
kayobe Documentation
Release 9.4.1.dev11

OpenStack Foundation

Oct 14, 2022

CONTENTS

1 Overview 1

2 Kayobe 3
2.1 Features . 4

3 Contents 5
3.1 Getting Started . 5
3.2 Architecture . 5
3.3 Support Matrix . 7
3.4 Installation . 7
3.5 Usage . 10
3.6 Configuration Guide . 11
3.7 Deployment . 97
3.8 Upgrading . 106
3.9 Administration . 114
3.10 Resources . 126
3.11 Advanced Documentation . 126
3.12 Contributor Guide . 134

i

ii

CHAPTER

ONE

OVERVIEW

Welcome to the Kayobe documentation, the official source of information for understanding and using
Kayobe.

This documentation is maintained at opendev.org here. Feedback and contributions welcome, see con-
tributing for information on how.

1

https://opendev.org/openstack/kayobe.git

kayobe Documentation, Release 9.4.1.dev11

2 Chapter 1. Overview

CHAPTER

TWO

KAYOBE

Kayobe enables deployment of containerised OpenStack to bare metal.

Containers offer a compelling solution for isolating OpenStack services, but running the control plane
on an orchestrator such as Kubernetes or Docker Swarm adds significant complexity and operational
overheads.

The hosts in an OpenStack control plane must somehow be provisioned, but deploying a secondary
OpenStack cloud to do this seems like overkill.

Kayobe stands on the shoulders of giants:

• OpenStack bifrost discovers and provisions the cloud

• OpenStack kolla builds container images for OpenStack services

• OpenStack kolla-ansible delivers painless deployment and upgrade of containerised OpenStack
services

To this solid base, kayobe adds:

• Configuration of cloud host OS & flexible networking

• Management of physical network devices

• A friendly openstack-like CLI

All this and more, automated from top to bottom using Ansible.

• Free software: Apache license

• Documentation: https://docs.openstack.org/kayobe/latest/

• Source: https://opendev.org/openstack/kayobe

• Bugs: https://storyboard.openstack.org/#!/project/openstack/kayobe

• Release Notes: https://docs.openstack.org/releasenotes/kayobe/

• IRC: #openstack-kolla on OFTC

3

https://docs.openstack.org/kayobe/latest/
https://opendev.org/openstack/kayobe
https://storyboard.openstack.org/#!/project/openstack/kayobe
https://docs.openstack.org/releasenotes/kayobe/

kayobe Documentation, Release 9.4.1.dev11

2.1 Features

• Heavily automated using Ansible

• kayobe Command Line Interface (CLI) for cloud operators

• Deployment of a seed VM used to manage the OpenStack control plane

• Configuration of physical network infrastructure

• Discovery, introspection and provisioning of control plane hardware using OpenStack bifrost

• Deployment of an OpenStack control plane using OpenStack kolla-ansible

• Discovery, introspection and provisioning of bare metal compute hosts using OpenStack ironic
and ironic inspector

• Virtualised compute using OpenStack nova

• Containerised workloads on bare metal using OpenStack magnum

• Big data on bare metal using OpenStack sahara

• Control plane and workload monitoring and log aggregation using OpenStack monasca

4 Chapter 2. Kayobe

https://docs.openstack.org/bifrost/latest/
https://docs.openstack.org/kolla-ansible/latest/
https://docs.openstack.org/ironic/latest/
https://docs.openstack.org/ironic-inspector/latest/
https://docs.openstack.org/nova/latest/
https://docs.openstack.org/magnum/latest/
https://docs.openstack.org/sahara/latest/
https://wiki.openstack.org/wiki/Monasca

CHAPTER

THREE

CONTENTS

3.1 Getting Started

We advise new users start by reading the Architecture documentation first in order to understand Kayobes
various components.

For users wishing to learn interactively we recommend starting at either the all-in-one overcloud de-
ployment or the A Universe From Nothing deployment guide.

Once familiar with Kayobes constituent parts, move on to the Installation section to prepare a baremetal
environment and then Deployment to deploy to it.

• Architecture - The function of Kayobes host and networking components

• Installation - The prerequisites and options for installing Kayobe

• Usage - An introduction to the Kayobe CLI

• Configuration - How to configure Kayobes various components

• Deployment- Using Kayobe to deploy OpenStack

• Upgrading - Upgrading from one OpenStack release to another

• Administration - Post-deploy administration tasks

• Resources - External links to Kayobe resources

• Contributor - Contributing to Kayobe and deploying Kayobe development environments

3.2 Architecture

3.2.1 Hosts in the System

In a system deployed by Kayobe we define a number of classes of hosts.

Ansible control host The Ansible control host is the host on which kayobe, kolla and kolla-ansible will
be installed, and is typically where the cloud will be managed from.

Seed host The seed host runs the bifrost deploy container and is used to provision the cloud hosts. By
default, container images are built on the seed. Typically the seed host is deployed as a VM but
this is not mandatory.

Cloud hosts The cloud hosts run the OpenStack control plane, network, monitoring, storage, and virtu-
alised compute services. Typically the cloud hosts run on bare metal but this is not mandatory.

5

kayobe Documentation, Release 9.4.1.dev11

Bare metal compute hosts In a cloud providing bare metal compute services to tenants via ironic, these
hosts will run the bare metal tenant workloads. In a cloud with only virtualised compute this
category of hosts does not exist.

Note: In many cases the control and seed host will be the same, although this is not mandatory.

Cloud Hosts

Cloud hosts can further be divided into subclasses.

Controllers Controller hosts run the OpenStack control plane services.

Network Network hosts run the neutron networking services and load balancers for the OpenStack API
services.

Monitoring Monitoring host run the control plane and workload monitoring services. Currently, kay-
obe does not deploy any services onto monitoring hosts.

Virtualised compute hypervisors Virtualised compute hypervisors run the tenant Virtual Machines
(VMs) and associated OpenStack services for compute, networking and storage.

3.2.2 Networks

Kayobes network configuration is very flexible but does define a few default classes of networks. These
are logical networks and may map to one or more physical networks in the system.

Overcloud out-of-band network Name of the network used by the seed to access the out-of-band man-
agement controllers of the bare metal overcloud hosts.

Overcloud provisioning network The overcloud provisioning network is used by the seed host to pro-
vision the cloud hosts.

Workload out-of-band network Name of the network used by the overcloud hosts to access the out-
of-band management controllers of the bare metal workload hosts.

Workload provisioning network The workload provisioning network is used by the cloud hosts to
provision the bare metal compute hosts.

Internal network The internal network hosts the internal and admin OpenStack API endpoints.

Public network The public network hosts the public OpenStack API endpoints.

External network The external network provides external network access for the hosts in the system.

6 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

3.3 Support Matrix

3.3.1 Supported Operating Systems

Kayobe supports the following host Operating Systems (OS):

• CentOS 8

Note: CentOS 7 is no longer supported as a host OS. The Train release supports both CentOS 7 and 8,
and provides a route for migration. See the Kayobe Train documentation for information on migrating
to CentOS 8.

3.3.2 Supported container images

For details of container image distributions supported by Kolla Ansible, see the support matrix.

For details of which images are supported on which distributions, see the Kolla support matrix.

3.4 Installation

Kayobe can be installed via the released Python packages on PyPI, or from source. Installing from PyPI
ensures the use of well used and tested software, whereas installing from source allows for the use of
unreleased or patched code. Installing from a Python package is supported from Kayobe 5.0.0 onwards.

3.4.1 Prerequisites

Currently Kayobe supports the following Operating Systems on the Ansible control host:

• CentOS 8

• Ubuntu 16.04

See the support matrix for details of supported Operating Systems for other hosts.

To avoid conflicts with python packages installed by the system package manager it is recommended to
install Kayobe in a virtualenv. Ensure that the virtualenv python module is available on the Ansible
control host. It is necessary to install the GCC compiler chain in order to build the extensions of some
of kayobes python dependencies.

On CentOS:

$ dnf install -y python3-devel python3-virtualenv gcc libffi-devel

On Ubuntu:

$ apt install -y python3-dev python3-virtualenv gcc libffi-dev

If installing Kayobe from source, then Git is required for cloning and working with the source code
repository.

On CentOS:

3.3. Support Matrix 7

https://docs.openstack.org/kayobe/train/centos8.html
https://docs.openstack.org/kolla-ansible/victoria/user/support-matrix.html
https://docs.openstack.org/kolla/victoria/support_matrix

kayobe Documentation, Release 9.4.1.dev11

$ dnf install -y git

On Ubuntu:

$ apt install -y git

3.4.2 Local directory structure

The directory structure for a Kayobe Ansible control host environment is configurable, but the following
is recommended, where <base_path> is the path to a top level directory:

<base_path>/
src/

kayobe/
kayobe-config/
kolla-ansible/

venvs/
kayobe/
kolla-ansible/

This pattern ensures that all dependencies for a particular environment are installed under a single top
level path, and nothing is installed to a shared location. This allows for the option of using multiple
Kayobe environments on the same control host.

Creation of a kayobe-config source code repository will be covered in the configuration guide. The
Kolla Ansible source code checkout and Python virtual environment will be created automatically by
kayobe.

Not all of these directories will be used in all scenarios - if Kayobe or Kolla Ansible are installed from
a Python package then the source code repository is not required.

3.4.3 Installation from PyPI

This section describes how to install Kayobe from a Python package in a virtualenv. This is supported
from Kayobe 5.0.0 onwards.

First, change to the top level directory, and make the directories for source code repositories and python
virtual environments:

$ cd <base_path>
$ mkdir -p src venvs

Create a virtualenv for Kayobe:

$ virtualenv <base_path>/venvs/kayobe

Activate the virtualenv and update pip:

$ source <base_path>/venvs/kayobe/bin/activate
(kayobe) $ pip install -U pip

If using the latest version of Kayobe:

8 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

(kayobe) $ pip install kayobe

Alternatively, to install a specific release of Kayobe:

(kayobe) $ pip install kayobe==5.0.0

Finally, deactivate the virtualenv:

(kayobe) $ deactivate

3.4.4 Installation from source

This section describes how to install Kayobe from source in a virtualenv.

First, change to the top level directory, and make the directories for source code repositories and python
virtual environments:

$ cd <base_path>
$ mkdir -p src venvs

Next, obtain the Kayobe source code. For example:

$ cd <base_path>/src
$ git clone https://opendev.org/openstack/kayobe.git -b stable/
↪→victoria

Create a virtualenv for Kayobe:

$ virtualenv <base_path>/venvs/kayobe

Activate the virtualenv and update pip:

$ source <base_path>/venvs/kayobe/bin/activate
(kayobe) $ pip install -U pip

Install Kayobe and its dependencies using the source code checkout:

(kayobe) $ cd <base_path>/src/kayobe
(kayobe) $ pip install .

Finally, deactivate the virtualenv:

(kayobe) $ deactivate

Editable source installation

From Kayobe 5.0.0 onwards it is possible to create an editable install of Kayobe. In an editable install,
any changes to the Kayobe source tree will immediately be visible when running any Kayobe commands.
To create an editable install, add the -e flag:

(kayobe) $ cd <base_path>/src/kayobe
(kayobe) $ pip install -e .

This is particularly useful when installing Kayobe for development.

3.4. Installation 9

https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

kayobe Documentation, Release 9.4.1.dev11

3.5 Usage

3.5.1 Command Line Interface

Note: Where a prompt starts with (kayobe) it is implied that the user has activated the Kayobe
virtualenv. This can be done as follows:

$ source /path/to/venv/bin/activate

To deactivate the virtualenv:

(kayobe) $ deactivate

To see information on how to use the kayobe CLI and the commands it provides:

(kayobe) $ kayobe help

As the kayobe CLI is based on the cliff package (as used by the openstack client), it supports
tab auto-completion of subcommands. This can be activated by generating and then sourcing the bash
completion script:

(kayobe) $ kayobe complete > kayobe-complete
(kayobe) $ source kayobe-complete

Working with Ansible Vault

If Ansible vault has been used to encrypt Kayobe configuration files, it will be necessary to provide the
kayobe command with access to vault password. There are three options for doing this:

Prompt Use kayobe --ask-vault-pass to prompt for the password.

File Use kayobe --vault-password-file <file> to read the password from a (plain text)
file.

Environment variable Export the environment variable KAYOBE_VAULT_PASSWORD to read the
password from the environment.

Limiting Hosts

Sometimes it may be necessary to limit execution of kayobe or kolla-ansible plays to a subset of
the hosts. The --limit <SUBSET> argument allows the kayobe ansible hosts to be limited. The
--kolla-limit <SUBSET> argument allows the kolla-ansible hosts to be limited. These two op-
tions may be combined in a single command. In both cases, the argument provided should be an Ansible
host pattern, and will ultimately be passed to ansible-playbook as a --limit argument.

10 Chapter 3. Contents

http://docs.ansible.com/ansible/latest/intro_patterns.html
http://docs.ansible.com/ansible/latest/intro_patterns.html

kayobe Documentation, Release 9.4.1.dev11

Tags

Ansible tags provide a useful mechanism for executing a subset of the plays or tasks in a play-
book. The --tags <TAGS> argument allows execution of kayobe ansible playbooks to be limited
to matching plays and tasks. The --kolla-tags <TAGS> argument allows execution of kolla-
ansible ansible playbooks to be limited to matching plays and tasks. The --skip-tags <TAGS>
and --kolla-skip-tags <TAGS> arguments allow for avoiding execution of matching plays and
tasks.

3.6 Configuration Guide

The configuration guide is split into two parts - scenarios and reference. The scenarios section provides
information on configuring Kayobe for different scenarios. The reference section provides detailed
information on many of Kayobes configuration options.

3.6.1 Configuration Scenarios

This section provides information on configuring Kayobe for different scenarios.

All in one scenario

Note: This documentation is intended as a walk through of the configuration required for a minimal
all-in-one overcloud host. If you are looking for an all-in-one environment for test or development, see
Automated Setup.

This scenario describes how to configure an all-in-one controller and compute node using Kayobe. This
is a very minimal setup, and not one that is recommended for a production environment, but is useful
for learning about how to use and configure Kayobe.

Prerequisites

This scenario requires a basic understanding of Linux, networking and OpenStack.

It also requires a single host running a supported operating system (VM or bare metal), with:

• 1 CPU

• 8GB RAM

• 40GB disk

• at least one network interface that has Internet access

You will need access to a user account with passwordless sudo. The default user in a cloud image (e.g.
centos or ubuntu) is typically sufficient. This user will be used to run Kayobe commands. It will
also be used by Kayobe to bootstrap other user accounts.

3.6. Configuration Guide 11

http://docs.ansible.com/ansible/latest/playbooks_tags.html

kayobe Documentation, Release 9.4.1.dev11

Overview

An all in one environment consists of a single node that provides both control and compute services.
There is no seed host, and no provisioning of the overcloud host. Customisation is minimal, in order to
demonstrate the basic required configuration in Kayobe:

+---------------------------+
| Overcloud host |
| |
| |
| +-------------+ |
		+	
	Containers		
+-------------+			
+-------------+			
+---------+-------+---------+

| |
| NIC 1 |
| |
+---+---+

|
|

+-----------------+------------------+ Internet

The networking in particular is relatively simple. The main interface of the overcloud host, labelled
NIC 1 in the above diagram, will be used only for connectivity to the host and Internet access. A single
Kayobe network called aio carries all control plane traffic, and is based on virtual networking that is
local to the host.

Later in this tutorial, we will create a dummy interface called dummy0, and plug it into a bridge called
br0:

+--------------+
| |
| OVS |
| |
+--------------+

|
|

+--------------+
| |
| br0 |
| 192.168.33.3 |
| 192.168.33.2 |
+--------------+

| dummy0 |
+--------+

The use of a bridge here allows Kayobe to connect this network to the Open vSwitch network, while
maintaining an IP address on the bridge. Ordinarily, dummy0 would be a NIC providing connectivity
to a physical network. Were using a dummy interface here to keep things simple by using a fixed IP
subnet, 192.168.33.0/24. The bridge will be assigned a static IP address of 192.168.33.3, and
this address will by used for various things, including Ansible SSH access and OpenStack control plane
traffic. Kolla Ansible will manage a Virtual IP (VIP) address of 192.168.33.2 on br0, which will

12 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

be used for OpenStack API endpoints.

Contents

Overcloud

Note: This documentation is intended as a walk through of the configuration required for a minimal
all-in-one overcloud host. If you are looking for an all-in-one environment for test or development, see
Automated Setup.

Preparation

Use the bootstrap user described in prerequisites to access the machine.

As described in the overview, we will use a bridge (br0) and a dummy interface (dummy0) for control
plane networking. Use the following commands to create them and assign the bridge a static IP address
of 192.168.33.3:

sudo ip l add br0 type bridge
sudo ip l set br0 up
sudo ip a add 192.168.33.3/24 dev br0
sudo ip l add dummy0 type dummy
sudo ip l set dummy0 up
sudo ip l set dummy0 master br0

This configuration is not persistent, and must be recreated if the VM is rebooted.

Installation

Follow the instructions in Installation to set up an Ansible control host environment. Typically this
would be on a separate machine, but here we are keeping things as simple as possible.

Configuration

Clone the kayobe-config git repository, using the correct branch for the release you are deploying. In
this example we will use the stable/victoria branch.

cd <base path>/src
git clone https://opendev.org/openstack/kayobe-config.git -b stable/
↪→victoria
cd kayobe-config

This repository is bare, and needs to be populated. The repository includes an example inventory, which
should be removed:

git rm etc/kayobe/inventory/hosts.example

3.6. Configuration Guide 13

https://opendev.org/openstack/kayobe-config

kayobe Documentation, Release 9.4.1.dev11

Create an Ansible inventory file and add the machine to it. In this example our machine is called
controller0. Since this is an all-in-one environment, we add the controller to the compute group,
however normally dedicated compute nodes would be used.

Listing 1: etc/kayobe/inventory/hosts

This host acts as the configuration management Ansible control host.
↪→This must be
localhost.
localhost ansible_connection=local

[controllers]
controller0

[compute:children]
controllers

The inventory directory also contains group variables for network interface configuration. In this
example we will assume that the machine has a single network interface called dummy0. We will create
a bridge called br0 and plug dummy0 into it. Replace the network interface configuration for the
controllers group with the following:

Listing 2: etc/kayobe/inventory/group_vars/
controllers/network-interfaces

Controller interface on all-in-one network.
aio_interface: br0

Interface dummy0 is plugged into the all-in-one network bridge.
aio_bridge_ports:

- dummy0

In this scenario a single network called aio is used. We must therefore set the name of the default
controller networks to aio:

Listing 3: etc/kayobe/networks.yml

Kayobe network configuration.

###
↪→####
Network role to network mappings.

Map all networks to the all-in-one network.

Name of the network used for admin access to the overcloud
#admin_oc_net_name:
admin_oc_net_name: aio

Name of the network used by the seed to manage the bare metal overcloud
hosts via their out-of-band management controllers.
#oob_oc_net_name:

Name of the network used by the seed to provision the bare metal
↪→overcloud

(continues on next page)

14 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

(continued from previous page)

hosts.
#provision_oc_net_name:

Name of the network used by the overcloud hosts to manage the bare metal
compute hosts via their out-of-band management controllers.
#oob_wl_net_name:

Name of the network used by the overcloud hosts to provision the bare
↪→metal
workload hosts.
#provision_wl_net_name:

Name of the network used to expose the internal OpenStack API endpoints.
#internal_net_name:
internal_net_name: aio

List of names of networks used to provide external network access via
Neutron.
Deprecated name: external_net_name
If external_net_name is defined, external_net_names will default to a
↪→list
containing one item, external_net_name.
#external_net_names:
external_net_names:

- aio

Name of the network used to expose the public OpenStack API endpoints.
#public_net_name:
public_net_name: aio

Name of the network used by Neutron to carry tenant overlay network
↪→traffic.
#tunnel_net_name:
tunnel_net_name: aio

Name of the network used to carry storage data traffic.
#storage_net_name:
storage_net_name: aio

Name of the network used to carry storage management traffic.
#storage_mgmt_net_name:
storage_mgmt_net_name: aio

Name of the network used to carry swift storage data traffic.
#swift_storage_net_name:

Name of the network used to carry swift storage replication traffic.
#swift_storage_replication_net_name:

Name of the network used to perform hardware introspection on the bare
↪→metal
workload hosts.
#inspection_net_name:

Name of the network used to perform cleaning on the bare metal workload
hosts

(continues on next page)

3.6. Configuration Guide 15

kayobe Documentation, Release 9.4.1.dev11

(continued from previous page)

#cleaning_net_name:

###
↪→####
Network definitions.

<omitted for clarity>

Next the aio network must be defined. This is done using the various attributes described in Network
Configuration. These values should be adjusted to match the environment. The aio_vip_address
variable should be a free IP address in the same subnet for the virtual IP address of the OpenStack API.

Listing 4: etc/kayobe/networks.yml

<omitted for clarity>

###
↪→####
Network definitions.

All-in-one network.
aio_cidr: 192.168.33.0/24
aio_vip_address: 192.168.33.2

###
↪→####
Network virtual patch link configuration.

<omitted for clarity>

Kayobe will automatically allocate IP addresses. In this case however, we want to ensure that the host
uses the same IP address it has currently, to avoid loss of connectivity. We can do this by populating the
network allocation file. Use the correct hostname and IP address for your environment.

Listing 5: etc/kayobe/network-allocation.yml

aio_ips:

controller0: 192.168.33.3

Kayobe uses a bootstrap user to create a stack user account. By default, this user is centos on Cen-
tOS, and ubuntu on Ubuntu, in line with the default user in the official cloud images. If you are us-
ing a different bootstrap user, set the controller_bootstrap_user variable in etc/kayobe/
controllers.yml. For example, to set it to cloud-user (as seen in MAAS):

Listing 6: etc/kayobe/controllers.yml

controller_bootstrap_user: "cloud-user"

By default, on systems with SELinux enabled, Kayobe will disable SELinux and reboot the system to
apply the change. In a test or development environment this can be a bit disruptive, particularly when
using ephemeral network configuration. To avoid rebooting the system after disabling SELinux, set
disable_selinux_do_reboot to false in etc/kayobe/globals.yml.

16 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Listing 7: etc/kayobe/globals.yml

disable_selinux_do_reboot: false

In a development environment, we may wish to tune some Kolla Ansible variables. Using QEMU as
the virtualisation type will be necessary if KVM is not available. Reducing the number of OpenStack
service workers helps to avoid using too much memory.

Listing 8: etc/kayobe/kolla/globals.yml

Most development environments will use nested virtualisation, and we can
↪→'t
guarantee that nested KVM support is available. Use QEMU as a lowest
↪→common
denominator.
nova_compute_virt_type: qemu

Reduce the control plane's memory footprint by limiting the number of
↪→worker
processes to one per-service.
openstack_service_workers: "1"

We can see the changes that have been made to the configuration.

cd <base path>/src/kayobe-config
git status

On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

deleted: etc/kayobe/inventory/hosts.example

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: etc/kayobe/globals.yml
modified: etc/kayobe/inventory/group_vars/controllers/network-

↪→interfaces
modified: etc/kayobe/kolla/globals.yml
modified: etc/kayobe/networks.yml

Untracked files:
(use "git add <file>..." to include in what will be committed)

etc/kayobe/inventory/hosts
etc/kayobe/network-allocation.yml

The git diff command is also helpful. Once all configuration changes have been made, they should
be committed to the kayobe-config git repository.

cd <base path>/src/kayobe-config
git add etc/kayobe/inventory/hosts etc/kayobe/network-allocation.yml
git add --update
git commit -m "All in one scenario config"

3.6. Configuration Guide 17

kayobe Documentation, Release 9.4.1.dev11

In a real environment these changes would be pushed to a central repository.

Deployment

We are now ready to perform a deployment.

Activate the Kayobe virtual environment:

cd <base path>/venvs/kayobe
source bin/activate

Activate the Kayobe configuration environment:

cd <base path>/src/kayobe-config
source kayobe-env

Bootstrap the control host:

kayobe control host bootstrap

Configure the overcloud host:

kayobe overcloud host configure

After this command has run, some files in the kayobe-config repository will have changed. Kayobe per-
forms static allocation of IP addresses, and tracks them in etc/kayobe/network-allocation.
yml. Normally there may be changes to this file, but in this case we manually added the IP address of
controller0 earlier. Kayobe uses tools provided by Kolla Ansible to generate passwords, and stores
them in etc/kayobe/kolla/passwords.yml. It is important to track changes to this file.

cd <base path>/src/kayobe-config
git add etc/kayobe/kolla/passwords.yml
git commit -m "Add autogenerated passwords for Kolla Ansible"

Pull overcloud container images:

kayobe overcloud container image pull

Deploy overcloud services:

kayobe overcloud service deploy

Testing

The init-runonce script provided by Kolla Ansible (not for production) can be used to setup some
resources for testing. This includes:

• some flavors

• a cirros image

• an external network

• a tenant network and router

18 Chapter 3. Contents

https://download.cirros-cloud.net/

kayobe Documentation, Release 9.4.1.dev11

• security group rules for ICMP, SSH, and TCP ports 8000 and 8080

• an SSH key

• increased quotas

For the external network, use the same subnet as before, with an allocation pool range containing free
IP addresses:

pip install python-openstackclient
export EXT_NET_CIDR=192.168.33.0/24
export EXT_NET_GATEWAY=192.168.33.3
export EXT_NET_RANGE="start=192.168.33.4,end=192.168.33.254"
source "${KOLLA_CONFIG_PATH:-/etc/kolla}/admin-openrc.sh"
${KOLLA_SOURCE_PATH}/tools/init-runonce

Create a server instance, assign a floating IP address, and check that it is accessible.

openstack server create --image cirros --flavor m1.tiny --key-name mykey --
↪→network demo-net demo1
openstack floating ip create public1

The floating IP address is displayed after it is created, in this example it is 192.168.33.4:

openstack server add floating ip demo1 192.168.33.4
ssh cirros@192.168.33.4

3.6.2 Configuration Reference

This section provides detailed information on many of Kayobes configuration options.

Kayobe Configuration

This section covers configuration of Kayobe. As an Ansible-based project, Kayobe is for the most part
configured using YAML files.

Configuration Location

Kayobe configuration is by default located in /etc/kayobe on the Ansible control host. This lo-
cation can be overridden to a different location to avoid touching the system configuration direc-
tory by setting the environment variable KAYOBE_CONFIG_PATH. Similarly, kolla configuration
on the Ansible control host will by default be located in /etc/kolla and can be overridden via
KOLLA_CONFIG_PATH.

3.6. Configuration Guide 19

kayobe Documentation, Release 9.4.1.dev11

Configuration Directory Layout

The Kayobe configuration directory contains Ansible extra-vars files and the Ansible inventory. An
example of the directory structure is as follows:

extra-vars1.yml
extra-vars2.yml
inventory/

group_vars/
group1-vars
group2-vars

groups
host_vars/

host1-vars
host2-vars

hosts

Configuration Patterns

Ansibles variable precedence rules are fairly well documented and provide a mechanism we can use for
providing site localisation and customisation of OpenStack in combination with some reasonable default
values. For global configuration options, Kayobe typically uses the following patterns:

• Playbook group variables for the all group in <kayobe repo>/ansible/group_vars/
all/* set global defaults. These files should not be modified.

• Playbook group variables for other groups in <kayobe repo>/ansible/group_vars/
<group>/* set defaults for some subsets of hosts. These files should not be modified.

• Extra-vars files in ${KAYOBE_CONFIG_PATH}/*.yml set custom values for global vari-
ables and should be used to apply global site localisation and customisation. By default these
variables are commented out.

Additionally, variables can be set on a per-host basis using inventory host variables files in
${KAYOBE_CONFIG_PATH}/inventory/host_vars/*. It should be noted that variables set
in extra-vars files take precedence over per-host variables.

Configuring Kayobe

The kayobe-config git repository contains a Kayobe configuration directory structure and unmodified
configuration files. This repository can be used as a mechanism for version controlling Kayobe configu-
ration. As Kayobe is updated, the configuration should be merged to incorporate any upstream changes
with local modifications.

Alternatively, the baseline Kayobe configuration may be copied from a checkout of the Kayobe reposi-
tory to the Kayobe configuration path:

$ mkdir -p ${KAYOBE_CONFIG_PATH:-/etc/kayobe/}
$ cp -r etc/kayobe/* ${KAYOBE_CONFIG_PATH:-/etc/kayobe/}

Once in place, each of the YAML and inventory files should be manually inspected and configured as
required.

20 Chapter 3. Contents

http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://opendev.org/openstack/kayobe-config

kayobe Documentation, Release 9.4.1.dev11

Inventory

The inventory should contain the following hosts:

Ansible Control host This should be localhost.

Seed hypervisor If provisioning a seed VM, a host should exist for the hypervisor that will run the VM,
and should be a member of the seed-hypervisor group.

Seed The seed host, whether provisioned as a VM by Kayobe or externally managed, should exist in
the seed group.

Cloud hosts and bare metal compute hosts are not required to exist in the inventory if discovery of the
control plane hardware is planned, although entries for groups may still be required.

Use of advanced control planes with multiple server roles and customised service placement across those
servers is covered in Control Plane Service Placement.

Site Localisation and Customisation

Site localisation and customisation is applied using Ansible extra-vars files in
${KAYOBE_CONFIG_PATH}/*.yml.

Configuration of Ansible

Ansible configuration is described in detail in the Ansible documentation. In addition to the standard
locations, Kayobe supports using an Ansible configuration file located in the Kayobe configuration at
${KAYOBE_CONFIG_PATH}/ansible.cfg. Note that if the ANSIBLE_CONFIG environment
variable is specified it takes precedence over this file.

Encryption of Secrets

Kayobe supports the use of Ansible vault to encrypt sensitive information in its configuration. The
ansible-vault tool should be used to manage individual files for which encryption is required.
Any of the configuration files may be encrypted. Since encryption can make working with Kayobe
difficult, it is recommended to follow best practice, adding a layer of indirection and using encryption
only where necessary.

Location of data files

Kayobe needs to know where to find any files not contained within its python package; this includes its
Ansible playbooks and any other files it needs for runtime operation. These files are known collectively
as data files.

Kayobe will attempt to detect the location of its data files automatically. However, if you have installed
kayobe to a non-standard location this auto-detection may fail. It is possible to manually override the
path using the environment variable: KAYOBE_DATA_FILES_PATH. This should be set to a path with
the following structure:

3.6. Configuration Guide 21

https://docs.ansible.com/ansible/latest/reference_appendices/config.html
http://docs.ansible.com/ansible/playbooks_vault.html
http://docs.ansible.com/ansible/playbooks_best_practices.html#best-practices-for-variables-and-vaults

kayobe Documentation, Release 9.4.1.dev11

requirements.yml
ansible/

roles/
...

...

Where ansible is the ansible directory from the source checkout and ... is an elided representa-
tion of any files and subdirectories contained within that directory.

Ansible

Ansible configuration is described in detail in the Ansible documentation. It is explained elsewhere in
this guide how to configure Ansible for Kayobe and Kolla Ansible.

In this section we cover some options for tuning Ansible for performance and scale.

SSH pipelining

SSH pipelining is disabled in Ansible by default, but is generally safe to enable, and provides a reason-
able performance improvement.

Listing 9: $KAYOBE_CONFIG_PATH/ansible.cfg

[ssh_connection]
pipelining = True

Forks

By default Ansible executes tasks using a fairly conservative 5 process forks. This limits the parallelism
that allows Ansible to scale. Most Ansible control hosts will be able to handle far more forks than this.
You will need to experiment to find out the CPU, memory and IO limits of your machine.

For example, to increase the number of forks to 20:

Listing 10: $KAYOBE_CONFIG_PATH/ansible.cfg

[defaults]
forks = 20

Fact caching

Note: Fact caching will not work correctly in Kayobe prior to the Ussuri release.

By default, Ansible gathers facts for each host at the beginning of every play, unless gather_facts
is set to false. With a large number of hosts this can result in a significant amount of time spent
gathering facts.

22 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/reference_appendices/config.html

kayobe Documentation, Release 9.4.1.dev11

One way to improve this is through Ansibles support for fact caching. In order to make this work with
Kayobe, it is necessary to change Ansibles gathering configuration option to smart. Additionally, it
is necessary to use separate fact caches for Kayobe and Kolla Ansible due to some of the facts (e.g.
ansible_facts.user_uid and ansible_facts.python) differing.

Example

In the following example we configure Kayobe and Kolla Ansible to use fact caching using the jsonfile
cache plugin.

Listing 11: $KAYOBE_CONFIG_PATH/ansible.cfg

[defaults]
gathering = smart
fact_caching = jsonfile
fact_caching_connection = /tmp/kayobe-facts

Listing 12: $KAYOBE_CONFIG_PATH/kolla/ansible.
cfg

[defaults]
gathering = smart
fact_caching = jsonfile
fact_caching_connection = /tmp/kolla-ansible-facts

You may also wish to set the expiration timeout for the cache via [defaults]
fact_caching_timeout.

Fact gathering

Fact filtering

Filtering of facts can be used to speed up Ansible. Environments with many network interfaces on the
network and compute nodes can experience very slow processing with Kayobe and Kolla Ansible. This
happens due to the processing of the large per-interface facts with each task. To avoid storing certain
facts, we can use the kayobe_ansible_setup_filter variable, which is used as the filter
argument to the setup module.

One case where this is particularly useful is to avoid collecting facts for virtual tap (beginning with t)
and bridge (beginning with q) interfaces created by Neutron. These facts are large map values which
can consume a lot of resources on the Ansible control host. Kayobe and Kolla Ansible typically do not
need to reference them, so they may be filtered. For example, to avoid collecting facts beginning with q
or t:

Listing 13: $KAYOBE_CONFIG_PATH/globals.yml

kayobe_ansible_setup_filter: "ansible_[!qt]*"

Similarly, for Kolla Ansible (notice the similar but different file names):

3.6. Configuration Guide 23

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#caching-facts
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#default-gathering
https://docs.ansible.com/ansible/latest/plugins/cache/jsonfile.html
https://docs.ansible.com/ansible/latest/plugins/cache/jsonfile.html

kayobe Documentation, Release 9.4.1.dev11

Listing 14: $KAYOBE_CONFIG_PATH/kolla/globals.
yml

kolla_ansible_setup_filter: "ansible_[!qt]*"

This causes Ansible to collect but not store facts matching that pattern, which includes the virtual in-
terface facts. Currently we are not referencing other facts matching the pattern within Kolla Ansible.
Note that including the ansible prefix causes meta facts module_setup and gather_subset to be
filtered, but this seems to be the only way to get a good match on the interface facts.

The exact improvement will vary, but has been reported to be as large as 18x on systems with many
virtual interfaces.

Fact gathering subsets

It is also possible to configure which subsets of facts are gathered, via
kayobe_ansible_setup_gather_subset, which is used as the gather_subset argu-
ment to the setup module. For example, if one wants to avoid collecting facts via facter:

Listing 15: $KAYOBE_CONFIG_PATH/globals.yml

kayobe_ansible_setup_gather_subset: "all,!facter"

Similarly, for Kolla Ansible (notice the similar but different file names):

Listing 16: $KAYOBE_CONFIG_PATH/kolla/globals.
yml

kolla_ansible_setup_gather_subset: "all,!facter"

Physical Network Configuration

Kayobe supports configuration of physical network devices. This feature is optional, and this section
may be skipped if network device configuration will be managed via other means.

Devices are added to the Ansible inventory, and configured using Ansibles networking modules. Con-
figuration is applied via the kayobe physical network configure command. See Physical
Network for details.

The following switch operating systems are currently supported:

• Cumulus Linux (via Network Command Line Utility (NCLU))

• Dell OS 6

• Dell OS 9

• Dell PowerConnect

• Juniper Junos OS

• Mellanox MLNX OS

24 Chapter 3. Contents

https://docs.cumulusnetworks.com/display/DOCS/Network+Command+Line+Utility+-+NCLU

kayobe Documentation, Release 9.4.1.dev11

Adding Devices to the Inventory

Network devices should be added to the Kayobe Ansible inventory, and should be members of the
switches group.

Listing 17: inventory/hosts

[switches]
switch0
switch1

In some cases it may be useful to differentiate different types of switches, For example, a mgmt network
might carry out-of-band management traffic, and a ctl network might carry control plane traffic. A
group could be created for each of these networks, with each group being a child of the switches
group.

Listing 18: inventory/hosts

[switches:children]
mgmt-switches
ctl-switches

[mgmt-switches]
switch0

[ctl-switches]
switch1

Network Device Configuration

Configuration is typically specific to each network device. It is therefore usually best to add a
host_vars file to the inventory for each device. Common configuration for network devices can
be added in a group_vars file for the switches group or one of its child groups.

Listing 19: inventory/host_vars/switch0

Host configuration for switch0
ansible_host: 1.2.3.4

Listing 20: inventory/host_vars/switch1

Host configuration for switch1
ansible_host: 1.2.3.5

3.6. Configuration Guide 25

kayobe Documentation, Release 9.4.1.dev11

Listing 21: inventory/group_vars/switches

Group configuration for 'switches' group.
ansible_user: alice

Common Configuration Variables

The type of switch should be configured via the switch_type variable. See Device-specific Configu-
ration Variables for details of the value to set for each device type.

ansible_host should be set to the management IP address used to access the device.
ansible_user should be set to the user used to access the device.

Global switch configuration is specified via the switch_config variable. It should be a list of con-
figuration lines to apply.

Per-interface configuration is specified via the switch_interface_config variable. It should be
an object mapping switch interface names to configuration objects. Each configuration object contains
a description item and a config item. The config item should contain a list of per-interface
configuration lines.

The switch_interface_config_enable_discovery and
switch_interface_config_disable_discovery variables take the same format as
the switch_interface_config variable. They define interface configuration to apply to enable
or disable hardware discovery of bare metal compute nodes.

Listing 22: inventory/host_vars/switch0

ansible_host: 1.2.3.4

ansible_user: alice

switch_config:
- global config line 1
- global config line 2

switch_interface_config:
interface-0:

description: controller0
config:

- interface-0 config line 1
- interface-0 config line 2

interface-1:
description: compute0
config:

- interface-1 config line 1
- interface-1 config line 2

Network device configuration can become quite repetitive, so it can be helpful to define group variables
that can be referenced by multiple devices. For example:

26 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Listing 23: inventory/group_vars/switches

Group configuration for the 'switches' group.
switch_config_default:

- default global config line 1
- default global config line 2

switch_interface_config_controller:
- controller interface config line 1
- controller interface config line 2

switch_interface_config_compute:
- compute interface config line 1
- compute interface config line 2

Listing 24: inventory/host_vars/switch0

ansible_host: 1.2.3.4

ansible_user: alice

switch_config: "{{ switch_config_default }}"

switch_interface_config:
interface-0:

description: controller0
config: "{{ switch_interface_config_controller }}"

interface-1:
description: compute0
config: "{{ switch_interface_config_compute }}"

Device-specific Configuration Variables

Cumulus Linux (with NCLU)

Configuration for these devices is applied using the nclu Ansible module.

switch_type should be set to nclu.

SSH configuration

As with any non-switch host in the inventory, the nclu module relies on the default connection param-
eters used by Ansible:

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

3.6. Configuration Guide 27

kayobe Documentation, Release 9.4.1.dev11

Dell OS6 and OS9

Configuration for these devices is applied using the dellos6_config and dellos9_config An-
sible modules.

switch_type should be set to dellos6 or dellos9.

Provider

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

• ansible_ssh_pass is the SSH password.

• switch_auth_pass is the enable password.

Alternatively, set switch_dellos_provider to the value to be passed as the provider argument
to the dellos*_config module.

Dell PowerConnect

Configuration for these devices is applied using the stackhpc.dell-powerconnect-switch
Ansible role. The role uses the expect Ansible module to automate interaction with the switch CLI
via SSH.

switch_type should be set to dell-powerconnect.

Provider

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

• switch_auth_pass is the SSH password.

Juniper Junos OS

Configuration for these devices is applied using the junos_config Ansible module.

switch_type should be set to junos.

switch_junos_config_format may be used to set the format of the configuration. The variable
is passed as the src_format argument to the junos_config module. The default value is text.

28 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Provider

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

• ansible_ssh_pass is the SSH password. Mutually exclusive with
ansible_ssh_private_key_file.

• ansible_ssh_private_key_file is the SSH private key file. Mutually exclusive with
ansible_ssh_pass.

• switch_junos_timeout may be set to a timeout in seconds for communicating with the
device.

Alternatively, set switch_junos_provider to the value to be passed as the provider argument
to the junos_config module.

Mellanox MLNX OS

Configuration for these devices is applied using the stackhpc.mellanox-switch Ansible role.
The role uses the expect Ansible module to automate interaction with the switch CLI via SSH.

switch_type should be set to mellanox.

Provider

• ansible_host is the hostname or IP address. Optional.

• ansible_user is the SSH username.

• switch_auth_pass is the SSH password.

Network Configuration

Kayobe provides a flexible mechanism for configuring the networks in a system. Kayobe networks
are assigned a name which is used as a prefix for variables that define the networks attributes. For
example, to configure the cidr attribute of a network named arpanet, we would use a variable
named arpanet_cidr.

Global Network Configuration

Global network configuration is stored in ${KAYOBE_CONFIG_PATH}/networks.yml. The fol-
lowing attributes are supported:

cidr CIDR representation (<IP>/<prefix length>) of the networks IP subnet.

allocation_pool_start IP address of the start of Kayobes allocation pool range.

allocation_pool_end IP address of the end of Kayobes allocation pool range.

inspection_allocation_pool_start IP address of the start of ironic inspectors allocation
pool range.

3.6. Configuration Guide 29

kayobe Documentation, Release 9.4.1.dev11

inspection_allocation_pool_end IP address of the end of ironic inspectors allocation pool
range.

neutron_allocation_pool_start IP address of the start of neutrons allocation pool range.

neutron_allocation_pool_end IP address of the end of neutrons allocation pool range.

gateway IP address of the networks default gateway.

inspection_gateway IP address of the gateway for the hardware introspection network.

neutron_gateway IP address of the gateway for a neutron subnet based on this network.

vlan VLAN ID.

mtu Maximum Transmission Unit (MTU).

vip_address Virtual IP address (VIP) used by API services on this network.

fqdn Fully Qualified Domain Name (FQDN) used by API services on this network.

routes List of static IP routes. Each item should be a dict containing the item cidr, and optionally
gateway, table and options. cidr is the CIDR representation of the routes destination.
gateway is the IP address of the next hop. table is the name or ID of a routing table to which
the route will be added. options is a list of option strings to add to the route.

rules List of IP routing rules. Each item should be an iproute2 IP routing rule.

physical_network Name of the physical network on which this network exists. This aligns with
the physical network concept in neutron.

libvirt_network_name A name to give to a Libvirt network representing this network on the
seed hypervisor.

Configuring an IP Subnet

An IP subnet may be configured by setting the cidr attribute for a network to the CIDR representation
of the subnet.

To configure a network called example with the 10.0.0.0/24 IP subnet:

Listing 25: networks.yml

example_cidr: 10.0.0.0/24

Configuring an IP Gateway

An IP gateway may be configured by setting the gateway attribute for a network to the IP address of
the gateway.

To configure a network called example with a gateway at 10.0.0.1:

Listing 26: networks.yml

example_gateway: 10.0.0.1

This gateway will be configured on all hosts to which the network is mapped. Note that configuring
multiple IP gateways on a single host will lead to unpredictable results.

30 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Configuring an API Virtual IP Address

A virtual IP (VIP) address may be configured for use by Kolla Ansible on the internal and external
networks, on which the API services will be exposed. The variable will be passed through to the
kolla_internal_vip_address or kolla_external_vip_address Kolla Ansible vari-
able.

To configure a network called example with a VIP at 10.0.0.2:

Listing 27: networks.yml

example_vip_address: 10.0.0.2

Configuring an API Fully Qualified Domain Name

A Fully Qualified Domain Name (FQDN) may be configured for use by Kolla Ansible on the internal
and external networks, on which the API services will be exposed. The variable will be passed through
to the kolla_internal_fqdn or kolla_external_fqdn Kolla Ansible variable.

To configure a network called example with an FQDN at api.example.com:

Listing 28: networks.yml

example_fqdn: api.example.com

Configuring Static IP Routes

Static IP routes may be configured by setting the routes attribute for a network to a list of routes.

To configure a network called example with a single IP route to the 10.1.0.0/24 subnet via 10.
0.0.1:

Listing 29: networks.yml

example_routes:
- cidr: 10.1.0.0/24

gateway: 10.0.0.1

These routes will be configured on all hosts to which the network is mapped.

If necessary, custom options may be added to the route:

Listing 30: networks.yml

example_routes:
- cidr: 10.1.0.0/24

gateway: 10.0.0.1
options:

- onlink
- metric 400

3.6. Configuration Guide 31

kayobe Documentation, Release 9.4.1.dev11

Configuring a VLAN

A VLAN network may be configured by setting the vlan attribute for a network to the ID of the VLAN.

To configure a network called example with VLAN ID 123:

Listing 31: networks.yml

example_vlan: 123

IP Address Allocation

IP addresses are allocated automatically by Kayobe from the allocation pool defined by
allocation_pool_start and allocation_pool_end. If these variables are undefined, the
entire network is used, except for network and broadcast addresses. IP addresses are only allocated if
the network cidr is set and DHCP is not used (see bootproto in Per-host Network Configuration).
The allocated addresses are stored in ${KAYOBE_CONFIG_PATH}/network-allocation.yml
using the global per-network attribute ips which maps Ansible inventory hostnames to allocated IPs.

If static IP address allocation is required, the IP allocation file network-allocation.yml may be
manually populated with the required addresses.

Configuring Dynamic IP Address Allocation

To configure a network called example with the 10.0.0.0/24 IP subnet and an allocation pool
spanning from 10.0.0.4 to 10.0.0.254:

Listing 32: networks.yml

example_cidr: 10.0.0.0/24
example_allocation_pool_start: 10.0.0.4
example_allocation_pool_end: 10.0.0.254

Note: This pool should not overlap with an inspection or neutron allocation pool on the same network.

Configuring Static IP Address Allocation

To configure a network called example with statically allocated IP addresses for hosts host1 and
host2:

Listing 33: network-allocation.yml

example_ips:
host1: 10.0.0.1
host2: 10.0.0.2

32 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Advanced: Policy-Based Routing

Policy-based routing can be useful in complex networking environments, particularly where asymmetric
routes exist, and strict reverse path filtering is enabled.

Configuring IP Routing Tables

Custom IP routing tables may be configured by setting the global variable network_route_tables
in ${KAYOBE_CONFIG_PATH}/networks.yml to a list of route tables. These route tables will be
added to /etc/iproute2/rt_tables.

To configure a routing table called exampleroutetable with ID 1:

Listing 34: networks.yml

network_route_tables:
- name: exampleroutetable

id: 1

To configure route tables on specific hosts, use a host or group variables file.

Configuring IP Routing Policy Rules

IP routing policy rules may be configured by setting the rules attribute for a network to a list of rules.
The format of a rule is the string which would be appended to ip rule <add|del> to create or
delete the rule.

To configure a network called example with an IP routing policy rule to handle traffic from the subnet
10.1.0.0/24 using the routing table exampleroutetable:

Listing 35: networks.yml

example_rules:
- from 10.1.0.0/24 table exampleroutetable

These rules will be configured on all hosts to which the network is mapped.

Configuring IP Routes on Specific Tables

A route may be added to a specific routing table by adding the name or ID of the table to a table
attribute of the route:

To configure a network called example with a default route and a connected (local subnet) route to the
subnet 10.1.0.0/24 on the table exampleroutetable:

Listing 36: networks.yml

example_routes:
- cidr: 0.0.0.0/0

gateway: 10.1.0.1
table: exampleroutetable

(continues on next page)

3.6. Configuration Guide 33

kayobe Documentation, Release 9.4.1.dev11

(continued from previous page)

- cidr: 10.1.0.0/24
table: exampleroutetable

Per-host Network Configuration

Some network attributes are specific to a hosts role in the system, and these are
stored in ${KAYOBE_CONFIG_PATH}/inventory/group_vars/<group>/
network-interfaces. The following attributes are supported:

interface The name of the network interface attached to the network.

bootproto Boot protocol for the interface. Valid values are static and dhcp. The default is
static. When set to dhcp, an external DHCP server must be provided.

defroute Whether to set the interface as the default route. This attribute can be used to disable
configuration of the default gateway by a specific interface. This is particularly useful to ignore a
gateway address provided via DHCP. Should be set to a boolean value. The default is unset. This
attribute is only supported on distributions of the Red Hat family.

bridge_ports For bridge interfaces, a list of names of network interfaces to add to the bridge.

bond_mode For bond interfaces, the bonds mode, e.g. 802.3ad.

bond_slaves For bond interfaces, a list of names of network interfaces to act as slaves for the bond.

bond_miimon For bond interfaces, the time in milliseconds between MII link monitoring.

bond_updelay For bond interfaces, the time in milliseconds to wait before declaring an interface up
(should be multiple of bond_miimon).

bond_downdelay For bond interfaces, the time in milliseconds to wait before declaring an interface
down (should be multiple of bond_miimon).

bond_xmit_hash_policy For bond interfaces, the xmit_hash_policy to use for the bond.

bond_lacp_rate For bond interfaces, the lacp_rate to use for the bond.

ethtool_opts Physical network interface options to apply with ethtool. When used on bond and
bridge interfaces, settings apply to underlying interfaces. This should be a string of arguments
passed to the ethtool utility, for example "-G ${DEVICE} rx 8192 tx 8192".

IP Addresses

An interface will be assigned an IP address if the associated network has a cidr attribute.
The IP address will be assigned from the range defined by the allocation_pool_start
and allocation_pool_end attributes, if one has not been statically assigned in
network-allocation.yml.

34 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Configuring Ethernet Interfaces

An Ethernet interface may be configured by setting the interface attribute for a network to the name
of the Ethernet interface.

To configure a network called example with an Ethernet interface on eth0:

Listing 37: inventory/group_vars/<group>/
network-interfaces

example_interface: eth0

Configuring Bridge Interfaces

A Linux bridge interface may be configured by setting the interface attribute of a network to the
name of the bridge interface, and the bridge_ports attribute to a list of interfaces which will be
added as member ports on the bridge.

To configure a network called example with a bridge interface on breth1, and a single port eth1:

Listing 38: inventory/group_vars/<group>/
network-interfaces

example_interface: breth1
example_bridge_ports:

- eth1

Bridge member ports may be Ethernet interfaces, bond interfaces, or VLAN interfaces. In the case
of bond interfaces, the bond must be configured separately in addition to the bridge, as a different
named network. In the case of VLAN interfaces, the underlying Ethernet interface must be configured
separately in addition to the bridge, as a different named network.

Configuring Bond Interfaces

A bonded interface may be configured by setting the interface attribute of a network to the name of
the bonds master interface, and the bond_slaves attribute to a list of interfaces which will be added
as slaves to the master.

To configure a network called examplewith a bond with master interface bond0 and two slaves eth0
and eth1:

Listing 39: inventory/group_vars/<group>/
network-interfaces

example_interface: bond0
example_bond_slaves:

- eth0
- eth1

Optionally, the bond mode and MII monitoring interval may also be configured:

3.6. Configuration Guide 35

kayobe Documentation, Release 9.4.1.dev11

Listing 40: inventory/group_vars/<group>/
network-interfaces

example_bond_mode: 802.3ad
example_bond_miimon: 100

Bond slaves may be Ethernet interfaces, or VLAN interfaces. In the case of VLAN interfaces, underlying
Ethernet interface must be configured separately in addition to the bond, as a different named network.

Configuring VLAN Interfaces

A VLAN interface may be configured by setting the interface attribute of a network to the name of
the VLAN interface. The interface name must be of the form <parent interface>.<VLAN ID>.

To configure a network called example with a VLAN interface with a parent interface of eth2 for
VLAN 123:

Listing 41: inventory/group_vars/<group>/
network-interfaces

example_interface: eth2.123

To keep the configuration DRY, reference the networks vlan attribute:

Listing 42: inventory/group_vars/<group>/
network-interfaces

example_interface: "eth2.{{ example_vlan }}"

Ethernet interfaces, bridges, and bond master interfaces may all be parents to a VLAN interface.

Bridges and VLANs

Adding a VLAN interface to a bridge directly will allow tagged traffic for that VLAN to be forwarded by
the bridge, whereas adding a VLAN interface to an Ethernet or bond interface that is a bridge member
port will prevent tagged traffic for that VLAN being forwarded by the bridge.

For example, if you are bridging eth1 to breth1 and want to access VLAN 1234 as a tagged VLAN
from the host, while still allowing Neutron to access traffic for that VLAN via Open vSwitch, your setup
should look like this:

$ sudo brctl show
bridge name bridge id STP enabled interfaces
breth1 8000.56e6b95b4178 no p-breth1-phy

eth1
$ sudo ip addr show | grep 1234 | head -1
10: breth1.1234@breth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
↪→noqueue state UP group default qlen 1000

It should not look like this:

36 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

$ sudo brctl show
bridge name bridge id STP enabled interfaces
breth1 8000.56e6b95b4178 no p-breth1-phy

eth1
$ sudo ip addr show | grep 1234 | head -1
10: eth1.1234@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
↪→noqueue state UP group default qlen 1000

This second configuration may be desirable to prevent specific traffic, e.g. of the internal API network,
from reaching Neutron.

Domain Name Service (DNS) Resolver Configuration

Kayobe supports configuration of hosts DNS resolver via resolv.conf. DNS configuration should
be added to dns.yml. For example:

Listing 43: dns.yml

resolv_nameservers:
- 8.8.8.8
- 8.8.4.4

resolv_domain: example.com
resolv_search:

- kayobe.example.com

It is also possible to prevent kayobe from modifying resolv.conf by setting
resolv_is_managed to false.

Network Role Configuration

In order to provide flexibility in the systems network topology, Kayobe maps the named networks to
logical network roles. A single named network may perform multiple roles, or even none at all. The
available roles are:

Overcloud admin network (admin_oc_net_name) Name of the network used to access the over-
cloud for admin purposes, e.g for remote SSH access.

Overcloud out-of-band network (oob_oc_net_name) Name of the network used by the seed to
access the out-of-band management controllers of the bare metal overcloud hosts.

Overcloud provisioning network (provision_oc_net_name) Name of the network used by the
seed to provision the bare metal overcloud hosts.

Workload out-of-band network (oob_wl_net_name) Name of the network used by the overcloud
hosts to access the out-of-band management controllers of the bare metal workload hosts.

Workload provisioning network (provision_wl_net_name) Name of the network used by the
overcloud hosts to provision the bare metal workload hosts.

Workload cleaning network (cleaning_net_name) Name of the network used by the overcloud
hosts to clean the baremetal workload hosts.

Internal network (internal_net_name) Name of the network used to expose the internal Open-
Stack API endpoints.

3.6. Configuration Guide 37

kayobe Documentation, Release 9.4.1.dev11

Public network (public_net_name) Name of the network used to expose the public OpenStack
API endpoints.

Tunnel network (tunnel_net_name) Name of the network used by Neutron to carry tenant overlay
network traffic.

External networks (external_net_names, deprecated: external_net_name) List
of names of networks used to provide external network access via Neutron. If
external_net_name is defined, external_net_names defaults to a list containing
only that network.

Storage network (storage_net_name) Name of the network used to carry storage data traffic.

Storage management network (storage_mgmt_net_name) Name of the network used to carry
storage management traffic.

Swift storage network (swift_storage_net_name) Name of the network used to carry Swift
storage data traffic. Defaults to the storage network (storage_net_name).

Swift storage replication network (swift_storage_replication_net_name) Name of the
network used to carry storage management traffic. Defaults to the storage management network
(storage_mgmt_net_name)

Workload inspection network (inspection_net_name) Name of the network used to perform
hardware introspection on the bare metal workload hosts.

These roles are configured in ${KAYOBE_CONFIG_PATH}/networks.yml.

Configuring Network Roles

To configure network roles in a system with two networks, example1 and example2:

38 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Listing 44: networks.yml

admin_oc_net_name: example1
oob_oc_net_name: example1
provision_oc_net_name: example1
oob_wl_net_name: example1
provision_wl_net_name: example2
internal_net_name: example2
public_net_name: example2
tunnel_net_name: example2
external_net_names:

- example2
storage_net_name: example2
storage_mgmt_net_name: example2
swift_storage_net_name: example2
swift_replication_net_name: example2
inspection_net_name: example2
cleaning_net_name: example2

Overcloud Admin Network

The admin network is intended to be used for remote access to the overcloud hosts. Kayobe will use the
address assigned to the host on this network as the ansible_host when executing playbooks. It is
therefore a necessary requirement to configure this network.

By default Kayobe will use the overcloud provisioning network as the admin network. It is, however,
possible to configure a separate network. To do so, you should override admin_oc_net_name in
your networking configuration.

If a separate network is configured, the following requirements should be taken into consideration:

• The admin network must be configured to use the same physical network interface as the provi-
sioning network. This is because the PXE MAC address is used to lookup the interface for the
cloud-init network configuration that occurs during bifrost provisioning of the overcloud.

Overcloud Provisioning Network

If using a seed to inspect the bare metal overcloud hosts, it is necessary to define a DHCP allocation pool
for the seeds ironic inspector DHCP server using the inspection_allocation_pool_start
and inspection_allocation_pool_end attributes of the overcloud provisioning network.

Note: This example assumes that the example network is mapped to provision_oc_net_name.

To configure a network called example with an inspection allocation pool:

example_inspection_allocation_pool_start: 10.0.0.128
example_inspection_allocation_pool_end: 10.0.0.254

Note: This pool should not overlap with a kayobe allocation pool on the same network.

3.6. Configuration Guide 39

kayobe Documentation, Release 9.4.1.dev11

Workload Cleaning Network

A separate cleaning network, which is used by the overcloud to clean baremetal workload (compute)
hosts, may optionally be specified. Otherwise, the Workload Provisoning network is used. It is nec-
essary to define an IP allocation pool for neutron using the neutron_allocation_pool_start
and neutron_allocation_pool_end attributes of the cleaning network. This controls the IP
addresses that are assigned to workload hosts during cleaning.

Note: This example assumes that the example network is mapped to cleaning_net_name.

To configure a network called example with a neutron provisioning allocation pool:

example_neutron_allocation_pool_start: 10.0.1.128
example_neutron_allocation_pool_end: 10.0.1.195

Note: This pool should not overlap with a kayobe or inspection allocation pool on the same network.

Workload Provisioning Network

If using the overcloud to provision bare metal workload (compute) hosts, it is necessary
to define an IP allocation pool for the overclouds neutron provisioning network using the
neutron_allocation_pool_start and neutron_allocation_pool_end attributes of
the workload provisioning network.

Note: This example assumes that the example network is mapped to provision_wl_net_name.

To configure a network called example with a neutron provisioning allocation pool:

example_neutron_allocation_pool_start: 10.0.1.128
example_neutron_allocation_pool_end: 10.0.1.195

Note: This pool should not overlap with a kayobe or inspection allocation pool on the same network.

Workload Inspection Network

If using the overcloud to inspect bare metal workload (compute) hosts, it is necessary to
define a DHCP allocation pool for the overclouds ironic inspector DHCP server using the
inspection_allocation_pool_start and inspection_allocation_pool_end at-
tributes of the workload provisioning network.

Note: This example assumes that the example network is mapped to provision_wl_net_name.

To configure a network called example with an inspection allocation pool:

40 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

example_inspection_allocation_pool_start: 10.0.1.196
example_inspection_allocation_pool_end: 10.0.1.254

Note: This pool should not overlap with a kayobe or neutron allocation pool on the same network.

Neutron Networking

Note: This assumes the use of the neutron openvswitch ML2 mechanism driver for control plane
networking.

Certain modes of operation of neutron require layer 2 access to physical networks in the system. Hosts
in the network group (by default, this is the same as the controllers group) run the neutron
networking services (Open vSwitch agent, DHCP agent, L3 agent, metadata agent, etc.).

The kayobe network configuration must ensure that the neutron Open vSwitch bridges on the network
hosts have access to the external network. If bare metal compute nodes are in use, then they must also
have access to the workload provisioning network. This can be done by ensuring that the external and
workload provisioning network interfaces are bridges. Kayobe will ensure connectivity between these
Linux bridges and the neutron Open vSwitch bridges via a virtual Ethernet pair. See Configuring Bridge
Interfaces.

Network to Host Mapping

Networks are mapped to hosts using the variable network_interfaces. Kayobes playbook group
variables define some sensible defaults for this variable for hosts in the top level standard groups. These
defaults are set using the network roles typically required by the group.

Seed

By default, the seed is attached to the following networks:

• overcloud admin network

• overcloud out-of-band network

• overcloud provisioning network

This list may be extended by setting seed_extra_network_interfaces to a list of names
of additional networks to attach. Alternatively, the list may be completely overridden by setting
seed_network_interfaces. These variables are found in ${KAYOBE_CONFIG_PATH}/
seed.yml.

3.6. Configuration Guide 41

kayobe Documentation, Release 9.4.1.dev11

Seed Hypervisor

By default, the seed hypervisor is attached to the same networks as the seed.

This list may be extended by setting seed_hypervisor_extra_network_interfaces to
a list of names of additional networks to attach. Alternatively, the list may be completely over-
ridden by setting seed_hypervisor_network_interfaces. These variables are found in
${KAYOBE_CONFIG_PATH}/seed-hypervisor.yml.

Controllers

By default, controllers are attached to the following networks:

• overcloud admin network

• workload (compute) out-of-band network

• workload (compute) provisioning network

• workload (compute) inspection network

• workload (compute) cleaning network

• internal network

• storage network

In addition, if the controllers are also in the network group, they are attached to the following net-
works:

• public network

• external network

• tunnel network

This list may be extended by setting controller_extra_network_interfaces to a
list of names of additional networks to attach. Alternatively, the list may be completely
overridden by setting controller_network_interfaces. These variables are found in
${KAYOBE_CONFIG_PATH}/controllers.yml.

Network Hosts

By default, controllers provide Neutron network services and load balancing. If separate network hosts
are used (see Example 1: Adding Network Hosts), they are attached to the following networks:

• overcloud admin network

• internal network

• storage network

• public network

• external network

• tunnel network

42 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

This list may be extended by setting controller_network_host_extra_network_interfaces
to a list of names of additional networks to attach. Alternatively, the list may be completely overridden
by setting controller_network_host_network_interfaces. These variables are found in
${KAYOBE_CONFIG_PATH}/controllers.yml.

Monitoring Hosts

By default, the monitoring hosts are attached to the same networks as the controllers when they are in the
controllers group. If the monitoring hosts are not in the controllers group, they are attached
to the following networks by default:

• overcloud admin network

• internal network

• public network

This list may be extended by setting monitoring_extra_network_interfaces to a
list of names of additional networks to attach. Alternatively, the list may be completely
overridden by setting monitoring_network_interfaces. These variables are found in
${KAYOBE_CONFIG_PATH}/monitoring.yml.

Storage Hosts

By default, the storage hosts are attached to the following networks:

• overcloud admin network

• internal network

• storage network

• storage management network

In addition, if Swift is enabled, they can also be attached to the Swift management and replication
networks.

Virtualised Compute Hosts

By default, virtualised compute hosts are attached to the following networks:

• overcloud admin network

• internal network

• storage network

• tunnel network

This list may be extended by setting compute_extra_network_interfaces to a list of names
of additional networks to attach. Alternatively, the list may be completely overridden by setting
compute_network_interfaces. These variables are found in ${KAYOBE_CONFIG_PATH}/
compute.yml.

3.6. Configuration Guide 43

kayobe Documentation, Release 9.4.1.dev11

Other Hosts

If additional hosts are managed by kayobe, the networks to which these hosts are attached may be
defined in a host or group variables file. See Control Plane Service Placement for further details.

Complete Example

The following example combines the complete network configuration into a single system configuration.
In our example cloud we have three networks: management, cloud and external:

+------------+ +----------------+ +------
↪→----------+

| | | +-+ |
↪→ +-+

| | | | +-+ |
↪→Bare metal | +-+

| Seed | | Cloud hosts | | | |
↪→compute hosts | | |

| | | | | | |
↪→ | | |

| | | | | | |
↪→ | | |

+-----+------+ +----------------+ | | +------
↪→----------+ | |

| +-----------------+ | +-----
↪→------------+ |

| +-----------------+ +---
↪→--------------+

| | | |
↪→ |

| | | |
↪→ |

| | | |
↪→ |

| | | |
↪→ |
management +--------+------------------------+-----------------------------
↪→-----------------+

| |
↪→ |
cloud +------------------------------------+--------------------------
↪→----+------------+

|
external +---------------------------------------+-----------------------
↪→-----------------+

The management network is used to access the servers BMCs and by the seed to inspect and provision
the cloud hosts. The cloud network carries all internal control plane and storage traffic, and is used by
the control plane to provision the bare metal compute hosts. Finally, the external network links the
cloud to the outside world.

We could describe such a network as follows:

44 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Listing 45: networks.yml

Network role mappings.
oob_oc_net_name: management
provision_oc_net_name: management
oob_wl_net_name: management
provision_wl_net_name: cloud
internal_net_name: cloud
public_net_name: external
external_net_name: external
storage_net_name: cloud
storage_mgmt_net_name: cloud
inspection_net_name: cloud

management network definition.
management_cidr: 10.0.0.0/24
management_allocation_pool_start: 10.0.0.1
management_allocation_pool_end: 10.0.0.127
management_inspection_allocation_pool_start: 10.0.0.128
management_inspection_allocation_pool_end: 10.0.0.254

cloud network definition.
cloud_cidr: 10.0.1.0/24
cloud_allocation_pool_start: 10.0.1.1
cloud_allocation_pool_end: 10.0.1.127
cloud_inspection_allocation_pool_start: 10.0.1.128
cloud_inspection_allocation_pool_end: 10.0.1.195
cloud_neutron_allocation_pool_start: 10.0.1.196
cloud_neutron_allocation_pool_end: 10.0.1.254

external network definition.
external_cidr: 10.0.3.0/24
external_allocation_pool_start: 10.0.3.1
external_allocation_pool_end: 10.0.3.127
external_neutron_allocation_pool_start: 10.0.3.128
external_neutron_allocation_pool_end: 10.0.3.254
external_routes:

- cidr: 10.0.4.0/24
gateway: 10.0.3.1

We can map these networks to network interfaces on the seed and controller hosts:

Listing 46: inventory/group_vars/seed/
network-interfaces

management_interface: eth0

Listing 47: inventory/group_vars/controllers/
network-interfaces

management_interface: eth0
cloud_interface: breth1

(continues on next page)

3.6. Configuration Guide 45

kayobe Documentation, Release 9.4.1.dev11

(continued from previous page)

cloud_bridge_ports:
- eth1

external_interface: eth2

We have defined a bridge for the cloud network on the controllers as this will allow it to be plugged into
a neutron Open vSwitch bridge.

Kayobe will allocate IP addresses for the hosts that it manages:

Listing 48: network-allocation.yml

management_ips:

seed: 10.0.0.1
control0: 10.0.0.2
control1: 10.0.0.3
control2: 10.0.0.4

cloud_ips:
control0: 10.0.1.1
control1: 10.0.1.2
control2: 10.0.1.3

external_ips:
control0: 10.0.3.1
control1: 10.0.3.2
control2: 10.0.3.3

Note that although this file does not need to be created manually, doing so allows for a predictable IP
address mapping which may be desirable in some cases.

Host Configuration

This section covers configuration of hosts. It does not cover configuration or deployment of containers.
Hosts that are configured by Kayobe include:

• Seed hypervisor (kayobe seed hypervisor host configure)

• Seed (kayobe seed host configure)

• Overcloud (kayobe overcloud host configure)

Unless otherwise stated, all host configuration described here is applied to each of these types of host.

See also:

Ansible tags for limiting the scope of Kayobe commands are included under the relevant sections of this
page (for more information see Tags).

46 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Configuration Location

Some host configuration options are set via global variables, and others have a variable for each type of
host. The latter variables are included in the following files under ${KAYOBE_CONFIG_PATH}:

• seed-hypervisor.yml

• seed.yml

• compute.yml

• controller.yml

• monitoring.yml

• storage.yml

Note that any variable may be set on a per-host or per-group basis, by using inventory host or group
variables - these delineations are for convenience.

Paths

Several directories are used by Kayobe on the remote hosts. There is a hierarchy of variables in
${KAYOBE_CONFIG_PATH}/globals.yml that can be used to control where these are located.

• base_path (default /opt/kayobe/) sets the default base path for various directories.

• config_path (default {{ base_path }}/etc) is a path in which to store configuration
files.

• image_cache_path (default {{ base_path }}/images) is a path in which to cache
downloaded or built images.

• source_checkout_path (default {{ base_path }}/src) is a path into which to store
clones of source code repositories.

• virtualenv_path (default {{ base_path }}/venvs) is a path in which to create
Python virtual environments.

SSH Known Hosts

tags:

ssh-known-host

While strictly this configuration is applied to the Ansible control host (localhost), it is applied during
the host configure commands. The ansible_host of each host is added as an SSH known
host. This is typically the hosts IP address on the admin network (admin_oc_net_name), as defined
in ${KAYOBE_CONFIG_PATH}/network-allocation.yml (see IP Address Allocation).

3.6. Configuration Guide 47

kayobe Documentation, Release 9.4.1.dev11

Kayobe User Bootstrapping

tags:

kayobe-ansible-user

Kayobe uses a user account defined by the kayobe_ansible_user variable (in
${KAYOBE_CONFIG_PATH}/globals.yml) for remote SSH access. By default, this is
stack.

Typically, the image used to provision these hosts will not include this user account, so Kayobe performs
a bootstrapping step to create it, as a different user. In cloud images, there is often a user named after
the OS distro, e.g. centos or ubuntu. This user defaults to the name of the user running Kayobe, but
may be set via the following variables:

• seed_hypervisor_bootstrap_user

• seed_bootstrap_user

• compute_bootstrap_user

• controller_bootstrap_user

• monitoring_bootstrap_user

• storage_bootstrap_user

For example, to set the bootstrap user for controllers to centos:

Listing 49: controllers.yml

controller_bootstrap_user: centos

PyPI Mirror and proxy

tags:

pip

Kayobe supports configuration of a PyPI mirror and/or proxy, via variables in
${KAYOBE_CONFIG_PATH}/pip.yml. Mirror functionality is enabled by setting the
pip_local_mirror variable to true and proxy functionality is enabled by setting pip_proxy
variable to a proxy URL.

Kayobe will generate configuration for:

• pip to use the mirror and proxy

• easy_install to use the mirror

for the list of users defined by pip_applicable_users (default kayobe_ansible_user and
root), in addition to the user used for Kolla Ansible (kolla_ansible_user). The mirror URL
is configured via pip_index_url, and pip_trusted_hosts is a list of trusted hosts, for which
SSL verification will be disabled.

For example, to configure use of the test PyPI mirror at https://test.pypi.org/simple/:

48 Chapter 3. Contents

https://test.pypi.org/simple/

kayobe Documentation, Release 9.4.1.dev11

Listing 50: pip.yml

pip_local_mirror: true
pip_index_url: https://test.pypi.org/simple/

To configure use of the PyPI proxy:

Listing 51: pip.yml

pip_proxy: http://your_proxy_server:3128

Kayobe Remote Virtual Environment

tags:

kayobe-target-venv

By default, Ansible executes modules remotely using the system python interpreter, even if the Ansi-
ble control process is executed from within a virtual environment (unless the local connection plugin
is used). This is not ideal if there are python dependencies that must be installed with isolation from
the system python packages. Ansible can be configured to use a virtualenv by setting the host variable
ansible_python_interpreter to a path to a python interpreter in an existing virtual environ-
ment.

If kayobe detects that ansible_python_interpreter is set and references a virtual environment,
it will create the virtual environment if it does not exist. Typically this variable should be set via a group
variable in the inventory for hosts in the seed, seed-hypervisor, and/or overcloud groups.

The default Kayobe configuration in the kayobe-config repository sets
ansible_python_interpreter to {{ virtualenv_path }}/kayobe/bin/python
for the seed, seed-hypervisor, and overcloud groups.

Disk Wiping

tags:

wipe-disks

Using hosts that may have stale data on their disks could affect the deployment of the cloud. This is not
a configuration option, since it should only be performed once to avoid losing useful data. It is triggered
by passing the --wipe-disks argument to the host configure commands.

Users and Groups

tags:

users

Linux user accounts and groups can be configured using the users_default variable in
${KAYOBE_CONFIG_PATH}/users.yml. The format of the list is that used by the users variable
of the singleplatform-eng.users role. The following variables can be used to set the users for specific
types of hosts:

3.6. Configuration Guide 49

https://galaxy.ansible.com/singleplatform-eng/users

kayobe Documentation, Release 9.4.1.dev11

• seed_hypervisor_users

• seed_users

• compute_users

• controller_users

• monitoring_users

• storage_users

In the following example, a single user named bob is created. A password hash has been generated
via mkpasswd --method=sha-512. The user is added to the wheel group, and an SSH key is
authorised. The SSH public key should be added to the Kayobe configuration.

Listing 52: users.yml

users_default:
- username: bob

name: Bob
password: "6wJt9MLWrHlWN8

↪→$oXJHbdaslm9guD5EC3Dry1mphuqF9NPeQ43OXk3cXZa2ze/
↪→F9FOTxm2KvvDkbdxBDs7ouwdiLTUJ1Ff40.cFU."

groups:
- wheel

append: True
ssh_key:

- "{{ lookup('file', kayobe_config_path ~ '/ssh-keys/id_rsa_bob.pub')
↪→}}"

Package Repositories

tags:

dnf

Kayobe supports configuration of package repositories via DNF, via variables in
${KAYOBE_CONFIG_PATH}/dnf.yml.

Configuration of dnf.conf

Global configuration of DNF is stored in /etc/dnf/dnf.conf, and options can be set via the
dnf_config variable. Options are added to the [main] section of the file. For example, to con-
figure DNF to use a proxy server:

50 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Listing 53: dnf.yml

dnf_config:
proxy: https://proxy.example.com

CentOS and EPEL Mirrors

CentOS and EPEL mirrors can be enabled by setting dnf_use_local_mirror to true. CentOS
repository mirrors are configured via the following variables:

• dnf_centos_mirror_host (default mirror.centos.org) is the mirror hostname.

• dnf_centos_mirror_directory (default centos) is a directory on the mirror in which
repositories may be accessed.

EPEL repository mirrors are configured via the following variables:

• dnf_epel_mirror_host (default download.fedoraproject.org) is the mirror host-
name.

• dnf_epel_mirror_directory (default pub/epel) is a directory on the mirror in which
repositories may be accessed.

For example, to configure CentOS and EPEL mirrors at mirror.example.com:

Listing 54: dnf.yml

dnf_use_local_mirror: true
dnf_centos_mirror_host: mirror.example.com
dnf_epel_mirror_host: mirror.example.com

Custom DNF Repositories

It is also possible to configure a list of custom DNF repositories via the dnf_custom_repos variable.
The format is a dict/map, with repository names mapping to a dict/map of arguments to pass to the
Ansible yum_repository module.

For example, the following configuration defines a single DNF repository called widgets.

3.6. Configuration Guide 51

kayobe Documentation, Release 9.4.1.dev11

Listing 55: dnf.yml

dnf_custom_repos:
widgets:

baseurl: http://example.com/repo
file: widgets
gpgkey: http://example.com/gpgkey
gpgcheck: yes

Disabling EPEL

It is possible to disable the EPEL DNF repository by setting dnf_install_epel to false.

DNF Automatic

DNF Automatic provides a mechanism for applying regular updates of packages. DNF Automatic is
disabled by default, and may be enabled by setting dnf_automatic_enabled to true.

Listing 56: dnf.yml

dnf_automatic_enabled: true

By default, only security updates are applied. Updates for all packages may be installed by setting
dnf_automatic_upgrade_type to default. This may cause the system to be less predictable
as packages are updated without oversight or testing.

SELinux

tags:

disable-selinux

SELinux is not supported by Kolla Ansible currently, so it is disabled by Kayobe. If necessary, Kayobe
will reboot systems in order to apply a change to the SELinux configuration. The timeout for waiting
for systems to reboot is disable_selinux_reboot_timeout. Alternatively, the reboot may be
avoided by setting disable_selinux_do_reboot to false.

Network Configuration

tags:

network

Configuration of host networking is covered in depth in Network Configuration.

52 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Sysctls

tags:

sysctl

Arbitrary sysctl configuration can be applied to hosts. The variable format is a dict/map, mapping
parameter names to their required values. The following variables can be used to set sysctl configu-
ration specific types of hosts:

• seed_hypervisor_sysctl_parameters

• seed_sysctl_parameters

• compute_sysctl_parameters

• controller_sysctl_parameters

• monitoring_sysctl_parameters

• storage_sysctl_parameters

For example, to set the net.ipv4.ip_forward parameter to 1 on controllers:

Listing 57: controllers.yml

controller_sysctl_parameters:
net.ipv4.ip_forward: 1

Disable cloud-init

tags:

disable-cloud-init

cloud-init is a popular service for performing system bootstrapping. If you are not using cloud-init, this
section can be skipped.

If using the seeds Bifrost service to provision the control plane hosts, the use of cloud-init may be
configured via the kolla_bifrost_dib_init_element variable.

cloud-init searches for network configuration in order of increasing precedence; each item overriding
the previous. In some cases, on subsequent boots cloud-init can automatically reconfigure network
interfaces and cause some issues in network configuration. To disable cloud-init from running after the
initial server bootstrapping, set disable_cloud_init to true in ${KAYOBE_CONFIG_PATH}/
overcloud.yml.

3.6. Configuration Guide 53

kayobe Documentation, Release 9.4.1.dev11

Disable Glean

tags:

disable-glean

The glean service can be used to perform system bootstrapping, serving a similar role to
cloud-init. If you are not using glean, this section can be skipped.

If using the seeds Bifrost service to provision the control plane hosts, the use of glean may be config-
ured via the kolla_bifrost_dib_init_element variable.

After the initial server bootstrapping, the glean service can cause problems as it attempts to enable all
network interfaces, which can lead to timeouts while booting. To avoid this, the glean service is dis-
abled. Additionally, any network interface configuration files generated by glean and not overwritten
by Kayobe are removed.

Timezone

tags:

timezone

The timezone can be configured via the timezone variable in ${KAYOBE_CONFIG_PATH}/time.
yml. The value must be a valid Linux timezone. For example:

Listing 58: time.yml

timezone: Europe/London

NTP

Since the Ussuri release, Kayobe no longer supports configuration of an NTP daemon on the host, since
the ntp package is no longer available in CentOS 8.

Kolla Ansible can deploy a chrony container on overcloud hosts, and from the Ussuri release chrony is
enabled by default. There is no support for running a chrony container on the seed or seed hypervisor
hosts.

To disable the containerised chrony daemon, set the following in ${KAYOBE_CONFIG_PATH}/
kolla.yml:

kolla_enable_chrony: false

54 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Software RAID

tags:

mdadm

While it is possible to use RAID directly with LVM, some operators may prefer the userspace tools
provided by mdadm or may have existing software RAID arrays they want to manage with Kayobe.

Software RAID arrays may be configured via the mdadm_arrays variable. For convenience, this is
mapped to the following variables:

• seed_hypervisor_mdadm_arrays

• seed_mdadm_arrays

• compute_mdadm_arrays

• controller_mdadm_arrays

• monitoring_mdadm_arrays

• storage_mdadm_arrays

The format of these variables is as defined by the mdadm_arrays variable of the mrlesmithjr.mdadm
Ansible role.

For example, to configure two of the seeds disks as a RAID1 mdadm array available as /dev/md0:

Listing 59: seed.yml

seed_mdadm_arrays:
- name: md0

devices:
- /dev/sdb
- /dev/sdc

level: '1'
state: present

Encryption

tags:

luks

Encrypted block devices may be configured via the luks_devices variable. For convenience, this is
mapped to the following variables:

• seed_hypervisor_luks_devices

• seed_luks_devices

• compute_luks_devices

• controller_luks_devices

• monitoring_luks_devices

• storage_luks_devices

3.6. Configuration Guide 55

https://galaxy.ansible.com/mrlesmithjr/mdadm

kayobe Documentation, Release 9.4.1.dev11

The format of these variables is as defined by the luks_devices variable of the stackhpc.luks Ansible
role.

For example, to encrypt the software raid device, /dev/md0, on the seed, and make it available as
/dev/mapper/md0crypt

Listing 60: seed.yml

seed_luks_devices:
- name: md0crypt

device: /dev/md0

Note: It is not yet possible to encrypt the root device.

LVM

tags:

lvm

Logical Volume Manager (LVM) physical volumes, volume groups, and logical volumes may be con-
figured via the lvm_groups variable. For convenience, this is mapped to the following variables:

• seed_hypervisor_lvm_groups

• seed_lvm_groups

• compute_lvm_groups

• controller_lvm_groups

• monitoring_lvm_groups

• storage_lvm_groups

The format of these variables is as defined by the lvm_groups variable of the mrlesmithjr.manage-lvm
Ansible role.

LVM for libvirt

LVM is not configured by default on the seed hypervisor. It is possible to configure LVM to provide
storage for a libvirt storage pool, typically mounted at /var/lib/libvirt/images.

To use this configuration, set the seed_hypervisor_lvm_groups variable to "{{
seed_hypervisor_lvm_groups_with_data }}" and provide a list of disks via the
seed_hypervisor_lvm_group_data_disks variable.

56 Chapter 3. Contents

https://galaxy.ansible.com/stackhpc/luks
https://galaxy.ansible.com/mrlesmithjr/manage-lvm

kayobe Documentation, Release 9.4.1.dev11

LVM for Docker

Note: In Train and earlier releases of Kayobe, the data volume group was always enabled by default.

If the devicemapper Docker storage driver is in use, the default LVM configuration is optimised for
it. The devicemapper driver requires a thin provisioned LVM volume. A second logical volume
is used for storing Docker volume data, mounted at /var/lib/docker/volumes. Both logical
volumes are created from a single data volume group.

This configuration is enabled by the following variables, which default to true if the devicemapper
driver is in use or false otherwise:

• compute_lvm_group_data_enabled

• controller_lvm_group_data_enabled

• seed_lvm_group_data_enabled

• storage_lvm_group_data_enabled

These variables can be set to true to enable the data volume group if the devicemapper driver is
not in use. This may be useful where the docker-volumes logical volume is required.

To use this configuration, a list of disks must be configured via the following variables:

• seed_lvm_group_data_disks

• compute_lvm_group_data_disks

• controller_lvm_group_data_disks

• monitoring_lvm_group_data_disks

• storage_lvm_group_data_disks

For example, to configure two of the seeds disks for use by LVM:

Listing 61: seed.yml

seed_lvm_group_data_disks:
- /dev/sdb
- /dev/sdc

The Docker volumes LVM volume is assigned a size given by the following variables, with a default
value of 75% (of the volume groups capacity):

• seed_lvm_group_data_lv_docker_volumes_size

• compute_lvm_group_data_lv_docker_volumes_size

• controller_lvm_group_data_lv_docker_volumes_size

• monitoring_lvm_group_data_lv_docker_volumes_size

• storage_lvm_group_data_lv_docker_volumes_size

If using a Docker storage driver other than devicemapper, the remaining 25% of the volume group
can be used for Docker volume data. In this case, the LVM volumes size can be increased to 100%:

3.6. Configuration Guide 57

kayobe Documentation, Release 9.4.1.dev11

Listing 62: controllers.yml

controller_lvm_group_data_lv_docker_volumes_size: 100%

If using a Docker storage driver other than devicemapper, it is possible to avoid using LVM
entirely, thus avoiding the requirement for multiple disks. In this case, set the appropriate
<host>_lvm_groups variable to an empty list:

Listing 63: storage.yml

storage_lvm_groups: []

Custom LVM

To define additional logical logical volumes in the default data volume group, modify one of the
following variables:

• seed_lvm_group_data_lvs

• compute_lvm_group_data_lvs

• controller_lvm_group_data_lvs

• monitoring_lvm_group_data_lvs

• storage_lvm_group_data_lvs

Include the variable <host>_lvm_group_data_lv_docker_volumes in the list to include the
LVM volume for Docker volume data:

Listing 64: monitoring.yml

monitoring_lvm_group_data_lvs:
- "{{ monitoring_lvm_group_data_lv_docker_volumes }}"
- lvname: other-vol

size: 1%
create: true
filesystem: ext4
mount: true
mntp: /path/to/mount

It is possible to define additional LVM volume groups via the following variables:

• seed_lvm_groups_extra

• compute_lvm_groups_extra

• controller_lvm_groups_extra

• monitoring_lvm_groups_extra

• storage_lvm_groups_extra

For example:

58 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Listing 65: compute.yml

compute_lvm_groups_extra:
- vgname: other-vg

disks:
- /dev/sdb

create: true
lvnames:

- lvname: other-vol
size: 100%FREE
create: true
mount: false

Alternatively, replace the entire volume group list via one of the <host>_lvm_groups variables to
replace the default configuration with a custom one.

Listing 66: controllers.yml

controller_lvm_groups:
- vgname: only-vg

disks: /dev/sdb
create: true
lvnames:

- lvname: only-vol
size: 100%
create: true
mount: false

Kolla-Ansible bootstrap-servers

Kolla Ansible provides some host configuration functionality via the bootstrap-servers com-
mand, which may be leveraged by Kayobe.

See the Kolla Ansible documentation for more information on the functions performed by this command,
and how to configure it.

Note that from the Ussuri release, Kayobe creates a user account for Kolla Ansible rather than this being
done by Kolla Ansible during bootstrap-servers. See User account creation for details.

Kolla-Ansible Remote Virtual Environment

tags:

kolla-ansible

kolla-target-venv

See Context: Remote Execution Environment for information about remote Python virtual environments
for Kolla Ansible.

3.6. Configuration Guide 59

https://docs.openstack.org/kolla-ansible/victoria/reference/deployment-and-bootstrapping/bootstrap-servers.html

kayobe Documentation, Release 9.4.1.dev11

Docker Engine

tags:

docker

Docker engine configuration is applied by both Kayobe and Kolla Ansible (during bootstrap-servers).

The docker_storage_driver variable sets the Docker storage driver, and by default the
overlay2 driver is used. If using the devicemapper driver, see LVM for information about config-
uring LVM for Docker.

Various options are defined in ${KAYOBE_CONFIG_PATH}/docker.yml for configuring the
devicemapper storage.

A private Docker registry may be configured via docker_registry, with a Certificate Authority
(CA) file configured via docker_registry_ca.

To use one or more Docker Registry mirrors, use the docker_registry_mirrors variable.

If using an MTU other than 1500, docker_daemon_mtu can be used to configure this. This setting
does not apply to containers using net=host (as Kolla Ansibles containers do), but may be necessary
when building images.

Dockers live restore feature can be configured via docker_daemon_live_restore, although it is
disabled by default due to issues observed.

Kolla Configuration

Anyone using Kayobe to build images should familiarise themselves with the Kolla projects documen-
tation.

Container Image Build Host

Images are built on hosts in the container-image-builders group. The default Kayobe Ansible
inventory places the seed host in this group, although it is possible to put a different host in the group,
by modifying the inventory.

For example, to build images on localhost:

Listing 67: inventory/groups

[container-image-builders:children]

60 Chapter 3. Contents

https://docs.openstack.org/kolla/victoria/
https://docs.openstack.org/kolla/victoria/

kayobe Documentation, Release 9.4.1.dev11

Listing 68: inventory/hosts

[container-image-builders]
localhost

Kolla Installation

Prior to building container images, Kolla and its dependencies will be installed on the container image
build host. The following variables affect the installation of Kolla:

kolla_ctl_install_type Type of installation, either binary (PyPI) or source (git). Default
is source.

kolla_source_path Path to directory for Kolla source code checkout. Default is {{
source_checkout_path ~ '/kolla' }}.

kolla_source_url URL of Kolla source code repository if type is source. Default is https:
//opendev.org/openstack/kolla.

kolla_source_version Version (branch, tag, etc.) of Kolla source code repository if type is
source. Default is {{ openstack_branch }}, which is the same as the Kayobe upstream
branch name.

kolla_venv Path to virtualenv in which to install Kolla on the container image build host. Default is
{{ virtualenv_path ~ '/kolla' }}.

kolla_build_config_path Path in which to generate kolla configuration. Default is {{
config_path ~ '/kolla' }}.

For example, to install from a custom Git repository:

Listing 69: kolla.yml

kolla_source_url: https://git.example.com/kolla
kolla_source_version: downstream

Global Configuration

The following variables are global, affecting all container images. They are used to generate the Kolla
configuration file, kolla-build.conf, and also affect Kolla Ansible configuration.

kolla_base_distro Kolla base container image distribution. Default is centos.

kolla_install_type Kolla container image type: binary or source. Default is binary.

kolla_docker_namespace Docker namespace to use for Kolla images. Default is kolla.

kolla_docker_registry URL of docker registry to use for Kolla images. Default is to use the
value of docker_registry variable (see Docker Engine).

kolla_docker_registry_username Username to use to access a docker registry. Default is
not set, in which case the registry will be used without authentication.

kolla_docker_registry_password Password to use to access a docker registry. Default is not
set, in which case the registry will be used without authentication.

3.6. Configuration Guide 61

https://opendev.org/openstack/kolla
https://opendev.org/openstack/kolla

kayobe Documentation, Release 9.4.1.dev11

kolla_openstack_release Kolla OpenStack release version. This should be a Docker image
tag. Default is the OpenStack release name (e.g. rocky) on stable branches and tagged releases,
or master on the Kayobe master branch.

kolla_tag Kolla container image tag. This is the tag that will be applied to built container images.
Default is kolla_openstack_release.

For example, to build the Kolla centos binary images with a namespace of example, and a private
Docker registry at registry.example.com:4000, tagged with 7.0.0.1:

Listing 70: kolla.yml

kolla_base_distro: centos
kolla_install_type: binary
kolla_docker_namespace: example
kolla_docker_registry: registry.example.com:4000
kolla_openstack_release: 7.0.0.1

The ironic-api image built with this configuration would be referenced as follows:

registry.example.com:4000/example/centos-binary-ironic-api:7.0.0.1

Further customisation of the Kolla configuration file can be performed by writing a file at
${KAYOBE_CONFIG_PATH/kolla/kolla-build.conf. For example, to enable debug log-
ging:

Listing 71: kolla/kolla-build.conf

[DEFAULT]
debug = True

Seed Images

The kayobe seed container image build command builds images for the seed services.
The only image required for the seed services is the bifrost-deploy image.

Overcloud Images

The kayobe overcloud container image build command builds images for the control
plane. The default set of images built depends on which services and features are enabled via the
kolla_enable_<service> flags in $KAYOBE_CONFIG_PATH/kolla.yml.

For example, the following configuration will enable the Magnum service and add the magnum-api
and magnum-conductor containers to the set of overcloud images that will be built:

Listing 72: kolla.yml

kolla_enable_magnum: true

If a required image is not built when the corresponding flag is set, check the image sets defined in
overcloud_container_image_sets in ansible/group_vars/all/kolla.

62 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Image Customisation

There are three main approaches to customising the Kolla container images:

1. Overriding Jinja2 blocks

2. Overriding Jinja2 variables

3. Source code locations

Overriding Jinja2 blocks

Kollas images are defined via Jinja2 templates that generate Dockerfiles. Jinja2 blocks are frequently
used to allow specific statements in one or more Dockerfiles to be replaced with custom statements. See
the Kolla documentation for details.

Blocks are configured via the kolla_build_blocks variable, which is a dict mapping Jinja2 block
names in to their contents.

For example, to override the block header to add a custom label to every image:

Listing 73: kolla.yml

kolla_build_blocks:
header: |

LABEL foo="bar"

This will result in Kayobe generating a template-override.j2 file with the following content:

Listing 74: template-override.j2

{% extends parent_template %}

{% block header %}
LABEL foo="bar"
{% endblock %}

Overriding Jinja2 variables

Jinja2 variables offer another way to customise images. See the Kolla documentation for details of using
variable overrides to modify the list of packages to install in an image.

Variable overrides are configured via the kolla_build_customizations variable, which is a
dict/map mapping names of variables to override to their values.

For example, to add mod_auth_openidc to the list of packages installed in the keystone-base
image, we can set the variable keystone_base_packages_append to a list containing
mod_auth_openidc.

Listing 75: kolla.yml

kolla_build_customizations:
keystone_base_packages_append:

- mod_auth_openidc

3.6. Configuration Guide 63

https://docs.openstack.org/kolla/victoria/admin/image-building.html#generic-customisation
https://docs.openstack.org/kolla/victoria/admin/image-building.html#package-customisation

kayobe Documentation, Release 9.4.1.dev11

This will result in Kayobe generating a template-override.j2 file with the following content:

Listing 76: template-override.j2

{% extends parent_template %}

{% set keystone_base_packages_append = ["mod_auth_openidc"] %}

Note that the variable value will be JSON-encoded in template-override.j2.

Source code locations

For source image builds, configuration of source code locations for packages installed in containers
by Kolla is possible via the kolla_sources variable. The format is a dict/map mapping names of
sources to their definitions. See the Kolla documentation for details. The default is to specify the URL
and version of Bifrost, as defined in ${KAYOBE_CONFIG_PATH}/bifrost.yml.

For example, to specify a custom source location for the ironic-base package:

Listing 77: kolla.yml

kolla_sources:
bifrost-base:

type: "git"
location: "{{ kolla_bifrost_source_url }}"
reference: "{{ kolla_bifrost_source_version }}"

ironic-base:
type: "git"
location: https://git.example.com/ironic
reference: downstream

This will result in Kayobe adding the following configuration to kolla-build.conf:

64 Chapter 3. Contents

https://docs.openstack.org/kolla/victoria/admin/image-building.html#build-openstack-from-source

kayobe Documentation, Release 9.4.1.dev11

Listing 78: kolla-build.conf

[bifrost-base]
type = git
location = https://opendev.org/openstack/bifrost
reference = stable/rocky

[ironic-base]
type = git
location = https://git.example.com/ironic
reference = downstream

Note that it is currently necessary to include the Bifrost source location if using a seed.

Plugins & additions

These features can also be used for installing plugins and additions to source type images.

For example, to install a networking-ansible plugin in the neutron-server image:

Listing 79: kolla.yml

kolla_sources:
bifrost-base:

type: "git"
location: "{{ kolla_bifrost_source_url }}"
reference: "{{ kolla_bifrost_source_version }}"

neutron-server-plugin-networking-ansible:
type: "git"
location: https://git.example.com/networking-ansible
reference: downstream

The neutron-server image automatically installs any plugins provided to it. For images that do
not, a block such as the following may be required:

3.6. Configuration Guide 65

https://docs.openstack.org/kolla/victoria/admin/image-building.html#plugin-functionality
https://docs.openstack.org/kolla/victoria/admin/image-building.html#additions-functionality

kayobe Documentation, Release 9.4.1.dev11

Listing 80: kolla.yml

kolla_build_blocks:
neutron_server_footer: |

ADD plugins-archive /
pip --no-cache-dir install /plugins/*

A similar approach may be used for additions.

Kolla Ansible Configuration

Kayobe relies heavily on Kolla Ansible for deployment of the OpenStack control plane. Kolla Ansible
is installed locally on the Ansible control host (the host from which Kayobe commands are executed),
and Kolla Ansible commands are executed from there.

Kolla Ansible configuration is stored in ${KAYOBE_CONFIG_PATH}/kolla.yml.

Configuration of Ansible

Ansible configuration is described in detail in the Ansible documentation. In addition to the stan-
dard locations, Kayobe supports using an Ansible configuration file located in the Kayobe configu-
ration at ${KAYOBE_CONFIG_PATH}/kolla/ansible.cfg or ${KAYOBE_CONFIG_PATH}/
ansible.cfg. Note that if the ANSIBLE_CONFIG environment variable is specified it takes prece-
dence over this file.

Kolla Ansible Installation

Prior to deploying containers, Kolla Ansible and its dependencies will be installed on the Ansible control
host. The following variables affect the installation of Kolla Ansible:

kolla_ansible_ctl_install_type Type of Kolla Ansible control installation. One of
binary (PyPI) or source (git). Default is source.

kolla_ansible_source_url URL of Kolla Ansible source code repository if type is source.
Default is https://opendev.org/openstack/kolla-ansible.

kolla_ansible_source_version Version (branch, tag, etc.) of Kolla Ansible source code
repository if type is source. Default is the same as the Kayobe upstream branch.

kolla_ansible_venv_extra_requirements Extra requirements to install inside the Kolla
Ansible virtualenv. Default is an empty list.

kolla_upper_constraints_file Upper constraints file for installation of Kolla. Default is
{{ pip_upper_constraints_file }}, which has a default of https://releases.
openstack.org/constraints/upper/{{ openstack_branch }}.

66 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/reference_appendices/config.html
https://opendev.org/openstack/kolla-ansible

kayobe Documentation, Release 9.4.1.dev11

Example: custom git repository

To install Kolla Ansible from a custom git repository:

Listing 81: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_ansible_source_url: https://git.example.com/kolla-ansible
kolla_ansible_source_version: downstream

Virtual Environment Extra Requirements

Extra Python packages can be installed inside the Kolla Ansible virtualenv, such as when required by
Ansible plugins.

For example, to use the hashi_vault Ansible lookup plugin, its hvac dependency can be installed using:

Listing 82: $KAYOBE_CONFIG_PATH/kolla.yml

Extra requirements to install inside the Kolla Ansible virtualenv.
kolla_ansible_venv_extra_requirements:

- "hvac"

Local environment

The following variables affect the local environment on the Ansible control host. They reference en-
vironment variables, and should be configured using those rather than modifying the Ansible variable
directly. The file kayobe-env in the kayobe-config git repository sets some sensible defaults for these
variables, based on the recommended environment directory structure.

kolla_ansible_source_path Path to directory for Kolla Ansible source code checkout. Default
is $KOLLA_SOURCE_PATH, or $PWD/src/kolla-ansible.

kolla_ansible_venv Path to virtualenv in which to install Kolla Ansible on the Ansible control
host. Default is $KOLLA_VENV_PATH or $PWD/venvs/kolla-ansible.

kolla_config_path Path to Kolla Ansible configuration directory. Default is
$KOLLA_CONFIG_PATH or /etc/kolla.

Global Configuration

The following variables are global, affecting all containers. They are used to generate the Kolla Ansible
configuration file, globals.yml, and also affect Kolla image build configuration.

3.6. Configuration Guide 67

https://docs.ansible.com/ansible/devel/plugins/lookup/hashi_vault.html
https://opendev.org/openstack/kayobe-config

kayobe Documentation, Release 9.4.1.dev11

Kolla Images

The following variables affect which Kolla images are used, and how they are accessed.

kolla_base_distro Kolla base container image distribution. Default is centos.

kolla_install_type Kolla container image type: binary or source. Default is binary.

kolla_docker_registry URL of docker registry to use for Kolla images. Default is not set, in
which case Dockerhub will be used.

kolla_docker_namespace Docker namespace to use for Kolla images. Default is kolla.

kolla_docker_registry_username Username to use to access a docker registry. Default is
not set, in which case the registry will be used without authentication.

kolla_docker_registry_password Password to use to access a docker registry. Default is not
set, in which case the registry will be used without authentication.

kolla_openstack_release Kolla OpenStack release version. This should be a Docker image
tag. Default is {{ openstack_release }}, which takes the OpenStack release name (e.g.
rocky) on stable branches and tagged releases, or master on the Kayobe master branch.

For example, to deploy Kolla centos binary images with a namespace of example, and a private
Docker registry at registry.example.com:4000, tagged with 7.0.0.1:

Listing 83: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_base_distro: centos
kolla_install_type: binary
kolla_docker_namespace: example
kolla_docker_registry: registry.example.com:4000
kolla_openstack_release: 7.0.0.1

The deployed ironic-api image would be referenced as follows:

registry.example.com:4000/example/centos-binary-ironic-api:7.0.0.1

Ansible

The following variables affect how Ansible accesses the remote hosts.

kolla_ansible_user User account to use for Kolla SSH access. Default is kolla.

kolla_ansible_group Primary group of Kolla SSH user. Default is kolla.

kolla_ansible_become Whether to use privilege escalation for all operations performed via
Kolla Ansible. Default is false since the 8.0.0 Ussuri release.

kolla_ansible_target_venv Path to a virtual environment on remote hosts to use for Ansible
module execution. Default is {{ virtualenv_path }}/kolla-ansible. May be set to
None to use the system Python interpreter.

68 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Context: Remote Execution Environment

By default, Ansible executes modules remotely using the system python interpreter, even if the Ansi-
ble control process is executed from within a virtual environment (unless the local connection plugin
is used). This is not ideal if there are python dependencies that must be installed with isolation from
the system python packages. Ansible can be configured to use a virtualenv by setting the host variable
ansible_python_interpreter to a path to a python interpreter in an existing virtual environ-
ment.

The variable kolla_ansible_target_venv configures the use of a virtual environment on the
remote hosts. The default configuration should work in most cases.

User account creation

Since the Ussuri release, Kayobe creates a user account for Kolla Ansible rather than this being done
during Kolla Ansibles bootstrap-servers command. This workflow is more compatible with An-
sible fact caching, but does mean that Kolla Ansibles create_kolla_user variable cannot be used
to disable creation of the user account. Instead, set kolla_ansible_create_user to false.

kolla_ansible_create_user Whether to create a user account, configure passwordless sudo
and authorise an SSH key for Kolla Ansible. Default is true.

OpenStack Logging

The following variable affects OpenStack debug logging.

kolla_openstack_logging_debug Whether debug logging is enabled for OpenStack services.
Default is false.

Example: enabling debug logging

In certain situations it may be necessary to enable debug logging for all OpenStack services. This is not
usually advisable in production.

Listing 84: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_openstack_logging_debug: true

TLS Encryption of APIs

The following variables affect TLS encryption of the public API.

kolla_enable_tls_external Whether TLS is enabled for the public API endpoints. Default is
no.

kolla_external_tls_cert A TLS certificate bundle to use for the public API endpoints, if
kolla_enable_tls_external is true. Note that this should be formatted as a literal
style block scalar.

3.6. Configuration Guide 69

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#caching-facts
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#caching-facts

kayobe Documentation, Release 9.4.1.dev11

kolla_external_fqdn_cacert Path to a CA certificate file to use for the OS_CACERT environ-
ment variable in openrc files when TLS is enabled, instead of Kolla Ansibles default.

The following variables affect TLS encryption of the internal API. Currently this requires all Kolla
images to be built with the APIs root CA trusted.

kolla_enable_tls_internal Whether TLS is enabled for the internal API endpoints. Default
is no.

kolla_internal_tls_cert A TLS certificate bundle to use for the internal API endpoints, if
kolla_enable_tls_internal is true. Note that this should be formatted as a literal
style block scalar.

kolla_internal_fqdn_cacert Path to a CA certificate file to use for the OS_CACERT environ-
ment variable in openrc files when TLS is enabled, instead of Kolla Ansibles default.

Example: enabling TLS for the public API

It is highly recommended to use TLS encryption to secure the public API. Here is an example:

Listing 85: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_enable_tls_external: yes
kolla_external_tls_cert: |

-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

kolla_external_fqdn_cacert: /path/to/ca/certificate/bundle

Example: enabling TLS for the internal API

It is highly recommended to use TLS encryption to secure the internal API. Here is an example:

70 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Listing 86: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_enable_tls_internal: yes
kolla_internal_tls_cert: |

-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

kolla_internal_fqdn_cacert: /path/to/ca/certificate/bundle

Other certificates

In general, Kolla Ansible expects certificates to be in a directory configured via
kolla_certificates_dir, which defaults to a directory named certificates in the
same directory as globals.yml. Kayobe follows this pattern, and will pass files and directories
added to ${KAYOBE_CONFIG_PATH}/kolla/certificates/ through to Kolla Ansible. This
can be useful when enabling backend API TLS encryption, or providing custom CA certificates to
be added to the trust store in containers. It is also possible to use this path to provide certificate
bundles for the external or internal APIs, as an alternative to kolla_external_tls_cert and
kolla_internal_tls_cert.

Note that Ansible will automatically decrypt these files if they are encrypted via Ansible Vault and it has
access to a Vault password.

Example: adding a trusted custom CA certificate to containers

In an environment with a private CA, it may be necessary to add the root CA certificate to the trust store
of containers.

Listing 87: $KAYOBE_CONFIG_PATH

kolla/
certificates/

ca/
private-ca.crt

These files should be PEM-formatted, and have a .crt extension.

Example: adding certificates for backend TLS

Kolla Ansible backend TLS can be used to provide end-to-end encryption of API traffic.

Listing 88: $KAYOBE_CONFIG_PATH

kolla/
certificates/

backend-cert.pem
backend-key.pem

See the Kolla Ansible documentation for how to provide service and/or host-specific certificates and
keys.

3.6. Configuration Guide 71

https://docs.openstack.org/kolla-ansible/victoria/admin/advanced-configuration.html#tls-configuration

kayobe Documentation, Release 9.4.1.dev11

Custom Global Variables

Kolla Ansible uses a single file for global variables, globals.yml. Kayobe provides configuration
variables for all required variables and many of the most commonly used the variables in this file. Some
of these are in $KAYOBE_CONFIG_PATH/kolla.yml, and others are determined from other sources
such as the networking configuration in $KAYOBE_CONFIG_PATH/networks.yml.

Additional global configuration may be provided by creating $KAYOBE_CONFIG_PATH/kolla/
globals.yml. Variables in this file will be templated using Jinja2, and merged with the Kayobe
globals.yml configuration.

Example: use a specific tag for each image

For more fine-grained control over images, Kolla Ansible allows a tag to be defined for each image. For
example, for nova-api:

Listing 89: $KAYOBE_CONFIG_PATH/kolla/globals.
yml

Use a custom tag for the nova-api container image.
nova_api_tag: v1.2.3

Example: debug logging per-service

Enabling debug logging globally can lead to a lot of additional logs being generated. Often we are only
interested in a particular service. For example, to enable debug logging for Nova services:

Listing 90: $KAYOBE_CONFIG_PATH/kolla/globals.
yml

nova_logging_debug: true

Host variables

Kayobe generates a host_vars file for each host in the Kolla Ansible inventory. These contain network
interfaces and other host-specific things.

kolla_seed_inventory_pass_through_host_vars List of names of host variables to
pass through from kayobe hosts to the Kolla Ansible seed host, if set. See also
kolla_seed_inventory_pass_through_host_vars_map. The default is:

kolla_seed_inventory_pass_through_host_vars:
- "ansible_host"
- "ansible_port"
- "ansible_ssh_private_key_file"
- "kolla_api_interface"
- "kolla_bifrost_network_interface"

72 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

kolla_seed_inventory_pass_through_host_vars_map Dict mapping names of vari-
ables in kolla_seed_inventory_pass_through_host_vars to the variable to use in
Kolla Ansible. If a variable name is not in this mapping the kayobe name is used. The default is:

kolla_seed_inventory_pass_through_host_vars_map:
kolla_api_interface: "api_interface"
kolla_bifrost_network_interface: "bifrost_network_interface"

kolla_overcloud_inventory_pass_through_host_vars List of names of host vari-
ables to pass through from Kayobe hosts to Kolla Ansible hosts, if set. See also
kolla_overcloud_inventory_pass_through_host_vars_map. The default is:

kolla_overcloud_inventory_pass_through_host_vars:
- "ansible_host"
- "ansible_port"
- "ansible_ssh_private_key_file"
- "kolla_network_interface"
- "kolla_api_interface"
- "kolla_storage_interface"
- "kolla_cluster_interface"
- "kolla_swift_storage_interface"
- "kolla_swift_replication_interface"
- "kolla_provision_interface"
- "kolla_inspector_dnsmasq_interface"
- "kolla_dns_interface"
- "kolla_tunnel_interface"
- "kolla_external_vip_interface"
- "kolla_neutron_external_interfaces"
- "kolla_neutron_bridge_names"

kolla_overcloud_inventory_pass_through_host_vars_map Dict mapping names of
variables in kolla_overcloud_inventory_pass_through_host_vars to the vari-
able to use in Kolla Ansible. If a variable name is not in this mapping the Kayobe name is used.
The default is:

kolla_overcloud_inventory_pass_through_host_vars_map:
kolla_network_interface: "network_interface"
kolla_api_interface: "api_interface"
kolla_storage_interface: "storage_interface"
kolla_cluster_interface: "cluster_interface"
kolla_swift_storage_interface: "swift_storage_interface"
kolla_swift_replication_interface: "swift_replication_interface"
kolla_provision_interface: "provision_interface"
kolla_inspector_dnsmasq_interface: "ironic_dnsmasq_interface"
kolla_dns_interface: "dns_interface"
kolla_tunnel_interface: "tunnel_interface"
kolla_neutron_external_interfaces: "neutron_external_interface"
kolla_neutron_bridge_names: "neutron_bridge_name"

3.6. Configuration Guide 73

kayobe Documentation, Release 9.4.1.dev11

Custom Group Variables

Group variables can be used to set configuration for all hosts in a group. They can be set in Kolla Ansi-
ble by placing files in ${KAYOBE_CONFIG_PATH}/kolla/inventory/group_vars/*. Since
this directory is copied directly into the Kolla Ansible inventory, Kolla Ansible group names should be
used. It should be noted that extra-vars and host_vars take precedence over group_vars. For
more information on variable precedence see the Ansible documentation.

Example: configure a Nova cell

In Kolla Ansible, Nova cells are configured via group variables. For example, to configure cell0001
the following file could be created:

Listing 91: $KAYOBE_CONFIG_PATH/kolla/inventory/
group_vars/cell0001/all

nova_cell_name: cell0001
nova_cell_novncproxy_group: cell0001-vnc
nova_cell_conductor_group: cell0001-control
nova_cell_compute_group: cell0001-compute

Passwords

Kolla Ansible auto-generates passwords to a file, passwords.yml. Kayobe handles the or-
chestration of this, as well as encryption of the file using an Ansible Vault password specified
in the KAYOBE_VAULT_PASSWORD environment variable, if present. The file is generated to
$KAYOBE_CONFIG_PATH/kolla/passwords.yml, and should be stored along with other Kay-
obe configuration files. This file should not be manually modified.

kolla_ansible_custom_passwords Dictionary containing custom pass-
words to add or override in the Kolla passwords file. Default is {{
kolla_ansible_default_custom_passwords }}, which contains SSH keys for
use by Kolla Ansible and Bifrost.

Configuring Custom Passwords

In order to write additional passwords to passwords.yml, set the kayobe variable
kolla_ansible_custom_passwords in $KAYOBE_CONFIG_PATH/kolla.yml.

Listing 92: $KAYOBE_CONFIG_PATH/kolla.yml

Dictionary containing custom passwords to add or override in the Kolla
passwords file.
kolla_ansible_custom_passwords: >

{{ kolla_ansible_default_custom_passwords |
combine({'my_custom_password': 'correcthorsebatterystaple'}) }}

74 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.openstack.org/kolla-ansible/victoria/reference/compute/nova-cells-guide

kayobe Documentation, Release 9.4.1.dev11

Control Plane Services

Kolla Ansible provides a flexible mechanism for configuring the services that it deploys. Kayobe adds
some commonly required configuration options to the defaults provided by Kolla Ansible, but also al-
lows for the free-form configuration supported by Kolla Ansible. The Kolla Ansible documentation
should be used as a reference.

Enabling Services

Services deployed by Kolla Ansible are enabled via flags.

kolla_enable_<service or feature> There are various flags that can be used to enable fea-
tures. These map to variables named enable_<service or feature> in Kolla Ansible.
The default set of enabled services and features is the same as in Kolla ansible, except that Ironic
is enabled by default in Kayobe.

Example: enabling a service

A common task is enabling a new OpenStack service. This may be done via the kolla_enable_*
flags, for example:

Listing 93: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_enable_swift: true

Note that in some cases additional configuration may be required to successfully deploy a service - check
the Kolla Ansible configuration reference.

Service Configuration

Kolla-ansibles flexible configuration is described in the Kolla Ansible service configuration doc-
umentation. We wont duplicate that here, but essentially it involves creating files under a di-
rectory which for users of kayobe will be $KOLLA_CONFIG_PATH/config. In kayobe, files
in this directory are auto-generated and managed by kayobe. Instead, users should create files
under $KAYOBE_CONFIG_PATH/kolla/config with the same directory structure. These
files will be templated using Jinja2, merged with kayobes own configuration, and written out to
$KOLLA_CONFIG_PATH/config.

The following files, if present, will be templated and provided to Kolla Ansible. All paths are relative
to $KAYOBE_CONFIG_PATH/kolla/config. Note that typically Kolla Ansible does not use the
same wildcard patterns, and has a more restricted set of files that it will process. In some cases, it may
be necessary to inspect the Kolla Ansible configuration tasks to determine which files are supported.

Table 1: Kolla-ansible configuration files

File Purpose
aodh.conf Aodh configuration.
aodh/* Extended Aodh configuration.

continues on next page

3.6. Configuration Guide 75

https://docs.openstack.org/kolla-ansible/victoria/
https://docs.openstack.org/kolla-ansible/victoria/reference
https://docs.openstack.org/kolla-ansible/victoria/admin/advanced-configuration.html#openstack-service-configuration-in-kolla
https://docs.openstack.org/kolla-ansible/victoria/admin/advanced-configuration.html#openstack-service-configuration-in-kolla

kayobe Documentation, Release 9.4.1.dev11

Table 1 – continued from previous page
File Purpose
backup.my.cnf Mariabackup configuration.
barbican.conf Barbican configuration.
barbican/* Extended Barbican configuration.
blazar.conf Blazar configuration.
blazar/* Extended Blazar configuration.
ceilometer.conf Ceilometer configuration.
ceilometer/* Extended Ceilometer configuration.
cinder.conf Cinder configuration.
cinder/* Extended Cinder configuration.
cloudkitty.conf CloudKitty configuration.
cloudkitty/* Extended CloudKitty configuration.
designate.conf Designate configuration.
designate/* Extended Designate configuration.
elasticsearch/* Elasticsearch configuration.
fluentd/filter Fluentd filter configuration.
fluentd/input Fluentd input configuration.
fluentd/output Fluentd output configuration.
galera.cnf MariaDB configuration.
glance.conf Glance configuration.
glance/* Extended Glance configuration.
global.conf Global configuration for all OpenStack services.
gnocchi.conf Gnocchi configuration.
gnocchi/* Extended Gnocchi configuration.
grafana.ini Grafana configuration.
grafana/* Extended Grafana configuration.
haproxy/* Main HAProxy configuration.
haproxy-config/* Modular HAProxy configuration.
heat.conf Heat configuration.
heat/* Extended heat configuration.
horizon/* Extended horizon configuration.
influx* InfluxDB configuration.
ironic-inspector.conf Ironic inspector configuration.
ironic.conf Ironic configuration.
ironic/* Extended ironic configuration.
kafka.server.properties Kafka configuration.
kafka/* Extended Kafka configuration.
keepalived/* Extended keepalived configuration.
keystone.conf Keystone configuration.
keystone/* Extended keystone configuration.
magnum.conf Magnum configuration.
magnum/* Extended magnum configuration.
manila.conf Manila configuration.
manila/* Extended manila configuration.
mariadb/* Extended MariaDB configuration.
masakari.conf Masakari configuration.
masakari/* Extended masakari configuration.
monasca/* Extended Monasca configuration.

continues on next page

76 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Table 1 – continued from previous page
File Purpose
murano.conf Murano configuration.
murano/* Extended murano configuration.
neutron.conf Neutron configuration.
neutron/ml2_conf.ini Neutron ML2 configuration.
neutron/* Extended neutron configuration.
nova.conf Nova configuration.
nova/* Extended nova configuration.
octavia.conf Octavia configuration.
octavia/* Extended Octavia configuration.
prometheus/* Prometheus configuration.
sahara.conf Sahara configuration.
sahara/* Extended sahara configuration.
storm/* Extended Storm configuration.
swift/* Extended swift configuration.
zookeeper.cfg Zookeeper configuration.
zookeeper/* Extended Zookeeper configuration.

Configuring an OpenStack Component

To provide custom configuration to be applied to all glance services, create
$KAYOBE_CONFIG_PATH/kolla/config/glance.conf. For example:

Listing 94: $KAYOBE_CONFIG_PATH/kolla/config/
glance.conf

[DEFAULT]
api_limit_max = 500

Configuring an OpenStack Service

To provide custom configuration for the glance API service, create $KAYOBE_CONFIG_PATH/
kolla/config/glance/glance-api.conf. For example:

3.6. Configuration Guide 77

kayobe Documentation, Release 9.4.1.dev11

Listing 95: $KAYOBE_CONFIG_PATH/kolla/config/
glance/glance-api.conf

[DEFAULT]
api_limit_max = 500

Bifrost

This section covers configuration of the Bifrost service that runs on the seed host. Bifrost configuration
is typically applied in ${KAYOBE_CONFIG_PATH}/bifrost.yml. Consult the Bifrost documen-
tation for further details of Bifrost usage and configuration.

Bifrost installation

Note: This section may be skipped if using an upstream Bifrost container image.

The following options are used if building the Bifrost container image locally.

kolla_bifrost_source_url URL of Bifrost source code repository. Default is https://opendev.
org/openstack/bifrost.

kolla_bifrost_source_version Version (branch, tag, etc.) of Bifrost source code repository.
Default is {{ openstack_branch }}, which is the same as the Kayobe upstream branch
name.

For example, to install Bifrost from a custom git repository:

Listing 96: bifrost.yml

kolla_bifrost_source_url: https://git.example.com/bifrost
kolla_bifrost_source_version: downstream

Overcloud root disk image configuration

Bifrost uses Diskimage builder (DIB) to build a root disk image that is deployed to overcloud hosts when
they are provisioned. The following options configure how this image is built. Consult the Diskimage-
builder documentation for further information on building disk images.

The default configuration builds a CentOS 8 whole disk (partitioned) image with SELinux disabled and
a serial console enabled. Cloud-init is used to process the configuration drive built by Bifrost, rather
than the Bifrost default of simple-init.

kolla_bifrost_dib_os_element DIB base OS element. Default is centos.

kolla_bifrost_dib_os_release DIB image OS release. Default is 8-stream.

kolla_bifrost_dib_elements_default Added in the Train release. Use
kolla_bifrost_dib_elements in earlier releases.

78 Chapter 3. Contents

https://docs.openstack.org/bifrost/victoria/
https://docs.openstack.org/bifrost/victoria/
https://opendev.org/openstack/bifrost
https://opendev.org/openstack/bifrost
https://docs.openstack.org/diskimage-builder/victoria/
https://docs.openstack.org/diskimage-builder/victoria/
https://cloudinit.readthedocs.io/en/latest/
https://docs.openstack.org/diskimage-builder/victoria/elements/simple-init/README

kayobe Documentation, Release 9.4.1.dev11

List of default DIB elements. Default is ["disable-selinux",
"enable-serial-console", "vm"]. The vm element is poorly named, and causes
DIB to build a whole disk image rather than a single partition.

kolla_bifrost_dib_elements_extra Added in the Train release. Use
kolla_bifrost_dib_elements in earlier releases.

List of additional DIB elements. Default is none.

kolla_bifrost_dib_elements List of DIB elements. Default is
a combination of kolla_bifrost_dib_elements_default and
kolla_bifrost_dib_elements_extra.

kolla_bifrost_dib_init_element DIB init element. Default is
cloud-init-datasources.

kolla_bifrost_dib_env_vars_default Added in the Train release. Use
kolla_bifrost_dib_env_vars in earlier releases.

DIB default environment variables. Default is {"DIB_CLOUD_INIT_DATASOURCES":
"ConfigDrive"}.

kolla_bifrost_dib_env_vars_extra Added in the Train release. Use
kolla_bifrost_dib_env_vars in earlier releases.

DIB additional environment variables. Default is none.

kolla_bifrost_dib_env_vars DIB environment variables. Default
is combination of kolla_bifrost_dib_env_vars_default and
kolla_bifrost_dib_env_vars_extra.

kolla_bifrost_dib_packages List of DIB packages to install. Default is to install no extra
packages.

The disk image is built during the deployment of seed services. It is worth noting that currently, the
image will not be rebuilt if it already exists. To force rebuilding the image, it is necessary to remove the
file. On the seed:

docker exec bifrost_deploy rm /httpboot/deployment_image.qcow2

Then on the control host:

(kayobe) $ kayobe seed service deploy

Example: Adding an element

In the following, we extend the list of DIB elements to add the growpart element:

3.6. Configuration Guide 79

kayobe Documentation, Release 9.4.1.dev11

Listing 97: bifrost.yml

kolla_bifrost_dib_elements_extra:
- "growpart"

Example: Building an XFS root filesystem image

By default, DIB will format the image as ext4. In some cases it might be useful to use XFS, for
example when using the overlay Docker storage driver which can reach the maximum number of
hardlinks allowed by ext4.

In DIB, we achieve this by setting the FS_TYPE environment variable to xfs.

Listing 98: bifrost.yml

kolla_bifrost_dib_env_vars_extra:
FS_TYPE: "xfs"

Example: Configuring a development user account

Warning: A development user account should not be used in production.

When debugging a failed deployment, it can sometimes be necessary to allow access to the image via a
preconfigured user account with a known password. This can be achieved via the devuser element.

This example shows how to add the devuser element, and configure a username and password for an
account that has passwordless sudo:

80 Chapter 3. Contents

https://docs.openstack.org/diskimage-builder/victoria/elements/devuser/README

kayobe Documentation, Release 9.4.1.dev11

Listing 99: bifrost.yml

kolla_bifrost_dib_elements_extra:
- "devuser"

kolla_bifrost_dib_env_vars_extra:
DIB_DEV_USER_USERNAME: "devuser"
DIB_DEV_USER_PASSWORD: "correct horse battery staple"
DIB_DEV_USER_PWDLESS_SUDO: "yes"

Alternatively, the dynamic-login element can be used to authorize SSH keys by appending them to the
kernel arguments.

Example: Installing a package

It can be necessary to install additional packages in the root disk image. Rather than needing to write a
custom DIB element, we can use the kolla_bifrost_dib_packages variable. For example, to
install the biosdevname package:

Listing 100: bifrost.yml

kolla_bifrost_dib_packages:
- "biosdevname"

Ironic configuration

The following options configure the Ironic service in the bifrost-deploy container.

kolla_bifrost_enabled_hardware_types List of hardware types to enable for Bifrosts
Ironic. Default is ["ipmi"].

kolla_bifrost_extra_kernel_options List of extra kernel parameters for Bifrosts Ironic
PXE configuration. Default is none.

Ironic Inspector configuration

The following options configure the Ironic Inspector service in the bifrost-deploy container.

kolla_bifrost_inspector_processing_hooks List of of inspector process-
ing plugins. Default is {{ inspector_processing_hooks }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_inspector_port_addition Which MAC addresses to add as ports during
introspection. One of all, active or pxe. Default is {{ inspector_add_ports }},
defined in ${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_inspector_extra_kernel_options List of extra ker-
nel parameters for the inspector default PXE configuration. Default is {{
inspector_extra_kernel_options }}, defined in ${KAYOBE_CONFIG_PATH}/
inspector.yml. When customising this variable, the default extra kernel parameters should
be kept to retain full node inspection capabilities.

3.6. Configuration Guide 81

https://docs.openstack.org/diskimage-builder/victoria/elements/dynamic-login/README
https://docs.openstack.org/ironic/victoria/admin/drivers
https://docs.openstack.org/ironic/victoria/install/advanced.html#appending-kernel-parameters-to-boot-instances

kayobe Documentation, Release 9.4.1.dev11

kolla_bifrost_inspector_rules List of introspection rules for Bifrosts Ironic Inspector ser-
vice. Default is {{ inspector_rules }}, defined in ${KAYOBE_CONFIG_PATH}/
inspector.yml.

kolla_bifrost_inspector_ipmi_username Ironic inspector IPMI username to
set via an introspection rule. Default is {{ ipmi_username }}, defined in
${KAYOBE_CONFIG_PATH}/bmc.yml.

kolla_bifrost_inspector_ipmi_password Ironic inspector IPMI password to
set via an introspection rule. Default is {{ ipmi_password }}, defined in
${KAYOBE_CONFIG_PATH}/bmc.yml.

kolla_bifrost_inspector_lldp_switch_port_interface Ironic inspector network
interface name on which to check for an LLDP switch port description to use as the nodes name.
Default is {{ inspector_lldp_switch_port_interface_default }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_inspector_deploy_kernel Ironic inspector deployment kernel loca-
tion. Default is http://{{ provision_oc_net_name | net_ip }}:8080/ipa.
kernel.

kolla_bifrost_inspector_deploy_ramdisk Ironic inspector deployment ramdisk loca-
tion. Default is http://{{ provision_oc_net_name | net_ip }}:8080/ipa.
initramfs.

kolla_bifrost_inspection_timeout Timeout of hardware inspection on overcloud nodes,
in seconds. Default is {{ inspector_inspection_timeout }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

Ironic Python Agent (IPA) configuration

Note: If building IPA images locally (ipa_build_images is true) this section can be skipped.

The following options configure the source of Ironic Python Agent images used by Bifrost for inspection
and deployment. Consult the Ironic Python Agent documentation for full details.

kolla_bifrost_ipa_kernel_upstream_url URL of Ironic Python Agent (IPA) ker-
nel image. Default is {{ inspector_ipa_kernel_upstream_url }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_ipa_kernel_checksum_url URL of checksum of Ironic Python Agent
(IPA) kernel image. Default is {{ inspector_ipa_kernel_checksum_url }}, de-
fined in ${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_ipa_kernel_checksum_algorithm Algorithm of check-
sum of Ironic Python Agent (IPA) kernel image. Default is {{
inspector_ipa_kernel_checksum_algorithm }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_ipa_ramdisk_upstream_url URL of Ironic Python Agent (IPA) ramdisk
image. Default is {{ inspector_ipa_ramdisk_upstream_url }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

82 Chapter 3. Contents

https://docs.openstack.org/ironic-python-agent/victoria/

kayobe Documentation, Release 9.4.1.dev11

kolla_bifrost_ipa_ramdisk_checksum_url URL of checksum of Ironic Python Agent
(IPA) ramdisk image. Default is {{ inspector_ipa_ramdisk_checksum_url }}, de-
fined in ${KAYOBE_CONFIG_PATH}/inspector.yml.

kolla_bifrost_ipa_ramdisk_checksum_algorithm Algorithm of check-
sum of Ironic Python Agent (IPA) ramdisk image. Default is {{
inspector_ipa_ramdisk_checksum_algorithm }}, defined in
${KAYOBE_CONFIG_PATH}/inspector.yml.

Inventory configuration

Note: This feature is currently not well tested. It is advisable to use autodiscovery of overcloud servers
instead.

The following options are used to configure a static inventory of servers for Bifrost.

kolla_bifrost_servers

Server inventory for Bifrost in the JSON file format.

Custom Configuration

Further configuration of arbitrary Ansible variables for Bifrost can be provided via the following files:

• ${KAYOBE_CONFIG_PATH}/kolla/config/bifrost/bifrost.yml

• ${KAYOBE_CONFIG_PATH}/kolla/config/bifrost/dib.yml

These are both passed as extra variables files to ansible-playbook, but the naming scheme provides
a separation of DIB image related variables from other variables. It may be necessary to inspect the
Bifrost source code for the full set of variables that may be configured.

For example, to configure debug logging for Ironic Inspector:

Listing 101: kolla/config/bifrost/bifrost.yml

inspector_debug: true

Ironic Python Agent (IPA)

This section covers configuration of Ironic Python Agent (IPA) which is used by Ironic and Ironic
Inspector to deploy and inspect bare metal nodes. This is used by the Bifrost services that run on the
seed host, and also by Ironic and Ironic Inspector services running in the overcloud for bare metal
compute, if enabled (kolla_enable_ironic is true). IPA configuration is typically applied in
${KAYOBE_CONFIG_PATH}/ipa.yml. Consult the IPA documentation for full details of IPA usage
and configuration.

3.6. Configuration Guide 83

https://docs.openstack.org/bifrost/victoria/user/howto#json-file-format
https://opendev.org/openstack/bifrost
https://docs.openstack.org/ironic-python-agent/victoria/

kayobe Documentation, Release 9.4.1.dev11

Ironic Python Agent (IPA) image build configuration

Note: This section may be skipped if not building IPA images locally (ipa_build_images is
false).

The following options cover building of IPA images via Diskimage-builder (DIB). Consult the
Diskimage-builder documentation for full details.

The default configuration builds a CentOS 8 ramdisk image which includes the upstream IPA source
code, and has a serial console enabled.

The images are built for Bifrost via kayobe seed deployment image build, and for Ironic
in the overcloud (if enabled) via kayobe overcloud deployment image build.

ipa_build_images Whether to build IPA images from source. Default is False.

ipa_build_source_url URL of IPA source repository. Default is https://opendev.org/openstack/
ironic-python-agent

ipa_build_source_version Version of IPA source repository. Default is {{
openstack_branch }}.

ipa_builder_source_url URL of IPA builder source repository. Default is https://opendev.org/
openstack/ironic-python-agent-builder

ipa_builder_source_version Version of IPA builder source repository. Default is master.

ipa_build_dib_elements_default List of default Diskimage Builder (DIB) elements to
use when building IPA images. Default is ["centos", "enable-serial-console",
"ironic-python-agent-ramdisk"].

ipa_build_dib_elements_extra List of additional Diskimage Builder (DIB) elements to use
when building IPA images. Default is empty.

ipa_build_dib_elements List of Diskimage Builder (DIB) elements to use when build-
ing IPA images. Default is combination of ipa_build_dib_elements_default and
ipa_build_dib_elements_extra.

ipa_build_dib_env_default Dictionary of default environment variables to provide to
Diskimage Builder (DIB) during IPA image build. Default is {"DIB_RELEASE":
"8-stream", "DIB_REPOLOCATION_ironic_python_agent": "{{
ipa_build_source_url }}", "DIB_REPOREF_ironic_python_agent":
"{{ ipa_build_source_version }}", "DIB_REPOREF_requirements":
"{{ openstack_branch }}"}.

ipa_build_dib_env_extra Dictionary of additional environment variables to provide to
Diskimage Builder (DIB) during IPA image build. Default is empty.

ipa_build_dib_env Dictionary of environment variables to provide to Diskimage Builder (DIB)
during IPA image build. Default is a combination of ipa_build_dib_env_default and
ipa_build_dib_env_extra.

ipa_build_dib_git_elements_default List of default git repositories containing Diskim-
age Builder (DIB) elements. See stackhpc.os-images role for usage. Default is one item for IPA
builder.

84 Chapter 3. Contents

https://docs.openstack.org/diskimage-builder/victoria/
https://opendev.org/openstack/ironic-python-agent
https://opendev.org/openstack/ironic-python-agent
https://opendev.org/openstack/ironic-python-agent-builder
https://opendev.org/openstack/ironic-python-agent-builder
https://galaxy.ansible.com/stackhpc/os-images

kayobe Documentation, Release 9.4.1.dev11

ipa_build_dib_git_elements_extra List of additional git repositories containing Diskim-
age Builder (DIB) elements. See stackhpc.os-images role for usage. Default is none.

ipa_build_dib_git_elements List of git repositories containing Diskim-
age Builder (DIB) elements. See stackhpc.os-images role for usage. De-
fault is combination of ipa_build_dib_git_elements_default and
ipa_build_dib_git_elements_extra.

ipa_build_dib_packages List of DIB packages to install. Default is none.

ipa_build_upper_constraints_file Upper constraints file for installing packages in the vir-
tual environment used for building IPA images. To build CentOS Stream 8 images, default is
https://releases.openstack.org/constraints/upper/wallaby.

Example: Building IPA images locally

To build IPA images locally:

Listing 102: ipa.yml

ipa_build_images: true

Example: Installing IPA from a custom git repository

To install IPA from a custom git repository:

Listing 103: ipa.yml

ipa_source_url: https://git.example.com/ironic-python-agent
ipa_source_version: downstream

Example: Adding an element

In the following example, we extend the list of DIB elements to add the mellanox element, which can
be useful for inspecting hardware with Mellanox InfiniBand NICs.

3.6. Configuration Guide 85

https://galaxy.ansible.com/stackhpc/os-images
https://galaxy.ansible.com/stackhpc/os-images
https://docs.openstack.org/diskimage-builder/victoria/elements/mellanox/README

kayobe Documentation, Release 9.4.1.dev11

Listing 104: ipa.yml

ipa_build_dib_elements_extra:
- "mellanox"

Example: Configuring a development user account

Warning: A development user account should not be used in production.

When debugging a failed deployment, it can sometimes be necessary to allow access to the image via a
preconfigured user account with a known password. This can be achieved via the devuser element.

This example shows how to add the devuser element, and configure a username and password for an
account that has passwordless sudo:

Listing 105: ipa.yml

ipa_build_dib_elements_extra:
- "devuser"

ipa_build_dib_env_extra:
DIB_DEV_USER_USERNAME: "devuser"
DIB_DEV_USER_PASSWORD: "correct horse battery staple"
DIB_DEV_USER_PWDLESS_SUDO: "yes"

Alternatively, the dynamic-login element can be used to authorize SSH keys by appending them to the
kernel arguments.

Further information on troubleshooting IPA can be found here.

Example: Configuring custom DIB elements

Sometimes it is useful to use custom DIB elements that are not shipped with DIB itself. This can be
done by sharing them in a git repository.

Listing 106: ipa.yml

ipa_build_dib_elements_extra:
- "my-element"

ipa_build_dib_git_elements:
- repo: "https://git.example.com/custom-dib-elements"

local: "{{ source_checkout_path }}/custom-dib-elements"
version: "master"
elements_path: "elements"

In this example the master branch of https://git.example.com/custom-dib-elements would have a top
level elements directory, containing a my-element directory for the element.

86 Chapter 3. Contents

https://docs.openstack.org/diskimage-builder/victoria/elements/devuser/README
https://docs.openstack.org/diskimage-builder/victoria/elements/dynamic-login/README
https://docs.openstack.org/ironic-python-agent/victoria/admin/troubleshooting
https://git.example.com/custom-dib-elements

kayobe Documentation, Release 9.4.1.dev11

Example: Installing a package

It can be necessary to install additional packages in the IPA image. Rather than needing to write a
custom DIB element, we can use the ipa_build_dib_packages variable. For example, to install
the biosdevname package:

Listing 107: ipa.yml

ipa_build_dib_packages:
- "biosdevname"

Ironic Python Agent (IPA) images configuration

Note: If building IPA images locally (ipa_build_images is true) this section can be skipped.

The following options configure the source of Ironic Python Agent images for inspection and deploy-
ment. Consult the Ironic Python Agent documentation for full details.

ipa_images_upstream_url_suffix Suffix of upstream Ironic deployment image files. Default
is based on {{ openstack_branch }}.

ipa_images_kernel_name Name of Ironic deployment kernel image to register in Glance. De-
fault is ipa.kernel.

ipa_kernel_upstream_url URL of Ironic deployment kernel image to download. Default
is https://tarballs.openstack.org/ironic-python-agent/dib/files/
ipa-centos8{{ ipa_images_upstream_url_suffix }}.kernel.

ipa_kernel_checksum_url URL of checksum of Ironic deployment kernel image. Default is {{
ipa_kernel_upstream_url }}.{{ ipa_kernel_checksum_algorithm }}.

ipa_kernel_checksum_algorithm Algorithm of checksum of Ironic deployment kernel image.
Default is sha256.

ipa_images_ramdisk_name Name of Ironic deployment ramdisk image to register in Glance.
Default is ipa.initramfs.

ipa_ramdisk_upstream_url URL of Ironic deployment ramdisk image to download. Default
is https://tarballs.openstack.org/ironic-python-agent/dib/files/
ipa-centos8{{ ipa_images_upstream_url_suffix }}.initramfs.

ipa_ramdisk_checksum_url URL of checksum of Ironic deployment ramdisk image. Default is
{{ ipa_ramdisk_upstream_url }}.{{ ipa_ramdisk_checksum_algorithm
}}.

ipa_ramdisk_checksum_algorithm Algorithm of checksum of Ironic deployment ramdisk
image. Default is sha256.

3.6. Configuration Guide 87

https://docs.openstack.org/ironic-python-agent/victoria/

kayobe Documentation, Release 9.4.1.dev11

Ironic Python Agent (IPA) deployment configuration

The following options configure how IPA operates during deployment and inspection.

ipa_collect_lldp Whether to enable collection of LLDP TLVs. Default is True.

ipa_collectors_default

Note: extra-hardware is not currently included as it requires a ramdisk with the hardware
python module installed.

List of default inspection collectors to run. Default is ["default", "logs",
"pci-devices"].

ipa_collectors_extra List of additional inspection collectors to run. Default is none.

ipa_collectors List of inspection collectors to run. Default is a combination of
ipa_collectors_default and ipa_collectors_extra.

ipa_benchmarks_default List of default inspection benchmarks to run. Default is ["cpu",
"disk", "ram"].

ipa_benchmarks_extra List of extra inspection benchmarks to run. Default is none.

ipa_benchmarks

Note: The extra-hardware collector must be enabled in order to execute benchmarks during
inspection.

List of inspection benchmarks to run. Default is a combination of
ipa_benchmarks_default and ipa_benchmarks_extra.

ipa_kernel_options_default List of default kernel parameters for Ironic python
agent. Default includes ipa-collect-lldp, ipa-inspection-collectors and
ipa-inspection-benchmarks, with arguments taken from ipa_collect_lldp,
ipa_collectors and ipa_benchmarks.

ipa_kernel_options_extra List of additional kernel parameters for Ironic python agent. De-
fault is none.

ipa_kernel_options List of kernel parameters for Ironic python agent. Default is a combination
of ipa_kernel_options_default and ipa_kernel_options_extra.

Example: Adding the extra-hardware collector

The extra-hardware collector may be used to collect additional information about hardware during
inspection. It is also a requirement for running benchmarks. This collector depends on the Python
hardware package, which is not installed in IPA images by default.

The following example enables the extra-hardware collector:

88 Chapter 3. Contents

https://pypi.org/project/hardware/

kayobe Documentation, Release 9.4.1.dev11

Listing 108: ipa.yml

ipa_collectors_extra:
- "extra-hardware"

The ironic-python-agent-builder repository provides an extra-hardware element which may
be used to install this package. It may be used as follows if building an IPA image locally:

Listing 109: ipa.yml

ipa_build_dib_elements_extra:
- "extra-hardware"

Example: Passing additional kernel arguments to IPA

The following example shows how to pass additional kernel arguments to IPA:

Listing 110: ipa.yml

ipa_kernel_options_extra:
- "foo=bar"

Docker registry

This section covers configuration of the Docker registry that may be deployed, by default on the
seed host. Docker registry configuration is typically applied in ${KAYOBE_CONFIG_PATH}/
docker-registry.yml. Consult the Docker registry documentation for further details of registry
usage and configuration.

The registry is deployed during the kayobe seed host configure command.

Configuring the registry

docker_registry_enabled Whether a docker registry is enabled. Default is false. When set
to true, the Docker registry is deployed on all hosts in the docker-registry group. By
default this includes the seed host.

docker_registry_env Dict of environment variables to provide to the docker registry container.
This allows to configure the registry by overriding specific configuration options, as described
at https://docs.docker.com/registry/configuration/ For example, the registry can be configured as
a pull through cache to Docker Hub by setting REGISTRY_PROXY_REMOTEURL to https:
//registry-1.docker.io. Note that it is not possible to push to a registry configured as a pull through
cache. Default is {}.

docker_registry_port The port on which the docker registry server should listen. Default is
4000.

docker_registry_datadir_volume Name or path to use as the volume for the docker registry.
Default is docker_registry.

3.6. Configuration Guide 89

https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html#ironic-python-agent-ipa-extra-hardware
https://docs.docker.com/registry/
https://docs.docker.com/registry/configuration/
https://registry-1.docker.io
https://registry-1.docker.io

kayobe Documentation, Release 9.4.1.dev11

TLS

It is recommended to enable TLS for the registry.

docker_registry_enable_tls Whether to enable TLS for the registry. Default is false.

docker_registry_cert_path Path to a TLS certificate to use when TLS is enabled. Default is
none.

docker_registry_key_path Path to a TLS key to use when TLS is enabled. Default is none.

For example, the certificate and key could be stored with the Kayobe configuration, under
${KAYOBE_CONFIG_PATH}/docker-registry/. These files may be encrypted via Ansible
Vault.

Listing 111: docker-registry.yml

docker_registry_enable_tls: true
docker_registry_cert_path: "{{ kayobe_config_path }}/docker-registry/cert.
↪→pem"
docker_registry_key_path: "{{ kayobe_config_path }}/docker-registry/key.pem
↪→"

Basic authentication

It is recommended to enable HTTP basic authentication for the registry. This needs to be done in
conjunction with enabling TLS for the registry: using basic authentication over unencrypted HTTP is
not supported.

docker_registry_enable_basic_auth Whether to enable basic authentication for the reg-
istry. Default is false.

docker_registry_basic_auth_htpasswd_path Path to a htpasswd formatted password
store for the registry. Default is none.

The password store uses a htpasswd format. The following example shows how to generate a pass-
word and add it to the kolla user in the password store. The password store may be stored with the
Kayobe configuration, under ${KAYOBE_CONFIG_PATH}/docker-registry/. The file may be
encrypted via Ansible Vault.

uuidgen | tr -d '\n' > registry-password
cat registry-password | docker run --rm -i --entrypoint htpasswd
↪→httpd:latest -niB kolla > $KAYOBE_CONFIG_PATH/docker-registry/htpasswd

Next we configure Kayobe to enable basic authentication for the registry, and specify the path to the
password store.

90 Chapter 3. Contents

https://docs.docker.com/registry/deploying/#native-basic-auth
https://docs.docker.com/registry/deploying/#native-basic-auth
https://httpd.apache.org/docs/2.4/programs/htpasswd.html

kayobe Documentation, Release 9.4.1.dev11

Listing 112: docker-registry.yml

docker_registry_enable_basic_auth: true
docker_registry_basic_auth_htpasswd_path: "{{ kayobe_config_path }}/docker-
↪→registry/htpasswd"

Using the registry

Enabling the registry does not automatically set the configuration for Docker engine to use it. This
should be done via the docker_registry variable.

TLS

If the registry is using a privately signed TLS certificate, it is necessary to configure Docker engine with
the CA certificate.

If TLS is enabled, Docker engine should be configured to use HTTPS to communicate with it:

Listing 113: kolla/globals.yml

docker_registry_insecure: false

Basic authentication

If basic authentication is enabled, Kolla Ansible needs to be configured with the username and password.

Listing 114: kolla.yml

kolla_docker_registry_username: <registry username>
kolla_docker_registry_password: <registry password>

Seed custom containers

This section covers configuration of the user-defined containers deployment functionality that runs on
the seed host.

Configuration

For example, to deploy a squid container image:

Listing 115: seed.yml

seed_containers:
squid:

image: "stackhpc/squid:3.5.20-1"
pre: "{{ kayobe_config_path }}/containers/squid/pre.yml"
post: "{{ kayobe_config_path }}/containers/squid/post.yml"

3.6. Configuration Guide 91

kayobe Documentation, Release 9.4.1.dev11

Please notice the optional pre and post Ansible task files - those need to be created in kayobe-config
path and will be run before and after particular container deployment.

Possible options for container deployment:

seed_containers:
containerA:

capabilities:
command:
comparisons:
detach:
env:
network_mode:
image:
init:
ipc_mode:
pid_mode:
ports:
privileged:
restart_policy:
sysctls:
tag:
ulimits:
user:
volumes:

For a detailed explanation of each option - please see Ansible docker_container module page.

List of Kayobe applied defaults to required docker_container variables:

deploy_containers_defaults:

comparisons:
image: strict
env: strict
volumes: strict

detach: True
network_mode: "host"
init: True
privileged: False
restart_policy: "unless-stopped"

deploy_containers_docker_api_timeout: 120

Nova cells

In the Train release, Kolla Ansible gained full support for the Nova cells v2 scale out feature. Whilst
configuring Nova cells is documented in Kolla Ansible, implementing that configuration in Kayobe is
documented here.

In Kolla Ansible, Nova cells are configured via group variables. In Kayobe, these group variables can be
set via Kayobe configuration. For example, to configure cell0001 the following file could be created:

92 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/modules/docker_container_module.html
https://docs.openstack.org/kolla-ansible/victoria/reference/compute/nova-cells-guide
https://docs.openstack.org/kolla-ansible/victoria/reference/compute/nova-cells-guide#groups

kayobe Documentation, Release 9.4.1.dev11

Listing 116: $KAYOBE_CONFIG_PATH/kolla/
inventory/group_vars/cell0001/all

nova_cell_name: cell0001
nova_cell_novncproxy_group: cell0001-vnc
nova_cell_conductor_group: cell0001-control
nova_cell_compute_group: cell0001-compute

After defining the cell group_vars the Kayobe inventory can be configured. In Kayobe, cell con-
trollers and cell compute hosts become part of the existing controllers and compute Kayobe
groups because typically they will need to be provisioned in the same way. In Kolla Ansible, to prevent
non-cell services being mapped to cell controllers, the controllers group must be split into two.
The inventory file should also include the cell definitions. The following groups and hosts files give an
example of how this may be achieved:

Listing 117: $KAYOBE_CONFIG_PATH/inventory/
groups

Kayobe groups inventory file. This file should generally not be
↪→modified.
If declares the top-level groups and sub-groups.

##
↪→#####
Seed groups.

[seed]
Empty group to provide declaration of seed group.

[seed-hypervisor]
Empty group to provide declaration of seed-hypervisor group.

[container-image-builders:children]
Build container images on the seed by default.
seed

##
↪→#####
Overcloud groups.

[controllers]
Empty group to provide declaration of controllers group.

[network:children]
Add controllers to network group by default for backwards compatibility,
although they could be separate hosts.
top-level-controllers

[monitoring]
Empty group to provide declaration of monitoring group.

[storage]
Empty group to provide declaration of storage group.

(continues on next page)

3.6. Configuration Guide 93

kayobe Documentation, Release 9.4.1.dev11

(continued from previous page)

[compute]
Empty group to provide declaration of compute group.

Empty group to provide declaration of top-level controllers.
[top-level-controllers]

[overcloud:children]
controllers
network
monitoring
storage
compute

##
↪→#####
Docker groups.

[docker:children]
Hosts in this group will have Docker installed.
seed
controllers
network
monitoring
storage
compute

[docker-registry:children]
Hosts in this group will have a Docker Registry deployed. This group
↪→should
generally contain only a single host, to avoid deploying multiple
↪→independent
registries which may become unsynchronized.
seed

##
↪→#####
Baremetal compute node groups.

[baremetal-compute]
Empty group to provide declaration of baremetal-compute group.

##
↪→#####
Networking groups.

[mgmt-switches]
Empty group to provide declaration of mgmt-switches group.

[ctl-switches]
Empty group to provide declaration of ctl-switches group.

[hs-switches]
Empty group to provide declaration of hs-switches group.

[switches:children]
mgmt-switches

(continues on next page)

94 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

(continued from previous page)

ctl-switches
hs-switches

Listing 118: $KAYOBE_CONFIG_PATH/inventory/hosts

Kayobe hosts inventory file. This file should be modified to define the
↪→hosts
and their top-level group membership.

This host acts as the configuration management Ansible control host.
↪→This must be
localhost.
localhost ansible_connection=local

[seed-hypervisor]
Add a seed hypervisor node here if required. This host will run a seed
↪→node
Virtual Machine.

[seed]
operator

[controllers:children]
top-level-controllers
cell-controllers

[top-level-controllers]
control01

[cell-controllers:children]
cell01-control
cell02-control

[compute:children]
cell01-compute
cell02-compute

[cell01:children]
cell01-control
cell01-compute
cell01-vnc

[cell01-control]
control02

[cell01-vnc]
control02

[cell01-compute]
compute01

[cell02:children]
cell02-control
cell02-compute
cell02-vnc

(continues on next page)

3.6. Configuration Guide 95

kayobe Documentation, Release 9.4.1.dev11

(continued from previous page)

[cell02-control]
control03

[cell02-vnc]
control03

[cell02-compute]
compute02
compute03

##################################

[mgmt-switches]
Add management network switches here if required.

[ctl-switches]
Add control and provisioning switches here if required.

[hs-switches]
Add high speed switches here if required.

Having configured the Kayobe inventory, the Kolla Ansible inventory can be configured. Currently this
can be done via the kolla_overcloud_inventory_top_level_group_map variable. For
example, to configure the two cells defined in the Kayobe inventory above, the variable could be set to
the following:

Listing 119: $KAYOBE_CONFIG_PATH/kolla.yml

kolla_overcloud_inventory_top_level_group_map:
control:

groups:
- top-level-controllers

network:
groups:

- network
compute:

groups:
- compute

monitoring:
groups:

- monitoring
cell-control:

groups:
- cell-controllers

cell0001:
groups:

- cell01
cell0001-control:

groups:
- cell01-control

cell0001-compute:
groups:

- cell01-compute
cell0001-vnc:

(continues on next page)

96 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

(continued from previous page)

groups:
- cell01-vnc

cell0002:
groups:

- cell02
cell0002-control:

groups:
- cell02-control

cell0002-compute:
groups:

- cell02-compute
cell0002-vnc:

groups:
- cell02-vnc

Finally, Nova cells can be enabled in Kolla Ansible:

Listing 120: $KAYOBE_CONFIG_PATH/kolla/globals.
yml

enable_cells: True

3.7 Deployment

This section describes usage of Kayobe to install an OpenStack cloud onto a set of bare metal servers.
We assume access is available to a node which will act as the hypervisor hosting the seed node in a VM.
We also assume that this seed hypervisor has access to the bare metal nodes that will form the OpenStack
control plane. Finally, we assume that the control plane nodes have access to the bare metal nodes that
will form the workload node pool.

See also:

Information on the configuration of a Kayobe environment is available here.

3.7.1 Ansible Control Host

Before starting deployment we must bootstrap the Ansible control host. Tasks performed here include:

• Install Ansible and role dependencies from Ansible Galaxy.

• Generate an SSH key if necessary and add it to the current users authorised keys.

• Install Kolla Ansible locally at the configured version.

To bootstrap the Ansible control host:

(kayobe) $ kayobe control host bootstrap

3.7. Deployment 97

kayobe Documentation, Release 9.4.1.dev11

3.7.2 Physical Network

The physical network can be managed by Kayobe, which uses Ansibles network modules. Currently
Dell Network OS 6 and Dell Network OS 9 switches are supported but this could easily be extended. To
provision the physical network:

(kayobe) $ kayobe physical network configure --group <group> [--enable-
↪→discovery]

The --group argument is used to specify an Ansible group containing the switches to be configured.

The --enable-discovery argument enables a one-time configuration of ports attached to
baremetal compute nodes to support hardware discovery via ironic inspector.

It is possible to limit the switch interfaces that will be configured, either by interface name or interface
description:

(kayobe) $ kayobe physical network configure --group <group> --interface-
↪→limit <interface names>
(kayobe) $ kayobe physical network configure --group <group> --interface-
↪→description-limit <interface descriptions>

The names or descriptions should be separated by commas. This may be useful when adding compute
nodes to an existing deployment, in order to avoid changing the configuration interfaces in use by active
nodes.

The --display argument will display the candidate switch configuration, without actually applying
it.

See also:

Information on configuration of physical network devices is available here.

3.7.3 Seed Hypervisor

Note: It is not necessary to run the seed services in a VM. To use an existing bare metal host or a VM
provisioned outside of Kayobe, this section may be skipped.

Host Configuration

To configure the seed hypervisors host OS, and the Libvirt/KVM virtualisation support:

(kayobe) $ kayobe seed hypervisor host configure

See also:

Information on configuration of hosts is available here.

98 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

3.7.4 Seed

VM Provisioning

Note: It is not necessary to run the seed services in a VM. To use an existing bare metal host or a VM
provisioned outside of Kayobe, this step may be skipped. Ensure that the Ansible inventory contains a
host for the seed.

The seed hypervisor should have CentOS and libvirt installed. It should have libvirt networks
configured for all networks that the seed VM needs access to and a libvirt storage pool available for
the seed VMs volumes. To provision the seed VM:

(kayobe) $ kayobe seed vm provision

When this command has completed the seed VM should be active and accessible via SSH. Kayobe will
update the Ansible inventory with the IP address of the VM.

Host Configuration

To configure the seed host OS:

(kayobe) $ kayobe seed host configure

Note: If the seed host uses disks that have been in use in a previous installation, it may be necessary
to wipe partition and LVM data from those disks. To wipe all disks that are not mounted during host
configuration:

(kayobe) $ kayobe seed host configure --wipe-disks

See also:

Information on configuration of hosts is available here.

Building Container Images

Note: It is possible to use prebuilt container images from an image registry such as Dockerhub. In this
case, this step can be skipped.

It is possible to use prebuilt container images from an image registry such as Dockerhub. In some
cases it may be necessary to build images locally either to apply local image customisation or to use a
downstream version of kolla. Images are built by hosts in the container-image-builders group,
which by default includes the seed.

To build container images:

(kayobe) $ kayobe seed container image build

3.7. Deployment 99

kayobe Documentation, Release 9.4.1.dev11

It is possible to build a specific set of images by supplying one or more image name regular expressions:

(kayobe) $ kayobe seed container image build bifrost-deploy

In order to push images to a registry after they are built, add the --push argument.

See also:

Information on configuration of Kolla for building container images is available here.

Deploying Containerised Services

At this point the seed services need to be deployed on the seed VM. These services are deployed in the
bifrost_deploy container.

This command will also build the Operating System image that will be used to deploy the overcloud
nodes using Disk Image Builder (DIB).

To deploy the seed services in containers:

(kayobe) $ kayobe seed service deploy

After this command has completed the seed services will be active.

See also:

Information on configuration of Kolla Ansible is available here. See here for information about con-
figuring Bifrost. Overcloud root disk image configuration provides information on configuring the root
disk image build process. See here for information about deploying additional, custom containers on
seed node.

Building Deployment Images

Note: It is possible to use prebuilt deployment images. In this case, this step can be skipped.

It is possible to use prebuilt deployment images from the OpenStack hosted tarballs or another source.
In some cases it may be necessary to build images locally either to apply local image customisa-
tion or to use a downstream version of Ironic Python Agent (IPA). In order to build IPA images, the
ipa_build_images variable should be set to True.

To build images locally:

(kayobe) $ kayobe seed deployment image build

If images have been built previously, they will not be rebuilt. To force rebuilding images, use the
--force-rebuild argument.

See also:

See here for information on how to configure the IPA image build process.

100 Chapter 3. Contents

https://tarballs.openstack.org/ironic-python-agent

kayobe Documentation, Release 9.4.1.dev11

Accessing the Seed via SSH (Optional)

For SSH access to the seed, first determine the seeds IP address. We can use the kayobe
configuration dump command to inspect the seeds IP address:

(kayobe) $ kayobe configuration dump --host seed --var-name ansible_host

The kayobe_ansible_user variable determines which user account will be used by Kayobe when
accessing the machine via SSH. By default this is stack. Use this user to access the seed:

$ ssh <kayobe ansible user>@<seed VM IP>

To see the active Docker containers:

$ docker ps

Leave the seed VM and return to the shell on the Ansible control host:

$ exit

3.7.5 Overcloud

Discovery

Note: If discovery of the overcloud is not possible, a static inventory of servers using the bifrost
servers.yml file format may be configured using the kolla_bifrost_servers variable in
${KAYOBE_CONFIG_PATH}/bifrost.yml.

Discovery of the overcloud is supported by the ironic inspector service running in the
bifrost_deploy container on the seed. The service is configured to PXE boot unrecognised MAC
addresses with an IPA ramdisk for introspection. If an introspected node does not exist in the ironic
inventory, ironic inspector will create a new entry for it.

Discovery of the overcloud is triggered by causing the nodes to PXE boot using a NIC attached to the
overcloud provisioning network. For many servers this will be the factory default and can be performed
by powering them on.

On completion of the discovery process, the overcloud nodes should be registered with the ironic service
running in the seed hosts bifrost_deploy container. The node inventory can be viewed by executing
the following on the seed:

$ docker exec -it bifrost_deploy bash
(bifrost_deploy) $ export OS_CLOUD=bifrost
(bifrost_deploy) $ baremetal node list

In order to interact with these nodes using Kayobe, run the following command to add them to the
Kayobe and Kolla-Ansible inventories:

(kayobe) $ kayobe overcloud inventory discover

See also:

3.7. Deployment 101

kayobe Documentation, Release 9.4.1.dev11

This blog post provides a case study of the discovery process, including automatically naming Ironic
nodes via switch port descriptions, Ironic Inspector and LLDP.

Saving Hardware Introspection Data

If ironic inspector is in use on the seed host, introspection data will be stored in the local nginx service.
This data may be saved to the control host:

(kayobe) $ kayobe overcloud introspection data save

--output-dir may be used to specify the directory in which introspection data files will be saved.
--output-format may be used to set the format of the files.

BIOS and RAID Configuration

Note: BIOS and RAID configuration may require one or more power cycles of the hardware to complete
the operation. These will be performed automatically.

Note: Currently, BIOS and RAID configuration of overcloud hosts is supported for Dell servers only.

Configuration of BIOS settings and RAID volumes is currently performed out of band as a separate task
from hardware provisioning. To configure the BIOS and RAID:

(kayobe) $ kayobe overcloud bios raid configure

After configuring the nodes RAID volumes it may be necessary to perform hardware inspection of the
nodes to reconfigure the ironic nodes scheduling properties and root device hints. To perform manual
hardware inspection:

(kayobe) $ kayobe overcloud hardware inspect

There are currently a few limitations to configuring BIOS and RAID:

• The Ansible control host must be able to access the BMCs of the servers being configured.

• The Ansible control host must have the python-dracclient Python module available to
the Python interpreter used by Ansible. The path to the Python interpreter is configured via
ansible_python_interpreter.

Provisioning

Note: There is a cloud-init issue which prevents Ironic nodes without names from being accessed via
SSH after provisioning. To avoid this issue, ensure that all Ironic nodes in the Bifrost inventory are
named. This may be achieved via autodiscovery, or manually, e.g. from the seed:

102 Chapter 3. Contents

https://www.stackhpc.com/ironic-idrac-ztp.html
https://storyboard.openstack.org/#!/story/2006832

kayobe Documentation, Release 9.4.1.dev11

$ docker exec -it bifrost_deploy bash
(bifrost_deploy) $ export OS_CLOUD=bifrost
(bifrost_deploy) $ baremetal node set ee77b4ca-8860-4003-a18f-b00d01295bda
↪→--name controller0

Provisioning of the overcloud is performed by the ironic service running in the bifrost container on the
seed. To provision the overcloud nodes:

(kayobe) $ kayobe overcloud provision

After this command has completed the overcloud nodes should have been provisioned with an OS image.
The command will wait for the nodes to become active in ironic and accessible via SSH.

Host Configuration

To configure the overcloud hosts OS:

(kayobe) $ kayobe overcloud host configure

Note: If the controller hosts use disks that have been in use in a previous installation, it may be
necessary to wipe partition and LVM data from those disks. To wipe all disks that are not mounted
during host configuration:

(kayobe) $ kayobe overcloud host configure --wipe-disks

See also:

Information on configuration of hosts is available here.

Building Container Images

Note: It is possible to use prebuilt container images from an image registry such as Dockerhub. In this
case, this step can be skipped.

In some cases it may be necessary to build images locally either to apply local image customisation or to
use a downstream version of kolla. Images are built by hosts in the container-image-builders
group, which by default includes the seed. If no seed host is in use, for example in an all-in-one
controller development environment, this group may be modified to cause containers to be built on the
controllers.

To build container images:

(kayobe) $ kayobe overcloud container image build

It is possible to build a specific set of images by supplying one or more image name regular expressions:

(kayobe) $ kayobe overcloud container image build ironic- nova-api

3.7. Deployment 103

kayobe Documentation, Release 9.4.1.dev11

In order to push images to a registry after they are built, add the --push argument.

See also:

Information on configuration of Kolla for building container images is available here.

Pulling Container Images

Note: It is possible to build container images locally avoiding the need for an image registry such as
Dockerhub. In this case, this step can be skipped.

In most cases suitable prebuilt kolla images will be available on Dockerhub. The kolla account provides
image repositories suitable for use with kayobe and will be used by default. To pull images from the
configured image registry:

(kayobe) $ kayobe overcloud container image pull

Building Deployment Images

Note: It is possible to use prebuilt deployment images. In this case, this step can be skipped.

Note: Deployment images are only required for the overcloud when Ironic is in use. Otherwise, this
step can be skipped.

It is possible to use prebuilt deployment images from the OpenStack hosted tarballs or another source.
In some cases it may be necessary to build images locally either to apply local image customisa-
tion or to use a downstream version of Ironic Python Agent (IPA). In order to build IPA images, the
ipa_build_images variable should be set to True.

To build images locally:

(kayobe) $ kayobe overcloud deployment image build

If images have been built previously, they will not be rebuilt. To force rebuilding images, use the
--force-rebuild argument.

See also:

See here for information on how to configure the IPA image build process.

104 Chapter 3. Contents

https://hub.docker.com/u/kolla
https://tarballs.openstack.org/ironic-python-agent

kayobe Documentation, Release 9.4.1.dev11

Building Swift Rings

Note: This section can be skipped if Swift is not in use.

Swift uses ring files to control placement of data across a cluster. These files can be generated automat-
ically using the following command:

(kayobe) $ kayobe overcloud swift rings generate

Deploying Containerised Services

To deploy the overcloud services in containers:

(kayobe) $ kayobe overcloud service deploy

Once this command has completed the overcloud nodes should have OpenStack services running in
Docker containers.

See also:

Information on configuration of Kolla Ansible is available here.

Interacting with the Control Plane

Kolla-ansible writes out an environment file that can be used to access the OpenStack admin endpoints
as the admin user:

$ source ${KOLLA_CONFIG_PATH:-/etc/kolla}/admin-openrc.sh

Kayobe also generates an environment file that can be used to access the OpenStack public endpoints as
the admin user which may be required if the admin endpoints are not available from the Ansible control
host:

$ source ${KOLLA_CONFIG_PATH:-/etc/kolla}/public-openrc.sh

Performing Post-deployment Configuration

To perform post deployment configuration of the overcloud services:

(kayobe) $ source ${KOLLA_CONFIG_PATH:-/etc/kolla}/admin-openrc.sh
(kayobe) $ kayobe overcloud post configure

This will perform the following tasks:

• Register Ironic Python Agent (IPA) images with glance

• Register introspection rules with ironic inspector

• Register a provisioning network and subnet with neutron

• Configure Grafana organisations, dashboards and datasources

3.7. Deployment 105

kayobe Documentation, Release 9.4.1.dev11

3.8 Upgrading

This section describes how to upgrade from one OpenStack release to another.

3.8.1 Preparation

Before you start, be sure to back up any local changes, configuration, and data.

Migrating Kayobe Configuration

Kayobe configuration options may be changed between releases of kayobe. Ensure that all site local
configuration is migrated to the target version format. If using the kayobe-config git repository to man-
age local configuration, this process can be managed via git. For example, to fetch version 1.0.0 of the
configuration from the origin remote and merge it into the current branch:

$ git fetch origin 1.0.0
$ git merge 1.0.0

The configuration should be manually inspected after the merge to ensure that it is correct. Any new
configuration options may be set at this point. In particular, the following options may need to be
changed if not using their default values:

• kolla_openstack_release

• kolla_tag

• kolla_sources

• kolla_build_blocks

• kolla_build_customizations

Once the configuration has been migrated, it is possible to view the global variables for all hosts:

(kayobe) $ kayobe configuration dump

The output of this command is a JSON object mapping hosts to their configuration. The output of
the command may be restricted using the --host, --hosts, --var-name and --dump-facts
options.

If using the kayobe-env environment file in kayobe-config, this should also be inspected for
changes and modified to suit the local ansible control host environment if necessary. When ready, source
the environment file:

$ source kayobe-env

The Kayobe release notes provide information on each new release. In particular, the Upgrade Notes
and Deprecation Notes sections provide information that might affect the configuration migration.

All changes made to the configuration should be committed and pushed to the hosting git repository.

106 Chapter 3. Contents

https://opendev.org/openstack/kayobe-config
https://docs.openstack.org/releasenotes/kayobe/

kayobe Documentation, Release 9.4.1.dev11

3.8.2 Updating Kayobe Configuration

Ensure that the Kayobe configuration is checked out at the required commit.

First, ensure that there are no uncommitted local changes to the repository:

$ cd <base_path>/src/kayobe-config/
$ git status

Pull down changes from the hosting repository. For example, to fetch changes from the master branch
of the origin remote:

$ git checkout master
$ git pull --ff-only origin master

Adjust this procedure to suit your environment.

3.8.3 Upgrading Kayobe

If a new, suitable version of kayobe is available, it should be installed. As described in Installation,
Kayobe can be installed via the released Python packages on PyPI, or from source. Installation from a
Python package is supported from Kayobe 5.0.0 onwards.

Upgrading from PyPI

This section describes how to upgrade Kayobe from a Python package in a virtualenv. This is supported
from Kayobe 5.0.0 onwards.

Ensure that the virtualenv is activated:

$ source <base_path>/venvs/kayobe/bin/activate

Update the pip package:

(kayobe) $ pip install -U pip

If upgrading to the latest version of Kayobe:

(kayobe) $ pip install -U kayobe

Alternatively, to upgrade to a specific release of Kayobe:

(kayobe) $ pip install kayobe==5.0.0

3.8. Upgrading 107

kayobe Documentation, Release 9.4.1.dev11

Upgrading from source

This section describes how to install Kayobe from source in a virtualenv.

First, check out the required version of the Kayobe source code. This may be done by pulling down
the new version from opendev.org. Make sure that any local changes to kayobe are committed and
merged with the new upstream code as necessary. For example, to pull version 5.0.0 from the origin
remote:

$ cd <base_path>/src/kayobe
$ git pull origin 5.0.0

Ensure that the virtualenv is activated:

$ source <base_path>/venvs/kayobe/bin/activate

Update the pip package:

(kayobe) $ pip install -U pip

If using a non-editable install of Kayobe:

(kayobe) $ cd <base_path>/src/kayobe
(kayobe) $ pip install -U .

Alternatively, if using an editable install of Kayobe (version 5.0.0 onwards, see Editable source instal-
lation for details):

(kayobe) $ cd <base_path>/src/kayobe
(kayobe) $ pip install -U -e .

3.8.4 Upgrading the Ansible Control Host

Before starting the upgrade we must upgrade the Ansible control host. Tasks performed here include:

• Install updated Ansible role dependencies from Ansible Galaxy.

• Generate an SSH key if necessary and add it to the current users authorised keys.

• Upgrade Kolla Ansible locally to the configured version.

To upgrade the Ansible control host:

(kayobe) $ kayobe control host upgrade

3.8.5 Upgrading the Seed Hypervisor

Currently, upgrading the seed hypervisor services is not supported. It may however be necessary to
upgrade host packages and some host services.

108 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Upgrading Host Packages

Prior to upgrading the seed hypervisor, it may be desirable to upgrade system packages on the seed
hypervisor host.

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe seed hypervisor host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe seed hypervisor host package update --packages "*" --
↪→security

Upgrading Host Services

It may be necessary to upgrade some host services:

(kayobe) $ kayobe seed hypervisor host upgrade

Note that this will not perform full configuration of the host, and will instead perform a targeted upgrade
of specific services where necessary.

3.8.6 Upgrading the Seed

The seed services are upgraded in two steps. First, new container images should be obtained either
by building them locally or pulling them from an image registry. Second, the seed services should be
replaced with new containers created from the new container images.

Upgrading Host Packages

Prior to upgrading the seed, it may be desirable to upgrade system packages on the seed host.

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe seed host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe seed host package update --packages "*" --security

Note that these commands do not affect packages installed in containers, only those installed on the host.

3.8. Upgrading 109

kayobe Documentation, Release 9.4.1.dev11

Building Ironic Deployment Images

Note: It is possible to use prebuilt deployment images. In this case, this step can be skipped.

It is possible to use prebuilt deployment images from the OpenStack hosted tarballs or another source.
In some cases it may be necessary to build images locally either to apply local image customisa-
tion or to use a downstream version of Ironic Python Agent (IPA). In order to build IPA images, the
ipa_build_images variable should be set to True. To build images locally:

(kayobe) $ kayobe seed deployment image build

To overwrite existing images, add the --force-rebuild argument.

Upgrading Host Services

It may be necessary to upgrade some host services:

(kayobe) $ kayobe seed host upgrade

Note that this will not perform full configuration of the host, and will instead perform a targeted upgrade
of specific services where necessary.

Building Container Images

Note: It is possible to use prebuilt container images from an image registry such as Dockerhub. In this
case, this step can be skipped.

In some cases it may be necessary to build images locally either to apply local image customisation or
to use a downstream version of kolla. To build images locally:

(kayobe) $ kayobe seed container image build

In order to push images to a registry after they are built, add the --push argument.

Upgrading Containerised Services

Containerised seed services may be upgraded by replacing existing containers with new containers using
updated images which have been pulled from a registry or built locally.

To upgrade the containerised seed services:

(kayobe) $ kayobe seed service upgrade

110 Chapter 3. Contents

https://tarballs.openstack.org/ironic-python-agent

kayobe Documentation, Release 9.4.1.dev11

3.8.7 Upgrading the Overcloud

The overcloud services are upgraded in two steps. First, new container images should be obtained either
by building them locally or pulling them from an image registry. Second, the overcloud services should
be replaced with new containers created from the new container images.

Upgrading Host Packages

Prior to upgrading the OpenStack control plane, it may be desirable to upgrade system packages on the
overcloud hosts.

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe overcloud host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe overcloud host package update --packages "*" --security

Note that these commands do not affect packages installed in containers, only those installed on the host.

Upgrading Host Services

Prior to upgrading the OpenStack control plane, the overcloud host services should be upgraded:

(kayobe) $ kayobe overcloud host upgrade

Note that this will not perform full configuration of the host, and will instead perform a targeted upgrade
of specific services where necessary.

Building Ironic Deployment Images

Note: It is possible to use prebuilt deployment images. In this case, this step can be skipped.

It is possible to use prebuilt deployment images from the OpenStack hosted tarballs or another source.
In some cases it may be necessary to build images locally either to apply local image customisa-
tion or to use a downstream version of Ironic Python Agent (IPA). In order to build IPA images, the
ipa_build_images variable should be set to True. To build images locally:

(kayobe) $ kayobe overcloud deployment image build

To overwrite existing images, add the --force-rebuild argument.

3.8. Upgrading 111

https://tarballs.openstack.org/ironic-python-agent

kayobe Documentation, Release 9.4.1.dev11

Upgrading Ironic Deployment Images

Prior to upgrading the OpenStack control plane you should upgrade the deployment images. If you are
using prebuilt images, update the following variables in etc/kayobe/ipa.yml accordingly:

• ipa_kernel_upstream_url

• ipa_kernel_checksum_url

• ipa_kernel_checksum_algorithm

• ipa_ramdisk_upstream_url

• ipa_ramdisk_checksum_url

• ipa_ramdisk_checksum_algorithm

Alternatively, you can update the files that the URLs point to. If building the images locally, follow the
process outlined in Building Ironic Deployment Images.

To get Ironic to use an updated set of overcloud deployment images, you can run:

(kayobe) $ kayobe baremetal compute update deployment image

This will register the images in Glance and update the deploy_ramdisk and deploy_kernel
properties of the Ironic nodes.

Before rolling out the update to all nodes, it can be useful to test the image on a limited subset. To do
this, you can use the baremetal-compute-limit option. See Update Deployment Image for more
details.

Building Container Images

Note: It is possible to use prebuilt container images from an image registry such as Dockerhub. In this
case, this step can be skipped.

In some cases it may be necessary to build images locally either to apply local image customisation or
to use a downstream version of kolla. To build images locally:

(kayobe) $ kayobe overcloud container image build

It is possible to build a specific set of images by supplying one or more image name regular expressions:

(kayobe) $ kayobe overcloud container image build ironic- nova-api

In order to push images to a registry after they are built, add the --push argument.

112 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Pulling Container Images

Note: It is possible to build container images locally avoiding the need for an image registry such as
Dockerhub. In this case, this step can be skipped.

In most cases suitable prebuilt kolla images will be available on Dockerhub. The kolla account provides
image repositories suitable for use with kayobe and will be used by default. To pull images from the
configured image registry:

(kayobe) $ kayobe overcloud container image pull

Saving Overcloud Service Configuration

It is often useful to be able to save the configuration of the control plane services for inspection or
comparison with another configuration set prior to a reconfiguration or upgrade. This command will
gather and save the control plane configuration for all hosts to the Ansible control host:

(kayobe) $ kayobe overcloud service configuration save

The default location for the saved configuration is $PWD/overcloud-config, but this can be
changed via the output-dir argument. To gather configuration from a directory other than the default
/etc/kolla, use the node-config-dir argument.

Generating Overcloud Service Configuration

Prior to deploying, reconfiguring, or upgrading a control plane, it may be useful to generate the config-
uration that will be applied, without actually applying it to the running containers. The configuration
should typically be generated in a directory other than the default configuration directory of /etc/
kolla, to avoid overwriting the active configuration:

(kayobe) $ kayobe overcloud service configuration generate --node-config-
↪→dir /path/to/generated/config

The configuration will be generated remotely on the overcloud hosts in the specified directory, with
one subdirectory per container. This command may be followed by kayobe overcloud service
configuration save to gather the generated configuration to the Ansible control host.

Upgrading Containerised Services

Containerised control plane services may be upgraded by replacing existing containers with new con-
tainers using updated images which have been pulled from a registry or built locally.

To upgrade the containerised control plane services:

(kayobe) $ kayobe overcloud service upgrade

It is possible to specify tags for Kayobe and/or kolla-ansible to restrict the scope of the upgrade:

3.8. Upgrading 113

https://hub.docker.com/u/kolla

kayobe Documentation, Release 9.4.1.dev11

(kayobe) $ kayobe overcloud service upgrade --tags config --kolla-tags
↪→keystone

3.9 Administration

This section describes how to use kayobe to simplify post-deployment administrative tasks.

3.9.1 General Administration

Updating the Control Host

There are several pieces of software and configuration that must be installed and synchronised on the
Ansible Control host:

• Kayobe configuration

• Kayobe Python package

• Ansible Galaxy roles

• Kolla Ansible Python package

A change to the configuration may require updating the Kolla Ansible Python package. Updating the
Kayobe Python package may require updating the Ansible Galaxy roles. Its not always easy to know
which of these are required, so the simplest option is to apply all of the following steps when any of the
above are changed.

1. Update Kayobe configuration to the required commit

2. Upgrade the Kayobe Python package to the required version

3. Upgrade the Ansible control host to synchronise the Ansible Galaxy roles and Kolla Ansible
Python package.

Running Kayobe Playbooks on Demand

In some situations it may be necessary to run an individual Kayobe playbook. Playbooks are stored in
<kayobe repo>/ansible/*.yml. To run an arbitrary Kayobe playbook:

(kayobe) $ kayobe playbook run <playbook> [<playbook>]

Running Kolla-ansible Commands

To execute a kolla-ansible command:

(kayobe) $ kayobe kolla ansible run <command>

114 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Dumping Kayobe Configuration

The Ansible configuration space is quite large, and it can be hard to determine the final values of Ansible
variables. We can use Kayobes configuration dump command to view individual variables or the
variables for one or more hosts. To dump Kayobe configuration for one or more hosts:

(kayobe) $ kayobe configuration dump

The output is a JSON-formatted object mapping hosts to their hostvars.

We can use the --var-name argument to inspect a particular variable or the --host or --hosts
arguments to view a variable or variables for a specific host or set of hosts.

Checking Network Connectivity

In complex networking environments it can be useful to be able to automatically check network connec-
tivity and diagnose networking issues. To perform some simple connectivity checks:

(kayobe) $ kayobe network connectivity check

Note that this will run on the seed, seed hypervisor, and overcloud hosts. If any of these hosts are not
expected to be active (e.g. prior to overcloud deployment), the set of target hosts may be limited using
the --limit argument.

3.9.2 Seed Administration

Deprovisioning The Seed VM

Note: This step will destroy the seed VM and its data volumes.

To deprovision the seed VM:

(kayobe) $ kayobe seed vm deprovision

Updating Packages

It is possible to update packages on the seed host.

Package Repositories

If using custom package repositories, it may be necessary to update these prior to running a package
update. To do this, update the configuration in ${KAYOBE_CONFIG_PATH}/dnf.yml and run the
following command:

(kayobe) $ kayobe seed host configure --tags dnf --kolla-tags none

3.9. Administration 115

kayobe Documentation, Release 9.4.1.dev11

Package Update

To update one or more packages:

(kayobe) $ kayobe seed host package update --packages <package1>,<package2>

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe seed host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe seed host package update --packages "*" --security

Note that these commands do not affect packages installed in containers, only those installed on the host.

Packages can also be updated on the seed hypervisor host, if one is in use:

(kayobe) $ kayobe seed hypervisor package update --packages <package1>,
↪→<package2>

Kernel Updates

If the kernel has been updated, you will probably want to reboot the seed host to boot into the new
kernel. This can be done using a command such as the following:

(kayobe) $ kayobe seed host command run --command "shutdown -r" --become

Examining the Bifrost Container

The seed host runs various services required for a standalone Ironic deployment. These all run in a
single bifrost_deploy container.

It can often be helpful to execute a shell in the bifrost container for diagnosing operational issues:

$ docker exec -it bifrost_deploy bash

Services are run via Systemd:

(bifrost_deploy) systemctl

Logs are stored in /var/log/kolla/, which is mounted to the kolla_logs Docker volume.

116 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Accessing the Seed Services

The Ironic and Ironic inspector APIs can be accessed via the baremetal command line interface:

(bifrost_deploy) $ export OS_CLOUD=bifrost
(bifrost_deploy) $ baremetal node list
(bifrost_deploy) $ baremetal introspection list

Backup & Restore

There are two main approaches to backing up and restoring data on the seed. A backup may be taken of
the Ironic databases. Alternatively, a Virtual Machine backup may be used if running the seed services
in a VM. The former will consume less storage. Virtual Machine backups are not yet covered here,
neither is scheduling of backups. Any backup and restore procedure should be tested in advance.

Database Backup & Restore

A backup may be taken of the database, using one of the many tools that exist for backing up MariaDB
databases.

A simple approach that should work for the typically modestly sized seed database is mysqldump. The
following commands should all be executed on the seed.

Backup

It should be safe to keep services running during the backup, but for maximum safety they may option-
ally be stopped:

docker exec -it bifrost_deploy \
systemctl stop ironic-api ironic-conductor ironic-inspector

Then, to perform the backup:

docker exec -it bifrost_deploy \
mysqldump --all-databases --single-transaction --routines --triggers >
↪→seed-backup.sql

If the services were stopped prior to the backup, start them again:

docker exec -it bifrost_deploy \
systemctl start ironic-api ironic-conductor ironic-inspector

3.9. Administration 117

kayobe Documentation, Release 9.4.1.dev11

Restore

Prior to restoring the database, the Ironic and Ironic Inspector services should be stopped:

docker exec -it bifrost_deploy \
systemctl stop ironic-api ironic-conductor ironic-inspector

The database may then safely be restored:

docker exec -i bifrost_deploy \
mysql < seed-backup.sql

Finally, start the Ironic and Ironic Inspector services again:

docker exec -it bifrost_deploy \
systemctl start ironic-api ironic-conductor ironic-inspector

Running Commands

It is possible to run a command on the seed host:

(kayobe) $ kayobe seed host command run --command "<command>"

For example:

(kayobe) $ kayobe seed host command run --command "service docker restart"

Commands can also be run on the seed hypervisor host, if one is in use:

(kayobe) $ kayobe seed hypervisor host command run --command "<command>"

To execute the command with root privileges, add the --become argument. Adding the --verbose
argument allows the output of the command to be seen.

3.9.3 Overcloud Administration

Updating Packages

It is possible to update packages on the overcloud hosts.

Package Repositories

If using custom package repositories, it may be necessary to update these prior to running a package
update. To do this, update the configuration in ${KAYOBE_CONFIG_PATH}/dnf.yml and run the
following command:

(kayobe) $ kayobe overcloud host configure --tags dnf --kolla-tags none

118 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Package Update

To update one or more packages:

(kayobe) $ kayobe overcloud host package update --packages <package1>,
↪→<package2>

To update all eligible packages, use *, escaping if necessary:

(kayobe) $ kayobe overcloud host package update --packages "*"

To only install updates that have been marked security related:

(kayobe) $ kayobe overcloud host package update --packages "*" --security

Note that these commands do not affect packages installed in containers, only those installed on the host.

Kernel Updates

If the kernel has been updated, you will probably want to reboot the hosts to boot into the new kernel.
This can be done using a command such as the following:

(kayobe) $ kayobe overcloud host command run --command "shutdown -r" --
↪→become

It is normally best to apply this to control plane hosts in batches to avoid clustered services from losing
quorum. This can be achieved using the --limit argument, and ensuring services are fully up after
rebooting before proceeding with the next batch.

Running Commands

It is possible to run a command on the overcloud hosts:

(kayobe) $ kayobe overcloud host command run --command "<command>"

For example:

(kayobe) $ kayobe overcloud host command run --command "service docker
↪→restart"

To execute the command with root privileges, add the --become argument. Adding the --verbose
argument allows the output of the command to be seen.

3.9. Administration 119

kayobe Documentation, Release 9.4.1.dev11

Reconfiguring Containerised Services

When configuration is changed, it is necessary to apply these changes across the system in an automated
manner. To reconfigure the overcloud, first make any changes required to the configuration on the
Ansible control host. Next, run the following command:

(kayobe) $ kayobe overcloud service reconfigure

In case not all services configuration have been modified, performance can be improved by specifying
Ansible tags to limit the tasks run in kayobe and/or kolla-ansibles playbooks. This may require knowl-
edge of the inner workings of these tools but in general, kolla-ansible tags the play used to configure each
service by the name of that service. For example: nova, neutron or ironic. Use -t or --tags to
specify kayobe tags and -kt or --kolla-tags to specify kolla-ansible tags. For example:

(kayobe) $ kayobe overcloud service reconfigure --tags config --kolla-tags
↪→nova,ironic

Deploying Updated Container Images

A common task is to deploy updated container images, without configuration changes. This might be to
roll out an updated container OS or to pick up some package updates. This should be faster than a full
deployment or reconfiguration.

To deploy updated container images:

(kayobe) $ kayobe overcloud service deploy containers

Note that if there are configuration changes, these will not be applied using this command so if in doubt,
use a normal kayobe overcloud service deploy.

In case not all services containers have been modified, performance can be improved by specifying An-
sible tags to limit the tasks run in kayobe and/or kolla-ansibles playbooks. This may require knowledge
of the inner workings of these tools but in general, kolla-ansible tags the play used to configure each
service by the name of that service. For example: nova, neutron or ironic. Use -t or --tags to
specify kayobe tags and -kt or --kolla-tags to specify kolla-ansible tags. For example:

(kayobe) $ kayobe overcloud service deploy containers --kolla-tags nova,
↪→ironic

Upgrading Containerised Services

Containerised control plane services may be upgraded by replacing existing containers with new con-
tainers using updated images which have been pulled from a registry or built locally. If using an updated
version of Kayobe or upgrading from one release of OpenStack to another, be sure to follow the kayobe
upgrade guide. It may be necessary to upgrade one or more services within a release, for example to
apply a patch or minor release.

To upgrade the containerised control plane services:

(kayobe) $ kayobe overcloud service upgrade

As for the reconfiguration command, it is possible to specify tags for Kayobe and/or kolla-ansible:

120 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

(kayobe) $ kayobe overcloud service upgrade --tags config --kolla-tags
↪→keystone

Stopping the Overcloud Services

Note: This step will stop all containers on the overcloud hosts.

To stop the overcloud services:

(kayobe) $ kayobe overcloud service stop --yes-i-really-really-mean-it

It should be noted that this state is persistent - containers will remain stopped after a reboot of the host
on which they are running.

It is possible to limit the operation to particular hosts via --kolla-limit, or to particular
services via --kolla-tags. It is also possible to avoid stopping the common containers via
--kolla-skip-tags common. For example:

(kayobe) $ kayobe overcloud service stop kolla-tags glance,nova kolla-skip-tags common

Destroying the Overcloud Services

Note: This step will destroy all containers, container images, volumes and data on the overcloud hosts.

To destroy the overcloud services:

(kayobe) $ kayobe overcloud service destroy --yes-i-really-really-mean-it

Deprovisioning The Cloud

Note: This step will power down the overcloud hosts and delete their nodes instance state from the
seeds ironic service.

To deprovision the overcloud:

(kayobe) $ kayobe overcloud deprovision

3.9. Administration 121

kayobe Documentation, Release 9.4.1.dev11

Saving Overcloud Service Configuration

It is often useful to be able to save the configuration of the control plane services for inspection or
comparison with another configuration set prior to a reconfiguration or upgrade. This command will
gather and save the control plane configuration for all hosts to the Ansible control host:

(kayobe) $ kayobe overcloud service configuration save

The default location for the saved configuration is $PWD/overcloud-config, but this can be
changed via the output-dir argument. To gather configuration from a directory other than the default
/etc/kolla, use the node-config-dir argument.

Generating Overcloud Service Configuration

Prior to deploying, reconfiguring, or upgrading a control plane, it may be useful to generate the config-
uration that will be applied, without actually applying it to the running containers. The configuration
should typically be generated in a directory other than the default configuration directory of /etc/
kolla, to avoid overwriting the active configuration:

(kayobe) $ kayobe overcloud service configuration generate --node-config-
↪→dir /path/to/generated/config

The configuration will be generated remotely on the overcloud hosts in the specified directory, with
one subdirectory per container. This command may be followed by kayobe overcloud service
configuration save to gather the generated configuration to the Ansible control host.

Performing Database Backups

Database backups can be performed using the underlying support in Kolla Ansible.

In order to enable backups, enable Mariabackup in ${KAYOBE_CONFIG_PATH}/kolla.yml:

kolla_enable_mariabackup: true

To apply this change, use the kayobe overcloud service reconfigure command.

To perform a full backup, run the following command:

kayobe overcloud database backup

Or to perform an incremental backup, run the following command:

kayobe overcloud database backup --incremental

Further information on backing up and restoring the database is available in the Kolla Ansible documen-
tation.

122 Chapter 3. Contents

https://docs.openstack.org/kolla-ansible/victoria/admin/mariadb-backup-and-restore.html
https://docs.openstack.org/kolla-ansible/victoria/admin/mariadb-backup-and-restore.html

kayobe Documentation, Release 9.4.1.dev11

Performing Database Recovery

Recover a completely stopped MariaDB cluster using the underlying support in Kolla Ansible.

To perform recovery run the following command:

kayobe overcloud database recover

Or to perform recovery on specified host, run the following command:

kayobe overcloud database recover --force-recovery-host <host>

By default the underlying kolla-ansible will automatically determine which host to use, and this option
should not be used.

Gathering Facts

The following command may be used to gather facts for all overcloud hosts, for both Kayobe and Kolla
Ansible:

kayobe overcloud facts gather

This may be useful to populate a fact cache in advance of other operations.

3.9.4 Baremetal Compute Node Management

When enrolling new hardware or performing maintenance, it can be useful to be able to manage many
bare metal compute nodes simultaneously.

In all cases, commands are delegated to one of the controller hosts, and executed concurrently. Note that
ansibles forks configuration option, which defaults to 5, may limit the number of nodes configured
concurrently.

By default these commands wait for the state transition to complete for each node. This
behavior can be changed by overriding the variable baremetal_compute_wait via -e
baremetal_compute_wait=False

Manage

A node may need to be set to the manageable provision state in order to perform certain management
operations, or when an enrolled node is transitioned into service. In order to manage a node, it must
be in one of these states: enroll, available, cleaning, clean failed, adopt failed or
inspect failed. To move the baremetal compute nodes to the manageable provision state:

(kayobe) $ kayobe baremetal compute manage

3.9. Administration 123

kayobe Documentation, Release 9.4.1.dev11

Provide

In order for nodes to be scheduled by nova, they must be available. To move the baremetal compute
nodes from the manageable state to the available provision state:

(kayobe) $ kayobe baremetal compute provide

Inspect

Nodes must be in one of the following states: manageable, inspect failed, or available.
To trigger hardware inspection on the baremetal compute nodes:

(kayobe) $ kayobe baremetal compute inspect

Rename

Once nodes have been discovered, it is helpful to associate them with a name to make them easier to
work with. If you would like the nodes to be named according to their inventory host names, you can
run the following command:

(kayobe) $ kayobe baremetal compute rename

This command will use the ipmi_address host variable from the inventory to map the inventory host
name to the correct node.

Update Deployment Image

When the overcloud deployment images have been rebuilt or there has been a change to one of the
following variables:

• ipa_kernel_upstream_url

• ipa_ramdisk_upstream_url

either by changing the url, or if the image to which they point has been changed, you need to update the
deploy_ramdisk and deploy_kernel properties on the Ironic nodes. To do this you can run:

(kayobe) $ kayobe baremetal compute update deployment image

You can optionally limit the nodes in which this affects by setting baremetal-compute-limit:

(kayobe) $ kayobe baremetal compute update deployment image --baremetal-
↪→compute-limit sand-6-1

which should take the form of an ansible host pattern. This is matched against the Ironic node name.

124 Chapter 3. Contents

https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html

kayobe Documentation, Release 9.4.1.dev11

Ironic Serial Console

To access the baremetal nodes from within Horizon you need to enable the serial console. For this
to work the you must set kolla_enable_nova_serialconsole_proxy to true in etc/
kayobe/kolla.yml:

kolla_enable_nova_serialconsole_proxy: true

The console interface on the Ironic nodes is expected to be ipmitool-socat, you can check this
with:

openstack baremetal node show <node_id> --fields console_interface

where <node_id> should be the UUID or name of the Ironic node you want to check.

If you have set kolla_ironic_enabled_console_interfaces in etc/kayobe/ironic.
yml, it should include ipmitool-socat in the list of enabled interfaces.

The playbook to enable the serial console currently only works if the Ironic node name matches the
inventory hostname.

Once these requirements have been satisfied, you can run:

(kayobe) $ kayobe baremetal compute serial console enable

This will reserve a TCP port for each node to use for the serial console interface. The allocations
are stored in ${KAYOBE_CONFIG_PATH}/console-allocation.yml. The current implemen-
tation uses a global pool, which is specified by ironic_serial_console_tcp_pool_start
and ironic_serial_console_tcp_pool_end; these variables can set in etc/kayobe/
ironic.yml.

To disable the serial console you can use:

(kayobe) $ kayobe baremetal compute serial console disable

The port allocated for each node is retained and must be manually removed from
${KAYOBE_CONFIG_PATH}/console-allocation.yml if you want it to be reused by
another Ironic node with a different name.

You can optionally limit the nodes targeted by setting baremetal-compute-limit:

(kayobe) $ kayobe baremetal compute serial console enable --baremetal-
↪→compute-limit sand-6-1

which should take the form of an ansible host pattern.

3.9. Administration 125

https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html

kayobe Documentation, Release 9.4.1.dev11

Serial console auto-enable

To enable the serial consoles automatically on kayobe overcloud post configure, you can
set ironic_serial_console_autoenable in etc/kayobe/ironic.yml:

ironic_serial_console_autoenable: true

3.10 Resources

This section contains links to external Kayobe resources.

3.10.1 A Universe From Nothing

Note: The A Universe From Nothing deployment guide is intended for educational & testing purposes
only. It is not production ready.

Originally created as a workshop, A Universe From Nothing is an example guide for the deployment of
Kayobe on virtual hardware. You can find it on GitHub here.

The repository contains a configuration suitable for deploying containerised OpenStack using Kolla, An-
sible and Kayobe. The guide makes use of Tenks to provision a virtual baremetal environment running
on a single hypervisor.

To complete the walkthrough you will require a baremetal or VM hypervisor running CentOS 8 with at
least 32GB RAM & 80GB disk space. Preparing the deployment can take some time - where possible it
is beneficial to snapshot the hypervisor. We advise making a snapshot after creating the initial seed VM
as this will make additional deployments significantly faster.

3.11 Advanced Documentation

3.11.1 Control Plane Service Placement

Note: This is an advanced topic and should only be attempted when familiar with kayobe and Open-
Stack.

The default configuration in kayobe places all control plane services on a single set of servers described
as controllers. In some cases it may be necessary to introduce more than one server role into the control
plane, and control which services are placed onto the different server roles.

126 Chapter 3. Contents

https://github.com/stackhpc/a-universe-from-nothing/
https://opendev.org/openstack/tenks

kayobe Documentation, Release 9.4.1.dev11

Configuration

Overcloud Inventory Discovery

If using a seed host to enable discovery of the control plane services, it is necessary to configure how the
discovered hosts map into kayobe groups. This is done using the overcloud_group_hosts_map
variable, which maps names of kayobe groups to a list of the hosts to be added to that group.

This variable will be used during the command kayobe overcloud inventory discover.
An inventory file will be generated in ${KAYOBE_CONFIG_PATH}/inventory/overcloudwith
discovered hosts added to appropriate kayobe groups based on overcloud_group_hosts_map.

Kolla-ansible Inventory Mapping

Once hosts have been discovered and enrolled into the kayobe inventory, they must be added to the
kolla-ansible inventory. This is done by mapping from top level kayobe groups to top level kolla-
ansible groups using the kolla_overcloud_inventory_top_level_group_map variable.
This variable maps from kolla-ansible groups to lists of kayobe groups, and variables to define for those
groups in the kolla-ansible inventory.

Variables For Custom Server Roles

Certain variables must be defined for hosts in the overcloud group. For hosts in the controllers
group, many variables are mapped to other variables with a controller_ prefix in files under
ansible/group_vars/controllers/. This is done in order that they may be set in a global
extra variables file, typically controllers.yml, with defaults set in ansible/group_vars/
all/controllers. A similar scheme is used for hosts in the monitoring group.

Table 2: Overcloud host variables
Variable Purpose
ansible_user Username with which to access the host via SSH.
bootstrap_user Username with which to access the host before ansible_user is con-

figured.
lvm_groups List of LVM volume groups to configure. See mrlesmithjr.manage-lvm role

for format.
mdadm_arrays List of software RAID arrays. See mrlesmithjr.mdadm role for format.
network_interfacesList of names of networks to which the host is connected.
sysctl_parameters Dict of sysctl parameters to set.
users List of users to create. See singleplatform-eng.users role

If configuring BIOS and RAID via kayobe overcloud bios raid configure, the following
variables should also be defined:

Table 3: Overcloud BIOS & RAID host variables
Variable Purpose
bios_configDict mapping BIOS configuration options to their required values. See stackhpc.drac

role for format.
raid_configList of RAID virtual disks to configure. See stackhpc.drac role for format.

3.11. Advanced Documentation 127

https://galaxy.ansible.com/mrlesmithjr/manage-lvm/
https://galaxy.ansible.com/mrlesmithjr/mdadm/
https://galaxy.ansible.com/singleplatform-eng/users/
https://galaxy.ansible.com/stackhpc/drac/
https://galaxy.ansible.com/stackhpc/drac/
https://galaxy.ansible.com/stackhpc/drac/

kayobe Documentation, Release 9.4.1.dev11

These variables can be defined in inventory host or group variables files,
under ${KAYOBE_CONFIG_PATH}/inventory/host_vars/<host> or
${KAYOBE_CONFIG_PATH}/inventory/group_vars/<group> respectively.

Custom Kolla-ansible Inventories

As an advanced option, it is possible to fully customise the content of the kolla-ansible inventory, at
various levels. To facilitate this, kayobe breaks the kolla-ansible inventory into three separate sections.

Top level groups define the roles of hosts, e.g. controller or compute, and it is to these groups
that hosts are mapped directly.

Components define groups of services, e.g. nova or ironic, which are mapped to top level groups.

Services define single containers, e.g. nova-compute or ironic-api, which are mapped to com-
ponents.

The default top level inventory is generated from kolla_overcloud_inventory_top_level_group_map.
Kayobes component- and service-level inventory for kolla-ansible is static, and taken from the kolla-
ansible example multinode inventory. The complete inventory is generated by concatenating these
inventories.

Each level may be separately overridden by setting the following variables:

Table 4: Custom kolla-ansible inventory variables
Variable Purpose
kolla_overcloud_inventory_custom_top_levelOvercloud inventory containing a mapping from top

level groups to hosts.
kolla_overcloud_inventory_custom_componentsOvercloud inventory containing a mapping from com-

ponents to top level groups.
kolla_overcloud_inventory_custom_servicesOvercloud inventory containing a mapping from ser-

vices to components.
kolla_overcloud_inventory_customFull overcloud inventory contents.

Examples

Example 1: Adding Network Hosts

This example walks through the configuration that could be applied to enable the use of separate hosts
for neutron network services and load balancing. The control plane consists of three controllers,
controller-[0-2], and two network hosts, network-[0-1]. All file paths are relative to
${KAYOBE_CONFIG_PATH}.

First, we must make the network group separate from controllers:

Listing 121: inventory/groups

[controllers]
Empty group to provide declaration of controllers group.

[network]
Empty group to provide declaration of network group.

128 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Then, we must map the hosts to kayobe groups.

Listing 122: overcloud.yml

overcloud_group_hosts_map:
controllers:

- controller-0
- controller-1
- controller-2

network:
- network-0
- network-1

Next, we must map these groups to kolla-ansible groups.

Listing 123: kolla.yml

kolla_overcloud_inventory_top_level_group_map:
control:

groups:
- controllers

network:
groups:

- network

Finally, we create a group variables file for hosts in the network group, providing the necessary variables
for a control plane host.

Listing 124: inventory/group_vars/network

ansible_user: "{{ kayobe_ansible_user }}"
bootstrap_user: "{{ controller_bootstrap_user }}"
lvm_groups: "{{ controller_lvm_groups }}"
mdadm_arrays: "{{ controller_mdadm_arrays }}"
network_interfaces: "{{ controller_network_host_network_interfaces }}"
sysctl_parameters: "{{ controller_sysctl_parameters }}"
users: "{{ controller_users }}"

Here we are using the controller-specific values for some of these variables, but they could equally be
different.

Example 2: Overriding the Kolla-ansible Inventory

This example shows how to override one or more sections of the kolla-ansible inventory. All file paths
are relative to ${KAYOBE_CONFIG_PATH}.

It is typically best to start with an inventory template taken from the Kayobe source code, and then
customize it. The templates can be found in ansible/roles/kolla-ansible/templates,
e.g. components template is overcloud-components.j2.

First, create a file containing the customised inventory section. Well use the components section in this
example.

3.11. Advanced Documentation 129

kayobe Documentation, Release 9.4.1.dev11

Listing 125: kolla/inventory/
overcloud-components.j2

[nova]
control

[ironic]
{% if kolla_enable_ironic | bool %}
control
{% endif %}

...

Next, we must configure kayobe to use this inventory template.

Listing 126: kolla.yml

kolla_overcloud_inventory_custom_components: "{{ lookup('template', kayobe_
↪→config_path ~ '/kolla/inventory/overcloud-components.j2') }}"

Here we use the template lookup plugin to render the Jinja2-formatted inventory template.

3.11.2 Custom Ansible Playbooks

Kayobe supports running custom Ansible playbooks located outside of the kayobe project. This pro-
vides a flexible mechanism for customising a control plane. Access to the kayobe variables is possible,
ensuring configuration does not need to be repeated.

Kayobe Custom Playbook API

Explicitly allowing users to run custom playbooks with access to the kayobe variables elevates the
variable namespace and inventory to become an interface. This raises questions about the stability of
this interface, and the guarantees it provides.

The following guidelines apply to the custom playbook API:

• Only variables defined in the kayobe configuration files under etc/kayobe are supported.

• The groups defined in etc/kayobe/inventory/groups are supported.

• Any change to a supported variable (rename, schema change, default value change, or removal)
or supported group (rename or removal) will follow a deprecation period of one release cycle.

• Kayobes internal roles may not be used.

Note that these are guidelines, and exceptions may be made where appropriate.

130 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Running Custom Ansible Playbooks

Run one or more custom ansible playbooks:

(kayobe) $ kayobe playbook run <playbook>[, <playbook>...]

Playbooks do not by default have access to the Kayobe playbook group variables, filter plugins, and
test plugins, since these are relative to the current playbooks directory. This can be worked around by
creating symbolic links to the Kayobe repository from the Kayobe configuration.

Packaging Custom Playbooks With Configuration

The kayobe project encourages its users to manage configuration for a cloud using version control,
based on the kayobe-config repository. Storing custom Ansible playbooks in this repository makes a lot
of sense, and kayobe has special support for this.

It is recommended to store custom playbooks in $KAYOBE_CONFIG_PATH/ansible/. Roles lo-
cated in $KAYOBE_CONFIG_PATH/ansible/roles/will be automatically available to playbooks
in this directory.

With this directory layout, the following commands could be used to create symlinks that allow access
to Kayobes filter plugins, group variables and test plugins:

cd ${KAYOBE_CONFIG_PATH}/ansible/
ln -s ../../../../kayobe/ansible/filter_plugins/ filter_plugins
ln -s ../../../../kayobe/ansible/group_vars/ group_vars
ln -s ../../../../kayobe/ansible/test_plugins/ test_plugins

These symlinks can even be committed to the kayobe-config Git repository.

Note: These symlinks rely on having a kayobe source checkout at the same level as the kayobe-config
repository checkout, as described in Installation from source.

Ansible Galaxy

Ansible Galaxy provides a means for sharing Ansible roles. Kayobe configuration may provide a Galaxy
requirements file that defines roles to be installed from Galaxy. These roles may then be used by custom
playbooks.

Galaxy role dependencies may be defined in $KAYOBE_CONFIG_PATH/ansible/
requirements.yml. These roles will be installed in $KAYOBE_CONFIG_PATH/ansible/
roles/ when bootstrapping the Ansible control host:

(kayobe) $ kayobe control host bootstrap

And updated when upgrading the Ansible control host:

(kayobe) $ kayobe control host upgrade

3.11. Advanced Documentation 131

https://opendev.org/openstack/kayobe-config

kayobe Documentation, Release 9.4.1.dev11

Example

The following example adds a foo.yml playbook to a set of kayobe configuration. The playbook uses
a Galaxy role, bar.baz.

Here is the kayobe configuration repository structure:

etc/kayobe/
ansible/

foo.yml
requirements.yml
roles/

bifrost.yml
...

Here is the playbook, ansible/foo.yml:

- hosts: controllers

roles:
- name: bar.baz

Here is the Galaxy requirements file, ansible/requirements.yml:

- bar.baz

We should first install the Galaxy role dependencies, to download the bar.baz role:

(kayobe) $ kayobe control host bootstrap

Then, to run the foo.yml playbook:

(kayobe) $ kayobe playbook run $KAYOBE_CONFIG_PATH/ansible/foo.yml

Hooks

Warning: Hooks are an experimental feature and the design could change in the future. You may
have to update your config if there are any changes to the design. This warning will be removed
when the design has been stabilised.

Hooks allow you to automatically execute custom playbooks at certain points during the execution of a
kayobe command. The point at which a hook is run is referred to as a target. Please see the list of
available targets.

Hooks are created by symlinking an existing playbook into the the relevant directory under
$KAYOBE_CONFIG_PATH/hooks. Kayobe will search the hooks directory for sub-directories
matching <command>.<target>.d, where command is the name of a kayobe command with any
spaces replaced with dashes, and target is one of the supported targets for the command.

For example, when using the command:

132 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

(kayobe) $ kayobe control host bootstrap

kayobe will search the paths:

• $KAYOBE_CONFIG_PATH/hooks/control-host-bootstrap/pre.d

• $KAYOBE_CONFIG_PATH/hooks/control-host-bootstrap/post.d

Any playbooks listed under the pre.d directory will be run before kayobe executes its own playbooks
and any playbooks under post.d will be run after. You can affect the order of the playbooks by
prefixing the symlink with a sequence number. The sequence number must be separated from the hook
name with a dash. Playbooks with smaller sequence numbers are run before playbooks with larger ones.
Any ties are broken by alphabetical ordering.

For example to run the playbook foo.yml after kayobe overcloud host configure, you
could do the following:

(kayobe) $ mkdir -p ${KAYOBE_CONFIG_PATH}/hooks/overcloud-host-configure/
↪→post.d
(kayobe) $ cd ${KAYOBE_CONFIG_PATH}/hooks/overcloud-host-configure/post.d
(kayobe) $ ln -s ../../../ansible/foo.yml 10-foo.yml

The sequence number for the foo.yml playbook is 10.

Failure handling

If the exit status of any playbook, including built-in playbooks and custom hooks, is non-zero, kayobe
will not run any subsequent hooks or built-in kayobe playbooks. Ansible provides several methods
for preventing a task from producing a failure. Please see the Ansible documentation for more details.
Below is an example showing how you can use the ignore_errors option to prevent a task from
causing the playbook to report a failure:

- name: Failure example

hosts: localhost
tasks:

- name: Deliberately fail
fail:
ignore_errors: true

A failure in the Deliberately fail task would not prevent subsequent tasks, hooks, and playbooks
from running.

Targets

The following targets are available for all commands:

Table 5: all commands
TargetDescription
preRuns before a kayobe command has start executing
postRuns after a kayobe command has finished executing

3.11. Advanced Documentation 133

https://docs.ansible.com/ansible/latest/user_guide/playbooks_error_handling.html

kayobe Documentation, Release 9.4.1.dev11

3.12 Contributor Guide

3.12.1 Contributor Guide

This guide is for contributors of the Kayobe project. It includes information on proposing your first
patch and how to participate in the community. It also covers responsibilities of core reviewers and the
Project Team Lead (PTL), and information about development processes.

We welcome everyone to join our project!

So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Kayobe.

Basics

The source repository for this project can be found at:

https://opendev.org/openstack/kayobe

Communication

Kayobe shares communication channels with Kolla.

IRC Channel #openstack-kolla (channel logs) on OFTC

Weekly Meetings On Wednesdays at 15:00 UTC in the IRC channel (meetings logs)

Mailing list (prefix subjects with [kolla]) http://lists.openstack.org/pipermail/openstack-discuss/

Meeting Agenda https://wiki.openstack.org/wiki/Meetings/Kolla

Whiteboard (etherpad) Keeping track of CI gate status, release status, stable backports, planning and
feature development status. https://etherpad.openstack.org/p/KollaWhiteBoard

Contacting the Core Team

The list in alphabetical order (on first name):

Name IRC nick Email address
Doug Szumski dougsz doug@stackhpc.com
John Garbutt johnthetubaguy john@johngarbutt.com
Kevin Tibi ktibi kevintibi@hotmail.com
Mark Goddard mgoddard mark@stackhpc.com
Pierre Riteau priteau pierre@stackhpc.com
Will Szumski jovial will@stackhpc.com

134 Chapter 3. Contents

https://docs.openstack.org/contributors/
https://opendev.org/openstack/kayobe
http://eavesdrop.openstack.org/irclogs/%23openstack-kolla/
http://oftc.net
http://eavesdrop.openstack.org/meetings/kolla/
http://lists.openstack.org/pipermail/openstack-discuss/
https://wiki.openstack.org/wiki/Meetings/Kolla
https://etherpad.openstack.org/p/KollaWhiteBoard
mailto:doug@stackhpc.com
mailto:john@johngarbutt.com
mailto:kevintibi@hotmail.com
mailto:mark@stackhpc.com
mailto:pierre@stackhpc.com
mailto:will@stackhpc.com

kayobe Documentation, Release 9.4.1.dev11

The current effective list is also available from Gerrit: https://review.opendev.org/#/admin/groups/1875,
members

New Feature Planning

New features are discussed via IRC or mailing list (with [kolla] prefix). Kayobe project keeps RFEs in
Storyboard. Specs are welcome but not strictly required.

Task Tracking

Kolla project tracks tasks in Storyboard. Note this is the same place as for bugs.

A more lightweight task tracking is done via etherpad - Whiteboard.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Storyboard. Note this
is the same place as for tasks.

Getting Your Patch Merged

Most changes proposed to Kayobe require two +2 votes from core reviewers before +W. A release note
is required on most changes as well. Release notes policy is described in its own section.

Significant changes should have documentation and testing provided with them.

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide. Release tasks are described in the Kayobe
releases guide.

Development

Source Code Orientation

There are a number of layers to Kayobe, so here we provide a few pointers to the major parts.

CLI

The Command Line Interface (CLI) is built using the cliff library. Commands are exposed as Python en-
try points in setup.cfg. These entry points map to classes in kayobe/cli/commands.py. The helper mod-
ules kayobe/ansible.py and kayobe/kolla_ansible.py are used to execute Kayobe playbooks and Kolla
Ansible commands respectively.

3.12. Contributor Guide 135

https://review.opendev.org/#/admin/groups/1875,members
https://review.opendev.org/#/admin/groups/1875,members
https://storyboard.openstack.org/#!/project/openstack/kayobe
https://storyboard.openstack.org/#!/project/openstack/kayobe
https://etherpad.openstack.org/p/KollaWhiteBoard
https://storyboard.openstack.org/#!/project/openstack/kayobe
https://docs.openstack.org/project-team-guide/ptl.html
https://pypi.org/project/cliff/
https://opendev.org/openstack/kayobe/src/branch/master/setup.cfg
https://opendev.org/openstack/kayobe/src/branch/master/kayobe/cli/commands.py
https://opendev.org/openstack/kayobe/src/branch/master/kayobe/ansible.py
https://opendev.org/openstack/kayobe/src/branch/master/kayobe/kolla_ansible.py

kayobe Documentation, Release 9.4.1.dev11

Ansible

Kayobes Ansible playbooks live in ansible/*.yml, and these typically execute roles in ansible/roles/.
Global variable defaults are defined in group variable files in ansible/group_vars/all/ and these typically
map to commented out variables in the configuration files in etc/kayobe/*.yml. A number of custom
Jinja filters exist in ansible/filter_plugins/*.py. Kayobe depends on roles hosted on Ansible Galaxy, and
these and their version requirements are defined in requirements.yml.

Ansible Galaxy

Kayobe uses a number of Ansible roles hosted on Ansible Galaxy. The role dependencies are tracked
in requirements.yml, and specify required versions. The process for changing a Galaxy role is as
follows:

1. If required, develop changes for the role. This may be done outside of Kayobe, or by modifying
the role in place during development. If upstream changes to the role have already been made,
this step can be skipped.

2. Commit changes to the role, typically via a Github pull request.

3. Request that a tagged release of the role be made, or make one if you have the necessary privileges.

4. Ensure that automatic imports are configured for the role using e.g. a TravisCI webhook notifica-
tion, or perform a manual import of the role on Ansible Galaxy.

5. Modify the version in requirements.yml to match the new release of the role.

Vagrant

Kayobe provides a Vagrantfile that can be used to bring up a virtual machine for use as a development
environment. The VM is based on the centos/8 CentOS 8 image, and supports the following providers:

• VirtualBox

• VMWare Fusion

The VM is configured with 4GB RAM and a 20GB HDD. It has a single private network in addition to
the standard Vagrant NAT network.

Preparation

First, ensure that Vagrant is installed and correctly configured to use the required provider. Also install
the following vagrant plugins:

vagrant plugin install vagrant-reload vagrant-disksize

If using the VirtualBox provider, install the following vagrant plugin:

vagrant plugin install vagrant-vbguest

Note: if using Ubuntu 16.04 LTS, you may be unable to install any plugins. To work around this install
the upstream version from www.virtualbox.org.

136 Chapter 3. Contents

https://opendev.org/openstack/kayobe/src/branch/master/ansible
https://opendev.org/openstack/kayobe/src/branch/master/ansible/roles
https://opendev.org/openstack/kayobe/src/branch/master/ansible/group_vars/
https://opendev.org/openstack/kayobe/src/branch/master/etc/kayobe/
https://opendev.org/openstack/kayobe/src/branch/master/ansible/filter_plugins
https://opendev.org/openstack/kayobe/src/branch/master/requirements.yml
https://app.vagrantup.com/centos/boxes/8

kayobe Documentation, Release 9.4.1.dev11

Usage

Later sections in the development guide cover in more detail how to use the development VM in different
configurations. These steps cover bringing up and accessing the VM.

Clone the kayobe repository:

git clone https://opendev.org/openstack/kayobe.git -b stable/
↪→victoria

Change the current directory to the kayobe repository:

cd kayobe

Inspect kayobes Vagrantfile, noting the provisioning steps:

less Vagrantfile

Bring up a virtual machine:

vagrant up

Wait for the VM to boot, then SSH in:

vagrant ssh

Manual Setup

This section provides a set of manual steps to set up a development environment for an OpenStack
controller in a virtual machine using Vagrant and Kayobe.

For a more automated and flexible procedure, see Automated Setup.

Preparation

Follow the steps in Vagrant to prepare your environment for use with Vagrant and bring up a Vagrant
VM.

Manual Installation

Sometimes the best way to learn a tool is to ditch the scripts and perform a manual installation.

SSH into the controller VM:

vagrant ssh

Source the kayobe virtualenv activation script:

source kayobe-venv/bin/activate

Change the current directory to the Vagrant shared directory:

3.12. Contributor Guide 137

https://www.vagrantup.com/

kayobe Documentation, Release 9.4.1.dev11

cd /vagrant

Source the kayobe environment file:

source kayobe-env

Bootstrap the kayobe Ansible control host:

kayobe control host bootstrap

Configure the controller host:

kayobe overcloud host configure

At this point, container images must be acquired. They can either be built locally or pulled from an
image repository if appropriate images are available.

Either build container images:

kayobe overcloud container image build

Or pull container images:

kayobe overcloud container image pull

Deploy the control plane services:

kayobe overcloud service deploy

Source the OpenStack environment file:

source ${KOLLA_CONFIG_PATH:-/etc/kolla}/admin-openrc.sh

Perform post-deployment configuration:

kayobe overcloud post configure

Next Steps

The OpenStack control plane should now be active. Try out the following:

• register a user

• create an image

• upload an SSH keypair

• access the horizon dashboard

The cloud is your oyster!

138 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

To Do

Create virtual baremetal nodes to be managed by the OpenStack control plane.

Automated Setup

This section provides information on the development tools provided by Kayobe to automate the de-
ployment of various development environments.

For a manual procedure, see Manual Setup.

Overview

The Kayobe development environment automation tooling is built using simple shell scripts. Some min-
imal configuration can be applied by setting the environment variables in dev/config.sh. Control plane
configuration is typically provided via the kayobe-config-dev repository, although it is also possible to
use your own Kayobe configuration. This allows us to build a development environment that is as close
to production as possible.

Environments

The following development environments are supported:

• Overcloud (single OpenStack controller)

• Seed

The Universe from Nothing workshop may be of use for more advanced testing scenarios involving a
seed hypervisor, seed VM, and separate control and compute nodes.

Overcloud

Preparation

Clone the Kayobe repository:

git clone https://opendev.org/openstack/kayobe.git -b stable/
↪→victoria

Change the current directory to the Kayobe repository:

cd kayobe

Clone the kayobe-config-dev repository to config/src/kayobe-config

mkdir -p config/src
git clone https://opendev.org/openstack/kayobe-config-dev.git
↪→config/src/kayobe-config -b stable/victoria

3.12. Contributor Guide 139

https://opendev.org/openstack/kayobe-config-dev
https://github.com/stackhpc/a-universe-from-nothing/

kayobe Documentation, Release 9.4.1.dev11

Inspect the Kayobe configuration and make any changes necessary for your environment.

If using Vagrant, follow the steps in Vagrant to prepare your environment for use with Vagrant and bring
up a Vagrant VM.

If not using Vagrant, the default development configuration expects the presence of a bridge inter-
face on the OpenStack controller host to carry control plane traffic. The bridge should be named
breth1 with a single port eth1, and an IP address of 192.168.33.3/24. This can be mod-
ified by editing config/src/kayobe-config/etc/kayobe/inventory/group_vars/
controllers/network-interfaces. Alternatively, this can be added using the following com-
mands:

sudo ip l add breth1 type bridge
sudo ip l set breth1 up
sudo ip a add 192.168.33.3/24 dev breth1
sudo ip l add eth1 type dummy
sudo ip l set eth1 up
sudo ip l set eth1 master breth1

Usage

If using Vagrant, SSH into the Vagrant VM and change to the shared directory:

vagrant ssh
cd /vagrant

If not using Vagrant, run the dev/install-dev.sh script to install Kayobe and its dependencies in
a Python virtual environment:

./dev/install-dev.sh

Note: This will create an editable install. It is also possible to install Kayobe in a non-editable way,
such that changes will not been seen until you reinstall the package. To do this you can run ./dev/
install.sh.

Run the dev/overcloud-deploy.sh script to deploy the OpenStack control plane:

./dev/overcloud-deploy.sh

Upon successful completion of this script, the control plane will be active.

Testing

Scripts are provided for testing the creation of virtual and bare metal instances.

140 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Virtual Machines

The control plane can be tested by running the dev/overcloud-test-vm.sh script. This will run
the init-runonce setup script provided by Kolla Ansible that registers images, networks, flavors etc.
It will then deploy a virtual server instance, and delete it once it becomes active:

./dev/overcloud-test-vm.sh

Bare Metal Compute

For a control plane with Ironic enabled, a bare metal instance can be deployed. We can use the Tenks
project to create fake bare metal nodes.

Clone the tenks repository:

git clone https://opendev.org/openstack/tenks.git

Optionally, edit the Tenks configuration file, dev/tenks-deploy-config-compute.yml.

Run the dev/tenks-deploy-compute.sh script to deploy Tenks:

./dev/tenks-deploy-compute.sh ./tenks

Check that Tenks has created VMs called tk0 and tk1:

sudo virsh -c qemu+unix:///system?socket=/var/run/libvirt-tenks/libvirt-
↪→sock list --all

Verify that VirtualBMC is running:

~/tenks-venv/bin/vbmc list

Configure the firewall to allow the baremetal nodes to access OpenStack services:

./dev/configure-firewall.sh

We are now ready to run the dev/overcloud-test-baremetal.sh script. This will run the
init-runonce setup script provided by Kolla Ansible that registers images, networks, flavors etc. It
will then deploy a bare metal server instance, and delete it once it becomes active:

./dev/overcloud-test-baremetal.sh

The machines and networking created by Tenks can be cleaned up via dev/
tenks-teardown-compute.sh:

./dev/tenks-teardown-compute.sh ./tenks

3.12. Contributor Guide 141

https://tenks.readthedocs.io/en/latest/

kayobe Documentation, Release 9.4.1.dev11

Upgrading

It is possible to test an upgrade from a previous release by running the dev/overcloud-upgrade.
sh script:

./dev/overcloud-upgrade.sh

Seed

These instructions cover deploying the seed services directly rather than in a VM.

Preparation

Clone the Kayobe repository:

git clone https://opendev.org/openstack/kayobe.git -b stable/
↪→victoria

Change to the kayobe directory:

cd kayobe

Clone the kayobe-config-dev repository to config/src/kayobe-config:

mkdir -p config/src
git clone https://opendev.org/openstack/kayobe-config-dev.git
↪→config/src/kayobe-config -b stable/victoria

Inspect the Kayobe configuration and make any changes necessary for your environment.

The default development configuration expects the presence of a bridge interface on the seed host to carry
provisioning traffic. The bridge should be named breth1 with a single port eth1, and an IP address
of 192.168.33.5/24. This can be modified by editing config/src/kayobe-config/etc/
kayobe/inventory/group_vars/seed/network-interfaces. Alternatively, this can be
added using the following commands:

sudo ip l add breth1 type bridge
sudo ip l set breth1 up
sudo ip a add 192.168.33.5/24 dev breth1
sudo ip l add eth1 type dummy
sudo ip l set eth1 up
sudo ip l set eth1 master breth1

142 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Usage

Run the dev/install.sh script to install Kayobe and its dependencies in a Python virtual environ-
ment:

./dev/install.sh

Run the dev/seed-deploy.sh script to deploy the seed services:

export KAYOBE_SEED_VM_PROVISION=0
./dev/seed-deploy.sh

Upon successful completion of this script, the seed will be active.

Testing

The seed services may be tested using the Tenks project to create fake bare metal nodes.

If your seed has a non-standard MTU, you should set it via aio_mtu in etc/kayobe/networks.
yml.

Clone the tenks repository:

git clone https://opendev.org/openstack/tenks.git

Optionally, edit the Tenks configuration file, dev/tenks-deploy-config-overcloud.yml.

Run the dev/tenks-deploy-overcloud.sh script to deploy Tenks:

./dev/tenks-deploy-overcloud.sh ./tenks

Check that Tenks has created a VM called controller0:

sudo virsh list --all

Verify that VirtualBMC is running:

~/tenks-venv/bin/vbmc list

It is now possible to discover, inspect and provision the controller VM:

source dev/environment-setup.sh
kayobe overcloud inventory discover
kayobe overcloud hardware inspect
kayobe overcloud provision

The controller VM is now accessible via SSH as the bootstrap user (centos or ubuntu) at 192.
168.33.3.

The machines and networking created by Tenks can be cleaned up via dev/
tenks-teardown-overcloud.sh:

./dev/tenks-teardown-overcloud.sh ./tenks

3.12. Contributor Guide 143

https://tenks.readthedocs.io/en/latest/

kayobe Documentation, Release 9.4.1.dev11

Upgrading

It is possible to test an upgrade by running the dev/seed-upgrade.sh script:

./dev/seed-upgrade.sh

Testing

Kayobe has a number of test suites covering different areas of code. Many tests are run in virtual
environments using tox.

Preparation

System Prerequisites

The following packages should be installed on the development system prior to running kayobes tests.

• Ubuntu/Debian:

sudo apt-get install build-essential python3-dev libssl-dev python3-
↪→pip git

• Fedora or CentOS/RHEL 8:

sudo dnf install python3-devel openssl-devel python3-pip git gcc

• OpenSUSE/SLE 12:

sudo zypper install python3-devel python3-pip libopenssl-devel git

Python Prerequisites

If your distro has at least tox 1.8, use your system package manager to install the python-tox
package. Otherwise install this on all distros:

sudo pip install -U tox

You may need to explicitly upgrade virtualenv if youve installed the one from your OS distribution
and it is too old (tox will complain). You can upgrade it individually, if you need to:

sudo pip install -U virtualenv

144 Chapter 3. Contents

kayobe Documentation, Release 9.4.1.dev11

Running Unit Tests Locally

If you havent already, the kayobe source code should be pulled directly from git:

from your home or source directory
cd ~
git clone https://opendev.org/openstack/kayobe.git -b stable/
↪→victoria
cd kayobe

Running Unit and Style Tests

Kayobe defines a number of different tox environments in tox.ini. The default environments may be
displayed:

tox -list

To run all default environments:

tox

To run one or more specific environments, including any of the non-default environments:

tox -e <environment>[,<environment>]

Environments

The following tox environments are provided:

alint Run Ansible linter.

ansible Run Ansible tests for some ansible roles using Ansible playbooks.

ansible-syntax Run a syntax check for all Ansible files.

docs Build Sphinx documentation.

molecule Run Ansible tests for some Ansible roles using the molecule test framework.

pep8 Run style checks for all shell, python and documentation files.

py3 Run python unit tests for kayobe python module.

Writing Tests

Unit Tests

Unit tests follow the lead of OpenStack, and use unittest. One difference is that tests are run using
the discovery functionality built into unittest, rather than ostestr/stestr. Unit tests are found
in kayobe/tests/unit/, and should be added to cover all new python code.

3.12. Contributor Guide 145

kayobe Documentation, Release 9.4.1.dev11

Ansible Role Tests

Two types of test exist for Ansible roles - pure Ansible and molecule tests.

Pure Ansible Role Tests

These tests exist for the kolla-ansible role, and are found in ansible/<role>/tests/*.
yml. The role is exercised using an ansible playbook.

Molecule Role Tests

Molecule is an Ansible role testing framework that allows roles to be tested in isolation, in a stable
environment, under multiple scenarios. Kayobe uses Docker engine to provide the test environment, so
this must be installed and running on the development system.

Molecule scenarios are found in ansible/<role>/molecule/<scenario>, and defined by
the config file ansible/<role>/molecule/<scenario>/molecule.yml Tests are writ-
ten in python using the pytest framework, and are found in ansible/<role>/molecule/
<scenario>/tests/test_*.py.

Molecule tests currently exist for the kolla-openstack role, and should be added for all new roles
where practical.

Release notes

Kayobe (just like Kolla) uses the following release notes sections:

• features for new features or functionality; these should ideally refer to the blueprint being
implemented;

• fixes for fixes closing bugs; these must refer to the bug being closed;

• upgrade for notes relevant when upgrading from previous version; these should ideally be
added only between major versions; required when the proposed change affects behaviour in a
non-backwards compatible way or generally changes something impactful;

• deprecations to track deprecated features; relevant changes may consist of only the commit
message and the release note;

• prelude filled in by the PTL before each release or RC.

Other release note types may be applied per common sense. Each change should include a release note
unless being a TrivialFix change or affecting only docs or CI. Such changes should not include a
release note to avoid confusion. Remember release notes are mostly for end users which, in case of
Kolla, are OpenStack administrators/operators. In case of doubt, the core team will let you know what
is required.

To add a release note, run the following command:

tox -e venv -- reno new <summary-line-with-dashes>

All release notes can be inspected by browsing releasenotes/notes directory.

To generate release notes in HTML format in releasenotes/build, run:

146 Chapter 3. Contents

https://molecule.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/

kayobe Documentation, Release 9.4.1.dev11

tox -e releasenotes

Note this requires the release note to be tracked by git so you have to at least add it to the gits staging
area.

Releases

This guide is intended to complement the OpenStack releases site, and the project team guides section
on release management.

Team members make themselves familiar with the release schedule for the current release, for example
https://releases.openstack.org/train/schedule.html.

Release Model

As a deployment project, Kayobes release model differs from many other OpenStack projects. Kayobe
follows the cycle-trailing release model, to allow time after the OpenStack coordinated release to wait
for distribution packages and support new features. This gives us three months after the final release
to prepare our final releases. Users are typically keen to try out the new release, so we should aim to
release as early as possible while ensuring we have confidence in the release.

Release Schedule

While we dont wish to repeat the OpenStack release documentation, we will point out the high level
schedule, and draw attention to areas where our process is different.

Milestones

At each of the various release milestones, pay attention to what other projects are doing.

Feature Freeze

As with projects following the common release model, Kayobe uses a feature freeze period to allow the
code to stabilise prior to release. There is no official feature freeze date for the cycle-trailing model, but
we typically freeze around three weeks after the common feature freeze. During this time, no features
should be merged to the master branch.

Before RC1

Prior to creating a release candidate and stable branch, the following tasks should be performed.

3.12. Contributor Guide 147

https://releases.openstack.org/
https://docs.openstack.org/project-team-guide/release-management.html
https://releases.openstack.org/train/schedule.html
https://docs.openstack.org/project-team-guide/release-management.html#trailing-the-common-cycle

kayobe Documentation, Release 9.4.1.dev11

Testing

Test the code and fix at a minimum all critical issues.

Update dependencies to upcoming release

Prior to the release, we update the dependencies and upper constraints on the master branch to use the up-
coming release. This is now quite easy to do, following the introduction of the openstack_release
variable. This is done prior to creating a release candidate. For example, see https://review.opendev.org/
#/c/694616/.

Synchronise kayobe-config

Ensure that configuration defaults in kayobe-config are in sync with those under etc/kayobe in
kayobe. This can be done via:

cp -aR kayobe/etc/kayobe/* kayobe-config/etc/kayobe

Commit the changes and submit for review.

Synchronise kayobe-config-dev

Ensure that configuration defaults in kayobe-config-dev are in sync with those in
kayobe-config. This requires a little more care, since some configuration options have been
changed from the defaults. Choose a method to suit you and be careful not to lose any configuration.

Commit the changes and submit for review.

Prepare release notes

Its possible to add a prelude to the release notes for a particular release using a prelude section in a
reno note.

Ensure that release notes added during the release cycle are tidy and consistent. The following command
is useful to list release notes added this cycle:

git diff --name-only origin/stable/<previous release> -- releasenotes/

RC1

Prior to cutting a stable branch, the master branch should be tagged as a release candidate. This allows
the reno tool to determine where to stop searching for release notes for the next release. The tag should
take the following form: <release tag>.0rc$n, where $n is the release candidate number.

This should be done for each deliverable using the releases tooling. A release candidate and sta-
ble branch defintitions should be added for each Kayobe deliverable (kayobe, kayobe-config,
kayobe-config-dev). These are defined in deliverables/<release name>/kayobe.
yaml. Currently the same version is used for each deliverable.

148 Chapter 3. Contents

https://review.opendev.org/#/c/694616/
https://review.opendev.org/#/c/694616/
https://opendev.org/openstack/releases

kayobe Documentation, Release 9.4.1.dev11

The changes should be proposed to the releases repository. For example: https://review.opendev.org/#/
c/700174.

After RC1

The OpenStack proposal bot will propose changes to the new branch and the master branch. These need
to be approved.

After the stable branch has been cut, the master branch can be unfrozen and development on features for
the next release can begin. At this point it will still be using dependencies and upper constraints from the
release branch, so revert the patch created in Update dependencies to upcoming release. For example,
see https://review.opendev.org/701747.

Finally, set the previous release used in upgrade jobs to the new release. For example, see https://review.
opendev.org/709145.

RC2+

Further release candidates may be created on the stable branch as necessary in a similar manner to RC1.

Final Releases

A release candidate may be promoted to a final release if it has no critical bugs against it.

Tags should be created for each deliverable (kayobe, kayobe-config, kayobe-config-dev).
Currently the same version is used for each.

The changes should be proposed to the releases repository. For example: https://review.opendev.org/
701724.

Post-release activites

An email will be sent to the release-announce mailing list about the new release.

Continuing Development

Search for TODOs in the codebases describing tasks to be performed during the next release cycle.

Stable Releases

Stable branch releases should be made periodically for each supported stable branch, no less than once
every 45 days.

3.12. Contributor Guide 149

https://review.opendev.org/#/c/700174
https://review.opendev.org/#/c/700174
https://review.opendev.org/701747
https://review.opendev.org/709145
https://review.opendev.org/709145
https://review.opendev.org/701724
https://review.opendev.org/701724

	Overview
	Kayobe
	Features

	Contents
	Getting Started
	Architecture
	Support Matrix
	Installation
	Usage
	Configuration Guide
	Deployment
	Upgrading
	Administration
	Resources
	Advanced Documentation
	Contributor Guide

