF/OVMF_VARS.fd'

This map contains statically configured Redfish Chassis linked up with the

Systems and Managers enclosed into this Chassis.

#

The first chassis in the list will contain all other resources.

#

If this map is not present in the configuration, a single default Chassis␣

↪→is

configured automatically to enclose all available Systems and Managers.

SUSHY_EMULATOR_CHASSIS = [

{

u'Id': u'Chassis',

u'Name': u'Chassis',

u'UUID': u'48295861-2522-3561-6729-621118518810'

(continues on next page)

1.2. Configuring emulators 5

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)
}

]

This map contains statically configured Redfish IndicatorLED resource␣

↪→state

('Lit', 'Off', 'Blinking'), keyed by UUIDs of System and Chassis␣

↪→resources.

#

If this map is not present in the configuration, each System and Chassis␣

↪→will

have their IndicatorLED `Lit` by default.

#

The Redfish client can change IndicatorLED state. The new state is␣

↪→volatile,

i.e. it's maintained in process memory.

SUSHY_EMULATOR_INDICATOR_LEDS = {

u'48295861-2522-3561-6729-621118518810': u'Blinking'

}

This map contains statically configured virtual media resources.

These devices ('Cd', 'Floppy', 'USBStick') will be exposed by the␣

↪→Manager(s)

and possibly used by the System(s) if system emulation backend supports␣

↪→boot

image configuration.

#

This value is ignored by the OpenStack driver, which only supports the 'Cd

↪→'

device. If this map is not present in the configuration, the following

configuration is used for other drivers:

SUSHY_EMULATOR_VMEDIA_DEVICES = {

u'Cd': {

u'Name': 'Virtual CD',

u'MediaTypes': [

u'CD',

u'DVD'

]

},

u'Floppy': {

u'Name': u'Virtual Removable Media',

u'MediaTypes': [

u'Floppy',

u'USBStick'

]

}

}

Instruct the virtual media insertion to not verify the SSL certificate␣

↪→when

(continues on next page)

6 Chapter 1. Documentation

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)
retrieving the image.

SUSHY_EMULATOR_VMEDIA_VERIFY_SSL = False

This map contains statically configured Redfish Storage resources linked␣

↪→up

with the Systems resources, keyed by the UUIDs of the Systems.

SUSHY_EMULATOR_STORAGE = {

"da69abcc-dae0-4913-9a7b-d344043097c0": [

{

"Id": "1",

"Name": "Local Storage Controller",

"StorageControllers": [

{

"MemberId": "0",

"Name": "Contoso Integrated RAID",

"SpeedGbps": 12

}

],

"Drives": [

"32ADF365C6C1B7BD"

]

}

]

}

This map contains statically configured Redfish Drives resources. The␣

↪→Drive

objects are keyed in a composite fashion using a tuple of the form

(System_UUID, Storage_ID) referring to the UUID of the System and Id of␣

↪→the

Storage resource, respectively, to which the Drive belongs.

SUSHY_EMULATOR_DRIVES = {

("da69abcc-dae0-4913-9a7b-d344043097c0", "1"): [

{

"Id": "32ADF365C6C1B7BD",

"Name": "Drive Sample",

"CapacityBytes": 899527000000,

"Protocol": "SAS"

}

]

}

This map contains dynamically configured Redfish Volume resources backed␣

↪→by

the libvirt virtualization backend of the dynamic Redfish emulator.

The Volume objects are keyed in a composite fashion using a tuple of the␣

↪→form

(System_UUID, Storage_ID) referring to the UUID of the System and ID of␣

↪→the

(continues on next page)

1.2. Configuring emulators 7

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)
Storage resource, respectively, to which the Volume belongs.

#

Only the Volumes specified in the map or created via a POST request are

allowed to be emulated upon by the emulator. Volumes other than these can

neither be listed nor deleted.

#

The Volumes in the map missing from the libvirt backend will be created

dynamically in the pool name specified (provided the pool exists in the

backend). If the pool name is not specified, the Volume will be created

automatically in a pool named 'default'.

SUSHY_EMULATOR_VOLUMES = {

('da69abcc-dae0-4913-9a7b-d344043097c0', '1'): [

{

"libvirtPoolName": "sushyPool",

"libvirtVolName": "testVol",

"Id": "1",

"Name": "Sample Volume 1",

"VolumeType": "Mirrored",

"CapacityBytes": 23748

},

{

"libvirtPoolName": "sushyPool",

"libvirtVolName": "testVol1",

"Id": "2",

"Name": "Sample Volume 2",

"VolumeType": "StripedWithParity",

"CapacityBytes": 48395

}

]

}

This list contains the identities of instances that the driver will␣

↪→filter by.

It is useful in a tenant environment where only some instances represent

virtual bare metal.

SUSHY_EMULATOR_ALLOWED_INSTANCES = [

"437XR1138R2",

"1",

"529QB9450R6",

"529QB9451R6",

"529QB9452R6",

"529QB9453R6"

]

Disable the ability to power off the node, in line with NCSI enablement in

Ironic

SUSHY_EMULATOR_DISABLE_POWER_OFF = False

8 Chapter 1. Documentation

Sushy Tools Documentation, Release 1.3.1.dev15

1.3 Using Redfish emulators
The sushy-tools package includes two emulators - static and dynamic.

The static emulator can be used to serve Redfishmocks in the form of static JSON documents. The dynamic
emulator relies upon the libvirt,OpenStack or Ironic virtualization backends tomimic nodes behind a Redfish
BMC.

1.3.1 Static Redfish BMC
The static Redfish responder is a simple REST API server which serves static contents down to the Redfish
client. The tool emulates the simple read-only BMC.

The user is expected to supply the Redfish-compliant contents, perhaps downloaded from the DMTF web
site. For example, this .zip archive includes Redfish content mocks for Redfish 1.0.0.

curl -o DSP2043_1.0.0.zip \

https://www.dmtf.org/sites/default/files/standards/documents/DSP2043_1.

↪→0.0.zip

unzip -d mockups DSP2043_1.0.0.zip

sushy-static -m mockups/public-rackmount

Once you have the static emulator running, you can use it as if it was a read-only bare metal controller
listening at localhost:8000 (by default):

curl http://localhost:8000/redfish/v1/Systems/

{

"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",

"Name": "Computer System Collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2"

}

],

"@odata.context": "/redfish/v1/$metadata#Systems",

"@odata.id": "/redfish/v1/Systems",

"@Redfish.Copyright": "Copyright 2014-2016 Distributed Management Task␣

↪→Force, Inc. (DMTF). For the full DMTF copyright policy, see http://www.

↪→dmtf.org/about/policies/copyright."

}

You can mock different Redfish versions as well as different bare metal machines by providing the appro-
priate Redfish contents.

1.3.2 Virtual Redfish BMC
The Virtual Redfish BMC emulator is functionally similar to the Virtual BMC tool, except that the frontend
protocol is Redfish rather than IPMI. The Redfish commands coming from the client are handled by one
or more resource-specific drivers.

1.3. Using Redfish emulators 9

https://www.dmtf.org/
https://www.dmtf.org/sites/default/files/standards/documents/DSP2043_1.0.0.zip
https://opendev.org/openstack/virtualbmc

Sushy Tools Documentation, Release 1.3.1.dev15

Feature sets

The emulator can be configured with different feature sets to emulate different hardware. The feature
set is supplied either via the SUSHY_EMULATOR_FEATURE_SET configuration variable or through the
--feature-set command line flag.

Supported feature sets are: * minimum - only Systems with Boot settings and no other optional fields. *
vmedia - minimum plus Managers, VirtualMedia and EthernetInterfaces. * full - all features imple-
mented in the emulator.

Systems resource

For the Systems resource, the emulator maintains two drivers relying on a virtualization backend to emulate
bare metal machines by means of virtual machines. In addition, there is a fake driver used to mock bare
metal machines.

The following sections will explain how to configure and use each of these drivers.

Systems resource driver: libvirt

The first thing you need is to set up some libvirt-managed virtual machines (AKA domains) to manipulate.
The following command will create a new virtual machine i.e. libvirt domain vbmc-node:

tmpfile=$(mktemp /tmp/sushy-domain.XXXXXX)

virt-install \

--name vbmc-node \

--ram 1024 \

--disk size=1 \

--vcpus 2 \

--os-type linux \

--os-variant fedora28 \

--graphics vnc \

--print-xml > $tmpfile

virsh define --file $tmpfile

rm $tmpfile

Next you can fire up the Redfish virtual BMC which will listen at localhost:8000 (by default):

sushy-emulator

* Running on http://localhost:8000/ (Press CTRL+C to quit)

Now you should be able to see your libvirt domain among the Redfish Systems:

curl http://localhost:8000/redfish/v1/Systems/

{

"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",

"Name": "Computer System Collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/vbmc-node"

}

(continues on next page)

10 Chapter 1. Documentation

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)

],

"@odata.context": "/redfish/v1/$metadata#ComputerSystemCollection.

↪→ComputerSystemCollection",

"@odata.id": "/redfish/v1/Systems",

"@Redfish.Copyright": "Copyright 2014-2016 Distributed Management Task␣

↪→Force, Inc. (DMTF). For the full DMTF copyright policy, see http://www.

↪→dmtf.org/about/policies/copyright."

}

You should be able to flip its power state via the Redfish call:

curl -d '{"ResetType":"On"}' \

-H "Content-Type: application/json" -X POST \

http://localhost:8000/redfish/v1/Systems/vbmc-node/Actions/

↪→ComputerSystem.Reset

curl -d '{"ResetType":"ForceOff"}' \

-H "Content-Type: application/json" -X POST \

http://localhost:8000/redfish/v1/Systems/vbmc-node/Actions/

↪→ComputerSystem.Reset

You can have as many domains as you need. The domains can be concurrently managed over Redfish and
some other tool like Virtual BMC.

Simple Storage resource

For emulating the Simple Storage resource, some additional preparation is required on the host side.

First, you need to create, build and start a libvirt storage pool using virsh:

virsh pool-define-as testPool dir - - - - "/testPool"

virsh pool-build testPool

virsh pool-start testPool

virsh pool-autostart testPool

Next, create a storage volume in the above created storage pool:

virsh vol-create-as testPool testVol 1G

Next, attach the created volume to the virtual machine/domain:

virsh attach-disk vbmc-node /testPool/testVol sda

Now, query the Simple Storage resource collection for the vbmc-node domain in a closely similar format
(with ‘ide’ and ‘scsi’, here, referring to the two Redfish Simple Storage Controllers available for this domain):

curl http://localhost:8000/redfish/v1/vbmc-node/SimpleStorage

{

"@odata.type": "#SimpleStorageCollection.SimpleStorageCollection",

"Name": "Simple Storage Collection",

(continues on next page)

1.3. Using Redfish emulators 11

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)
"Members@odata.count": 2,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/vbmc-node/

↪→SimpleStorage/ide"

},

{

"@odata.id": "/redfish/v1/Systems/vbmc-node/

↪→SimpleStorage/scsi"

}

],

"Oem": {},

"@odata.context": "/redfish/v1/$metadata#SimpleStorageCollection.

↪→SimpleStorageCollection",

"@odata.id": "/redfish/v1/Systems/vbmc-node/SimpleStorage"

}

UEFI boot

By default, legacy or BIOSmode is used to boot the instance. However, the libvirt domain can be configured
to boot via UEFI firmware. This process requires additional preparation on the host side.

On the host you need to have OVMF firmware binaries installed. Fedora users could pull them as edk2-ovmf
RPM. On Ubuntu, apt-get install ovmf should do the job.

Then you need to create a VM by running virt-install with the UEFI-specific –boot options:

Example:

tmpfile=$(mktemp /tmp/sushy-domain.XXXXXX)

virt-install \

--name vbmc-node \

--ram 1024 \

--boot loader.readonly=yes \

--boot loader.type=pflash \

--boot loader.secure=no \

--boot loader=/usr/share/OVMF/OVMF_CODE.secboot.fd \

--boot nvram.template=/usr/share/OVMF/OVMF_VARS.fd \

--disk size=1 \

--vcpus 2 \

--os-type linux \

--os-variant fedora28 \

--graphics vnc \

--print-xml > $tmpfile

virsh define --file $tmpfile

rm $tmpfile

This will create a new libvirt domain with the path to OVMF images properly configured. Let’s take a note

12 Chapter 1. Documentation

Sushy Tools Documentation, Release 1.3.1.dev15

on the path to the blob by running virsh dumpxml vbmc-node:

Example:

<domain type="kvm">

...

<os>

<type arch="x86_64" machine="q35">hvm</type>

<loader readonly="yes" type="pflash" secure="no">/usr/share/edk2/ovmf/

↪→OVMF_CODE.secboot.fd</loader>

<nvram template="/usr/share/edk2/ovmf/OVMF_VARS.fd"/>

<boot dev="hd"/>

</os>

...

</domain>

Because now we need to add this path to the emulator’s configuration matching the VM architecture we
are running. It is also possible to make Redfish calls to enable or disable Secure Boot by specifying which
nvram template to load in each case. Make a copy of the stock configuration file and edit it accordingly:

$ cat sushy-tools/doc/source/admin/emulator.conf

...

SUSHY_EMULATOR_BOOT_LOADER_MAP = {

'Uefi': {

'x86_64': '/usr/share/OVMF/OVMF_CODE.secboot.fd',

...

}

SUSHY_EMULATOR_SECURE_BOOT_ENABLED_NVRAM = '/usr/share/OVMF/OVMF_VARS.

↪→secboot.fd'

SUSHY_EMULATOR_SECURE_BOOT_DISABLED_NVRAM = '/usr/share/OVMF/OVMF_VARS.fd'

...

Now you can run sushy-emulator with the updated configuration file:

sushy-emulator --config emulator.conf

Note

The images you will serve to your VMs need to be UEFI-bootable.

Settable boot image

The libvirt system emulation backend supports setting custom boot images, so that libvirt domains (repre-
senting bare metal nodes) can boot from user images.

This feature enables system boot from virtual media device.

The limitations:

• Only ISO images are supported

See VirtualMedia resource section for more information on how to perform virtual media boot.

1.3. Using Redfish emulators 13

Sushy Tools Documentation, Release 1.3.1.dev15

Systems resource driver: OpenStack

You can use OpenStack cloud instances to simulate Redfish-managed bare metal machines. This setup is
known under the name of OpenStack Virtual Baremetal. We will largely reuse its OpenStack infrastructure
and configuration instructions. After all, what we are trying to do here is to set up the Redfish emulator
alongside the openstackbmc tool which is used for exactly the same purpose at OVBwith the only difference
being that it works over the IPMI protocol as opposed to Redfish.

The easiest way is probably to set up your OpenStack Virtual Baremetal cloud by following its instructions.

Once your OVB cloud is operational, you log into the BMC instance and set up sushy-tools there.

Next you can invoke the Redfish virtual BMC pointing it to your OVB cloud:

sushy-emulator --os-cloud rdo-cloud

* Running on http://localhost:8000/ (Press CTRL+C to quit)

By this point you should be able to see your OpenStack instances among the Redfish Systems:

curl http://localhost:8000/redfish/v1/Systems/

{

"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",

"Name": "Computer System Collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/8dbe91da-4002-4d61-a56d-

↪→1a00fc61c35d"

}

],

"@odata.context": "/redfish/v1/$metadata#ComputerSystemCollection.

↪→ComputerSystemCollection",

"@odata.id": "/redfish/v1/Systems",

"@Redfish.Copyright": "Copyright 2014-2016 Distributed Management Task␣

↪→Force, Inc. (DMTF). For the full DMTF copyright policy, see http://www.

↪→dmtf.org/about/policies/copyright."

}

And flip an instance’s power state via the Redfish call:

curl -d '{"ResetType":"On"}' \

-H "Content-Type: application/json" -X POST \

http://localhost:8000/redfish/v1/Systems/vbmc-node/Actions/

↪→ComputerSystem.Reset

curl -d '{"ResetType":"ForceOff"}' \

-H "Content-Type: application/json" -X POST \

http://localhost:8000/redfish/v1/Systems/vbmc-node/Actions/

↪→ComputerSystem.Reset

You can have as many OpenStack instances as you need. The instances can be concurrently managed over
Redfish and functionally similar tools.

14 Chapter 1. Documentation

http://openstack-virtual-baremetal.readthedocs.io/en/latest/
https://github.com/cybertron/openstack-virtual-baremetal/blob/master/openstack_virtual_baremetal/openstackbmc.py
http://openstack-virtual-baremetal.readthedocs.io/en/latest/

Sushy Tools Documentation, Release 1.3.1.dev15

Systems resource driver: Ironic

You can use the Ironic driver to manage Ironic baremetal instance to simulated Redfish API. You may want
to do this if you require a redfish-compatible endpoint but don’t have direct access to the BMC (you only
have access via Ironic) or the BMC doesn’t support redfish.

Assuming your bare metal cloud is set up you can invoke the Redfish emulator by running:

sushy-emulator --ironic-cloud baremetal-cloud

* Running on http://localhost:8000/ (Press CTRL+C to quit)

By this point you should be able to see your Bare metal instances among the Redfish Systems:

curl http://localhost:8000/redfish/v1/Systems/

{

"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",

"Name": "Computer System Collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/<uuid>"

}

],

"@odata.context": "/redfish/v1/$metadata#ComputerSystemCollection.

↪→ComputerSystemCollection",

"@odata.id": "/redfish/v1/Systems",

"@Redfish.Copyright": "Copyright 2014-2016 Distributed Management Task␣

↪→Force, Inc. (DMTF). For the full DMTF copyright policy, see http://www.

↪→dmtf.org/about/policies/copyright."

}

And flip an instance’s power state via the Redfish call:

curl -d '{"ResetType":"On"}' \

-H "Content-Type: application/json" -X POST \

http://localhost:8000/redfish/v1/Systems/<uuid>/Actions/ComputerSystem.

↪→Reset

curl -d '{"ResetType":"ForceOff"}' \

-H "Content-Type: application/json" -X POST \

http://localhost:8000/redfish/v1/Systems/<uuid>/Actions/ComputerSystem.

↪→Reset

Or update their boot device:

curl -d '{"Boot":{"BootSourceOverrideTarget":"Pxe"}}' \

-H "Content-Type: application/json" -X PATCH \

http://localhost:8000/redfish/v1/Systems/<uuid>

curl -d '{"Boot":{"BootSourceOverrideTarget":"Hdd"}}' \

(continues on next page)

1.3. Using Redfish emulators 15

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)
-H "Content-Type: application/json" -X PATCH \

http://localhost:8000/redfish/v1/Systems/<uuid>

Systems resource driver: fake

The fake system driver is designed to conduct large-scale testing of Ironic without having a lot of bare
metal machines or being able to create a large number of virtual machines. When the Redfish emulator is
configured with the fake system backend, all operations just return success. Any modifications are done
purely in the local cache. This way, many Ironic operations can be tested at scale without access to a large
computing pool.

System status notifications

The fake driver may need to simulate components that run on the VMs to test an end-to-end deployment.
This requires a hook interface to integrate external components. For instance, when testing Ironic scala-
bility, Ironic needs to communicate with the Ironic Python Agent (IPA). A fake IPA can be implemented
and synchronized with the VM status using this hook, which notifies the fake IPA whenever the VM status
changes.

To enable notifications, set external_notifier to True in the fake System object:

{

"uuid": "7946b59-9e44-4fa7-8e91-f3527a1ef094",

"name": "fake",

"power_state": "Off",

"external_notifier": True,

"nics": [

{

"mac": "00:5c:52:31:3a:9c",

"ip": "172.22.0.100"

}

]

}

After this, whenever the fake driver updates this System object, it will send an HTTP PUT request with
the new system object as JSON data. The endpoint URL can be configured with the parameter EXTER-
NAL_NOTIFICATION_URL.

Filtering by allowed instances

It is not always desirable to manage every accessible virtual machine as a Redfish System, such as when an
OpenStack tenant has many instances which do not represent virtual bare metal. In this case it is possible
to specify a list of UUIDs which are allowed.

$ cat sushy-tools/doc/source/admin/emulator.conf

...

SUSHY_EMULATOR_ALLOWED_INSTANCES = [

"437XR1138R2",

"1",

"529QB9450R6",

(continues on next page)

16 Chapter 1. Documentation

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)
"529QB9451R6",

"529QB9452R6",

"529QB9453R6"

]

...

Managers resource

Managers are emulated based on Systems: each System has a Manager with the same UUID. The first
manager (alphabetically) will pretend to manage all Chassis and potentially other resources.

Managers will be revealed when querying the Managers resource directly, as well as other resources they
manage or have some other relations.

curl http://localhost:8000/redfish/v1/Managers

{

"@odata.type": "#ManagerCollection.ManagerCollection",

"Name": "Manager Collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Managers/58893887-8974-2487-2389-

↪→841168418919"

}

],

"@odata.context": "/redfish/v1/$metadata#ManagerCollection.

↪→ManagerCollection",

"@odata.id": "/redfish/v1/Managers",

"@Redfish.Copyright": "Copyright 2014-2017 Distributed Management Task␣

↪→Force, Inc. (DMTF). For the full DMTF copyright policy, see http://www.

↪→dmtf.org/about/policies/copyright."

Chassis resource

For emulating the Chassis resource, the user can statically configure one or more imaginary chassis. All
existing resources (e.g. Systems, Managers, Drives) will pretend to reside in the first chassis.

SUSHY_EMULATOR_CHASSIS = [

{

"Id": "Chassis",

"Name": "Chassis",

"UUID": "48295861-2522-3561-6729-621118518810"

}

]

By default a single chassis with be configured automatically.

Chassis will be revealed when querying the Chassis resource directly, as well as other resources they manage
or have some other relations.

1.3. Using Redfish emulators 17

Sushy Tools Documentation, Release 1.3.1.dev15

curl http://localhost:8000/redfish/v1/Chassis

{

"@odata.type": "#ChassisCollection.ChassisCollection",

"Name": "Chassis Collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Chassis/48295861-2522-3561-6729-

↪→621118518810"

}

],

"@odata.context": "/redfish/v1/$metadata#ChassisCollection.

↪→ChassisCollection",

"@odata.id": "/redfish/v1/Chassis",

"@Redfish.Copyright": "Copyright 2014-2017 Distributed Management Task␣

↪→Force, Inc. (DMTF). For the full DMTF copyright policy, see http://www.

↪→dmtf.org/about/policies/copyright."

Indicator resource

The IndicatorLED resource is emulated as a persistent emulator database record, observable and manage-
able by a Redfish client.

By default, the Chassis and Systems resources have emulated IndicatorLED sub-resources attached and Lit.

Non-default initial indicator state can optionally be configured on a per-resource basis:

SUSHY_EMULATOR_INDICATOR_LEDS = {

"48295861-2522-3561-6729-621118518810": "Blinking"

}

Indicator LEDs will be revealed when querying any resource having IndicatorLED:

$ curl http://localhost:8000/redfish/v1/Chassis/48295861-2522-3561-6729-

↪→621118518810

{

"@odata.type": "#Chassis.v1_5_0.Chassis",

"Id": "48295861-2522-3561-6729-621118518810",

"Name": "Chassis",

"UUID": "48295861-2522-3561-6729-621118518810",

...

"IndicatorLED": "Lit",

...

}

Redfish client can turn IndicatorLED into a different state:

curl -d '{"IndicatorLED": "Blinking"}' \

-H "Content-Type: application/json" -X PATCH \

http://localhost:8000/redfish/v1/Chassis/48295861-2522-3561-6729-

↪→621118518810

18 Chapter 1. Documentation

Sushy Tools Documentation, Release 1.3.1.dev15

Virtual media resource

The Virtual Media resource is emulated as a persistent emulator database record, observable and manage-
able by a Redfish client.

By default, a VirtualMedia resource includes two emulated removable devices: Cd and Floppy. EachMan-
ager resource gets its own collection of virtual media devices as a VirtualMedia sub-resource.

If the currently used Systems resource emulation driver supports setting the boot image, the VirtualMedia
resource will apply the inserted image onto all the systems being managed by this manager. Setting the
system boot source to Cd and boot mode to Uefi will cause the system to boot from the virtual media
image.

The user can change virtual media devices and their properties through emulator configuration (except for
the OpenStack driver which only supports Cd):

SUSHY_EMULATOR_VMEDIA_DEVICES = {

"Cd": {

"Name": "Virtual CD",

"MediaTypes": [

"CD",

"DVD"

]

},

"Floppy": {

"Name": "Virtual Removable Media",

"MediaTypes": [

"Floppy",

"USBStick"

]

}

}

Virtual Media resource will be revealed when querying System resource:

curl -L http://localhost:8000/redfish/v1/Systems/58893887-8974-2487-2389-

↪→841168418919/VirtualMedia

{

"@odata.type": "#VirtualMediaCollection.VirtualMediaCollection",

"Name": "Virtual Media Services",

"Description": "Redfish-BMC Virtual Media Service Settings",

"Members@odata.count": 2,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/58893887-8974-2487-2389-

↪→841168418919/VirtualMedia/Cd"

},

{

"@odata.id": "/redfish/v1/Systems/58893887-8974-2487-2389-

↪→841168418919/VirtualMedia/Floppy"

}

(continues on next page)

1.3. Using Redfish emulators 19

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)

],

"@odata.context": "/redfish/v1/$metadata#VirtualMediaCollection.

↪→VirtualMediaCollection",

"@odata.id": "/redfish/v1/Systems/58893887-8974-2487-2389-841168418919/

↪→VirtualMedia",

"@Redfish.Copyright": "Copyright 2014-2017 Distributed Management Task␣

↪→Force, Inc. (DMTF). For the full DMTF copyright policy, see http://www.

↪→dmtf.org/about/policies/copyright."

}

Redfish client can insert a HTTP-based image into the virtual device:

curl -d '{"Image": "http://localhost.localdomain/mini.iso", "Inserted":␣

↪→true}' \

-H "Content-Type: application/json" \

-X POST \

http://localhost:8000/redfish/v1/Systems/58893887-8974-2487-2389-

↪→841168418919/VirtualMedia/Cd/Actions/VirtualMedia.InsertMedia

On insert the OpenStack driver will:

• Upload the image directly to glance from the URL (long running)

• Store the URL, image ID and volume ID in server metadata properties sushy-tools-image-url, sushy-
tools-import-image, sushy-tools-volume

• Create and attach a new volume with the same size as the root disk

• Rebuild the server with the image, replacing the contents of the root disk

• Delete the image

Redfish client can eject image from virtual media device:

curl -d '{}' \

-H "Content-Type: application/json" \

-X POST \

http://localhost:8000/redfish/v1/Systems/58893887-8974-2487-2389-

↪→841168418919/VirtualMedia/Cd/Actions/VirtualMedia.EjectMedia

On eject the OpenStack driver will:

• Assume the attached Volume has been rewritten with a new image (an ISO installer or IPA)

• Detach the Volume

• Create an image from the Volume (long running)

• Store the Volume image ID in server metadata property sushy-tools-volume-image

• Rebuild the server with the new image

• Delete the Volume

• Delete the image

20 Chapter 1. Documentation

Sushy Tools Documentation, Release 1.3.1.dev15

Virtual media boot

To boot a system from a virtual media device, the client first needs to figure out whichManager is responsible
for the system of interest:

$ curl http://localhost:8000/redfish/v1/Systems/281c2fc3-dd34-439a-9f0f-

↪→63df45e2c998

{

...

"Links": {

"Chassis": [

],

"ManagedBy": [

{

"@odata.id": "/redfish/v1/Managers/58893887-8974-2487-2389-

↪→841168418919"

}

]

},

...

Exploring the Redfish API links, the client can learn the virtual media devices being offered:

$ curl http://localhost:8000/redfish/v1/Systems/58893887-894-2487-2389-

↪→841168418919/VirtualMedia

...

"Members": [

{

"@odata.id": "/redfish/v1/Systems/58893887-8974-2487-2389-841168418919/

↪→VirtualMedia/Cd"

},

...

Knowing the virtual media device name, the client can check out its present state:

$ curl http://localhost:8000/redfish/v1/Systems/58893887-8974-2487-2389-

↪→841168418919/VirtualMedia/Cd

{

...

"Name": "Virtual CD",

"MediaTypes": [

"CD",

"DVD"

],

"Image": "",

"ImageName": "",

"ConnectedVia": "URI",

"Inserted": false,

"WriteProtected": false,

...

Assuming that the http://localhost/var/tmp/mini.iso URL points to a bootable UEFI or hybrid ISO, the

1.3. Using Redfish emulators 21

Sushy Tools Documentation, Release 1.3.1.dev15

following Redfish REST API call will insert the image into the virtual CD drive:

$ curl -d \

'{"Image":"http:://localhost/var/tmp/mini.iso", "Inserted": true}' \

-H "Content-Type: application/json" \

-X POST \

http://localhost:8000/redfish/v1/Systems/58893887-8974-2487-2389-

↪→841168418919/VirtualMedia/Cd/Actions/VirtualMedia.InsertMedia

Querying again, the emulator should have it in the drive:

$ curl http://localhost:8000/redfish/v1/Systems/58893887-8974-2487-2389-

↪→841168418919/VirtualMedia/Cd

{

...

"Name": "Virtual CD",

"MediaTypes": [

"CD",

"DVD"

],

"Image": "http://localhost/var/tmp/mini.iso",

"ImageName": "mini.iso",

"ConnectedVia": "URI",

"Inserted": true,

"WriteProtected": true,

...

Next, the node needs to be configured to boot from its local CD drive over UEFI:

$ curl -X PATCH -H 'Content-Type: application/json' \

-d '{

"Boot": {

"BootSourceOverrideTarget": "Cd",

"BootSourceOverrideMode": "Uefi",

"BootSourceOverrideEnabled": "Continuous"

}

}' \

http://localhost:8000/redfish/v1/Systems/281c2fc3-dd34-439a-9f0f-

↪→63df45e2c998

Note

With theOpenStack driver the boot source is changed during insert and eject, so settingBootSourceOver-
rideTarget to Cd or Hdd has no effect.

By this point the system will boot off the virtual CD drive when powering it on:

curl -d '{"ResetType":"On"}' \

-H "Content-Type: application/json" -X POST \

http://localhost:8000/redfish/v1/Systems/281c2fc3-dd34-439a-9f0f-

↪→63df45e2c998/Actions/ComputerSystem.Reset

22 Chapter 1. Documentation

Sushy Tools Documentation, Release 1.3.1.dev15

Note

The ISO files to boot from must be UEFI-bootable. libvirtd should be running on the same machine
with sushy-emulator.

Storage resource

For emulating Storage resource for a System of choice, the user can statically configure one or more imag-
inary storage instances along with the corresponding storage controllers which are also imaginary.

The IDs of the imaginary drives associated with a Storage resource can be provided as a list under Drives.

The Storage instances are keyed by the UUIDs of the System they belong to.

SUSHY_EMULATOR_STORAGE = {

"da69abcc-dae0-4913-9a7b-d344043097c0": [

{

"Id": "1",

"Name": "Local Storage Controller",

"StorageControllers": [

{

"MemberId": "0",

"Name": "Contoso Integrated RAID",

"SpeedGbps": 12

}

],

"Drives": [

"32ADF365C6C1B7BD"

]

}

]

}

The Storage resources can be revealed by querying the Storage resource for the corresponding System
directly.

curl http://localhost:8000/redfish/v1/Systems/da69abcc-dae0-4913-9a7b-

↪→d344043097c0/Storage

{

"@odata.type": "#StorageCollection.StorageCollection",

"Name": "Storage Collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/da69abcc-dae0-4913-9a7b-

↪→d344043097c0/Storage/1"

}

],

"Oem": {},

"@odata.context": "/redfish/v1/$metadata#StorageCollection.

↪→StorageCollection",

(continues on next page)

1.3. Using Redfish emulators 23

Sushy Tools Documentation, Release 1.3.1.dev15

(continued from previous page)
"@odata.id": "/redfish/v1/Systems/da69abcc-dae0-4913-9a7b-d344043097c0/

↪→Storage"

}

Drive resource

For emulating the Drive resource, the user can statically configure one or more Drives.

The Drive instances are keyed in a composite manner using (System_UUID, Storage_ID), where Sys-
tem_UUID is the UUID of the System and Storage_ID is the ID of the Storage resource to which that
particular Drive belongs.

SUSHY_EMULATOR_DRIVES = {

("da69abcc-dae0-4913-9a7b-d344043097c0", "1"): [

{

"Id": "32ADF365C6C1B7BD",

"Name": "Drive Sample",

"CapacityBytes": 899527000000,

"Protocol": "SAS"

}

]

}

The Drive resource can be revealed by querying it via the System and the Storage resource it belongs to.

curl http://localhost:8000/redfish/v1/Systems/da69abcc-dae0-4913-9a7b-

↪→d344043097c0/Storage/1/Drives/32ADF365C6C1B7BD

{

...

"Id": "32ADF365C6C1B7BD",

"Name": "Drive Sample",

"Model": "C123",

"Revision": "100A",

"CapacityBytes": 899527000000,

"FailurePredicted": false,

"Protocol": "SAS",

"MediaType": "HDD",

"Manufacturer": "Contoso",

"SerialNumber": "1234570",

...

}

Storage Volume resource

The Volume resource is emulated as a persistent emulator database record, backed by the libvirt virtualiza-
tion backend of the dynamic Redfish emulator.

Only the volumes specified in the config file or created via a POST request are allowed to be emulated upon
by the emulator and appear as libvirt volumes in the libvirt virtualization backend. Volumes other than
these can neither be listed nor deleted.

24 Chapter 1. Documentation

Sushy Tools Documentation, Release 1.3.1.dev15

To allow libvirt volumes to be emulated upon, they need to be specified in the configuration file in the
following format (keyed compositely by the System UUID and the Storage ID):

SUSHY_EMULATOR_VOLUMES = {

('da69abcc-dae0-4913-9a7b-d344043097c0', '1'): [

{

"libvirtPoolName": "sushyPool",

"libvirtVolName": "testVol",

"Id": "1",

"Name": "Sample Volume 1",

"VolumeType": "Mirrored",

"CapacityBytes": 23748

},

{

"libvirtPoolName": "sushyPool",

"libvirtVolName": "testVol1",

"Id": "2",

"Name": "Sample Volume 2",

"VolumeType": "StripedWithParity",

"CapacityBytes": 48395

}

]

}

The Volume resources can be revealed by querying the Volumes resource for the corresponding System
and Storage.

curl http://localhost:8000/redfish/v1/Systems/da69abcc-dae0-4913-9a7b-

↪→d344043097c0/Storage/1/Volumes

{

"@odata.type": "#VolumeCollection.VolumeCollection",

"Name": "Storage Volume Collection",

"Members@odata.count": 2,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/da69abcc-dae0-4913-9a7b-

↪→d344043097c0/Storage/1/Volumes/1"

},

{

"@odata.id": "/redfish/v1/Systems/da69abcc-dae0-4913-9a7b-

↪→d344043097c0/Storage/1/Volumes/2"

}

],

"@odata.context": "/redfish/v1/$metadata#VolumeCollection.

↪→VolumeCollection",

"@odata.id": "/redfish/v1/Systems/da69abcc-dae0-4913-9a7b-d344043097c0/

↪→Storage/1/Volumes",

}

A new volume can also be created in the libvirt backend via a POST request on a Volume Collection:

1.3. Using Redfish emulators 25

Sushy Tools Documentation, Release 1.3.1.dev15

curl -d '{"Name": "SampleVol",\

"VolumeType": "Mirrored",\

"CapacityBytes": 74859}' \

-H "Content-Type: application/json" \

-X POST \

http://localhost:8000/redfish/v1/Systems/da69abcc-dae0-4913-9a7b-

↪→d344043097c0/Storage/1/Volumes

1.4 Contributing
If you would like to contribute to the development of OpenStack, you must follow the steps in this page:

http://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your OpenStack accounts are set up,
you can skip to the development workflow section of this documentation to learn how changes to OpenStack
should be submitted for review via the Gerrit tool:

http://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/sushy

1.4.1 Cloning the sushy-tools repository
If you haven’t already, the sushy-tools source code should be pulled directly from git.

from the directory where you want the source code to reside

git clone https://opendev.org/openstack/sushy-tools

1.4.2 Running the emulators locally
Activate the virtual environment and run the emulator of your choice. For instance, to run the dynamic
emulator:

tox -e venv -- sushy-emulator

For more information on running the emulators, refer to the user docs for the dynamic-emulator and the
static- emulator.

26 Chapter 1. Documentation

http://docs.openstack.org/infra/manual/developers.html
http://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/sushy

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

27

	Documentation
	Installation
	Configuring emulators
	Running emulators in the background
	Using configuration file

	Using Redfish emulators
	Static Redfish BMC
	Virtual Redfish BMC
	Feature sets
	Systems resource
	Systems resource driver: libvirt
	Simple Storage resource
	UEFI boot
	Settable boot image

	Systems resource driver: OpenStack
	Systems resource driver: Ironic
	Systems resource driver: fake
	System status notifications

	Filtering by allowed instances

	Managers resource
	Chassis resource
	Indicator resource
	Virtual media resource
	Virtual media boot

	Storage resource
	Drive resource
	Storage Volume resource

	Contributing
	Cloning the sushy-tools repository
	Running the emulators locally

	Indices and tables

