
Networking Midonet Documentation
Release 11.1.0.dev3

OpenStack Foundation

Sep 26, 2020

CONTENTS

1 Supported features 1
1.1 Neutron extensions supported by MidoNet . 1
1.2 FAQ . 2

2 Installation and configuration 3
2.1 Supported MidoNet versions . 3
2.2 How to Install . 3
2.3 MidoNet API configuration . 3
2.4 ML2 mechanism and type drivers . 4
2.5 L3 service plugin . 4
2.6 Interaction with Neutron agents . 4
2.7 VPNaaS . 5
2.8 Gateway Device Service . 5
2.9 L2 Gateway Service . 5
2.10 BGP dynamic routing service . 6
2.11 Tap-as-a-Service . 6
2.12 QoS . 6
2.13 Horizon . 7
2.14 Magnum . 7

3 Release Notes 9

4 Migration from monolithic v2 plugin to ML2 plugin 11
4.1 Overview . 11
4.2 How to migrate . 11

5 Historical Upgrade Notes 13
5.1 From Liberty to Mitaka . 13
5.2 From Kilo to Liberty . 14
5.3 From Juno to Kilo . 14

6 Networking-MidoNet Configuration Guide 15
6.1 Configuration . 15
6.2 Policy . 16

7 Contributor Guide 19
7.1 DevStack plugin . 19
7.2 Policies . 23
7.3 Programming HowTos and Tutorials . 24
7.4 Dashboards . 24

i

8 Specifications 27
8.1 Kilo specs . 27
8.2 Mitaka specs . 51
8.3 Ocata specs . 70

ii

CHAPTER

ONE

SUPPORTED FEATURES

1.1 Neutron extensions supported by MidoNet

MidoNet provides the following Neutron API extensions. (The list doesnt include extensions
implemented by Neutron in a mostly backend-agnostic way, like subnet_allocation and
standard-attr-revisions.)

Category Extension Alias Required MidoNet version
Core extra_dhcp_opt >=5.2.1

port-security >=5.0
allowed-address-pairs >=5.0
external-net >=5.0
provider >=5.0
security-group >=5.0

L3 router >=5.0
extraroute >=5.0
ext-gw-mode >=5.0
router-interface-fip >=5.1.1
fip64 >=5.4

QoS qos >=5.4
L2Gateway gateway-device >=5.1

l2-gateway >=5.1
l2-gateway-connection >=5.1

BGP bgp >=5.2
bgp-speaker-router-insertion >=5.2

TaaS taas >=5.2
VPNaaS vpnaas >=5.1

vpn-endpoint-groups >=5.1

1

Networking Midonet Documentation, Release 11.1.0.dev3

1.2 FAQ

• MidoNet doesnt support IPv6 in general. An exception is the fip64 extension.

• While the IPAM part of Neutron address-scope extension does work with networking-
midonet, the routing decision part of it is not implemented.

• MidoNet doesnt support Neutron dvr extension because L3 routing is always distributed in Mi-
doNet.

• MidoNet doesnt support Neutron l3-ha extension. In MidoNet, Its common to use multiple
router ports with BGP to provide a redundancy.1

1 https://docs.midonet.org/docs/latest-en/operations-guide/content/configuring_uplinks.html

2 Chapter 1. Supported features

https://docs.midonet.org/docs/latest-en/operations-guide/content/configuring_uplinks.html

CHAPTER

TWO

INSTALLATION AND CONFIGURATION

2.1 Supported MidoNet versions

The current set of supported versions of MidoNet are:

• v5.x

NOTE: MidoNet changed its versioning scheme. v5.0 is what used to be called v2015.09.

2.2 How to Install

For productional deployments, we recommend to use a package for your distribution if available:

http://builds.midonet.org/

You can install the plugin from the source code by running the following command:

$ sudo python setup.py install

The plugin requires python-midonetclient package, which is usually available along with other midonet
packages. Its recommended to use the same version of python-midonetclient and midonet-cluster. Al-
ternatively, you can install python-midonetclient from source:

$ sudo pip install -e 'git://github.com/midonet/midonet.git@master
↪→#egg=midonetclient&subdirectory=python-midonetclient'

2.3 MidoNet API configuration

You need to configure the Neutron server how to talk with your MidoNet cluster.

• Prepare a Keystone credential, with which the Neutron server will send requests to the MidoNet
cluster.

• Configure Keystone authentication in MidoNet. See Using the Keystone authentication service in
MidoNet documentation for details.

• Configure the following options in the Neutron server configuration file.

midonet.midonet_uri midonet.username midonet.password midonet.
project_id

3

http://builds.midonet.org/
https://docs.midonet.org/docs/latest-en/operations-guide/content/keystone_authentication.html

Networking Midonet Documentation, Release 11.1.0.dev3

2.4 ML2 mechanism and type drivers

networking-midonet is compatible with ML2 plugin. ML2 mechanism driver and type drivers for Mi-
doNet are available:

[DEFAULT]
core_plugin = ml2

[ml2]
tenant_network_types = midonet
type_drivers = midonet,uplink
mechanism_drivers = midonet

2.5 L3 service plugin

networking-midonet uses its own L3 service plugin:

[DEFAULT]
service_plugins = midonet_l3

2.5.1 L3 extensions

In addition to the standard ones, networking-midonet L3 service plugin provides the following exten-
sions. No additional configurations are necessary to enable them. They are enabled unconditionally.

• router-interface-fip (MidoNet 5.1.1 and later)

• fip64 (MidoNet 5.4 and later)

2.6 Interaction with Neutron agents

No Neutron agents are necessary for networking-midonet.

You can configure networking-midonet work with Neutron DHCP and Metadata agents. But it isnt
recommended anymore.

For details, please refer to MidoNet documentation:

https://docs.midonet.org

2.6.1 Interface driver

Neutron agents use interface driver to connect themselves into the datapath. In case of MidoNet, they
should be configured with the MidoNet interface driver.:

[DEFAULT]
interface_driver = midonet

4 Chapter 2. Installation and configuration

https://docs.midonet.org

Networking Midonet Documentation, Release 11.1.0.dev3

2.7 VPNaaS

Starting v5.1, MidoNet implements Neutron VPNaaS extension API.

MidoNet plugin implements VPNaaS as a service driver. To configure it, add the following entries in
the Neutron configuration file /etc/neutron/neutron.conf:

[DEFAULT]
service_plugins = vpnaas

[service_providers]
service_provider=VPN:Midonet:midonet.neutron.services.vpn.service_drivers.
↪→midonet_ipsec.MidonetIPsecVPNDriver:default

NOTE: This plugin does not use Neutron VPNaaS agent.

2.8 Gateway Device Service

Starting v5.1, MidoNet implements Gateway Device Service vendor extension API.

To configure it, add the following service plugin to the service_plugins list in the DEFAULT group of
/etc/neutron/neutron.conf :

[DEFAULT]
service_plugins = midonet_gwdevice

2.9 L2 Gateway Service

Starting v5.1, MidoNet implements Neutron L2 Gateway Service extension API. The implementation
differs slightly from upstream. Please check the spec to see the differences:

https://docs.openstack.org/networking-midonet/latest/specs/mitaka/border_gw.html

MidoNet plugin implements L2 Gateway Service as a service driver. To configure it, add the following
service plugin to the service_plugins list in the DEFAULT group of /etc/neutron/neutron.conf :

[DEFAULT]
service_plugins = midonet_l2gw

In addition, configure the service provider in the service_providers group of L2 Gateway plugin config-
uration file /etc/neutron/l2gw_plugin.ini:

[service_providers]
service_provider = L2GW:Midonet:midonet.neutron.services.l2gateway.service_
↪→drivers.l2gw_midonet.MidonetL2gwDriver:default

2.7. VPNaaS 5

https://docs.openstack.org/networking-midonet/latest/specs/mitaka/border_gw.html

Networking Midonet Documentation, Release 11.1.0.dev3

2.10 BGP dynamic routing service

Starting v5.2, MidoNet implements Neutron BGP dynamic routing service extension API. The imple-
mentation differs from upstream as follows:

• Router that is treated as bgp-speaker can be specified explicitly.

• Bgp-peer can relate to only one bgp-speaker.

• Binding network to bgp-speaker must be done before associating peers.

• Removing network from bgp-speaker must be done after all peers are disassociated from the bgp-
speaker.

• Only one network can be associated with a bgp-speaker.

• Advertise_floating_ip_host_routes and advertise_tenant_networks are ignored.

• Attached network to the router and destination network in extra routes on the router are showed
as advertised routes.

To configure it, add the following service plugin to the service_plugins list in the DEFAULT group of
/etc/neutron/neutron.conf :

[DEFAULT]
service_plugins = midonet_bgp

2.11 Tap-as-a-Service

Starting v5.2, MidoNet implements Tap-as-a-Service extension API.

MidoNet plugin implements TaaS as a service driver. To configure it, add the following entries in the
Neutron configuration file /etc/neutron/neutron.conf :

[DEFAULT]
service_plugins = taas

In addition, configure the service provider in the service_providers group of TaaS plugin configuration
file /etc/neutron/taas_plugin.ini:

[service_providers]
service_provider = TAAS:Midonet:midonet.neutron.services.taas.service_
↪→drivers.taas_midonet.MidonetTaasDriver:default

2.12 QoS

Starting v5.4, MidoNet implements Neutron QoS extension API. Its automatically enabled when QoS
service plugin is configured. No MidoNet-specific configuration is necessary.

6 Chapter 2. Installation and configuration

Networking Midonet Documentation, Release 11.1.0.dev3

2.12.1 QoS service plugin

QoS service plugin can be configured in the Neutron server configuration file /etc/neutron/neutron.conf :

[DEFAULT]
service_plugins = qos

2.12.2 QoS core resource extension for ML2

QoS core resource extension for ML2 plugin can be configured in the Neutron server configuration file
/etc/neutron/neutron.conf :

[ml2]
extension_drivers = qos

2.13 Horizon

Starting with Newton, Horizon has built-in support for MidoNet network types.

To enable it, add the following configuration to the OPENSTACK_NEUTRON_NETWORK dict in lo-
cal_settings.py:

'supported_provider_types': ['midonet', 'uplink'],

2.14 Magnum

Starting v5.2, MidoNet can be used for Magnum deployment.

2.13. Horizon 7

Networking Midonet Documentation, Release 11.1.0.dev3

8 Chapter 2. Installation and configuration

CHAPTER

THREE

RELEASE NOTES

See https://docs.openstack.org/releasenotes/networking-midonet/.

9

https://docs.openstack.org/releasenotes/networking-midonet/

Networking Midonet Documentation, Release 11.1.0.dev3

10 Chapter 3. Release Notes

CHAPTER

FOUR

MIGRATION FROM MONOLITHIC V2 PLUGIN TO ML2 PLUGIN

4.1 Overview

MidoNet monolithic v2 plugin (midonet_v2) is not supported anymore. When upgrading to Pike, a
deployer needs to switch to ML2 with MidoNet mechanism driver. This document outlines the migration
procedure.

Note: The procedure documented here is appropriate only when upgrading to Pike.

4.2 How to migrate

0. Take a backup. (not strictly necessary but strongly recommended)

1. Upgrade to Pike as usual.

This step includes the usual DB migration via neutron-db-manage.

2. Update neutron configuration to use ML2 plugin.

See the following section for examples.

3. Start neutron server.

On the first startup, MidoNet mechanism driver automatically migrates the data in the Neutron DB
from the form what MidoNet monolithic plugin recognises. This is a one-way migration. On suc-
cessful migration, the message DB Migration from MidoNet v2 to ML2 completed successfully
will be logged in the neutron server log at INFO level.

Note: The Step 3 assumes its the only neutron server process using the Neutron DB. If your deployment
has multiple neutron servers, make sure to shut them down prior to Step 3. After verifying that the
migration succeeded, you can start them. Also, make sure that they are also configured to use ML2 and
midonet mechanism driver.

11

Networking Midonet Documentation, Release 11.1.0.dev3

4.2.1 Neutron server configuration

Basically, you need to:

• Change core_plugin to ml2

• Add the ml2 group.

The midonet group is common for both of the monolithic plugin and the ML2 driver. It doesnt need
any changes.

Example before migration

[DEFAULT]
core_plugin = midonet_v2

Alternatively you might have non-alias version.
#core_plugin = midonet.neutron.plugin_v2.MidonetPluginV2

[MIDONET]
cluster_port = 8088
cluster_ip = 192.168.137.129
client = midonet.neutron.client.api.MidonetApiClient
project_id = service
password = midonet_service_password
username = neutron
midonet_uri = http://192.168.137.129:8181/midonet-api

Example after migration

[DEFAULT]
core_plugin = ml2

[MIDONET]
cluster_port = 8088
cluster_ip = 192.168.137.129
client = midonet.neutron.client.api.MidonetApiClient
project_id = service
password = midonet_service_password
username = neutron
midonet_uri = http://192.168.137.129:8181/midonet-api

[ml2]
mechanism_drivers = midonet
type_drivers = midonet,uplink
tenant_network_types = midonet
external_network_type = midonet
extension_drivers = port_security,qos
Or, in case you don't have qos service plugin configured.
#extension_drivers = port_security

12 Chapter 4. Migration from monolithic v2 plugin to ML2 plugin

CHAPTER

FIVE

HISTORICAL UPGRADE NOTES

Note: For releases newer than Mitaka, please look at Release Notes.

This section describes changes which might impact upgrades from the previous releases.

5.1 From Liberty to Mitaka

• Neutron MidoNet interface driver has been moved out of Neutron tree. If your deployment uses
Neutron DHCP agent and its configuration doesnt use the stevedore alias (midonet), you should
update it:

Before:

interface_driver = neutron.agent.linux.interface.
↪→MidonetInterfaceDriver

After:

interface_driver = midonet

• The following sub-commands were removed from midonet-db-manage command:

current Display the current revision for a database.
history List changeset scripts in chronological order.
branches Show current branch points
check_migration Show current branch points and validate head file
upgrade Upgrade to a later version.
downgrade (No longer supported)
stamp 'stamp' the revision table with the given
↪→revision;
revision Create a new revision file.

You can use neutron-db-manage subproject networking-midonet instead.

For example,:

$ neutron-db-manage --subproject networking-midonet upgrade head

• At the start of the Mitaka development cycle (immediately after liberty db milestone), our sub-
project db migration chain was separated into two branches, expand and contract, to allow a shorter

13

https://docs.openstack.org/releasenotes/networking-midonet/

Networking Midonet Documentation, Release 11.1.0.dev3

downtime as Neutron does. See the blueprint1 for details.

5.2 From Kilo to Liberty

• v2 plugin was separated into two plugins, core plugin and L3 service plugin. You need to configure
L3 service plugin in addition to the core plugin:

core_plugin = midonet.neutron.plugin_v2.MidonetPluginV2
service_plugins = midonet.neutron.services.l3.l3_midonet.
↪→MidonetL3ServicePlugin

• Plugin entry point for v1 plugin (the older plugin which is compatible with MidoNet v2015.03
and v2015.06) has been moved out of Neutron tree:

Before:

core_plugin = neutron.plugins.midonet.plugin.MidonetPluginV2

After:

core_plugin = midonet.neutron.plugin_v1.MidonetPluginV2

• midonet-db-manage command is now obsolete. While its still provided for backward compat-
ibility, we plan to remove it in a feature release. You can use neutron-db-manage subproject
networking-midonet instead.

For example,:

$ neutron-db-manage --subproject networking-midonet upgrade head

5.3 From Juno to Kilo

• A separate plugin (v2 plugin) which is compatible with MidoNet v5.0 (previously called
v2015.09) was introduced:

core_plugin = midonet.neutron.plugin_v2.MidonetPluginV2

1 http://specs.openstack.org/openstack/neutron-specs/specs/liberty/online-schema-migrations.html

14 Chapter 5. Historical Upgrade Notes

http://specs.openstack.org/openstack/neutron-specs/specs/liberty/online-schema-migrations.html

CHAPTER

SIX

NETWORKING-MIDONET CONFIGURATION GUIDE

This section provides a list of all possible options for each configuration file.

6.1 Configuration

Networking-midonet uses the following configuration options in the Neutron server configuration, which
is typically /etc/neutron/neutron.conf.

6.1.1 midonet

midonet_uri

Type string

Default http://localhost:8080/midonet-api

MidoNet API server URI. Note that, for historical reasons, the port number in the default value
(8080) does not match the default of the MidoNet API in MidoNet 5.0 and later, which is 8181.
Even if you configured the MidoNet API to use port 8080, we recommend to configure this option
explicitly because the default value may change in the future release of networking-midonet.

username

Type string

Default admin

MidoNet admin username.

password

Type string

Default passw0rd

MidoNet admin password.

project_id

Type string

Default 77777777-7777-7777-7777-777777777777

ID of the project that MidoNet admin user belongs to.

tunnel_protocol

15

Networking Midonet Documentation, Release 11.1.0.dev3

Type string

Default vxlan

Tunnel protocol used by Midonet. Currently unused.

cluster_ip

Type string

Default localhost

IP that the cluster service can be reached on. Currently unused.

cluster_port

Type string

Default 8088

Port that the cluster service can be reached on. Currently unused.

client

Type string

Default midonet.neutron.client.api.MidonetApiClient

MidoNet client used to access MidoNet data storage. Do not change unless you want to try the
experimental Task-based API.

6.2 Policy

Networking-MidoNet, like most OpenStack projects, uses a policy language to restrict permissions on
REST API actions.

6.2.1 networking-midonet policies

The following is an overview of all available policies in networking-midonet. For a sample configuration
file, refer to Sample Networking-MidoNet Policy File.

networking-midonet

create_bgp_speaker:logical_router

Default rule:admin_only

Operations

• POST /bgp-speakers

Create a BGP speaker with logical_router attribute

create_gateway_device

Default rule:admin_or_owner

Operations

• POST /gw/gateway-devices

16 Chapter 6. Networking-MidoNet Configuration Guide

Networking Midonet Documentation, Release 11.1.0.dev3

Create a gateway device

update_gateway_device

Default rule:admin_or_owner

Operations

• PUT /gw/gateway-devices/{id}

Update a gateway device

delete_gateway_device

Default rule:admin_or_owner

Operations

• DELETE /gw/gateway-devices/{id}

Delete a gateway device

get_gateway_device

Default rule:admin_or_owner

Operations

• GET /gw/gateway-devices

• GET /gw/gateway-devices/{id}

Get gateway devices

6.2.2 Sample Networking-MidoNet Policy File

The following is a sample networking-midonet policy file for adaptation and use.

The sample policy can also be viewed in file form.

Important: The sample policy file is auto-generated from networking-midonet when this documenta-
tion is built. You must ensure your version of networking-midonet matches the version of this documen-
tation.

Create a BGP speaker with ``logical_router`` attribute
POST /bgp-speakers
#"create_bgp_speaker:logical_router": "rule:admin_only"

Create a gateway device
POST /gw/gateway-devices
#"create_gateway_device": "rule:admin_or_owner"

Update a gateway device
PUT /gw/gateway-devices/{id}
#"update_gateway_device": "rule:admin_or_owner"

Delete a gateway device
DELETE /gw/gateway-devices/{id}
#"delete_gateway_device": "rule:admin_or_owner"

(continues on next page)

6.2. Policy 17

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

Get gateway devices
GET /gw/gateway-devices
GET /gw/gateway-devices/{id}
#"get_gateway_device": "rule:admin_or_owner"

18 Chapter 6. Networking-MidoNet Configuration Guide

CHAPTER

SEVEN

CONTRIBUTOR GUIDE

7.1 DevStack plugin

7.1.1 DevStack external plugin

networking-midonet has its devstack plugin. The following local.conf snippet would enable it:

enable_plugin networking-midonet https://opendev.org/openstack/networking-
↪→midonet

local.conf examples

ML2 Plugin with MidoNet drivers

You can find an example at devstack/ml2/local.conf.sample in the source tree.

[[local|localrc]]

This configuration file is intended to be used for CI and local
↪→develeopment
where you may only want networking related services to be running.

Load the devstack plugin for ml2
Q_PLUGIN=ml2
Q_AGENT=none # dummy value to avoid pulling functions from openvswitch_
↪→agent
Q_ML2_PLUGIN_MECHANISM_DRIVERS=midonet
Q_ML2_PLUGIN_TYPE_DRIVERS=midonet,uplink
Q_ML2_TENANT_NETWORK_TYPE=midonet
ML2_L3_PLUGIN=midonet_l3

enable_plugin networking-midonet https://opendev.org/openstack/networking-
↪→midonet

Set all the passwords
DATABASE_PASSWORD=midonet
RABBIT_PASSWORD=midonet
SERVICE_TOKEN=midonet
SERVICE_PASSWORD=midonet
ADMIN_PASSWORD=midonet

(continues on next page)

19

https://docs.openstack.org/devstack/latest/plugins.html
https://opendev.org/openstack/networking-midonet/raw/branch/master/devstack/ml2/local.conf.sample

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

Enable keystone, nova, glance and neutron
Also enable tempest since it's useful for CI and local dev
ENABLED_SERVICES=rabbit,mysql,key
ENABLED_SERVICES+=,n-api,n-crt,n-obj,n-cpu,n-cond,n-sch,placement-api
ENABLED_SERVICES+=,g-api,g-reg
ENABLED_SERVICES+=,q-svc,neutron
ENABLED_SERVICES+=,tempest
ENABLED_SERVICES+=,horizon
ENABLED_SERVICES+=,n-novnc,n-cauth

NOVA_VNC_ENABLED=True

If you want to use Gateway Device Management Service,
uncomment the following lines.
Q_SERVICE_PLUGIN_CLASSES+=,midonet_gwdevice

The following section contains environment variable settings that would
further minimalize the environment. For example, in some cases you may
↪→just
want to run the Neutron API with no agents, or you may want to disable
authentication.

If you want to also disable auth for Neutron, uncomment this
#
Q_AUTH_STRATEGY=noauth

If you don't want the host to be configured with fake uplink uncomment
↪→this
#
MIDONET_CREATE_FAKE_UPLINK=False

If you don't want devstack to create default networks, uncomment this
#
NEUTRON_CREATE_INITIAL_NETWORKS=False

If you want to disable Neutron agents so that only the API runs,
↪→uncomment
these
#
disable_service q-dhcp
disable_service q-meta

If you want to use the embedded metadata proxy, uncomment these:
#
MIDONET_USE_METADATA=True
Q_METADATA_ENABLED=True
disable_service q-dhcp
disable_service q-meta

If you want to use L2 Gateway Management Service,
uncomment the following lines.
enable_plugin networking-l2gw https://opendev.org/x/networking-l2gw
enable_service l2gw-plugin
L2GW_PLUGIN="midonet_l2gw"
NETWORKING_L2GW_SERVICE_DRIVER="L2GW:Midonet:midonet.neutron.services.
↪→l2gateway.service_drivers.l2gw_midonet.MidonetL2gwDriver:default"

(continues on next page)

20 Chapter 7. Contributor Guide

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

If you want to use VPNaaS, uncomment the following lines and manually
↪→install
ipsec package "libreswan".
#
enable_plugin neutron-vpnaas https://opendev.org/openstack/neutron-vpnaas
enable_service neutron-vpnaas
NEUTRON_VPNAAS_SERVICE_PROVIDER="VPN:Midonet:midonet.neutron.services.
↪→vpn.service_drivers.midonet_ipsec.MidonetIPsecVPNDriver:default"

If you want to use BGP dynamic routing service,
uncomment the following lines.
Q_SERVICE_PLUGIN_CLASSES+=,midonet_bgp

If you want to use Logging Resource Service, uncomment the following
↪→lines.
Q_SERVICE_PLUGIN_CLASSES+=,midonet_logging_resource

If you want to use Tap as a Service, uncomment the following lines.
enable_plugin tap-as-a-service https://opendev.org/x/tap-as-a-service
enable_service taas
TAAS_SERVICE_DRIVER="TAAS:Midonet:midonet.neutron.services.taas.service_
↪→drivers.taas_midonet.MidonetTaasDriver:default"

MidoNet backend communication

MidoNet exposes two ways to communicate to its service:

1. REST (synchronous)

2. Tasks DB (asynchronous - experimental)

By default, the plugin is configured to use the REST API service. The REST API client is specified as:

MIDONET_CLIENT=midonet.neutron.client.api.MidonetApiClient

If you want to use the experimental Tasks based API, set the following:

MIDONET_CLIENT=midonet.neutron.client.cluster.MidonetClusterClient

VPNaaS

Starting v5.1, MidoNet implements Neutron VPNaaS extension API. To configure MidoNet as the VP-
NaaS driver when running devstack, make sure the following is defined in local.conf:

enable_plugin neutron-vpnaas https://opendev.org/openstack/neutron-vpnaas
enable_service neutron-vpnaas
NEUTRON_VPNAAS_SERVICE_PROVIDER="VPN:Midonet:midonet.neutron.services.vpn.
↪→service_drivers.midonet_ipsec.MidonetIPsecVPNDriver:default"

NOTE: Currently, this devstack plugin doesnt install ipsec package libreswan. Please install it manually.

7.1. DevStack plugin 21

Networking Midonet Documentation, Release 11.1.0.dev3

Gateway Device Management Service

Starting v5.1, MidoNet implements Neutron Gateway Device Management Service extension API. To
configure MidoNet including Gateway Device Management Service when running devstack, make sure
the following is defined in local.conf:

Q_SERVICE_PLUGIN_CLASSES=midonet_gwdevice

L2 Gateway Management Service

Starting v5.1, MidoNet implements Neutron L2 Gateway Management Service extension API. To con-
figure MidoNet including L2 Gateway Management Service when running devstack, make sure the
following is defined in local.conf:

enable_plugin networking-l2gw https://opendev.org/x/networking-l2gw
enable_service l2gw-plugin
Q_PLUGIN_EXTRA_CONF_PATH=/etc/neutron
Q_PLUGIN_EXTRA_CONF_FILES=(l2gw_plugin.ini)
L2GW_PLUGIN="midonet_l2gw"
NETWORKING_L2GW_SERVICE_DRIVER="L2GW:Midonet:midonet.neutron.services.
↪→l2gateway.service_drivers.l2gw_midonet.MidonetL2gwDriver:default"

BGP dynamic routing service

Starting v5.2, MidoNet implements Neutron BGP dynamic routing service extension API. The imple-
mentation differs slightly from upstream. In MidoNet, router treated as bgp-speaker must be specified.

To configure MidoNet including BGP dynamic routing service when running devstack, make sure the
following is defined in local.conf:

enable_plugin neutron-dynamic-routing https://opendev.org/openstack/
↪→neutron-dynamic-routing
DR_MODE=dr_plugin
BGP_PLUGIN=midonet_bgp
enable_service q-dr

QoS

The following local.conf snippet would enable QoS extension with MidoNet driver:

enable_plugin neutron https://opendev.org/openstack/neutron
enable_service q-qos

22 Chapter 7. Contributor Guide

Networking Midonet Documentation, Release 11.1.0.dev3

Tap as a service

The following local.conf snippet would enable Tap-as-a-service support:

enable_plugin tap-as-a-service https://opendev.org/openstack/tap-as-a-
↪→service
enable_service taas
TAAS_SERVICE_DRIVER="TAAS:Midonet:midonet.neutron.services.taas.service_
↪→drivers.taas_midonet.MidonetTaasDriver:default"

7.2 Policies

7.2.1 Policies

This page explains development policies for networking-midonet project.

See also:

• Neutron Policies

• OpenStack Developers Guide

Review and merge patches

• How to find patches to review

Unlike some of other gerrit-using communities, (e.g. midonet project on gerrithub) a submitter of
patches usually doesnt add reviewers to their patches explicitly. (Nor recommended to do so) We
consider its reviewers responsibility to find patches to review. There are a few tools available to
help the process.

– Gerrit dashboards1

– Email notifications from gerrit2

– Gerrit notifications on Freenode IRC channels, #openstack-neutron3 and #midonet4

• We require two +2 votes before merging a patch

When you merge a patch without two +2 votes, please leave a message to explain why. E.g. This
is a trivial fix for a problem blocking other projects.

Usually the reviewer who voted the second +2 also make it Workflow +1. It makes zuul run the
gate jobs for the patch and merge it if tests succeeded. Of course, its also ok for the reviewer to
choose not to put Workflow +1. E.g. When he thinks more reviews are desirable. E.g. When
the gate jobs are known to be broken. (In that case, running them would just waste the infra
resources.)

• Do not ignore the result of non-voting jobs
1 https://docs.openstack.org/networking-midonet/latest/contributor/dashboards.html#gerrit-dashboards
2 https://review.opendev.org/#/settings/projects
3 http://eavesdrop.openstack.org/irclogs/%23openstack-neutron/latest.log.html
4 http://eavesdrop.openstack.org/irclogs/%23midonet/latest.log.html

7.2. Policies 23

https://docs.openstack.org/neutron/latest/policies/index.html
https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/networking-midonet/latest/contributor/dashboards.html#gerrit-dashboards
https://review.opendev.org/#/settings/projects
http://eavesdrop.openstack.org/irclogs/%23openstack-neutron/latest.log.html
http://eavesdrop.openstack.org/irclogs/%23midonet/latest.log.html

Networking Midonet Documentation, Release 11.1.0.dev3

When you merge a patch with non-voting jobs failing, please leave a message to explain why.
Please make sure that theres a bug filed for the symptom. E.g. Test failures are unrelated to this
patch. bug xxxxxx.

• Document recheck reasons

Writing a comment starting with recheck5 on the gerrit, you can re-trigger test jobs for the patch.
Please try to examine the failure and explain why a recheck was necessary in the comment. A
bug reference is the most appropriate. E.g. recheck bug xxxxxxx E.g. recheck builds.midonet.org
connection timeout

• Check the rendered htmls when reviewing document changes

Test jobs build-openstack-sphinx-docs and build-openstack-releasenotes
provide the rendered results for the change.

7.3 Programming HowTos and Tutorials

7.3.1 Alembic Migrations

Script Auto-generation

Please refer to the Neutron documentation Script Auto-generation for the instruction to auto-generate
migration scripts.

You need to specify subproject networking-midonet option to the neutron-db-manage command to gen-
erate a migration script for this project.

Depending on *aaS and other sub-projects set up in your environment, you might need to edit the
generated script. Typically, you need to remove extra drop table ops for tables which dont belong to
our project.

7.3.2 Tests

You can run the unit tests with the following command:

$ tox -e py27

It installs its requirements to .tox/py27 on the initial run.

7.4 Dashboards

7.4.1 Dashboards

Gerrit Dashboards

Networking-MidoNet Review Inbox
5 https://opendev.org/opendev/project-config/src/commit/cef92ba2d9abc000fb5a35b85904e8dc2bf6be1a/zuul.d/pipelines.

yaml#L16-L17

24 Chapter 7. Contributor Guide

https://docs.openstack.org/neutron/latest/devref/alembic_migrations.html#script-auto-generation
https://review.openstack.org/#/dashboard/?foreach=%28project%3Aopenstack%2Fnetworking%2Dmidonet%29+status%3Aopen+NOT+owner%3Aself+NOT+label%3AWorkflow%3C%3D%2D1+label%3AVerified%3E%3D1%2Czuul+NOT+reviewedby%3Aself&title=Networking%2DMidoNet+Review+Inbox&Needs+Feedback+%28Changes+older+than+5+days+that+have+not+been+reviewed+by+anyone%29=NOT+label%3ACode%2DReview%3C%3D%2D1+NOT+label%3ACode%2DReview%3E%3D1+age%3A5d+branch%3Amaster&You+are+a+reviewer%2C+but+haven%27t+voted+in+the+current+revision=NOT+label%3ACode%2DReview%3C%3D%2D1%2Cself+NOT+label%3ACode%2DReview%3E%3D1%2Cself+reviewer%3Aself+branch%3Amaster&Needs+final+%2B2=label%3ACode%2DReview%3E%3D2+NOT%28reviewerin%3Anetworking%2Dmidonet%2Dcore+label%3ACode%2DReview%3C%3D%2D1%29+limit%3A50+branch%3Amaster&Passed+Zuul%2C+No+Negative+Core+Feedback=NOT+label%3ACode%2DReview%3E%3D2+NOT%28reviewerin%3Anetworking%2Dmidonet%2Dcore+label%3ACode%2DReview%3C%3D%2D1%29+limit%3A50+branch%3Amaster&Wayward+Changes+%28Changes+with+no+code+review+in+the+last+2days%29=NOT+label%3ACode%2DReview%3C%3D%2D1+NOT+label%3ACode%2DReview%3E%3D1+age%3A2d+branch%3Amaster&stable%2Focata=branch%3Astable%2Focata&stable%2Fnewton=branch%3Astable%2Fnewton&other+branches=NOT+branch%3Amaster+AND+NOT+branch%3Astable%2Focata+AND+NOT+branch%3Astable%2Fnewton
https://opendev.org/opendev/project-config/src/commit/cef92ba2d9abc000fb5a35b85904e8dc2bf6be1a/zuul.d/pipelines.yaml#L16-L17
https://opendev.org/opendev/project-config/src/commit/cef92ba2d9abc000fb5a35b85904e8dc2bf6be1a/zuul.d/pipelines.yaml#L16-L17

Networking Midonet Documentation, Release 11.1.0.dev3

Grafana Dashboards

Networking-MidoNet Failure Rate

7.4. Dashboards 25

http://grafana.openstack.org/dashboard/db/networking-midonet-failure-rate

Networking Midonet Documentation, Release 11.1.0.dev3

26 Chapter 7. Contributor Guide

CHAPTER

EIGHT

SPECIFICATIONS

8.1 Kilo specs

8.1.1 Agent API

In a Neutron-MidoNet deployment, where numerous agents are running on various hosts to provide
services, it is important that the operators have a way to view these agents to check their existence and
health. Neutron already provides this feature with its agent extension API [1]. This document describes
the design of the agent extension API implementation by the MidoNet Neutron plugin that provides this
feature also for the MidoNet agents.

Problem Description

There is currently no way to display the information about the MidoNet agents that are deployed using
the Neutron API. Such information is useful for operators to see their liveness and the location that they
are deployed on.

Additionally, the operators need to find out the IDs of the agents, as well as the IP addresses of the
hosts that the agents are running on, to be able to execute the agent_membership API, where both of
these values are needed in the input. Without executing the agent_membership API, the MidoNet agents
cannot create tunnels among themselves, and VMs running on remote hosts would not be able to connect
to each other.

Proposed Change

Implement the existing agent Neutron extenion API in the MidoNet Neutron plugin that provide (at the
very least) the following:

• Display all the MidoNet agents deployed, with the id field indicating the globally unique identifier
of each agent that can be used in the agent membership API

• Show the IP addresses of the host that the agent is running on

• Show the aliveness of the agents

The decision to provide these using the existing agent Neutron extension as opposed to creating a new
vendor extension is that there are significant overlaps between the two and the agent extension provides
integration with Horizon and neutron CLI.

The following fields exist in the Neutron agent extension that MidoNet can provide:

• id: Unique identifier of the agent.

27

Networking Midonet Documentation, Release 11.1.0.dev3

• agent_type: Represents the type of the agent. Midonet agent is the type for the MidoNet agents.

• binary: Represents the package name. For MidoNet, it is midolman.

• alive: Represents the liveness of the agent.

• description: The description of the agent. This is the only updatable field of the API.

• configurations: A dictionary that includes configurations specific to the agent. For MidoNet, this
dictionary contains the IP addresses and the interfaces of the host:

{
"interfaces":

[
{"name": INTERFACE_NAME, "ip_addresses": [IP_ADDRESSES]}

]
}

Since the agent API is designed with OpenStack agents in mind, however, there are fields in the API that
MidoNet cannot provide.

The following fields are not supported by the MidoNet plugin at the time of this proposal:

• host: The host name where the agent is running. While this information is useful, it is not currently
supported by MidoNet.

• topic: AMQP message topic to communicate with the agent. MidoNet agents do not support this.

• admin_state_up: Sets the administrative status of the agent. MidoNet does not support this. An
attempt to update gets an unsupported error response.

• heartbeat_timestamp: The heartbeat for aliveness. MidoNet agents do not provide this data.

MidoNet agents, when they spawn, report their existence to the MidoNet Network State Database
(NSDB). NSDB is also notified when the agent goes down. The MidoNet Cluster, through its RPC
service, exposes an API to provide this data to the Neutron plugin. The RPC API provides all the in-
formation the plugin needs to populate the supported fields, and it also contains the most up-to-date
information of the agents health. Because all the required agent information can be retrieved via the
Cluster API on each Neutrons agent API, Neutrons agents DB table does not need to be populated for
the MidoNet agents. The plugin is responsible for merging the OpenStack agent data and the MidoNet
agent data.

Lastly, deletion of agents, supported by Neutron API, is not supported by the MidoNet plugin. Unsup-
ported exception is thrown when a user attempts to delete an agent.

REST API

No change except that some fields will be unsupported as explained above.

28 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

DB Model

No change, and since all the MidoNet agent data are provided by MidoNe cluster, the agents database
table in Neutron will be unused.

Security

No impact

Client

No code change is made, but neutron agent-delete‘ command is not supported since the MidoNet plugin
does not allow agent deletion.

See the Neutron CLI documentation for more details on the agent commands[2].

References

Because of the lack of API documentation available, the Neutron agent extension API reference is its
source code:

[1] https://github.com/openstack/neutron/blob/master/neutron/extensions/agent.py [2] http:
//docs.openstack.org/cli-reference/content/neutronclient_commands.html

8.1.2 Agent Membership API

In MidoNet, each MidoNet agent must be activated in order to join the MidoNet deployment. This
step ensures that no rogue MidoNet agent automatically joins the MidoNet deployment. This document
describes the agent-membership Neutron extension API that provides this feature.

Problem Description

In the previous MidoNet API, the authorization step to allow a MidoNet agent to be activated in the
deployment was to add it to a tunnel zone.

This was undesirable because it required explicit tunnel zone coniguration using the API, and in an
OpenStack-MidoNet deployment, there was no use case known or supported that requires more than
one tunnel zone to exist. By forcing users to create a tunnel zone and adding individual hosts to them, it
was creating unnecessary potential failure points without adding any value.

8.1. Kilo specs 29

https://github.com/openstack/neutron/blob/master/neutron/extensions/agent.py
http://docs.openstack.org/cli-reference/content/neutronclient_commands.html
http://docs.openstack.org/cli-reference/content/neutronclient_commands.html

Networking Midonet Documentation, Release 11.1.0.dev3

Proposed Change

Maintain a singleton default Tunnel Zone, with the name, DEFAULT, in the system. This tunnel zone
is created automatically by the MidoNet cluster. The Neutron plugin signals the cluster to do create it
when it starts up by submitting a new task type, CONFIG.

CONFIG task contains all the global configuration values settable in Neutron that MidoNet would find
useful. The handling of the case in which the cluster fails to process this task is outside the scope of this
proposal, and it is assumed that CONFIG task is treated the same as any other tasks.

For this particular change, only one new field is introduced in CONFIG, which is tunnel_protocol, that
indicates the global tunneling protocol that MidoNet should use. This value is used by MidoNet to
create the singleton Tunnel Zone. The default tunneling protocol used is vxlan, but you can override it
by specifying the following in neutron.conf:

[MIDONET] tunnel_protocol=gre # Could be vxlan or gre

With this approach, the concept of Tunnel Zone is completely hidden from the user as well as from the
neutron implementation.

To authorize an agent to be added to the deployment, agent-membership Neutron extension API de-
scribed below is defined.

REST API

AgentMembership

Attribute
Name

Type POST/
PUT

Re-
quired

Description

id string
(UUID)

POST gener-
ated

ID of the MidoNet agent, which maps to
hostId in cluster

ip_address string POST Yes IP address to use for tunneling

Only POST and DELETE operations are permitted, and only admin can execute them.

Only IPv4 address is supported for ip_address.

id field is the ID of the MidoNet host object, which you can retrieve using the agent API extension of
Neutron (not implemented yet). The agents and the MidoNet hosts map one-to-one. Likewise, the agent
API will also include the host interfaces and their IP addresses, useful to populate the ip_address field
for the agent membership API.

DB Model

midonet_agent_membership

Name Type Description
id String ID of the agent (same as host in the cluster)
ip_address String IP address to use for tunneling

Only IPv4 address is supported for ip_address.

New task types are:

30 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

• CONFIG: Represents global Neutron configurations

• AGENTMEMBERSHIP: Represents AgentMembershp resource

Security

Only admins are allowed to execute the agent-membership API. This explicit step to add each agent as
a member provides an extra layer of security to prevent unwanted agents to join automatically.

Client

The following command lists all the memberships:

::

neutron agent-membership-list [-h] [-P SIZE] [sort-key FIELD] [sort-dir {asc, desc}]

-h, help:: show the help message

-P SIZE, page-size SIZE:: Specify retrieve unit of each request

sort-key FIELD:: Sorts the list by the specified fields

sort-dir {asc,desc}:: Sorts the list in the specified direction

The following command adds an agent to the MidoNet deployment membership:

::

neutron agent-membership-create [-h] [agent-id AGENT] [ip-address IP_ADDRESS]

-h, help:: show the help message

-a, agent-id:: Specify the ID of the agent to add to membership

-a, --ip-address Set IP address to use for tunneling

The following command removes an agent from the MidoNet deployment membership:

:: neutron agent-membership-delete [-h] AGENT_MEMBERSHIP

AGENT_MEMBERSHIP:: ID of the agent membership to remove

8.1.3 Data Sync

In MidoNet 2.0, Neutron is the data store of network configurations and Cluster is the backend data store
that contains MidoNet-specific data objects translated from Neutron data models.

Also, MidoNet 2.0 includes data syncing feature between Neutron and Cluster, which is internally im-
plemented by importing the Neutron data into Cluster through the tasks table. The data sync feature is
needed for the following use cases:

• Operator sets up MidoNet for the first time and wants to initialize the Cluster data

• Operator using a non-MidoNet Neutron plugin wishes to migrate over to MidoNet

• Operator wants to upgrade to the new version of MidoNet and the MidoNet data schema has
changed.

8.1. Kilo specs 31

Networking Midonet Documentation, Release 11.1.0.dev3

• Modifying either the Neutron DB or MidoNet data store directly for some operational purpose led
to severe data mismatch between Neutron and MidoNet, and wishes to re-sync.

Each data imported is versioned. This document describes the data version management feature of
midonet-db-manage tool that includes syncing Neutron and Cluster data, and rolling back to one of the
previous data versions.

The Cluster design of data import, and the upgrade process, are outside the scope of this document.

Problem Description

While MidoNet 2.0 is designed to provide the data syncing feature, currently there is no tool made
available in Neutron to facilitate it. Without such a tool, the data sync feature does not get exposed to the
operators, making the upgrade process and data re-syncing between Neutron and MidoNet challenging.

Proposed Change

midonet-db-manage, which manages the tasks table in Neutron DB among other DB related features, is
enhanced with the following capabilities:

• Toggle the write access of the tasks table between read-only and read-write modes, which also
toggles the API between read-only and read-write correspondingly

• Through the tasks table, signal to Cluster that data sync is about to start and execute the data
import, and signal that the import has completed to activate the imported data

• Maintain all the past data sync events and their summaries

Deletion of the imported Cluster data is not included in this proposal, but it is planned to be included in
one of the future releases.

Tasks Write Access

A new column is added to midonet_data_state table which indicates the write access to the tasks table.
The default is read-write. The data sync operation is only allowed in the read-only mode, and the
operator cannot switch back to read-write while the data sync is taking place. The plugin will throw
503 (Service Unavailable) on all the POST/PUT/DELETE Neutron API requests if the tasks table is in
a read-only mode.

Data Version

Each data sync event is summarized and saved in the midonet_data_versions table as a new data version.
A data version includes fields that are updated only by midonet-db-manage and fields updated only by
Cluster.

The fields updated by midonet-db-manage are:

• id: Globally unique identifier of the data version

• sync_started_at: Time the sync started

• sync_tasks_status: Status of sync tasks insertion

• stale: Flag indicating that this data set is out of date

32 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

The field updated by Cluster is

• sync_finished_at: Time all the tasks were processed by Cluster

Both midonet-db-manage and Cluster update:

• sync_status: Status of the sync. midonet_db_manager updates it when it starts, and Cluster
updates when it finishes processing all the tasks

How these fields get set are described in Tasks Data Sync section below.

The data version summary does not include the number of tasks processed but such information would
be printed and logged from the midonet-db-manage command, and may be added to the table if there
are clear use cases for it.

When the midonet-db-manage sync command is issued, id, sync_started_at and sync_tasks_status are
initialized. sync_tasks_status is set to STARTED.

When the midonet-db-manage finishes adding all the tasks, sync_tasks_status is updated to COM-
PLETED.

Tasks Data Sync

The data sync operation is allowed only when the data write access is set to read-only.

The data sync operation is implemented as follows:

1. midonet-db-manage truncates the tasks table and inserts a DATA_VERSION_SYNC task in the
first row. This task instructs Cluster that a new data sync has started, and it needs to prepare
a new storage for the sync. midonet-db-manage sets sync_started_at to the current time, and
sync_tasks_status and sync_status to STARTED. Syncing is disallowed in the following cases:

a. Sync is already being executed

b. There are unprocessed tasks (so that truncate does not delete unprocessed tasks)

2. Immediately following the DATA_VERSION_SYNC task insertion, midonet-db-manage queries
Neutron DB and generates CREATE tasks for all the existing resources. Cluster processes them
as usual and creates these resources in the backend.

3. Once all the tasks to re-create the Neutron objects are inserted into the tasks table,
DATA_VERSION_ACTIVATE task is added to indicate that the import has finished. midonet-
db-manage updates the sync_task_status to COMPLETED

midonet-db-manage sync command exits immediately after DATA_VERSION_ACTIVE task has been
added to the tasks table, and does not know whether Cluster has successfully processed all the tasks.
sync_status and sync_tasks_status exist to differentiate the statuses of the Cluster processing and the
midonet-db-manage command.

Cluster, after processing DATA_VERSION_ACTIVATE task, updates sync_status to COMPLETED. If
Cluster encounters an error, it updates sync_status to ERROR. In both cases, sync_finished_at is updated.

If there was an error while inserting sync tasks, midonet-db-manager updates sync_tasks_status
to ERROR. If the sync command was forcefully terminated (SIGINT) by the user, then
sync_tasks_status is set to ABORTED. In both cases, the command terminates immediately, and adds
DATA_VERSION_ACTIVE task with the version ID set to the currently active data version (not the one
being synced).

8.1. Kilo specs 33

Networking Midonet Documentation, Release 11.1.0.dev3

Data Version Activation

An active data version means that the data originated from this data sync event is what the MidoNet
agents are currently using for packet simulation. At any time, exactly one data version may be active.
When a data sync process completes, the newly imported data set is automatically activated.

In addition, midonet-db-manage offers a command to rollback to the previously active data version. A
rollback could only happen during one read-only session. Once the operator sets the API to read-write,
none of the previously synced data could be chosen for a rollback. You can only rollback to the data
sync that was completed in the same read-only session. The operator is expected to do all the necessary
verifications of the completed data sync before the data access is set back to read-write. When the data
is set back to read-write, midonet-db-manage sets the stale field of all the non-active data versions to
true.

When a data activation command is issued, midonet-db-manage sets the sync_status and task_status to
STARTED. When the command completes, it sets the task_status to COMPLETED. Cluster, when it
finishes the activation process, updates sync_status to COMPLETED, and active_data_version field of
the midonet-data-state table to the activated version.

You can not go back to the read-write mode if either task_status or sync_status field is set to STARTED.

REST API

None

DB Model

midonet_data_versions

Name Type Description
id Int The version of the data
sync_started_at DateTime Time the data sync started
sync_finished_at DateTime Time the data sync finished
sync_status String Status of the sync operation
sync_tasks_status String Status of the sync tasks insertion
stale Boolean True if the date version is stale

The sync_status column could contain one of the following values:

• STARTED

• COMPLETED

• ERROR

The sync_tasks_status column could contain one of the following values:

• STARTED

• COMPLETED

• ABORTED

• ERROR

34 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

midonet_data_state

Rename midonet_task_state to midonet_data_state.

Add a new column to store the write access to the tasks table.

Name Type Description
active_version Int Active data version
readonly Boolean If true, tasks table is readonly

FLUSH task type is deleted, and new resource types, DATA_VERSION_SYNC and
DATA_VERSION_ACTIVATE are created.

To start the data sync process, this is added in row 1 of the tasks table:

:: task_type: DATA_VERSION_SYNC resource_type: resource_id: <DATA_VERSION> data: {}

To activate a data version, this is added to the tasks table:

:: task_type: DATA_VERSION_ACTIVATE resource_type: resource_id: <DATA_VERSION> data:
{}

Security

Similar to neutron-db-manage, only the admins are expected to run midonet-db-manage. While there is
no special authentication mechanism implemented for this tool, the only way to run this script is if you
have access to the management hosts in the cloud, and preventing unauthorized users from gaining such
access is out of this documents scope.

Client

The following command displays the global information about the data, including the write access and
the last processed task:

:: midonet-db-manage data-show

The following command sets the Neutron data to be read-only:

:: midonet-db-manage data-readonly

The following command sets the Neutron data to be read-write:

:: midonet-db-manage data-readwrite

The following command displays all the data versions:

:: midonet-db-manage data-version-list

The following command starts data sync to create a new version:

:: midonet-db-manage data-version-sync

The following command activates the specified version. It could be used for the rollback:

:: midonet-db-manage data-version-activate <VERSION_ID>

8.1. Kilo specs 35

Networking Midonet Documentation, Release 11.1.0.dev3

Documentation

In the Deployment Guide, the following section is added:

• How to initialize the Cluster data when Setting up MidoNet for the first time

• How to initialize the Cluster data when migration from a different Neutron plugin

• Within the upgrade section, how to sync the data from Neutron to Cluster, including how the
rollback is accomplished

In the Operational Guide, the following section is added:

• How to sync data between Neutron and Cluster when the data between them become inconsistent
due to some operational errors

8.1.4 Gateway Device Management API

MidoNet provides a Neutron extension API called Gateway Device Management to provide device-
level gateway management service to the operators. This API is required in order to propagate device
connectivity details to enable Midonet to manage VTEP Logical Switch configuration upon Logical
Gateway definition. Gateway Device Management API is required for management IP and Port settings.
Gateway device should be identified by user driven name in order to correlate it with Logical Gateway
entity.

VTEP status, VTEP configuration, such as Tunnel IP are out of the scope of current version of this API.
MidoNet currently does not support secure connection settings.

Proposed Change

REST API

GatewayDevice

Attribute Name Type CRUD Required Description
id string (UUID) CR generated ID of the Gateway Device
name string CRU No User defined device name
management_ip string (ip addr) CR Yes Manangement IP of device
management_port int CR Yes Management port of device

Currently, only the VTEP device is supported.

GatewayDevicePeer

To support Active Active Hardware VTEP, MidoNet has an API in place to set peers of VTEP gateway
devices.

Attribute Name Type CRUD Required Description
id string (UUID) CR generated ID of the device peering
name string CRU No User defined peering name
device1_id string (UUID) CR Yes ID of the first device
device2_id string (UUID) CR Yes ID of the second device

36 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

DB Model

midonet_gateway_devices

Name Type Description
id String ID of the gateway device
name String Name of the gateway device
management_ip String Management IP address of the gateway device
management_port int Management port of the gateway device

midonet_gateway_device_peers

Name Type Description
id String ID of the gateway peering
name String Name of the gateway peering
device1_id String ID of the first gateway device
device2_id String ID of the second gateway device

Client

The following command creates a gateway device:

::

neutron gateway-device-create [name NAME] [ip MGMT_IP] [port MGMT_PORT]

The following command updates a gateway device:

::

neutron gateway-device-update DEVICE_ID [name NAME] [ip MGMT_IP] [port
MGMT_PORT]

The following command views a gateway device:

:: neutron gateway-device-show DEVICE_ID

The following command deletes a gateway device:

:: neutron gateway-device-delete DEVICE_ID

The following command creates a gateway device peering:

::

neutron gateway-device-peering-create [name NAME] [device1 DEV1] [device2 DEV2]

The following command views a gateway device peering:

:: neutron gateway-device-peering-show DEVICE_PEER_ID

The following command deletes (tears down) a gateway device peering:

:: neutron gateway-device-peering-delete DEVICE_PEER_ID

8.1. Kilo specs 37

Networking Midonet Documentation, Release 11.1.0.dev3

Alternative Proposal

Instead of managing Gateway devices using REST API, do so using configuration files, which is the
approach more familiar to those coming from Neutron background. The REST API approach was chosen
to simplify and possibly automate the gateway device management.

8.1.5 Dynamic Routing Service

The MidoNet Neutron plugin, through Neutrons advanced service framework, provides the dynamic
routing feature on the provider router.

MidoNet currently only supports BGP but it will also support OSPF in the future. The API design
attempts to abstract away the underlying routing protocol.

Problem Description

With the dynamic routing service, an OpenStack cloud would run a routing protocol (for example, BGP)
against at least one router in each uplink network provider. By announcing external network hosting
floating IP prefixes to those peers, the Neutron network would be reachable by the rest of the internet
via both paths. If the link to an uplink provider broke, the failure information would propagate to routers
further up the stream, keeping the cloud reachable through the remaining healthy link. Likewise, in such
a case, Neutron would eliminate the routes learned through the faulty link from its forwarding table,
redirecting all cloud-originated traffic through the healthy link.

Without dynamic routing, the scenario described above would not be possible.

Proposed Change

Three new models are introduced.

RoutingInstance is the top level object that abstracts a dynamic routing service (such as BGP, OSFP).
When configured, the dynamic routing service is enabled on the router that it is associated with.

RoutingPeer is the peering configuration applied on the router port that you want to start the peering
session from. Since RoutingPeers are associated with ports, there would be multiple RoutingPeers for a
given RoutingInstance.

AdvertiseRoute is the route advertised with dynamic routing. In Neutron, Floating IP could be advertised
to the outside of OpenStack cloud by creating an AdvertiseRoute object for that CIDR.

In MidoNet, routes learned from the peer are inserted into the routing table of the router, and this
proposal does not affect this mechanism.

38 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

REST API

RoutingInstance

Attribute
Name

Type POST/
PUT

Re-
quired

Description

id string
(UUID)

POST gener-
ated

ID of the routing instance

router_id string
(UUID)

POST Yes Router that the routing service is attached to

local_as int POST Yes Local AS number used in BGP
protocol string No Routing protocol to use. Only BGP supported, so

cannot be updated.

Deleting the routing instance deletes all the advertise routes and routing peers. loopback address feature
is not included in this spec, but will be added in the future. Also, while the models proposed are meant
to abstract away all the dynamic routing protocols, because MidoNet only handles BGP right now, they
only include BGP-specific fields.

A router that has a routing instance associated cannot be deleted, and you must delete the routing instance
first.

A router could have only one routing instance associated.

RoutingPeer

Attribute Name Type POST/
PUT

Re-
quired

Description

id string
(UUID)

POST gener-
ated

ID of the routing peer

rout-
ing_instance_id

string
(UUID)

POST Yes Routing instance it is associated
with

port_id string
(UUID)

POST Yes Port used to connect to the peer

peer_as int POST Yes Peer AS number used in BGP
peer_address string POST Yes Peer IP address

Only IPv4 is supported for peer_address. In this proposal, the support for establishing connections with
peers that do not have an IP address is not included.

Deleting a routing instance deletes the associated routing peers.

AdvertiseRoute

8.1. Kilo specs 39

Networking Midonet Documentation, Release 11.1.0.dev3

Attribute
Name

Type POST/
PUT

Re-
quired

Desciption

id string
(UUID)

POST gen-
er-
ated

Unique Identifier for route configuration

rout-
ing_instance_id

string
(UUID)

POST Yes ID of the routing instance the route is associated with

destination string POST No Value to compare with the destination IP address of the
flow being forwarded Default: 0.0.0.0/32

Only IPv4 is supported for destination.

Deleting a routing instance deletes the associated advertise routes.

DB Model

midonet_routing_instances

Name Type Description
id String ID of the routing instance
router_id String ID of the router the routing instance is attached to
local_as Int Local AS number
protocol String Routing protocol

The only supported value for protocol is BGP, but OSPF will be added in the future.

midonet_routing_peers

Name Type Description
id String ID of the routing peer
routing_instance_id String ID of the routing instance associated
port_id String ID of the port for the peer connection
peer_as Int Peer AS number used for BGP
peer_address String Peer IP address

midonet_advertise_route

Name Type Description
id String ID of the route
routing_instance_id String ID of the routing instance associated
destination String destination CIDR to match on

midonet_tasks

New task data types are introduced:

• ROUTING_INSTANCE

• ROUTING_PEER

• ADVERTISE_ROUTE

40 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

Security

For this proposal, dynamic routing configuration is limited to admins only.

Client

The following command creates a routing instance:

::

neutron routing-instance-create [router-id ROUTER_ID] [local-as LOCAL_AS]

router-id ROUTER_ID:: ID of the router to associate with

local-as LOCAL_AS:: The local AS number

The following command gets a routing instance:

:: neutron routing-instance-show ROUTING_INSTANCE_ID

ROUTING_INSTANCE_ID:: ID of the routing instance to look up

The following command lists all the routing instances of a tenant:

:: neutron routing-instance-list

The following command associates a routing instance to a router:

::

neutron routing-instance-associate [router-id ROUTER_ID] ROUTING_INSTANCE_ID

ROUTING_INSTANCE_ID:: ID of the routing instance to look up

router-id ROUTER_ID:: ID of the router to associate with

The following command disassociates a routing instance from a router:

:: neutron routing-instance-disassociate ROUTING_INSTANCE_ID

ROUTING_INSTANCE_ID:: ID of the routing instance to look up

The following command deletes a routing instance:

:: neutron routing-instance-delete ROUTING_INSTANCE_ID

ROUTING_INSTANCE_ID:: ID of the routing instance to look up

The following command creates a routing peer:

::

neutron routing-peer-create [routing-instance-id ROUTING_INSTANCE_ID] [port-id
PORT_ID] [peer-as PEER_AS] [peer-address PEER_ADDRESS]

routing_instance_id ROUTING_INSTANCE_ID:: ID of the routing instance to create the routing
peer for

port-id PORT_ID:: ID of the port to connect to peer from

peer-as PEER_AS:: Peer AS number for BGP

peer-address PEER_ADDRESS:: Peer IP address

8.1. Kilo specs 41

Networking Midonet Documentation, Release 11.1.0.dev3

The following command deletes a routing peer:

:: neutron routing-peer-delete ROUTING_PEER_ID

ROUTING_PEER_ID:: ID of the routing peer to delete

The following command gets a routing peer:

:: neutron routing-peer-get ROUTING_PEER_ID

ROUTING_PEER_ID:: ID of the routing peer to look up

The following command lists all the routing peers of a tenant:

:: neutron routing-peer-list

The following command creates an advertise route:

::

neutron advertise-route-create [routing-instance-id ROUTING_INSTANCE_ID]
[destination DESTINATION]

routing_instance_id ROUTING_INSTANCE_ID:: ID of the routing instance to create the advertse
route for

destination DESTINATION:: destination CIDR of the route

The following command delets an advertise route:

:: neutron advertise-route-delete ADVERTISE_ROUTE_ID

ADVERTISE_ROUTE_ID:: ID of the advertise route to delete

The following command gets an advertise route:

:: neutron advertise-route-get ADVERTISE_ROUTE_ID

ADVERTISE_ROUTE_ID:: ID of the advertise route to look up

The following command lists all the advertise routes of a tenant:

:: neutron advertise-route-list

8.1.6 Extra Routes API

This document describes MidoNets implementation of extra routes Neutron extension API.

Problem Description

MidoNet plugin has not implemented extra routes extension API, and without it, MidoNets routing table
management feature could not be exposed.

42 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

Proposed Change

MidoNet plugin implements the extra routes extension. Current design of extra routes, however, only
contains destination and nexthop fields, representing the destination CIDR to match on the packet and
the next hop gateway IP address. MidoNet plugin extends the current extra route API to add more fields
in the route model to provide more detailed management of the routing table.

Plugin

Add extraroute in the supported_extension_aliases list.

Extend extraroute extension and add a source field, and validate source the same way destination is
validated.

REST API

Router

Extra routes extension adds the routes field in the router requests and responses, which is a list of route
objects where each route consists of:

Attribute
Name

Type POST/
PUT

Re-
quired

Description

destination string
(CIDR)

PUT Yes CIDR to match on the packets destination ip
Default: 0.0.0.0/0

source string
(CIDR)

PUT No CIDR to match on the packets source ip
Default: 0.0.0.0/0

nexthop string
(CIDR)

PUT Yes IP of the next hop gateway

DB Model

AdvancedExtraRoute

table name: midonet_router_routes

router_routes table in Neutron is used to store the extra routes. In addition, to store the midonet-specific
field, source, midonet_router_routes table is introduced:

Name Type Description
source String(64) Source CIDR to match on
router_id String(36) ID of the router the route belongs to

router_id has a foreign key constraint defined for id column of the routers table.

8.1. Kilo specs 43

Networking Midonet Documentation, Release 11.1.0.dev3

Client

The CLI command to update a router accepts the following new argument:

::

neutron router-update ROUTER_ID routes type=dict list=true [source SOURCE]

source SOURCE: source CIDR of the route

Documentation

Operational Guide must be updated to explain the source field added in the extra route extension.

8.1.7 L2GW API

The L2GW extension API exposes a flexible way to allow implementers to map logical gateways to the
physical ones the way they see fit. This API is about logical gateways definition, intentionally leaving
out the physical device management.

L2GW API exposes the abstraction of L2 gateway with its interface(s). L2 gateway can expand over
several devices with number of interfaces, and each interface can be defined with different list of seg-
mentation ids. Each device is identified by meaningful name, and its possible to add/remove interfaces.

L2GW Binding API allows binding of logical gateway to an overlay network. In the future logical
gateway can be bound to the list of virtual networks. Optionally, its possible to specify the default
segmentation-id that will be applied to the interfaces for which segmentation id was not specified in
l2-gateway-create command.

L2GW API allows to define logical GW that contains group of devices. In single L2GW instance the
administrator will define all VTEP devices that should be used as single logical gateway either in Active-
Passive or Active-Active mode.

Please refer to the upstream Stackforge project, network-l2gw[1] for the API DB and the client design.

Proposed Change

Plugin

Add l2-gateway extension alias in the supported extension aliases list.

MidoNet plugin should extend L2GatewayMixin class, and implement the CRUD methods for l2 gate-
way and l2 gateway connection objects.

New tasks representing the L2GW and L2GW Connection are inserted into the tasks table in the appro-
priate CRUD operations.

44 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

REST API

The upstream network-l2gw API is re-used.

DB Model

The upstream network-l2gw DB tables are re-used.

New task types, L2GW and L2GWCONNECTION, are introduced.

Client

The client commmands are the same as those defined in the network-l2gw project.

References

[1] https://github.com/stackforge/networking-l2gw

8.1.8 Port Binding API

In the MidoNet integration with OpenStack, there are two ways a port could be bound:

• When a VM is launched, orchestrated by nova

• When an operator binds a virtual port to a specific host interface

This document describes the design of port binding in MidoNet that implements these use cases.

In the case of operator-specified port binding, there is a special case in which a port is bound to an
interface connected to the uplink physical network, but that is not covered in this document.

Problem Description

MidoNet does not currently provide a way to bind ports in Neutron using standard Neutron API.

Proposed Change

Use the existing binding extension API in Neutron to implement port binding in MidoNet.

To bind a port to a specific host interface, an operator makes a create_port API request to Neutron and
provide the following binding details:

• binding:host_id: ID of the host to bind the port on

• binding:profile[interface_name]: Name of the interface to bind the port

The host ID is stored in the portbindings table, and the interface name is stored in the mi-
donet_portbindings table. When the host ID and the interface name are supplied in the port creation
request, the MidoNet executes the binding within the same API request.

Updating a port with a different binding effectively unbinds the port and re-binds it to the new host
interface.

8.1. Kilo specs 45

https://github.com/stackforge/networking-l2gw

Networking Midonet Documentation, Release 11.1.0.dev3

In the case of VM port binding, the workflow is as follows:

1. Nova API makes a create_port request to Neutron API specifying the ID of the host(host_id)
where the VM is going to be placed. host_id is stored in Neutrons portbindings table.

2. Neutron generates the tap interface name the same way Nova does (tap + portID up to 14 chars),
and stores it in the midonet_portbindings table.

3. On the compute host, mm-ctl script is executed to do the actual binding. mm-ctl adds a port
binding task to signal to MidoNet that the binding should occur. This step may change in the
future.

For each scenario in which a port binding occurs, the plugin inserts a PORTBINDING task with re-
source_id set to the ID of the port getting bound.

The actual mechanism in which the binding takes place inside MidoNet is outside the scope of this
document.

REST API

An example of a port binding attributes in the request to create a port is:

{
"binding:host_id": "HOST_ID",
"binding:profile": {"interface_name": "eth0"}

}

DB Model

midonet_portbindings

Name Type Description
port_id UUID ID of the port
interface_name String Name of the interface to bind the port

port_id is the primary key and has a foreign key constraint to the id column of the ports table.

Client

The following command creates a port with port binding attributes:

neutron port-create [--binding:host_id HOST_ID]
[--binding:profile if_name=IF_NAME]

binding:host_id HOST_ID: ID of the host to bind the port on

binding:profile if_name=IF_NAME: Name of the interface to bind the port to

46 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

8.1.9 Uplink Network API

MidoNet plugin implements the provider network Neutron extension API, and makes slight modification
to the port binding extension API implementation to simplify the uplink port configuration of the edge
routers.

Problem Description

The edge routers are virtual routers that interface with the uplink routers outside of the cloud. Thus,
the ports on these virtual routers must be bound to the interfaces on the edge hosts of the MidoNet
deployment. The MidoNet Neutron Plugin, however, does not offer any API to create a port on the edge
router. Furthermore, Neutron requires that all ports are created on a network, so the concept of having a
port directly on a router must be emulated using the Neutron constructs.

Proposed Change

Because Neutron does not allow creation of a port directly on a router, a network must be created for any
port to exist. This network must be flagged as a special network to indicate that it is an uplink network
so that MidoNet would know that the ports on this network need be treated as router ports bound directly
on the physical hosts (as opposed to normal network ports). Normal networks cannot be used for this
purpose because in the future MidoNet will support binding of ports on any network, which must be
differentiated from binding ports on the edge router.

To mark these networks as uplink networks, implement the provider network Neutron extension API to
map virtual networks to the uplink networks in the underlay. Once a virtual network is mapped to a
physical network, you could create a port on this network with binding details to control exactly which
host interface that the port should be bound to.

The provider network extension lets you map a physical network to a virtual network by associating
the virtual network with attributes describing the physical network. One of the attributes is called net-
work_type which could be LOCAL, FLAT, VXLAN, VLAN and GRE. For the purpose of uplink net-
work mapping, only the LOCAL network type is accepted by the plugin because it requires the least
amount of extra configurations. To create an uplink network, only network_type needs to be specified.

MidoNet currently does not support binding a vlan tagged interface, so the VLAN type cannot be used,
but it will be supported in the future. Likewise, GRE and VXLAN are not currently supported for
binding.

The uplink set up workflow is as follows:

1. The operator creates a Neutron network mapped to each uplink physical network. The following
field should be set for the network to create:

• provider:network_type => Type of the uplink network. Only LOCAL type is accepted.

2. On these networks, create a port for each interface on the host nodes that are connected to the
uplink networks. Supply these additional binding details for each port created as follows:

• binding:host_id => ID of the host to bind the port on

• binding:profile[if_name] => Name of the interface to bind to

The host IDs and interface names can be fetched from the agents extension API.

8.1. Kilo specs 47

Networking Midonet Documentation, Release 11.1.0.dev3

3. For each uplink network port created, execute router interface add standard Neutron API to con-
nect the uplink network and the edge router. This triggers the binding of the port to the physical
interface. The detail of how the binding is achieved is outside of this documents scope.

There are no changes required in the REST API, DB models or client since only the standard Neutron
extension API is invoked. Please refer to the provider network extension API document[1] for more
details on the workflow.

Database

The only visible change is that the network and port tasks contain new fields:

Network:

:: provider:network_type: LOCAL

Port:

:: binding:host_id: HOST_ID, binding:profile: {if_name: eth0}

Plugin

The provider extension alias is added to the MidoNet plugin. When looking up a network, the provider
extension attributes must be added to the network API request and response.

Also, although the plugin already supported binding extension API, the binding does not include, bind-
ing:host_id and binding:profile, that are added to the port API request and response.

Documentation

The setup of the uplink networks must be described in the Deployment Guide and/or the Operational
Guide.

Alternative Proposal

Instead of using the provider network extension to specify the binding information for the edge hosts,
store the binding information in the MidoNet agent configuration. The reason for choosing the proposed
approach is that there was no concrete design agreed by all stakeholders on the agent configuration
approach.

References

[1] http://docs.openstack.org/admin-guide-cloud/content/provider_api_workflow.html

48 Chapter 8. Specifications

http://docs.openstack.org/admin-guide-cloud/content/provider_api_workflow.html

Networking Midonet Documentation, Release 11.1.0.dev3

8.1.10 Task Management

Neutron and the MidoNet cluster, which is the distributed network configuration storage service of
MidoNet, communicate via the tasks database table. A task represents a single Neutron API operation
that the cluster translates into lower level MidoNet concepts. This table stores as tasks all the API write
requests as well as Neutrons global configurations specified in neutron.conf during the initialization
stage. They are processed by the cluster in the order inserted. This document describes new commands
of midonet-db-manage tool that provide tasks table management functionalities.

Problem Description

While the tasks table provide a reliable communication channel between Neutron and MidoNet, it lacks
the following features:

• Ability to view/filter the processed and unprocessed tasks for debugging

• Ability to clean up the processed tasks. You should be able to delete all the processed tasks.

Proposed Change

New commands are added to midonet-db-manage tool to provide better visibility into the tasks table as
well as a way to safely clean up the processed tasks. They do not belong in the Neutron API because
they have very little to do with network management. Note that only the manual clean up of the tasks is
described in this proposal, and there will be a separate proposal to address the automatic clean-up.

To implement the commands, the last processed task ID, which is currently maintained by the cluster,
needs to be also stored in the Neutron DB so that midonet-db-manage could use this value to differentiate
the processed and unprocessed tasks. The task IDs are auto-incremented integer field, and the last
processed task ID indicates the latest task that was processed by the cluster.

The cluster processes a transaction consisting of one or more tasks atomically, and in the same trans-
action, the ID of the last processed task is stored. The cluster then stores this task ID in Neutron DBs
midonet_task_state table. If the Neutron DB update fails due to a temporary resource issue, such as
network disruption, the cluster will re-sync in the next successful task processing. It is guaranteed that
the last processed task ID in the cluster never trails that of Neutron because the cluster always updates
its last processed task ID before it updates the Neutron DBs table. This means that there may be tasks
that are not yet marked as processed by the cluster in the Neutron DB that have actually already been
processed. However, the reverse cannot be true.

Once the last processed task ID is made available to Neutron, midonet-db-manage could easily separate
the processed and unprocessed tasks by querying the tasks table filtered by this value. While it may be
useful to filter the tasks based on other criteria, such as tenant ID, resource ID, and resource type, but
such feature will be addressed in a different proposal to not over-complicate.

8.1. Kilo specs 49

Networking Midonet Documentation, Release 11.1.0.dev3

REST API

None

DB Model

midonet_task_state

Name Type Description
id Int The primary key useful to idenfity the single row (Set to 1)
last_processed_id Int The last processed task ID (default NULL)
updated_at DateTime Time of the last update (default NULL)

midonet_task_state is a singe-row table representing the current state of the tasks table. It is created and
data initialized by the alembic migration script. The single row is created during the alembic migration
with default values. The cluster updates this table when it completes processing a particular task.

last_processed_id has foreign key reference to the tasks tables id column.

id is used by the cluster to identify the single row. Also, sqlalchemy requires that there is a primary key
column. The id of the single row is set to 1.

Security

Similar to neutron-db-manage, only the admins are expected to run midonet-db-manage. While there is
no special authentication mechanism implemented for this tool, the only way to run this script is if you
have access to the management hosts in the cloud, and preventing unauthorized users from gaining such
access is out of this documents scope.

Client

The following command lists the tasks:

:: midonet-db-manage task-list [-u]

-u, unprocessed:: Show only the processed tasks

The following command deletes the processed tasks:

:: midonet-db-manage task-clean

When the processed tasks are deleted, the last_processed_id is reset to NULL. Note that there is no com-
mand to delete unprocessed tasks because such command is dangerous, and will be addressed separately
when the upgrade/import feature is designed. If that must be done, then the operator must do so directly
from the sql client.

The following command displays the state of the resources based on the tasks so that you can see which
ones should (or will) exist. This is implemented with best effort since the tasks table may not contain
the entire history:

:: midonet-db-manage task-resource [-p]

-p, processed:: Calculate based on only the processed tasks

50 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

8.2 Mitaka specs

8.2.1 BGP Speaker Insertion Model on Routers

This spec describes an extension to associate a BGP speaker to a router.

For detailed explanations of the BGP implementation of networking-midonet, refer to the BGP Opera-
tional Guide [1].

Problem Description

MidoNet BGP model does not match the bgp extension model of Neutron in some critical ways. Namely,
in MidoNet, BGP must be configured on a router whereas in Neutron, BGP is configured independently.
There is no way to associate a BGP speaker to a router in the Neutrons bgp extension model.

Proposed Change

In order to have MidoNet implement bgp extension API of Neutron, bgp-speaker-router-insertion vendor
extension API is defined to track the associations between BGP speakers and routers.

For each BGP speaker, exactly one router is associated. The IP address used by the BGP speaker is the
IP address on the router port that is on the same subnet as the BGP peer IP.

With this mode, the following operations no longer become applicable:

• add_gateway_network

• delete_gateway_network

Invoking these operations on a BGP speaker that has a router associated results in an error.

Also, the following fields no longer become applicable:

• advertise_floating_ip_host_routes

• advertise_tenant_networks

The values set in these fields are ignored.

Since bgp-speaker-router-insertion is a vendor extension, it works only with networking-midonet as the
plugin. However, if this extension becomes part of neutron-dynamic-routing project, it will be expected
to work with the reference implementation, dr-agents. There should be nothing in this design that should
interfere with the current implementation of dr-agents, including its HA capabilities.

Data Model Impact

bgp_speaker_router_associations table is created:

Attribute name Type Description
bgp_speaker_id uuid BGP speaker id
router_id uuid Associated router

bgp_speaker_id is the primary key of the table. Both bgp_speaker_id and router_id have foreign key
constraints set to bgp_speakers and routers tables, respectively.

8.2. Mitaka specs 51

Networking Midonet Documentation, Release 11.1.0.dev3

REST API Impact

RESOURCE_ATTRIBUTE_MAP = {
'bgp-speakers': {

'logical_router': {'allow_post': True, 'allow_put': False,
'validate': {'type:uuid': None},
'is_visible': True, 'default': None},

}
}

Security Impact

None

Other End User Impact

Neutron CLI provides support for logical_router field as follows:

neutron bgp-speaker-create [--tenant-id TENANT_ID] --local-as LOCAL_AS
[--ip-version {4,6}]
[--logical-router ROUTER]
NAME

--logical-router ROUTER
Router ID or name to associate BGP speaker with.

Performance Impact

None

IPv6 Impact

None

Other Deployer Impact

None

52 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

Developer Impact

None

Documentation Impact

MidoNet Operational Guide will be updated to include the new attribute added to the BGP speaker
model.

REFERENCES

[1] https://docs.google.com/document/d/1cNIkY6zC9djKo2laFKN8JvAD8oHK87uNZMvt_81dQ7E/

8.2.2 Border GW API

https://blueprints.launchpad.net/networking-midonet/+spec/border-gw-api-for-midonet

Border GW is term for enhanced L2GW that should enable inter-site connectivity.

Current L2GW API

The L2GW extension API defined in networking-l2gw1 exposes the abstraction of L2 gateway with its
interface(s). L2 gateway can expand over several devices with number of interfaces, and each interface
can be defined with different list of segmentation ids. Each device is identified by meaningful name,
and its possible to add/remove interfaces. L2GW Binding API allows binding of logical gateway to an
overlay network. L2GW API allows to define logical GW that contains group of devices. In single
L2GW instance the administrator will define all VTEP devices that should be used as single logical
gateway either in Active-Passive or Active-Active mode.

Border GW API

Border GW funtionality is required for multi-site deployment. It should connect Tenants overlay net-
works across sites. It will use dedicated Tunnel that connects Tenant networks across sites. L2GW
abstract model fits very well into Border GW case. Current L2GW API imposes limitation that should
be released in order to support Border GW use case. It should be possible to create L2GW specifing
device and segmentation_id, without specific interface name. Interface name is not necessary for the
Border GW use case since scope of segmentation_id is global.

In order to support Border GW as well as L2GW abstraction API, the gateway device should be defined
in the MidoNet model. Gateway Device should be defined via device-management API2 in order to be
confirmed by L2GW API at L2GW instance creation.

1 https://github.com/openstack/networking-l2gw
2 https://blueprints.launchpad.net/networking-midonet/+spec/gw-device-api

8.2. Mitaka specs 53

https://docs.google.com/document/d/1cNIkY6zC9djKo2laFKN8JvAD8oHK87uNZMvt_81dQ7E/
https://blueprints.launchpad.net/networking-midonet/+spec/border-gw-api-for-midonet
https://github.com/openstack/networking-l2gw
https://blueprints.launchpad.net/networking-midonet/+spec/gw-device-api

Networking Midonet Documentation, Release 11.1.0.dev3

Proposed Change

Plugin

MidoNet l2gw (border gw) driver should be added to be loaded and used by l2gw service plugin to
support l2-gateway extension in MidoNet.

MidoNet l2gw driver should provide its own L2Gateway API validation method to apply Border GW
API validation for CRUD methods for l2 gateway and l2 gateway connection objects. Logical Gateway
device will be defined by using device_id of the Gateway Device and segmentation_id.

REST API

The upstream networking-l2gw API is re-used.

To create logical border gateway, following format can be used:

JSON Request

POST /v2/l2-gateways
Content-Type: application/json
{"l2_gateway": {"name": "<gateway-name>",

"devices": [{"device_id": "<device-id1>",
"segmentation-id": <seg-id1>}]

}}

Response:

{"l2_gateway": {"name": "<gateway-name>",
"tenant_id": "7ea656c7c9b8447494f33b0bc741d9e6",
"devices": [{"device_id": "<device-id1>",

"segmentation-id": <seg-id1>}],
"id": "d3590f37-b072-4358-9719-71964d84a31c"}}

DB Model

The upstream networking-l2gw DB tables are re-used.

Client

Currenlty supports MidoNet l2gw creation CLI that is different from that of the upstream networking-
l2gw.

The following command create a l2 gateway:

neutron midonet-l2-gateway-create GATEWAY-NAME [--device device_id=DEVICE_
↪→ID,segmentaion_id=SEGMENTAION_ID]

54 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

Other Deployer Impact

If L2 gateway service is to be enabled, then it is required to configure the L2 gateway service plugin in
neutron.conf.

/etc/neutron.conf: service_plugins=l2gw

Provider driver should be specified, service_provider=L2GW:l2gw:<driver>

References

8.2.3 Gateway Device Management API update for Router Peering

https://blueprints.launchpad.net/networking-midonet/+spec/gw-device-api

MidoNet provides a Neutron extension API called Gateway Device Management to provide device-
level gateway management service to the operators. This API is required in order to propagate device
connectivity details to enable Midonet to manage VTEP Logical Switch configuration upon Logical
Gateway definition. In order to support Router Peering and Direct Connect use cases following definition
in2, Overlay VTEP Router device is supported by MidoNet.3 While for the routing functionality this
device is managed as traditional neutron Router, it should be possible for operator (or Orchestration
Layer) to enable its VTEP functionality. While for HW VTEP Device this API is used for management
IP and Port settings, for Overlay VTEP Router Device it is used to enable Router with VTEP Logical
Switch management capability.

VTEP Tunnel IPs and Remote MAC Table management is currently supported for the router_vtep type
of gateway device only.

Other VTEP configurations as well as VTEP device status are out of the scope of the current version of
this API.

Gateway device should be identified by the user driven name in order to correlate it with Logical Gateway
entity.

Proposed Change

The following section provides details of the enhanced version of the device management spec1 with
support for both HW VTEP and Overlay VTEP Router as gateway devices.

REST API

GatewayDevice
2 https://docs.google.com/presentation/d/1b_lmDLF-i2rZlOGnZfYwZgim3W2BNf2rLWao3aULHC4/edit#slide=id.p
3 https://docs.google.com/document/d/1QMcQ33L76c_igBomOAeH9yiiOJwJQ8QK7ZVV8-jrPVA/edit#
1 https://raw.githubusercontent.com/openstack/networking-midonet/master/specs/kilo/device_management.rst

8.2. Mitaka specs 55

https://blueprints.launchpad.net/networking-midonet/+spec/gw-device-api
https://docs.google.com/presentation/d/1b_lmDLF-i2rZlOGnZfYwZgim3W2BNf2rLWao3aULHC4/edit#slide=id.p
https://docs.google.com/document/d/1QMcQ33L76c_igBomOAeH9yiiOJwJQ8QK7ZVV8-jrPVA
https://raw.githubusercontent.com/openstack/networking-midonet/master/specs/kilo/device_management.rst

Networking Midonet Documentation, Release 11.1.0.dev3

Attribute
Name

Type CRUDRe-
quired

Description

id string
(UUID)

CR gen-
er-
ated

ID of the Gateway Device

name string CRU No User defined device name
tenant_id string CR Yes Tenant ID of gateway Device object owner
manage-
ment_ip

string (ip
addr)

CR No Management IP to the device. Defaults to None.

manage-
ment_port

int CR No Management port to the device. Defaults to None.

manage-
ment_protocol

string CR No Management protocol to manage the device: ovsdb or none.
If management ip and port are specified, defaults to ovsdb.
Otherwise to none.

type string CR No Type of the device: hw_vtep or router_vtep. Defaults to
hw_vtep

re-
source_id

string
(UUID)

CR No Resource UUID or None (for type router_vtep will be router
UUID)

tun-
nel_ips

string
(list of ip
addrs)

CRU No IP addresses on which gateway device originates or termi-
nates tunnels.

re-
mote_mac_entries

list of en-
tries

CR No Mapping of MAC addresses to the tunnel IP addresses of the
corresponding VTEP

Currently, only the HW VTEP device and Router VTEP are supported.

Remote MAC Table entries are managed as sub-resource of the gateway_device.

RemoteMac

Attribute
Name

Type CRUD Re-
quired

Description

id string
(UUID)

CR gener-
ated

ID of the remote mac entry

mac_address string CR Yes MAC address
vtep_address string CR Yes Remote VTEP Tunnel IP to be used to reach this

MAC address
segmenta-
tion_id

int CR Yes VNI to be used to reach this MAC address

REST API Impact

Proposed attributes:

RESOURCE_ATTRIBUTE_MAP = {
'gateway_devices': {

'id': {'allow_post': False, 'allow_put': False,
'validate': {'type:uuid': None},
'is_visible': True, 'primary_key': True},

'name': {'allow_post': True, 'allow_put': True,
(continues on next page)

56 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

'is_visible': True, 'default': '',
'validate': {'type:string': None}},

'tenant_id': {'allow_post': True, 'allow_put': False,
'required_by_policy': True,
'is_visible': True},

'management_ip': {'allow_post': True, 'allow_put': False,
'is_visible': True, 'default': ''},

'management_port': {'allow_post': True, 'allow_put': False,
'is_visible': True, 'default': ''}'

'management_protocol': {'allow_post': True, 'allow_put': False,
'is_visible': True, 'default': ''}'

'type': {'allow_post': True, 'allow_put': False,
'is_visible': True, 'default': 'hw_vtep'},

'resource_id': {'allow_post': True, 'allow_put': False,
'is_visible': True, 'default': None}'

'tunnel_ips': {'allow_post': True, 'allow_put': True,
'is_visible': True, 'default': ''},

'remote_mac_entries': {'allow_post': False, 'allow_put': False,
↪→'is_visible': True},

},
}

SUB_RESOURCE_ATTRIBUTE_MAP = {
'remote_mac_entries': {

'parent': {'collection_name': 'gateway_devices',
'member_name': 'gateway_device'},

'parameters': {
'id': {

'allow_post': False, 'allow_put': False,
'validate': {'type:uuid': None},
'is_visible': True}},

'tenant_id': {'allow_post': True, 'allow_put': False,
'required_by_policy': True,
'is_visible': True},

'vtep_address': {
'allow_post': True, 'allow_put': False,
'is_visible': True, 'default': None,
'validate': {'type:ip_address': None}},

'mac_address': {
'allow_post': True, 'allow_put': False,
'is_visible': True,
'validate': {'type:mac_address':None}},

'segmentation_id': {
'allow_post': True, 'allow_put': False,
'is_visible': True,
'validate': {'type:non_negative': None}},

}
}

Sample request/response:

Update Remote MAC Entry Request:

POST /v2.0/gw/gateway_devices/46ebaec0-0570-43ac-82f6-60d2b03168c4/remote_
↪→mac_entries

(continues on next page)

8.2. Mitaka specs 57

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

{
"remote_mac_entry: {

"mac_address": "10:20:30:40:50:60",
"vtep_ip": "192.168.34.5",
"segmentation_id": 304

}
}

Response:
{

"remote_mac_entry": {
"id": "5f126d84-551a-4dcf-bb01-0e9c0df0c793",
"mac_address": "10:20:30:40:50:60",
"vtep_ip": "192.168.34.5",
"segmentation_id": 304

}
}

DB Model

midonet_gateway_devices

Name Type Description
id String ID of the gateway device
name String Name of the gateway device
type String Type of the gateway device (hw_vtep or router_vtep)

midonet_gateway_hw_vtep_devices

Name Type Description
device_id String ID of the gateway device
management_ip String Management IP address of the gateway device
management_port int Management port of the gateway device
management_protocol String Management protocol of the gateway device

midonet_gateway_overlay_router_devices

Name Type Description
device_id String ID of the gateway device
resource_id String Router UUID enabled as gateway device

midonet_gateway_tunnel_ips

Name Type Description
device_id String ID of the gateway device
tunnel_ip String Tunnel IP to originate/terminate traffic

midonet_gateway_remote_mac_table

58 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

Name Type Description
id String ID of the entry
device_id String ID of the gateway device
mac_address String MAC address to be reached
vtep_address String VTEP IP address to reach MAC address
segmentation_id int VNI to reach the MAC address

Client

The following command enables a gateway capabilities on the router device:

neutron gateway-device-create [--name NAME] [--type router_vtep] [--
↪→resource-id UUID]

The following command creates a HW VTEP gateway device:

::

neutron gateway-device-create [name NAME] [type hw_vtep] [ip MGMT_IP] [port
MGMT_PORT]

The following command updates a gateway device:

neutron gateway-device-update GW_DEVICE_ID [--name NAME]

The following command lists gateway devices:

neutron gateway-device-list

The following command views a gateway device:

neutron gateway-device-show GW_DEVICE_ID

The following command deletes a gateway device:

neutron gateway-device-delete GW_DEVICE_ID

References

8.2.4 Logging API for firewall-rules

This document describes MidoNets implementation of logging for firewall rules.

FWaaS v2.02 will be implemented in newton, However, first of all we implement MidoNet for mitaka
with FWaaS v1.0 because development schedule between networking-midonet and neutron does not
match.

Note that eventually we aim to unify this spec and spec for upstream1. Thus, this spec is written follow-
ing spec for upstream. In addition, we should keep on watch spec for upstream because the spec have
not completed yet.

2 https://github.com/openstack/neutron-specs/blob/master/specs/newton/fwaas-api-2.0.rst
1 http://docs-draft.openstack.org/09/203509/41/check/gate-neutron-specs-docs/34a11fa//doc/build/html/specs/newton/

logging-API-for-security-group-rules.html

8.2. Mitaka specs 59

https://github.com/openstack/neutron-specs/blob/master/specs/newton/fwaas-api-2.0.rst
http://docs-draft.openstack.org/09/203509/41/check/gate-neutron-specs-docs/34a11fa//doc/build/html/specs/newton/logging-API-for-security-group-rules.html
http://docs-draft.openstack.org/09/203509/41/check/gate-neutron-specs-docs/34a11fa//doc/build/html/specs/newton/logging-API-for-security-group-rules.html

Networking Midonet Documentation, Release 11.1.0.dev3

Problem Description

Operator wants to

• monitor network traffic in system to detect illegal traffic, or to solve unexpected communi-
cation error across L3.

• pass audit for system.

Tenant wants to

• monitor network traffic in tenant to detect illegal traffic, or to solve unexpected communica-
tion error across L3.

• pass audit for tenant

In Neutron, traffic accepted/denied on routers are managed by FWaaS. However, logging is currently a
missing feature in FWaaS. Thus, requirements above cannot be satisfied.

Proposed Change

The scope of this spec:

• logging API for operator and tenant.

• logging format for operator and tenant.

How tenants can consume outputted logs are out of scope. Logging format that will be sent to tenants
are out of scope. Where the logs are generated is also out of scope.

Plugin

Add logging-resource extension alias in the supported extension aliases list.

MidoNet plugin implement the CRUD methods for logging resource and firewall log objects.

Expected API behavior

The events related to firewall rules will collect:

(1) ACCEPT event

(2) DROP event

Operators and tenants can specify what kind of events they want to log. Note that only logging of firewall
rules that are created explicitly are gathered.

(1) ACCEPT/DROP or ALL (collect all ACCEPT/DROP events of firewalls).

(2) firewall uuid.

60 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

REST API

In this spec, two resources are newly defined.

LoggingResource is root resource for logging. This model defines policy of logging. e.g. how can we
see logs, where logs are going to be collected.

FirewallLog is logging resource for specific resource. Though this spec proposes only FWaaS, many
logging resources for specific resource will be supported in the future. (e.g. security group)

In addition, firewall can be associated with multiple logging resource only when the tenant_ids are dif-
ferent to allow operators and tenants to specify same firewall as logging resource. This allows operators
to gather log in all of system.

Note that there is no difference in outputted format between tenants logging resource and operators
logging resource. If operator wants to operate description above, some validations are needed to solve
why the log is outputted.

The rough sketch that contains future consideration is following;

TenantA---------LoggingResourceA------FirewallLogA-----------
| |
|--------------SecurityGroupLogA |------

↪→firewallA
|

AdminTenant-----LoggingResourceB------FirewallLogB-----------
|
|--------------FirewallLogC
|
|--------------SecurityGroupLogB

LoggingResource

Attribute
Name

Type CRUD Re-
quired

Description

id string
(UUID)

CR gener-
ated

ID of the LoggingResource

name string CRU No Defined LoggingResource name
descrip-
tion

string CRU No Description for the LoggingResource

tenant_id string CR No Tenant ID of LoggingResource object owner
enabled string CRU No Enable/disable for the LoggingResource. log is gathered

only when this flag is enable.

FirewallLog

8.2. Mitaka specs 61

Networking Midonet Documentation, Release 11.1.0.dev3

Attribute
Name

Type CRUD Re-
quired

Description

id string
(UUID)

CR gener-
ated

ID of the FirewallLog

description string CRU No Description for FirewallLog
tenant_id string CR No Tenant ID of FirewallLog object owner
fw_event string CRU No Event of firewall. ACCEPT/DROP/ALL can be speci-

fied. ALL is set as default.
firewall_id string

(UUID)
CR Yes ID of firewall instance

API list is as follows. Note that api path prefix logging may conflict with upstream. However, we keep
this prefix to keep consitency with upstream. To avoid confusion, we should do following things.

• Separate our plugin configuration from upstream.

• Note to user that not to use both plugins together.

Object URI Type
logging-resource /logging/logging_resources POST
logging-resource /logging/logging_resources GET
logging-resource /logging/logging_resources/{id} GET
logging-resource /logging/logging_resources/{id} DELETE
logging-resource /logging/logging_resources/{id} PUT
firewall-log /logging/logging_resources/{id}/firewall_logs POST
firewall-log /logging/logging_resources/{id}/firewall_logs GET
firewall-log /logging/logging_resources/{id}/firewall_logs/{id} GET
firewall-log /logging/logging_resources/{id}/firewall_logs/{id} DELETE
firewall-log /logging/logging_resources/{id}/firewall_logs/{id} PUT

REST API Examples

To Create a LoggingResource to manage security event log, following API can be used:

JSON Request

POST /v2.0/logging/logging_resources
{

"logging_resource": {
"name": "firewall_log",
"description": "Get traffic flow of firewall",
"enabled": True

}
}

Response:

Response:
{

"logging_resource": {
"id": "46ebaec0-0570-43ac-82f6-60d2b03168c4",

(continues on next page)

62 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

"tenant_id": "8d4c70a21fed4aeba121a1a429ba0d04",
"name": "firewall_log",
"description": "Get traffic flow of firewall",
"enabled": True

}
}

To Create a FirewallLog to collect security event of the firewall, following API can be used:

JSON Request

POST /v2.0/logging/logging_resources/46ebaec0-0570-43ac-82f6-60d2b03168c4/
↪→firewall_logs
{

"firewall_log": {
"description": "Collecting all traffic passing the firewall",
"fw_event": "ALL",
"firewall_id: "21aeda2a-a52f-4e81-9e64-7edeb59fa25b"

}
}

Response:

{
"firewall_log": {

"id": "5f126d84-551a-4dcf-bb01-0e9c0df0c793",
"tenant_id": "8d4c70a21fed4aeba121a1a429ba0d04",
"logging_resource_id": "46ebaec0-0570-43ac-82f6-60d2b03168c4",
"description": "Collecting all traffic passing the firewall",
"fw_event": "ALL",
"firewall_id": "21aeda2a-a52f-4e81-9e64-7edeb59fa25b"
}

}

REST API Impact

The new resources:

LOGGING_PREFIX = '/logging'
FW_EVENT_ACCEPT = 'ACCEPT'
FW_EVENT_DROP = 'DROP'
FW_EVENT_ALL = 'ALL'
FW_EVENTS = [FW_EVENT_ACCEPT, FW_EVENT_DROP, FW_EVENT_ALL]
LOG_COMMON_FIELDS = {

'id': {'allow_post': False, 'allow_put': False,
'validate': {'type:uuid': None},
'is_visible': True, 'primary_key': True},

'tenant_id': {'allow_post': True, 'allow_put': False,
'required_by_policy': True, 'is_visible': True},

'logging_resource_id': {'allow_post': False, 'allow_put': False,
'is_visible': True}

}

RESOURCE_ATTRIBUTE_MAP = {

(continues on next page)

8.2. Mitaka specs 63

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

'logging_resources': {
'id': {'allow_post': False, 'allow_put': False,

'validate': {'type:uuid': None}, 'is_visible': True,
'primary_key': True},

'tenant_id': {'allow_post': True, 'allow_put': False,
'required_by_policy': True, 'is_visible': True},

'name': {'allow_post': True, 'allow_put': True,
'validate': {'type:string': attr.NAME_MAX_LEN},
'default': '', 'is_visible': True},

'description': {'allow_post': True, 'allow_put': True,
'validate': {'type:string': attr.LONG_DESCRIPTION_

↪→MAX_LEN},
'default': '', 'is_visible': True},

'enabled': {'allow_post': True, 'allow_put': True,
'is_visible': True, 'default': False,
'convert_to': attr.convert_to_boolean},

'firewall_logs': {'allow_post': False, 'allow_put': False,
'is_visible': True}

}
}

SUB_RESOURCE_ATTRIBUTE_MAP = {
'firewall_logs': {

'parent': {'collection_name': 'logging_resources',
'member_name': 'logging_resource'},

'parameters': dict((LOG_COMMON_FIELDS),

**{
'description': {

'allow_post': True, 'allow_put': True,
'validate': {'type:string': None},
'default': None, 'is_visible': True},

'firewall_id': {
'allow_post': True, 'allow_put': False,
'is_visible': True,
'validate': {'type:uuid': None}},

'fw_event': {
'allow_post': True, 'allow_put': True,
'is_visible': True,
'validate': {'type:values': FW_EVENT},
'default': 'ALL'}

})
},

}

64 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

Logging format

Following items can be shown as follows. Eventually, we catch up neutron behavior that agent collects
logs and sends logs to specified location from user. Therefore, outputted items should be unified with
neutron after supporting function in neutron.

Item Description
tenant_id Tenant ID of targeted firewall
timestamp Time of the event is happened The time is based on ISO8601, time zone is

UTC
firewall UUID UUID of neutron firewall
firewall rule UUID UUID of neutron firewall rule
router UUID UUID of neutron router
source IP address Source IP address of the communication
destination IP
address

Destination IP address of the communication

source L4 port Source L4 port of the communication
destination L4 port Destination L4 port of the communication
protocol IANA protocol number
action ACCEPT/DROP

Logging out location

Currently, operators can only access directly to file on host that midolman is running to consume log-
data. File location has format: /var/log/midolman/logging/fw-<firewall-log-uuid>.log How generated
log files are sent to tenants is up to the operator. Backend implementation and/or log collector are
expected to handle log rotation. In the case with MidoNet, log rotation policy can be configured using
its configuration tool.

DB Model impact

To avoid competition of table name with upstream, we add specific initial to head of table names. Note
that upstream DB will be reused in newton or later and DB in networking-midonet will be deleted.

The LoggingResource model has the following attributes:

midonet_logging_resources

Attribute
Name

Type Ac-
cess

Default
Value

Validation/ Con-
version

Description

id uuid RO generated uuid Identity
tenant_id uuid RO N/A uuid Id of tenant that created this Log-

gingResource
name string RW N/A none LoggingResource name
description string RW N/A none LoggingResource description
enabled bool RW False Boolean Enable/disable log

The FirewallLog model would look like:

8.2. Mitaka specs 65

Networking Midonet Documentation, Release 11.1.0.dev3

midonet_firewall_logs

Attribute
Name

Type Access Default
Value

Validation/
Conversion

Description

id uuid RO gener-
ated

uuid Identity

log-
ging_resource_id

uuid RO N/A uuid LoggingResource UUID

tenant_id uuid RO gener-
ated

uuid Tenant creates logging

description string RW N/A none FirewallLogging description
fw_event enum RW N/A enum ACCEPT/DROP & ALL (collect all

ACCEPT/DROP events)
firewall_id uuid RW(No

update)
N/A uuid Firewalls UUID is enabled logging

Quota

Firewall log is managed by Quota. Default value of firewall log is 10 that is same number as firewall.
Basically, both Quota value for firewall and firewall log should be aligned.

CLI Impact

Additional methods will be added to python-neutronclient to create, update, delete, list, get logging
resource and firewall logging.

Checking support resource logging

For logging resource:

neutron logging-create --name <logging-resource-name>
[--enable <True/False>]
[--description <logging-resource-description>]

neutron logging-list
neutron logging-update <logging-resource-name-or-id>

[--name ...]
[--description ...]
[--enable <True/False>]

neutron logging-show <logging-resource-name-or-id>
neutron logging-delete <logging-resource-name-or-id>

For firewalls logging:

neutron logging-firewall-create <logging-resource-name-or-id> <firewall-id>
[--description <firewall-log description>]
[--fw-event <ACCEPT/DROP/ALL>]

neutron logging-firewall-list <logging-resource-name-or-id>
neutron logging-firewall-update <logging-resource-name-or-id> <firewall-
↪→log-id>

[--description ...]
[--fw-event ...]

(continues on next page)

66 Chapter 8. Specifications

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

neutron logging-firewall-show <logging-resource-name-or-id> <firewall-log-
↪→id>
neutron logging-firewall-delete <logging-resource-name-or-id> <firewall-
↪→log-id>

Other Deployer Impact

Set quota for firewall log in quotas section of neutron.conf.

quota_firewall_log = 10

References

8.2.5 Floating IP via router interfaces

This spec describes an extension to associate floating IPs via router interfaces, rather than the router
gateway port.

Problem Description

For some use cases1, it can be useful to make floating IP translation happens on non-gateway router
interfaces.

Proposed Change

Introduce router-interface-fip extension, which allows users to associate floating IPs via router interfaces.

Consider the topology like the following diagram. This extension allows to associate floating-ip-B to
fixed-ip-X.

• floating-ip-A is created on network4.

• floating-ip-B is created on network3.

• Both of floating-ip-A and floating-ip-B are associated to fixed-ip-X.

• fixed-ip-Y and fixed-ip-Z dont have any floating ip associations.

+-----------------------+
| network4 |
| (external=True) |
+------------------+----+

|
|
|router gateway port
|(its primary address is gw-ip)

+---------+--+
| floating-ip-A |

(continues on next page)

1 https://docs.google.com/presentation/d/1-v-bCsaEphyS5HDnhUeI1KM5OssY-8P4WMpQZsOqSOA/edit#slide=id.
g1232f85657_0_63

8.2. Mitaka specs 67

https://docs.google.com/presentation/d/1-v-bCsaEphyS5HDnhUeI1KM5OssY-8P4WMpQZsOqSOA/edit#slide=id.g1232f85657_0_63
https://docs.google.com/presentation/d/1-v-bCsaEphyS5HDnhUeI1KM5OssY-8P4WMpQZsOqSOA/edit#slide=id.g1232f85657_0_63

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

| |
| router |
| (enable_snat=True) |
| |
| floating-ip-B |
+----+-----------------+--------------------+----------+

|router |router |router
|interface |interface |interface
| | |
| | |

+-----------+-----+ +------+----------+ +----+------------+
| network1 | | network2 | | network3 |
| (external=False)| | (external=False)| | (external=True) |
+-----+-----------+ +--------+--------+ +------+----------+

| | |
+---+-------+ +---+-------+ +---+-------+
|fixed-ip-X | |fixed-ip-Y | |fixed-ip-Z |
+-----------+ +-----------+ +-----------+

VM-X VM-Y VM-Z

In case multiple floating ip addresses are associated to a fixed ip address, a datapath should be careful
which floating ip to use for SNAT:

• If theres a floating ip associated via the egress port, either the router gateway port or a router
interface, it should be used. For example, in the case of the above diagram, if VM-X sends a
packet fixed-ip-X -> fixed-ip-Z, floating-ip-B, rather than floating-ip-A, should be used.

• Otherwise, if theres a floating ip associated via the router gateway port, it should be used. For
example, in the case of the above diagram, if VM-X sends fixed-ip-X -> fixed-ip-Y, floating-ip-A
should be used.

• Otherwise, the datapath can choose arbitrary one.

A few interesting cases:

• If VM-Y sends a packet fixed-ip-Y -> floating-ip-A, its translated to gw-ip -> fixed-ip-X by the
router and VM-X will receive it. This behaviour is not specific to this extension. See bug 14288873

for the reason of the SNAT.

• If VM-Y sends a packet fixed-ip-Y -> floating-ip-B, its translated to gw-ip -> fixed-ip-X by the
router and VM-X will receive it. However, its return traffic fixed-ip-X -> gw-ip will be translated
to floating-ip-A -> fixed-ip-Y and probably will not be recognized as a return traffic by VM-Zs
network stack.

• If VM-Z sends a packet fixed-ip-Z -> floating-ip-B, its translated to fixed-ip-Z -> fixed-ip-X by
the router and VM-X will receive it. While this case is very similar to the above cases, the SNAT
should not be applied here. The datapath can distinguish these cases by the existence of the
asssociation of a floating-ip via the router interface. (floating-ip-B) This behaviour is necessary
for the primary use case.1

• If VM-Z sends a packet fixed-ip-Z -> floating-ip-A, its translated to fixed-ip-Z -> fixed-ip-X by
the router and VM-X will receive it. However, its return traffic fixed-ip-X -> fixed-ip-Z will be
translated to floating-ip-B -> fixed-ip-Z and probably will not be recognized as a return traffic by
VM-Zs network stack.

3 https://bugs.launchpad.net/neutron/+bug/1428887

68 Chapter 8. Specifications

https://bugs.launchpad.net/neutron/+bug/1428887

Networking Midonet Documentation, Release 11.1.0.dev3

API changes

For API, at least following changes are necessary:

• Add an extension router-interface-fip for feature discovery. The extension does not add any re-
sources or attributes to the REST API.

• Allow floating IP association via a router interface.

• The existing RouterExternalGatewayInUseByFloatingIp check needs to be tweaked so that it
doesnt count floating IPs associated via router interfaces.

• A check similar to RouterExternalGatewayInUseByFloatingIp but for router interfaces needs to
be introduced.

Datapath support

The datapath needs to be updated to perform actual address translations.

In case of MidoNet, latest versions have the basic support already.2

The following is an example of a pseudo rules for logical routers PREROUTING/POSTROUTING
processing:

PREROUTING

// floating ip dnat
[per FIP]
(dst) matches (fip) -> float dnat, ACCEPT

// rev-snat for the default snat
[if default SNAT is enabled on the router]
(dst) matches (gw port ip) -> rev-snat, ACCEPT

// rev-snat for MidoNet-specific "same subnet" rules
[per RIF]
(inport, dst) matches (rif, rif ip) -> rev-snat, ACCEPT

POSTROUTING

// floating ip snat
// multiple rules in order to implement priority (which FIP to use)
// Note: "fip port" below is a router port, either the router gateway
// port or router interface, which owns the corresponding FIP
// configured.
[per FIP]
(outport, src) matches (fip port, fip) -> float snat, ACCEPT

----- ordering barrier

[per FIP]
(src) matches (fip) -> float snat, ACCEPT // gateway port

----- ordering barrier

(continues on next page)

2 https://review.gerrithub.io/#/q/I37d22d43e4bf95bcce870679083aa3e129de8ea7

8.2. Mitaka specs 69

https://review.gerrithub.io/#/q/I37d22d43e4bf95bcce870679083aa3e129de8ea7

Networking Midonet Documentation, Release 11.1.0.dev3

(continued from previous page)

[per FIP]
(src) matches (fip) -> float snat, ACCEPT // non gateway port

----- ordering barrier

// do not apply default snat if it came from external-like network
// (router interfaces with FIPs, and the gateway port)
// Note: iptables based implementations need to "emulate" inport
// match (eg. using marks in PREROUTING) as it isn't available
// in POSTROUTING.
[per FIP port]
(inport) matches (fip port) -> ACCEPT
[if default SNAT is enabled on the router]
inport == the gateway port -> ACCEPT

----- ordering barrier

// apply the default snat for the gateway port
[if default SNAT is enabled on the router]
outport == the gateway port -> default snat, ACCEPT

// for non-float -> float traffic (cf. bug 1428887)
// "dst-rewritten" condition here means float dnat was applied in
// prerouting. in case of iptables based implementations,
// "--ctstate DNAT" might be used.
[if default SNAT is enabled on the router]
dst-rewritten -> default snat, ACCEPT

// MidoNet-specific "same subnet" rules
[per RIF]
(inport == outport == rif) && dst != 169.254.169.254

-> snat to rif ip, ACCEPT

// non-float -> non-float in tenant traffic would come here

References

8.3 Ocata specs

8.3.1 QoS implementaiton for networking-midonet

This spec describes how to implement QoS extension for networking-midonet. The backend side is
covered by another spec.5

5 https://review.gerrithub.io/#/c/289456/

70 Chapter 8. Specifications

https://review.gerrithub.io/#/c/289456/

Networking Midonet Documentation, Release 11.1.0.dev3

Proposed Change

QoS driver

Use the Neutron QoS plugin as it is. Implement MidoNet specific notification driver which communi-
cates with the MidoNet API.

[DEFAULT]
service_plugins = qos

[qos]
notification_drivers = midonet,message_queue

setup.cfg:

neutron.qos.notification_drivers =
midonet = midonet.neutron.services.qos.

↪→driver:MidoNetQosServiceNotificationDriver

Note: message_queue driver4 is the AMQP RPC7 based driver for the reference implementation. It isnt
necessary for MidoNet-only deployments.

Neutron QoS plugin1 has notification driver mechansim2, which can be used for networking-midonet to
implement backend notifications.

When Neutron QoS plugin receives API requests, it updates the corresponding DB rows. After commit-
ting the DB changes, it calls one of the following methods of the loaded notification drivers:

• create_policy

• update_policy

• delete_policy

Note: a request for a rule (eg. update_policy_rule) ends up with a notification for the entire policy the
rule belongs to.

Note: a request for a specific rule type (eg. update_policy_dscp_marking_rule) are automatically con-
verted to a generic method (eg. update_policy_rule) by the QoS extension, namely QoSPluginBase.6

4 https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/services/qos/
notification_drivers/message_queue.py#L40

7 https://docs.openstack.org/neutron/latest/contributor/internals/quality_of_service.html#rpc-communication
1 https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/services/qos/qos_

plugin.py
2 https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/services/qos/

notification_drivers/manager.py
6 https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/extensions/qos.py#

L225

8.3. Ocata specs 71

https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/services/qos/notification_drivers/message_queue.py#L40
https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/services/qos/notification_drivers/message_queue.py#L40
https://docs.openstack.org/neutron/latest/contributor/internals/quality_of_service.html#rpc-communication
https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/services/qos/qos_plugin.py
https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/services/qos/qos_plugin.py
https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/services/qos/notification_drivers/manager.py
https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/services/qos/notification_drivers/manager.py
https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/extensions/qos.py#L225
https://github.com/openstack/neutron/blob/2be2d97d11719db88537a9664c95f1b6b11d3707/neutron/extensions/qos.py#L225

Networking Midonet Documentation, Release 11.1.0.dev3

Error handling

Notification driver methods are considered async and always success.9 Currently theres no convenient
way to report errors from the backend. While its possible for a driver to return an error by raising
an exception, if multiple drivers are loaded and one of them fails that way, the rest of drivers are just
skipped. Even if we assume the simplest case where only MidoNet QoS driver is loaded, theres no
mechanism to mark the resource error or rollback the operation. Theres an ongoing effort in Neutron8

in that area, which might improve the situation.

Core resource extensions

For ML2, the existing QoS extension driver should work.

If we want to make this feature available for the monolithic plugins, the equivalent needs to be imple-
mented for them.

Alternative

Instead of the QoS driver, we can implement the entire QoS plugin by ourselves.

[DEFAULT]
service_plugins = midonet_qos

setup.cfg:

neutron.service_plugins =
midonet_qos = midonet.neutron.services.qos.plugin:MidonetQosPlugin

This might fit the current backend design5 better.

We can re-use the reference QoS plugin and its DB models by inheriting its class. Its a rather discouraged
pattern these days, though. This way the first implementation might be simpler. But it might be tricky
to deal with other backends (consider ML2 heterogeneous deployments) and future enhancements in
Neutron.

References

9 https://bugs.launchpad.net/neutron/+bug/1627749
8 https://review.openstack.org/#/c/351858/

72 Chapter 8. Specifications

https://bugs.launchpad.net/neutron/+bug/1627749
https://review.openstack.org/#/c/351858/

	Supported features
	Neutron extensions supported by MidoNet
	FAQ

	Installation and configuration
	Supported MidoNet versions
	How to Install
	MidoNet API configuration
	ML2 mechanism and type drivers
	L3 service plugin
	Interaction with Neutron agents
	VPNaaS
	Gateway Device Service
	L2 Gateway Service
	BGP dynamic routing service
	Tap-as-a-Service
	QoS
	Horizon
	Magnum

	Release Notes
	Migration from monolithic v2 plugin to ML2 plugin
	Overview
	How to migrate

	Historical Upgrade Notes
	From Liberty to Mitaka
	From Kilo to Liberty
	From Juno to Kilo

	Networking-MidoNet Configuration Guide
	Configuration
	Policy

	Contributor Guide
	DevStack plugin
	Policies
	Programming HowTos and Tutorials
	Dashboards

	Specifications
	Kilo specs
	Mitaka specs
	Ocata specs

