
kolla Documentation
Release 12.7.1.dev19

OpenStack Foundation

Jun 23, 2023

CONTENTS

1 Related Projects 3

2 Site Notes 5

3 Release Notes 7

4 Administrator Guide 9
4.1 Administrator Guide . 9

5 Support Matrix 21
5.1 Kolla Images Support Matrix . 21

6 Contributor Guide 27
6.1 Contributor Guide . 27

i

ii

kolla Documentation, Release 12.7.1.dev19

Kollas mission is to provide production-ready containers and deployment tools for operating OpenStack
clouds.

CONTENTS 1

kolla Documentation, Release 12.7.1.dev19

2 CONTENTS

CHAPTER

ONE

RELATED PROJECTS

This documentation is for the Kolla container images.

Kolla-ansible is a subproject of Kolla that deploys the Kolla container images using Ansible.

Kayobe is a subproject of Kolla that uses Kolla Ansible and Bifrost to deploy an OpenStack control
plane to bare metal.

3

https://docs.openstack.org/kolla-ansible/latest/
https://docs.openstack.org/kayobe/latest/

kolla Documentation, Release 12.7.1.dev19

4 Chapter 1. Related Projects

CHAPTER

TWO

SITE NOTES

This documentation is continually updated and may not represent the state of the project at any specific
prior release. To access documentation for a previous release of kolla, choose one of the OpenStack
release names on the right of the title.

5

kolla Documentation, Release 12.7.1.dev19

6 Chapter 2. Site Notes

CHAPTER

THREE

RELEASE NOTES

The release notes for the project can be found here: https://docs.openstack.org/releasenotes/kolla/

7

https://docs.openstack.org/releasenotes/kolla/

kolla Documentation, Release 12.7.1.dev19

8 Chapter 3. Release Notes

CHAPTER

FOUR

ADMINISTRATOR GUIDE

4.1 Administrator Guide

4.1.1 Building Container Images

If you are a system administrator running Kolla, this section contains information that should help you
understand how to build container image or build some images using --template-override.

Building Container Images

Firstly, ensure kolla is installed.

python3 -m pip install kolla

Then, the kolla-build command is available for building Docker images.

Building kolla images

In general, images are built like this:

kolla-build

By default, the above command would build all images based on a CentOS Stream image.

The operator can change the base distro with the -b option:

kolla-build -b ubuntu

There are following distros (bases) available for building images:

• centos

• debian

• rhel (deprecated)

• ubuntu

See the support matrix for information on supported base image distribution versions and supported
images on each distribution.

It is possible to build only a subset of images by specifying them on the command line:

9

kolla Documentation, Release 12.7.1.dev19

kolla-build keystone

In this case, the build script builds all images whose name contains the keystone string, along with
their parents.

Multiple names may be specified on the command line:

kolla-build keystone nova

Each string is actually a regular expression so one can do:

kolla-build ^nova-

kolla-build can be configured via an INI file, canonically named kolla-build.conf and
placed in /etc/kolla. A custom path to it can be set via the --config-file argument. Most
CLI arguments can be set via this config file. Remember to convert the names from hyphenated to
underscored. Run kolla-build --help to see all available options.

The set of images to build can be defined as a profile in the profiles section of kolla-build.
conf. Then, profile can be specified by --profile CLI argument or profile option in
kolla-build.conf.

For example, since Magnum requires Heat, one could add the following profile to profiles section
in kolla-build.conf:

[profiles]
magnum = magnum,heat

These images could then be built using command line:

kolla-build --profile magnum

Or putting the following line in the DEFAULT section in kolla-build.conf file:

[DEFAULT]
profile = magnum

The kolla-build uses kolla as default Docker namespace. This is controlled with the -n com-
mand line option. To push images to a Dockerhub repository named mykollarepo:

kolla-build -n mykollarepo --push

To push images to a local registry, use the --registry flag:

kolla-build --registry 172.22.2.81:4000 --push

10 Chapter 4. Administrator Guide

https://docs.openstack.org/kolla-ansible/wallaby/user/multinode.html#deploy-a-registry

kolla Documentation, Release 12.7.1.dev19

Build OpenStack from source

When building images, there are two methods of the OpenStack install. One is binary. Another is
source. The binary means that OpenStack will be installed from apt/dnf. And the source means
that OpenStack will be installed from upstream sources. The default method of the OpenStack install is
binary. It can be changed to source using the -t option:

kolla-build -t source

The locations of OpenStack source code are written in kolla-build.conf. The source type sup-
ports url, git, and local. The location of the local source type can point to either a directory
containing the source code or to a tarball of the source. The local source type permits to make the
best use of the Docker cache.

The kolla-build.conf file could look like this:

[glance-base]
type = url
location = https://tarballs.openstack.org/glance/glance-master.tar.gz

[keystone-base]
type = git
location = https://opendev.org/openstack/keystone
reference = stable/mitaka

[heat-base]
type = local
location = /home/kolla/src/heat

[ironic-base]
type = local
location = /tmp/ironic.tar.gz

Dockerfile customisation

The kolla-build tool provides a Jinja2-based mechanism which allows operators to customise the
Dockerfiles used to generate Kolla images.

This offers a lot of flexibility on how images are built, for example: installing extra packages as part of
the build, tweaking settings or installing plugins. Examples of these are described in more detail below.

Note: The Docker file Jinja2 template for each image is found in subdirectories of the docker direc-
tory included in the kolla package.

4.1. Administrator Guide 11

kolla Documentation, Release 12.7.1.dev19

Using a different base image

Base image can be specified using --base-image:

kolla-build --base-image <image-identifier>

The image-identifier accepts any format that Docker accepts when referencing an image.

Generic customisation

Kolla templates are designed such that each Docker file has logical sections represented by Jinja2s
named block section directives. These can be overridden at will by Kolla users. The following is an
example of how an operator would modify the setup steps within the Horizon Dockerfile.

First, create a file to contain the customisations, for example: template-overrides.j2. Fill it
with the following contents:

{% extends parent_template %}

Horizon
{% block horizon_redhat_binary_setup %}
RUN useradd --user-group myuser
{% endblock %}

Then rebuild the horizon image, passing the --template-override argument:

kolla-build --template-override template-overrides.j2 ^horizon$

Note: The above example will replace all contents of the original block. Hence, one may want to
copy the original contents of the block before and modify it. Do note it makes the customisations ignore
changes in Kolla upstream.

We recommend users use more specific customisation functionalities, such as removing/appending en-
tries for packages. These other customisations are described in the following sections.

Two block series are of particular interest and are safe to override as they are empty by design.
The top of each Dockerfile includes <image_name>_header block which can be used for early
customisations, such as RHN registration described later. The bottom of each Dockerfile includes
<image_name>_footer block which is intended for image-specific modifications. Do note to use
the underscored name of the image, i.e., replace dashes with underscores. All leaf Dockerfiles, i.e. those
meant for direct consumption, additionally have a footer block which is then guaranteed to exist once
at the very end of the image recipe chain.

12 Chapter 4. Administrator Guide

kolla Documentation, Release 12.7.1.dev19

RHEL containers and RHN

To build RHEL containers, it is necessary to include registration with RHN of the container runtime
operating system. To obtain a RHN username/password/pool id, contact Red Hat. Use templates header
block in the overrides file, e.g.:

{% extends parent_template %}

{% block base_header %}
RUN subscription-manager register --user=<user-name> \

--password=<password> && subscription-manager attach --pool <pool-id>
{% endblock %}

Packages customisation

Packages installed as part of an image build can be overridden, appended to, and deleted. Taking the
Horizon example, the following packages are installed as part of a binary install type build (among
others):

• openstack-dashboard

• openstack-magnum-ui

To add a package to this list, say, iproute, first create a file, for example, template-overrides.
j2. In it place the following:

{% extends parent_template %}

Horizon
{% set horizon_packages_append = ['iproute'] %}

Then rebuild the horizon image, passing the --template-override argument:

kolla-build --template-override template-overrides.j2 ^horizon$

Alternatively template_override can be set in kolla-build.conf.

The append suffix in the above example carries special significance. It indicates the operation taken
on the package list. The following is a complete list of operations available:

override Replace the default packages with a custom list.

append Add a package to the default list.

remove Remove a package from the default list.

To remove a package from that list, say openstack-magnum-ui, one would do:

{% extends parent_template %}

Horizon
{% set horizon_packages_remove = ['openstack-magnum-ui'] %}

4.1. Administrator Guide 13

kolla Documentation, Release 12.7.1.dev19

Plugin functionality

The Dockerfile customisation mechanism is useful for adding/installing plugins to services. An example
of this is Neutrons third party L2 drivers.

For example, to add the networking-cisco plugin to the neutron_server image, one may be
tempted to add the following to the template-override file:

Warning: Do NOT do the below. Read on for why.

{% extends parent_template %}

{% block neutron_server_footer %}
RUN git clone https://opendev.org/x/networking-cisco \

&& python3 -m pip --no-cache-dir install networking-cisco
{% endblock %}

Some readers may notice there is one problem with this, however. Assuming nothing else in the Docker-
file changes for a period of time, the above RUN statement will be cached by Docker, meaning new com-
mits added to the Git repository may be missed on subsequent builds. To solve this, the kolla-build
tool also supports cloning additional repositories at build time, which will be automatically made avail-
able to the build, within an archive named plugins-archive.

Note: The following is available for source build types only.

To use this, add a section to kolla-build.conf in the following format:

[<image-name>-plugin-<plugin-name>]

Where <image-name> is the hyphenated name of the image that the plugin should be installed into,
and <plugin-name> is the chosen plugin identifier.

Continuing with the above example, one could add the following to kolla-build.conf:

[neutron-server-plugin-networking-cisco]
type = git
location = https://opendev.org/x/networking-cisco
reference = master

The build will clone the repository, resulting in the following archive structure:

plugins-archive.tar
|__ plugins

|__networking-cisco

The template now becomes:

{% block neutron_server_footer %}
ADD plugins-archive /
python3 -m pip --no-cache-dir install /plugins/*
{% endblock %}

14 Chapter 4. Administrator Guide

https://wiki.openstack.org/wiki/Neutron#Plugins

kolla Documentation, Release 12.7.1.dev19

Many of the Dockerfiles already copy the plugins-archive to the image and install available plu-
gins at build time.

Neutron plugins

One example of a service with many available plugins is Neutron. The neutron-base image Dock-
erfile has plugins archive copying and installation enabled already. In the contrib directory of Kolla
(as available in the repository, the tarball or the share directory of the installation target), there is a
neutron-plugins directory with examples of Neutron plugins definitions. Some of these plugins
used to be enabled by default but, due to their release characteristic, have been excluded from the default
builds. Please read the included README.rst to learn how to apply them.

Additions functionality

The Dockerfile customisation mechanism is useful for adding/installing additions into images. An ex-
ample of this is adding your jenkins job build metadata (say, formatted into a jenkins.json file) into the
image.

Similarly to the plugins mechanism, the Kolla build tool also supports cloning additional repos-
itories at build time, which will be automatically made available to the build, within an
archive named additions-archive. The main difference between plugins-archive and
additions-archive is that plugins-archive is automatically copied in many images and pro-
cessed to install available plugins while additions-archive processing is left solely to the Kolla
user.

Note: The following is available for source build types only.

To use this, add a section to kolla-build.conf in the following format:

[<image>-additions-<additions-name>]

Where <image-name> is the hyphenated name of the image that the additions should be copied into,
and <additions-name> is the chosen additions identifier.

For example, one could add the following to kolla-build.conf file:

[neutron-server-additions-jenkins]
type = local
location = /path/to/your/jenkins/data

The build will copy the directory, resulting in the following archive structure:

additions-archive.tar
|__ additions

|__jenkins

Alternatively, it is also possible to create an additions-archive.tar file yourself bypasssing
kolla-build.conf in order to work with binary build type.

The template becomes now:

4.1. Administrator Guide 15

kolla Documentation, Release 12.7.1.dev19

{% block neutron_server_footer %}
ADD additions-archive /
RUN cp /additions/jenkins/jenkins.json /jenkins.json
{% endblock %}

Custom repos

Red Hat

Kolla allows the operator to build containers using custom repos. The repos are accepted as a list of
comma separated values and can be in the form of .repo, .rpm, or a url. See examples below.

To use current RDO packages (aka Delorean or DLRN), update rpm_setup_config in
kolla-build.conf:

rpm_setup_config = https://trunk.rdoproject.org/centos8/current/delorean.
↪→repo,https://trunk.rdoproject.org/centos8/delorean-deps.repo

If specifying a .repo file, each .repo file will need to exist in the same directory as the base Dockerfile
(kolla/docker/base):

rpm_setup_config = epel.repo,delorean.repo,delorean-deps.repo

Debian / Ubuntu

For Debian based images, additional apt sources may be added to the build as follows:

apt_sources_list = custom.list

Building behind a proxy

We can insert http_proxy settings into the images to fetch packages during build, and then unset them
at the end to avoid having them carry through to the environment of the final images. Note, however,
its not possible to drop the info completely using this method; it will still be visible in the layers of the
image.

To set the proxy settings, we can add this to the templates header block:

ENV http_proxy=https://evil.corp.proxy:80
ENV https_proxy=https://evil.corp.proxy:80

To unset the proxy settings, we can add this to the templates footer block:

ENV http_proxy=""
ENV https_proxy=""

Besides this configuration options, the script will automatically read these environment variables. If the
host system proxy parameters match the ones going to be used, no other input parameters will be needed.
These are the variables that will be picked up from the user env:

16 Chapter 4. Administrator Guide

kolla Documentation, Release 12.7.1.dev19

HTTP_PROXY, http_proxy, HTTPS_PROXY, https_proxy, FTP_PROXY,
ftp_proxy, NO_PROXY, no_proxy

Also these variables could be overwritten using --build-args, which have precedence.

Known issues

1. Mirrors are unreliable.

Some of the mirrors Kolla uses can be unreliable. As a result occasionally some containers fail to
build. To rectify build problems, the build tool will automatically attempt three retries of a build
operation if the first one fails. The retry count is modified with the --retries option.

OVS-DPDK Source build

CentOS currently does not provide packages for ovs with dpdk. The Ubuntu packages do not support
UIO based drivers. To use the uio_pci_generic driver on Ubuntu a source build is required.

Building ovs with dpdk containers from source

Append the following to /etc/kolla/kolla-build.conf to select the version of ovs and dpdk
to use for your source build.

[openvswitch-base-plugin-ovs]
type = git
location = https://github.com/openvswitch/ovs.git
reference = v2.10.0

[openvswitch-base-plugin-dpdk]
type = git
location = http://dpdk.org/git/dpdk
reference = v17.11

To build the container, run the following command inside a cloned kolla repository:

tools/build.py -t source --template-override contrib/template-override/ovs-
↪→dpdk.j2 ovsdpdk

4.1.2 Kolla Images API

Take advantage of the Kolla API to configure containers at runtime.

4.1. Administrator Guide 17

kolla Documentation, Release 12.7.1.dev19

Kolla Images API

Kolla offers two different ways to make changes to containers at runtime. The first is via a configuration
file exposed to the container and processed by the init scripts, and the second is via more traditional
environment variables.

External Config

All of the Kolla images understand a JSON-formatted configuration describing a set of actions the con-
tainer needs to perform at runtime before it executes the (potentially) long running process. This config-
uration also specifies the command to execute to run the service.

When a container runs kolla_start, the default entry-point, it processes the configuration file using
kolla_set_configs with escalated privileges, meaning it is able to set file ownership and permissions.

Format of the configuration file

The kolla_set_configs script understands the following attributes:

• command (required): the command the container runs once it finishes the initialization step.

• config_files: copies files and directories inside the container. A list of dicts, each containing the
following attributes:

– source (required): path to the file or directory that needs to be copied. Understands shell
wildcards.

– dest (required): path to where the file or directory will be copied. does not need to exist,
destination is deleted if it exists.

– owner (required, unless preserve_properties is set to true): the user:group to
change ownership to. user is synonymous to user:user. Must be user and group names,
not uid/gid.

– perm (required, unless preserve_properties is set to true): the unix permissions to set to the
target files and directories. Must be passed in the numeric octal form.

– preserve_properties: copies the ownership and permissions from the original files and di-
rectory. Boolean, defaults to false.

– optional: do not raise an error when the source file is not present on the filesystem. Boolean,
defaults to false.

– merge: merges the source directory into the target directory instead of replacing it. Boolean,
defaults to false.

• permissions: change the permissions and/or ownership of files or directories inside the container.
A list of dicts, each containing the following attributes:

– path (required): the path to the file or directory to update.

– owner (required): the user:group to change ownership to. user is synonymous to
user:user. Must be user and group names, not uid/gid.

– perm: the unix permissions to set to the target files and directories. Must be passed in the
numeric octal form.

18 Chapter 4. Administrator Guide

https://github.com/openstack/kolla/blob/master/docker/base/start.sh
https://github.com/openstack/kolla/blob/master/docker/base/set_configs.py
https://github.com/openstack/kolla/blob/master/docker/base/set_configs.py

kolla Documentation, Release 12.7.1.dev19

– recurse: whether to apply the change recursively over the target directory. Boolean, defaults
to false.

Here is an example configuration file:

{
"command": "trove-api --config-file=/etc/trove/trove.conf",
"config_files": [

{
"source": "/var/lib/kolla/config_files/trove.conf",
"dest": "/etc/trove/trove.conf",
"owner": "trove",
"perm": "0600",
"optional": false

}
],
"permissions": [

{
"path": "/var/log/kolla/trove",
"owner": "trove:trove",
"recurse": true

}
]

}

Passing the configuration file to the container

The configuration to the container can be passed through a dedicated path: /var/lib/kolla/
config_files/config.json. It is advised to ensure this path is mounted read-only for security
reasons.

Mounting the configuration file in the container:

docker run -e KOLLA_CONFIG_STRATEGY=COPY_ALWAYS \
-v /path/to/config.json:/var/lib/kolla/config_files/config.json:ro \
kolla-image

Environment Variables

Variables to pass to the containers

The Kolla containers also understand some environment variables to change their behavior at runtime:

• KOLLA_CONFIG_STRATEGY (required): Defines how the kolla_start script copies the con-
figuration file. Must be one of:

– COPY_ONCE: the configuration files are copied just once, the first time the container is
started. In this scenario the container is perfectly immutable.

– COPY_ALWAYS: the configuration files are copied each time the container starts. If a
config file changes on the host, the change is applied in the container the next time it restarts.

• KOLLA_SKIP_EXTEND_START: if set, bypass the extend_start.sh script. Not set by
default.

4.1. Administrator Guide 19

kolla Documentation, Release 12.7.1.dev19

• KOLLA_SERVICE_NAME: if set, shows the value of the variable on the PS1 inside the con-
tainer. Not set by default.

• KOLLA_BOOTSTRAP: if set, and supported by the image, runs the bootstrap code defined in
the images extend_start.sh scripts. Not set by default.

• KOLLA_UPGRADE: if set, and supported by the image, runs the upgrade code defined in the
images extend_start.sh scripts. Not set by default.

• KOLLA_OSM: if set, and supported by the image, runs the online database migration code de-
fined in the images extend_start.sh scripts. Not set by default.

The containers may expose other environment variables for turning features on or off, such as the hori-
zon container that looks for ENABLE_XXX variables where XXX is a horizon plugin name. These are
generally defined in the container-specific extend_start.sh script, example for horizon.

Variables available in the containers

The following variables available in all images and can be evaluated in scripts:

• KOLLA_BASE_DISTRO: base_distro used to build the image (e.g. centos, ubuntu)

• KOLLA_INSTALL_TYPE: install_type used to build the image (binary, source)

• KOLLA_INSTALL_METATYPE: install_metatype used to build the image (rdo,)

20 Chapter 4. Administrator Guide

https://github.com/openstack/kolla/blob/master/docker/horizon/extend_start.sh

CHAPTER

FIVE

SUPPORT MATRIX

5.1 Kolla Images Support Matrix

This page describes the supported base container image distributions and versions, and the Kolla images
supported on each of those.

5.1.1 Supported base images

The following base container images are supported:

Distribution Default base Default base tag
CentOS Stream 8 quay.io/centos/centos stream8
Debian Bullseye debian bullseye
RHEL8 (deprecated) registry.access.redhat.com/ubi8 latest
Ubuntu Focal ubuntu 20.04

The remainder of this document outlines which images are supported on which of these distribution.

5.1.2 Ceph versions in Kolla images

Table 1: Ceph versions
Distro Ceph

Source Release
CentOS CentOS Storage SIG Nautilus
Ubuntu Ubuntu Cloud Archive Pacific
Debian Debian Nautilus

21

kolla Documentation, Release 12.7.1.dev19

5.1.3 Support clause definitions

T - Tested

Coverage:

• CI in kolla-ansible is testing that images are functional

• kolla core team is maintaining versions

C - Community maintained

Coverage:

• supported by the broader community (not core team) or not supported at all

N - Not Available/Unknown

Not available (e.g. not buildable). Please see Currently unbuildable images

5.1.4 x86_64 images

Table 2: x86_64 images

Image CentOS Ubuntu Debian
Binary Source Binary Source Binary Source

aodh C C C C C C
barbican C T C C C C
bifrost N T N C N N
blazar N C N C N C
ceilometer C C C C C C
chrony (deprecated) T T T T C T
cinder C T C T C C
cloudkitty C C N C N C
collectd C C C C C C
cron T T T T C T
cyborg N C N C N C
designate C C C C C C
dnsmasq T T C T C C
elasticsearch C C C C C C
etcd C T C T C C
fluentd T T T T C T
freezer N C N C N C
glance T T T T C T
gnocchi C C C C C C
grafana C C C C C C
hacluster C C C C C C
hacluster-pcs N N C C C C
haproxy T T T T C C

continues on next page

22 Chapter 5. Support Matrix

kolla Documentation, Release 12.7.1.dev19

Table 2 – continued from previous page
Image CentOS Ubuntu Debian

Binary Source Binary Source Binary Source
heat T T N T C T
horizon T T T T C T
influxdb C C C C C C
ironic T T C T C C
iscsid T T T T C C
kafka C C C C C C
keepalived T T T T C C
keystone T T T T C T
kibana C C C C C C
kolla-toolbox T T T T C T
kuryr N T N T N C
logstash C C C C C C
magnum C C C C C C
manila C C C C C C
mariadb T T T T C T
masakari N T C T C C
memcached T T T T C C
mistral C T N C C C
monasca N C N C N N
multipathd C C C C C C
murano C C C C C C
neutron T T T T C T
neutron-mlnx-agent C C N C C C
nova T T T T C T
nova-spicehtml5proxy N N T T C T
octavia C C N C C C
openvswitch T T T T C T
ovn C C C C N N
ovsdpdk N N C C C C
panko C C C C C C
placement T T T T C T
prometheus C C C C C C
qdrouterd C C N N N N
rabbitmq T T T T C T
rally (deprecated) C C N C C C
redis C T C C C C
sahara C C C C C C
senlin C C C C C C
skydive C C C C C C
solum N C N C N C
storm C C C C C C
swift C T C T C C
tacker C T N C N C
telegraf C C C C C N
tempest (deprecated) C C C C C C
tgtd N N C T C C

continues on next page

5.1. Kolla Images Support Matrix 23

kolla Documentation, Release 12.7.1.dev19

Table 2 – continued from previous page
Image CentOS Ubuntu Debian

Binary Source Binary Source Binary Source
trove C C C C N C
vitrage C C N C C C
vmtp N C N C N C
watcher C C C C C C
zookeeper C C C C C C
zun N T N T N C

5.1.5 aarch64 images

Table 3: aarch64 images

Image CentOS Ubuntu Debian
Binary Source Binary Source Binary Source

aodh C C C C N C
barbican C C C C N C
bifrost N C N N N N
blazar N C N C N C
ceilometer C C C C N C
chrony (deprecated) C C C C N C
cinder C C C C N C
cloudkitty C C N C N C
collectd C C C C N C
cron C C C C N C
cyborg N C N C N C
designate C C C C N C
dnsmasq C C C C N C
elasticsearch N N C C N C
etcd C C C C N C
fluentd C C C C N C
freezer N C N C N C
glance C C C C N C
gnocchi C C C C N C
grafana C C C C N C
hacluster N N C C N C
haproxy C C C C N C
heat C C C C N C
horizon C C C C N C
influxdb N N C C N C
ironic C C C C N C
iscsid C C C C N C
kafka C C C C N C
keepalived C C C C N C
keystone C C C C N C
kibana N N N N N C
kolla-toolbox C C C C N C

continues on next page

24 Chapter 5. Support Matrix

kolla Documentation, Release 12.7.1.dev19

Table 3 – continued from previous page
Image CentOS Ubuntu Debian

Binary Source Binary Source Binary Source
kuryr N C N C N C
logstash C C C C N C
magnum C C C C N C
manila C C C C N C
mariadb C C C C N C
masakari N C C C N C
memcached C C C C N C
mistral C C C C N C
monasca N N N N N N
multipathd C C C C N C
murano C C C C N C
neutron C C C C N C
neutron-mlnx-agent C C N C N C
nova C C C C N C
nova-spicehtml5proxy N N C C N C
octavia C C N C N C
openvswitch C C C C N C
ovn C C C C N N
ovsdpdk N N C C N C
panko C C C C N C
placement C C N C N C
prometheus C C C C N C
qdrouterd C C C C N N
rabbitmq C C C C N C
rally (deprecated) C C N C N C
redis C C C C N C
sahara C C C C N C
senlin C C C C N C
skydive N N N N N N
solum N C N C N C
storm C C C C N C
swift C C C C N C
tacker C C N C N C
telegraf N N N N N N
tempest (deprecated) C N C N N N
tgtd C C C C N C
trove C C N C N C
vitrage C C N C N C
vmtp N C N C N C
watcher C C C C N C
zookeeper C C C C N C
zun N C N C N C

5.1. Kolla Images Support Matrix 25

kolla Documentation, Release 12.7.1.dev19

5.1.6 ppc64le images

Note: TODO

5.1.7 Currently unbuildable images

For a list of currently unbuildable images please look into kolla/image/build.py file -
UNBUILDABLE_IMAGES dictionary.

26 Chapter 5. Support Matrix

CHAPTER

SIX

CONTRIBUTOR GUIDE

6.1 Contributor Guide

This guide is for contributors of the Kolla project. It includes information on proposing your first patch
and how to participate in the community. It also covers responsibilities of core reviewers and the Project
Team Lead (PTL), and information about development processes.

We welcome everyone to join our project!

6.1.1 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Kolla.

Basics

The source repository for this project can be found at:

https://opendev.org/openstack/kolla

Communication

IRC Channel #openstack-kolla (channel logs) on OFTC

Weekly Meetings On Wednesdays at 15:00 UTC in the IRC channel (meetings logs)

Mailing list (prefix subjects with [kolla]) http://lists.openstack.org/pipermail/openstack-discuss/

Meeting Agenda https://wiki.openstack.org/wiki/Meetings/Kolla

Whiteboard (etherpad) Keeping track of CI gate status, release status, stable backports, planning and
feature development status. https://etherpad.openstack.org/p/KollaWhiteBoard

27

https://docs.openstack.org/contributors/
https://opendev.org/openstack/kolla
http://eavesdrop.openstack.org/irclogs/%23openstack-kolla/
http://oftc.net
http://eavesdrop.openstack.org/meetings/kolla/
http://lists.openstack.org/pipermail/openstack-discuss/
https://wiki.openstack.org/wiki/Meetings/Kolla
https://etherpad.openstack.org/p/KollaWhiteBoard

kolla Documentation, Release 12.7.1.dev19

Contacting the Core Team

The list in alphabetical order (on first name):

Name IRC nick Email address
Christian Berendt berendt berendt@betacloud-solutions.de
Dincer Celik osmanlicilegi hello@dincercelik.com
Eduardo Gonzalez egonzalez dabarren@gmail.com
Jeffrey Zhang Jeffrey4l jeffrey.zhang@99cloud.net
Marcin Juszkiewicz hrw marcin.juszkiewicz@linaro.org
Mark Goddard mgoddard mark@stackhpc.com
Micha Nasiadka mnasiadka mnasiadka@gmail.com
Radosaw Piliszek yoctozepto radoslaw.piliszek@gmail.com
Surya Prakash spsurya singh.surya64mnnit@gmail.com
Cao Yuan caoyuan cao.yuan@99cloud.net
wu.chunyang wuchunyang wuchunyang@yovole.com

The current effective list is also available from Gerrit: https://review.opendev.org/#/admin/groups/460,
members

New Feature Planning

New features are discussed via IRC or mailing list (with [kolla] prefix). Kolla project keeps blueprints
in Launchpad. Specs are welcome but not strictly required.

Task Tracking

Kolla project tracks tasks in Launchpad. Note this is the same place as for bugs.

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag.

A more lightweight task tracking is done via etherpad - Whiteboard.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad. Note this
is the same place as for tasks.

Getting Your Patch Merged

Most changes proposed to Kolla require two +2 votes from core reviewers before +W. A release note is
required on most changes as well. Release notes policy is described in its own section.

Significant changes should have documentation and testing provided with them.

28 Chapter 6. Contributor Guide

https://launchpad.net/~berendt
mailto:berendt@betacloud-solutions.de
https://launchpad.net/~osmanlicilegi
mailto:hello@dincercelik.com
https://launchpad.net/~egonzalez90
mailto:dabarren@gmail.com
https://launchpad.net/~jeffrey4l
mailto:jeffrey.zhang@99cloud.net
https://launchpad.net/~hrw
mailto:marcin.juszkiewicz@linaro.org
https://launchpad.net/~mgoddard
mailto:mark@stackhpc.com
https://launchpad.net/~mnasiadka
mailto:mnasiadka@gmail.com
https://launchpad.net/~yoctozepto
mailto:radoslaw.piliszek@gmail.com
https://launchpad.net/~confisurya
mailto:singh.surya64mnnit@gmail.com
https://launchpad.net/~caoi-yuan
mailto:cao.yuan@99cloud.net
https://launchpad.net/~wuchunyang
mailto:wuchunyang@yovole.com
https://review.opendev.org/#/admin/groups/460,members
https://review.opendev.org/#/admin/groups/460,members
https://blueprints.launchpad.net/kolla
https://bugs.launchpad.net/kolla
https://etherpad.openstack.org/p/KollaWhiteBoard
https://bugs.launchpad.net/kolla

kolla Documentation, Release 12.7.1.dev19

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide. Kolla-specific PTL duties are listed in Kolla
PTL guide.

6.1.2 Running Kolla Build in development

The recommended way to run in development

The preferred way to run kolla-build for development is using tox. Run the following from inside the
repository:

tox -e venv -- kolla-build ...

The alternative way to run in development

Sometimes, developers prefer to manage their venvs themselves. This is also possible. Remember to
install in editable mode (-e). Run the following from inside the repository:

python3 -m venv ~/path/to/venv
source ~/path/to/venv/bin/activate
python3 -m pip install -e .
kolla-build ...

6.1.3 Adding a new image

Kolla follows Best practices for writing Dockerfiles where at all possible.

We use jinja2 templating syntax to help manage the volume and complexity that comes with main-
taining multiple Dockerfiles for multiple different base operating systems.

Dockerfiles should be placed under the docker directory. OpenStack services should inherit from
the provided openstack-base image, and infrastructure services (for example: fluentd) should
inherit from base.

Projects consisting of only one service should be placed in an image named the same as that service, for
example: horizon. Services that consist of multiple processes generally use a base image and child
images, for example: cinder-base, cinder-api, cinder-scheduler, cinder-volume,
cinder-backup.

Jinja2 blocks are employed throughout the Dockerfiles to help operators customise various stages of the
build (refer to Dockerfile Customisation)

Some of these blocks are free form. However, there is a subset that should be common to every Docker-
file. The overall structure of a Dockerfiles of an OpenStack project base image is as follows:

FROM {{ namespace }}/{{ image_prefix }}openstack-base:{{ tag }}
{% block labels %}
LABEL maintainer="{{ maintainer }}" name="{{ image_name }}" build-date="{{
↪→build_date }}"
{% endblock %}

(continues on next page)

6.1. Contributor Guide 29

https://docs.openstack.org/project-team-guide/ptl.html
https://docs.openstack.org/kolla/latest/contributor/ptl-guide.html
https://docs.openstack.org/kolla/latest/contributor/ptl-guide.html
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/

kolla Documentation, Release 12.7.1.dev19

(continued from previous page)

{% block << service >>_header %}{% endblock %}

{% import "macros.j2" as macros with context %}

<< binary specific steps >>

<< source specific steps >>

<< common steps >>

{% block << service >>_footer %}{% endblock %}
{% block footer %}{% endblock %}

Note: The generic footer block {% block footer %}{% endblock %} should not be included
in base images (for example: cinder-base).

Its probably easiest to identify the most similar service being already provided, copy its Dockerfile
structure and amend it to new needs.

Distribution support

By default, every new image should support all supported distributions (CentOS, Debian, Ubuntu) and
both x86-64 and aarch64 architectures. Sometimes it is not doable so we have list of unbuildable images
for that.

Unbuildable images

In kolla/image/build.py source file we keep a list of images which cannot be built for some
distribution/architecture/build-type combinations.

UNBUILDABLE_IMAGES = {
'aarch64': {

"bifrost-base", # someone need to get upstream working first
},

'ppc64le': {
"elasticsearch", # no binary package

},

'binary': {
"bifrost-base",
"blazar-base",

},

'ubuntu': {
"qdrouterd", # There is no qdrouterd package for ubuntu bionic

},

'ubuntu+aarch64': {
"kibana", # no binary package

(continues on next page)

30 Chapter 6. Contributor Guide

kolla Documentation, Release 12.7.1.dev19

(continued from previous page)

},
}

If your new image has some unbuildable combinations, please add it into proper place in this list. If you
are not sure, write it in code review comment and check CI results of your patch.

Note: Please do not overuse this list it is meant as last hope solution.

6.1.4 Generating kolla-build.conf

Install tox and generate the build configuration. The build configuration is designed to hold advanced
customizations when building images.

If you have already cloned the Kolla Git repository to the kolla folder, generate the kolla-build.
conf file using the following steps.

python3 -m pip install tox
cd kolla/
tox -e genconfig

The location of the generated configuration file is etc/kolla/kolla-build.conf.

6.1.5 Release notes

Introduction

Kolla uses the following release notes sections:

• features for new features or functionality; these should ideally refer to the blueprint being
implemented;

• fixes for fixes closing bugs; these must refer to the bug being closed;

• upgrade for notes relevant when upgrading from previous version; these should ideally be
added only between major versions; required when the proposed change affects behaviour in a
non-backwards compatible way or generally changes something impactful;

• deprecations to track deprecated features; relevant changes may consist of only the commit
message and the release note;

• prelude filled in by the PTL before each release or RC.

Other release note types may be applied per common sense. Each change should include a release note
unless being a TrivialFix change or affecting only docs or CI. Such changes should not include a
release note to avoid confusion. Remember release notes are mostly for end users which, in case of
Kolla, are OpenStack administrators/operators. In case of doubt, the core team will let you know what
is required.

To add a release note, run the following command:

tox -e venv -- reno new <summary-line-with-dashes>

6.1. Contributor Guide 31

kolla Documentation, Release 12.7.1.dev19

All release notes can be inspected by browsing releasenotes/notes directory. Further on this
page we show reno templates, examples and how to make use of them.

Note: The term release note is often abbreviated to reno as it is the name of the tool that is used to
manage the release notes.

To generate renos in HTML format in releasenotes/build, run:

tox -e releasenotes

Note this requires the release note to be tracked by git so you have to at least add it to the gits staging
area.

The release notes are linted in the CI system. To lint locally, run:

tox -e doc8

The above lints all of documentation at once.

Templates and examples

All approved release notes end up being published on a dedicated site:

https://docs.openstack.org/releasenotes/kolla/

When looking for examples, it is advised to consider browsing the page above for a similar type of
change and then comparing with their source representation in releasenotes/notes.

The sections below give further guidelines. Please try to follow them but note they are not set in stone
and sometimes a different wording might be more appropriate. In case of doubt, the core team will be
happy to help.

Features

Template

features:

- |
Implements [some feature].
[Can be described using multiple sentences if necessary.]
[Limitations worth mentioning can be included as well.]
`Blueprint [blueprint id] <https://blueprints.launchpad.net/kolla/

↪→+spec/[blueprint id]>`__

Note: The blueprint can be mentioned even if the change implements it only partially. This can be
emphasised by preceding the Blueprint word by Partial. See the example below.

32 Chapter 6. Contributor Guide

https://docs.openstack.org/releasenotes/kolla/

kolla Documentation, Release 12.7.1.dev19

Example

Implementing blueprint with id letsencrypt-https, we use reno to generate the scaffolded file:

tox -e venv -- reno new --from-template releasenotes/templates/feature.yml
↪→blueprint-letsencrypt-https

Note: Since we dont require blueprints for simple features, it is allowed to make up a blueprint-
id-friendly string (like in the example here) ad-hoc for the proposed feature. Please then skip the
blueprint- prefix to avoid confusion.

And then fill it out with the following content:

features:

- |
Implements support for hassle-free integration with Let's Encrypt.
The support is limited to operators in the underworld.
For more details check the TLS docs of Kolla.
`Partial Blueprint letsencrypt-https <https://blueprints.launchpad.net/

↪→kolla/+spec/letsencrypt-https>`__

Note: The example above shows how to introduce a limitation. The limitation may be lifted in the same
release cycle and it is OK to mention it nonetheless. Release notes can be edited later as long as they
have not been shipped in an existing release or release candidate.

Fixes

Template

fixes:

- |
Fixes [some bug].
[Can be described using multiple sentences if necessary.]
[Possibly also giving the previous behaviour description.]
`LP#[bug number] <https://launchpad.net/bugs/[bug number]>`__

Example

Fixing bug number 1889611, we use reno to generate the scaffolded file:

tox -e venv -- reno new --from-template releasenotes/templates/fix.yml bug-
↪→1889611

And then fill it out with the following content:

6.1. Contributor Guide 33

kolla Documentation, Release 12.7.1.dev19

fixes:

- |
Fixes ``deploy-containers`` action missing for the Masakari role.
`LP#1889611 <https://launchpad.net/bugs/1889611>`__

6.1.6 Running tests

Kolla contains a suite of tests in the tests and kolla/tests directories.

Any proposed code change in gerrit is automatically rejected by the OpenStack Zuul CI system if the
change causes test failures.

It is recommended for developers to run the test suite before submitting patch for review. This allows to
catch errors as early as possible.

Preferred way to run the tests

The preferred way to run the unit tests is using tox. It executes tests in isolated environ-
ment, by creating separate virtualenv and installing dependencies from the requirements.txt,
test-requirements.txt and doc/requirements.txt files, so the only package you install
is tox itself:

pip install tox

See the unit testing section of the Testing wiki page for more information. Following are some simple
examples.

To run the Python 3.8 tests:

tox -e py38

To run the style tests:

tox -e pep8

To run multiple tests separate items by commas:

tox -e py38,pep8

Running a subset of tests

Instead of running all tests, you can specify an individual directory, file, class or method that contains
test code, for example, filter full names of tests by a string.

To run the tests located only in the kolla/tests directory:

tox -e py38 kolla.tests

To run the tests of a specific file say kolla/tests/test_set_config.py:

34 Chapter 6. Contributor Guide

https://docs.openstack.org/infra/system-config/zuulv3.html
https://wiki.openstack.org/wiki/Testing#Unit_Tests

kolla Documentation, Release 12.7.1.dev19

tox -e py38 test_set_config

To run the tests in the ConfigFileTest class in the kolla/tests/test_set_config.py
file:

tox -e py38 test_set_config.ConfigFileTest

To run the ConfigFileTest.test_delete_path_not_exists test method in the kolla/
tests/test_set_config.py file:

tox -e py38 test_set_config.ConfigFileTest.test_delete_path_not_exists

Coverage Report Generation

In order to get coverage report for Kolla, run the below command.

tox -e cover

Debugging unit tests

In order to break into the debugger from a unit test we need to insert a breaking point to the code:

import pdb; pdb.set_trace()

Then run tox with the debug environment as one of the following:

tox -e debug
tox -e debug test_file_name.TestClass.test_name

For more information see the oslotest documentation.

6.1.7 Code Reviews

All Kolla code must be reviewed and approved before it can be merged. Anyone with a Gerrit account
is able to provide a review. Two labels are available to everyone:

• +1: Approve

• -1: Changes requested

It is also possible to leave comments without a label. In general, a review with comments is more
valuable. Comments are especially important for a negative review. Prefer quality of reviews over
quantity.

You can watch specific patches in Gerrit via Settings -> Watched Projects. The volume of emails is not
too large if you subscribe to New Changes only. If you do not have much time available for reviewing,
consider reviewing patches in an area that is important to you or that you understand well.

6.1. Contributor Guide 35

https://docs.openstack.org/oslotest/wallaby/user/features.html#debugging-with-oslo-debug-helper

kolla Documentation, Release 12.7.1.dev19

Core reviewers

Core reviewers have additional labels available to them.

• +2: Approve

• -2: Do not merge

• Workflow +1: Approve and ready for merge

Zuul requires one +2 and one workflow +1, as well as a passing check, in order for a patch to proceed to
the gate. The Kolla team generally requires two +2s before a workflow +1 may be added. We also have
some non-voting Zuul jobs which will not block a check, but should be investigated if they are failing.

Core reviewers may still use +1 to indicate approval if they are not confident enough about a particular
patch to use +2.

The Kolla core reviewers have the same rights of access to stable branches, so always check the branch
for a review, and use extra care with stable branches.

Becoming a core reviewer

There are no strict rules for becoming a core reviewer. Join the community, review some patches, and
demonstrate responsibility, understanding & care. If you are interested in joining the core team, ask the
PTL or another core reviewer how to get there.

6.1.8 Bug triage

The triage of Kolla bugs follows the OpenStack-wide process documented on BugTriage in the wiki.
Please reference Bugs for further details.

6.1.9 PTL Guide

This is just a reference guide that a PTL may use as an aid, if they choose. It is meant to complement
the official PTL guide, and is laid out in rough chronological order.

Some or all of these tasks may be delegated to other team members.

New PTL

• Update the kolla meeting chair

– https://opendev.org/opendev/irc-meetings/src/branch/master/meetings/kolla-team-meeting.
yaml

• Update the team wiki

– https://wiki.openstack.org/wiki/Kolla#Active_Contributors

• Get acquainted with the release schedule, bearing in mind that Kolla is a cycle-trailing project

– Example: https://releases.openstack.org/train/schedule.html

36 Chapter 6. Contributor Guide

https://wiki.openstack.org/wiki/BugTriage
https://docs.openstack.org/project-team-guide/bugs.html
https://docs.openstack.org/project-team-guide/ptl.html
https://opendev.org/opendev/irc-meetings/src/branch/master/meetings/kolla-team-meeting.yaml
https://opendev.org/opendev/irc-meetings/src/branch/master/meetings/kolla-team-meeting.yaml
https://wiki.openstack.org/wiki/Kolla#Active_Contributors
https://releases.openstack.org/train/schedule.html

kolla Documentation, Release 12.7.1.dev19

Open Infrastructure Summit

Ideally the Kolla PTL will be able to attend the summit. If not, try to arrange for another member of
the core team to represent the team. Good interaction with the community at these events is crucial to
encourage upstream involvement, onboard new users, collect feedback and for the perceived health of
the project.

• Create a summit planning etherpad and alert about it in the kolla IRC meeting and openstack-
discuss mailing list

– Example: https://etherpad.openstack.org/p/kolla-train-summit

• Gather ideas for forum sessions

– Example: user feedback & roadmap, design sessions

• Prepare the project update presentation. Enlist help of others

• Prepare the on-boarding session materials. Enlist help of others

• Represent and promote the project while at the summit

Project Team Gathering (PTG)

Some of the Kolla team may decide to meet in person at the Project Team Gathering (PTG). Alter-
natively, they may decide to host a virtual PTG at a different time if there is not a critical mass of
contributors attending the PTG.

• Create PTG planning etherpad and alert about it in the kolla IRC meeting and openstack-discuss
mailing list

– Example: https://etherpad.openstack.org/p/kolla-train-ptg

• Run sessions at the PTG

• Have a discussion about priorities for the upcoming release cycle at the PTG

• Sign up for group photo at the PTG (if applicable)

After Summit & PTG

• Send session summaries to the openstack-discuss mailing list

• Update the Kolla whiteboard with decided priorities for the upcoming release cycle

Day to Day

• Subscribe to the kolla projects on Launchpad to receive all bug and blueprint updates.

• Triage new bugs

• Monitor the status of the CI system for all supported branches. Fix issues that break the gate

• Chair the IRC meetings

• Be available in IRC to help new and existing contributors

• Keep track of the progress of cycle priorites

6.1. Contributor Guide 37

https://etherpad.openstack.org/p/kolla-train-summit
https://etherpad.openstack.org/p/kolla-train-ptg
https://etherpad.openstack.org/p/KollaWhiteBoard

kolla Documentation, Release 12.7.1.dev19

• Monitor the core team membership, mentor potential cores

Release Management

• Follow the projects release management guide

• Use the IRC meeting and/or mailing list to communicate release schedule to the team who might
not be so famailiar with it

Handing Over

• Support the new PTL in their new role. Try to remember the issues you encountered

• Update this page with any useful information you have learned

6.1.10 Release Management

This guide is intended to complement the OpenStack releases site, and the project team guides section
on release management.

Team members make themselves familiar with the release schedule for the current release, for example
https://releases.openstack.org/train/schedule.html.

Release Model

As a deployment project, Kollas release model differs from many other OpenStack projects. Kolla
follows the cycle-trailing release model, to allow time after the OpenStack coordinated release to wait
for distribution packages and support new features. This gives us three months after the final release
to prepare our final releases. Users are typically keen to try out the new release, so we should aim to
release as early as possible while ensuring we have confidence in the release.

Release Schedule

While we dont wish to repeat the OpenStack release documentation, we will point out the high level
schedule, and draw attention to areas where our process is different.

Launchpad Admin

We track series (e.g. Stein) and milestones (e.g. stein-1) on Launchpad, and target bugs and blueprints
to these. Populating these in advance is necessary. This needs to be done for each of the following
projects:

• https://launchpad.net/kolla

• https://launchpad.net/kolla-ansible

At the beginning of a cycle, ensure a named series exists for the cycle in each project. If not, create
one via the project landing page (e.g. https://launchpad.net/kolla) - in the Series and milestones section
click in Register a series. Once the series has been created, create the necessary milestones, including
the final release. Series can be marked as Active Development or Current Stable Release as necessary.

38 Chapter 6. Contributor Guide

https://releases.openstack.org/
https://docs.openstack.org/project-team-guide/release-management.html
https://releases.openstack.org/train/schedule.html
https://docs.openstack.org/project-team-guide/release-management.html#trailing-the-common-cycle
https://launchpad.net/kolla
https://launchpad.net/kolla-ansible
https://launchpad.net/kolla

kolla Documentation, Release 12.7.1.dev19

Milestones

At each of the various release milestones, pay attention to what other projects are doing.

Feature Freeze

As with projects following the common release model, Kolla uses a feature freeze period to allow the
code to stabilise prior to release. There is no official feature freeze date for the cycle-trailing model, but
we typically freeze around three weeks after the common feature freeze. During this time, no features
should be merged to the master branch.

Before RC1

Prior to creating a release candidate:

• test the code and fix (at a minimum) all critical bugs

• the release notes for each project should be tidied up

– this command is useful to list release notes added this cycle:

* git diff --name-only origin/stable/<previous release> --
releasenotes/

Note: Release notes for backported changes (i.e. already present in the previous, stable
branch) will not show in the output.

– example (kolla): https://review.opendev.org/648677/

– example (kolla-ansible): https://review.opendev.org/648685/

• mark bugs on Launchpad with the correct milestone

– this command is useful to check for commits that fixed bugs:

* git log origin/stable/<previous release>..origin/master |
grep -i Closes-Bug

• update dependencies for source images on master to use release candidates:

– ./tools/version-check.py --openstack-release $SERIES

– this will only work when release candidates have been created for the dependent projects

– add --include-independent to update projects with an independent release cycle

– example (kolla): https://review.opendev.org/647819

• update OPENSTACK_RELEASE variable in kolla/common/config.py

– example (kolla): https://review.opendev.org/689729

• add cycle highlights when requested by the release team

– example (all): https://review.opendev.org/644506/

6.1. Contributor Guide 39

https://review.opendev.org/648677/
https://review.opendev.org/648685/
https://review.opendev.org/647819
https://review.opendev.org/689729
https://docs.openstack.org/project-team-guide/release-management.html#cycle-highlights
https://review.opendev.org/644506/

kolla Documentation, Release 12.7.1.dev19

RC1

RC1 is the first release candidate, and also marks the point at which the stable branch is cut.

• create RC1 by submitting patches to the releases repository

– example (kolla): https://review.opendev.org/650236

– example (kolla-ansible): https://review.opendev.org/650237

• create stable branches by submitting patches to the releases repository

– example (kolla): https://review.opendev.org/650411

– example (kolla-ansible): https://review.opendev.org/650412

Note: Use the new-release tool for those activities.

After RC1

• approve bot-proposed patches to master and the new stable branch

• revert the patch to use release candidates of dependencies on the master branch

– example (kolla): https://review.opendev.org/650419

• revert the patch to switch OPENSTACK_RELEASE in kolla on the master branch

– example (kolla): https://review.opendev.org/689731

• switch to use the new release of RDO on the new stable branch (master uses the delorean devel-
opment packages)

– example (kolla): https://review.opendev.org/651601

• switch to use the newly tagged container images (the branch for development mode on the new
stable branch follows automatically since Victoria)

– example (kolla-ansible): https://review.opendev.org/711214

• update previous release variables on master

– example (kolla-ansible): https://review.opendev.org/650854

• search for TODOs/FIXMEs/NOTEs in the codebases describing tasks to be performed during the
next release cycle

– may include deprecations, code removal, etc.

– these usually reference either the new cycle or the previous cycle; new cycle may be refer-
enced using only the first letter (for example: V for Victoria).

40 Chapter 6. Contributor Guide

https://review.opendev.org/650236
https://review.opendev.org/650237
https://review.opendev.org/650411
https://review.opendev.org/650412
https://releases.openstack.org/reference/using.html#using-new-release-command
https://review.opendev.org/650419
https://review.opendev.org/689731
https://review.opendev.org/651601
https://review.opendev.org/711214
https://review.opendev.org/650854

kolla Documentation, Release 12.7.1.dev19

After OpenStack Final Release

• update dependencies for source images on master to use final releases:

– ./tools/version-check.py --openstack-release $SERIES

– example (kolla): https://review.opendev.org/651605/

RC2+

Further release candidates may be created on the stable branch as necessary in a similar manner to RC1.

Final Releases

A release candidate may be promoted to a final release if it has no critical bugs against it.

• create final release by submitting patches to the releases repository

– example (kolla): TODO

– example (kolla-ansible): TODO

• ensure static links to documentation are enabled

– https://opendev.org/openstack/openstack-manuals/src/branch/master/www/project-data

– example for Ussuri: https://review.opendev.org/739206

Stable Releases

Stable branch releases should be made periodically for each supported stable branch, no less than once
every 45 days.

• check for new releases of dependencies

– tools/version_check.py

– example (kolla): https://review.opendev.org/652674/

• create stable releases by submitting patches to the releases repository

– follow SemVer guidelines

– example (kolla): https://review.opendev.org/650411

– example (kolla-ansible): https://review.opendev.org/650412

• mark milestones on Launchpad as released

• create new milestones on Launchpad for the next stable releases

6.1. Contributor Guide 41

https://review.opendev.org/651605/
https://opendev.org/openstack/openstack-manuals/src/branch/master/www/project-data
https://review.opendev.org/739206
https://review.opendev.org/652674/
https://review.opendev.org/650411
https://review.opendev.org/650412

kolla Documentation, Release 12.7.1.dev19

Branch Lifecycle

The lifecycle of stable branches in OpenStack is described in the project team guide. The current status
of each branch is published on the releases site.

Extended Maintenance (EM)

When a branch is entering EM, projects will make final releases. The release team will propose tagging
the Kolla deliverables as EM, but this should only be done once all other dependent projects have made
their final release, and final Kolla releases have been made including those dependencies.

After a branch enters EM, we typically do the following:

• stop backporting fixes to the branch by default. Important fixes or those requested by community
members may be merged if deemed appropriate

• stop publishing images to Dockerhub

• stop actively maintaining CI

End of Life (EOL)

Once a branch has been unmaintained (failing CI, no patches merged) for 6 months, it may be moved to
EOL. Since this is done at different times for different projects, send an email to openstack-discuss to
keep the community informed.

6.1.11 Continuous Integration

To make sure that changes do not break Kolla we use Continuous Integration (CI in short) on Opendev
Zuul platform.

Distribution, architecture, build type coverage

There are several builds running on CI. We cover each supported distribution on x86-64 architecture and
Debian/source builds on AArch64.

Allowed to fail

During Wallaby cycle we added support for allowed to fail images.

The allowed-to-fail option in kolla-build.conf file (generated by tests/playbooks/
run.yml lists images which are allowed to fail during CI build without bringing whole build down.

Main use will be situation when we need to wait for other projects to fix problems blocking build of
image.

Note: This is meant to be used on CI in emergency situation.

42 Chapter 6. Contributor Guide

https://docs.openstack.org/project-team-guide/stable-branches.html
https://releases.openstack.org/

	Related Projects
	Site Notes
	Release Notes
	Administrator Guide
	Administrator Guide

	Support Matrix
	Kolla Images Support Matrix

	Contributor Guide
	Contributor Guide

