
python-barbicanclient Documentation
Release 7.2.1.dev1

OpenStack Foundation

Jan 24, 2026

CONTENTS

1 Installation 3

2 User Documentation 5
2.1 CLI Usage . 5
2.2 Authentication . 18
2.3 CLI Authentication . 19
2.4 Client Usage . 21
2.5 Key Manager service (barbican) command-line client 27

3 Contributor Documentation 43
3.1 Contributing . 43
3.2 Writing and Running Barbican Client Tests . 43

4 Reference 47
4.1 Client . 47
4.2 Secrets . 48
4.3 Orders . 52
4.4 Containers . 55
4.5 Certificate Authorities . 59
4.6 ACLs . 60
4.7 Exceptions . 64

Python Module Index 67

Index 69

i

ii

python-barbicanclient Documentation, Release 7.2.1.dev1

This is a client for OpenStack Key Management API (Barbican). Theres a Python API (the barbicanclient
module), and a command-line interface (installed as barbican).

Contents:

CONTENTS 1

python-barbicanclient Documentation, Release 7.2.1.dev1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

At the command line:

$ pip install python-barbicanclient

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv python-barbicanclient
$ pip install python-barbicanclient

3

python-barbicanclient Documentation, Release 7.2.1.dev1

4 Chapter 1. Installation

CHAPTER

TWO

USER DOCUMENTATION

2.1 CLI Usage

usage: barbican [--version] [-v] [--log-file LOG_FILE] [-q] [-h] [--debug]
[--no-auth] [--os-identity-api-version <identity-api-version>]
[--os-auth-url <auth-url>] [--os-username <auth-user-name>]
[--os-user-id <auth-user-id>] [--os-password <auth-password>]
[--os-user-domain-id <auth-user-domain-id>]
[--os-user-domain-name <auth-user-domain-name>]
[--os-tenant-name <auth-tenant-name>]
[--os-tenant-id <tenant-id>]
[--os-project-id <auth-project-id>]
[--os-project-name <auth-project-name>]
[--os-project-domain-id <auth-project-domain-id>]
[--os-project-domain-name <auth-project-domain-name>]
[--os-auth-token <auth-token>]
[--endpoint <barbican-url>] [--insecure]
[--os-cacert <ca-certificate>] [--os-cert <certificate>]
[--os-key <key>] [--timeout <seconds>]

The examples below assume that credentials have been saved to your environment. If you dont have
variables saved to your environment or you wish to use different credentials than those defined, any of
the optional arguments listed above may be passed to Barbican.

Barbican takes a positional argument <entity>, which specifies whether you wish to operate on a secret
or an order.

2.1.1 Secrets

$ barbican secret <action>

A subcommand describing the action to be performed should follow. The subcommands are mostly the
same for secrets and orders, although some optional arguments only apply to one or the other.

Subcommand actions that a user can take for secrets are:

secret consumer Allow operations with secret consumers.
secret delete Delete a secret by providing its URI.
secret get Retrieve a secret by providing its URI.
secret list List secrets.
secret store Store a secret in Barbican.

5

python-barbicanclient Documentation, Release 7.2.1.dev1

Each subcommand takes in a different set of arguments, and the help message varies from one to another.
The help message for get can be seen below.

$ barbican help secret get
usage: barbican secret get [-h] [-f {json,shell,table,value,yaml}] [-c COLUMN]

[--max-width <integer>] [--fit-width]
[--print-empty] [--noindent] [--prefix PREFIX]
[--decrypt | --payload | --file <filename>]
[--payload_content_type PAYLOAD_CONTENT_TYPE]
URI

Retrieve a secret by providing its URI.

positional arguments:
URI The URI reference for the secret.

optional arguments:
-h, --help show this help message and exit
--decrypt, -d if specified, retrieve the unencrypted secret data.
--payload, -p if specified, retrieve the unencrypted secret data.
--file <filename>, -F <filename>

if specified, save the payload to a new file with the
given filename.

--payload_content_type PAYLOAD_CONTENT_TYPE, -t PAYLOAD_CONTENT_TYPE
the content type of the decrypted secret (default:
text/plain).

output formatters:
output formatter options

-f {shell,table,value}, --format {shell,table,value}
the output format, defaults to table

-c COLUMN, --column COLUMN
specify the column(s) to include, can be repeated

table formatter:
--max-width <integer>

Maximum display width, 0 to disable

shell formatter:
a format a UNIX shell can parse (variable="value")

--prefix PREFIX add a prefix to all variable names

Secret Create

$ barbican secret store -n mysecretname -p 'my secret value'

+---------------+---
↪→----------+

(continues on next page)

6 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

| Field | Value ␣
↪→ |
+---------------+---
↪→----------+
| Secret href | http://localhost:9311/v1/secrets/a70a45d8-4076-42a2-b111-
↪→8893d3b92a3e |
| Name | mysecretname ␣
↪→ |
| Created | None ␣
↪→ |
| Status | None ␣
↪→ |
| Content types | None ␣
↪→ |
| Algorithm | aes ␣
↪→ |
| Bit length | 256 ␣
↪→ |
| Mode | cbc ␣
↪→ |
| Expiration | None ␣
↪→ |
+---------------+---
↪→----------+

Instead of using the -p or --payload option with the value of the secret in the command line, the value
of the secret may be stored in a file. For this method the -F <filename> or --file <filename>
option can be used.

Secret Get

$ barbican secret get http://localhost:9311/v1/secrets/a70a45d8-4076-42a2-
↪→b111-8893d3b92a3e

+---------------+---
↪→----------+
| Field | Value ␣
↪→ |
+---------------+---
↪→----------+
| Secret href | http://localhost:9311/v1/secrets/a70a45d8-4076-42a2-b111-
↪→8893d3b92a3e |
| Name | mysecretname ␣
↪→ |
| Created | 2015-04-16 20:36:40.334696+00:00 ␣
↪→ |
| Status | ACTIVE ␣
↪→ |
| Content types | {'default': 'application/octet-stream'} ␣

(continues on next page)

2.1. CLI Usage 7

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

↪→ |
| Algorithm | aes ␣
↪→ |
| Bit length | 256 ␣
↪→ |
| Mode | cbc ␣
↪→ |
| Expiration | None ␣
↪→ |
+---------------+---
↪→----------+

To retrieve only the raw value of the payload we have introduced the -p or --payload option paired with
the -f value cliff formatting option. (The --decrypt option will perform the same action; however, it
will be deprecated)

$ barbican secret get http://localhost:9311/v1/secrets/a70a45d8-4076-42a2-
↪→b111-8893d3b92a3e --payload -f value
my secret value

Instead of using the -p or --payload option with the value of the secret returned to stdout, the value of
the secret may be written to a file. For this method the -F <filename> or --file <filename> option
can be used.

Secret Delete

If a secret to be deleted has at least one consumer, the secret can only be deleted after removing all
consumers, or by using the force parameter

$ barbican secret delete http://localhost:9311/v1/secrets/a70a45d8-4076-42a2-
↪→b111-8893d3b92a3e

$ barbican secret delete http://localhost:9311/v1/secrets/0207414d-c23b-47f6-
↪→9cef-f44e907ac7a8
Secret has consumers! Remove them first or use the force parameter to delete␣
↪→it.

$ barbican secret delete --force http://localhost:9311/v1/secrets/0207414d-
↪→c23b-47f6-9cef-f44e907ac7a8

Secret Update

$ barbican secret update http://localhost:9311/v1/secrets/a70a45d8-4076-42a2-
↪→b111-8893d3b92a3e ``my_payload``

In order for a secret to be updated it must have been created without a payload. my_payload will be
added as the secrets payload.

8 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

Secret List

$ barbican secret list

+---+-----
↪→-+----------------------------------+--------+------------------------------
↪→-----------+-----------+------------+------+------------+
| Secret href |␣
↪→Name | Created | Status | Content types ␣
↪→ | Algorithm | Bit length | Mode | Expiration |
+---+-----
↪→-+----------------------------------+--------+------------------------------
↪→-----------+-----------+------------+------+------------+
| http://localhost:9311/v1/secrets/bb3d8c20-8ea5-4bfc-9645-c8da79c8b371 |␣
↪→None | 2015-04-15 20:37:37.501475+00:00 | ACTIVE | {'default': 'application/
↪→octet-stream'} | aes | 256 | cbc | None |
+---+-----
↪→-+----------------------------------+--------+------------------------------
↪→-----------+-----------+------------+------+------------+

2.1.2 Secret Consumers

$ barbican secret consumer <action>

A subcommand describing the action to be performed should follow. The subcommands are mostly the
same as for container consumers, although some optional arguments might not apply.

For all subcommands, the secret URI must be specified. Subcommand actions that a user can take for
secret consumers are:

secret consumer create Create a secret consumer.
secret consumer delete Delete a secret consumer
secret consumer list List consumers of a secret.

The help message for list can be seen below.

$ barbican help secret consumer list
usage: barbican secret consumer list [-h] [-f {csv,json,table,value,yaml}] [-
↪→c COLUMN]

[--quote {all,minimal,none,nonnumeric}]␣
↪→[--noindent]

[--max-width <integer>] [--fit-width] [--
↪→print-empty]

[--sort-column SORT_COLUMN]
[--sort-ascending | --sort-descending] [-

↪→-limit LIMIT]
[--offset OFFSET]
URI

List consumers of a secret.

(continues on next page)

2.1. CLI Usage 9

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

positional arguments:
URI The URI reference for the secret

optional arguments:
-h, --help show this help message and exit
--limit LIMIT, -l LIMIT

specify the limit to the number of items to list per page
(default: 10; maximum: 100)

--offset OFFSET, -o OFFSET
specify the page offset (default: 0)

output formatters:
output formatter options

-f {csv,json,table,value,yaml}, --format {csv,json,table,value,yaml}
the output format, defaults to table

-c COLUMN, --column COLUMN
specify the column(s) to include, can be repeated to show␣

↪→multiple columns
--sort-column SORT_COLUMN

specify the column(s) to sort the data (columns specified␣
↪→first have a

priority, non-existing columns are ignored), can be␣
↪→repeated
--sort-ascending sort the column(s) in ascending order
--sort-descending sort the column(s) in descending order

CSV Formatter:
--quote {all,minimal,none,nonnumeric}

when to include quotes, defaults to nonnumeric

json formatter:
--noindent whether to disable indenting the JSON

table formatter:
--max-width <integer>

Maximum display width, <1 to disable. You can also use␣
↪→the CLIFF_MAX_TERM_WIDTH

environment variable, but the parameter takes precedence.
--fit-width Fit the table to the display width. Implied if --max-
↪→width greater than 0.

Set the environment variable CLIFF_FIT_WIDTH=1 to always␣
↪→enable
--print-empty Print empty table if there is no data to show.

10 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

2.1.3 Secret Consumer Create

$ barbican secret consumer create --service-type-name image \
--resource-type image \
--resource-id 123e4567-e89b-12d3-a456-

↪→426614174002 \
0207414d-c23b-47f6-9cef-f44e907ac7a8

Consumers are uniquely defined by the three attributes (service, resource_type, resource_id). It is not
possible to add a second consumer with exactly the same attributes. The CLI will not throw any error
message If the creation of a new consumer with all the three same attributes of an existent consumer is
attempted. However, the new consumer will not be actually created.

2.1.4 Secret Consumer List

$ barbican secret consumer list 0207414d-c23b-47f6-9cef-f44e907ac7a8
+--------------+---------------+--------------------------------------+-------
↪→--------------+
| Service | Resource type | Resource id |␣
↪→Created |
+--------------+---------------+--------------------------------------+-------
↪→--------------+
| image | image | 123e4567-e89b-12d3-a456-426614174002 | 2023-
↪→01-30T15:54:10 |
+--------------+---------------+--------------------------------------+-------
↪→--------------+

2.1.5 Secret Consumer Delete

$ barbican secret consumer delete --service-type-name image \
--resource-type image \
--resource-id 123e4567-e89b-12d3-a456-

↪→426614174002 \
0207414d-c23b-47f6-9cef-f44e907ac7a8

To delete a secret consumer, all three attributes must be provided. Attempting to delete a non-existing
consumer will cause the CLI to throw the following error message: Not Found: Consumer not
found.

2.1.6 ACLS

$ barbican acl <action>

A subcommand describing the action to be performed should follow. The subcommands are mostly the
same for secret and container ACLs.

Subcommand actions that a user can take for ACLs are:

acl delete Delete ACLs for a secret or container as identified by␣
↪→its href.
acl get Retrieve ACLs for a secret or container by providing its␣

(continues on next page)

2.1. CLI Usage 11

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

↪→href.
acl submit Submit ACL on a secret or container as identified by its␣
↪→href.
acl user add Add ACL users to a secret or container as identified by␣
↪→its href.
acl user remove Remove ACL users from a secret or container as identified␣
↪→by its href.

ACL get or delete subcommand, only takes secret or container href. All other ACL commands take
additional arguments to specify ACL settings data. Please see help message for both cases of argument.
Either secret ref or container ref is required for all of acl actions.

$ barbican help acl get
usage: barbican acl get [-h] [-f {csv,table,value}] [-c COLUMN]

[--max-width <integer>]
[--quote {all,minimal,none,nonnumeric}]
URI

Retrieve ACLs for a secret or container by providing its href.

positional arguments:
URI The URI reference for the secret or container.

optional arguments:
-h, --help show this help message and exit

output formatters:
output formatter options

-f {csv,table,value}, --format {csv,table,value}
the output format, defaults to table

-c COLUMN, --column COLUMN
specify the column(s) to include, can be repeated

table formatter:
--max-width <integer>

Maximum display width, 0 to disable

CSV Formatter:
--quote {all,minimal,none,nonnumeric}

when to include quotes, defaults to nonnumeric

Following is snippet of related command line options for an ACL modify action e.g. submit, add or
remove.

$ barbican help acl submit/user add/user remove
usage: barbican acl submit [-h] [-f {csv,table,value}] [-c COLUMN]

[--max-width <integer>]
[--quote {all,minimal,none,nonnumeric}]
[--user [USER]]

(continues on next page)

12 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

[--project-access | --no-project-access]
[--operation-type {read}]
URI

....

....

positional arguments:
URI The URI reference for the secret or container.

optional arguments:
-h, --help show this help message and exit
--user [USER], -u [USER]

Keystone userid(s) for ACL.
--project-access Flag to enable project access behavior.
--no-project-access Flag to disable project access behavior.
--operation-type {read}, -o {read}

Type of Barbican operation ACL is set for
....
....

Note

Default for operation-type argument is read as thats the only operation currently supported by
Barbican ACL API. So this argument can be skipped in CLI call.

ACLs Get

To get complete ACL setting for a secret or container, use this ACL action.

$ barbican acl get http://localhost:9311/v1/secrets/7776adb8-e865-413c-8ccc-
↪→4f09c3fe0213

+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→-------------------------+
| Operation Type | Project Access | Users ␣
↪→ | Created | Updated␣
↪→ | Secret ACL Ref ␣
↪→ |
+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→-------------------------+
| read | False | ['721e27b8505b499e8ab3b38154705b9e',
↪→'2d0ee7c681cc4549b6d76769c320d91f'] | 2015-07-21 17:52:01.729370+00:00 |␣
↪→2015-07-28 02:08:02.455276+00:00 | http://localhost:9311/v1/secrets/
↪→7776adb8-e865-413c-8ccc-4f09c3fe0213/acl |

(continues on next page)

2.1. CLI Usage 13

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→-------------------------+

$ barbican acl get http://localhost:9311/v1/containers/83c302c7-86fe-4f07-
↪→a277-c4962f121f19

+----------------+----------------+--------------------------------------+----
↪→------------------------------+----------------------------------+----------
↪→--+
| Operation Type | Project Access | Users |␣
↪→Created | Updated |␣
↪→Container ACL Ref ␣
↪→ |
+----------------+----------------+--------------------------------------+----
↪→------------------------------+----------------------------------+----------
↪→--+
| read | False | ['2d0ee7c681cc4549b6d76769c320d91f'] |␣
↪→2015-07-28 01:36:55.791381+00:00 | 2015-07-28 02:05:41.175386+00:00 | http:/
↪→/localhost:9311/v1/containers/83c302c7-86fe-4f07-a277-c4962f121f19/acl |
+----------------+----------------+--------------------------------------+----
↪→------------------------------+----------------------------------+----------
↪→--+

Secret or container ref is required. If missing, it will result in error.

$ barbican acl get

usage: barbican acl get [-h] [-f {csv,table,value}] [-c COLUMN]
[--max-width <integer>]
[--quote {all,minimal,none,nonnumeric}]
URI

barbican acl get: error: too few arguments

ACLs Submit

To submit complete ACL setting for a secret or container, use this ACL action.

$ barbican acl submit --user 2d0ee7c681cc4549b6d76769c320d91f --user␣
↪→721e27b8505b499e8ab3b38154705b9e http://localhost:9311/v1/secrets/7776adb8-
↪→e865-413c-8ccc-4f09c3fe0213

+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→-------------------------+
| Operation Type | Project Access | Users ␣
↪→ | Created | Updated␣
↪→ | Secret ACL Ref ␣

(continues on next page)

14 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

↪→ |
+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→-------------------------+
| read | True | ['721e27b8505b499e8ab3b38154705b9e',
↪→'2d0ee7c681cc4549b6d76769c320d91f'] | 2015-07-21 17:52:01.729370+00:00 |␣
↪→2015-08-12 09:53:20.225971+00:00 | http://localhost:9311/v1/secrets/
↪→7776adb8-e865-413c-8ccc-4f09c3fe0213/acl |
+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→-------------------------+

If user argument is missing or has no value, then empty list is passed for users and this approach can be
used to remove existing ACL users. If project access argument is not provided, then by default project
access is enabled. To disable project access behavior, just pass no-project-access argument without
any value.

$ barbican acl submit --user --no-project-access http://localhost:9311/v1/
↪→secrets/7776adb8-e865-413c-8ccc-4f09c3fe0213

+----------------+----------------+-------+----------------------------------
↪→+----------------------------------+--
↪→-----------------------------------+
| Operation Type | Project Access | Users | Created ␣
↪→| Updated | Secret ACL Ref ␣
↪→ |
+----------------+----------------+-------+----------------------------------
↪→+----------------------------------+--
↪→-----------------------------------+
| read | False | [] | 2015-07-21 17:52:01.729370+00:00␣
↪→| 2015-08-12 09:55:23.043433+00:00 | http://localhost:9311/v1/secrets/
↪→7776adb8-e865-413c-8ccc-4f09c3fe0213/acl |
+----------------+----------------+-------+----------------------------------
↪→+----------------------------------+--
↪→-----------------------------------+

$ barbican acl submit --user 2d0ee7c681cc4549b6d76769c320d91f --no-project-
↪→access http://localhost:9311/v1/containers/83c302c7-86fe-4f07-a277-
↪→c4962f121f19

+----------------+----------------+--------------------------------------+----
↪→------------------------------+----------------------------------+----------
↪→--+
| Operation Type | Project Access | Users |␣
↪→Created | Updated |␣
↪→Container ACL Ref ␣
↪→ |
+----------------+----------------+--------------------------------------+----

(continues on next page)

2.1. CLI Usage 15

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

↪→------------------------------+----------------------------------+----------
↪→--+
| read | False | ['2d0ee7c681cc4549b6d76769c320d91f'] |␣
↪→2015-07-29 22:01:00.878270+00:00 | 2015-08-19 05:56:09.930302+00:00 | http:/
↪→/localhost:9311/v1/containers/83c302c7-86fe-4f07-a277-c4962f121f19/acl |
+----------------+----------------+--------------------------------------+----
↪→------------------------------+----------------------------------+----------
↪→--+

Following error is returned when both mutually exclusive flags are passed.

$ barbican acl submit --project-access --no-project-access http://
↪→localhost:9311/v1/secrets/7776adb8-e865-413c-8ccc-4f09c3fe0213
usage: barbican acl submit [-h] [-f {csv,table,value}] [-c COLUMN]

[--max-width <integer>]
[--quote {all,minimal,none,nonnumeric}]
[--user [USER]]
[--project-access | --no-project-access]
[--operation-type {read}]
URI

barbican acl submit: error: argument --no-project-access: not allowed with␣
↪→argument --project-access

ACL Add User(s)

To add ACL users for a secret or container, use this ACL action.

If user argument is missing or has no value, then no change is made in ACL users. If project access
argument is not provided, then no change is made in existing project access behavior flag.

$ barbican acl user add --user c1d20e4b7e7d4917aee6f0832152269b http://
↪→localhost:9311/v1/containers/83c302c7-86fe-4f07-a277-c4962f121f19

+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→----------------------------+
| Operation Type | Project Access | Users ␣
↪→ | Created | Updated␣
↪→ | Container ACL Ref ␣
↪→ |
+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→----------------------------+
| read | False | ['2d0ee7c681cc4549b6d76769c320d91f',
↪→'c1d20e4b7e7d4917aee6f0832152269b'] | 2015-07-29 22:01:00.878270+00:00 |␣
↪→2015-08-12 10:08:19.129370+00:00 | http://localhost:9311/v1/containers/
↪→83c302c7-86fe-4f07-a277-c4962f121f19/acl |
+----------------+----------------+---

(continues on next page)

16 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→----------------------------+

Added 2 users for secret (084c2098-66db-4401-8348-d969be0eddaa) earlier via␣
↪→set action.
$ barbican acl user add --user --no-project-access http://localhost:9311/v1/
↪→secrets/084c2098-66db-4401-8348-d969be0eddaa

+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→-------------------------+
| Operation Type | Project Access | Users ␣
↪→ | Created | Updated␣
↪→ | Secret ACL Ref ␣
↪→ |
+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→-------------------------+
| read | False | ['721e27b8505b499e8ab3b38154705b9e',
↪→'2d0ee7c681cc4549b6d76769c320d91f'] | 2015-08-12 10:09:27.564371+00:00 |␣
↪→2015-08-12 10:11:09.749980+00:00 | http://localhost:9311/v1/secrets/
↪→084c2098-66db-4401-8348-d969be0eddaa/acl |
+----------------+----------------+---
↪→-------------------------------+----------------------------------+---------
↪→-------------------------+--
↪→-------------------------+

ACL Remove User(s)

To remove ACL users for a secret or container, use this ACL action.

If user argument is missing or has no value, then no change is made in ACL users. If project access
argument is not provided, then no change is made in existing project access behavior flag.

If provided userid(s) does not exist in ACL, it is simply ignored and only existing userid(s) are removed
from ACL.

$ barbican acl user remove --user 2d0ee7c681cc4549b6d76769c320d91f --user␣
↪→invalid_user_id http://localhost:9311/v1/secrets/084c2098-66db-4401-8348-
↪→d969be0eddaa

+----------------+----------------+--------------------------------------+----
↪→------------------------------+----------------------------------+----------
↪→---+
| Operation Type | Project Access | Users |␣
↪→Created | Updated |␣
↪→Secret ACL Ref |

(continues on next page)

2.1. CLI Usage 17

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

+----------------+----------------+--------------------------------------+----
↪→------------------------------+----------------------------------+----------
↪→---+
| read | False | ['721e27b8505b499e8ab3b38154705b9e'] |␣
↪→2015-08-12 10:09:27.564371+00:00 | 2015-08-12 10:12:21.842888+00:00 | http:/
↪→/localhost:9311/v1/secrets/084c2098-66db-4401-8348-d969be0eddaa/acl |
+----------------+----------------+--------------------------------------+----
↪→------------------------------+----------------------------------+----------
↪→---+

ACLs Delete

To delete existing ACL setting for a secret or container, use this ACL action.

$ barbican acl delete http://localhost:9311/v1/secrets/084c2098-66db-4401-
↪→8348-d969be0eddaa

$ barbican acl get http://localhost:9311/v1/secrets/084c2098-66db-4401-8348-
↪→d969be0eddaa

+----------------+----------------+-------+---------+---------+---------------
↪→--+
| Operation Type | Project Access | Users | Created | Updated | Secret ACL␣
↪→Ref |
+----------------+----------------+-------+---------+---------+---------------
↪→--+
| read | True | [] | None | None | http://
↪→localhost:9311/v1/secrets/084c2098-66db-4401-8348-d969be0eddaa/acl |
+----------------+----------------+-------+---------+---------+---------------
↪→--+

2.2 Authentication

2.2.1 Keystone Authentication
The client defers authentication to Keystone Sessions, which provide several authentication plugins in the
keystoneauth1.identity namespace. Below we give examples of the most commonly used auth plugins.

Keystone API Version 3 Authentication

Authentication using Keystone API Version 3 can be achieved using the key-
stoneauth1.identity.V3Password auth plugin.

Example:

from barbicanclient import client
from keystoneauth1 import identity
from keystoneauth1 import session

auth = identity.V3Password(auth_url='http://localhost:5000/v3',
(continues on next page)

18 Chapter 2. User Documentation

https://docs.openstack.org/keystoneauth/latest/using-sessions.html

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

username='admin_user',
user_domain_name='Default',
password='password',
project_name='demo',
project_domain_name='Default')

sess = session.Session(auth=auth)
barbican = client.Client(session=sess)

Keystone API Version 2 Authentication

Authentication using Keystone API Version 2 can be achieved using the key-
stoneauth1.identity.V2Password auth plugin.

Example:

from barbicanclient import client
from keystoneauth1 import identity
from keystoneauth1 import session

auth = identity.V2Password(auth_url='http://localhost:5000/v2.0',
username='admin_user',
password='password',
tenant_name='demo')

sess = session.Session(auth=auth)
barbican = client.Client(session=sess)

2.2.2 Unauthenticated Context
Sometimes it may be useful to work with the client in an unauthenticated context, for example when
using a development instance of Barbican that is not yet configured to use Keystone for authentication.
In this case, the Barbican Service endpoint must be provided, in addition to the Project ID that will be
used for context (i.e. the project that owns the secrets youll be working with).

Example:

from barbicanclient import client

barbican = client.Client(endpoint='http://localhost:9311',
project_id='123456')

2.3 CLI Authentication

2.3.1 Keystone V3 Authentication
Barbican can be configured to use Keystone for authentication. The users credentials can be passed to
Barbican via arguments.

$ barbican --os-auth-url <keystone-v3-url> --os-project-domain-id \
<domain id> --os-user-domain-id <user domain id> --os-username <username> \
--os-password <password> --os-project-name <project-name> secret list

2.3. CLI Authentication 19

python-barbicanclient Documentation, Release 7.2.1.dev1

This can become annoying and tedious, so authentication via Keystone can also be configured by setting
environment variables. Barbican uses the same env variables as python-keystoneclient so if you already
have keystone client configured you can skip this section.

An example clientrc file is provided in the main python-barbicanclient directory.

export OS_PROJECT_NAME=<YourProjectName>

Either Project Domain ID or Project Domain Name is required
export OS_PROJECT_DOMAIN_ID=<YourProjectDomainID>
export OS_PROJECT_DOMAIN_NAME=<YourProjectDomainName>

Either User Domain ID or User Domain Name is required
export OS_USER_DOMAIN_ID=<YourUserDomainID>
export OS_USER_DOMAIN_NAME=<YourUserDomainName>

Either User ID or Username can be used
export OS_USER_ID =<YourUserID>
export OS_USERNAME=<YourUserName>

export OS_PASSWORD=<YourPassword>

OS_AUTH_URL should be your location of Keystone
Barbican Client defaults to Keystone V3
export OS_AUTH_URL="<YourAuthURL>:5000/v3/"
export BARBICAN_ENDPOINT="<YourBarbicanEndpoint>:9311"

Make any appropriate changes to this file.

You will need to source it into your environment on each load:

source ~/clientrc

If you would like, you can configure your bash to load the variables on each login:

echo "source ~/clientrc" >> ~/.bashrc

2.3.2 Keystone Token Authentication
Barbican can be configured to use Keystone tokens for authentication. The users credentials can be passed
to Barbican via arguments.

$ barbican --os-auth-url <auth_endpoint> --os-auth-token <auth_token> \
--os-project-id <project_id> secret list

Much like normal password authentication you can specify these values via environmental variables.
Refer to Keystone V3 authentication for more information.

2.3.3 No Auth Mode
When working with a Barbican instance that does not use Keystone authentication (e.g. during develop-
ment) you can use the --no-auth option. If you do this, youll have to specify the Barbican endpoint and
project ID --os-project-id. This is because Barbican normally gets the endpoint and tenant ID from
Keystone.

20 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

2.4 Client Usage
To use barbicanclient, you must first create an instance of the barbicanclient.client.Client class.

The client uses Keystone Sessions for both authentication and for handling HTTP requests. You can
provide authentication credentials to the client by creating a Keystone Session with the appropriate auth
plugin and then passing that session to the new Client.

See Authentication for more details.

Example:

from barbicanclient import client

barbican = client.Client(...)

The client object has different attributes that can be used to interact with the Barbican service. Each
attribute represents an entity in the Barbican service: Secrets, Orders and Containers.

2.4.1 Secrets
Secrets represent keys, credentials, and other sensitive data that is stored by the Barbican service. To store
or retrieve a secret in the Barbican service you should use the different methods of the barbicanclient.
secrets.SecretManager class that is exposed as the secrets attribute of the Client.

Example:

Store a random text password in Barbican

from barbicanclient import client
import random
import string

def random_password(length):
sys_random = random.SystemRandom()
return ''.join(

sys_random.choice(string.ascii_letters + string.digits) for _
↪→ in range(length)

)

barbican = client.Client(...)

my_secret = barbican.secrets.create()
my_secret.name = 'Random plain text password'
my_secret.payload = random_password(24)

my_secret_ref = my_secret.store()

The secret reference returned by barbicanclient.secrets.SecretManager.store() can later be
used to retrieve the secret data from barbican.

Example:

2.4. Client Usage 21

python-barbicanclient Documentation, Release 7.2.1.dev1

Retrieve Secret from secret reference

retrieved_secret = barbican.secrets.get(my_secret_ref)
my_password = retrieved_secret.payload

Secret Content Types

The Barbican service defines a Secret Content Type. The client will choose the correct Content Type
based on the type of the data that is set on the Secret.payload property. The following table summarizes
the mapping of Python types to Barbican Secret Content Types:

Python 3 Type Barbican Content Type
bytes application/octet-stream
str text/plain

Warning

Previous versions of python-barbicanclient allowed the user to set the payload_content_type and pay-
load_content_encoding properties for any secret. This can lead to unexpected behavior such as chang-
ing a unicode string back to a byte string in Python 2, and dropping the base64 encoding of a binary
secret as in Launchpad Bug #1419166. Because of this, manually setting the payload_content_type
and the payload_content_encoding has been deprecated.

2.4.2 Orders
Orders are used to request secret material to be created by the Barbican service. Submitting an order
will result in a Secret being created on your behalf. The Secret can then be used like any Secret you may
have uploaded yourself. Orders should be created using the factory methods in the barbicanclient.
orders.OrderManager instance in the orders attribute of the Client.

Example:

Submit an order to generate a random encryption key

from barbicanclient import client

barbican = client.Client(...)

my_order = barbican.orders.create_key()
my_order.algorithm = 'AES'
my_order.mode = 'CBC'
my_order.bit_length = 256

my_order_ref = my_order.submit()

The order reference returned by barbicanclient.orders.Order.submit() can later be used to re-
trieve the order from Barbican.

Example:

22 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

Retrieve Order from order reference

retrieved_order = barbican.orders.get(my_order_ref)

Once your order has been processed by Barbican, the order status will be set to ACTIVE. An active order
will contain the reference to the requested secret (or container).

Example:

Retrieve Encryption Key generated by the above KeyOrder

generated_secret = barbican.secrets.get(retrieved_order.secret_ref)
key = generated_secret.payload

Currently the client can submit barbicanclient.orders.KeyOrder orders for Keys suitable for sym-
metric encryption, and barbicanclient.orders.AsymmetricOrder for Asymmetric keys such as
RSA keys.

2.4.3 Containers
Containers can be either arbitrary groupings of Secrets or a strict grouping of Secrets, such as the Public
and Private keys of an RSA keypair.

Containers should be managed using the barbicanclient.containers.ContainerManager in-
stance in the containers attribute of the Client

Example:

Add the Secrets created above to a container

my_container = barbican.containers.create()

my_container.add('Retrieved Secret', retrieved_secret)
my_container.add('Generated Secret', generated_secret)

my_container_ref = my_container.store()

The container reference returned by barbicanclient.containers.Container.store() can later
be used to retrieve the container from Barbican.

Example:

Retrieve container from Barbican

retrieved_container = barbican.containers.get(my_container_ref)

2.4.4 Secret Consumers
Secret consumers are represented by three attributes: service, resource type and resource id. Callers can
register secret consumers to indicate that they are using a secret. For instance, in the example below,
the caller creates a secret consumer to indicate that the created secret is being used to encrypt a specific
Glance image.

2.4. Client Usage 23

python-barbicanclient Documentation, Release 7.2.1.dev1

Secret consumers should be managed using the barbicanclient.secrets.SecretManager instance
in the secrets attribute of the Client and by the corresponding register_consumer, remove_consumer and
list_consumers methods.

Example:

Creating a secret and adding a consumer to it

secret = barbican.secrets.create(name='image encryption key',
payload='encryption_key')

secret.store()

barbican.secrets.register_consumer(
secret.secret_ref,
service="image",
resource_type="image",
resource_id="123e4567-e89b-12d3-a456-426614174002"

)

Listing all the secret's consumers

consumers = barbican.secrets.list_consumers(secret.secret_ref)
for consumer in consumers:

print(f"Service: {consumer['service']}\t"
f"Resource Type: {consumer['resource_type']}\t"
f"Resource id: {consumer['resource_id']}")

Removing the previously created consumer

barbican.secrets.remove_consumer(
secret.secret_ref,
service="image",
resource_type="image",
resource_id="123e4567-e89b-12d3-a456-426614174002"

)

2.4.5 ACLs
Access Control List (ACL) feature in Barbican provides user level access control for secrets and contain-
ers. By default Barbican manages access to its resources (secrets, containers) on a per project level and
authorization is granted based on the roles a user has in that project.

ACLs should be managed using the barbicanclient.acls.ACLManager instance in the acls attribute
of the Client.

Example:

Submits ACLs on an existing Secret with URI as 'secret_ref'

create ACL entity object with needed settings
acl_entity = barbican.acls.create(entity_ref=secret_ref, users=[u1,␣
↪→u2],

(continues on next page)

24 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

project_access=False)

acl_ref = acl_entity.submit() # submits ACL setting to server at␣
↪→this point.

The secret or container URI can be used to read all of its ACL setting. Returned value is instance of either
barbicanclient.acls.SecretACL or barbicanclient.acls.ContainerACL. Refer to respective
class for its available APIs.

Example:

Get ACL entity for a Secret
Returned entity will be either SecretACL or ContainerACL.
This entity has ACL settings per operation type (e.g. 'read')

secret_acl = barbican.acls.get(secret_ref)

To retrieve (load) ACL using existing ACL entity e.g. container_acl
container_acl.load_acls_data()

ACLs setting can also be retrieved directly from secret or container entity. Its data is lazy loaded i.e.
related ACL settings are not read till acls attribute is accessed on secret or container entity.

Example:

Get secret entity for a given ref
secret = barbican.secrets.get(secret_ref)

To get project access flag or users for 'read' operation
project_access_flag = secret.acls.read.project_access
read_acl_users = secret.acls.read.users

Get container entity for a given ref
container = barbican.containers.get(container_ref)

To get project access flag or users for 'read' operation
project_access_flag = container.acls.read.project_access
read_acl_users = container.acls.read.users

If need to add users to existing read ACL settings on a secret or container, above mentioned get and
submit methods can be used.

Example:

Every Barbican secret and container has default ACL setting which
reflects default project access behavior.

ACL settings is modified via submit operation on ACL entity.

provide users to be added as list.
add_users = ['user1', 'user2', 'users3']

(continues on next page)

2.4. Client Usage 25

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

Case 1 - Add users to 'read' operation ACL setting
--

Get ACL entity from server
acl_entity = barbican.acls.get(entity_ref=secret_ref)

add new users to existing users for 'read' operation
acl_entity.read.users.extend(add_users)
OR
acl_entity.get('read').users.extend(add_users)

acl_ref = acl_entity.submit() # here submits ACL changes to server.

Case 2 - Add same users to ACL settings for each operation type

Get ACL entity from server
acl_entity = barbican.acls.get(entity_ref=secret_ref)

Go through each operation ACL setting and add users to existing␣
↪→list
for op_acl in acl_entity.operation_acls

op_acl.users.extend(add_users)

acl_ref = acl_entity.submit() # here submits ACL changes to server.

If need to remove some users from existing ACL settings on a secret or container, similar approach can
be used as mentioned above for add example.

Example:

provide users to be removed as list.
remove_users = ['user1', 'user2', 'users3']

Case 1 - Remove users from 'read' operation ACL setting

Get ACL entity from server
acl_entity = barbican.acls.get(entity_ref=container_ref)

existing_users = acl_entity.read.users
OR
existing users = acl_entity.get('read').users

remove matching users from existing users list
updated_users = set(existing_users).difference(remove_users)

set back updated users to operation specific acl setting
acl_entity.read.users = updated_users

(continues on next page)

26 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

OR
acl_entity.get('read').users = updated_users

acl_ref = acl_entity.submit() # here submits ACL changes to server.

Case 2 - Remove same users from ACL settings for each operation␣
↪→type

↪→-

Get ACL from server
acl_entity = barbican.acls.get(secret_ref)

Go through each operation ACL setting and remove users from␣
↪→existing list
for op_acl in acl_entity.operation_acls

existing_users = op_acl.users

remove matching users from existing users list
updated_users = set(existing_users).difference(remove_users)

set back updated users to operation specific acl setting
op_acl.users = updated_users

acl_ref = acl_entity.submit() # here submits ACL changes to server.

If need to unset or delete ACL settings on a secret or container, barbicanclient.acls.SecretACL.
remove() or barbicanclient.acls.ContainerACL.remove() can be used.

Example:

create ACL entity object with secret or container ref
blank_acl_entity = barbican.acls.create(entity_ref=secret_ref)

removes all ACL settings for the secret on server
blank_acl_entity.remove()

To remove 'read' operation specific ACL setting
acl_entity = barbican.acls.get(entity_ref=secret_ref)
acl_entity.read.remove()
OR
acl_entity.get('read').remove()

2.5 Key Manager service (barbican) command-line client
The barbican client is the command-line interface (CLI) for the Key Manager service (barbican) API and
its extensions.

This chapter documents barbican version 4.3.0.

For help on a specific barbican command, enter:

2.5. Key Manager service (barbican) command-line client 27

python-barbicanclient Documentation, Release 7.2.1.dev1

$ barbican help COMMAND

2.5.1 barbican usage

usage: barbican [--version] [-v | -q] [--log-file LOG_FILE] [-h] [--debug]
[--no-auth] [--os-identity-api-version <identity-api-version>]
[--os-auth-url <auth-url>] [--os-username <auth-user-name>]
[--os-user-id <auth-user-id>] [--os-password <auth-password>]
[--os-user-domain-id <auth-user-domain-id>]
[--os-user-domain-name <auth-user-domain-name>]
[--os-tenant-name <auth-tenant-name>]
[--os-tenant-id <tenant-id>]
[--os-project-id <auth-project-id>]
[--os-project-name <auth-project-name>]
[--os-project-domain-id <auth-project-domain-id>]
[--os-project-domain-name <auth-project-domain-name>]
[--os-auth-token <auth-token>] [--endpoint <barbican-url>]
[--interface <barbican-interface>]
[--service-type <barbican-service-type>]
[--service-name <barbican-service-name>]
[--region-name <barbican-region-name>]
[--barbican-api-version <barbican-api-version>] [--insecure]
[--os-cacert <ca-certificate>] [--os-cert <certificate>]
[--os-key <key>] [--timeout <seconds>] [--collect-timing]

2.5.2 barbican optional arguments

--version
show programs version number and exit

-v, --verbose
Increase verbosity of output. Can be repeated.

-q, --quiet
Suppress output except warnings and errors.

--log-file LOG_FILE
Specify a file to log output. Disabled by default.

-h, --help
Show help message and exit.

--debug
Show tracebacks on errors.

--no-auth, -N
Do not use authentication.

--os-identity-api-version <identity-api-version>
Specify Identity API version to use. Defaults to env[OS_IDENTITY_API_VERSION] or 3.

--os-auth-url <auth-url>, -A <auth-url>
Defaults to env[OS_AUTH_URL].

28 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

--os-username <auth-user-name>, -U <auth-user-name>
Defaults to env[OS_USERNAME].

--os-user-id <auth-user-id>
Defaults to env[OS_USER_ID].

--os-password <auth-password>, -P <auth-password>
Defaults to env[OS_PASSWORD].

--os-user-domain-id <auth-user-domain-id>
Defaults to env[OS_USER_DOMAIN_ID].

--os-user-domain-name <auth-user-domain-name>
Defaults to env[OS_USER_DOMAIN_NAME].

--os-tenant-name <auth-tenant-name>, -T <auth-tenant-name>
Defaults to env[OS_TENANT_NAME].

--os-tenant-id <tenant-id>, -I <tenant-id>
Defaults to env[OS_TENANT_ID].

--os-project-id <auth-project-id>
Another way to specify tenant ID. This option is mutually exclusive with os-tenant-id. Defaults to
env[OS_PROJECT_ID].

--os-project-name <auth-project-name>
Another way to specify tenant name. This option is mutually exclusive with os-tenant-name. De-
faults to env[OS_PROJECT_NAME].

--os-project-domain-id <auth-project-domain-id>
Defaults to env[OS_PROJECT_DOMAIN_ID].

--os-project-domain-name <auth-project-domain-name>
Defaults to env[OS_PROJECT_DOMAIN_NAME].

--os-auth-token <auth-token>
Defaults to env[OS_AUTH_TOKEN].

--endpoint <barbican-url>, -E <barbican-url>
Defaults to env[BARBICAN_ENDPOINT].

--interface <barbican-interface>
Defaults to env[BARBICAN_INTERFACE].

--service-type <barbican-service-type>
Defaults to env[BARBICAN_SERVICE_TYPE].

--service-name <barbican-service-name>
Defaults to env[BARBICAN_SERVICE_NAME].

--region-name <barbican-region-name>
Defaults to env[BARBICAN_REGION_NAME].

--barbican-api-version <barbican-api-version>
Defaults to env[BARBICAN_API_VERSION].

2.5. Key Manager service (barbican) command-line client 29

python-barbicanclient Documentation, Release 7.2.1.dev1

barbican acl delete

usage: barbican acl delete [-h] URI

Delete ACLs for a secret or container as identified by its href.

Positional arguments:

URI
The URI reference for the secret or container.

Optional arguments:

-h, --help
show this help message and exit

barbican acl get

usage: barbican acl get [-h] [-f {csv,html,json,table,value,yaml}] [-c COLUMN]
[--max-width <integer>] [--print-empty] [--noindent]
[--quote {all,minimal,none,nonnumeric}]
URI

Retrieve ACLs for a secret or container by providing its href.

Positional arguments:

URI
The URI reference for the secret or container.

Optional arguments:

-h, --help
show this help message and exit

barbican acl submit

usage: barbican acl submit [-h] [-f {csv,html,json,table,value,yaml}]
[-c COLUMN] [--max-width <integer>] [--print-empty]
[--noindent]
[--quote {all,minimal,none,nonnumeric}]
[--user [USERS]]
[--project-access | --no-project-access]
[--operation-type {read}]
URI

Submit ACL on a secret or container as identified by its href.

Positional arguments:

URI
The URI reference for the secret or container.

Optional arguments:

-h, --help
show this help message and exit

30 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

--user [USERS], -u [USERS]
Keystone userid(s) for ACL.

--project-access
Flag to enable project access behavior.

--no-project-access
Flag to disable project access behavior.

--operation-type {read}, -o {read}
Type of Barbican operation ACL is set for

barbican acl user add

usage: barbican acl user add [-h] [-f {csv,html,json,table,value,yaml}]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent]
[--quote {all,minimal,none,nonnumeric}]
[--user [USERS]]
[--project-access | --no-project-access]
[--operation-type {read}]
URI

Add ACL users to a secret or container as identified by its href.

Positional arguments:

URI
The URI reference for the secret or container.

Optional arguments:

-h, --help
show this help message and exit

--user [USERS], -u [USERS]
Keystone userid(s) for ACL.

--project-access
Flag to enable project access behavior.

--no-project-access
Flag to disable project access behavior.

--operation-type {read}, -o {read}
Type of Barbican operation ACL is set for

barbican acl user remove

usage: barbican acl user remove [-h] [-f {csv,html,json,table,value,yaml}]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent]
[--quote {all,minimal,none,nonnumeric}]
[--user [USERS]]
[--project-access | --no-project-access]
[--operation-type {read}]
URI

2.5. Key Manager service (barbican) command-line client 31

python-barbicanclient Documentation, Release 7.2.1.dev1

Remove ACL users from a secret or container as identified by its href.

Positional arguments:

URI
The URI reference for the secret or container.

Optional arguments:

-h, --help
show this help message and exit

--user [USERS], -u [USERS]
Keystone userid(s) for ACL.

--project-access
Flag to enable project access behavior.

--no-project-access
Flag to disable project access behavior.

--operation-type {read}, -o {read}
Type of Barbican operation ACL is set for

barbican ca get

usage: barbican ca get [-h] [-f {html,json,shell,table,value,yaml}]
[-c COLUMN] [--max-width <integer>] [--print-empty]
[--noindent] [--prefix PREFIX]
URI

Retrieve a CA by providing its URI.

Positional arguments:

URI
The URI reference for the CA.

Optional arguments:

-h, --help
show this help message and exit

barbican ca list

usage: barbican ca list [-h] [-f {csv,html,json,table,value,yaml}] [-c COLUMN]
[--max-width <integer>] [--print-empty] [--noindent]
[--quote {all,minimal,none,nonnumeric}]
[--limit LIMIT] [--offset OFFSET] [--name NAME]

List CAs.

Optional arguments:

-h, --help
show this help message and exit

--limit LIMIT, -l LIMIT
specify the limit to the number of items to list per page (default: 10; maximum: 100)

32 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

--offset OFFSET, -o OFFSET
specify the page offset (default: 0)

--name NAME, -n NAME
specify the ca name (default: None)

barbican secret container create

usage: barbican secret container create [-h]
[-f {html,json,shell,table,value,yaml}

↪→]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent]
[--prefix PREFIX] [--name NAME]
[--type TYPE] [--secret SECRET]

Store a container in Barbican.

Optional arguments:

-h, --help
show this help message and exit

--name NAME, -n NAME
a human-friendly name.

--type TYPE
type of container to create (default: generic).

--secret SECRET, -s SECRET
one secret to store in a container (can be set multiple times). Example: secret
private_key=https://url.test/v1/secrets/1-2-3-4

barbican secret container delete

usage: barbican secret container delete [-h] URI

Delete a container by providing its href.

Positional arguments:

URI
The URI reference for the container

Optional arguments:

-h, --help
show this help message and exit

barbican secret container get

usage: barbican secret container get [-h]
[-f {html,json,shell,table,value,yaml}]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent]

(continues on next page)

2.5. Key Manager service (barbican) command-line client 33

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

[--prefix PREFIX]
URI

Retrieve a container by providing its URI.

Positional arguments:

URI
The URI reference for the container.

Optional arguments:

-h, --help
show this help message and exit

barbican secret container list

usage: barbican secret container list [-h]
[-f {csv,html,json,table,value,yaml}]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent]
[--quote {all,minimal,none,nonnumeric}]
[--limit LIMIT] [--offset OFFSET]
[--name NAME] [--type TYPE]

List containers.

Optional arguments:

-h, --help
show this help message and exit

--limit LIMIT, -l LIMIT
specify the limit to the number of items to list per page (default: 10; maximum: 100)

--offset OFFSET, -o OFFSET
specify the page offset (default: 0)

--name NAME, -n NAME
specify the container name (default: None)

--type TYPE, -t TYPE
specify the type filter for the list (default: None).

barbican secret delete

usage: barbican secret delete [-h] [--force] URI

Delete a secret by providing its URI.

Positional arguments:

URI
The URI reference for the secret

Optional arguments:

34 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

-h, --help
show this help message and exit

--force, -f
if specified, forces the deletion of secrets that have consumers.

barbican secret get

usage: barbican secret get [-h] [-f {html,json,shell,table,value,yaml}]
[-c COLUMN] [--max-width <integer>] [--print-empty]
[--noindent] [--prefix PREFIX] [--decrypt]
[--payload]
[--payload_content_type PAYLOAD_CONTENT_TYPE]
URI

Retrieve a secret by providing its URI.

Positional arguments:

URI
The URI reference for the secret.

Optional arguments:

-h, --help
show this help message and exit

--decrypt, -d
if specified, retrieve the unencrypted secret data; the data type can be specified with pay-
load_content_type.

--payload, -p
if specified, retrieve the unencrypted secret data; the data type can be specified with pay-
load_content_type. If the user wishes to only retrieve the value of the payload they must add
-f value to format returning only the value of the payload

--payload_content_type PAYLOAD_CONTENT_TYPE, -t PAYLOAD_CONTENT_TYPE
the content type of the decrypted secret (default: text/plain).

barbican secret list

usage: barbican secret list [-h] [-f {csv,html,json,table,value,yaml}]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent]
[--quote {all,minimal,none,nonnumeric}]
[--limit LIMIT] [--offset OFFSET] [--name NAME]
[--algorithm ALGORITHM] [--bit-length BIT_LENGTH]
[--mode MODE]

List secrets.

Optional arguments:

-h, --help
show this help message and exit

2.5. Key Manager service (barbican) command-line client 35

python-barbicanclient Documentation, Release 7.2.1.dev1

--limit LIMIT, -l LIMIT
specify the limit to the number of items to list per page (default: 10; maximum: 100)

--offset OFFSET, -o OFFSET
specify the page offset (default: 0)

--name NAME, -n NAME
specify the secret name (default: None)

--algorithm ALGORITHM, -a ALGORITHM
the algorithm filter for the list(default: None).

--bit-length BIT_LENGTH, -b BIT_LENGTH
the bit length filter for the list (default: 0).

--mode MODE, -m MODE
the algorithm mode filter for the list (default: None).

barbican secret order create

usage: barbican secret order create [-h]
[-f {html,json,shell,table,value,yaml}]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent]
[--prefix PREFIX] [--name NAME]
[--algorithm ALGORITHM]
[--bit-length BIT_LENGTH] [--mode MODE]
[--payload-content-type PAYLOAD_CONTENT_

↪→TYPE]
[--expiration EXPIRATION]
[--request-type REQUEST_TYPE]
[--subject-dn SUBJECT_DN]
[--source-container-ref SOURCE_CONTAINER_

↪→REF]
[--ca-id CA_ID] [--profile PROFILE]
[--request-file REQUEST_FILE]
type

Create a new order.

Positional arguments:

type
the type of the order (key, asymmetric, certificate) to create.

Optional arguments:

-h, --help
show this help message and exit

--name NAME, -n NAME
a human-friendly name.

--algorithm ALGORITHM, -a ALGORITHM
the algorithm to be used with the requested key (default: aes).

36 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

--bit-length BIT_LENGTH, -b BIT_LENGTH
the bit length of the requested secret key (default: 256).

--mode MODE, -m MODE
the algorithm mode to be used with the requested key (default: cbc).

--payload-content-type PAYLOAD_CONTENT_TYPE, -t PAYLOAD_CONTENT_TYPE
the type/format of the secret to be generated (default: application/octet-stream).

--expiration EXPIRATION, -x EXPIRATION
the expiration time for the secret in ISO 8601 format.

--request-type REQUEST_TYPE
the type of the certificate request.

--subject-dn SUBJECT_DN
the subject of the certificate.

--source-container-ref SOURCE_CONTAINER_REF
the source of the certificate when using stored-key requests.

--ca-id CA_ID
the identifier of the CA to use for the certificate request.

--profile PROFILE
the profile of certificate to use.

--request-file REQUEST_FILE
the file containing the CSR.

barbican secret order delete

usage: barbican secret order delete [-h] URI

Delete an order by providing its href.

Positional arguments:

URI
The URI reference for the order

Optional arguments:

-h, --help
show this help message and exit

barbican secret order get

usage: barbican secret order get [-h] [-f {html,json,shell,table,value,yaml}]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent]
[--prefix PREFIX]
URI

Retrieve an order by providing its URI.

Positional arguments:

2.5. Key Manager service (barbican) command-line client 37

python-barbicanclient Documentation, Release 7.2.1.dev1

URI
The URI reference order.

Optional arguments:

-h, --help
show this help message and exit

barbican secret order list

usage: barbican secret order list [-h] [-f {csv,html,json,table,value,yaml}]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent]
[--quote {all,minimal,none,nonnumeric}]
[--limit LIMIT] [--offset OFFSET]

List orders.

Optional arguments:

-h, --help
show this help message and exit

--limit LIMIT, -l LIMIT
specify the limit to the number of items to list per page (default: 10; maximum: 100)

--offset OFFSET, -o OFFSET
specify the page offset (default: 0)

barbican secret store

usage: barbican secret store [-h] [-f {html,json,shell,table,value,yaml}]
[-c COLUMN] [--max-width <integer>]
[--print-empty] [--noindent] [--prefix PREFIX]
[--name NAME] [--payload PAYLOAD]
[--secret-type SECRET_TYPE]
[--payload-content-type PAYLOAD_CONTENT_TYPE]
[--payload-content-encoding PAYLOAD_CONTENT_

↪→ENCODING]
[--algorithm ALGORITHM] [--bit-length BIT_LENGTH]
[--mode MODE] [--expiration EXPIRATION]

Store a secret in Barbican.

Optional arguments:

-h, --help
show this help message and exit

--name NAME, -n NAME
a human-friendly name.

--payload PAYLOAD, -p PAYLOAD
the unencrypted secret; if provided, you must also provide a payload_content_type

--secret-type SECRET_TYPE, -s SECRET_TYPE
the secret type; must be one of symmetric, public, private, certificate, passphrase, opaque (default)

38 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

--payload-content-type PAYLOAD_CONTENT_TYPE, -t PAYLOAD_CONTENT_TYPE
the type/format of the provided secret data; text/plain is assumed to be UTF-8; required when
payload is supplied.

--payload-content-encoding PAYLOAD_CONTENT_ENCODING, -e
PAYLOAD_CONTENT_ENCODING

required if payload-content-type is application /octet-stream.

--algorithm ALGORITHM, -a ALGORITHM
the algorithm (default: aes).

--bit-length BIT_LENGTH, -b BIT_LENGTH
the bit length (default: 256).

--mode MODE, -m MODE
the algorithm mode; used only for reference (default: cbc)

--expiration EXPIRATION, -x EXPIRATION
the expiration time for the secret in ISO 8601 format.

barbican secret update

usage: barbican secret update [-h] URI payload

Update a secret with no payload in Barbican.

Positional arguments:

URI
The URI reference for the secret.

payload
the unencrypted secret

Optional arguments:

-h, --help
show this help message and exit

barbican secret consumer create

usage: barbican secret consumer create [-h] --service-type-name SERVICE_TYPE_
↪→NAME

--resource-type RESOURCE_TYPE
--resource-id RESOURCE_ID URI

Create a consumer for a secret.

Positional arguments:

URI
The URI reference for the secret.

Optional arguments:

-h, --help
show this help message and exit

2.5. Key Manager service (barbican) command-line client 39

python-barbicanclient Documentation, Release 7.2.1.dev1

--service-type-name SERVICE_TYPE_NAME, -s SERVICE_TYPE_NAME
the service that will consume the secret

--resource-type RESOURCE_TYPE, -t RESOURCE_TYPE
the type of resource that will consume the secret

--resource-id RESOURCE_ID, -i RESOURCE_ID
the id of the resource that will consume the secret

barbican secret consumer delete

usage: barbican secret consumer delete [-h] --service-type-name SERVICE_TYPE_
↪→NAME

--resource-type RESOURCE_TYPE
--resource-id RESOURCE_ID URI

Delete a consumer from a secret.

Positional arguments:

URI
The URI reference for the secret.

Optional arguments:

-h, --help
show this help message and exit

--service-type-name SERVICE_TYPE_NAME, -s SERVICE_TYPE_NAME
the service that will consume the secret

--resource-type RESOURCE_TYPE, -t RESOURCE_TYPE
the type of resource that will consume the secret

--resource-id RESOURCE_ID, -i RESOURCE_ID
the id of the resource that will consume the secret

barbican secret consumer list

usage: barbican secret consumer list [-h] [-f {csv,json,table,value,yaml}]
[-c COLUMN] [--quote {all,minimal,none,

↪→nonnumeric}]
[--noindent] [--max-width <integer>]
[--fit-width] [--print-empty] [--sort-

↪→column SORT_COLUMN]
[--sort-ascending | --sort-descending] [-

↪→-limit LIMIT]
[--offset OFFSET]
URI

List consumers of a secret.

Positional arguments:

URI
The URI reference for the secret

40 Chapter 2. User Documentation

python-barbicanclient Documentation, Release 7.2.1.dev1

Optional arguments:

-h, --help
show this help message and exit

--limit LIMIT, -l LIMIT
specify the limit to the number of items to list per page (default: 10; maximum: 100)

--offset OFFSET, -o OFFSET
specify the page offset (default: 0)

Output formatters:

-f {csv,json,table,value,yaml}, --format {csv,json,table,value,yaml}
the output format, defaults to table

-c COLUMN, --column COLUMN
specify the column(s) to include, can be repeated to show multiple columns

--sort-column SORT_COLUMN
specify the column(s) to sort the data (columns specified first have a priority, non-existing columns
are ignored), can be repeated

--sort-ascending
sort the column(s) in ascending order

--sort-descending
sort the column(s) in descending order

CSV Formatter:

--quote {all,minimal,none,nonnumeric}
when to include quotes, defaults to nonnumeric

json formatter:

--noindent
whether to disable indenting the JSON

table formatter:

--max-width <integer>
Maximum display width, <1 to disable. You can also use the CLIFF_MAX_TERM_WIDTH en-
vironment variable, but the parameter takes precedence.

--fit-width
Fit the table to the display width. Implied if max-width greater than 0. Set the environment variable
CLIFF_FIT_WIDTH=1 to always enable

--print-empty
Print empty table if there is no data to show.

2.5. Key Manager service (barbican) command-line client 41

python-barbicanclient Documentation, Release 7.2.1.dev1

42 Chapter 2. User Documentation

CHAPTER

THREE

CONTRIBUTOR DOCUMENTATION

3.1 Contributing
If you would like to contribute to the development of OpenStack, you must follow the steps in this page:

https://docs.openstack.org/infra/manual/developers.html

Once those steps have been completed, changes to OpenStack should be submitted for review via the
Gerrit tool, following the workflow documented at:

https://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/python-barbicanclient

3.2 Writing and Running Barbican Client Tests
As a part of every code review that is submitted to the python-barbicanclient project there are a number
of gating jobs which aid in the prevention of regression issues within python-barbicanclient. As a result,
a python-barbicanclient developer should be familiar with running python-barbicanclient tests locally.

For your convenience we provide the ability to run all tests through the tox utility. If you are unfamiliar
with tox please see refer to the tox documentation for assistance.

3.2.1 Unit Tests
We follow the Tested Runtimes <https://governance.openstack.org/tc/reference/project-testing-
interface.html#tested-runtimes> as defined by the Technical Committe every cycle.

All available test environments within the tox configuration will execute when calling tox. If you want
to run them independently, you can do so with the following command:

Executes tests on Python 3.9
tox -e py39

Note

If you do not have the appropriate Python versions available, consider setting up PyEnv to install
multiple versions of Python. See the documentation setting up a Barbican development environment.

43

https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/python-barbicanclient
https://tox.readthedocs.org/en/latest/
https://github.com/openstack/barbican/blob/master/doc/source/contributor/dev.rst

python-barbicanclient Documentation, Release 7.2.1.dev1

Note

Individual unit tests can also be run, using the following commands:

runs a single test with the function named
test_should_entity_str
tox -e py39 -- test_should_entity_str

runs only tests in the WhenTestingSecrets class and
the WhenTestingOrderManager class
tox -e p39 -- '(WhenTestingSecrets|WhenTestingOrderManager)'

The function name or class specified must be one located in the barbicanclient/tests directory.

Groups of tests can also be run with a regex match after the --. For more information on what can
be done with stestr, please see: https://stestr.readthedocs.io/en/latest/

You can also setup breakpoints in the unit tests. This can be done by adding import pdb; pdb.
set_trace() to the line of the unit test you want to examine, then running the following command:

tox -e debug

Note

For a list of pdb commands, please see: https://docs.python.org/2/library/pdb.html

3.2.2 Functional Tests
Unlike running unit tests, the functional tests require Barbican and Keystone services to be running in
order to execute. For more information on setting up a Barbican development environment and using
Keystone with Barbican, see our accompanying project documentation.

A configuration file for functional tests must be edited before the tests can be run. In the top-level directory
of the python-barbicanclient, edit /etc/functional_tests.conf to the values you setup in Keystone.

[DEFAULT]
Leaving this as a placeholder

[keymanager]
Replace values that represent barbican server and user information
url=http://localhost:9311
username=barbican
password=secretservice
project_name=service
project_id=service
#max_payload_size=10000
project_domain_name=Default

[identity]
Replace these with values that represent your identity configuration
uri=http://localhost:5000/v2.0

(continues on next page)

44 Chapter 3. Contributor Documentation

https://stestr.readthedocs.io/en/latest/
https://docs.python.org/2/library/pdb.html
https://github.com/openstack/barbican/blob/master/doc/source/contributor/dev.rst
https://github.com/openstack/barbican/blob/master/doc/source/configuration/keystone.rst

python-barbicanclient Documentation, Release 7.2.1.dev1

(continued from previous page)

uri_v3=http://localhost:5000/v3
auth_version=v3

username=admin
tenant_name=admin
password=password
domain_name=Default

admin_username=admin
admin_tenant_name=admin
admin_password=password
admin_domain_name=Default

[identity-feature-enabled]
Leaving this as a placeholder

Once you have the appropriate services running and configured you can execute the functional tests
through tox.

Execute Barbican Functional Tests
tox -e functional

Note

In order to run individual functional test functions, you must use the following commands:

runs only tests in the test_secrets.py file
tox -e functional -- client/v1/functional/test_secrets.py

runs only tests in the SecretsTestCase class
tox -e functional -- client/v1/functional/test_secrets.py:\
SecretsTestCase

runs a single test with the function named
test_secret_create_defaults_check_content_types
tox -e functional -- client/v1/functional/test_secrets.py:\
SecretsTestCase.test_secret_create_defaults_check_content_types

The path specified must be one located in the functionaltests directory.

3.2.3 Remote Debugging
In order to be able to hit break-points on API calls, you must use remote debugging. This can be done
by adding import rpdb; rpdb.set_trace() to the line of the API call you wish to test. For exam-
ple, adding the breakpoint in def create in barbicanclient.secrets.py will allow you to hit the
breakpoint whenever the create function is called.

3.2. Writing and Running Barbican Client Tests 45

python-barbicanclient Documentation, Release 7.2.1.dev1

Note

After performing the POST the application will freeze. In order to use rpdb, you must open up another
terminal and run the following:

enter rpdb using telnet
telnet localhost 4444

Once in rpdb, you can use the same commands as pdb, as seen here: https://docs.python.org/2/library/
pdb.html

46 Chapter 3. Contributor Documentation

https://docs.python.org/2/library/pdb.html
https://docs.python.org/2/library/pdb.html

CHAPTER

FOUR

REFERENCE

4.1 Client

barbicanclient.client.Client(version=None, session=None, *args, **kwargs)
Barbican client used to interact with barbican service.

Parameters

• session An instance of keystoneauth1.session.Session that can be either au-
thenticated, or not authenticated. When using a non-authenticated Session,
you must provide some additional parameters. When no session is provided it
will default to a non-authenticated Session. (optional)

• endpoint Barbican endpoint url override. Required when a session is not
given, or when using a non-authenticated session. When using an authenti-
cated session, the client will attempt to get the endpoint from the Keystone
service catalog. (optional)

• project_id The project ID used for context in Barbican. Required when a
session is not given, or when using a non-authenticated session. When using
an authenticated session, the project ID will be provided by the authentication
mechanism and this parameter will be ignored. (optional)

• verify When a session is not given, the client will create a non-authenticated
session. This parameter is passed to the session that is created. If set to False,
it allows barbicanclient to perform insecure TLS (https) requests. The servers
certificate will not be verified against any certificate authorities. (optional)
WARNING: This option should be used with caution.

• version Used as an endpoint filter when using an authenticated keystone ses-
sion. When using a non-authenticated keystone session, this value is appended
to the required endpoint url override. Defaults to v1.

• service_type Used as an endpoint filter when using an authenticated key-
stone session. Defaults to key-manager.

• service_name Used as an endpoint filter when using an authenticated key-
stone session.

• interface Used as an endpoint filter when using an authenticated keystone
session. Defaults to public.

• region_name Used as an endpoint filter when using an authenticated key-
stone session.

47

python-barbicanclient Documentation, Release 7.2.1.dev1

• microversion Specifiy an API Microversion to be used. Defaults to 1.1.

4.2 Secrets

class barbicanclient.v1.secrets.SecretManager(api)
Entity Manager for Secret entities

create(name=None, payload=None, payload_content_type=None,
payload_content_encoding=None, algorithm=None, bit_length=None,
secret_type=None, mode=None, expiration=None)

Factory method for creating new Secret objects

Secrets returned by this method have not yet been stored in the Barbican service.

Parameters

• name A friendly name for the Secret

• payload The unencrypted secret data

• payload_content_type DEPRECATED: The format/type of the secret
data. Setting this can lead to unexpected results. See Launchpad Bug
#1419166.

• payload_content_encoding DEPRECATED: The encoding of the se-
cret data. Setting this can lead to unexpected results. See Launchpad Bug
#1419166.

• algorithm The algorithm associated with this secret key

• bit_length The bit length of this secret key

• mode The algorithm mode used with this secret key

• secret_type The secret type for this secret key

• expiration The expiration time of the secret in ISO 8601 format

Returns
A new Secret object

Return type
barbicanclient.v1.secrets.Secret

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

delete(secret_ref , force=False)
Delete a Secret from Barbican

Parameters

• secret_ref Full HATEOAS reference to a Secret, or a UUID

• force When true, forces the deletion of secrets with consumers

Raises

48 Chapter 4. Reference

python-barbicanclient Documentation, Release 7.2.1.dev1

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

get(secret_ref , payload_content_type=None)
Retrieve an existing Secret from Barbican

Parameters

• secret_ref (str) Full HATEOAS reference to a Secret, or a UUID

• payload_content_type (str) DEPRECATED: Content type to use for
payload decryption. Setting this can lead to unexpected results. See Launch-
pad Bug #1419166.

Returns
Secret object retrieved from Barbican

Return type
barbicanclient.v1.secrets.Secret

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

list(limit=10, offset=0, name=None, algorithm=None, mode=None, bits=0,
secret_type=None, created=None, updated=None, expiration=None, sort=None)

List Secrets for the project

This method uses the limit and offset parameters for paging, and also supports filtering.

The time filters (created, updated, and expiration) are expected to be an ISO 8601 formatted
string, which can be prefixed with comparison operators: gt: (greater-than), gte: (greater-
than-or-equal), lt: (less-than), or lte: (less-than-or-equal).

Parameters

• limit Max number of secrets returned

• offset Offset secrets to begin list

• name Name filter for the list

• algorithm Algorithm filter for the list

• mode Mode filter for the list

• bits Bits filter for the list

• secret_type Secret type filter for the list

• created Created time filter for the list, an ISO 8601 format string, option-
ally prefixed with gt:, gte:, lt:, or lte:

• updated Updated time filter for the list, an ISO 8601 format string, option-
ally prefixed with gt:, gte:, lt:, or lte:

4.2. Secrets 49

python-barbicanclient Documentation, Release 7.2.1.dev1

• expiration Expiration time filter for the list, an ISO 8601 format string,
optionally prefixed with gt:, gte:, lt:, or lte:

• sort Determines the sorted order of the returned list, a string of comma-
separated sort keys (created, expiration, mode, name, secret_type, status, or
updated) with a direction appended (:asc or :desc) to each key

Returns
list of Secret objects that satisfy the provided filter criteria.

Return type
list

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

list_consumers(secret_ref , limit=10, offset=0)
List consumers of the secret

Parameters

• secret_ref Full HATEOAS reference to a secret, or a UUID

• limit Max number of consumers returned

• offset Offset secrets to begin list

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

register_consumer(secret_ref , service, resource_type, resource_id)
Add a consumer to the secret

Parameters

• secret_ref Full HATEOAS reference to a secret, or a UUID

• service Name of the consuming service

• resource_type Type of the consuming resource

• resource_id ID of the consuming resource

Returns
A secret object per the get() method

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

• NotImplementedError When using microversion 1.0

50 Chapter 4. Reference

python-barbicanclient Documentation, Release 7.2.1.dev1

remove_consumer(secret_ref , service, resource_type, resource_id)
Remove a consumer from the secret

Parameters

• secret_ref Full HATEOAS reference to a secret, or a UUID

• service Name of the previously consuming service

• resource_type type of the previously consuming resource

• resource_id ID of the previously consuming resource

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

update(secret_ref , payload=None)
Update an existing Secret in Barbican

Parameters

• secret_ref (str) Full HATEOAS reference to a Secret, or a UUID

• payload (str) New payload to add to secret

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

class barbicanclient.v1.secrets.Secret(api, name=None, expiration=None,
algorithm=None, bit_length=None, mode=None,
payload=None, payload_content_type=None,
payload_content_encoding=None,
secret_ref=None, created=None, updated=None,
content_types=None, status=None,
secret_type=None, creator_id=None,
consumers=None)

Secrets managed by Barbican

Secrets represent keys, credentials, and other sensitive data that is stored by the Barbican service.

Secret objects should not be instantiated directly.

You should use the create or get methods of the barbicanclient.secrets.SecretManager
instead.

property acls

Get ACL settings for this secret.

delete()

Deletes the Secret from Barbican

4.2. Secrets 51

python-barbicanclient Documentation, Release 7.2.1.dev1

property payload

Lazy-loaded property that holds the unencrypted data

store()

Stores the Secret in Barbican.

New Secret objects are not persisted in Barbican until this method is called.

Raises
PayloadException

update()

Updates the secret in Barbican.

4.3 Orders

class barbicanclient.v1.orders.OrderManager(api)
Entity Manager for Order entitites

create_asymmetric(name=None, algorithm=None, bit_length=None, pass_phrase=None,
payload_content_type=None, expiration=None)

Factory method for AsymmetricOrder objects

AsymmetricOrder objects returned by this method have not yet been submitted to the Barbi-
can service.

Parameters

• name A friendly name for the container to be created

• algorithm The algorithm associated with this secret key

• bit_length The bit length of this secret key

• pass_phrase Optional passphrase

• payload_content_type The format/type of the secret data

• expiration The expiration time of the secret in ISO 8601 format

Returns
AsymmetricOrder

Return type
barbicanclient.v1.orders.AsymmetricOrder

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

create_key(name=None, algorithm=None, bit_length=None, mode=None,
payload_content_type=None, expiration=None)

Factory method for KeyOrder objects

KeyOrder objects returned by this method have not yet been submitted to the Barbican ser-
vice.

52 Chapter 4. Reference

python-barbicanclient Documentation, Release 7.2.1.dev1

Parameters

• name A friendly name for the secret to be created

• algorithm The algorithm associated with this secret key

• bit_length The bit length of this secret key

• mode The algorithm mode used with this secret key

• payload_content_type The format/type of the secret data

• expiration The expiration time of the secret in ISO 8601 format

Returns
KeyOrder

Return type
barbicanclient.v1.orders.KeyOrder

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

delete(order_ref)
Delete an Order from Barbican

Parameters
order_ref Full HATEOAS reference to an Order, or a UUID

get(order_ref)
Retrieve an existing Order from Barbican

Parameters
order_ref Full HATEOAS reference to an Order, or a UUID

Returns
An instance of the appropriate subtype of Order

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

list(limit=10, offset=0)
List Orders for the project

This method uses the limit and offset parameters for paging.

Parameters

• limit Max number of orders returned

• offset Offset orders to begin list

Returns
list of Order objects

4.3. Orders 53

python-barbicanclient Documentation, Release 7.2.1.dev1

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

class barbicanclient.v1.orders.Order(api, type, status=None, created=None, updated=None,
meta=None, order_ref=None,
error_status_code=None, error_reason=None,
sub_status=None, sub_status_message=None,
creator_id=None)

Base order object to hold common functionality

This should be considered an abstract class that should not be instantiated directly.

delete()

Deletes the Order from Barbican

submit()

Submit the Order to Barbican.

New Order objects are not persisted in Barbican until this method is called.

class barbicanclient.v1.orders.KeyOrder(api, name=None, algorithm=None,
bit_length=None, mode=None, expiration=None,
payload_content_type=None, status=None,
created=None, updated=None, order_ref=None,
secret_ref=None, error_status_code=None,
error_reason=None, sub_status=None,
sub_status_message=None, creator_id=None)

KeyOrders can be used to request random key material from Barbican

property mode

Encryption mode being used with this key

The mode could be set to CBC for example, when requesting a key that will be used for AES
encryption in CBC mode.

class barbicanclient.v1.orders.AsymmetricOrder(api, name=None, algorithm=None,
bit_length=None, mode=None,
passphrase=None, pass_phrase=None,
expiration=None,
payload_content_type=None,
status=None, created=None,
updated=None, order_ref=None,
container_ref=None,
error_status_code=None,
error_reason=None, sub_status=None,
sub_status_message=None,
creator_id=None)

property pass_phrase

Passphrase to be used for passphrase protected asymmetric keys

54 Chapter 4. Reference

python-barbicanclient Documentation, Release 7.2.1.dev1

4.4 Containers

class barbicanclient.v1.containers.ContainerManager(api)
EntityManager for Container entities

You should use the ContainerManager exposed by the Client and should not need to instantiate
your own.

create(name=None, secrets=None)
Factory method for Container objects

Container objects returned by this method have not yet been stored in Barbican.

Parameters

• name A friendly name for the Container

• secrets Secrets to populate when creating a Container

Returns
Container

Return type
barbicanclient.v1.containers.Container

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

create_certificate(name=None, certificate=None, intermediates=None,
private_key=None, private_key_passphrase=None)

Factory method for CertificateContainer objects

CertificateContainer objects returned by this method have not yet been stored in Barbican.

Parameters

• name A friendly name for the CertificateContainer

• certificate Secret object containing a Certificate

• intermediates Secret object containing Intermediate Certs

• private_key Secret object containing a Private Key

• private_key_passphrase Secret object containing a passphrase

Returns
CertificateContainer

Return type
barbicanclient.v1.containers.CertificateContainer

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

4.4. Containers 55

python-barbicanclient Documentation, Release 7.2.1.dev1

• barbicanclient.exceptions.HTTPServerError 5xx Responses

create_rsa(name=None, public_key=None, private_key=None,
private_key_passphrase=None)

Factory method for RSAContainer objects

RSAContainer objects returned by this method have not yet been stored in Barbican.

Parameters

• name A friendly name for the RSAContainer

• public_key Secret object containing a Public Key

• private_key Secret object containing a Private Key

• private_key_passphrase Secret object containing a passphrase

Returns
RSAContainer

Return type
barbicanclient.v1.containers.RSAContainer

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

delete(container_ref)
Delete a Container from Barbican

Parameters
container_ref Full HATEOAS reference to a Container, or a UUID

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

get(container_ref)
Retrieve an existing Container from Barbican

Parameters
container_ref Full HATEOAS reference to a Container, or a UUID

Returns
Container object or a subclass of the appropriate type

list(limit=10, offset=0, name=None, type=None)
List containers for the project.

This method uses the limit and offset parameters for paging.

Parameters

• limit Max number of containers returned

56 Chapter 4. Reference

python-barbicanclient Documentation, Release 7.2.1.dev1

• offset Offset containers to begin list

• name Name filter for the list

• type Type filter for the list

Returns
list of Container metadata objects

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

register_consumer(container_ref , name, url)
Add a consumer to the container

Parameters

• container_ref Full HATEOAS reference to a Container, or a UUID

• name Name of the consuming service

• url URL of the consuming resource

Returns
A container object per the get() method

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

remove_consumer(container_ref , name, url)
Remove a consumer from the container

Parameters

• container_ref Full HATEOAS reference to a Container, or a UUID

• name Name of the previously consuming service

• url URL of the previously consuming resource

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

class barbicanclient.v1.containers.Container(api, name=None, secrets=None,
consumers=None, container_ref=None,
created=None, updated=None,
status=None, secret_refs=None)

Container is a generic grouping of Secrets

4.4. Containers 57

python-barbicanclient Documentation, Release 7.2.1.dev1

property acls

Get ACL settings for this container.

delete()

Delete container from Barbican

property secrets

List of Secrets in Containers

store()

Store Container in Barbican

class barbicanclient.v1.containers.RSAContainer(api, name=None, public_key=None,
private_key=None,
private_key_passphrase=None,
consumers=[], container_ref=None,
created=None, updated=None,
status=None, public_key_ref=None,
private_key_ref=None,
private_key_passphrase_ref=None)

property private_key

Secret containing the Private Key

property private_key_passphrase

Secret containing the Passphrase

property public_key

Secret containing the Public Key

class barbicanclient.v1.containers.CertificateContainer(api, name=None,
certificate=None,
intermediates=None,
private_key=None, pri-
vate_key_passphrase=None,
consumers=[],
container_ref=None,
created=None,
updated=None, status=None,
certificate_ref=None,
intermediates_ref=None,
private_key_ref=None, pri-
vate_key_passphrase_ref=None)

property certificate

Secret containing the certificate

property intermediates

Secret containing intermediate certificates

property private_key

Secret containing the private key

property private_key_passphrase

Secret containing the passphrase

58 Chapter 4. Reference

python-barbicanclient Documentation, Release 7.2.1.dev1

4.5 Certificate Authorities

class barbicanclient.v1.cas.CAManager(api)
Entity Manager for Secret entities

get(ca_ref)
Retrieve an existing CA from Barbican

Parameters
ca_ref (str) Full HATEOAS reference to a CA

Returns
CA object retrieved from Barbican

Return type
barbicanclient.v1.cas.CA

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

list(limit=10, offset=0, name=None)
List CAs for the project

This method uses the limit and offset parameters for paging, and also supports filtering.

Parameters

• limit Max number of CAs returned

• offset Offset secrets to begin list

• name Name filter for the list

Returns
list of CA objects that satisfy the provided filter criteria.

Return type
list

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

class barbicanclient.v1.cas.CA(api, meta=None, expiration=None, plugin_name=None,
plugin_ca_id=None, ca_ref=None, created=None,
updated=None, status=None, creator_id=None)

Certificate authority

CAs represent certificate authorities or subCAs with which the Barbican service is configured to
interact.

Certificate authority

4.5. Certificate Authorities 59

python-barbicanclient Documentation, Release 7.2.1.dev1

CA objects should not be instantiated directly. You should use the create or get methods of the
barbicanclient.cas.CAManager instead.

4.6 ACLs

class barbicanclient.v1.acls.ACLManager(api)
Entity Manager for Secret or Container ACL entities

create(entity_ref=None, users=None, project_access=None, operation_type=’read’)
Factory method for creating ACL entity.

ACL object returned by this method have not yet been stored in Barbican.

Input entity_ref is used to determine whether ACL object type needs to be barbicanclient.
acls.SecretACL or barbicanclient.acls.ContainerACL.

Parameters

• entity_ref (str) Full HATEOAS reference to a secret or container

• users (List or None) List of Keystone userid(s) to be used in ACL.

• project_access (bool) Flag indicating project access behavior

• operation_type (str) Type indicating which class of Barbican operations
this ACL is defined for e.g. read operations

Returns
ACL object instance

Return type
barbicanclient.v1.acls.SecretACL or barbicanclient.v1.acls.
ContainerACL

get(entity_ref)
Retrieve existing ACLs for a secret or container found in Barbican

Parameters
entity_ref (str) Full HATEOAS reference to a secret or container.

Returns
ACL entity object instance

Return type
barbicanclient.v1.acls.SecretACL or barbicanclient.v1.acls.
ContainerACL

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

class barbicanclient.v1.acls.SecretACL(api, entity_ref , users=None, project_access=None,
operation_type=’read’, created=None,
updated=None)

ACL entity for a secret

Base ACL entity instance for secret or container.

60 Chapter 4. Reference

python-barbicanclient Documentation, Release 7.2.1.dev1

Provide ACL data arguments to set ACL setting for given operation_type.

To add ACL setting for other operation types, use add_operation_acl method.

Parameters

• api client instance reference

• entity_ref (str) Full HATEOAS reference to a secret or container

• users (str List or None) List of Keystone userid(s) to be used for ACL.

• project_access (bool) Flag indicating project access behavior

• operation_type (str) Type indicating which class of Barbican operations
this ACL is defined for e.g. read operations

• created (str) Time string indicating ACL create timestamp. This is popu-
lated only when populating data from api response. Not needed in client input.

• updated (str) Time string indicating ACL last update timestamp. This is
populated only when populating data from api response. Not needed in client
input.

add_operation_acl(users=None, project_access=None, operation_type=None,
created=None, updated=None)

Add ACL settings to entity for specific operation type.

If matching operation_type ACL already exists, then it replaces it with new PerOperationACL
object using provided inputs. Otherwise it appends new PerOperationACL object to existing
per operation ACL list.

This just adds to local entity and have not yet applied these changes to server.

Parameters

• users (List or None) List of Keystone userid(s) to be used in ACL.

• project_access (bool) Flag indicating project access behavior

• operation_type (str) Type indicating which class of Barbican operations
this ACL is defined for e.g. read operations

• created (str) Time string indicating ACL create timestamp. This is pop-
ulated only when populating data from api response. Not needed in client
input.

• updated (str) Time string indicating ACL last update timestamp. This is
populated only when populating data from api response. Not needed in client
input.

property entity_ref

Entity URI reference.

property entity_uuid

Entity UUID

get(operation_type)
Get operation specific ACL instance.

4.6. ACLs 61

python-barbicanclient Documentation, Release 7.2.1.dev1

Parameters
operation_type (str) Type indicating which operations ACL setting is
needed.

load_acls_data()

Loads ACL entity from Barbican server using its acl_ref

Clears the existing list of per operation ACL settings if there. Populates current ACL entity
with ACL settings received from Barbican server.

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

property operation_acls

List of operation specific ACL settings.

remove()

Remove Barbican ACLs setting defined for a secret or container

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

submit()

Submits ACLs for a secret or a container defined in server

In existing ACL case, this overwrites the existing ACL setting with provided inputs. If in-
put users are None or empty list, this will remove existing ACL users if there. If input
project_access flag is None, then default project access behavior is enabled.

Returns
str acl_ref: Full HATEOAS reference to a secret or container ACL.

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

class barbicanclient.v1.acls.ContainerACL(api, entity_ref , users=None,
project_access=None, operation_type=’read’,
created=None, updated=None)

ACL entity for a container

Base ACL entity instance for secret or container.

Provide ACL data arguments to set ACL setting for given operation_type.

To add ACL setting for other operation types, use add_operation_acl method.

Parameters

• api client instance reference

62 Chapter 4. Reference

python-barbicanclient Documentation, Release 7.2.1.dev1

• entity_ref (str) Full HATEOAS reference to a secret or container

• users (str List or None) List of Keystone userid(s) to be used for ACL.

• project_access (bool) Flag indicating project access behavior

• operation_type (str) Type indicating which class of Barbican operations
this ACL is defined for e.g. read operations

• created (str) Time string indicating ACL create timestamp. This is popu-
lated only when populating data from api response. Not needed in client input.

• updated (str) Time string indicating ACL last update timestamp. This is
populated only when populating data from api response. Not needed in client
input.

add_operation_acl(users=None, project_access=None, operation_type=None,
created=None, updated=None)

Add ACL settings to entity for specific operation type.

If matching operation_type ACL already exists, then it replaces it with new PerOperationACL
object using provided inputs. Otherwise it appends new PerOperationACL object to existing
per operation ACL list.

This just adds to local entity and have not yet applied these changes to server.

Parameters

• users (List or None) List of Keystone userid(s) to be used in ACL.

• project_access (bool) Flag indicating project access behavior

• operation_type (str) Type indicating which class of Barbican operations
this ACL is defined for e.g. read operations

• created (str) Time string indicating ACL create timestamp. This is pop-
ulated only when populating data from api response. Not needed in client
input.

• updated (str) Time string indicating ACL last update timestamp. This is
populated only when populating data from api response. Not needed in client
input.

property entity_ref

Entity URI reference.

property entity_uuid

Entity UUID

get(operation_type)
Get operation specific ACL instance.

Parameters
operation_type (str) Type indicating which operations ACL setting is
needed.

load_acls_data()

Loads ACL entity from Barbican server using its acl_ref

4.6. ACLs 63

python-barbicanclient Documentation, Release 7.2.1.dev1

Clears the existing list of per operation ACL settings if there. Populates current ACL entity
with ACL settings received from Barbican server.

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

property operation_acls

List of operation specific ACL settings.

remove()

Remove Barbican ACLs setting defined for a secret or container

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

submit()

Submits ACLs for a secret or a container defined in server

In existing ACL case, this overwrites the existing ACL setting with provided inputs. If in-
put users are None or empty list, this will remove existing ACL users if there. If input
project_access flag is None, then default project access behavior is enabled.

Returns
str acl_ref: Full HATEOAS reference to a secret or container ACL.

Raises

• barbicanclient.exceptions.HTTPAuthError 401 Responses

• barbicanclient.exceptions.HTTPClientError 4xx Responses

• barbicanclient.exceptions.HTTPServerError 5xx Responses

4.7 Exceptions

exception barbicanclient.exceptions.BarbicanException

exception barbicanclient.exceptions.HTTPAuthError(message, status_code=401)
Raised for 401 Unauthorized responses from the server.

exception barbicanclient.exceptions.HTTPClientError(message, status_code=0)
Raised for 4xx responses from the server.

exception barbicanclient.exceptions.HTTPError(message, status_code=0)
Base exception for HTTP errors.

exception barbicanclient.exceptions.HTTPServerError(message, status_code=0)
Raised for 5xx responses from the server.

exception barbicanclient.exceptions.PayloadException

64 Chapter 4. Reference

python-barbicanclient Documentation, Release 7.2.1.dev1

exception barbicanclient.exceptions.UnsupportedVersion

User is trying to use an unsupported version of the API.

Indices and tables

• genindex

• modindex

• search

4.7. Exceptions 65

python-barbicanclient Documentation, Release 7.2.1.dev1

66 Chapter 4. Reference

PYTHON MODULE INDEX

b
barbicanclient.exceptions, 64

67

python-barbicanclient Documentation, Release 7.2.1.dev1

68 Python Module Index

INDEX

A
ACLManager (class in barbicanclient.v1.acls), 60
acls (barbicanclient.v1.containers.Container

property), 57
acls (barbicanclient.v1.secrets.Secret property),

51
add_operation_acl() (barbican-

client.v1.acls.ContainerACL method),
63

add_operation_acl() (barbican-
client.v1.acls.SecretACL method),
61

AsymmetricOrder (class in barbican-
client.v1.orders), 54

B
barbicanclient.exceptions

module, 64
BarbicanException, 64

C
CA (class in barbicanclient.v1.cas), 59
CAManager (class in barbicanclient.v1.cas), 59
certificate (barbican-

client.v1.containers.CertificateContainer
property), 58

CertificateContainer (class in barbican-
client.v1.containers), 58

Client() (in module barbicanclient.client), 47
Container (class in barbican-

client.v1.containers), 57
ContainerACL (class in barbicanclient.v1.acls),

62
ContainerManager (class in barbican-

client.v1.containers), 55
create() (barbicanclient.v1.acls.ACLManager

method), 60
create() (barbican-

client.v1.containers.ContainerManager
method), 55

create() (barbican-
client.v1.secrets.SecretManager method),
48

create_asymmetric() (barbican-
client.v1.orders.OrderManager method),
52

create_certificate() (barbican-
client.v1.containers.ContainerManager
method), 55

create_key() (barbican-
client.v1.orders.OrderManager method),
52

create_rsa() (barbican-
client.v1.containers.ContainerManager
method), 56

D
delete() (barbican-

client.v1.containers.Container method),
58

delete() (barbican-
client.v1.containers.ContainerManager
method), 56

delete() (barbicanclient.v1.orders.Order
method), 54

delete() (barbican-
client.v1.orders.OrderManager method),
53

delete() (barbicanclient.v1.secrets.Secret
method), 51

delete() (barbican-
client.v1.secrets.SecretManager method),
48

E
entity_ref (barbican-

client.v1.acls.ContainerACL property),
63

entity_ref (barbicanclient.v1.acls.SecretACL
property), 61

entity_uuid (barbican-

69

python-barbicanclient Documentation, Release 7.2.1.dev1

client.v1.acls.ContainerACL property),
63

entity_uuid (barbicanclient.v1.acls.SecretACL
property), 61

G
get() (barbicanclient.v1.acls.ACLManager

method), 60
get() (barbicanclient.v1.acls.ContainerACL

method), 63
get() (barbicanclient.v1.acls.SecretACL method),

61
get() (barbicanclient.v1.cas.CAManager

method), 59
get() (barbican-

client.v1.containers.ContainerManager
method), 56

get() (barbicanclient.v1.orders.OrderManager
method), 53

get() (barbicanclient.v1.secrets.SecretManager
method), 49

H
HTTPAuthError, 64
HTTPClientError, 64
HTTPError, 64
HTTPServerError, 64

I
intermediates (barbican-

client.v1.containers.CertificateContainer
property), 58

K
KeyOrder (class in barbicanclient.v1.orders), 54

L
list() (barbicanclient.v1.cas.CAManager

method), 59
list() (barbican-

client.v1.containers.ContainerManager
method), 56

list() (barbicanclient.v1.orders.OrderManager
method), 53

list() (barbicanclient.v1.secrets.SecretManager
method), 49

list_consumers() (barbican-
client.v1.secrets.SecretManager method),
50

load_acls_data() (barbican-
client.v1.acls.ContainerACL method),
63

load_acls_data() (barbican-
client.v1.acls.SecretACL method),
62

M
mode (barbicanclient.v1.orders.KeyOrder prop-

erty), 54
module

barbicanclient.exceptions, 64

O
operation_acls (barbican-

client.v1.acls.ContainerACL property),
64

operation_acls (barbican-
client.v1.acls.SecretACL property),
62

Order (class in barbicanclient.v1.orders), 54
OrderManager (class in barbican-

client.v1.orders), 52

P
pass_phrase (barbican-

client.v1.orders.AsymmetricOrder
property), 54

payload (barbicanclient.v1.secrets.Secret prop-
erty), 51

PayloadException, 64
private_key (barbican-

client.v1.containers.CertificateContainer
property), 58

private_key (barbican-
client.v1.containers.RSAContainer
property), 58

private_key_passphrase (barbican-
client.v1.containers.CertificateContainer
property), 58

private_key_passphrase (barbican-
client.v1.containers.RSAContainer
property), 58

public_key (barbican-
client.v1.containers.RSAContainer
property), 58

R
register_consumer() (barbican-

client.v1.containers.ContainerManager
method), 57

register_consumer() (barbican-
client.v1.secrets.SecretManager method),
50

70 Index

python-barbicanclient Documentation, Release 7.2.1.dev1

remove() (barbicanclient.v1.acls.ContainerACL
method), 64

remove() (barbicanclient.v1.acls.SecretACL
method), 62

remove_consumer() (barbican-
client.v1.containers.ContainerManager
method), 57

remove_consumer() (barbican-
client.v1.secrets.SecretManager method),
50

RSAContainer (class in barbican-
client.v1.containers), 58

S
Secret (class in barbicanclient.v1.secrets), 51
SecretACL (class in barbicanclient.v1.acls), 60
SecretManager (class in barbican-

client.v1.secrets), 48
secrets (barbicanclient.v1.containers.Container

property), 58
store() (barbicanclient.v1.containers.Container

method), 58
store() (barbicanclient.v1.secrets.Secret

method), 52
submit() (barbicanclient.v1.acls.ContainerACL

method), 64
submit() (barbicanclient.v1.acls.SecretACL

method), 62
submit() (barbicanclient.v1.orders.Order

method), 54

U
UnsupportedVersion, 64
update() (barbicanclient.v1.secrets.Secret

method), 52
update() (barbican-

client.v1.secrets.SecretManager method),
51

Index 71

	Installation
	User Documentation
	CLI Usage
	Secrets
	Secret Create
	Secret Get
	Secret Delete
	Secret Update
	Secret List

	Secret Consumers
	Secret Consumer Create
	Secret Consumer List
	Secret Consumer Delete
	ACLS
	ACLs Get
	ACLs Submit
	ACL Add User(s)
	ACL Remove User(s)
	ACLs Delete

	Authentication
	Keystone Authentication
	Keystone API Version 3 Authentication
	Keystone API Version 2 Authentication

	Unauthenticated Context

	CLI Authentication
	Keystone V3 Authentication
	Keystone Token Authentication
	No Auth Mode

	Client Usage
	Secrets
	Secret Content Types

	Orders
	Containers
	Secret Consumers
	ACLs

	Key Manager service (barbican) command-line client
	barbican usage
	barbican optional arguments
	barbican acl delete
	barbican acl get
	barbican acl submit
	barbican acl user add
	barbican acl user remove
	barbican ca get
	barbican ca list
	barbican secret container create
	barbican secret container delete
	barbican secret container get
	barbican secret container list
	barbican secret delete
	barbican secret get
	barbican secret list
	barbican secret order create
	barbican secret order delete
	barbican secret order get
	barbican secret order list
	barbican secret store
	barbican secret update
	barbican secret consumer create
	barbican secret consumer delete
	barbican secret consumer list

	Contributor Documentation
	Contributing
	Writing and Running Barbican Client Tests
	Unit Tests
	Functional Tests
	Remote Debugging

	Reference
	Client
	Secrets
	Orders
	Containers
	Certificate Authorities
	ACLs
	Exceptions

	Python Module Index
	Index

