networking-bagpipe Documentation
Release 13.0.1.dev4

OpenStack Foundation

Jan 14, 2021

Overview

Using BaGPipe

2.1 Design overview

2.2 Applications

2.3 BaGPipe-BGP

Installation

3.1 Networking-bagpipe installation
3.2 BaGPipe for Neutron L2
3.3 BaGPipe for BGPVPN
3.4 BaGPipe for networking-sfc

Configuration Options
4.1 Configuration Reference
4.2 Sample Configuration Files

Development
5.1 Contributing

CONTENTS

networking-bagpipe Documentation, Release 13.0.1.dev4

Driver and agent code to use BaGPipe lightweight implementation of BGP-based VPNs as a backend
for Neutron.

* Free software: Apache license

* Documentation: https://docs.openstack.org/networking-bagpipe/latest/
* Source: http://opendev.org/openstack/networking-bagpipe

* Bugs: https://bugs.launchpad.net/networking-bagpipe

* Release notes: https://docs.openstack.org/releasenotes/networking-bagpipe/

CONTENTS 1

https://docs.openstack.org/networking-bagpipe/latest/
http://opendev.org/openstack/networking-bagpipe
https://bugs.launchpad.net/networking-bagpipe
https://docs.openstack.org/releasenotes/networking-bagpipe/

networking-bagpipe Documentation, Release 13.0.1.dev4

2 CONTENTS

CHAPTER
ONE

OVERVIEW

BGP-based VPNs rely on extensions to the BGP routing protocol and dataplane isolation (e.g. MPLS-
over-x, VXLAN) to create multi-site isolated virtual networks over a shared infrastructure, such as
BGP/MPLS IPVPNs (RFC4364) and E-VPN (RFC7432). They have been heavily used in IP/MPLS
WAN backbones since the early 2000s.

These BGP VPNs are relevant in the context of Neutron, for two distinct use cases:

1. creating reachability between Neutron ports (typically VMs) and BGP VPNs outside the cloud
datacenter (this use case can be relevantindependently of the backend chosen for Neutron)

2. leveraging these BGP VPNs in Neutrons backend, to benefit from the flexibility, robustness and
scalability of the underlying technology (as do other existing backends such as OpenContrail,
Nuage Networks, or Calico although the latter relies on plain, non-VPN, BGP)

BaGPipe proposal is to address these two use cases by implementing this protocol stack both the BGP
routing protocol VPN extensions and the dataplane encapsulation in compute nodes or possibly ToR
switches, and articulating it with Neutron thanks to drivers and plugins.

The networking-bagpipe package includes:

» for use case 1: backend code for Neutrons BGPVPN Interconnection service plugin (networking-
bgpvpn) ; only compute node code (agent and BGP) is in networking-bagpipe, the Neutron server-
side part, being currently in networking-bgpvpn package)

* for use case 2: a Neutron ML2 mechanism driver (base Neutron networks), a networking-sfc
driver (service chaining)

* compute code common to both: agent extensions for Neutron agent (linuxbridge or openvswitch)
to consolidate and pass information via its REST API to BaGPipe-BGP (a lightweight BGP VPN
implementation)

http://tools.ietf.org/html/rfc4364
http://tools.ietf.org/html/rfc7432
https://github.com/openstack/networking-bgpvpn
https://github.com/openstack/networking-bgpvpn
https://github.com/openstack/networking-bgpvpn

networking-bagpipe Documentation, Release 13.0.1.dev4

4 Chapter 1. Overview

CHAPTER
TWO

2.1

USING BAGPIPE

Design overview

The common design choices underlying bagpipe architecture are:

a.

on Neutron server, allocate and associate BGP VPN constructs necessary to realize Neutron API
abstractions: network, router, service chain, BGP VPN interconnection, etc.

pass the information about these BGP VPN constructs to the compute node agent via Openstack
Neutron message bus (typically, but not necessarily RabbitMQ)

. on compute node, a bagpipe extension of the Neutron agent (OVS or linuxbridge) passes the infor-

mation to the local implementation of BGP VPN extensions (BaGPipe-BGP) that will advertise
and receive BGP VPN routes and populate the dataplane accordingly

. depending on the use cases, BGP VPN routes are exchanged between compute nodes, between

compute nodes and DC gateway IP/MPLS routers, or both ; the strategy to scale this control plane
will depend on the deployment context but will typically involve BGP Route Reflectors and the
use of the RT Constraints pub/sub mechanism (RFC4684)

traffic is exchanged using an overlay encapsulation, with VXLAN as the typical choice for
vswitch-to-vswitch, and MPLS-over-GRE or MPLS-over-UDP (future) as the target for vswitch-
to-DC-gateway traffic

http://tools.ietf.org/html/rfc4684

networking-bagpipe Documentation, Release 13.0.1.dev4

2.2 Applications

2.2.1 Neutron networks (ML2)

Note: This application is distinct from the use of BaGPipe to create IPVPN or E-VPN interconnections
in the context of the BGPVPN Interconnection API (see below).

The bagpipe mechanism driver for Neutrons ML2 core plugin, when enabled along with the cor-
responding compute node agent extension, will result in Neutron tenant networks to be realized with
E-VPN/VXLAN.

How it works is that a BGP VPN identifier (called a BGP Route Target) will be defined for each Neu-
tron tenant network, derived from the VXLAN VNI a.k.a segmentation ID, and the bagpipe agent
extension on compute nodes will setup a corresponding E-VPN instance with this identifier on the local
BaGPipe-BGP instance on the compute node and attach VM ports to this instance as needed.

6 Chapter 2. Using BaGPipe

networking-bagpipe Documentation, Release 13.0.1.dev4

This solution is currently supported with the linux networking stack (i.e. with the 1inuxbridge agent
enabled with bagpipe extension, and BaGPipe-BGP driver for the linux bridge VXLAN implementa-
tion). The approach would be easily extended to support OpenVSwitch as well.

Another way to understand this approach for someone coming with a Neutron ML2 background is that
it is similar to the 12population mechanism except that the bridge forwarding entries are populated based
on BGP VPN routes rather than based on information distributed in RPCs. This similarity comes with a
difference: while I2population announces the information on one messaging topic, each compute node
receiving information about all Neutron networks even the ones not present on its vswitch, the behavior
with BaGPipe ML2 is that a compute node will only receive the mappings that it needs.

2.2.2 Neutron BGPVPN Interconnection

Note: This application is distinct from the use of BaGPipe to realize Neutron networks with BGP E-
VPNs. bagpipe driver for networking-bgpvpn supports both IPVPNs and E-VPNs, but does not rely
on bagpipe ML2 mechanism driver to do so.

In this application, networking-bagpipe aims at proposing a lightweight implementation of the
BGPVPN Interconnection service, designed to work with the ML2 openvswitchor 1inuxbridge
mechanism drivers (or as an alternative with the bagpipe ML2 mechanism driver).

When used along with the openvswitch or 1inuxbridge ML2 mechanism driver, it involves the
use of:

* bagpipe driver for the BGPVPN service plugin (in networking-bgpvpn package)
* bagpipe_bgpvpn extension for the Neutron compute node agent (in this package)
* BaGPipe-BGP lightweight BGP VPN implementation (in this package)

Example with OVS agent:

2.2. Applications 7

https://github.com/openstack/networking-bgpvpn
https://github.com/openstack/networking-bgpvpn

networking-bagpipe Documentation, Release 13.0.1.dev4

OpenVSwiteh Agent
+ Bagpipe BEPVEW

extension

0¥E ha—int /br—tam 0¥S br-mpls MPLS routers

2.2.3 Service Chaining (SFC)

For this application, networking-bagpipe provides a bagpipe driver for the
networking-sfc that will result in service chains defined via the networking-sfc API, being
realized with BGP VPN stiching, BGP VPN route redistribution and BGP Flowspec routes.

The components involved are:
* bagpipe driver for the networking-sfc service plugin (in this package)
* bagpipe_sfc extension for the Neutron compute node agent (in this package)

* BaGPipe-BGP lightweight BGP VPN implementation (in this package)

Note: This driver is still quite experimental, and still currently relies on using the 1 inuxbrige agent
along with the OVS dataplane driver for IPVPN in bagpipe-bgp.

2.2.4 Work in progress and future applications

Work in progress:
* BaGPipe ML2 with openvswitch agent
Considered:
* networking-12gw driver leveraging bagpipe-bgp running on a ToR

* L3 plugin for inter-subnet distributed routing

2.3 BaGPipe-BGP

BaGPipe-BGP is a component of networking-bagpipe, used on compute nodes along the Neutron agent
and bagpipe agent extension of this agent.

It is a lightweight implementation of BGP VPNs (IP VPNs and E-VPNs), targeting deployments on
compute nodes hosting VMs, in particular for Openstack/KVM platforms.

The goal of BaGPipe-BGP is nor to fully implement BGP specifications, but only the subset of
specifications required to implement IP VPN VRFs and E-VPN EVIs (RFC4364 a.k.a RFC2547bis,
RFC7432/draft-ietf-bess-evpn-overlay, and RFC4684).

8 Chapter 2. Using BaGPipe

http://tools.ietf.org/html/rfc4364
http://tools.ietf.org/html/rfc7432
http://tools.ietf.org/html/draft-ietf-bess-evpn-overlay
http://tools.ietf.org/html/RFC4684

networking-bagpipe Documentation, Release 13.0.1.dev4

BaGPipe-BGP is designed to use encapsulations over IP (such as MPLS-over-GRE or VXLAN), and
thus does not require the use of LDP. Bare MPLS over Ethernet is also supported and can be used if
compute nodes/routers have direct Ethernet connectivity.

2.3.1 Typical Use/deployment
BaGPipe-BGP has been designed to provide VPN (IP VPN or E-VPN) connectivity to local VMs run-
ning on an Openstack compute node.

BaGPipe-BGP is typically driven via its HTTP REST interface, by Openstack Neutron agent extensions
found in this package.

Moreover, BaGPipe-BGP can also be used standalone (in particular for testing purposes), with for in-
stance VMs tap interfaces or with veth interfaces to network namespaces (see below).

2.3.2 BGP and Route Reflection
If you only want to test how to interconnect one compute node running bagpipe-bgp and an IP/MPLS
router, you dont need to setup a BGP Route Reflector.

However, using BaGPipe-BGP between compute nodes currently requires setting up a BGP Route Re-
flector (see BGP Implementation and Caveats). Typically, passive mode will have to be used for BGP
peerings.

The term BGP Route Reflector refers to a BGP implementation that redistributes routes between iBGP
peers REC4456.

When using bagpipe-bgp on more than one compute node, we thus need each instance of BaGPipe-BGP
to be configured to peer with at least one route reflector (see Configuration).

We provide a tool that can be used to emulate a route reflector to interconnect 2 BaGPipe-BGP imple-
mentations, typically for test purposes (see Fake RR).

For more than 2 compute nodes running BaGPipe-BGP, you will need a real BGP implementation sup-
porting RFC4364 and BGP route reflection (and ideally also RFC4684), different options can be con-
sidered:

* BGP implementations in other opensource projects would possibly be suitable, but we did not
explore these exhaustively:

— GoBGP , see sample configuration and GoBGP as a RR for bagpipe-bgp PE implementa-
tions, with E-VPN

— we have successfully used OpenBSD BGPd as an IP VPN RR for bagpipe-bgp
— FRRouting
- Quagga

* A commercial router from for instance, Alcatel-Lucent, Cisco or Juniper can be used; some of
these vendors also provide their OSes as virtual machines

2.3. BaGPipe-BGP 9

http://tools.ietf.org/html/RFC4456
http://osrg.github.io/gobgp/
http://git.openstack.org/cgit/openstack/networking-bagpipe/tree/samples/gobgp.conf
https://github.com/osrg/gobgp/blob/master/docs/sources/evpn.md
https://github.com/osrg/gobgp/blob/master/docs/sources/evpn.md

networking-bagpipe Documentation, Release 13.0.1.dev4

2.3.3 Configuration

The bagpipe-bgp config file default location is: /etc/bagpipe-bgp/bgp.conf.
It needs to be customized, at least for the following:

* local_address: the local address to use for BGP sessions and traffic encapsulation (can also
be specified as an interface, e.g. ethQ, in which the IPv4 address of this interface will be used)

* peers: the list of BGP peers, it depends on the BGP setup that you have chosen (see above BGP
Route Reflection)

* dataplane configuration, if you really want packets to get through (see Dataplane configuration)
Example with two compute nodes and relying on bagpipe fake route reflector:
* On compute node A (local_address=10.0.0.1):
— run bagpipe-fakerr

— run bagpipe-bgp with peers=127.0.0.1 (compute node A will thus connect to the locally
running fake route-reflector)

* On compute node B (local_address=10.0.0.2):
— run bagpipe-bgp with peers=10.0.0.1

Dataplane driver configuration

Note well that the dataplane drivers proposed in the sample config file are dummy drivers that will not
actually drive any dataplane state. To have traffic really forwarded into IP VPNs or E-VPNs, you need
to select real dataplane drivers.

For instance, you can use the ovs dataplane driver for IP VPN, and the 1 inux driver for E-VPN.
Note well that there are specific constraints or dependencies applying to dataplane drivers for IP VPNs:

* the ovs driver can be used on most recent Linux kernels, but requires an OpenVSwitch with
suitable MPLS code (OVS 2.4 to 2.6 was tested); this driver can do bare-MPLS or MPLS-over-
GRE (but see Caveats for MPLS-over-GRE); for bare MPLS, this driver requires the OVS bridge
to be associated with an IP address, and that VRF interfaces be plugged into OVS prior to calling
BaGPipe-BGP API to attach them

* the 1inux driver relies on the native MPLS stack of the Linux kernel, it currently requires a
kernel 4.4+ and uses the pyroute2 module that allows defining all states via Netlink rather than by
executing ip commands

For E-VPN, the 1inux driver is supported without any particular additional configuration being re-
quired, and simply requires a Linux kernel >=3.10 (linux_vxlan.py).

10 Chapter 2. Using BaGPipe

networking_bagpipe/bagpipe_bgp/vpn/evpn/linux_vxlan.py#L269

networking-bagpipe Documentation, Release 13.0.1.dev4

2.3.4 Usage
BaGPipe-BGP local service
If systemd init scripts are installed (see samples/systemd), bagpipe-bgp is typically started

with: systemctl start bagpipe-bgp

It can also be started directly with the bagpipe-bgp command (-—help to see what parameters can
be used).

By default, it outputs logs on stdin (captured by systemd if run under systemd).

BaGPipe Fake BGP Route Reflector

If you choose to use our fake BGP Route Reflector (see BGP Route Reflection), you can start it
whether with the bagpipe-fakerr command, or if you have startup scripts installed, with service
bagpipe-fakerr start. Note that this tool requires the additional installation of the twisted
python package.

There isnt anything to configure, logs will be in syslog.

This tool is not a BGP implementation and simply plugs together two TCP connections face to face.

REST API tool for interface attachments

The bagpipe-rest-attach tool allows to exercise the REST API through the command line to
attach and detach interfaces from IP VPN VRFs and E-VPN EVIs.

See bagpipe-rest—attach —--help.

IP VPN example with a VM tap interface

This example assumes that there is a pre-existing tap interface tap42.

* on compute node A, plug tap interface tap42, MAC de:ad:00:00:be:ef, IP 11.11.11.1 into an IP
VPN VRF with route-target 64512:77:

!

!

* on compute node B, plug tap interface tap56, MAC ba:d0:00:00:ca:fe, IP 11.11.11.2 into an IP
VPN VRF with route-target 64512:77:

!

!

Note that this example is a schoolbook example only, but does not actually work unless you try to use
one of the two MPLS Linux dataplane drivers.

Note also that, assuming that VMs are behind these tap interfaces, these VMs will need to have proper
IP configuration. When BaGPipe-BGP is use standalone, no DHCP service is provided, and the IP
configuration will have to be static.

2.3. BaGPipe-BGP 11

networking-bagpipe Documentation, Release 13.0.1.dev4

Another IP VPN example

In this example, the bagpipe-rest-attach tool will build for you a network namespace and a properly
configured pair of veth interfaces, and will plug one of the veth to the VRF:

* on compute node A, plug a netns interface with IP 12.11.11.1 into a new IP VPN VRF named test,
with route-target 64512:78

* on compute node B, plug a netns interface with IP 12.11.11.2 into a new IP VPN VRF named test,
with route-target 64512:78

For this last example, assuming that you have configured bagpipe-bgp to use the ovs dataplane driver
for IP VPN, you will actually be able to have traffic exchanged between the network namespaces:

An E-VPN example

In this example, similarly as the previous one, the bagpipe-rest-attach tool will build for you a network
namespace and a properly configured pair of veth interfaces, and will plug one of the veth to the E-VPN
instance:

* on compute node A, plug a netns interface with IP 12.11.11.1 into a new E-VPN named test2,
with route-target 64512:79

* on compute node B, plug a netns interface with IP 12.11.11.2 into a new E-VPN named test2, with
route-target 64512:79

For this last example, assuming that you have configured bagpipe-bgp to use the 1 i nux dataplane driver
for E-VPN, you will actually be able to have traffic exchanged between the network namespaces:

12 Chapter 2. Using BaGPipe

networking-bagpipe Documentation, Release 13.0.1.dev4

Looking glass
The REST API (default port 8082) provide troubleshooting information, in read-only, through the
/looking-glass URL.

It can be accessed with a browser: e.g. http://10.0.0.1:8082/looking-glass or http://127.0.0.1:8082/
looking-glass (a browser extension to nicely display JSON data is recommended).

It can also be accessed with the bagpipe-looking—-glass utility:

bagpipe-looking-glass

bagpipe-looking-glass bgp peers

bagpipe-looking—-glass bgp routes

2.3.5 Design overview

The main components of BaGPipe-BGP are:
* the engine dispatching events related to BGP routes between workers
* a worker for each BGP peers
* a VPN manager managing the life-cycle of VRFs, EVIs
¢ a worker for each IP VPN VREF, or E-VPN EVI

2.3. BaGPipe-BGP 13

http://10.0.0.1:8082/looking-glass
http://127.0.0.1:8082/looking-glass
http://127.0.0.1:8082/looking-glass

networking-bagpipe Documentation, Release 13.0.1.dev4

* a REST API:
— to attach/detach interfaces to VRFs and control the parameters for said VRFs

— to access internal information useful for troubleshooting (/looking-glass/ URL sub-tree)

Publish/Subscribe design

The engine dispatching events related to BGP routes is designed with a publish/subscribe pattern based
on the principles in RFC4684. Workers (a worker can be a BGP peer or a local worker responsible for
an IP VPN VRF) publish BGP VPN routes with specified Route Targets, and subscribe to the Route
Targets that they need to receive. The engine takes care of propagating advertisement and withdrawal
events between the workers, based on subscriptions and BGP semantics (e.g. no redistribution between
BGP peers sessions).

Best path selection

The core engine does not do any BGP best path selection. For routes received from external BGP peers,
best path selection happens in the VRF workers. For routes that local workers advertise, no best path
selection is done because two distinct workers will never advertise a route of same BGP NLRI.

Multi-threading
For implementation convenience, the design choice was made to use Python native threads and python
Queues to manage the API, local workers, and BGP peers workloads:

* the engine (RouteTableManager) is running as a single thread

* each local VPN worker has its own thread to process route events

» each BGP peer worker has two threads to process outgoing route events, and receive socket data,
plus a few timers.

* VPN port attachment actions are done in the main thread handling initial setup and API calls,
these calls are protected by Python locks

Non-persistency of VPN and port attachments

The BaGPipe-BGP service, as currently designed, does not persist information on VPNs (VRFs or
EVIs) and the ports attached to them. On a restart, the component responsible triggering the attachment
of interfaces to VPNs, can detect the restart of the BGP and re-trigger these attachments.

14 Chapter 2. Using BaGPipe

http://tools.ietf.org/html/rfc4684

networking-bagpipe Documentation, Release 13.0.1.dev4

BGP Implementation
The BGP protocol implementation reuses BGP code from ExaBGP. BaGPipe-BGP only reuses the low-
level classes for message encodings and connection setup.
Non-goals for this BGP implementation:
* full-fledged BGP implementation
* redistribution of routes between BGP peers (hence, no route reflection, no eBGP)
* accepting incoming BGP connections

* scaling to a number of routes beyond the number of routes required to route traffic in/out of VMs
hosted on a compute node running BaGPipe-BGP

Dataplanes

BaGPipe-BGP was designed to allow for a modular dataplane implementation. For each type of VPN
(IP VPN, E-VPN) a dataplane driver is chosen through configuration. A dataplane driver is responsible
for setting up forwarding state for incoming and outgoing traffic based on port attachment information
and BGP routes.

(see Dataplane driver configuration)

2.3.6 Caveats

* BGP implementation not written for compliancy

— the BaGPipe-BGP service does not listen for incoming BGP connections (using a BGP route
reflector is required to interconnect bagpipe-bgp instance together, typically using passive
mode for BGP peerings)

— the state machine, in particular retry timers is possibly not fully compliant
— however, interop testing has been done with a fair amount of implementations

» standard MPLS-over-GRE, interoperating with routers, requires OVS >= 2.8 (previous Open-
VSwitch releases do MPLS-o-Ethernet-o-GRE and not MPLS-0-GRE)

2.3. BaGPipe-BGP 15

http://code.google.com/p/exabgp

networking-bagpipe Documentation, Release 13.0.1.dev4

16 Chapter 2. Using BaGPipe

CHAPTER
THREE

INSTALLATION

3.1 Networking-bagpipe installation

The details related to how a package should be installed may depend on your environment.
If possible, you should rely on packages provided by your Linux and/or OpenStack distribution.
If you use pip, follow these steps to install networking-bagpipe:

* identify the version of the networking-bagpipe package that matches your Openstack version:

Liberty: most recent of 3.0.x

Mitaka: most recent of 4.0.x

Newton: most recent of 5.0.x

Ocata: most recent of 6.0.x

Pike: most recent of 7.0.x

Queens: most recent of 8.0.x
— (see https://releases.openstack.org/index.html)

* indicate pip to (a) install precisely this version and (b) take into account Openstack upper con-
straints on package versions for dependencies (example for Queens):

pip install -c https://releases.openstack.org/constraints/upper/
—queens

3.2 BaGPipe for Neutron L2

3.2.1 Installation in a devstack test/development environment

« install devstack (whether stable/x or master)
* enable the devstack plugin by adding this to 1local.conf:

— touse branch stable/x (e.g. stable/queens):

— to use the development branch:

17

https://releases.openstack.org/index.html

networking-bagpipe Documentation, Release 13.0.1.dev4

* enable bagpipe ML2 by adding this to 1ocal.conf:

» for multinode setups, configure BaGPipe-BGP on each compute node, i.e. you need each
BaGPipe-BGP to peer with a BGP Route Reflector:

— in local.conft:

— for two compute nodes, you can use the FakeRR provided in BaGPipe-BGP

— for more than two compute nodes, you can use GoBGP (sample configuration) or a com-
mercial E-VPN implementation (e.g. vendors participating in EANTC interop testing on
E-VPN)

3.2.2 Deployment
On Neutron servers, the following needs to be done, based on an ML2/linuxbridge or ML2/openvswitch
configuration as a starting point:

* installing networking-bagpipe python package (see Networking-bagpipe installation)

* in ML2 configuration (/etc/neutron/plugins/ml2.ini):

— adding the bagpipe mechanism driver (additionally to the linuxbridge or
openvswitch driver which will still handle f1at and v1an networks)

— before Queens release (i.e. if networking-bagpipe < 8) use the route_target type driver
as default

— result:

You need to deploy a BGP Route Reflector, that will distribute BGP VPN routes among compute and
network nodes. This route reflector will need to support E-VPN and, optionally, RT Constraints. One
option, among others is to use GoBGP (sample configuration).

On compute node (and network nodes if any) the following needs to be done, based on an
ML2/linuxbridge or ML2/openvswitch configuration as a starting point:

* installing networking-bagpipe python package (see Networking-bagpipe installation)

* configuring Neutron linuxbridge or OpenvSwitch agent for bagpipe /etc/neutron/
plugins/ml2.1ini:

— enabling bagpipe agent extension

— before Queens release (i.e. if networking-bagpipe < 8), disable VXLAN:

18 Chapter 3. Installation

http://osrg.github.io/gobgp
http://git.openstack.org/cgit/openstack/networking-bagpipe/tree/samples/gobgp.conf
http://www.eantc.de/fileadmin/eantc/downloads/events/2011-2015/MPLSSDN2015/EANTC-MPLSSDN2015-WhitePaper_online.pdf
http://www.eantc.de/fileadmin/eantc/downloads/events/2011-2015/MPLSSDN2015/EANTC-MPLSSDN2015-WhitePaper_online.pdf
http://osrg.github.io/gobgp
http://git.openstack.org/cgit/openstack/networking-bagpipe/tree/samples/gobgp.conf

networking-bagpipe Documentation, Release 13.0.1.dev4

— configuring the AS number and range to use to allocate BGP Route Targets for tenant net-
works

— result:

[agent]

[vxlan]

[ml2_bagpipe_extension]

* configuring BaGPipe-BGP:

— setting local_address to the compute node address (or the name of one of its interfaces
e.g. eth0)

— adding the Route Reflector IP to peers

— selecting the EVPN dataplane driver corresponding to your agent in (/etc/
bagpipe-bgp/bgp.conf):

* ovs for the openvswitch agent:

[DATAPLANE_ DRIVER_ EVPN]

#* linux for the linuxbridge agent:

[DATAPLANE_DRIVER_EVPN]

3.3 BaGPipe for BGPVPN

Information on how to use bagpipe driver for networking-bgpvpn is provided in BGPVPN bagpipe
driver documentation.

3.4 BaGPipe for networking-sfc

To enable the use of networking-bagpipe driver for networking-sfc, the following needs to be done:

* enable bagpipe driver for the networking-sfc service plugin, in /etc/neutron/
neutron.conf and configure its parameters (see SFC):

[sfc]

[sfc_bagpipe]

(continues on next page)

3.3. BaGPipe for BGPVPN 19

http://git.openstack.org/cgit/openstack/networking-bgpvpn
https://docs.openstack.org/networking-bgpvpn/latest/user/drivers/bagpipe/index.html
https://docs.openstack.org/networking-bgpvpn/latest/user/drivers/bagpipe/index.html

networking-bagpipe Documentation, Release 13.0.1.dev4

(continued from previous page)

* add the bagpipe_sfc agent extension to the Neutron linuxbridge agent config
in““/etc/neutron/plugins/ml2.ini*:

[agent]

* BaGPipe-BGP lightweight BGP VPN implementation, configured to use ovs as dataplane driver
for IPVPNSs, and 1inux as dataplane driver for EVPN (/etc/bagpipe-bgp/bgp.conf):

[DATAPLANE DRIVER_ IPVPN]

[DATAPLANE_DRIVER_EVPN]

3.4.1 In a devstack

To experiment with sfc driver in a devstack, the following is can be added in your local.conf (replace
stable/X with stable/queens for e.g. Openstack Queens release) :

.
enable_plugin networking-sfc https://git.openstack.org/
—openstack/networking-bagpipe.git stable/X

.

enable_plugin networking-bagpipe https://git.openstack.org/
—openstack/networking-bagpipe.git stable/X

[[post—config| SNEUTRON_CONF]]

[sfe]

[sfc_bagpipe]

[[post—config|/$NEUTRON_CORE_PLUGIN_CONF]]

[agent]

20 Chapter 3. Installation

CHAPTER
FOUR

CONFIGURATION OPTIONS

This section provides a list of all possible options for each configuration file.

4.1 Configuration Reference

networking-bagpipe uses the following configuration files for its various services.

4.1.1 Neutron config
SFC

The following section can be added to Neutron server configuration to parameters related to the sfc
driver.

sfc_bagpipe

as_number
Type integer
Default 64512

Autonomous System number used to generate BGP Route Targets that will be used for Port Chain
allocations

rtnn
Type list
Default [5000, 5999]

List containing <rtnn_min>, <rtnn_max> defining a range of BGP Route Targets that will be used
for Port Chain allocations. This range MUST not intersect the one used for network segmentation
identifiers

21

networking-bagpipe Documentation, Release 13.0.1.dev4

4.1.2 Neutron agent config

The following section can be added to Neutron agent configuration.

bagpipe
mpls_bridge
Type string

Default br-mpls
OVS MPLS bridge to use

bagpipe_ml2_extension

as_number
Type list
Default [64512]

Autonomous System number used to generate BGP RTs forE-VPNs used by bagpipe ML2 (more
than one is possible,to allow a deployment to do a 2-step transition to change the AS number used)

4.1.3 bagpipe-bgp.conf

api
host
Type host address
Default 127.0.0.1
IP address on which the API server should listen
Table 1: Deprecated Variations
Group | Name
api api_host
port

Type port number
Default 3082
Minimum Value 0
Maximum Value 65535

Port on which the API server should listen

22 Chapter 4. Configuration Options

networking-bagpipe Documentation, Release 13.0.1.dev4

Table 2: Deprecated Variations

Group | Name
api api_port

bgp

local address
Type unknown type
Default <None>
IP address used for BGP peerings
peers
Type list
Default []
IP addresses of BGP peers
my_as
Type integer
Default <None>
Minimum Value 1
Maximum Value 65535
Our BGP Autonomous System
enable_rtc
Type boolean
Default True
Enable RT Constraint (RFC4684)
bgp_port
Type port number
Default 179
Minimum Value 0
Maximum Value 65535

TCP port of connections to BGP peers

4.1. Configuration Reference

23

networking-bagpipe Documentation, Release 13.0.1.dev4

common

root_helper
Type string
Default sudo
Root helper command.
root_helper daemon
Type string
Default <None>

Root helper daemon application to use when possible.

dataplane_driver_evpn

dataplane_local_address
Type unknown type
Default <None>
IP address to use as next-hop in our route advertisements, will be used to send us VPN traffic
dataplane_driver
Type string
Default dummy

Dataplane driver.

dataplane_driver_ipvpn

dataplane_local_address
Type unknown type
Default <None>
IP address to use as next-hop in our route advertisements, will be used to send us VPN traffic
dataplane_driver
Type string
Default dummy
Dataplane driver.

More dataplane configuration parameters exist depending on the driver:

24 Chapter 4. Configuration Options

networking-bagpipe Documentation, Release 13.0.1.dev4

[DATAPLANE_DRIVER_EVPN] with driver=linux

dataplane_driver_evpn

vxlan_dst_port
Type integer
Default 4789
UDP port toward which send VXLAN traffic (defaults to standard IANA-allocated port)

[DATAPLANE_DRIVER_IPVPN] with driver=linux

dataplane_driver_ipvpn

mpls_interface
Type string
Default <None>

Interface used to send/receive MPLS traffic. Use gre to choose automatic creation of a tunnel
interface for MPLS/GRE encap

[DATAPLANE_DRIVER_IPVPN] with driver=ovs

dataplane_driver_ipvpn

mpls_interface
Type string
Default <None>

Interface used to send/receive MPLS traffic. Use gre to choose automatic creation of a tunnel port
for MPLS/GRE encap

mpls_over_gre
Type string
Default auto
Valid Values auto, True, False

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Force the use of MPLS/GRE even with mpls_interface specified
proxy_arp
Type boolean
Default False

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

4.1. Configuration Reference 25

networking-bagpipe Documentation, Release 13.0.1.dev4

Activate ARP responder per VRF for any IP address
arp_responder
Type boolean
Default False

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

ARP responder per VRF
vxlan_encap
Type boolean
Default False

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Be ready to receive VPN traffic as VXLAN, and to preferrably send traffic as VXLAN when
advertised by the remote end

ovs_bridge
Type string
Default br-mpls

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

input_table
Type integer
Default 0

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

ovs_table id start
Type integer
Default 1

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

gre_tunnel
Type string
Default mpls_gre

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

OVS interface name for MPLS/GRE encap

gre_tunnel_options

Type list

26 Chapter 4. Configuration Options

networking-bagpipe Documentation, Release 13.0.1.dev4

Default []

Options, comma-separated, passed to OVS for GRE tunnel port creation (e.g.
packet_type=legacy_13,) that will be added as OVS tunnel interface options (e.g. op-
tions:packet_type=legacy_l3 options:)

ovsbr interfaces mtu
Type integer
Default <None>

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

hash_method
Type string
Default dp_hash
Valid Values hash, dp_hash

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Can be used to control the OVS group bucket selection method (mapped to ovs selection_method)
hash_method_param
Type string
Default 0

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Can be used to control the OVS group bucket selection method (mapped to ovs selec-
tion_method_param)

hash fields
Type list
Default []

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Can be used to control the fields used by the OVS group bucket selection method (mapped to ovs
fields)

4.1. Configuration Reference 27

networking-bagpipe Documentation, Release 13.0.1.dev4

4.2 Sample Configuration Files

The following are sample configuration files for all networking-bagpipe. These are generated from code
and reflect the current state of code in the networking-bagpipe repository.

4.2.1 Sample Neutron agent config

This sample configuration can also be viewed in the raw format.

4.2.2 Sample bagpipe-bgp.conf

This sample configuration can also be viewed in the raw format.

(continues on next page)

28 Chapter 4. Configuration Options

../../_static/config_samples/neutron-agent.conf.sample
../../_static/config_samples/bagpipe-bgp.conf.sample

networking-bagpipe Documentation, Release 13.0.1.dev4

(continued from previous page)

Maximum value: 65535
Deprecated group/name — [api]/api_port
#port = 8082

#
From networking bagpipe.bgp_common

#

IP address used for BGP peerings (interface address value)
#local_address = <None>

IP addresses of BGP peers (list value)
#peers =

Our BGP Autonomous System (integer value)
Minimum value: 1

Maximum value: 65535

#my_as = <None>

Enable RT Constraint (RFC4684) (boolean value)
#enable rtc = true

TCP port of connections to BGP peers (port value)
Minimum value: 0

Maximum value: 65535

#bgp_port = 179

#
From networking bagpipe.run_command

#

Root helper command. (string value)
#root_helper = sudo

Root helper daemon application to use when possible. (string value)

#root_helper_daemon = <None>

#

From networking bagpipe.dataplane.evpn
#

IP address to use as next—hop in our route advertisements, will be used,
—to

send us VPN traffic (interface address value)

#dataplane local_address = <None>

Dataplane driver. (string value)

(continues on next page)

4.2. Sample Configuration Files 29

networking-bagpipe Documentation, Release 13.0.1.dev4

(continued from previous page)

More dataplane configuration parameters exist depending on the driver:

Sample [DATAPLANE_DRIVER_EVPN] with driver=linux

This sample configuration can also be viewed in the raw format.

Sample [DATAPLANE_DRIVER_IPVPN] with driver=linux

This sample configuration can also be viewed in the raw format.

—

(continues on next page)

30 Chapter 4. Configuration Options

../../_static/config_samples/dataplane-evpn-linux-vxlan.conf.sample
../../_static/config_samples/dataplane-ipvpn-mpls-linux.conf.sample

networking-bagpipe Documentation, Release 13.0.1.dev4

(continued from previous page)

creation of a tunnel interface for MPLS/GRE encap (string value)
#mpls_interface = <None>

Sample [DATAPLANE_DRIVER_IPVPN] with driver=ovs

This sample configuration can also be viewed in the raw format.

#
From networking bagpipe.dataplane.ipvpn.mpls_ovs
#

Interface used to send/receive MPLS traffic. Use 'xgrex' to choose,
—automatic

creation of a tunnel port for MPLS/GRE encap (string value)
#mpls_interface = <None>

Options, comma-separated, passed to OVS for GRE tunnel port creation (e.

—g.
'packet_type=legacy_13, ...'") that will be added as OVS tunnel interface
options (e.g. 'options:packet_type=legacy_13 options:..."') (list value)

#gre_tunnel_options =

Force the use of MPLS/GRE even with mpls_interface specified (string,
—value)

Possible values:

auto - <No description provided>

True — <No description provided>

False - <No description provided>

Advanced Option: intended for advanced users and not used

by the majority of users, and might have a significant

effect on stability and/or performance.

#mpls_over_gre = auto

S Hh FHR KR IR R H

Activate ARP responder per VRF for any IP address (boolean value)
Advanced Option: intended for advanced users and not used

by the majority of users, and might have a significant

effect on stability and/or performance.

#proxy_arp = false

ARP responder per VRF (boolean value)

Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant

effect on stability and/or performance.

#arp_responder = false

Be ready to receive VPN traffic as VXLAN, and to preferrably send,
—traffic as

VXLAN when advertised by the remote end (boolean value)

Advanced Option: intended for advanced users and not used

(continues on next page)

4.2. Sample Configuration Files 31

../../_static/config_samples/dataplane-ipvpn-mpls-ovs.conf.sample

networking-bagpipe Documentation, Release 13.0.1.dev4

(continued from previous page)

by the majority of users, and might have a significant
effect on stability and/or performance.
#vxlan encap = false

(string value)

Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant

effect on stability and/or performance.

#ovs_bridge = br-mpls

(integer value)

Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant

effect on stability and/or performance.

#input_table = 0

(integer value)

Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant

effect on stability and/or performance.
#ovs_table id _start = 1

OVS interface name for MPLS/GRE encap (string value)

Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant

effect on stability and/or performance.

#gre_tunnel = mpls_gre

(integer value)

Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant

effect on stability and/or performance.
#ovsbr_interfaces_mtu = <None>

Can be used to control the OVS group bucket selection method (mapped to,

'selection_method') (string value)

Possible values:

hash — <No description provided>

dp_hash - <No description provided>

Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant

effect on stability and/or performance.

#hash_method = dp_hash

Can be used to control the OVS group bucket selection method (mapped to,
—ovs

'selection_method _param') (string value)

Advanced Option: intended for advanced users and not used

by the majority of users, and might have a significant

effect on stability and/or performance.

#hash _method _param = 0

Can be used to control the fields used by the OVS group bucket selection
method (mapped to ovs 'fields') (list value)
Advanced Option: intended for advanced users and not used

(continues on next page)

32 Chapter 4. Configuration Options

networking-bagpipe Documentation, Release 13.0.1.dev4

(continued from previous page)

4.2. Sample Configuration Files 33

networking-bagpipe Documentation, Release 13.0.1.dev4

34 Chapter 4. Configuration Options

CHAPTER
FIVE

DEVELOPMENT

5.1 Contributing

If you would like to contribute to the development of OpenStack, you must follow the steps in this page:
http://docs.openstack.org/infra/manual/developers.html

Once those steps have been completed, changes to OpenStack should be submitted for review via the
Gerrit tool, following the workflow documented at: http://docs.openstack.org/infra/manual/developers.
html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub: https://bugs.launchpad.net/networking-bagpipe

35

http://docs.openstack.org/infra/manual/developers.html
http://docs.openstack.org/infra/manual/developers.html#development-workflow
http://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/networking-bagpipe

	Overview
	Using BaGPipe
	Design overview
	Applications
	BaGPipe-BGP

	Installation
	Networking-bagpipe installation
	BaGPipe for Neutron L2
	BaGPipe for BGPVPN
	BaGPipe for networking-sfc

	Configuration Options
	Configuration Reference
	Sample Configuration Files

	Development
	Contributing

