Ironic Documentation
Release 21.1.2.dev10

OpenStack Foundation

Apr 23, 2024

CONTENTS

1 Introduction 1
2 Installation Guide 3
2.1 Bare Metal Service Installation Guide, 3
2.2 Bare Metal Service Upgrade Guide 108
3 User Guide 119
3.1 Bare Metal Service User Guide 119
4 Administrator Guide 137
4.1 Drivers, Hardware Types and Hardware Interfaces 137
4.2 Administrators Guide e 246
5 Configuration Guide 391
5.1 Configuration Reference 391
6 Bare Metal API References 573
6.1 REST APIConceptual Guide o, 573
7 Command References 589
7.1 Command References e 589
8 Contributor Guide 595
8.1 Developers Guide e e e e e 595
9 Release Notes 1201
Python Module Index 1203

Index 1207

CHAPTER
ONE

INTRODUCTION

Ironic is an OpenStack project which provisions bare metal (as opposed to virtual) machines. It may
be used independently or as part of an OpenStack Cloud, and integrates with the OpenStack Identity
(keystone), Compute (nova), Network (neutron), Image (glance), and Object (swift) services.

The Bare Metal service manages hardware through both common (eg. PXE and IPMI) and vendor-
specific remote management protocols. It provides the cloud operator with a unified interface to a hetero-
geneous fleet of servers while also providing the Compute service with an interface that allows physical
servers to be managed as though they were virtual machines.

This documentation is continually updated and may not represent the state of the project at any specific
prior release. To access documentation for a previous release of ironic, append the OpenStack release
name to the URL; for example, the ocata release is available at https://docs.openstack.org/ironic/ocata/.

Found a bug in one of our projects? Please see Bug Reporting and Triaging Guide.

Would like to engage with the community? See Bare Metal Community.

https://docs.openstack.org/ironic/ocata/

Ironic Documentation, Release 21.1.2.dev10

2 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION GUIDE

2.1 Bare Metal Service Installation Guide

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Guides. It
contains the following sections:

2.1.1 Bare Metal service overview

The Bare Metal service, codenamed ironic, is a collection of components that provides support to
manage and provision physical machines.

Bare Metal service components

The Bare Metal service includes the following components:

ironic-api A RESTful API that processes application requests by sending them to the ironic-conductor
over remote procedure call (RPC). Can be run through WSGI or as a separate process.

ironic-conductor Adds/edits/deletes nodes; powers on/off nodes with IPMI or other vendor-specific
protocol; provisions/deploys/cleans bare metal nodes.

ironic-conductor uses drivers to execute operations on hardware.

ironic-python-agent A python service which is run in a temporary ramdisk to provide ironic-conductor
and ironic-inspector services with remote access, in-band hardware control, and hardware intro-
spection.

Additionally, the Bare Metal service has certain external dependencies, which are very similar to other
OpenStack services:

* A database to store hardware information and state. You can set the database back-end type and
location. A simple approach is to use the same database back end as the Compute service. An-
other approach is to use a separate database back-end to further isolate bare metal resources (and
associated metadata) from users.

* An oslo.messaging compatible queue, such as RabbitMQ. It may use the same implementation
as that of the Compute service, but that is not a requirement. Used to implement RPC between
ironic-api and ironic-conductor.

https://docs.openstack.org/latest/install
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://docs.openstack.org/oslo.messaging/zed/

Ironic Documentation, Release 21.1.2.dev10

Deployment architecture

The Bare Metal RESTful API service is used to enroll hardware that the Bare Metal service will manage.
A cloud administrator usually registers it, specifying their attributes such as MAC addresses and IPMI
credentials. There can be multiple instances of the API service.

The ironic-conductor process does the bulk of the work. For security reasons, it is advisable to place it
on an isolated host, since it is the only service that requires access to both the data plane and IPMI control
plane.

There can be multiple instances of the conductor service to support various class of drivers and also to
manage fail over. Instances of the conductor service should be on separate nodes. Each conductor can
itself run many drivers to operate heterogeneous hardware. This is depicted in the following figure.

Enroll Ironic RESTful API

S— Hardware
Cloud
Administrator

N

\I

\I

Ironic Conductor(s)

-
Database

Drivers Drivers L

The API exposes a list of supported drivers and the names of conductor hosts servicing them.

Interaction with OpenStack components
The Bare Metal service may, depending upon configuration, interact with several other OpenStack ser-
vices. This includes:

* the OpenStack Telemetry module (ceilometer) for consuming the IPMI metrics

* the OpenStack Identity service (keystone) for request authentication and to locate other Open-
Stack services

* the OpenStack Image service (glance) from which to retrieve images and image meta-data

* the OpenStack Networking service (neutron) for DHCP and network configuration

4 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

* the OpenStack Compute service (nova) works with the Bare Metal service and acts as a user-
facing API for instance management, while the Bare Metal service provides the admin/operator API
for hardware management. The OpenStack Compute service also provides scheduling facilities
(matching flavors <-> images <-> hardware), tenant quotas, IP assignment, and other services
which the Bare Metal service does not, in and of itself, provide.

* the OpenStack Object Storage (swift) provides temporary storage for the configdrive, user images,
deployment logs and inspection data.

Logical architecture

The diagram below shows the logical architecture. It shows the basic components that form the Bare
Metal service, the relation of the Bare Metal service with other OpenStack services and the logical flow
of a boot instance request resulting in the provisioning of a physical server.

Figure 1.2. Logical Architecture

Openstack Ironic Service

Ironic
Compute API

Nova Neutron
Scheduler

Ironic
Conductor

Drivers

Cinder,
Swift ...

A users request to boot an instance is passed to the Compute service via the Compute API and the
Compute Scheduler. The Compute service uses the ironic virt driver to hand over this request to the
Bare Metal service, where the request passes from the Bare Metal API, to the Conductor, to a Driver to
successfully provision a physical server for the user.

Just as the Compute service talks to various OpenStack services like Image, Network, Object Store etc to
provision a virtual machine instance, here the Bare Metal service talks to the same OpenStack services
for image, network and other resource needs to provision a bare metal instance.

See Understanding Bare Metal Deployment for a more detailed breakdown of a typical deployment pro-
cess.

2.1. Bare Metal Service Installation Guide 5

Ironic Documentation, Release 21.1.2.dev10

Associated projects

Optionally, one may wish to utilize the following associated projects for additional functionality:

python-ironicclient A command-line interface (CLI) and python bindings for interacting with the Bare
Metal service.

ironic-ui Horizon dashboard, providing graphical interface (GUI) for the Bare Metal APL

ironic-inspector An associated service which performs in-band hardware introspection by PXE booting
unregistered hardware into the ironic-python-agent ramdisk.

diskimage-builder A related project to help facilitate the creation of ramdisks and machine images,
such as those running the ironic-python-agent.

bifrost A set of Ansible playbooks that automates the task of deploying a base image onto a set of known
hardware using ironic in a standalone mode.

2.1.2 Reference Deploy Architectures
This section covers the way we recommend the Bare Metal service to be deployed and managed. It is

assumed that a reader has already gone through Bare Metal Service User Guide. It may be also useful to
try Deploying Ironic with DevStack first to get better familiar with the concepts used in this guide.

Common Considerations

This section covers considerations that are equally important to all described architectures.

e Components
* Hardware and drivers
— Power and management interfaces
— Boot interface
— Hardware specifications
* [mage types
* Networking
* HA and Scalability
— ironic-api
— ironic-conductor
* High availability
* Performance

% Disk space

— Other services

6 Chapter 2. Installation Guide

https://docs.openstack.org/python-ironicclient/zed/
https://docs.openstack.org/ironic-ui/zed/
https://docs.openstack.org/ironic-inspector/zed/
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/bifrost/zed/

Ironic Documentation, Release 21.1.2.dev10

Components

As explained in Bare Metal service overview, the Bare Metal service has three components.

* The Bare Metal API service (ironic-api) should be deployed in a similar way as the control
plane API services. The exact location will depend on the architecture used.

* The Bare Metal conductor service (ironic-conductor) is where most of the provisioning logic
lives. The following considerations are the most important when deciding on the way to deploy it:

— The conductor manages a certain proportion of nodes, distributed to it via a hash ring. This

includes constantly polling these nodes for their current power state and hardware sensor data
(if enabled and supported by hardware, see Collecting sensor data for an example).

The conductor needs access to the management controller of each node it manages.

The conductor co-exists with TFTP (for PXE) and/or HTTP (for iPXE) services that provide
the kernel and ramdisk to boot the nodes. The conductor manages them by writing files to
their root directories.

If serial console is used, the conductor launches console processes locally. If the
nova-serialproxy service (part of the Compute service) is used, it has to be able to reach
the conductors. Otherwise, they have to be directly accessible by the users.

There must be mutual connectivity between the conductor and the nodes being deployed or
cleaned. See Networking for details.

* The provisioning ramdisk which runs the ironic-python-agent service on start up.

Warning: The ironic-python-agent service is not intended to be used or executed any-
where other than a provisioning/cleaning/rescue ramdisk.

Hardware and drivers

The Bare Metal service strives to provide the best support possible for a variety of hardware. However,
not all hardware is supported equally well. It depends on both the capabilities of hardware itself and
the available drivers. This section covers various considerations related to the hardware interfaces. See
Enabling drivers and hardware types for a detailed introduction into hardware types and interfaces before

proceeding.

Power and management interfaces

The minimum set of capabilities that the hardware has to provide and the driver has to support is as

follows:

1. getting and setting the power state of the machine
2. getting and setting the current boot device

3. booting an image provided by the Bare Metal service (in the simplest case, support booting using
PXE and/or iPXE)

2.1.

Bare Metal Service Installation Guide 7

https://en.wikipedia.org/wiki/Out-of-band_management
https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://en.wikipedia.org/wiki/IPXE

Ironic Documentation, Release 21.1.2.dev10

Note: Strictly speaking, it is possible to make the Bare Metal service provision nodes without some of
these capabilities via some manual steps. It is not the recommended way of deployment, and thus it is
not covered in this guide.

Once you make sure that the hardware supports these capabilities, you need to find a suitable driver.
Most of enterprise-grade hardware has support for IPMI and thus can utilize /PMI driver. Some newer
hardware also supports Redfish driver. Several vendors provide more specific drivers that usually provide
additional capabilities. Check Drivers, Hardware Types and Hardware Interfaces to find the most suitable
one.

Boot interface

The boot interface of a node manages booting of both the deploy ramdisk and the user instances on
the bare metal node. The deploy interface orchestrates the deployment and defines how the image gets
transferred to the target disk.

The main alternatives are to use PXE/iPXE or virtual media - see Boot interfaces for a detailed expla-
nation. If a virtual media implementation is available for the hardware, it is recommended using it for
better scalability and security. Otherwise, it is recommended to use iPXE, when it is supported by target
hardware.

Hardware specifications

The Bare Metal services does not impose too many restrictions on the characteristics of hardware itself.
However, keep in mind that

* By default, the Bare Metal service will pick the smallest hard drive that is larger than 4 GiB for
deployment. Another hard drive can be used, but it requires setting root device hints.

Note: This device does not have to match the boot device set in BIOS (or similar firmware).

* The machines should have enough RAM to fit the deployment/cleaning ramdisk to run. The
minimum varies greatly depending on the way the ramdisk was built. For example, tinyipa, the
TinyCoreLinux-based ramdisk used in the CI, only needs 400 MiB of RAM, while ramdisks built
by diskimage-builder may require 3 GiB or more.

Image types

The Bare Metal service can deploy two types of images:

* Whole-disk images that contain a complete partitioning table with all necessary partitions and a
bootloader. Such images are the most universal, but may be harder to build.

* Partition images that contain only the root partition. The Bare Metal service will create the nec-
essary partitions and install a boot loader, if needed.

8 Chapter 2. Installation Guide

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface

Ironic Documentation, Release 21.1.2.dev10

Warning: Partition images are only supported with GNU/Linux operating systems.

For the Bare Metal service to set up the bootloader during deploy, your partition images must
container either GRUB2 bootloader or ready-to-use EFI artifacts.

Networking

There are several recommended network topologies to be used with the Bare Metal service. They are
explained in depth in specific architecture documentation. However, several considerations are common
for all of them:

* There has to be a provisioning network, which is used by nodes during the deployment process.
If allowed by the architecture, this network should not be accessible by end users, and should not
have access to the internet.

» There has to be a cleaning network, which is used by nodes during the cleaning process.

* There should be a rescuing network, which is used by nodes during the rescue process. It can be
skipped if the rescue process is not supported.

Note: In the majority of cases, the same network should be used for cleaning, provisioning and rescue
for simplicity.

Unless noted otherwise, everything in these sections apply to all three networks.

* The baremetal nodes must have access to the Bare Metal API while connected to the provision-
ing/cleaning/rescuing network.

Note: Only two endpoints need to be exposed there:

\

You may want to limit access from this network to only these endpoints, and make these endpoint
not accessible from other networks.

* Ifthe pxe boot interface (or any boot interface based on it) is used, then the baremetal nodes should
have untagged (access mode) connectivity to the provisioning/cleaning/rescuing networks. It al-
lows PXE firmware, which does not support VLANSs, to communicate with the services required
for provisioning.

Note: It depends on the network interface whether the Bare Metal service will handle it automat-
ically. Check the networking documentation for the specific architecture.

Sometimes it may be necessary to disable the spanning tree protocol delay on the switch - see
DHCP during PXE or iPXE is inconsistent or unreliable.

* The Baremetal nodes need to have access to any services required for provisioning/cleaning/rescue,
while connected to the provisioning/cleaning/rescuing network. This may include:

2.1. Bare Metal Service Installation Guide 9

Ironic Documentation, Release 21.1.2.dev10

— a TFTP server for PXE boot and also an HTTP server when iPXE is enabled

— either an HTTP server or the Object Storage service in case of the direct deploy interface
and some virtual media boot interfaces

* The Baremetal Conductors need to have access to the booted baremetal nodes during provision-
ing/cleaning/rescue. A conductor communicates with an internal API, provided by ironic-python-
agent, to conduct actions on nodes.

HA and Scalability
ironic-api

The Bare Metal API service is stateless, and thus can be easily scaled horizontally. It is recommended
to deploy it as a WSGI application behind e.g. Apache or another WSGI container.

Note: This service accesses the ironic database for reading entities (e.g. in response to GET /v1/nodes
request) and in rare cases for writing.

ironic-conductor
High availability

The Bare Metal conductor service utilizes the active/active HA model. Every conductor manages a
certain subset of nodes. The nodes are organized in a hash ring that tries to keep the load spread more
or less uniformly across the conductors. When a conductor is considered offline, its nodes are taken over
by other conductors. As a result of this, you need at least 2 conductor hosts for an HA deployment.

Performance

Conductors can be resource intensive, so it is recommended (but not required) to keep all conductors
separate from other services in the cloud. The minimum required number of conductors in a deployment
depends on several factors:

* the performance of the hardware where the conductors will be running,

* the speed and reliability of the management controller of the bare metal nodes (for example, han-
dling slower controllers may require having less nodes per conductor),

* the frequency, at which the management controllers are polled by the Bare Metal service (see the
sync_power_state_interval option),

* the bare metal driver used for nodes (see Hardware and drivers above),
* the network performance,

* the maximum number of bare metal nodes that are provisioned simultaneously (see the
max_concurrent_builds option for the Compute service).

10 Chapter 2. Installation Guide

https://en.wikipedia.org/wiki/Out-of-band_management

Ironic Documentation, Release 21.1.2.dev10

We recommend a target of 100 bare metal nodes per conductor for maximum reliability and performance.
There is some tolerance for a larger number per conductor. However, it was reported'” that reliability
degrades when handling approximately 300 bare metal nodes per conductor.

Disk space

Each conductor needs enough free disk space to cache images it uses. Depending on the combination of
the deploy interface and the boot option, the space requirements are different:

* The deployment kernel and ramdisk are always cached during the deployment.

* When [agent]image_download_source is set to http and Glance is used, the conductor will
download instances images locally to serve them from its HTTP server. Use swift to publish
images using temporary URLs and convert them on the nodes side.

When [agent]image_download_source is setto local, it will happen even for HTTP(s) URLSs.
For standalone case use http to avoid unnecessary caching of images.

In both cases a cached image is converted to raw if force_raw_images is True (the default).
See Deploy with custom HTTP servers and Streaming raw images for more details.

* When network boot is used, the instance image kernel and ramdisk are cached locally while the
instance is active.

Note: All images may be stored for some time after they are no longer needed. This is done to
speed up simultaneous deployments of many similar images. The caching can be configured via the
image_cache_size and image_cache_ttl configuration options in the pxe group.

Other services

When integrating with other OpenStack services, more considerations may need to be applied. This is
covered in other parts of this guide.

Scenarios

Small cloud with trusted tenants
Story

As an operator I would like to build a small cloud with both virtual and bare metal instances or add bare
metal provisioning to my existing small or medium scale single-site OpenStack cloud. The expected
number of bare metal machines is less than 100, and the rate of provisioning and unprovisioning is
expected to be low. All users of my cloud are trusted by me to not conduct malicious actions towards
each other or the cloud infrastructure itself.

! http://lists.openstack.org/pipermail/openstack-dev/2017-June/118033.html
2 http://lists.openstack.org/pipermail/openstack-dev/2017-June/118327.html

2.1. Bare Metal Service Installation Guide 11

http://lists.openstack.org/pipermail/openstack-dev/2017-June/118033.html
http://lists.openstack.org/pipermail/openstack-dev/2017-June/118327.html

Ironic Documentation, Release 21.1.2.dev10

As a user I would like to occasionally provision bare metal instances through the Compute API by se-
lecting an appropriate Compute flavor. I would like to be able to boot them from images provided by the
Image service or from volumes provided by the Volume service.

Components

This architecture assumes an OpenStack installation with the following components participating in the
bare metal provisioning:

* The Compute service manages bare metal instances.
* The Networking service provides DHCP for bare metal instances.
* The Image service provides images for bare metal instances.
The following services can be optionally used by the Bare Metal service:
* The Volume service provides volumes to boot bare metal instances from.

* The Bare Metal Introspection service simplifies enrolling new bare metal machines by conducting
in-band introspection.

Node roles

An OpenStack installation in this guide has at least these three types of nodes:
* A controller node hosts the control plane services.

* A compute node runs the virtual machines and hosts a subset of Compute and Networking com-
ponents.

* A block storage node provides persistent storage space for both virtual and bare metal nodes.

The compute and block storage nodes are configured as described in the installation guides of the Com-
pute service and the Volume service respectively. The controller nodes host the Bare Metal service
components.

Networking

The networking architecture will highly depend on the exact operating requirements. This guide expects
the following existing networks: control plane, storage and public. Additionally, two more networks will
be needed specifically for bare metal provisioning: bare metal and management.

Control plane network

The control plane network is the network where OpenStack control plane services provide their public
APL

The Bare Metal API will be served to the operators and to the Compute service through this network.

12 Chapter 2. Installation Guide

https://docs.openstack.org/arch-design/use-cases/use-case-general-compute.html
https://docs.openstack.org/nova/zed/
https://docs.openstack.org/neutron/zed/
https://docs.openstack.org/glance/zed/
https://docs.openstack.org/cinder/zed/
https://docs.openstack.org/ironic-inspector/zed/
https://docs.openstack.org/nova/zed/
https://docs.openstack.org/nova/zed/
https://docs.openstack.org/cinder/zed/

Ironic Documentation, Release 21.1.2.dev10

Public network

The public network is used in a typical OpenStack deployment to create floating IPs for outside access
to instances. Its role is the same for a bare metal deployment.

Note: Since, as explained below, bare metal nodes will be put on a flat provider network, it is also
possible to organize direct access to them, without using floating IPs and bypassing the Networking
service completely.

Bare metal network

The Bare metal network is a dedicated network for bare metal nodes managed by the Bare Metal service.

This architecture uses flat bare metal networking, in which both tenant traffic and technical traffic related
to the Bare Metal service operation flow through this one network. Specifically, this network will serve
as the provisioning, cleaning and rescuing network. It will also be used for introspection via the Bare
Metal Introspection service. See common networking considerations for an in-depth explanation of the
networks used by the Bare Metal service.

DHCP and boot parameters will be provided on this network by the Networking services DHCP agents.

For booting from volumes this network has to have a route to the storage network.

Management network

Management network is an independent network on which BMCs of the bare metal nodes are located.

The ironic-conductor process needs access to this network. The tenants of the bare metal nodes must
not have access to it.

Note: The direct deploy interface and certain Drivers, Hardware Types and Hardware Interfaces require
the management network to have access to the Object storage service backend.

Controllers

A controller hosts the OpenStack control plane services as described in the control plane design guide.
While this architecture allows using controllers in a non-HA configuration, it is recommended to have at
least three of them for HA. See HA and Scalability for more details.

2.1. Bare Metal Service Installation Guide 13

https://docs.openstack.org/arch-design/design-control-plane.html

Ironic Documentation, Release 21.1.2.dev10

Bare Metal services

The following components of the Bare Metal service are installed on a controller (see components of the
Bare Metal service):

* The Bare Metal API service either as a WSGI application or the ironic-api process. Typically,
a load balancer, such as HAProxy, spreads the load between the API instances on the controllers.

The API has to be served on the control plane network. Additionally, it has to be exposed to the
bare metal network for the ramdisk callback API.

* The ironic-conductor process. These processes work in active/active HA mode as explained
in HA and Scalability, thus they can be installed on all controllers. Each will handle a subset of
bare metal nodes.

The ironic-conductor processes have to have access to the following networks:
— control plane for interacting with other services
— management for contacting nodes BMCs
— bare metal for contacting deployment, cleaning or rescue ramdisks

* TFTP and HTTP service for booting the nodes. Each ironic-conductor process has to have a
matching TFTP and HTTP service. They should be exposed only to the bare metal network and
must not be behind a load balancer.

* The nova-compute process (from the Compute service). These processes work in active/active
HA mode when dealing with bare metal nodes, thus they can be installed on all controllers. Each
will handle a subset of bare metal nodes.

Note: There is no 1-1 mapping between ironic-conductor and nova-compute processes, as
they communicate only through the Bare Metal API service.

* The networking-baremetal ML2 plugin should be loaded into the Networking service to assist with
binding bare metal ports.

The ironic-neutron-agent service should be started as well.

* If the Bare Metal introspection is used, its ironic-inspector process has to be installed on all
controllers. Each such process works as both Bare Metal Introspection API and conductor service.
A load balancer should be used to spread the API load between controllers.

The API has to be served on the control plane network. Additionally, it has to be exposed to the
bare metal network for the ramdisk callback API.

Shared services

A controller also hosts two services required for the normal operation of OpenStack:

* Database service (MySQL/MariaDB is typically used, but other enterprise-grade database solu-
tions can be used as well).

All Bare Metal service components need access to the database service.

14 Chapter 2. Installation Guide

https://docs.openstack.org/networking-baremetal/zed/
https://docs.openstack.org/ironic-neutron-agent/zed/

Ironic Documentation, Release 21.1.2.dev10

* Message queue service (RabbitMQ is typically used, but other enterprise-grade message queue
brokers can be used as well).

Both Bare Metal API (WSGI application or ironic-api process) and the ironic-conductor
processes need access to the message queue service. The Bare Metal Introspection service does
not need it.

Note: These services are required for all OpenStack services. If youre adding the Bare Metal service to
your cloud, you may reuse the existing database and messaging queue services.

Bare metal nodes

Each bare metal node must be capable of booting from network, virtual media or other boot technology
supported by the Bare Metal service as explained in Boot interface. Each node must have one NIC on the
bare metal network, and this NIC (and only it) must be configured to be able to boot from network. This
is usually done in the BIOS setup or a similar firmware configuration utility. There is no need to alter the
boot order, as it is managed by the Bare Metal service. Other NICs, if present, will not be managed by
OpenStack.

The NIC on the bare metal network should have untagged connectivity to it, since PXE firmware usually
does not support VLANS - see Networking for details.

Storage

If your hardware and its bare metal driver support booting from remote volumes, please check the driver
documentation for information on how to enable it. It may include routing management and/or bare
metal networks to the storage network.

In case of the standard PXE boot, booting from remote volumes is done via iPXE. In that case, the
Volume storage backend must support iSCSI protocol, and the bare metal network has to have a route to
the storage network. See Boot From Volume for more details.

2.1.3 Install and configure the Bare Metal service
This section describes how to install and configure the Bare Metal service, code-named ironic, manually
from packages on one of the three popular families of Linux distributions.

Alternatively, you can use one of the numerous projects that install ironic. One of them is provided by
the bare metal team:

* Bifrost installs ironic in the standalone mode (without the rest of OpenStack).
More installation projects are developed by other OpenStack teams:

» Kolla can install ironic in containers as part of OpenStack.

* OpenStack-Ansible has a role to install ironic.

* TripleO uses ironic for provisioning bare metal nodes and can also be used to install ironic.

2.1. Bare Metal Service Installation Guide 15

https://en.wikipedia.org/wiki/ISCSI
https://docs.openstack.org/bifrost/latest/
https://docs.openstack.org/kolla-ansible/latest/reference/bare-metal/ironic-guide.html
https://docs.openstack.org/openstack-ansible-os_ironic/latest/
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/baremetal_overcloud.html

Ironic Documentation, Release 21.1.2.dev10

Contents

Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Bare Metal service for Red Hat Enterprise Linux
8 and CentOS 8.

Install and configure prerequisites

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines. You can configure these components to run on separate nodes or the same node. In
this guide, the components run on one node, typically the Compute Services compute node.

It assumes that the Identity, Image, Compute, and Networking services have already been set up.

Set up the database for Bare Metal

The Bare Metal service stores information in a database. This guide uses the MySQL database that is
used by other OpenStack services.

1. In MySQL, create an ironic database that is accessible by the ironic user. Replace
TRONIC_DBPASSWORD with a suitable password:

mysql -u root -p

Install and configure components

1. Install from packages (using dnf)

dnf install openstack-ironic-api openstack-ironic-conductor python3-
—ironicclient

2. Enable services

systemctl openstack-ironic-api openstack-ironic-conductor
systemctl start openstack-ironic-api openstack-ironic-conductor

The Bare Metal service is configured via its configuration file. This file is typically located at /etc/
ironic/ironic.conf.

Although some configuration options are mentioned here, it is recommended that you review all the
Sample Configuration File so that the Bare Metal service is configured for your needs.

It is possible to set up an ironic-api and an ironic-conductor services on the same host or different hosts.
Users also can add new ironic-conductor hosts to deal with an increasing number of bare metal nodes. But

16 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

the additional ironic-conductor services should be at the same version as that of existing ironic-conductor
services.

Configuring ironic-api service

1. The Bare Metal service stores information in a database. This guide uses the MySQL database
that is used by other OpenStack services.

Configure the location of the database via the connection option. In the following, replace
TRONIC_DBPASSWORD with the password of your ironic user, and replace DB_IP with the IP
address where the DB server is located:

2. Configure the ironic-api service to use the RabbitMQ message broker by setting the following
option. Replace RPC_* with appropriate address details and credentials of RabbitMQ server:

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authentication:

(continues on next page)

2.1. Bare Metal Service Installation Guide 17

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

If you use port other than the default 8089 for JSON RPC, you have to configure it, for example:

3. Configure the ironic-api service to use these credentials with the Identity service. Replace
PUBLIC_IDENTITY_TIP with the public IP of the Identity server, PRIVATE_IDENTITY_IP with
the private IP of the Identity server and replace IRONIC_PASSWORD with the password you chose
for the ironic user in the Identity service:

18 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

4. Create the Bare Metal service database tables:

$ ironic-dbsync --config-file /etc/ironic/ironic.conf create_schema

5. Restart the ironic-api service:

Fedora/RHELS&/CentOS8/SUSE:

Ubuntu:

Configuring ironic-api behind mod_wsgi

Bare Metal service comes with an example file for configuring the ironic-api service to run behind
Apache with mod_wsgi.

Note: This is optional, the ironic APIs can be run using independent scripts that provide HTTP servers.
But it is generally considered more performant and flexible to run them using a generic HT TP server that
supports WSGI (such as Apache or nginx).

1. Install the apache service:

Fedora/RHELS8/CentOS8:

Debian/Ubuntu:

SUSE:

2. Download the etc/apache2/ironic file from the Ironic project tree and copy it to the apache
sites:

Fedora/RHELS&/CentOS8:

Debian/Ubuntu:

SUSE:

3. Edit the recently copied <apache-configuration-dir>/ironic.conf:

2.1. Bare Metal Service Installation Guide 19

https://opendev.org/openstack/ironic/raw/branch/master/etc/apache2/ironic

Ironic Documentation, Release 21.1.2.dev10

1. Modify the WSGIDaemonProcess, APACHE_RUN_USER and APACHE_RUN_GROUP directives
to set the user and group values to an appropriate user on your server.

2. Modify the WSGIScriptAlias directive to point to the automatically generated
ironic-api-wsgi script that is located in JRONIC_BIN directory.

3. Modify the Directory directive to set the path to the Ironic API code.

4. Modify the ErrorLog and CustomLog to redirect the logs to the right directory (on Red Hat
systems this is usually under /var/log/httpd).

4. Stop and disable the ironic-api service. If ironic-api service is started, the port will be occupied.
Apach will fail to start:

Fedora/RHELS&/CentOS8/SUSE:

Debian/Ubuntu:

5. Enable the apache ironic in site and reload:

Fedora/RHELS&/CentOSS:

Debian/Ubuntu:

SUSE:

Note: The file ironic-api-wsgi is automatically generated by pbr and is available in IRONIC_BIN
directory. It should not be modified.

Configure another WSGI container

A slightly different approach has to be used for WSGI containers that cannot use ironic-api-wsgi.
For example, for gunicorn:

If you want to pass a configuration file, use:

20 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Configuring ironic-conductor service

1. Replace HOST_IP with IP of the conductor host.

Note: If a conductor host has multiple IPs, my_ip should be set to the IP which is on the same
network as the bare metal nodes.

2. Configure the location of the database. Ironic-conductor should use the same configuration as
ironic-api. Replace TRONIC_DBPASSWORD with the password of your ironic user, and replace
DB_IP with the IP address where the DB server is located:

3. Configure the ironic-conductor service to use the RabbitMQ message broker by setting the follow-
ing option. Ironic-conductor should use the same configuration as ironic-api. Replace RPC_* with
appropriate address details and credentials of RabbitMQ server:

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authenticating incom-
ing requests (can be the same as for the API):

(continues on next page)

2.1. Bare Metal Service Installation Guide 21

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

You can optionally change the host and the port the JSON RPC service will bind to, for example:

Warning: Hostnames of ironic-conductor machines must be resolvable by ironic-api services
when JSON RPC is used.

4. Configure credentials for accessing other OpenStack services.

In order to communicate with other OpenStack services, the Bare Metal service needs to use ser-
vice users to authenticate to the OpenStack Identity service when making requests to other services.
These users credentials have to be configured in each configuration file section related to the cor-
responding service:

* [neutron] - to access the OpenStack Networking service

* [glance] - to access the OpenStack Image service

* [swift] - to access the OpenStack Object Storage service
* [cinder] - to access the OpenStack Block Storage service

* [inspector] - to access the OpenStack Bare Metal Introspection service

22 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

* [service_catalog] - a special section holding credentials the Bare Metal service will use

to discover its own API URL endpoint as registered in the OpenStack Identity service catalog.

For simplicity, you can use the same service user for all services. For backward compatibility,
this should be the same user configured in the [keystone_authtoken] section for the ironic-api
service (see Configuring ironic-api service). However, this is not necessary, and you can create
and configure separate service users for each service.

Under the hood, Bare Metal service uses keystoneauth library together with Authentication
plugin, Session and Adapter concepts provided by it to instantiate service clients. Please refer
to Keystoneauth documentation for supported plugins, their available options as well as Session-
and Adapter-related options for authentication, connection and endpoint discovery respectively.

In the example below, authentication information for user to access the OpenStack Networking
service is configured to use:

Networking service is deployed in the Identity service region named RegionTwo, with only
its public endpoint interface registered in the service catalog.

HTTPS connection with specific CA SSL certificate when making requests
the same service user as configured for ironic-api service

dynamic password authentication plugin that will discover appropriate version of Identity
service API based on other provided options

— replace IDENTITY_TIP with the IP of the Identity server, and replace TRONIC_PASSWORD
with the password you chose for the ironic user in the Identity service

(continues on next page)

2.1.

Bare Metal Service Installation Guide 23

https://docs.openstack.org/keystoneauth/latest/

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

By default, in order to communicate with another service, the Bare Metal service will attempt to
discover an appropriate endpoint for that service via the Identity services service catalog. The
relevant configuration options from that service group in the Bare Metal service configuration file
are used for this purpose. If you want to use a different endpoint for a particular service, specify
this via the endpoint_override configuration option of that service group, in the Bare Metal
services configuration file. Taking the previous Networking service example, this would be

(Replace <NEUTRON_API_ADDRESS> with actual address of a specific Networking service end-
point.)

. Configure enabled drivers and hardware types as described in Enabling drivers and hardware types.

A. If you enabled any driver that uses Direct deploy, Swift backend for the Image service must
be installed and configured, see Configure the Image service for temporary URLs. Ceph
Object Gateway (RADOS Gateway) is also supported as the Image services backend, see
Ceph Object Gateway support.

. Configure the network for ironic-conductor service to perform node cleaning, see Node cleaning

from the admin guide.

. Restart the ironic-conductor service:

Fedora/RHEL7/CentOS7/SUSE:

Ubuntu:

24

Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Configuring single-process ironic

As an alternative to starting separate API and conductor instances, you can start ironic services that
combine an API and a conductor in the same process. This may be particularly beneficial in environments
with limited resources and low number of nodes to handle.

Note: This feature is available starting with the Yoga release series.

1. Start with setting up the environment as described in both Configuring ironic-api service and Con-
figuring ironic-conductor service, but do not start any services. Merge configuration options into
a single configuration file.

Note: Any RPC settings will only take effect if you have more than one combined service started
or if you have additional conductors.

If you dont plan to have more than one conductor, you can disable the RPC completely:

2. Stop existing services if they are already started:

Fedora/RHEL/CentOS/SUSE:

Ubuntu:

3. Start or restart the ironic service:

Fedora/RHELS8/CentOS8/SUSE:

Ubuntu:

2.1. Bare Metal Service Installation Guide 25

Ironic Documentation, Release 21.1.2.dev10

Install and configure for Ubuntu

This section describes how to install and configure the Bare Metal service for Ubuntu 14.04 (LTS).

Install and configure prerequisites

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines. You can configure these components to run on separate nodes or the same node. In
this guide, the components run on one node, typically the Compute Services compute node.

It assumes that the Identity, Image, Compute, and Networking services have already been set up.

Set up the database for Bare Metal

The Bare Metal service stores information in a database. This guide uses the MySQL database that is
used by other OpenStack services.

1. In MySQL, create an ironic database that is accessible by the ironic user. Replace
TRONIC_DBPASSWORD with a suitable password:

mysql -u root -p

Install and configure components

1. Install from packages (using apt-get)

apt-get install ironic-api ironic-conductor python3-ironicclient

2. Enable services
Services are enabled by default on Ubuntu.

The Bare Metal service is configured via its configuration file. This file is typically located at /etc/
ironic/ironic.conf.

Although some configuration options are mentioned here, it is recommended that you review all the
Sample Configuration File so that the Bare Metal service is configured for your needs.

It is possible to set up an ironic-api and an ironic-conductor services on the same host or different hosts.
Users also can add new ironic-conductor hosts to deal with an increasing number of bare metal nodes. But
the additional ironic-conductor services should be at the same version as that of existing ironic-conductor
services.

26 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Configuring ironic-api service

1. The Bare Metal service stores information in a database. This guide uses the MySQL database
that is used by other OpenStack services.

Configure the location of the database via the connection option. In the following, replace
TRONIC_DBPASSWORD with the password of your ironic user, and replace DB_IP with the IP
address where the DB server is located:

2. Configure the ironic-api service to use the RabbitMQ message broker by setting the following
option. Replace RPC_* with appropriate address details and credentials of RabbitMQ server:

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authentication:

(continues on next page)

2.1. Bare Metal Service Installation Guide 27

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

If you use port other than the default 8089 for JSON RPC, you have to configure it, for example:

3. Configure the ironic-api service to use these credentials with the Identity service. Replace
PUBLIC_IDENTITY_IP with the public IP of the Identity server, PRIVATE_IDENTITY_IP with
the private IP of the Identity server and replace IRONIC_PASSWORD with the password you chose
for the ironic user in the Identity service:

4. Create the Bare Metal service database tables:

28

Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

$ ironic-dbsync --config-file /etc/ironic/ironic.conf create_schema

5. Restart the ironic-api service:

Fedora/RHELS8/CentOS8/SUSE:

Ubuntu:

Configuring ironic-api behind mod_wsgi

Bare Metal service comes with an example file for configuring the ironic-api service to run behind
Apache with mod_wsgi.

Note: This is optional, the ironic APIs can be run using independent scripts that provide HTTP servers.
But it is generally considered more performant and flexible to run them using a generic HT TP server that
supports WSGI (such as Apache or nginx).

1. Install the apache service:

Fedora/RHELS&/CentOSS:

Debian/Ubuntu:

SUSE:

2. Download the etc/apache2/ironic file from the Ironic project tree and copy it to the apache
sites:

Fedora/RHEL8/CentOS8:

Debian/Ubuntu:

SUSE:

3. Edit the recently copied <apache-configuration-dir>/ironic.conf:

2.1. Bare Metal Service Installation Guide 29

https://opendev.org/openstack/ironic/raw/branch/master/etc/apache2/ironic

Ironic Documentation, Release 21.1.2.dev10

1. Modify the WSGIDaemonProcess, APACHE_RUN_USER and APACHE_RUN_GROUP directives
to set the user and group values to an appropriate user on your server.

2. Modify the WSGIScriptAlias directive to point to the automatically generated
ironic-api-wsgi script that is located in JRONIC_BIN directory.

3. Modify the Directory directive to set the path to the Ironic API code.

4. Modify the ErrorLog and CustomLog to redirect the logs to the right directory (on Red Hat
systems this is usually under /var/log/httpd).

4. Stop and disable the ironic-api service. If ironic-api service is started, the port will be occupied.
Apach will fail to start:

Fedora/RHELS&/CentOS8/SUSE:

Debian/Ubuntu:

5. Enable the apache ironic in site and reload:

Fedora/RHELS&/CentOSS:

Debian/Ubuntu:

SUSE:

Note: The file ironic-api-wsgi is automatically generated by pbr and is available in IRONIC_BIN
directory. It should not be modified.

Configure another WSGI container

A slightly different approach has to be used for WSGI containers that cannot use ironic-api-wsgi.
For example, for gunicorn:

If you want to pass a configuration file, use:

30 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Configuring ironic-conductor service

1. Replace HOST_IP with IP of the conductor host.

Note: If a conductor host has multiple IPs, my_ip should be set to the IP which is on the same
network as the bare metal nodes.

2. Configure the location of the database. Ironic-conductor should use the same configuration as
ironic-api. Replace TRONIC_DBPASSWORD with the password of your ironic user, and replace
DB_IP with the IP address where the DB server is located:

3. Configure the ironic-conductor service to use the RabbitMQ message broker by setting the follow-
ing option. Ironic-conductor should use the same configuration as ironic-api. Replace RPC_* with
appropriate address details and credentials of RabbitMQ server:

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authenticating incom-
ing requests (can be the same as for the API):

(continues on next page)

2.1. Bare Metal Service Installation Guide 31

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

You can optionally change the host and the port the JSON RPC service will bind to, for example:

Warning: Hostnames of ironic-conductor machines must be resolvable by ironic-api services
when JSON RPC is used.

4. Configure credentials for accessing other OpenStack services.

In order to communicate with other OpenStack services, the Bare Metal service needs to use ser-
vice users to authenticate to the OpenStack Identity service when making requests to other services.
These users credentials have to be configured in each configuration file section related to the cor-
responding service:

* [neutron] - to access the OpenStack Networking service

* [glance] - to access the OpenStack Image service

* [swift] - to access the OpenStack Object Storage service
* [cinder] - to access the OpenStack Block Storage service

* [inspector] - to access the OpenStack Bare Metal Introspection service

32 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

* [service_catalog] - a special section holding credentials the Bare Metal service will use

to discover its own API URL endpoint as registered in the OpenStack Identity service catalog.

For simplicity, you can use the same service user for all services. For backward compatibility,
this should be the same user configured in the [keystone_authtoken] section for the ironic-api
service (see Configuring ironic-api service). However, this is not necessary, and you can create
and configure separate service users for each service.

Under the hood, Bare Metal service uses keystoneauth library together with Authentication
plugin, Session and Adapter concepts provided by it to instantiate service clients. Please refer
to Keystoneauth documentation for supported plugins, their available options as well as Session-
and Adapter-related options for authentication, connection and endpoint discovery respectively.

In the example below, authentication information for user to access the OpenStack Networking
service is configured to use:

Networking service is deployed in the Identity service region named RegionTwo, with only
its public endpoint interface registered in the service catalog.

HTTPS connection with specific CA SSL certificate when making requests
the same service user as configured for ironic-api service

dynamic password authentication plugin that will discover appropriate version of Identity
service API based on other provided options

— replace IDENTITY_TIP with the IP of the Identity server, and replace TRONIC_PASSWORD
with the password you chose for the ironic user in the Identity service

(continues on next page)

2.1.

Bare Metal Service Installation Guide 33

https://docs.openstack.org/keystoneauth/latest/

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

By default, in order to communicate with another service, the Bare Metal service will attempt to
discover an appropriate endpoint for that service via the Identity services service catalog. The
relevant configuration options from that service group in the Bare Metal service configuration file
are used for this purpose. If you want to use a different endpoint for a particular service, specify
this via the endpoint_override configuration option of that service group, in the Bare Metal
services configuration file. Taking the previous Networking service example, this would be

(Replace <NEUTRON_API_ADDRESS> with actual address of a specific Networking service end-
point.)

. Configure enabled drivers and hardware types as described in Enabling drivers and hardware types.

A. If you enabled any driver that uses Direct deploy, Swift backend for the Image service must
be installed and configured, see Configure the Image service for temporary URLs. Ceph
Object Gateway (RADOS Gateway) is also supported as the Image services backend, see
Ceph Object Gateway support.

. Configure the network for ironic-conductor service to perform node cleaning, see Node cleaning

from the admin guide.

. Restart the ironic-conductor service:

Fedora/RHEL7/CentOS7/SUSE:

Ubuntu:

34

Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Configuring single-process ironic

As an alternative to starting separate API and conductor instances, you can start ironic services that
combine an API and a conductor in the same process. This may be particularly beneficial in environments
with limited resources and low number of nodes to handle.

Note: This feature is available starting with the Yoga release series.

1. Start with setting up the environment as described in both Configuring ironic-api service and Con-
figuring ironic-conductor service, but do not start any services. Merge configuration options into
a single configuration file.

Note: Any RPC settings will only take effect if you have more than one combined service started
or if you have additional conductors.

If you dont plan to have more than one conductor, you can disable the RPC completely:

2. Stop existing services if they are already started:

Fedora/RHEL/CentOS/SUSE:

Ubuntu:

3. Start or restart the ironic service:

Fedora/RHELS8/CentOS8/SUSE:

Ubuntu:

2.1. Bare Metal Service Installation Guide 35

Ironic Documentation, Release 21.1.2.dev10

Install and configure for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Bare Metal service for openSUSE Leap 42.2 and
SUSE Linux Enterprise Server 12 SP2.

Note: Installation of the Bare Metal service on openSUSE and SUSE Linux Enterprise Server is not
officially supported. Nevertheless, installation should be possible.

Install and configure prerequisites

The Bare Metal service is a collection of components that provides support to manage and provision
physical machines. You can configure these components to run on separate nodes or the same node. In
this guide, the components run on one node, typically the Compute Services compute node.

It assumes that the Identity, Image, Compute, and Networking services have already been set up.

Set up the database for Bare Metal

The Bare Metal service stores information in a database. This guide uses the MySQL database that is
used by other OpenStack services.

1. In MySQL, create an ironic database that is accessible by the ironic user. Replace
TRONIC_DBPASSWORD with a suitable password:

mysql -u root -p

Install and configure components

1. Install from packages

zypper install openstack-ironic-api openstack-ironic-conductor python3-
—ironicclient

2. Enable services

systemctl openstack-ironic-api openstack-ironic-conductor
systemctl start openstack-ironic-api openstack-ironic-conductor

The Bare Metal service is configured via its configuration file. This file is typically located at /etc/
ironic/ironic.conf.

Although some configuration options are mentioned here, it is recommended that you review all the
Sample Configuration File so that the Bare Metal service is configured for your needs.

36 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

It is possible to set up an ironic-api and an ironic-conductor services on the same host or different hosts.
Users also can add new ironic-conductor hosts to deal with an increasing number of bare metal nodes. But
the additional ironic-conductor services should be at the same version as that of existing ironic-conductor
services.

Configuring ironic-api service

1. The Bare Metal service stores information in a database. This guide uses the MySQL database
that is used by other OpenStack services.

Configure the location of the database via the connection option. In the following, replace
TIRONIC_DBPASSWORD with the password of your ironic user, and replace DB_IP with the IP
address where the DB server is located:

2. Configure the ironic-api service to use the RabbitMQ message broker by setting the following
option. Replace RPC_* with appropriate address details and credentials of RabbitMQ server:

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authentication:

(continues on next page)

2.1. Bare Metal Service Installation Guide 37

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

If you use port other than the default 8089 for JSON RPC, you have to configure it, for example:

3. Configure the ironic-api service to use these credentials with the Identity service. Replace
PUBLIC_IDENTITY_IP with the public IP of the Identity server, PRIVATE_IDENTITY_IP with
the private IP of the Identity server and replace IRONIC_PASSWORD with the password you chose
for the ironic user in the Identity service:

(continues on next page)

38

Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

4. Create the Bare Metal service database tables:

$ ironic-dbsync --config-file /etc/ironic/ironic.conf create_schema

5. Restart the ironic-api service:

Fedora/RHELS8/CentOS8/SUSE:

Ubuntu:

Configuring ironic-api behind mod_wsgi

Bare Metal service comes with an example file for configuring the ironic-api service to run behind
Apache with mod_wsgi.

Note: This is optional, the ironic APIs can be run using independent scripts that provide HT TP servers.
But it is generally considered more performant and flexible to run them using a generic HT TP server that
supports WSGI (such as Apache or nginx).

1. Install the apache service:

Fedora/RHEL8/CentOS8:

Debian/Ubuntu:

SUSE:

2. Download the etc/apache2/ironic file from the Ironic project tree and copy it to the apache
sites:

Fedora/RHELS8/CentOS8:

Debian/Ubuntu:

2.1. Bare Metal Service Installation Guide 39

https://opendev.org/openstack/ironic/raw/branch/master/etc/apache2/ironic

Ironic Documentation, Release 21.1.2.dev10

SUSE:

3. Edit the recently copied <apache-configuration-dir>/ironic.conf:

1. Modify the WSGIDaemonProcess, APACHE_RUN_USER and APACHE_RUN_GROUP directives
to set the user and group values to an appropriate user on your server.

2. Modify the WSGIScriptAlias directive to point to the automatically generated
ironic-api-wsgi script that is located in JRONIC_BIN directory.

3. Modify the Directory directive to set the path to the Ironic API code.

4. Modify the ErrorLog and CustomLog to redirect the logs to the right directory (on Red Hat
systems this is usually under /var/log/httpd).

4. Stop and disable the ironic-api service. If ironic-api service is started, the port will be occupied.
Apach will fail to start:

Fedora/RHELS8/CentOS8/SUSE:

Debian/Ubuntu:

5. Enable the apache ironic in site and reload:

Fedora/RHELS8/CentOSS:

Debian/Ubuntu:

SUSE:

Note: The file ironic-api-wsgi is automatically generated by pbr and is available in IRONIC_BIN
directory. It should not be modified.

40 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Configure another WSGI container

A slightly different approach has to be used for WSGI containers that cannot use ironic-api-wsgi.
For example, for gunicorn:

If you want to pass a configuration file, use:

Configuring ironic-conductor service

1. Replace HOST_IP with IP of the conductor host.

Note: If a conductor host has multiple IPs, my_ip should be set to the IP which is on the same
network as the bare metal nodes.

2. Configure the location of the database. Ironic-conductor should use the same configuration as
ironic-api. Replace TRONIC_DBPASSWORD with the password of your ironic user, and replace
DB_IP with the IP address where the DB server is located:

3. Configure the ironic-conductor service to use the RabbitMQ message broker by setting the follow-
ing option. Ironic-conductor should use the same configuration as ironic-api. Replace RPC_* with
appropriate address details and credentials of RabbitMQ server:

2.1. Bare Metal Service Installation Guide 41

Ironic Documentation, Release 21.1.2.dev10

Alternatively, you can use JSON RPC for interactions between ironic-conductor and ironic-api.
Enable it in the configuration and provide the keystone credentials to use for authenticating incom-
ing requests (can be the same as for the API):

You can optionally change the host and the port the JSON RPC service will bind to, for example:

Warning: Hostnames of ironic-conductor machines must be resolvable by ironic-api services
when JSON RPC is used.

4. Configure credentials for accessing other OpenStack services.

In order to communicate with other OpenStack services, the Bare Metal service needs to use ser-
vice users to authenticate to the OpenStack Identity service when making requests to other services.
These users credentials have to be configured in each configuration file section related to the cor-
responding service:

* [neutron] - to access the OpenStack Networking service

42 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

* [glance] - to access the OpenStack Image service

* [swift] - to access the OpenStack Object Storage service

* [cinder] - to access the OpenStack Block Storage service

* [inspector] - to access the OpenStack Bare Metal Introspection service

* [service_catalog] - a special section holding credentials the Bare Metal service will use
to discover its own API URL endpoint as registered in the OpenStack Identity service catalog.

For simplicity, you can use the same service user for all services. For backward compatibility,
this should be the same user configured in the [keystone_authtoken] section for the ironic-api
service (see Configuring ironic-api service). However, this is not necessary, and you can create
and configure separate service users for each service.

Under the hood, Bare Metal service uses keystoneauth library together with Authentication
plugin, Session and Adapter concepts provided by it to instantiate service clients. Please refer
to Keystoneauth documentation for supported plugins, their available options as well as Session-
and Adapter-related options for authentication, connection and endpoint discovery respectively.

In the example below, authentication information for user to access the OpenStack Networking
service is configured to use:

» Networking service is deployed in the Identity service region named RegionTwo, with only
its public endpoint interface registered in the service catalog.

e HTTPS connection with specific CA SSL certificate when making requests
* the same service user as configured for ironic-api service

* dynamic password authentication plugin that will discover appropriate version of Identity
service API based on other provided options

— replace IDENTITY_IP with the IP of the Identity server, and replace IRONIC_PASSWORD
with the password you chose for the ironic user in the Identity service

(continues on next page)

2.1. Bare Metal Service Installation Guide 43

https://docs.openstack.org/keystoneauth/latest/

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

By default, in order to communicate with another service, the Bare Metal service will attempt to
discover an appropriate endpoint for that service via the Identity services service catalog. The
relevant configuration options from that service group in the Bare Metal service configuration file
are used for this purpose. If you want to use a different endpoint for a particular service, specify
this via the endpoint_override configuration option of that service group, in the Bare Metal
services configuration file. Taking the previous Networking service example, this would be

(Replace <NEUTRON_API_ADDRESS> with actual address of a specific Networking service end-
point.)

. Configure enabled drivers and hardware types as described in Enabling drivers and hardware types.

A. If you enabled any driver that uses Direct deploy, Swift backend for the Image service must
be installed and configured, see Configure the Image service for temporary URLs. Ceph
Object Gateway (RADOS Gateway) is also supported as the Image services backend, see
Ceph Object Gateway support.

. Configure the network for ironic-conductor service to perform node cleaning, see Node cleaning

from the admin guide.

. Restart the ironic-conductor service:

Fedora/RHEL7/CentOS7/SUSE:

Ubuntu:

44

Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Configuring single-process ironic

As an alternative to starting separate API and conductor instances, you can start ironic services that
combine an API and a conductor in the same process. This may be particularly beneficial in environments
with limited resources and low number of nodes to handle.

Note: This feature is available starting with the Yoga release series.

1. Start with setting up the environment as described in both Configuring ironic-api service and Con-
figuring ironic-conductor service, but do not start any services. Merge configuration options into
a single configuration file.

Note: Any RPC settings will only take effect if you have more than one combined service started
or if you have additional conductors.

If you dont plan to have more than one conductor, you can disable the RPC completely:

2. Stop existing services if they are already started:

Fedora/RHEL/CentOS/SUSE:

Ubuntu:

3. Start or restart the ironic service:

Fedora/RHELS8/CentOS8/SUSE:

Ubuntu:

2.1. Bare Metal Service Installation Guide 45

Ironic Documentation, Release 21.1.2.dev10

2.1.4 Building or downloading a deploy ramdisk image

Ironic depends on having an image with the ironic-python-agent (IPA) service running on it for controlling
and deploying bare metal nodes.

Two kinds of images are published on every commit from every branch of ironic-python-agent (IPA)

* DIB images are suitable for production usage and can be downloaded from https://tarballs.
openstack.org/ironic-python-agent/dib/files/.

— For Train and older use CentOS 7 images.
— For Ussuri and up to Yoga use CentOS 8 images.

— For Zed and newer use CentOS 9 images.

Warning: CentOS 7 master images are no longer updated and must not be used.

Warning: The published images will not work for dhcp-less deployments since the simple-init
element is not present. Check the DIB documentation to see how to build the image.

» TinyIPA images are suitable for CI and testing environments and can be downloaded from https:
/ltarballs.openstack.org/ironic-python-agent/tinyipa/files/.

Building from source

Check the ironic-python-agent-builder project for information on how to build ironic-python-agent
ramdisks.

2.1.5 Integration with other OpenStack services

Configure the Identity service for the Bare Metal service

1. Create the Bare Metal service user (for example, ironic). The service uses this to authenticate
with the Identity service. Use the service tenant and give the user the admin role:

openstack user create --password IRONIC_PASSWORD
--email ironic@example.com ironic
openstack role add --project service --user ironic admin

2. You must register the Bare Metal service with the Identity service so that other OpenStack services
can locate it. To register the service:

openstack service create --name ironic --description
baremetal

3. Use the id property that is returned from the Identity service when registering the service (above),
to create the endpoint, and replace IRONIC_NODE with your Bare Metal services API node:

46 Chapter 2. Installation Guide

https://docs.openstack.org/ironic-python-agent/zed/
https://docs.openstack.org/ironic-python-agent/zed/
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://docs.openstack.org/diskimage-builder/latest/elements/simple-init/README.html
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/tinyipa.html
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/
https://docs.openstack.org/ironic-python-agent-builder/latest/

Ironic Documentation, Release 21.1.2.dev10

openstack endpoint create --region RegionOne
baremetal admin http:// 16385

openstack endpoint create --region RegionOne
baremetal public http:// 16385

openstack endpoint create --region RegionOne
baremetal internal http:// 16385

4. You may delegate limited privileges related to the Bare Metal service to your Users by creat-
ing Roles with the OpenStack Identity service. By default, the Bare Metal service expects the
baremetal_admin and baremetal observer Roles to exist, in addition to the default admin Role.
There is no negative consequence if you choose not to create these Roles. They can be created
with the following commands:

openstack role create baremetal_admin
openstack role create baremetal_observer

If you choose to customize the names of Roles used with the Bare Metal service, do so by changing
the is_member, is_observer, and is_admin policy settings in /etc/ironic/policy.yaml.

More complete documentation on managing Users and Roles within your OpenStack deployment
are outside the scope of this document, but may be found here.

5. You can further restrict access to the Bare Metal service by creating a separate baremetal Project,
so that Bare Metal resources (Nodes, Ports, etc) are only accessible to members of this Project:

openstack project create baremetal

At this point, you may grant read-only access to the Bare Metal service API without granting any
other access by issuing the following commands:

openstack user create
--domain default --project-domain default --project baremetal
--password PASSWORD USERNAME

openstack role add
--user-domain default --project-domain default --project baremetal
--user USERNAME baremetal_observer

6. Further documentation is available elsewhere for the openstack command-line client and the
Identity service. A policy.yaml.sample file, which enumerates the services default policies, is
provided for your convenience with the Bare Metal Service.

Configure the Compute service to use the Bare Metal service

The Compute service needs to be configured to use the Bare Metal services driver. The configuration
file for the Compute service is typically located at /etc/nova/nova.conf.

Note: As of the Newton release, it is possible to have multiple nova-compute services running the ironic
virtual driver (in nova) to provide redundancy. Bare metal nodes are mapped to the services via a hash
ring. If a service goes down, the available bare metal nodes are remapped to different services.

2.1. Bare Metal Service Installation Guide 47

https://docs.openstack.org/keystone/zed/admin/identity-concepts.html#user-management
https://docs.openstack.org/python-openstackclient/zed/cli/authentication.html
https://docs.openstack.org/keystone/zed/admin/cli-manage-projects-users-and-roles.html

Ironic Documentation, Release 21.1.2.dev10

Once active, a node will stay mapped to the same nova-compute even when it goes down. The node is
unable to be managed through the Compute API until the service responsible returns to an active state.

The following configuration file must be modified on the Compute services controller nodes and compute
nodes.

1. Change these configuration options in the Compute service configuration file (for example, /etc/
nova/nova.conf):

Note: The alternative to setting the discover_hosts_in_cells_interval option is to run the
following command on any Compute controller node after each node is enrolled:

2. Consider enabling the following option on controller nodes:

(continues on next page)

48 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Enabling this option is beneficial as it reduces re-scheduling events
for ironic nodes when scheduling is based on resource classes,

especially for mixed hypervisor case with host_subset_size = 1.

However enabling it will also make packing of VMs on hypervisors

less dense even when scheduling weights are completely disabled.
#shuffle_best_same_weighed_hosts = false

. Carefully consider the following option:

[compute]

This option will cause nova-compute to set itself to a disabled state
if a certain number of consecutive build failures occur. This will
prevent the scheduler from continuing to send builds to a compute
service that is consistently failing. In the case of bare metal
provisioning, however, a compute service is rarely the cause of build
failures. Furthermore, bare metal nodes, managed by a disabled
compute service, will be remapped to a different one. That may cause
the second compute service to also be disabled, and so on, until no
compute services are active.

If this is not the desired behavior, consider increasing this value or
setting it to 0 to disable this behavior completely.
#consecutive_build_service_disable_threshold = 10

S R R S R R R TR R S

. Change these configuration options in the ironic section. Replace:

* TRONIC_PASSWORD with the password you chose for the ironic user in the Identity Service
* TRONIC_NODE with the hostname or IP address of the ironic-api node
e IDENTITY_IP with the IP of the Identity server

[ironic]

Ironic authentication type
auth_type=password

Keystone API endpoint
auth_url=http://IDENTITY_IP:5000/v3

Ironic keystone project name
project_name=service

Ironic keystone admin name
username=ironic

Ironic keystone admin password
password=IRONIC_PASSWORD

Ironic keystone project domain
or set project_domain_id

(continues on next page)

2.1.

Bare Metal Service Installation Guide 49

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

5. On the Compute services controller nodes, restart the nova-scheduler process:

6. On the Compute services compute nodes, restart the nova-compute process:

Configure the Networking service for bare metal provisioning

You need to configure Networking so that the bare metal server can communicate with the Networking
service for DHCP, PXE boot and other requirements. This section covers configuring Networking for a
single flat network for bare metal provisioning.

It is recommended to use the baremetal ML2 mechanism driver and L2 agent for proper integration
with the Networking service. Documentation regarding installation and configuration of the baremetal
mechanism driver and L2 agent is available here.

For use with routed networks the baremetal ML2 components are required.

Note: When the baremetal ML2 components are not used, ports in the Networking service will have
status: DOWN, and binding_vif_type: binding_failed. This was always the status for Bare Metal service
flat network interface ports prior to the introduction of the baremetal ML2 integration. For a non-routed
network, bare metal servers can still be deployed and are functional, despite this port binding state in the
Networking service.

You will also need to provide Bare Metal service with the MAC address(es) of each node that it is provi-
sioning; Bare Metal service in turn will pass this information to Networking service for DHCP and PXE
boot configuration. An example of this is shown in the Enrollment section.

1. Install the networking-baremetal ML2 mechanism driver and L2 agent in the Networking service.

2. Edit /etc/neutron/plugins/ml2/ml2_conf.ini and modify these:

(continues on next page)

50 Chapter 2. Installation Guide

https://docs.openstack.org/networking-baremetal/zed/index.html
https://docs.openstack.org/neutron/zed/admin/config-routed-networks

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

3. Restart the neutron-server service, to load the new configuration.

4. Create and edit /etc/neutron/plugins/ml2/ironic_neutron_agent.ini and add the re-
quired configuration. For example:

5. Make sure the ironic-neutron-agent service is started.

6. If neutron-openvswitch-agent runs with ovs_neutron_plugin.ini as the input config-file, edit
ovs_neutron_plugin.ini to configure the bridge mappings by adding the [ovs] section de-
scribed in the previous step, and restart the neutron-openvswitch-agent.

7. Add the integration bridge to Open vSwitch:

ovs-vsctl add-br br-int

8. Create the br-eth2 network bridge to handle communication between the OpenStack services (and
the Bare Metal services) and the bare metal nodes using eth2. Replace eth2 with the interface on
the network node which you are using to connect to the Bare Metal service:

ovs-vsctl add-br br-eth2
ovs-vsctl add-port br-eth2 eth2

9. Restart the Open vSwitch agent:

service neutron-plugin-openvswitch-agent restart

Bare Metal Service Installation Guide 51

Ironic Documentation, Release 21.1.2.dev10

10. On restarting the Networking service Open vSwitch agent, the veth pair between the bridges br-int
and br-eth2 is automatically created.

Your Open vSwitch bridges should look something like this after following the above steps:

ovs-vsctl show

11. Create the flat network on which you are going to launch the instances:

openstack network create --project sharednetl --share
--provider-network-type flat --provider-physical-network physnetl

12. Create the subnet on the newly created network:

openstack subnet create --network sharednetl
--subnet-range --ip-version 4 --gateway
--allocation-pool ,end --dhcp

52 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Configuring services for bare metal provisioning using IPv6

Use of IPv6 addressing for baremetal provisioning requires additional configuration. This page covers
the IPv6 specifics only. Please refer to Configure tenant networks and Configure the Networking service
Jor bare metal provisioning for general networking configuration.

Configure ironic PXE driver for provisioning using IPv6 addressing

The PXE drivers operate in such a way that they are able to utilize both IPv4 and IPv6 addresses based
upon the deployments operating state and configuration. Internally, the drivers attempt to prepare config-
uration options for both formats, which allows ports which are IPv6 only to automatically receieve boot
parameters. As a result of this, it is critical that the [DEFAULT Jmy_ipv6 configuration parameter is set
to the conductors IPv6 address. This option is unique per conductor, and due to the nature of automatic
address assignment, it cannot be guessed by the software.

Provisioning with IPv6 stateless addressing

When using stateless addressing DHCPv6 does not provide addresses to the client. DHCPv6 however
provides other configuration via DHCPv6 options such as the bootfile-url and bootfile-parameters.

Once the PXE driver is set to operate in [Pv6 mode no further configuration is required in the Baremetal
Service.

Creating networks and subnets in the Networking Service

When creating the Baremetal Service network(s) and subnet(s) in the Networking Services, subnets
should have ipv6-address-mode set to dhcpv6-stateless and ip-version set to 6. Depending
on whether a router in the Networking Service is providing RAs (Router Advertisements) or not, the
ipv6-ra-mode for the subnet(s) should either be set to dhcpv6-stateless or be left unset.

Note: If ipv6-ra-mode is left unset, an external router on the network is expected to provide RAs with
the appropriate flags set for automatic addressing and other configuration.

Provisioning with IPv6 stateful addressing

When using stateful addressing DHCPv6 is providing both addresses and other configuration via
DHCPv6 options such as the bootfile-url and bootfile- parameters.

The identity-association (IA) construct used by DHCPv6 is challenging when booting over the network.
Firmware, and ramdisks typically end up using different DUID/IAID combinations and it is not always
possible for one chain- booting stage to release its address before giving control to the next step. In case
the DHCPv6 server is configured with static reservations only the result is that booting will fail because
the DHCPV6 server has no addresses available. To get past this issue either configure the DHCPv6 server
with multiple address reservations for each host, or use a dynamic range.

2.1. Bare Metal Service Installation Guide 53

Ironic Documentation, Release 21.1.2.dev10

Note: Support for multiple address reservations requires dnsmasq version 2.81 or later. Some distribu-
tions may backport this feature to earlier dnsmasq version as part of the packaging, check the distributions
release notes.

If a different (not dnsmasq) DHCPv6 server backend is used with the Networking service, use of multiple
address reservations might not work.

Using the flat network interface

Due to the identity-association challenges with DHCPv6 provisioning using the flat network interface
is not recommended. When ironic operates with the flat network interface the server instance port
is used for provisioning and other operations. Ironic will not use multiple address reservations in this
scenario. Because of this it will not work in most cases.

Using the neutron network interface

When using the neutron network interface the Baremetal Service will allocate multiple IPv6 ad-
dresses (4 addresses per port by default) on the service networks used for provisioning, cleaning, res-
cue and introspection. The number of addresses allocated can be controlled via the [neutron]/
dhcpv6_stateful _address_count option in the Bare Metal Services configuration file (/etc/
ironic/ironic.conf). Using multiple address reservations ensures that the DHCPv6 server can lease
addresses to each step.

To enable IPv6 provisioning on neutron flat provider networks with no switch management,
the local_link_connection field of baremetal ports must be set to {'network_type':
'"unmanaged'}. The following example shows how to set the local_link_connection for operation on
unmanaged networks:

The use of multiple IPv6 addresses must also be enabled in the Networking Services dhcp
agent configuration (/etc/neutron/dhcp_agent.ini) by setting the option [DEFAULT]/
dnsmasqg_enable_addr6_list to True (default False in Ussuri release).

Note: Support for multiple IPv6 address reservations in the dnsmasq backend was added to the Net-
working Service Ussuri release. It was also backported to the stable Train release.

54 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Creating networks and subnets in the Networking Service

When creating the ironic service network(s) and subnet(s) in the Networking Service, subnets should
have ipv6-address-mode set to dhcpv6-stateful and ip-version set to 6. Depending on whether
a router in the Networking Service is providing RAs (Router Advertisements) or not, the ipv6-ra-mode
for the subnet(s) should be set to either dhcpv6-stateful or be left unset.

Note: If ipv6-ra-mode is left unset, an external router on the network is expected to provide RAs with
the appropriate flags set for managed addressing and other configuration.

Configure the Image service for temporary URLs

Some drivers of the Baremetal service (in particular, any drivers using Direct deploy or Ansible deploy
interfaces, and some virtual media drivers) require target user images to be available over clean HTTP(S)
URL with no authentication involved (neither username/password-based, nor token-based).

When using the Baremetal service integrated in OpenStack, this can be achieved by specific configuration
of the Image service and Object Storage service as described below.

1. Configure the Image service to have object storage as a backend for storing images. For more
details, please refer to the Image service configuration guide.

Note: When using Ceph+RadosGW for Object Storage service, images stored in Image service
must be available over Object Storage service as well.

2. Enable TempURLSs for the Object Storage account used by the Image service for storing images in
the Object Storage service.

1. Check if TempURLS are enabled:

$ openstack object store account show

Fomm e et T +
Field Value

e o +
Account AUTH_bc39£1d9dcf9486899088007789ae643
Bytes
Containers
Objects
properties = Temp-Url-Key

tomm - e e +

2. If property Temp-Url-Key is set, note its value.

3. If property Temp-Url-Key is not set, you have to configure it (secret is used in the example
below for the value):

§ openstack object store account --property Temp-Url-Key secret

2.1. Bare Metal Service Installation Guide 55

Ironic Documentation, Release 21.1.2.dev10

3. Optionally, configure the ironic-conductor service. The default configuration assumes that:
1. the Object Storage service is implemented by swift,
2. the Object Storage service URL is available from the service catalog,

3. the project, used by the Image service to access the Object Storage, is the same as the project,
used by the Bare Metal service to access it,

4. the container, used by the Image service, is called glance.

If any of these assumptions do not hold, you may want to change your configuration file (typically
located at /etc/ironic/ironic.conf), for example:

4. (Re)start the ironic-conductor service.

Enabling HTTPS

Enabling HTTPS in Swift

The drivers using virtual media use swift for storing boot images and node configuration information
(contains sensitive information for Ironic conductor to provision bare metal hardware). By default,
HTTPS is not enabled in swift. HTTPS is required to encrypt all communication between swift and
Ironic conductor and swift and bare metal (via virtual media). It can be enabled in one of the following
ways:

* Using an SSL termination proxy

» Using native SSL support in swift (recommended only for testing purpose by swift).

Enabling HTTPS in Image service

Ironic drivers usually use Image service during node provisioning. By default, image service does not
use HTTPS, but it is required for secure communication. It can be enabled by making the following
changes to /etc/glance/glance-api.conft:

1. Configuring SSL support

2. Restart the glance-api service:

See the Glance documentation, for more details on the Image service.

56 Chapter 2. Installation Guide

https://docs.openstack.org/swift/zed/
https://docs.openstack.org/security-guide/secure-communication/tls-proxies-and-http-services.html
https://docs.openstack.org/swift/zed/deployment_guide.html
https://docs.openstack.org/glance/zed/configuration/configuring.html#configuring-ssl-support
https://docs.openstack.org/glance/zed/

Ironic Documentation, Release 21.1.2.dev10

Enabling HTTPS communication between Image service and Object storage

This section describes the steps needed to enable secure HTTPS communication between Image service
and Object storage when Object storage is used as the Backend.

To enable secure HTTPS communication between Image service and Object storage follow these steps:
1. Enabling HTTPS in Swift
2. Configure Swift Storage Backend
3. Enabling HTTPS in Image service

Enabling HTTPS communication between Image service and Bare Metal service

This section describes the steps needed to enable secure HTTPS communication between Image service
and Bare Metal service.

To enable secure HTTPS communication between Bare Metal service and Image service follow these
steps:

1. Edit /etc/ironic/ironic.conf:

Note: glance_cafile is an optional path to a CA certificate bundle to be used to validate the SSL
certificate served by Image service.

2. If not using the keystone service catalog for the Image service API endpoint discovery, also
edit the endpoint_override option to point to HTTPS URL of image service (replace
<GLANCE_API_ADDRESS> with hostname[:port][path] of the Image service endpoint):

3. Restart ironic-conductor service:

2.1. Bare Metal Service Installation Guide 57

https://docs.openstack.org/glance/zed/configuration/configuring.html#configuring-the-swift-storage-backend

Ironic Documentation, Release 21.1.2.dev10

Configure the Bare Metal service for cleaning

Note: If you configured the Bare Metal service to do Automated cleaning (which is enabled by default),
you will need to set the cleaning_network configuration option.

1. Note the network UUID (the id field) of the network you created in Configure the Networking
service for bare metal provisioning or another network you created for cleaning:

openstack network list

2. Configure the cleaning network UUID via the cleaning_network option in the Bare Metal ser-
vice configuration file (/etc/ironic/ironic.conf). In the following, replace NETWORK_UUID
with the UUID you noted in the previous step:

3. Restart the Bare Metal services ironic-conductor:

Configure tenant networks

Below is an example flow of how to set up the Bare Metal service so that node provisioning will happen
in a multi-tenant environment (which means using the neutron network interface as stated above):

1. Network interfaces can be enabled on ironic-conductor by adding them to the
enabled_network_interfaces configuration option under the default section of the
configuration file:

Keep in mind that, ideally, all ironic-conductors should have the same list of enabled network
interfaces, but it may not be the case during ironic-conductor upgrades. This may cause problems
if one of the ironic-conductors dies and some node that is taken over is mapped to an ironic-
conductor that does not support the nodes network interface. Any actions that involve calling the
nodes driver will fail until that network interface is installed and enabled on that ironic-conductor.

2. It is recommended to set the default network interface via the default_network_interface
configuration option under the default section of the configuration file:

58 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

This default value will be used for all nodes that dont have a network interface explicitly specified
in the creation request.

If this configuration option is not set, the default network interface is determined by looking at the
[dhcp]dhcp_provider configuration option value. If it is neutron, then f£lat network interface
becomes the default, otherwise noop is the default.

3. Define a provider network in the Networking service, which we shall refer to as the provision-
ing network. Using the neutron network interface requires that provisioning_network and
cleaning_network configuration options are set to valid identifiers (UUID or name) of networks
in the Networking service. If these options are not set correctly, cleaning or provisioning will fail
to start. There are two ways to set these values:

e Under the neutron section of ironic configuration file:

e Under provisioning network and cleaning_network keys of the nodes
driver_info field as driver_info['provisioning_network'] and
driver_info['cleaning_network'] respectively.

Note: If these provisioning_network and cleaning_network values are not specified in
nodes driver_info then ironic falls back to the configuration in the neutron section.

Please refer to Configure the Bare Metal service for cleaning for more information about cleaning.

Warning: Please make sure that the Bare Metal service has exclusive access to the provi-
sioning and cleaning networks. Spawning instances by non-admin users in these networks and
getting access to the Bare Metal services control plane is a security risk. For this reason, the
provisioning and cleaning networks should be configured as non-shared networks in the admin
tenant.

Note: When using the flat network interface, bare metal instances are normally spawned onto
the provisioning network. This is not supported with the neutron interface and the deployment
will fail. Please ensure a different network is chosen in the Networking service when a bare metal
instance is booted from the Compute service.

Note: The provisioning and cleaning networks may be the same network or distinct networks.
To ensure that communication between the Bare Metal service and the deploy ramdisk works, it is
important to ensure that security groups are disabled for these networks, or that the default security
groups allow:

 DHCP
» TFTP

* egress port used for the Bare Metal service (6385 by default)

2.1. Bare Metal Service Installation Guide 59

Ironic Documentation, Release 21.1.2.dev10

* ingress port used for ironic-python-agent (9999 by default)

* if using Direct deploy, the egress port used for the Object Storage service or the local HTTP
server (typically 80 or 443)

* if using iPXE, the egress port used for the HTTP server running on the ironic-conductor
nodes (typically 80).

4. This step is optional and applicable only if you want to use security groups during provisioning
and/or cleaning of the nodes. If not specified, default security groups are used.

1. Define security groups in the Networking service, to be used for provisioning and/or cleaning
networks.

2. Add the list of these security group UUIDs under the neutron section of ironic-conductors
configuration file as shown below:

[neutron]

cleaning_network=$CLEAN_UUID_OR_NAME

cleaning_network_security_groups=[$LIST_OF_CLEAN_SECURITY_GROUPS]

provisioning_network=$PROVISION_UUID_OR_NAME

provisioning_network_security_groups=[$LIST_OF_PROVISION_SECURITY_
—GROUPS]

Multiple security groups may be applied to a given network, hence, they are specified as a
list. The same security group(s) could be used for both provisioning and cleaning networks.

Warning: If security groups are configured as described above, do not set the
port_security_enabled flag to False for the corresponding Networking services network or port.
This will cause the deploy to fail.

For example: if provisioning_network_security_groups configuration option is used,
ensure that port_security_enabled flag for the provisioning network is set to True. This flag is
set to True by default; make sure not to override it by manually setting it to False.

5. Install and configure a compatible ML2 mechanism driver which supports bare metal provisioning
for your switch. See ML2 plugin configuration manual for details.

6. Restart the ironic-conductor and ironic-api services after the modifications:

¢ Fedora/RHELS&/CentOSS:

e Ubuntu:

7. Make sure that the ironic-conductor is reachable over the provisioning network by trying to down-
load a file from a TFTP server on it, from some non-control-plane server in that network:

60 Chapter 2. Installation Guide

https://docs.openstack.org/neutron/zed/admin/config-ml2.html

Ironic Documentation, Release 21.1.2.dev10

tftp $TFTP_IP -c get $FILENAME

where FILENAME is the file located at the TFTP server.

See Multi-tenancy in the Bare Metal service for required node configuration.

Add images to the Image service

Instance (end-user) images

Build or download the user images as described in Creating instance images.

Load all the created images into the Image service, and note the image UUIDs in the Image service for
each one as it is generated.

* For whole disk images just upload the image:

openstack image create my-whole-disk-image --public
--disk-format gcow2 --container-format bare
--file my-whole-disk-image.qcow2

Warning: The kernel/ramdisk pair must not be set for whole disk images, otherwise theyll be
mistaken for partition images.

* For partition images to be used only with local boot (the default) the img_type property must be

set:

openstack image create my-image --public
--disk-format gcow2 --container-format bare
--property partition --file my-image.qcow?2

For partition images to be used with both local and network boot:

Add the kernel and ramdisk images to the Image service:

openstack image create my-kernel --public
--disk-format aki --container-format aki --file my-image.vmlinuz

Store the image uuid obtained from the above step as MY_VMLINUZ_UUID.

openstack image create my-image.initrd --public
--disk-format ari --container-format ari --file my-image.initrd

Store the image UUID obtained from the above step as MY_INITRD_UUID.

Add the my-image to the Image service which is going to be the OS that the user is going to run.
Also associate the above created images with this OS image. These two operations can be done by
executing the following command:

2.1.

Bare Metal Service Installation Guide 61

Ironic Documentation, Release 21.1.2.dev10

openstack image create my-image --public

--disk-format gcow2 --container-format bare --property
--property
--file my-image.qcow2

Deploy ramdisk images

1. Build or download the deploy images

The deploy images are used initially for preparing the server (creating disk partitions) before the
actual OS can be deployed.

There are several methods to build or download deploy images, please read the Building or down-
loading a deploy ramdisk image section.

2. Add the deploy images to the Image service

Add the deployment kernel and ramdisk images to the Image service:

openstack image create deploy-vmlinuz --public
--disk-format aki --container-format aki
--file ironic-python-agent.vmlinuz

Store the image UUID obtained from the above step as DEPLOY_VMLINUZ_UUID.

openstack image create deploy-initrd --public
--disk-format ari --container-format ari
--file ironic-python-agent.initramfs

Store the image UUID obtained from the above step as DEPLOY_INITRD_UUID.

3. Configure the Bare Metal service to use the produced images. It can be done per node as described
in Enrollment or globally in the configuration file:

Create flavors for use with the Bare Metal service

Youll need to create a special bare metal flavor in the Compute service. The flavor is mapped to the bare
metal node through the nodes resource_class field (available starting with Bare Metal API version
1.21). A flavor can request exactly one instance of a bare metal resource class.

Note that when creating the flavor, its useful to add the RAM_MB and CPU properties as a convenience to
users, although they are not used for scheduling. The DISK_GB property is also not used for scheduling,
but is still used to determine the root partition size.

1. Change these to match your hardware:

62 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

2. Create the bare metal flavor by executing the following command:

openstack flavor create --ram --vcpus --disk
my-baremetal-flavor

Note: You can add --id <id> to specify an ID for the flavor.

See the docs on this command for other options that may be specified.

After creation, associate each flavor with one custom resource class. The name of a custom resource
class that corresponds to a nodes resource class (in the Bare Metal service) is:

* the bare metal nodes resource class all upper-cased
* prefixed with CUSTOM_
* all punctuation replaced with an underscore

For example, if the resource class is named baremetal-small, associate the flavor with this custom
resource class via:

openstack flavor --property resources:CUSTOM_BAREMETAL_SMALL 1 my-
—Dbaremetal-flavor

Another set of flavor properties must be used to disable scheduling based on standard properties for a
bare metal flavor:

openstack flavor --property resources:VCPU 0 my-baremetal-flavor

openstack flavor --property resources:MEMORY_MB (my-baremetal-flavor

openstack flavor --property resources:DISK_GB 0 my-baremetal-flavor
Example

If you want to define a class of nodes called baremetal .with-GPU, start with tagging some nodes with
it:

baremetal node <node> --resource-class baremetal.with-GPU

Warning: It is possible to add a resource class to active nodes, but it is not possible to replace
an existing resource class on them.

Then you can update your flavor to request the resource class instead of the standard properties:

2.1. Bare Metal Service Installation Guide 63

https://docs.openstack.org/python-openstackclient/zed/cli/command-objects/flavor.html#flavor-create

Ironic Documentation, Release 21.1.2.dev10

openstack flavor --property resources:CUSTOM_BAREMETAL_WITH_GPU 1 my-
—baremetal-flavor

openstack flavor --property resources:VCPU 0 my-baremetal-flavor

openstack flavor --property resources:MEMORY_MB 0 my-baremetal-flavor

openstack flavor --property resources:DISK_GB 0 my-baremetal-flavor

Note how Dbaremetal.with-GPU in the nodes resource_class field becomes
CUSTOM_BAREMETAL_WITH_GPU in the flavors properties.

Scheduling based on traits

Starting with the Queens release, the Compute service supports scheduling based on qualitative attributes
using traits. Starting with Bare Metal REST API version 1.37, it is possible to assign a list of traits to
each bare metal node. Traits assigned to a bare metal node will be assigned to the corresponding resource
provider in the Compute service placement API.

When creating a flavor in the Compute service, required traits may be specified via flavor properties. The
Compute service will then schedule instances only to bare metal nodes with all of the required traits.

Traits can be either standard or custom. Standard traits are listed in the os_traits library. Custom traits
must meet the following requirements:

* prefixed with CUSTOM_
* contain only upper case characters A to Z, digits 0 to 9, or underscores
* no longer than 255 characters in length

A bare metal node can have a maximum of 50 traits.

Example

To add the standard trait HW_CPU_X86_VMX and a custom trait CUSTOM_TRAIT1 to a node:

baremetal node add trait <node> CUSTOM_TRAIT1 HW_CPU_X86_VMX

Then, update the flavor to require these traits:

openstack flavor --property trait:CUSTOM_TRAIT1 required my-baremetal-
—flavor

openstack flavor --property trait:HW_CPU_X86_VMX required my-baremetal-
—flavor

64 Chapter 2. Installation Guide

https://docs.openstack.org/os-traits/latest/

Ironic Documentation, Release 21.1.2.dev10

2.1.6 Set up the drivers for the Bare Metal service
Enabling drivers and hardware types

Introduction

The Bare Metal service delegates actual hardware management to drivers. Drivers, also called hard-
ware types, consist of hardware interfaces: sets of functionality dealing with some aspect of bare metal
provisioning in a vendor-specific way. There are generic hardware types (eg. redfish and ipmi), and
vendor-specific ones (eg. ilo and irmc).

Note: Starting with the Rocky release, the terminologies driver, dynamic driver, and hardware type
have the same meaning in the scope of Bare Metal service.

Enabling hardware types

Hardware types are enabled in the configuration file of the ironic-conductor service by setting the
enabled_hardware_types configuration option, for example:

Due to the drivers dynamic nature, they also require configuring enabled hardware interfaces.

Note: All available hardware types and interfaces are listed in setup.cfg file in the source code tree.

Enabling hardware interfaces

There are several types of hardware interfaces:

bios manages configuration of the BIOS settings of a bare metal node. This interface is vendor-specific
and can be enabled via the enabled_bios_interfaces option:

See BIOS Configuration for details.

boot manages booting of both the deploy ramdisk and the user instances on the bare metal node. See
Boot interfaces for details.

Boot interface implementations are often vendor specific, and can be enabled via the
enabled_boot_interfaces option:

2.1. Bare Metal Service Installation Guide 65

https://opendev.org/openstack/ironic/src/branch/master/setup.cfg

Ironic Documentation, Release 21.1.2.dev10

Boot interfaces with pxe in their name require Configuring PXE and iPXE. There are also a few
hardware-specific boot interfaces - see Drivers, Hardware Types and Hardware Interfaces for their
required configuration.

console manages access to the serial console of a bare metal node. See Configuring Web or Serial
Console for details.

deploy defines how the image gets transferred to the target disk. See Deploy Interfaces for an explanation
of the difference between supported deploy interfaces.

The deploy interfaces can be enabled as follows:

Note: The direct deploy interface requires the Object Storage service or an HTTP service

inspect implements fetching hardware information from nodes. Can be implemented out-of-band (via
contacting the nodes BMC) or in-band (via booting a ramdisk on a node). The latter implementa-
tion is called inspector and uses a separate service called ironic-inspector. Example:

See Hardware Inspection for more details.

management provides additional hardware management actions, like getting or setting boot devices.
This interface is usually vendor-specific, and its name often matches the name of the hardware
type (with ipmitool being a notable exception). For example:

Using ipmitool requires Configuring IPMI support. See Drivers, Hardware Types and Hardware
Interfaces for the required configuration of each driver.

network connects/disconnects bare metal nodes to/from virtual networks. See Configure tenant net-
works for more details.

power runs power actions on nodes. Similar to the management interface, it is usually vendor-specific,
and its name often matches the name of the hardware type (with ipmitool being again an excep-
tion). For example:

Using ipmitool requires Configuring IPMI support. See Drivers, Hardware Types and Hardware
Interfaces for the required configuration of each driver.

66 Chapter 2. Installation Guide

https://docs.openstack.org/ironic-inspector/zed/

Ironic Documentation, Release 21.1.2.dev10

raid manages building and tearing down RAID on nodes. Similar to inspection, it can be implemented
either out-of-band or in-band (via agent implementation). See RAID Configuration for details.
For example:

storage manages the interaction with a remote storage subsystem, such as the Block Storage service,
and helps facilitate booting from a remote volume. This interface ensures that volume target and
connector information is updated during the lifetime of a deployed instance. See Boot From Volume
for more details.

This interface defaults to a noop driver as it is considered an opt-in interface which requires addi-
tional configuration by the operator to be usable.

For example:

vendor is a place for vendor extensions to be exposed in API. See Vendor Methods for details.

Here is a complete configuration example, enabling two generic protocols, IPMI and Redfish, with a few
additional features:

Note that some interfaces have implementations named no-<TYPE> where <TYPE> is the interface type.
These implementations do nothing and return errors when used from APL.

2.1. Bare Metal Service Installation Guide 67

Ironic Documentation, Release 21.1.2.dev10

Hardware interfaces in multi-conductor environments

When enabling hardware types and their interfaces, make sure that for every enabled hardware type,
the whole set of enabled interfaces matches for all conductors. However, different conductors can have
different hardware types enabled.

For example, you can have two conductors with the following configuration respectively:

But you cannot have two conductors with the following configuration respectively:

This is because the redfish hardware type will have different enabled deploy interfaces on these conduc-
tors. It would have been fine, if the second conductor had enabled_deploy_interfaces = direct
instead of ansible.

This situation is not detected by the Bare Metal service, but it can cause inconsistent behavior in the API,
when node functionality will depend on which conductor it gets assigned to.

Note: We dont treat this as an error, because such femporary inconsistency is inevitable during a rolling
upgrade or a configuration update.

68 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Configuring interface defaults

When an operator does not provide an explicit value for one of the interfaces (when creating a node
or updating its driver), the default value is calculated as described in Defaults for hardware inter-
Jaces. It is also possible to override the defaults for any interfaces by setting one of the options named
default_<IFACE>_interface, where <IFACE> is the interface name. For example:

This configuration forces the default deploy interface to be direct and the default network interface to
be neutron for all hardware types.

The defaults are calculated and set on a node when creating it or updating its hardware type. Thus,
changing these configuration options has no effect on existing nodes.

Warning: The default interface implementation must be configured the same way across all conduc-
tors in the cloud, except maybe for a short period of time during an upgrade or configuration update.
Otherwise the default implementation will depend on which conductor handles which node, and this
mapping is not predictable or even persistent.

Warning: These options should be used with care. If a hardware type does not support the provided
default implementation, its users will have to always provide an explicit value for this interface when
creating a node.

Configuring PXE and iPXE

DHCP server setup

A DHCP server is required by PXE/iPXE client. You need to follow steps below.

1. Setthe [dhcp]/dhcp_provider to neutron in the Bare Metal Services configuration file (/etc/
ironic/ironic.conf):

Note: Refer Configure tenant networks for details. The dhcp_provider configuration is already
set by the configuration defaults, and when you create subnet, DHCP is also enabled if you do not
add any dhcp options at openstack subnet create command.

2. Enable DHCP in the subnet of PXE network.
3. Set the ip address range in the subnet for DHCP.

Note: Refer Configure the Networking service for bare metal provisioning for details about the
two precedent steps.

2.1. Bare Metal Service Installation Guide 69

Ironic Documentation, Release 21.1.2.dev10

4. Connect the openstack DHCP agent to the external network through the OVS bridges and the in-
terface eth2.

Note: Refer Configure the Networking service for bare metal provisioning for details. You do not
require this part if br-int, br-eth2 and eth?2 are already connected.

5. Configure the host ip at br-eth2. If it locates at eth2, do below:

Note: Replace eth2 with the interface on the network node which you are using to connect to the
Bare Metal service.

TFTP server setup

In order to deploy instances via PXE, a TFTP server needs to be set up on the Bare Metal service nodes
which run the ironic-conductor.

1. Make sure the tftp root directory exist and can be written to by the user the ironic-conductor
is running as. For example:

2. Install tftp server:
Ubuntu:

RHELS/CentOS8/Fedora:

SUSE:

3. Using xinetd to provide a tftp server setup to serve /tftpboot. Create or edit /etc/xinetd.d/
tftp as below:

(continues on next page)

70 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

and restart the xinetd service:

Ubuntu:

Fedora/RHEL8/CentOS8/SUSE:

Note: In certain environments the networks MTU may cause TFTP UDP packets to get frag-
mented. Certain PXE firmwares struggle to reconstruct the fragmented packets which can cause
significant slow down or even prevent the server from PXE booting. In order to avoid this, TFTPd
provides an option to limit the packet size so that it they do not get fragmented. To set this additional
option in the server_args above:

4. Create a map file in the tftp boot directory (/tftpboot):

UEFI PXE - Grub setup

In order to deploy instances with PXE on bare metal nodes which support UEFI, perform these additional
steps on the ironic conductor node to configure the PXE UEFI environment.

1. Install Grub2 and shim packages:
Ubuntu (18.04LTS and later):

RHELS8/CentOS8/Fedora:

SUSE:

2.1. Bare Metal Service Installation Guide 71

Ironic Documentation, Release 21.1.2.dev10

2. Copy grub and shim boot loader images to /tftpboot directory:
Ubuntu (18.04LTS and later):

Fedora:

RHELS/CentOS8:

SUSE:

3. Update the bare metal node with boot_mode:uefi capability in nodes properties field. See Boor
mode support for details.

4. Make sure that bare metal node is configured to boot in UEFI boot mode and boot device is set to
network/pxe.

Note: Some drivers, e.g. ilo, irmc and redfish, support automatic setting of the boot mode
during deployment. This step is not required for them. Please check Drivers, Hardware Types and
Hardware Interfaces for information on whether your driver requires manual UEFI configuration.

iPXE setup

If you will be using iPXE to boot instead of PXE, iPXE needs to be set up on the Bare Metal service
node(s) where ironic-conductor is running.

1. Make sure these directories exist and can be written to by the user the ironic-conductor is
running as. For example:

2. Create a map file in the tftp boot directory (/tftpboot):

72 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

3. Setup TFTP and HTTP servers.

These servers should be running and configured to use the local /tftpboot and /httpboot directories
respectively, as their root directories. (Setting up these servers is outside the scope of this install
guide.)

These root directories need to be mounted locally to the ironic-conductor services, so that the
services can access them.

The Bare Metal services configuration file (/etc/ironic/ironic.conf) should be edited accordingly to
specify the TFTP and HTTP root directories and server addresses. For example:

See also: Deploying outside of the provisioning network.
Install the iPXE package with the boot images:

Ubuntu:

RHELS8/CentOS8/Fedora:

Note: SUSE does not provide a package containing iPXE boot images. If you are using SUSE
or if the packaged version of the iPXE boot image doesnt work, you can download a prebuilt one
from http://boot.ipxe.org or build one image from source, see http://ipxe.org/download for more
information.

. Copy the iPXE boot image (undionly.kpxe for BIOS and ipxe.efi for UEFI) to /tftpboot.

The binary might be found at:

Ubuntu:

2.1.

Bare Metal Service Installation Guide 73

http://boot.ipxe.org
http://ipxe.org/download

Ironic Documentation, Release 21.1.2.dev10

Fedora/RHELS8/CentOSS:

Note: snponly variants may not be available for all distributions.

. Enable/Configure iPXE overrides in the Bare Metal Services configuration file if required

(/etc/ironic/ironic.conf):

Note: Most UEFI systems have integrated networking which means the
[pxe]uefi_ipxe_bootfile_name setting should be set to snponly.efi or
ipxe-snponly-x86_64.efi if its available for your distribution.

Note: Setting the iPXE parameters noted in the code block above to no value, in other words
setting a line to something like ipxe_bootfile_name= will result in ironic falling back to the
default values of the non-iPXE PXE settings. This is for backwards compatability.

. Ensure iPXE is the default PXE, if applicable.

In earlier versions of ironic, a [pxe]ipxe_enabled setting allowing operators to declare the be-
havior of the conductor to exclusively operate as if only iPXE was to be used. As time moved on,
iPXE functionality was moved to its own ipxe boot interface.

If you want to emulate that same hehavior, set the following in the configuration file
(/etc/ironic/ironic.conf):

Note: The [DEFAULT]enabled_boot_interfaces setting may be exclusively set to ipxe, how-
ever ironic has multiple interfaces available depending on the hardware types available for use.

74

Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

8. Itis possible to configure the Bare Metal service in such a way that nodes will boot into the deploy
image directly from Object Storage. Doing this avoids having to cache the images on the ironic-
conductor host and serving them via the ironic-conductors HTTP server. This can be done if:

1. the Image Service is used for image storage;
2. the images in the Image Service are internally stored in Object Storage;

3. the Object Storage supports generating temporary URLs for accessing objects stored in it.
Both the OpenStack Swift and RADOS Gateway provide support for this.

* See Ceph Object Gateway support on how to configure the Bare Metal Service with
RADOS Gateway as the Object Storage.

Configure this by setting the [pxe]/ipxe_use_swift configuration option to True as follows:

Although the HTTP server still has to be deployed and configured (as it will serve iPXE boot
script and boot configuration files for nodes), such configuration will shift some load from ironic-
conductor hosts to the Object Storage service which can be scaled horizontally.

Note that when SSL is enabled on the Object Storage service you have to ensure that iPXE firmware
on the nodes can indeed boot from generated temporary URLs that use HTTPS protocol.

9. Restart the ironic-conductor process:

Fedora/RHELS8/CentOS8/SUSE:

Ubuntu:

PXE multi-architecture setup

It is possible to deploy servers of different architecture by one conductor. To use this feature,
architecture-specific boot and template files must be configured using the configuration options
[pxe]pxe_bootfile_name_by_arch and [pxe]lpxe_config_template_by_arch respectively, in
the Bare Metal services configuration file (/etc/ironic/ironic.conf).

These two options are dictionary values; the key is the architecture and the value is the boot (or
config template) file. A nodes cpu_arch property is used as the key to get the appropriate boot
file and template file. If the nodes cpu_arch is not in the dictionary, the configuration options
(in [pxe] group) pxe_bootfile_name, pxe_config_template, uefi_pxe_bootfile_name and
uefi_pxe_config_template will be used instead.

2.1. Bare Metal Service Installation Guide 75

Ironic Documentation, Release 21.1.2.dev10

In the following example, since x86 and x86_64 keys are not in the pxe_bootfile_name_by_arch or
pxe_config_template_by_arch options, x86 and x86_64 nodes will be deployed by undionly.kpxe
or bootx64.efi, depending on the nodes boot_mode capability (bios or uefi). However, aarch64 nodes
will be deployed by grubaa64.efi, and ppc64 nodes by bootppc6H4:

[pxe]

Bootfile DHCP parameter. (string value)
pxe_bootfile_name=undionly.kpxe

On ironic-conductor node, template file for PXE
configuration. (string value)
pxe_config_template = $pybasedir/drivers/modules/ipxe_config.template

Bootfile DHCP parameter for UEFI boot mode. (string value)
uefi_pxe_bootfile_name=bootx64.efi

On ironic-conductor node, template file for PXE
configuration for UEFI boot loader. (string value)
uefi_pxe_config_template=$pybasedir/drivers/modules/pxe_grub_config.template

Bootfile DHCP parameter per node architecture. (dict value)
pxe_bootfile_name_by_arch=aarch64:grubaa64.efi,ppc64:bootppc64

On ironic-conductor node, template file for PXE

configuration per node architecture. For example:

aarch64:/opt/share/grubaa64_pxe_config.template (dict value)
pxe_config_template_by_arch=aarch64:pxe_grubaa64_config.template,ppc64:pxe_
—ppc64_config.template

Note: The grub implementation may vary on different architecture, you may need to tweak the pxe
config template for a specific arch. For example, grubaa64.efi shipped with CentoOS7 does not support
linuxefi and initrdefi commands, youll need to switch to use linux and initrd command instead.

Note: A [pxel]ipxe_bootfile_name_by_arch setting is available for multi-arch iPXE based deploy-
ment, and defaults to the same behavior as the comperable [pxe]pxe_bootfile_by_arch setting for
standard PXE.

Note: When booting PowerPC based machines, the firmware loader directly boots a kernel and ramdisk.
It explicitly reads a pxelinux style template, and then directly retrieves the files defined in the file without
a network boot program.

76 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

PXE timeouts tuning

Because of its reliance on UDP-based protocols (DHCP and TFTP), PXE is particularly vulnerable to
random failures during the booting stage. If the deployment ramdisk never calls back to the bare metal
conductor, the build will be aborted, and the node will be moved to the deploy failed state, after the de-
ploy callback timeout. This timeout can be changed via the conductor.deploy_callback_timeout
configuration option.

Starting with the Train release, the Bare Metal service can retry PXE boot if it takes too long. The timeout
is defined via pxe.boot_retry_timeout and must be smaller than the deploy_callback_timeout,
otherwise it will have no effect.

For example, the following configuration sets the overall timeout to 60 minutes, allowing two retries after
20 minutes:

PXE artifacts

Ironic features the capability to load PXE artifacts into the conductor startup, minimizing the need for
external installation and configuration management tooling from having to do additional work to facili-
tate.

While this is an advanced feature, and destination file names must match existing bootloader configured
filenames.

For example, if using iPXE and GRUB across interfaces, you may desire a configuration similar to this
example.

If you choose to use relative paths as part of your destination, those paths will be created using config-
uration parameter [pxe]dir_permission where as actual files copied are set with the configuration
parameter [pxe]file_permission. Absolute destination paths are not supported and will result in
ironic failing to start up as it is a misconfiguration of the deployment.

2.1. Bare Metal Service Installation Guide 77

Ironic Documentation, Release 21.1.2.dev10

Configuring IPMI support

Installing ipmitool command

To enable one of the drivers that use IPMI protocol for power and management actions (for example,
ipmi), the ipmitool command must be present on the service node(s) where ironic-conductor is
running. On most distros, it is provided as part of the ipmitool package. Source code is available at
http://ipmitool.sourceforge.net/.

Warning: Certain distros, notably Mac OS X and SLES, install openipmi instead of ipmitool
by default. This driver is not compatible with openipmi as it relies on error handling options not
provided by this tool.

Please refer to the /PMI driver for information on how to configure and use IPMItool-based drivers.

Configuring hardware

IPMI is a relatively old protocol and may require additional set up on the hardware side that the Bare
Metal service cannot do automatically:

1. Make sure IPMI is enabled and the account you use have the permissions to change power and boot
devices. By default the adminstrator rights are expected, you can change it: see Using a different
privilege level.

2. Make sure the cipher suites are configured for maximum security. Suite 17 is recommended, 3 can
be used if its not available. Cipher suite O must be disabled as it provides unauthenticated access
to the BMC.

See also:
Cipher suites

3. Make sure the boot mode correspond to the expected boot mode on the node (see Boot mode
support). Some hardware is able to change the boot mode to the requested by Ironic, some does
not.

Validation and troubleshooting

Check that you can connect to, and authenticate with, the IPMI controller in your bare metal server by
running ipmitool:

where <ip-address> is the IP of the IPMI controller you want to access. This is not the bare metal
nodes main IP. The IPMI controller should have its own unique IP.

If the above command doesnt return the power status of the bare metal server, check that
e ipmitool is installed and is available via the $PATH environment variable.

* The IPMI controller on your bare metal server is turned on.

78 Chapter 2. Installation Guide

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://ipmitool.sourceforge.net/

Ironic Documentation, Release 21.1.2.dev10

* The IPMI controller credentials and IP address passed in the command are correct.

* The conductor node has a route to the IPMI controller. This can be checked by just pinging the
IPMI controller IP from the conductor node.

IPMI configuration

If there are slow or unresponsive BMCs in the environment, the min_command_interval configuration
option in the [ipmi] section may need to be raised. The default is fairly conservative, as setting this
timeout too low can cause older BMCs to crash and require a hard-reset.

Collecting sensor data

Bare Metal service supports sending IPMI sensor data to Telemetry with certain hardware types, such as
ipmi, ilo and irmc. By default, support for sending IPMI sensor data to Telemetry is disabled. If you
want to enable it, you should make the following two changes in ironic.conf:

If you want to customize the sensor types which will be sent to Telemetry, change the
send_sensor_data_types option. For example, the below settings will send information about tem-
perature, fan, voltage from sensors to the Telemetry service:

Supported sensor types are defined by the Telemetry service, currently these are Temperature, Fan,
Voltage, Current. Special value A11 (the default) designates all supported sensor types.

2.1.7 Enrollment

After all the services have been properly configured, you should enroll your hardware with the Bare Metal
service, and confirm that the Compute service sees the available hardware. The nodes will be visible to
the Compute service once they are in the available provision state.

Note: After enrolling nodes with the Bare Metal service, the Compute service will not be immediately
notified of the new resources. The Compute services resource tracker syncs periodically, and so any
changes made directly to the Bare Metal services resources will become visible in the Compute service
only after the next run of that periodic task. More information is in the Troubleshooting section.

Note: Any bare metal node that is visible to the Compute service may have a workload scheduled to it,
if both the power and management interfaces pass the validate check. If you wish to exclude a node
from the Compute services scheduler, for instance so that you can perform maintenance on it, you can
set the node to maintenance mode. For more information see the Maintenance mode section.

2.1. Bare Metal Service Installation Guide 79

Ironic Documentation, Release 21.1.2.dev10

Choosing a driver

When enrolling a node, the most important information to supply is driver. See Enabling drivers and
hardware types for a detailed explanation of bare metal drivers, hardware types and interfaces. The
driver list command can be used to list all drivers enabled on all hosts:

The specific driver to use should be picked based on actual hardware capabilities and expected features.
See Drivers, Hardware Types and Hardware Interfaces for more hints on that.

Each driver has a list of driver properties that need to be specified via the nodes driver_info field, in
order for the driver to operate on node. This list consists of the properties of the hardware interfaces that
the driver uses. These driver properties are available with the driver property list command:

baremetal driver property list ipmi

The properties marked as required must be supplied either during node creation or shortly after. Some
properties may only be required for certain features.

80 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Note on API versions
Starting with API version 1.11, the Bare Metal service added a new initial provision state of enroll to
its state machine. When this or later API version is used, new nodes get this state instead of available.

Existing automation tooling that use an API version lower than 1.11 are not affected, since the initial pro-
vision state is still available. However, using API version 1.11 or above may break existing automation
tooling with respect to node creation.

The default API version used by (the most recent) python-ironicclient is 1.9, but it may change in the
future and should not be relied on.

In the examples below we will use version 1.11 of the Bare metal API. This gives us the following
advantages:

» Explicit power credentials validation before leaving the enroll state.
* Running node cleaning before entering the available state.
» Not exposing half-configured nodes to the scheduler.

To set the API version for all commands, you can set the environment variable IRONIC_API_VERSION.
For the OpenStackClient baremetal plugin, set the OS_BAREMETAL_API_VERSION variable to the same
value. For example:

.11
.11

Enroliment process

Creating a node

This section describes the main steps to enroll a node and make it available for provisioning. Some steps
are shown separately for illustration purposes, and may be combined if desired.

1. Create a node in the Bare Metal service with the node create command. At a minimum, you
must specify the driver name (for example, ipmi).

This command returns the node UUID along with other information about the node. The nodes
provision state will be enroll:

.11
baremetal node create --driver ipmi

(continues on next page)

2.1. Bare Metal Service Installation Guide 81

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

baremetal node show dfc6189f-ad83-4261-9bda-b27258eb1987

A node may also be referred to by a logical name as well as its UUID. A name can be assigned to
the node during its creation by adding the -n option to the node create command or by updating
an existing node with the node set command. See Logical Names for examples.

. Starting with API version 1.31 (and python-ironicclient 1.13), you can pick which hard-

ware interface to use with nodes that use hardware types. Each interface is represented by a node
field called <IFACE>_interface where <IFACE> in the interface type, e.g. boot. See Enabling
drivers and hardware types for details on hardware interfaces.

An interface can be set either separately:

baremetal node --deploy-interface direct --raid-
—interface agent

or set during node creation:

baremetal node create --driver ipmi
--deploy-interface direct
--raid-interface agent

If no value is provided for some interfaces, Defaults for hardware interfaces are used instead.

. Update the node driver_info with the required driver properties, so that the Bare Metal service

can manage the node:

baremetal node
--driver-info

(continues on next page)

82

Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

--driver-info
--driver-info

Note: If IPMI is running on a port other than 623 (the default). The port must be added to
driver_info by specifying the ipmi_port value. Example:

baremetal node --driver-info

You may also specify all driver_info parameters during node creation by passing the driver-info
option multiple times:

baremetal node create --driver ipmi
--driver-info
--driver-info
--driver-info

See Choosing a driver above for details on driver properties.

Specify a deploy kernel and ramdisk compatible with the nodes driver, for example:

baremetal node
--driver-info
--driver-info

See Add images to the Image service for details.

. Optionally you can specify the provisioning and/or cleaning network UUID or name in the nodes

driver_info. The neutron network interface requires both provisioning_network and
cleaning_network, while the flat network interface requires the cleaning_network to be
set either in the configuration or on the nodes. For example:

baremetal node
--driver-info
--driver-info

See Configure tenant networks for details.

. You must also inform the Bare Metal service of the network interface cards which are part of the

node by creating a port with each NICs MAC address. These MAC addresses are passed to the
Networking service during instance provisioning and used to configure the network appropriately:

baremetal port create --node

Note: When it is time to remove the node from the Bare Metal service, the command used to
remove the port is baremetal port delete <port uuid>. When doing so, it is important to
ensure that the baremetal node is not in maintenance as guarding logic to prevent orphaning
Neutron Virtual Interfaces (VIFs) will be overridden.

2.1.

Bare Metal Service Installation Guide 83

Ironic Documentation, Release 21.1.2.dev10

Adding scheduling information

1. Assign a resource class to the node. A resource class should represent a class of hardware in your
data center, that corresponds to a Compute flavor.

For example, lets split hardware into these three groups:
1. nodes with a lot of RAM and powerful CPU for computational tasks,
2. nodes with powerful GPU for OpenCL computing,
3. smaller nodes for development and testing.

We can define three resource classes to reflect these hardware groups, named large-cpu,
large-gpu and small respectively. Then, for each node in each of the hardware groups, well
set their resource_class appropriately via:

baremetal node --resource-class

The --resource-class argument can also be used when creating a node:

baremetal node create --driver --resource-class

To use resource classes for scheduling you need to update your flavors as described in Create flavors
for use with the Bare Metal service.

Note: This is not required for standalone deployments, only for those using the Compute service
for provisioning bare metal instances.

2. Update the nodes properties to match the actual hardware of the node:

baremetal node
--property
--property
--property

As above, these can also be specified at node creation by passing the property option to node
create multiple times:

baremetal node create --driver ipmi
--driver-info
--driver-info
--driver-info
--property
--property
--property

These values can also be discovered during Hardware Inspection.

Warning: The value provided for the 1local_gb property must match the size of the root
device youre going to deploy on. By default ironic-python-agent picks the smallest disk which
is not smaller than 4 GiB.

84 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

If you override this logic by using root device hints (see Specifying the disk for deployment
(root device hints)), the local_gb value should match the size of picked target disk.

3. If you wish to perform more advanced scheduling of the instances based on hardware capabilities,

you may add metadata to each node that will be exposed to the Compute scheduler (see: Compute-
CapabilitiesFilter). A full explanation of this is outside of the scope of this document. It can be
done through the special capabilities member of node properties:

baremetal node
--property keyl:vall,key2:val2

Some capabilities can also be discovered during Hardware Inspection.

. If you wish to perform advanced scheduling of instances based on qualitative attributes of bare

metal nodes, you may add traits to each bare metal node that will be exposed to the Compute sched-
uler (see: Scheduling based on traits for a more in-depth discussion of traits in the Bare Metal ser-
vice). For example, to add the standard trait HW_CPU_X86_VMX and a custom trait CUSTOM_TRAIT1
to a node:

baremetal node add trait
CUSTOM_TRAIT1 HW_CPU_X86_VMX

Validating node information

. To check if Bare Metal service has the minimum information necessary for a nodes driver to be

functional, you may validate it:

baremetal node validate

If the node fails validation, each driver interface will return information as to why it failed:

baremetal node validate

—

{continues on next page)
o

2.1.

Bare Metal Service Installation Guide 85

https://docs.openstack.org/nova/zed/user/filter-scheduler.html
https://docs.openstack.org/nova/zed/user/filter-scheduler.html

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

When using the Compute Service with the Bare Metal service, it is safe to ignore the deploy inter-
faces validation error due to lack of image information. You may continue the enrollment process.
This information will be set by the Compute Service just before deploying, when an instance is
requested:

baremetal node validate

(continues on next page)

86

Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

—

Making node available for deployment

In order for nodes to be available for deploying workloads on them, nodes must be in the available
provision state. To do this, nodes created with API version 1.11 and above must be moved from the
enroll state to the manageable state and then to the available state. This section can be safely
skipped, if API version 1.10 or earlier is used (which is the case by default).

After creating a node and before moving it from its initial provision state of enroll, basic power and
port information needs to be configured on the node. The Bare Metal service needs this information
because it verifies that it is capable of controlling the node when transitioning the node from enroll to
manageable state.

To move a node from enroll to manageable provision state:

baremetal node manage
baremetal node show

(continues on next page)

2.1. Bare Metal Service Installation Guide 87

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

[}

Note: Since it is an asynchronous call, the response for baremetal node manage will not indicate
whether the transition succeeded or not. You can check the status of the operation via baremetal node
show. If it was successful, provision_state will be in the desired state. If it failed, there will be
information in the nodes last_error.

When a node is moved from the manageable to available provision state, the node will go through
automated cleaning if configured to do so (see Configure the Bare Metal service for cleaning).

To move a node from manageable to available provision state:

baremetal node provide
baremetal node show

For more details on the Bare Metal services state machine, see the Bare Metal State Machine documen-
tation.

88 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Mapping nodes to Compute cells

If the Compute service is used for scheduling, and the discover_hosts_in_cells_interval was
not set as described in Configure the Compute service to use the Bare Metal service, then log into any
controller node and run the following command to map the new node(s) to Compute cells:

Logical names

A node may also be referred to by a logical name as well as its UUID. Names can be assigned either
during its creation by adding the -n option to the node create command or by updating an existing
node with the node set command.

Node names must be unique, and conform to:
* rfc952
* rfc1123
¢ wiki_hostname

The node is named example in the following examples:

baremetal node create --driver ipmi --name example

or

baremetal node --name example

Once assigned a logical name, a node can then be referred to by name or UUID interchangeably:

baremetal node create --driver ipmi --name example

baremetal node show example

(continues on next page)

2.1. Bare Metal Service Installation Guide 89

https://tools.ietf.org/html/rfc952
https://tools.ietf.org/html/rfc1123
https://en.wikipedia.org/wiki/Hostname

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Defaults for hardware interfaces

For hardware types, users can request one of enabled implementations when creating or updating a node
as explained in Creating a node.

When no value is provided for a certain interface when creating a node, or changing a nodes hardware
type, the default value is used. You can use the driver details command to list the current enabled and
default interfaces for a hardware type (for your deployment):

baremetal driver show ipmi

The defaults are calculated as follows:

1. If the default_<IFACE>_interface configuration option (where <IFACE> is the interface
name) is set, its value is used as the default.

If this implementation is not compatible with the nodes hardware type, an error is returned to a
user. An explicit value has to be provided for the nodes <IFACE>_interface field in this case.

2. Otherwise, the first supported implementation that is enabled by an operator is used as the default.

90 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

A list of supported implementations is calculated by taking the intersection between the im-
plementations supported by the nodes hardware type and implementations enabled by the
enabled_<IFACE>_interfaces option (where <IFACE> is the interface name). The calcula-
tion preserves the order of items, as provided by the hardware type.

If the list of supported implementations is not empty, the first one is used. Otherwise, an error is
returned to a user. In this case, an explicit value has to be provided for the <IFACE>_interface
field.

See Enabling drivers and hardware types for more details on configuration.

Example

Consider the following configuration (shortened for simplicity):

A new node is created with the ipmi driver and no interfaces specified:

.31
baremetal node create --driver ipmi

Then the defaults for the interfaces that will be used by the node in this example are calculated as follows:
deploy An explicit value of ansible is provided for default_deploy_interface, so it is used.

power No default is configured. @ The ipmi hardware type supports only ipmitool power.
The intersection between supported power interfaces and values provided in the
enabled_power_interfaces option has only one item: ipmitool. It is used.

console No default is configured. The ipmi hardware type supports the following console interfaces:
ipmitool-socat, ipmitool-shellinabox and no-console (in this order). Of these three,
only two are enabled: no-console and ipmitool-shellinabox (order does not matter). The
intersection contains ipmitool-shellinabox and no-console. The first item is used, and it is
ipmitool-shellinabox.

management Following the same calculation as power, the ipmitool management interface is used.

2.1. Bare Metal Service Installation Guide 91

Ironic Documentation, Release 21.1.2.dev10

Hardware Inspection

The Bare Metal service supports hardware inspection that simplifies enrolling nodes - please see Hard-
ware Inspection for details.

Tenant Networks and Port Groups

See Multi-tenancy in the Bare Metal service and Port groups support.

2.1.8 Using Bare Metal service as a standalone service
This guide explains how to configure and use the Bare Metal service standalone, i.e. without other

OpenStack services. In this mode users are interacting with the bare metal API directly, not though
OpenStack Compute.

Configuration

This guide covers manual configuration of the Bare Metal service in the standalone mode. Alternatively,
Bifrost can be used for automatic configuration.

Service settings

It is possible to use the Bare Metal service without other OpenStack services. You should make the
following changes to /etc/ironic/ironic.conf:

1. Choose an authentication strategy which supports standalone, one option is noauth:

Another option is ht tp_basic where the credentials are stored in an Apache htpasswd format file:

Only the bcrypt format is supported, and the Apache htpasswd utility can be used to populate the
file with entries, for example:

htpasswd -nbB myName myPassword >> /etc/ironic/htpasswd

2. If you want to disable the Networking service, you should have your network pre-configured to
serve DHCP and TFTP for machines that youre deploying. To disable it, change the following
lines:

92 Chapter 2. Installation Guide

https://docs.openstack.org/bifrost/latest/
https://httpd.apache.org/docs/current/misc/password_encryptions.html

Ironic Documentation, Release 21.1.2.dev10

Note: If you disabled the Networking service and the driver that you use is supported by at most
one conductor, PXE boot will still work for your nodes without any manual config editing. This
is because you know all the DHCP options that will be used for deployment and can set up your
DHCEP server appropriately.

If you have multiple conductors per driver, it would be better to use Networking since it will do all
the dynamically changing configurations for you.

3. If you want to disable using a messaging broker between conductor and API processes, switch to
JSON RPC instead:

JSON RPC also has its own authentication strategy. If it is not specified then the stategy defaults
to [DEFAULT] auth_strategy. The following will set JSON RPC to noauth:

For http_basic the conductor server needs a credentials file to validate requests:

The API server also needs client-side credentials to be specified:

4. Starting with the Yoga release series, you can use a combined API+conductor service and com-
pletely disable the RPC. Set

and use the ironic executable to start the combined service.

Note: The combined service also works with RPC enabled, which can be useful for some deploy-
ments, but may not be advisable for all security models.

2.1. Bare Metal Service Installation Guide 93

Ironic Documentation, Release 21.1.2.dev10

Using CLI

To use the baremetal CLI, set up these environment variables. If the noauth authentication strategy
is being used, the value none must be set for OS_AUTH_TYPE. OS_ENDPOINT is the URL of the
ironic-api process. For example:

none
http://localhost:6385/

If the http_basic authentication strategy is being used, the value http_basic must be set for
OS_AUTH_TYPE. For example:

http_basic
http://localhost:6385/
myUser
myPassword

Enroliment
Preparing images

If you dont use Image service, its possible to provide images to Bare Metal service via a URL.

At the moment, only two types of URLSs are acceptable instead of Image service UUIDs: HTTP(S) URLs
(for example, http://my.server.net/images/img) and file URLs (file:///images/img).

There are however some limitations for different hardware interfaces:

* If youre using Direct deploy with HTTP(s) URLSs, you have to provide the Bare Metal service with
the a checksum of your instance image.

MDS5 is used by default for backward compatibility reasons. To compute an MD5 checksum, you
can use the following command:

md5sum image.qcow?2

Alternatively, use a SHA256 checksum or any other algorithm supported by the Pythons hashlib,
e.g..

sha256sum image.qcow2

* Direct deploy started supporting file:// images in the Victoria release cycle, before that only
HTTP(s) had been supported.

Warning: File images must be accessible to every conductor! Use a shared file system if
you have more than one conductor. The ironic CLI tool will not transfer the file from a local
machine to the conductor(s).

94 Chapter 2. Installation Guide

https://docs.openstack.org/python-ironicclient/zed/cli/osc_plugin_cli.html
http://my.server.net/images/img
file:///images/img
https://docs.python.org/3/library/hashlib.html

Ironic Documentation, Release 21.1.2.dev10

Note: The Bare Metal service tracks content changes for non-Glance images by checking their modifi-
cation date and time. For example, for HTTP image, if Last-Modified header value from response to a
HEAD request to http://my.server.net/images/deploy.ramdisk is greater than cached image modification
time, Ironic will re-download the content. For file:// images, the file system modification time is used.

If the HTTP server does not provide the last modification date and time, the image will be redownloaded
every time it is used.

Enrolling nodes

1. Create a node in Bare Metal service. At minimum, you must specify the driver name (for example,
ipmi). You can also specify all the required driver parameters in one command. This will return

the node UUID:
baremetal node create --driver ipmi

--driver-info ipmi.server.net
--driver-info user
--driver-info pass
--driver-info file:///images/deploy.vmlinuz
--driver-info http://my.server.net/images/deploy.

—ramdisk

.

o

o

o

o

o

o

Note that here deploy_kernel and deploy_ramdisk contain links to images instead of Image service

2.1. Bare Metal Service Installation Guide 95

http://my.server.net/images/deploy.ramdisk
file://

Ironic Documentation, Release 21.1.2.dev10

UUIDs.

2. As in case of Compute service, you can also provide capabilities to node properties, but they
will be used only by Bare Metal service (for example, boot mode). Although you dont need to add
properties like memory_mb, cpus etc. as Bare Metal service will require UUID of a node youre
going to deploy.

3. Then create a port to inform Bare Metal service of the network interface cards which are part of
the node by creating a port with each NICs MAC address. In this case, theyre used for naming of
PXE configs for a node:

baremetal port create --node

Once the installation is done, please see Deploying with Bare Metal service for information on how to
deploy bare metal machines.

Deploying

The content has been migrated, please see Deploying with Bare Metal service.

2.1.9 Enabling the configuration drive (configdrive)

The Bare Metal service supports exposing a configuration drive image to the instances.

The configuration drive is used to store instance-specific metadata and is present to the instance as a
disk partition labeled config-2. The configuration drive has a maximum size of 64MB. One use case
for using the configuration drive is to expose a networking configuration when you do not use DHCP to
assign IP addresses to instances.

The configuration drive is usually used in conjunction with the Compute service, but the Bare Metal
service also offers a standalone way of using it. The following sections will describe both methods.

When used with Compute service

To enable the configuration drive for a specific request, pass --config-drive true parameter to the
nova boot command, for example:

Its also possible to enable the configuration drive automatically on all instances by configuring the
OpenStack Compute service to always create a configuration drive by setting the following option
in the /etc/nova/nova. conf file, for example:

In some cases, you may wish to pass a user customized script when deploying an instance. To do this,
pass --user-data /path/to/file to the nova boot command.

96 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

When used standalone

When used without the Compute service, the operator needs to create a configuration drive and provide
the file or HTTP URL to the Bare Metal service. See Deploying with a config drive for details.

Configuration drive storage in an object store

Under normal circumstances, the configuration drive can be stored in the Bare Metal service when the
size is less than 64KB. Optionally, if the size is larger than 64KB there is support to store it in a swift
endpoint. Both swift and radosgw use swift-style APIs.

The following option in /etc/ironic/ironic.conf enables swift as an object store backend to store
config drive. This uses the Identity service to establish a session between the Bare Metal service and the
Object Storage service.

Use the following options in /etc/ironic/ironic.conf to enable radosgw. Credentials in the swift
section are needed because radosgw will not use the Identity service and relies on radosgws username
and password authentication instead.

If the Direct deploy is being used, edit /etc/glance/glance-api.conf to store the instance images
in respective object store (radosgw or swift) as well:

2.1. Bare Metal Service Installation Guide 97

Ironic Documentation, Release 21.1.2.dev10

Accessing the configuration drive data

When the configuration drive is enabled, the Bare Metal service will create a partition on the instance
disk and write the configuration drive image onto it. The configuration drive must be mounted before
use. This is performed automatically by many tools, such as cloud-init and cloudbase-init. To mount it
manually on a Linux distribution that supports accessing devices by labels, simply run the following:

If the guest OS doesnt support accessing devices by labels, you can use other tools such as blkid to
identify which device corresponds to the configuration drive and mount it, for example:

CONFIG_DEV=$(blkid -t LABEL="config-2" -odevice)
mkdir -p /mnt/config
mount $CONFIG_DEV /mnt/config

Cloud-init integration
The configuration drive can be especially useful when used with cloud-init, but in order to use it we
should follow some rules:

* Cloud-init data should be organized in the expected format.

* Since the Bare Metal service uses a disk partition as the configuration drive, it will only work with
cloud-init version >= 0.7.5.

* Cloud-init has a collection of data source modules, so when building the image with disk-image-
builder we have to define DIB_CLOUD_INIT_DATASOURCES environment variable and set the ap-
propriate sources to enable the configuration drive, for example:

For more information see how to configure cloud-init data sources.

2.1.10 Advanced features
Specifying the disk for deployment (root device hints)
The Bare Metal service supports passing hints to the deploy ramdisk about which disk it should pick for
the deployment. The list of supported hints is:
¢ model (STRING): device identifier
¢ vendor (STRING): device vendor

* serial (STRING): disk serial number
¢ size (INT): size of the device in GiB

Note: A nodes local_gb property is often set to a value 1 GiB less than the actual disk size to
account for partitioning (this is how DevStack, TripleO and Ironic Inspector work, to name a few).

98 Chapter 2. Installation Guide

http://cloudinit.readthedocs.io/en/latest/topics/datasources/configdrive.html
https://docs.openstack.org/nova/latest/user/vendordata.html
https://github.com/cloud-init/cloud-init/blob/2d6e4219db73e80c135efd83753f9302f778f08d/ChangeLog
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/diskimage-builder/latest/elements/cloud-init-datasources/README.html

Ironic Documentation, Release 21.1.2.dev10

However, in this case size should be the actual size. For example, for a 128 GiB disk local_gb
will be 127, but size hint will be 128.

* wwn (STRING): unique storage identifier
» wwn_with_extension (STRING): unique storage identifier with the vendor extension appended
* wwn_vendor_extension (STRING): unique vendor storage identifier

* rotational (BOOLEAN): whether its a rotational device or not. This hint makes it easier to distin-
guish HDDs (rotational) and SSDs (not rotational) when choosing which disk Ironic should deploy
the image onto.

* hctl (STRING): the SCSI address (Host, Channel, Target and Lun), e.g 1:0:0:0

* by_path (STRING): the alternate device name corresponding to a particular PCI or iSCSI path, e.g
/dev/disk/by-path/pci-0000:00

* name (STRING): the device name, e.g /dev/md0

Warning: The root device hint name should only be used for devices with constant names
(e.g RAID volumes). For SATA, SCSI and IDE disk controllers this hint is not recommended
because the order in which the device nodes are added in Linux is arbitrary, resulting in devices
like /dev/sda and /dev/sdb switching around at boot time.

To associate one or more hints with a node, update the nodes properties with a root_device key, for
example:

That will guarantee that Bare Metal service will pick the disk device that has the wwn equal to the specified
wwhn value, or fail the deployment if it can not be found.

Note: Starting with the Ussuri release, root device hints can be specified per-instance, see Using Bare
Metal service as a standalone service.

The hints can have an operator at the beginning of the value string. If no operator is specified the default
is == (for numerical values) and s== (for string values). The supported operators are:

* For numerical values:
— =equal to or greater than. This is equivalent to >= and is supported for legacy reasons
— ==equal to
— !=not equal to
— >= greater than or equal to
— > greater than
— <= less than or equal to

— < less than

2.1. Bare Metal Service Installation Guide 99

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/persistent_naming.html
https://docs.openstack.org/nova/latest/user/filter-scheduler.html#filtering

Ironic Documentation, Release 21.1.2.dev10

* For strings (as python comparisons):
— s==equal to
— s!=notequal to
— s>= greater than or equal to
— s> greater than
— s<=less than or equal to
— s<less than
— <in> substring
* For collections:
— <all-in> all elements contained in collection
— <or> find one of these
Examples are:

* Finding a disk larger or equal to 60 GiB and non-rotational (SSD):

* Finding a disk whose vendor is samsung or winsys:

Note: If multiple hints are specified, a device must satisfy all the hints.

Appending kernel parameters to boot instances

The Bare Metal service supports passing custom kernel parameters to boot instances to fit users require-
ments. The way to append the kernel parameters is depending on how to boot instances.

Network boot

Currently, the Bare Metal service supports assigning unified kernel parameters to PXE booted instances
by:

* Modifying the [pxe]/kernel_append_params configuration option, for example:

Note: The option was called pxe_append_params before the Xena cycle.

100 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

* Copying a template from shipped templates to another place, for example:

Making the modifications and pointing to the custom template via the configuration options:
[pxe]/pxe_config_template and [pxe]/uefi_pxe_config_template.

Local boot

For local boot instances, users can make use of configuration drive (see Enabling the configuration drive
(configdrive)) to pass a custom script to append kernel parameters when creating an instance. This is
more flexible and can vary per instance. Here is an example for grub2 with ubuntu, users can customize
it to fit their use case:

2.1. Bare Metal Service Installation Guide 101

Ironic Documentation, Release 21.1.2.dev10

Console

In order to change default console configuration in the Bare Metal service configuration file ([pxe]
section in /etc/ironic/ironic.conf), include the serial port terminal and serial speed. Serial speed
must be the same as the serial configuration in the BIOS settings, so that the operating system boot process
can be seen in the serial console or web console. Following examples represent possible parameters for
serial and web console respectively.

* Node serial console. The console parameter console=ttyS®, 115200n8 uses ttySO for console
output at 115200bps, 8bit, non-parity,e.g.:

* For node web console configuration is similar with the addition of ttyX parameter, see example:

For detailed information on how to add consoles see the reference documents kernel params and serial
console. In case of local boot the Bare Metal service is not able to control kernel boot parameters. To
configure console locally, follow Local boot section above.

Boot mode support

Some of the bare metal hardware types (namely, redfish, ilo and generic ipmi) support setting boot
mode (Legacy BIOS or UEFI).

Note: Setting boot mode support in generic ipmi driver is coupled with setting boot device. That makes
boot mode support in the ipmi driver incomplete.

Note: In this chapter we will distinguish ironic node from bare metal node. The difference is that ironic
node refers to a logical node, as it is configured in ironic, while bare metal node indicates the hardware
machine that ironic is managing.

The following rules apply in order when ironic manages node boot mode:

* If the hardware type (or bare metal node) does not implement reading current boot mode of the
bare metal node, then ironic assumes that boot mode is not set on the bare metal node

 If boot mode is not set on ironic node and bare metal node boot mode is unknown (not set, cant be
read etc.), ironic node boot mode is set to the value of the [deploy]/default_boot_mode option

¢ If boot mode is set on a bare metal node, but is not set on ironic node, bare metal node boot mode
is set on ironic node

102 Chapter 2. Installation Guide

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/serial-console.html
https://www.kernel.org/doc/html/latest/admin-guide/serial-console.html

Ironic Documentation, Release 21.1.2.dev10

* If boot mode is set on ironic node, but is not set on the bare metal node, ironic node boot mode is
attempted to be set on the bare metal node (failure to set boot mode on the bare metal node will
not fail ironic node deployment)

* If different boot modes appear on to be set ironic node and on the bare metal node, ironic node
boot mode is attempted to be set on the bare metal node (failure to set boot mode on the bare metal
node will fail ironic node deployment)

Warning: If a bare metal node does not support setting boot mode, then the operator needs to make
sure that boot mode configuration is consistent between ironic node and the bare metal node.

The boot modes can be configured in the Bare Metal service in the following way:
* Only one boot mode (either uefi or bios) can be configured for the node.

* If the operator wants a node to boot always in uefi mode or bios mode, then they may use
capabilities parameter within properties field of an bare metal node. The operator must
manually set the appropriate boot mode on the bare metal node.

To configure a node in uefi mode, then set capabilities as below:

Conversely, to configure a node in bios mode, then set the capabilities as below:

Note:

The Ironic project changed the default boot mode setting for nodes from bios to uefi during
the Yoga development cycle.

Nodes having boot_mode set to uefi may be requested by adding an extra_spec to the Compute
service flavor:

If capabilities is used in extra_spec as above, nova scheduler (ComputeCapabilitiesFilter)
will match only bare metal nodes which have the boot_mode set appropriately in properties/
capabilities. It will filter out rest of the nodes.

The above facility for matching in the Compute service can be used in heterogeneous environments where
there is a mix of uefi and bios machines, and operator wants to provide a choice to the user regarding
boot modes. If the flavor doesnt contain boot_mode and boot_mode is configured for bare metal nodes,
then nova scheduler will consider all nodes and user may get either bios or uefi machine.

Some hardware support setting secure boot mode, see UEFI secure boot mode for details.

2.1. Bare Metal Service Installation Guide 103

Ironic Documentation, Release 21.1.2.dev10

Choosing the disk label

Note: The term disk label is historically used in Ironic and was taken from parted. Apparently
everyone seems to have a different word for disk label - these are all the same thing: disk type, partition
table, partition map and so on

Ironic allows operators to choose which disk label they want their bare metal node to be deployed with
when Ironic is responsible for partitioning the disk; therefore choosing the disk label does not apply when
the image being deployed is a whole disk image.

There are some edge cases where someone may want to choose a specific disk label for the images being
deployed, including but not limited to:

* For machines in bios boot mode with disks larger than 2 terabytes its recommended to use a
gpt disk label. Thats because a capacity beyond 2 terabytes is not addressable by using the MBR
partitioning type. But, although GPT claims to be backward compatible with legacy BIOS systems
thats not always the case.

* Operators may want to force the partitioning to be always MBR (even if the machine is deployed
with boot mode uefi) to avoid breakage of applications and tools running on those instances.

The disk label can be configured in two ways; when Ironic is used with the Compute service or in stan-
dalone mode. The following bullet points and sections will describe both methods:

* When no disk label is provided Ironic will configure it according to the boot mode (see Boot mode
support); bios boot mode will use msdos and uefi boot mode will use gpt.

* Only one disk label - either msdos or gpt - can be configured for the node.

Warning: If the host is in UEFI boot mode, use of disk_label is redundant, and may cause
deployments to fail unexpectedly if the node is not explicitly set to boot in UEFI mode. Use of
appropriate boot mode is highly recommended.

When used with Compute service

When Ironic is used with the Compute service the disk label should be set to nodes properties/
capabilities field and also to the flavor which will request such capability, for example:

As for the flavor:

104 Chapter 2. Installation Guide

https://www.gnu.org/software/parted
http://www.rodsbooks.com/gdisk/bios.html

Ironic Documentation, Release 21.1.2.dev10

When used in standalone mode

When used without the Compute service, the disk label should be set directly to the nodes
instance_info field, as below:

Notifications

The Bare Metal service supports the emission of notifications, which are messages sent on a message
broker (like RabbitMQ or anything else supported by the oslo messaging library) that indicate various
events which occur, such as when a node changes power states. These can be consumed by an exter-
nal service reading from the message bus. For example, Searchlight is an OpenStack service that uses
notifications to index (and make searchable) resources from the Bare Metal service.

Notifications are disabled by default. For a complete list of available notifications and instructions for
how to enable them, see the Notifications.

Configuring node web console

See Configuring Web or Serial Console.

2.1.11 Troubleshooting

Once all the services are running and configured properly, and a node has been enrolled with the Bare
Metal service and is in the available provision state, the Compute service should detect the node as an
available resource and expose it to the scheduler.

Note: There is a delay, and it may take up to a minute (one periodic task cycle) for the Compute service
to recognize any changes in the Bare Metal services resources (both additions and deletions).

In addition to watching nova-compute log files, you can see the available resources by looking at the list
of Compute hypervisors. The resources reported therein should match the bare metal node properties,
and the Compute service flavor.

Here is an example set of commands to compare the resources in Compute service and Bare Metal service:

$ baremetal node list

R et et e e e e T tomm e +-—m— -
R T +

| UUID | Instance UUID | Power State |.
—Provisioning State | Maintenance |

e e T o
R e +

| 86a2blbb-8b29-4964-a817-£90031debddb | None | power off |._
—available | False [

- e T o B
ym——————————— Fomm e - +

(continues on next page)

2.1. Bare Metal Service Installation Guide 105

https://docs.openstack.org/oslo.messaging/latest/reference/notifier.html
https://wiki.openstack.org/wiki/Searchlight

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

$ baremetal node show 86a2blbb-8b29-4964-a817-£90031debddb

o - B e e e e T
Cmmmm +

| Property | Value

.

e e

Y L L L L L e e +

| instance_uuid

| properties
—'local_gb': u'1e',
|

<
| maintenance
-

| driver_info
o

| extra

.

| last_error
.

| created_at

| None

| {u'memory_mb':
| u'cpus': u'l'}
| False

| { [SNIP] }

I {3}

| None

| 2014-11-20T23:57:03+00:00

u'l024', u'cpu_arch': u'x86_64"', u

| target_provision_state | None o
= |
| driver | ipmi o
= |
| updated_at | 2014-11-21T00:47:34+00:00 o
o I
| instance_info | {3} o
o I
| chassis_uuid | 7b49bbc5-2eb7-4269-b6ea-3f1a51448a59 o
o I
| provision_state | available o
o I
| reservation | None o
o I
| power_state | power off o
< I
| console_enabled | False =
, I
| uuid | 86a2blbb-8b29-4964-a817-f90031debddb o
o I
R ettt B et e e
mmm e ———— +
$ nova hypervisor-list
e - B T TR
e R p—— +
(continues on next page)
106 Chapter 2. Installation Guide

Ironic Documentation,

Release 21.1.2.dev10

(continued from previous page)

| Hypervisor hostname o

| 86a2b1lbb-8b29-4964-a817-£90031debddb..

| ID

| State | Status |

e e et e e PP B e et L T e
R o ———— - +

| 584cfdc8-9afd-4fbb-82ef-9ff25elad3£3

—| up | enabled |

- -
F--————- Fommm - +

$ nova hypervisor-show 584cfdc8-9afd-4fbb-82ef-9ff25elad3f3

+ _________________________

+ _________________________

e e

Property

cpu_info
current_workload
disk_available_least
free_disk_gb
free_ram_mb

host_ip
hypervisor_hostname
hypervisor_type
hypervisor_version
id

local_gb
local_gb_used
memory_mb
memory_mb_used
running_vms

service_disabled_reason

service_host
service_id
state

status

vcpus
vcpus_used

baremetal cpu
0

10

1024

[SNIP]

86a2b1bb-8b29-4964-a817-£90031debddb

ironic
1

1

10

0

1024

0

0

my-test-host

Maintenance mode

Maintenance mode may be used if you need to take a node out of the resource pool. Putting a node in
maintenance mode will prevent Bare Metal service from executing periodic tasks associated with the
node. This will also prevent Compute service from placing a tenant instance on the node by not exposing
the node to the nova scheduler. Nodes can be placed into maintenance mode with the following command.

$ baremetal node maintenance set $NODE_UUID

A maintenance reason may be included with the optional --reason command line option. This is a free
form text field that will be displayed in the maintenance_reason section of the node show command

2.1.

Bare Metal Service Installation Guide

107

Ironic Documentation, Release 21.1.2.dev10

$ baremetal node maintenance set $UUID --reason "Need to add ram."

$ baremetal node show $UUID

e e +
| Property | Value |
o B et e e TP +
| target_power_state | None

| extra | {} I
| last_error | None

| updated_at | 2015-04-27T15:43:58+00:00

| maintenance_reason | Need to add ram.

| ... | ... I
| maintenance | True

I I I
e e +

To remove maintenance mode and clear any maintenance_reason use the following command.

$ baremetal node maintenance unset $NODE_UUID

2.1.12 Next steps

Your OpenStack environment now includes the Bare Metal service.

2.1.13 Create user images for the Bare Metal service

The content has been migrated, please see Creating instance images.

2.2 Bare Metal Service Upgrade Guide

This document outlines various steps and notes for operators to consider when upgrading their ironic-
driven clouds from previous versions of OpenStack.

The Bare Metal (ironic) service is tightly coupled with the ironic driver that is shipped with the Compute
(nova) service. Some special considerations must be taken into account when upgrading your cloud.

Both offline and rolling upgrades are supported.

108 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

2.2.1 Plan your upgrade

* Rolling upgrades are available starting with the Pike release; that is, when upgrading from Ocata.
This means that it is possible to do an upgrade with minimal to no downtime of the Bare Metal
APL

» Upgrades are only supported between two consecutive named releases. This means that you cannot
upgrade Ocata directly into Queens; you need to upgrade into Pike first.

* The release notes should always be read carefully when upgrading the Bare Metal service. Specific
upgrade steps and considerations are documented there.

* The Bare Metal service should always be upgraded before the Compute service.

Note: The ironic virt driver in nova always uses a specific version of the ironic REST API. This
API version may be one that was introduced in the same development cycle, so upgrading nova
first may result in nova being unable to use the Bare Metal APIL.

* Make a backup of your database. Ironic does not support downgrading of the database. Hence, in
case of upgrade failure, restoring the database from a backup is the only choice.

» Before starting your upgrade, it is best to ensure that all nodes have reached, or are in, a stable
provision_state. Nodes in states with long running processes such as deploying or cleaning,
may fail, and may require manual intervention to return them to the available hardware pool. This
is most likely in cases where a timeout has occurred or a service was terminated abruptly. For a
visual diagram detailing states and possible state transitions, please see Bare Metal State Machine.

2.2.2 Offline upgrades
In an offline (or cold) upgrade, the Bare Metal service is not available during the upgrade, because all
the services have to be taken down.
When upgrading the Bare Metal service, the following steps should always be taken in this order:
1. upgrade the ironic-python-agent image
2. update ironic code, without restarting services
3. run database schema migrations via ironic-dbsync upgrade
4. restart ironic-conductor and ironic-api services
Once the above is done, do the following:

* update any applicable configuration options to stop using any deprecated features or options, and
perform any required work to transition to alternatives. All the deprecated features and options will
be supported for one release cycle, so should be removed before your next upgrade is performed.

» upgrade python-ironicclient along with any other services connecting to the Bare Metal service as
a client, such as nova-compute

* run the ironic-dbsync online_data_migrations command to make sure that data migra-
tions are applied. The command lets you limit the impact of the data migrations with the
--max-count option, which limits the number of migrations executed in one run. You should
complete all of the migrations as soon as possible after the upgrade.

2.2. Bare Metal Service Upgrade Guide 109

https://docs.openstack.org/releasenotes/ironic/

Ironic Documentation, Release 21.1.2.dev10

Warning: You will not be able to start an upgrade to the release after this one, until this has
been completed for the current release. For example, as part of upgrading from Ocata to Pike,
you need to complete Pikes data migrations. If this not done, you will not be able to upgrade
to Queens it will not be possible to execute Queens database schema updates.

2.2.3 Rolling upgrades

To Reduce downtime, the services can be upgraded in a rolling fashion, meaning to upgrade one or a few
services at a time to minimize impact.

Rolling upgrades are available starting with the Pike release. This feature makes it possible to upgrade
between releases, such as Ocata to Pike, with minimal to no downtime of the Bare Metal API.

Requirements

To facilitate an upgrade in a rolling fashion, you need to have a highly-available deployment consisting
of at least two ironic-api and two ironic-conductor services. Use of a load balancer to balance requests
across the ironic-api services is recommended, as it allows for a minimal impact to end users.

Concepts

There are four aspects of the rolling upgrade process to keep in mind:
* API and RPC version pinning, and versioned object backports
* online data migrations
* graceful service shutdown

* API load balancer draining

API & RPC version pinning and versioned object backports

Through careful RPC versioning, newer services are able to talk to older services (and vice-versa). The
[DEFAULT] /pin_release_version configuration option is used for this. It should be set (pinned) to
the release version that the older services are using. The newer services will backport RPC calls and
objects to their appropriate versions from the pinned release. If the IncompatibleObjectVersion ex-
ception occurs, it is most likely due to an incorrect or unspecified [DEFAULT] /pin_release_version
configuration value. For example, when [DEFAULT]/pin_release_version is not set to the older
release version, no conversion will happen during the upgrade.

For the ironic-api service, the API version is pinned via the same [DEFAULT]/pin_release_version
configuration option as above. When pinned, the new ironic-api services will not service any API requests
with Bare Metal API versions that are higher than what the old ironic-api services support. HT TP status
code 406 is returned for such requests. This prevents new features (available in new API versions) from
being used until after the upgrade has been completed.

110 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

Online data migrations

To make database schema migrations less painful to execute, we have implemented process changes to
facilitate upgrades.

* All data migrations are banned from schema migration scripts.
* Schema migration scripts only update the database schema.

» Data migrations must be done at the end of the rolling upgrade process, after the schema migration
and after the services have been upgraded to the latest release.

All data migrations are performed using the ironic-dbsync online_data_migrations command.
It can be run as a background process so that it does not interrupt running services; however it must be
run to completion for a cold upgrade if the intent is to make use of new features immediately.

(You would also execute the same command with services turned off if you are doing a cold upgrade).

This data migration must be completed. If not, you will not be able to upgrade to future releases. For
example, if you had upgraded from Ocata to Pike but did not do the data migrations, you will not be
able to upgrade from Pike to Queens. (More precisely, you will not be able to apply Queens schema
migrations.)

Graceful conductor service shutdown

The ironic-conductor service is a Python process listening for messages on a message queue. When
the operator sends the SIGTERM signal to the process, the service stops consuming messages from the
queue, so that no additional work is picked up. It completes any outstanding work and then terminates.
During this process, messages can be left on the queue and will be processed after the Python process
starts back up. This gives us a way to shutdown a service using older code, and start up a service using
newer code with minimal impact.

Note: This was tested with RabbitMQ messaging backend and may vary with other backends.

Nodes that are being acted upon by an ironic-conductor process, which are not in a stable state, may
encounter failures. Node failures that occur during an upgrade are likely due to timeouts, resulting from
delays involving messages being processed and acted upon by a conductor during long running, multi-
step processes such as deployment or cleaning.

API load balancer draining

If you are using a load balancer for the ironic-api services, we recommend that you redirect requests to
the new API services and drain off of the ironic-api services that have not yet been upgraded.

2.2. Bare Metal Service Upgrade Guide 111

Ironic Documentation, Release 21.1.2.dev10

Rolling upgrade process

Before maintenance window

* Upgrade the ironic-python-agent image

» Using the new release (ironic code), execute the required database schema updates by running the

database upgrade command: ironic-dbsync upgrade. These schema change operations should
have minimal or no effect on performance, and should not cause any operations to fail (but please
check the release notes). You can:

— install the new release on an existing system
— install the new release in a new virtualenv or a container

At this point, new columns and tables may exist in the database. These database schema changes
are done in a way that both the old and new (N and N+1) releases can perform operations against
the same schema.

Note:

Ironic bases its API, RPC and object storage format versions on the [DEFAULT]/

pin_release_version configuration option. It is advisable to automate the deployment of changes
in configuration files to make the process less error prone and repeatable.

During maintenance window

1. All ironic-conductor services should be upgraded first. Ensure that at least one ironic-conductor

service is running at all times. For every ironic-conductor, either one by one or a few at a time:

* shut down the service. Messages from the ironic-api services to the conductors are load-
balanced by the message queue and a hash-ring, so the only thing you need to worry about is
to shut the service down gracefully (using SIGTERM signal) to make sure it will finish all the
requests being processed before shutting down.

 upgrade the installed version of ironic and dependencies

 set the [DEFAULT]/pin_release_version configuration option value to the version you
are upgrading from (that is, the old version). Based on this setting, the new ironic-conductor
services will downgrade any RPC communication and data objects to conform to the old
service. For example, if you are upgrading from Ocata to Pike, set this value to ocata.

e start the service

2. The next service to upgrade is ironic-api. Ensure that at least one ironic-api service is running at

all times. You may want to start another temporary instance of the older ironic-api to handle the
load while you are upgrading the original ironic-api services. For every ironic-api service, either
one by one or a few at a time:

e in HA deployment you are typically running them behind a load balancer (for example
HAProxy), so you need to take the service instance out of the balancer

¢ shut it down

 upgrade the installed version of ironic and dependencies

112

Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

 set the [DEFAULT]/pin_release_version configuration option value to the version you
are upgrading from (that is, the old version). Based on this setting, the new ironic-api services
will downgrade any RPC communication and data objects to conform to the old service. In
addition, the new services will return HTTP status code 406 for any requests with newer API
versions that the old services did not support. This prevents new features (available in new
API versions) from being used until after the upgrade has been completed. For example, if
you are upgrading from Ocata to Pike, set this value to ocata.

* restart the service
¢ add it back into the load balancer

After upgrading all the ironic-api services, the Bare Metal service is running in the new version
but with downgraded RPC communication and database object storage formats. New features (in
new API versions) are not supported, because they could fail when objects are in the downgraded
object formats and some internal RPC API functions may still not be available.

3. For all the ironic-conductor services, one at a time:
* remove the [DEFAULT] /pin_release_version configuration option setting
* restart the ironic-conductor service

4. For all the ironic-api services, one at a time:
* remove the [DEFAULT] /pin_release_version configuration option setting

* restart the ironic-api service

After maintenance window

Now that all the services are upgraded, the system is able to use the latest version of the RPC protocol
and able to access all the features of the new release.

» Update any applicable configuration options to stop using any deprecated features or options, and
perform any required work to transition to alternatives. All the deprecated features and options will
be supported for one release cycle, so should be removed before your next upgrade is performed.

* Upgrade python-ironicclient along with other services connecting to the Bare Metal service
as a client, such as nova-compute.

Warning: A nova-compute instance tries to attach VIFs to all active instances on start up.
Make sure that for all active nodes there is at least one running ironic-conductor process to
manage them. Otherwise the instances will be moved to the ERROR state on the nova-compute
start up.

e Run the ironic-dbsync online_data_migrations command to make sure that data mi-
grations are applied. The command lets you limit the impact of the data migrations with the
--max-count option, which limits the number of migrations executed in one run. You should
complete all of the migrations as soon as possible after the upgrade.

Warning: Note that you will not be able to start an upgrade to the next release after this one,
until this has been completed for the current release. For example, as part of upgrading from

2.2. Bare Metal Service Upgrade Guide 113

Ironic Documentation, Release 21.1.2.dev10

Ocata to Pike, you need to complete Pikes data migrations. If this not done, you will not be
able to upgrade to Queens it will not be possible to execute Queens database schema updates.

Upgrading to Hardware Types

Starting with the Rocky release, the Bare Metal service does not support classic drivers any more. If you
still use classic drivers, please upgrade to hardware types immediately. Please see Enabling drivers and
hardware types for details on hardware types and hardware interfaces.

Planning the upgrade

It is necessary to figure out which hardware types and hardware interfaces correspond to which classic
drivers used in your deployment. The following table lists the classic drivers with their corresponding
hardware types and the boot, deploy, inspect, management, and power hardware interfaces:

Classic Driver Hardware Boot De- Inspect | Manage- Power
Type ploy ment
agent_ilo ilo ilo-virtual- direct | ilo ilo ilo
media
agent_ipmitool ipmi pxe direct | inspec- ipmitool ipmi-
tor tool
agent_ipmitool_socatipmi pxe direct | inspec- ipmitool ipmi-
tor tool
agent_irmc irmec irmc-virtual- direct | irmc irme irmec
media
iscsi_ilo ilo ilo-virtual- iscsi ilo ilo ilo
media
iscsi_irmc irmc irmc-virtual- iscsi irmc irmc irmc
media
pxe_drac idrac pxe iscsi idrac idrac idrac
pxe_drac_inspector| idrac pxe iscsi inspec- idrac idrac
tor
pxe_ilo ilo ilo-pxe iscsi ilo ilo ilo
pxe_ipmitool ipmi pxe iscsi inspec- ipmitool ipmi-
tor tool
pxe_ipmitool_socat ipmi pxe iscsi inspec- ipmitool ipmi-
tor tool
pxe_irmc irmc irmc-pxe iscsi irmc irmc irmc
pxe_snmp snmp pxe iscsi no- fake snmp
inspect

Note: The inspector inspect interface was only used if explicitly enabled in the configuration. Oth-
erwise, no-inspect was used.

Note: pxe_ipmitool_socat and agent_ipmitool_socat use ipmitool-socat console in-

114 Chapter 2. Installation Guide

Ironic Documentation, Release 21.1.2.dev10

terface (the default for the ipmi hardware type), while pxe_ipmitool and agent_ipmitool use
ipmitool-shellinabox. See Console for details.

For out-of-tree drivers you may need to reach out to their maintainers or figure out the appropriate inter-
faces by researching the source code.

Configuration

You will need to enable hardware types and interfaces that correspond to your currently enabled classic
drivers. For example, if you have the following configuration in your ironic.conf:

You will have to add this configuration as well:

Note: For every interface type there is an option default_<INTERFACE>_interface, where
<INTERFACE> is the interface type name. For example, one can make all nodes use the direct deploy
method by default by setting:

Migrating nodes

After the required items are enabled in the configuration, each nodes driver field has to be updated to
a new value. You may need to also set new values for some or all interfaces:

See Enrollment for more details on setting hardware types and interfaces.

2.2. Bare Metal Service Upgrade Guide 115

Ironic Documentation, Release 21.1.2.dev10

Warning: It is not recommended to change the interfaces for active nodes. If absolutely needed,
the nodes have to be put in the maintenance mode first:

the update, validate its correctness

Other interfaces

Care has to be taken to migrate from classic drivers using non-default interfaces. This chapter covers a
few of the most commonly used.

Ironic Inspector

Some classic drivers, notably pxe_ipmitool, agent_ipmitool and pxe_drac_inspector, use
ironic-inspector for their inspect interface.

The same functionality is available for all hardware types, but the appropriate inspect interface has to
be enabled in the Bare Metal service configuration file, for example:

See Enabling drivers and hardware types for more details.

Note: The configuration option [inspector]enabled does not affect hardware types.

Then you can tell your nodes to use this interface, for example:

Note: A node configured with the IPMI hardware type, will use the inspector inspection implementation
automatically if it is enabled. This is not the case for the most of the vendor drivers.

116 Chapter 2. Installation Guide

https://docs.openstack.org/ironic-inspector/

Ironic Documentation, Release 21.1.2.dev10

Console

Several classic drivers, notably pxe_ipmitool_socat and agent_ipmitool_socat, use socat-based
serial console implementation.

For the ipmi hardware type it is used by default, if enabled in the configuration file:

If you want to use the shellinabox implementation instead, it has to be enabled as well:

Then you need to update some or all nodes to use it explicitly. For example, to update all nodes use:

RAID

Many classic drivers, including pxe_ipmitool and agent_ipmitool use the [PA-based in-band RAID
implementation by default.

For the hardware types it is not used by default. To use it, you need to enable it in the configuration first:

Then you can update those nodes that support in-band RAID to use the agent RAID interface. For
example, to update all nodes use:

Note: The ability of a node to use the agent RAID interface depends on the ramdisk (more specifically,
a hardware manager used in it), not on the driver.

2.2. Bare Metal Service Upgrade Guide 117

https://docs.openstack.org/ironic-python-agent/zed/contributor/hardware_managers.html

Ironic Documentation, Release 21.1.2.dev10

Network and storage

The network and storage interfaces have always been dynamic, and thus do not require any special treat-
ment during upgrade.

Vendor

Classic drivers are allowed to use the VendorMixin functionality to combine and expose several node
or driver vendor passthru methods from different vendor interface implementations in one driver.

This is no longer possible with hardware types.

With hardware types, a vendor interface can only have a single active implementation from the list of
vendor interfaces supported by a given hardware type.

Ironic no longer has in-tree drivers (both classic and hardware types) that rely on this VendorMixin func-
tionality support. However if you are using an out-of-tree classic driver that depends on it, youll need to
do the following in order to use vendor passthru methods from different vendor passthru implementations:

1. While creating a new hardware type to replace your classic driver, specify all vendor interface im-
plementations your classic driver was using to build its VendorMixin as supported vendor inter-
faces (property supported_vendor_interfaces of the Python class that defines your hardware

type).

2. Ensure all required vendor interfaces are enabled in the ironic configuration file under the
[DEFAULT]enabled_vendor_interfaces option. You should also consider setting the
[DEFAULT]default_vendor_interface option to specify the vendor interface for nodes that
do not have one set explicitly.

3. Before invoking a specific vendor passthru method, make sure that the nodes vendor interface is
set to the interface with the desired vendor passthru method. For example, if you want to invoke
the vendor passthru method vendor_method_foo () from vendor_£foo vendor interface:

baremetal node <node> --vendor-interface vendor_foo

baremetal node passthru call <node> vendor_method_foo

118 Chapter 2. Installation Guide

CHAPTER
THREE

USER GUIDE

3.1 Bare Metal Service User Guide

Ironic is an OpenStack project which provisions bare metal (as opposed to virtual) machines. It may
be used independently or as part of an OpenStack Cloud, and integrates with the OpenStack Identity
(keystone), Compute (nova), Network (neutron), Image (glance) and Object (swift) services.

When the Bare Metal service is appropriately configured with the Compute and Network services, it is
possible to provision both virtual and physical machines through the Compute services API. However,
the set of instance actions is limited, arising from the different characteristics of physical servers and
switch hardware. For example, live migration can not be performed on a bare metal instance.

The community maintains reference drivers that leverage open-source technologies (eg. PXE and IPMI)
to cover a wide range of hardware. Ironics pluggable driver architecture also allows hardware vendors
to write and contribute drivers that may improve performance or add functionality not provided by the
community drivers.

3.1.1 Understanding Bare Metal service
Why Provision Bare Metal
Here are a few use-cases for bare metal (physical server) provisioning in cloud; there are doubtless many
more interesting ones:
* High-performance computing clusters
* Computing tasks that require access to hardware devices which cant be virtualized

» Database hosting (some databases run poorly in a hypervisor)

» Single tenant, dedicated hardware for performance, security, dependability and other regulatory
requirements

* Or, rapidly deploying a cloud infrastructure

119

Ironic Documentation, Release 21.1.2.dev10

Conceptual Architecture

The following diagram shows the relationships and how all services come into play during the provision-
ing of a physical server. (Note that Ceilometer and Swift can be used with Ironic, but are missing from
this diagram.)

Figure 1.1. Conceptual Architecture Heat
Orchestrates
cloud
Provides
Horizon - m— -
Provides network
connectvity for
MNeutron
Bare Metal
Provides
images
Provides
volumes for
A J hJ Provisions v
Cinder Nova Glance
Ironic
Provides

Auth for Keystone -—

Key Technologies for Bare Metal Hosting

Preboot Execution Environment (PXE)

PXE is part of the Wired for Management (WfM) specification developed by Intel and Microsoft. The
PXE enables systems BIOS and network interface card (NIC) to bootstrap a computer from the network
in place of a disk. Bootstrapping is the process by which a system loads the OS into local memory so
that it can be executed by the processor. This capability of allowing a system to boot over a network
simplifies server deployment and server management for administrators.

120 Chapter 3. User Guide

Ironic Documentation, Release 21.1.2.dev10

Dynamic Host Configuration Protocol (DHCP)

DHCEP is a standardized networking protocol used on Internet Protocol (IP) networks for dynamically
distributing network configuration parameters, such as IP addresses for interfaces and services. Using
PXE, the BIOS uses DHCP to obtain an IP address for the network interface and to locate the server that
stores the network bootstrap program (NBP).

Network Bootstrap Program (NBP)

NBP is equivalent to GRUB (GRand Unified Bootloader) or LILO (LInux LOader) - loaders which are
traditionally used in local booting. Like the boot program in a hard drive environment, the NBP is
responsible for loading the OS kernel into memory so that the OS can be bootstrapped over a network.

Trivial File Transfer Protocol (TFTP)

TFTP is a simple file transfer protocol that is generally used for automated transfer of configuration or
boot files between machines in a local environment. In a PXE environment, TFTP is used to download
NBP over the network using information from the DHCP server.

Intelligent Platform Management Interface (IPMI)

IPMI is a standardized computer system interface used by system administrators for out-of-band man-
agement of computer systems and monitoring of their operation. It is a method to manage systems that
may be unresponsive or powered off by using only a network connection to the hardware rather than to
an operating system.

Understanding Bare Metal Deployment

What happens when a boot instance request comes in? The below diagram walks through the steps
involved during the provisioning of a bare metal instance.

These pre-requisites must be met before the deployment process:

* Dependent packages to be configured on the Bare Metal service node(s) where ironic-conductor
is running like tftp-server, ipmi, grub/ipxe, etc for bare metal provisioning.

» Nova must be configured to make use of the bare metal service endpoint and compute driver should
be configured to use ironic driver on the Nova compute node(s).

¢ Flavors to be created for the available hardware. Nova must know the flavor to boot from.

* Images to be made available in Glance. Listed below are some image types required for successful
bare metal deployment:

— bm-deploy-kernel

bm-deploy-ramdisk

user-image

user-image-vmlinuz

user-image-initrd

3.1. Bare Metal Service User Guide 121

Ironic Documentation, Release 21.1.2.dev10

e Hardware to be enrolled via the bare metal API service.

Deploy Process

This describes a typical bare metal node deployment within OpenStack using PXE to boot the ramdisk.
Depending on the ironic driver interfaces used, some of the steps might be marginally different, however
the majority of them will remain the same.

1.

10.

11.
12.

A boot instance request comes in via the Nova API, through the message queue to the Nova sched-
uler.

Nova scheduler applies filters and finds the eligible hypervisor. The nova scheduler also uses the
flavors extra_specs, such as cpu_arch, to match the target physical node.

. Nova compute manager claims the resources of the selected hypervisor.

Nova compute manager creates (unbound) tenant virtual interfaces (VIFs) in the Networking ser-
vice according to the network interfaces requested in the nova boot request. A caveat here is,
the MACs of the ports are going to be randomly generated, and will be updated when the VIF is
attached to some node to correspond to the node network interface cards (or bonds) MAC.

. A spawn task is created by the nova compute which contains all the information such as which

image to boot from etc. It invokes the driver . spawn from the virt layer of Nova compute. During
the spawn process, the virt driver does the following:

1. Updates the target ironic node with the information about deploy image, instance UUID,
requested capabilities and various flavor properties.

2. Validates nodes power and deploy interfaces, by calling the ironic API.

3. Attaches the previously created VIFs to the node. Each neutron port can be attached to any
ironic port or port group, with port groups having higher priority than ports. On ironic side,
this work is done by the network interface. Attachment here means saving the VIF identifier
into ironic port or port group and updating VIF MAC to match the ports or port groups MAC,
as described in bullet point 4.

4. Generates config drive, if requested.

Novas ironic virt driver issues a deploy request via the Ironic API to the Ironic conductor servicing
the bare metal node.

. Virtual interfaces are plugged in and Neutron API updates DHCP port to set PXE/TFTP options.

In case of using neutron network interface, ironic creates separate provisioning ports in the Net-
working service, while in case of flat network interface, the ports created by nova are used both
for provisioning and for deployed instance networking.

. The ironic nodes boot interface prepares (i)PXE configuration and caches deploy kernel and

ramdisk.
The ironic nodes management interface issues commands to enable network boot of a node.

The ironic nodes deploy interface caches the instance image (normal deployment), kernel and
ramdisk (ramdisk deploy) or ISO (ramdisk deploy with virtual media).

The ironic nodes power interface instructs the node to power on.

The node boots the deploy ramdisk.

122

Chapter 3. User Guide

Ironic Documentation, Release 21.1.2.dev10

13. Depending on the exact driver used, the deploy ramdisk downloads the image from a URL (Direct
deploy) or the conductor uses SSH to execute commands (Ansible deploy). The URL can be gen-
erated by Swift API-compatible object stores, for example Swift itself or RadosGW, or provided
by a user.

The image deployment is done.

14. The nodes boot interface switches pxe config to refer to instance images (or, in case of local boot,
sets boot device to disk), and asks the ramdisk agent to soft power off the node. If the soft power
off by the ramdisk agent fails, the bare metal node is powered off via IPMI/BMC call.

15. The deploy interface triggers the network interface to remove provisioning ports if they were cre-
ated, and binds the tenant ports to the node if not already bound. Then the node is powered on.

Note: There are 2 power cycles during bare metal deployment; the first time the node is powered-
on when ramdisk is booted, the second time after the image is deployed.

16. The bare metal nodes provisioning state is updated to active.

Below is the diagram that describes the above process.

Nova API Tronic API

Nova Message Queue

Ironic Message Queue

1

1 8,
Power Interface
Bare Metal Nodes

14

Management Interface Boot Interface

Network Interface

The following two examples describe what ironic is doing in more detail, leaving out the actions per-
formed by nova and some of the more advanced options.

3.1. Bare Metal Service User Guide 123

, Release 21.1.2.dev10

Ironic Documentation

Example: PXE Boot and Direct Deploy Process

This process is how Direct deploy works.

it
: i ;
H e g
g i]
£
§t
i
H
2
§
3 E
A
i
:
m o
5 H
i i
H 2
H
g T
: ;
i i |t
w H
4 u,m
H 3
HEE
3

HIENEI
HEEH AR
HEHHHH:

(From a talk and slides)

3.1.2 Bare Metal State Machine

State Machine Diagram

The diagram below shows the provisioning states that an Ironic node goes through during the lifetime of

a node. The diagram also depicts the events that transition the node to different states.

Stable states are highlighted with a thicker border. All transitions from stable states are initiated by API
requests. There are a few other API-initiated-transitions that are possible from non-stable states. The

events for these API-initiated transitions are indicated with (via API). Internally, the conductor initiates

the other transitions (depicted in gray).

oo mm mm

There are aliases for some transitions:

Note

<
AN
-

https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/isn-and-039t-it-ironic-the-bare-metal-cloud
http://www.slideshare.net/devananda1/isnt-it-ironic-managing-a-bare-metal-cloud-osl-tes-2015

Ironic Documentation, Release 21.1.2.dev10

for deleted

Enroliment and Preparation

enroll (stable state) This is the state that all nodes start off in when created using API version 1.11 or
newer. When a node is in the enroll state, the only thing ironic knows about it is that it exists,
and ironic cannot take any further action by itself. Once a node has its driver/interfaces and their
required information set in node.driver_info, the node can be transitioned to the verifying
state by setting the nodes provision state using the manage verb.

See Enrollment for information on enrolling nodes.

verifying ironic will validate that it can manage the node using the information given in node.
driver_info and with either the driver/hardware type and interfaces it has been assigned. This
involves going out and confirming that the credentials work to access whatever node control mech-
anism they talk to.

manageable (stable state) Once ironic has verified that it can manage the node using the
driver/interfaces and credentials passed in at node create time, the node will be transitioned to
the manageable state. From manageable, nodes can transition to:

* manageable (through cleaning) by setting the nodes provision state using the clean verb.

* manageable (through inspecting) by setting the nodes provision state using the inspect
verb.

* available (through cleaning if automatic cleaning is enabled) by setting the nodes pro-
vision state using the provide verb.

* active (through adopting) by setting the nodes provision state using the adopt verb.

manageable is the state that a node should be moved into when any updates need to be made to
it such as changes to fields in driver_info and updates to networking information on ironic ports
assigned to the node.

manageable is also the only stable state that can be transitioned to, from these failure states:
e adopt failed
* clean failed

e inspect failed

3.1. Bare Metal Service User Guide 125

Ironic Documentation, Release 21.1.2.dev10

inspecting inspecting will utilize node introspection to update hardware-derived node properties to
reflect the current state of the hardware. Typically, the node will transition to manageable if in-
spection is synchronous, or inspect wait if asynchronous. The node will transition to inspect
failed if error occurred.

See Hardware Inspection for information about inspection.

inspect wait This is the provision state used when an asynchronous inspection is in progress. A suc-
cessfully inspected node shall transition to manageable state.

inspect failed This is the state a node will move into when inspection of the node fails. From here the
node can transitioned to:

* inspecting by setting the nodes provision state using the inspect verb.
* manageable by setting the nodes provision state using the manage verb

cleaning Nodes in the cleaning state are being scrubbed and reprogrammed into a known configura-
tion.

When a node is in the cleaning state it means that the conductor is executing the clean step (for
out-of-band clean steps) or preparing the environment (building PXE configuration files, config-
uring the DHCP, etc) to boot the ramdisk for running in-band clean steps.

clean wait Just like the cleaning state, the nodes in the clean wait state are being scrubbed and
reprogrammed. The difference is that in the clean wait state the conductor is waiting for the
ramdisk to boot or the clean step which is running in-band to finish.

The cleaning process of a node in the clean wait state can be interrupted by setting the nodes
provision state using the abort verb if the task that is running allows it.

Deploy and Undeploy

available (stable state) After nodes have been successfully preconfigured and cleaned, they are moved
into the available state and are ready to be provisioned. From available, nodes can transition
to:

* active (through deploying) by setting the nodes provision state using the active or
deploy verbs.

* manageable by setting the nodes provision state using the manage verb

deploying Nodes in deploying are being prepared to run a workload on them. This consists of running
a series of tasks, such as:

 Setting appropriate BIOS configurations
* Partitioning drives and laying down file systems.

* Creating any additional resources (node-specific network config, a config drive partition, etc.)
that may be required by additional subsystems.

See Deploying with Bare Metal service and Node Deployment for information about deploying
nodes.

wait call-back Just like the deploying state, the nodes in wait call-back are being deployed. The
difference is that in wait call-back the conductor is waiting for the ramdisk to boot or exe-
cute parts of the deployment which need to run in-band on the node (for example, installing the
bootloader, or writing the image to the disk).

126 Chapter 3. User Guide

Ironic Documentation, Release 21.1.2.dev10

The deployment of a node in wait call-back can be interrupted by setting the nodes provision
state using the deleted or undeploy verbs.

deploy failed This is the state a node will move into when a deployment fails, for example a timeout
waiting for the ramdisk to PXE boot. From here the node can be transitioned to:

» active (through deploying) by setting the nodes provision state using the active, deploy
or rebuild verbs.

* available (through deleting and cleaning) by setting the nodes provision state using
the deleted or undeploy verbs.

active (stable state) Nodes in active have a workload running on them. ironic may collect out-of-band
sensor information (including power state) on a regular basis. Nodes in active can transition to:

* available (through deleting and cleaning) by setting the nodes provision state using
the deleted or undeploy verbs.

* active (through deploying) by setting the nodes provision state using the rebuild verb.
* rescue (through rescuing) by setting the nodes provision state using the rescue verb.

deleting Nodes in deleting state are being torn down from running an active workload. In deleting,
ironic tears down and removes any configuration and resources it added in deploying or
rescuing.

error (stable state) This is the state a node will move into when deleting an active deployment fails.
From error, nodes can transition to:

* available (through deleting and cleaning) by setting the nodes provision state using
the deleted or undeploy verbs.

adopting This state allows ironic to take over management of a baremetal node with an existing workload
on it. Ordinarily when a baremetal node is enrolled and managed by ironic, it must transition
through cleaning and deploying to reach active state. However, those baremetal nodes that
have an existing workload on them, do not need to be deployed or cleaned again, so this transition
allows these nodes to move directly from manageable to active.

See Node adoption for information about this feature.

Rescue
rescuing Nodes in rescuing are being prepared to perform rescue operations. This consists of running
a series of tasks, such as:
 Setting appropriate BIOS configurations.

* Creating any additional resources (node-specific network config, etc.) that may be required
by additional subsystems.

See Rescue Mode for information about this feature.

rescue wait Just like the rescuing state, the nodes in rescue wait are being rescued. The difference
is that in rescue wait the conductor is waiting for the ramdisk to boot or execute parts of the
rescue which need to run in-band on the node (for example, setting the password for user named
rescue).

The rescue operation of a node in rescue wait can be aborted by setting the nodes provision
state using the abort verb.

3.1. Bare Metal Service User Guide 127

Ironic Documentation, Release 21.1.2.dev10

rescue failed This is the state a node will move into when a rescue operation fails, for example a timeout
waiting for the ramdisk to PXE boot. From here the node can be transitioned to:

* rescue (through rescuing) by setting the nodes provision state using the rescue verb.
* active (through unrescuing) by setting the nodes provision state using the unrescue verb.
* available (through deleting) by setting the nodes provision state using the deleted verb.

rescue (stable state) Nodes in rescue have a rescue ramdisk running on them. Ironic may collect
out-of-band sensor information (including power state) on a regular basis. Nodes in rescue can
transition to:

* active (through unrescuing) by setting the nodes provision state using the unrescue verb.
* available (through deleting) by setting the nodes provision state using the deleted verb.

unrescuing Nodes in unrescuing are being prepared to transition to active state from rescue state.
This consists of running a series of tasks, such as setting appropriate BIOS configurations such as
changing boot device.

unrescue failed This is the state a node will move into when an unrescue operation fails. From here the
node can be transitioned to:

* rescue (through rescuing) by setting the nodes provision state using the rescue verb.
* active (through unrescuing) by setting the nodes provision state using the unrescue verb.

* available (through deleting) by setting the nodes provision state using the deleted verb.

3.1.3 Creating instance images

Bare Metal provisioning requires two sets of images: the deploy images and the user images. The deploy
images are used by the Bare Metal service to prepare the bare metal server for actual OS deployment.
Whereas the user images are installed on the bare metal server to be used by the end user. There are two
types of user images:

partition images contain only the contents of the root partition. Additionally, two more images are used
together with them when booting from network: an image with a kernel and with an initramfs.

Warning: To use partition images with local boot, Grub2 must be installed on them.

whole disk images contain a complete partition table with one or more partitions.

Warning: The kernel/initramfs pair must not be used with whole disk images, otherwise
theyll be mistaken for partition images.

Many distributions publish their own cloud images. These are usually whole disk images that are built
for legacy boot mode (not UEFI), with Ubuntu being an exception (they publish images that work in both
modes).

128 Chapter 3. User Guide

Ironic Documentation, Release 21.1.2.dev10

disk-image-builder

The disk-image-builder can be used to create user images required for deployment and the actual OS
which the user is going to run.

* Install diskimage-builder package (use virtualenv, if you dont want to install anything globally):

pip install diskimage-builder

* Build the image your users will run (Ubuntu image has been taken as an example):

— Partition images

disk-image-create ubuntu baremetal dhcp-all-interfaces grub2 -o my-
—image

— Whole disk images

disk-image-create ubuntu vm dhcp-all-interfaces -o my-image

with an EFI partition:

disk-image-create ubuntu vm block-device-efi dhcp-all-interfaces -
—0 my-image

The partition image command creates my-image.qcow2, my-image.vmlinuz and my-image.initrd
files. The grub2 element in the partition image creation command is only needed if local boot will be
used to deploy my-image.qcow2, otherwise the images my-image.vmlinuz and my-image.initrd
will be used for PXE booting after deploying the bare metal with my-image.qcow2. For whole disk
images only the main image is used.

If you want to use Fedora image, replace ubuntu with fedora in the chosen command.

Virtual machine

Virtual machine software can also be used to build user images. There are different software options
available, gemu-kvm is usually a good choice on linux platform, it supports emulating many devices and
even building images for architectures other than the host machine by software emulation. VirtualBox is
another good choice for non-linux host.

The procedure varies depending on the software used, but the steps for building an image are similar, the
user creates a virtual machine, and installs the target system just like what is done for a real hardware.
The system can be highly customized like partition layout, drivers or software shipped, etc.

Usually libvirt and its management tools are used to make interaction with gemu-kvm easier, for example,
to create a virtual machine with virt-install:

$ virt-install --name centos8 --ram 4096 --vcpus=2 -f centos8.qcow2 \
> --cdrom Cent0S-8-x86_64-1905-dvdl.iso

Graphic frontend like virt-manager can also be utilized.

The disk file can be used as user image after the system is set up and powered off. The path of the disk file
varies depending on the software used, usually its stored in a user-selected part of the local file system.
For gemu-kvm or GUI frontend building upon it, its typically stored at /var/1lib/libvirt/images.

3.1. Bare Metal Service User Guide 129

https://docs.openstack.org/diskimage-builder/latest/

Ironic Documentation, Release 21.1.2.dev10

3.1.4 Deploying with Bare Metal service

This guide explains how to use Ironic to deploy nodes without any front-end service, such as OpenStack
Compute (nova) or Metal3.

Note: To simplify this task you can use the metalsmith tool which provides a convenient CLI for the
most common cases.

Allocations

Allocation is a way to find and reserve a node suitable for deployment. When an allocation is created,
the list of available nodes is searched for a node with the given resource class and traits, similarly to how
it is done in OpenStack Compute flavors. Only the resource class is mandatory, for example:

baremetal allocation create --resource-class baremetal --wait

Note: The allocation processing is fast but nonetheless asynchronous. Use the --wait argument to wait
for the results.

If an allocation is successful, it sets the nodes instance_uuid to the allocation UUID. The nodes UUID
can be retrieved from the allocations node_uuid field.

An allocation is automatically deleted when the associated node is unprovisioned. If you dont provision
the node, youre responsible for deleting the allocation.

See the allocation API reference for more information on how to use allocations.

130 Chapter 3. User Guide

http://metal3.io/
https://docs.openstack.org/metalsmith/latest/
https://docs.openstack.org/api-ref/baremetal/?expanded=create-allocation-detail#create-allocation

Ironic Documentation, Release 21.1.2.dev10

Populating instance information

The nodes instance_info field is a JSON object that contains all information required for deploying
an instance on bare metal. It has to be populated before deployment and is automatically cleared on tear
down.

Image information

You need to specify image information in the nodes instance_info (see Creating instance images):

* image_source - URL of the whole disk or root partition image, mandatory. The following
schemes are supported: http://, https:// and file://. Files have to be accessible by the
conductor. If the scheme is missing, an Image Service (glance) image UUID is assumed.

* root_gb - size of the root partition, required for partition images.

Note: Older versions of the Bare Metal service used to require a positive integer for root_gb
even for whole-disk images. You may want to set it for compatibility.

* image_checksum - MD5 checksum of the image specified by image_source, only required for
http:// images when using Direct deploy.

Other checksum algorithms are supported via the image_os_hash_algo and
image_os_hash_value fields. They may be used instead of the image_checksum field.

Warning: If your operating system is running in FIPS 140-2 mode, MD5 will not be available,
and you must use SHA256 or another modern algorithm.

Starting with the Stein release of ironic-python-agent can also be a URL to a checksums file, e.g.
one generated with:

/path/to/http/root
md5sum *.img > checksums

* kernel, ramdisk - HTTP(s) or file URLs of the kernel and initramfs of the target OS. Must be
added only for partition images and only if network boot is required. Supports the same schemes
as image_source.

An example for a partition image with local boot:

baremetal node

--instance-info http://image.server/my-image.qcow2
--instance-info 1f9c0e1bad977a954ba40928clel1£33
--instance-info partition

--instance-info

With a SHA256 hash:

baremetal node
--instance-info http://image.server/my-image.qcow2

(continues on next page)

3.1. Bare Metal Service User Guide 131

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

--instance-info sha256
--instance-info

< a64dd95e0c48e61ed741££f026d8c89ca38a51£3799955097c5123b1705ef13d4
--instance-info partition

--instance-info

If you use network boot (or Ironic before Yoga), two more fields must be set:

baremetal node

--instance-info http://image.server/my-image.qgcow2
--instance-info 1f9c0elbad977a954ba40928clel1£33
--instance-info partition

--instance-info http://image.server/my-image.kernel
--instance-info http://image.server/my-image.initramfs

--instance-info

With a whole disk image and a checksum URL.:

baremetal node
--instance-info http://image.server/my-image.qgcow2
--instance-info http://image.server/my-image.qcow2 . CHECKSUM

Note: Certain hardware types and interfaces may require additional or different fields to be provided.
See specific guides under Drivers, Hardware Types and Hardware Interfaces.

When using low RAM nodes with http:// images that are not in the RAW format, you may want them
cached locally, converted to raw and served from the conductors HTTP server:

baremetal node --instance-info

For software RAID with whole-disk images, the root UUID of the root partition has to be provided so
that the bootloader can be correctly installed:

baremetal node --instance-info <uuid>

Capabilities

* Boot mode can be specified per instance:

baremetal node
--instance-info

Otherwise, the boot_mode capability from the nodes properties will be used.

Warning: The two settings must not contradict each other.

132 Chapter 3. User Guide

Ironic Documentation, Release 21.1.2.dev10

Note: This capability was introduced in the Wallaby release series, previously ironic used a
separate instance_info/deploy_boot_mode field instead.

 Starting with the Ussuri release, you can set root device hints per instance:

baremetal node
--instance-info

This setting overrides any previous setting in properties and will be removed on undeployment.

Overriding a hardware interface

Non-admins with temporary access to a node, may wish to specify different node interfaces. However,
allowing them to set these interface values directly on the node is problematic, as there is no automated
way to ensure that the original interface values are restored.

In order to temporarily override a hardware interface, simply set the appropriate value in
instance_info. For example, if youd like to override a nodes storage interface, run the following:

baremetal node --instance-info cinder

instance_info values persist until after a node is cleaned.

Note: This feature is available starting with the Wallaby release.

Attaching virtual interfaces

If using the OpenStack Networking service (neutron), you can attach its ports to a node before deployment
as VIFs:

baremetal node vif attach

Warning: These are neutron ports, not ironic ports!

VIFs are automatically detached on deprovisioning.

Deployment

1. Validate that all parameters are correct:

baremetal node validate

(continues on next page)

3.1. Bare Metal Service User Guide 133

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

2. Now you can start the deployment, run:

baremetal node deploy

3. Starting with the Wallaby release you can also request custom deploy steps, see Requesting steps
for details.

Deploying with a config drive

The configuration drive is a small image used to store instance-specific metadata and is present to the
instance as a disk partition labeled config-2. See Enabling the configuration drive (configdrive) for a
detailed explanation.

A configuration drive can be provided either as a whole ISO 9660 image or as JSON input for build-
ing an image. A first-boot service, such as cloud-init, must be running on the instance image for the
configuration to be applied.

Building a config drive on the client side

For the format of the configuration drive, Bare Metal service expects a gzipped and base64 encoded ISO
9660 file with a config-2 label. The baremetal client can generate a configuration drive in the expected
format. Pass a directory path containing the files that will be injected into it via the --config-drive
parameter of the baremetal node deploy command, for example:

baremetal node deploy --config-drive /dir/configdrive_files

134 Chapter 3. User Guide

https://cloudinit.readthedocs.io/en/latest/
https://docs.openstack.org/python-ironicclient/zed/cli/osc_plugin_cli.html
https://docs.openstack.org/nova/latest/user/metadata.html#config-drives
https://docs.openstack.org/nova/latest/user/metadata.html#config-drives

Ironic Documentation, Release 21.1.2.dev10

Note: A configuration drive could also be a data block with a VFAT filesystem on it instead of ISO 9660.
But its unlikely that it would be needed since ISO 9660 is widely supported across operating systems.

Building a config drive on the conductor side

Starting with the Stein release and ironicclient 2.7.0, you can request building a configdrive on the server
side by providing a JSON with keys meta_data, user_data and network_data (all optional), e.g.:

baremetal node deploy
--config-drive

Note: When this feature is used, host name defaults to the nodes name or UUID.

SSH public keys can be provided as a mapping:

baremetal node deploy
--config-drive

If using cloud-init, its configuration can be supplied as user_data, e.g.:

baremetal node deploy
--config-drive

Warning: User data is a string, not a JSON! Also note that a prefix, such as #cloud-config, is
required, see user data format.

Some first-boot services support network configuration in the OpenStack network data format. It can be
provided in the network_data field of the configuration drive.

Ramdisk booting

Advanced operators, specifically ones working with ephemeral workloads, may find it more useful to
explicitly treat a node as one that would always boot from a Ramdisk. See Booting a Ramdisk or an ISO
for details.

3.1. Bare Metal Service User Guide 135

https://cloudinit.readthedocs.io/en/latest/
https://cloudinit.readthedocs.io/en/latest/topics/format.html
https://docs.openstack.org/nova/latest/user/metadata.html#openstack-format-metadata

Ironic Documentation, Release 21.1.2.dev10

136 Chapter 3. User Guide

CHAPTER
FOUR

ADMINISTRATOR GUIDE

4.1 Drivers, Hardware Types and Hardware Interfaces

4.1.1 Generic Interfaces
Boot interfaces

The boot interface manages booting of both the deploy ramdisk and the user instances on the bare metal
node.

The PXE boot interface is generic and works with all hardware that supports booting from network.
Alternatively, several vendors provide virfual media implementations of the boot interface. They work
by pushing an ISO image to the nodes management controller, and do not require either PXE or iPXE.
Check your driver documentation at Drivers, Hardware Types and Hardware Interfaces for details.

PXE boot

The pxe and ipxe boot interfaces uses PXE or iPXE accordingly to deliver the target kernel/ramdisk
pair. PXE uses relatively slow and unreliable TFTP protocol for transfer, while iPXE uses HTTP. The
downside of iPXE is that its less common, and usually requires bootstrapping using PXE first.

The pxe and ipxe boot interfaces work by preparing a PXE/iPXE environment for a node on the file
system, then instructing the DHCP provider (for example, the Networking service) to boot the node
from it. See Example: PXE Boot and Direct Deploy Process for a better understanding of the whole
deployment process.

Note: Both PXE and iPXE are configured differently, when UEFI boot is used instead of conventional
BIOS boot. This is particularly important for CPU architectures that do not have BIOS support at all.

The ipxe boot interface is used by default for many hardware types, including ipmi. Some hardware
types, notably ilo and irmc have their specific implementations of the PXE boot interface.

Additional configuration is required for this boot interface - see Configuring PXE and iPXE for details.

137

https://en.wikipedia.org/wiki/Out-of-band_management
https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://en.wikipedia.org/wiki/IPXE

Ironic Documentation, Release 21.1.2.dev10

Kernel parameters

If you need to pass additional kernel parameters to the deployment/cleaning ramdisk (for example, to
configure serial console), use the following configuration option:

Note: The option was called pxe_append_params before the Xena cycle.

Per-node and per-instance overrides are also possible, for example:

baremetal node node-0
--driver-info
baremetal node node-0

--instance-info

Starting with the Zed cycle, you can combine the parameters from the configuration and from the node
using the special %default% syntax:

baremetal node node-0
--driver-info

Together with the configuration above, the following parameters will be appended to the kernel command
line:

Note: Ironic does not do any de-duplication of the resulting kernel parameters. Both kernel itself and
dracut seem to give priority to the last instance of the same parameter.

Common options
Enable persistent boot device for deploy/clean operation

For (i)PXE booting, Ironic uses non-persistent boot order changes for clean/deploy by default. For some
drivers, persistent changes are far more costly than non-persisent ones, so this approach can bring a
performance benefit.

In order to control this behavior, however, Ironic provides the force_persistent_boot_device flag
in the nodes driver_info. It allows the values Default (make all changes but the last one upon de-
ployment non-persistent), Always (make all changes persistent), and Never (make all boot order changes
non-persistent). For example in order to have only persistent changes one would need to set something
like:

$ openstack baremetal node set --driver-info force_persistent_boot_device=
—"Always' <node>

138 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Note: It is recommended to check if the nodes state has not changed as there is no way of locking the
node between these commands.

Note: The values True/False for the option force_persistent_boot_device in the nodes driver info for
the (i)PXE drivers are deprecated and support for them may be removed in a future release. The former
default value False is replaced by the new value Default, the value True is replaced by Always.

Deploy Interfaces

A deploy interface plays a critical role in the provisioning process. It orchestrates the whole deployment
and defines how the image gets transferred to the target disk.

Direct deploy

With direct deploy interface, the deploy ramdisk fetches the image from an HTTP location. It can be an
object storage (swift or RadosGW) temporary URL or a user-provided HTTP URL. The deploy ramdisk
then copies the image to the target disk. See direct deploy diagram for a detailed explanation of how this
deploy interface works.

You can specify this deploy interface when creating or updating a node:

Note: For historical reasons the direct deploy interface is sometimes called agent. This is because
before the Kilo release ironic-python-agent used to only support this deploy interface.

Deploy with custom HTTP servers

The direct deploy interface can also be configured to use with custom HTTP servers set up at ironic
conductor nodes, images will be cached locally and made accessible by the HTTP server.

To use this deploy interface with a custom HTTP server, set image_download_source to http in the
[agent] section.

This configuration affects glance and file:// images. If you want http(s):// images to also be
cached and served locally, use instead:

4.1. Drivers, Hardware Types and Hardware Interfaces 139

Ironic Documentation, Release 21.1.2.dev10

Note: This option can also be set per node in driver_info:

or per instance in instance_info:

You need to set up a workable HTTP server at each conductor node which with direct deploy inter-
face enabled, and check http related options in the ironic configuration file to match the HTTP server
configurations.

Note: See also: Deploying outside of the provisioning network.

Each HTTP server should be configured to follow symlinks for images accessible from HTTP ser-
vice. Please refer to configuration option FollowSymLinks if you are using Apache HTTP server, or
disable_symlinks if Nginx HTTP server is in use.

Streaming raw images

The Bare Metal service is capable of streaming raw images directly to the target disk of a node, without
caching them in the nodes RAM. When the source image is not already raw, the conductor will convert
the image and calculate the new checksum.

Note: If no algorithm is specified via the image_os_hash_algo field, or if this field is set to md5,
SHAZ256 is used for the updated checksum.

For HTTP or local file images that are already raw, you need to explicitly set the disk format to prevent
the checksum from being unnecessarily re-calculated. For example:

baremetal node <node>
--instance-info http://server/myimage.img
--instance-info sha512
--instance-info <SHA512 of the raw image>
--instance-info raw

To disable this feature and cache images in the nodes RAM, set

To disable the conductor-side conversion completely, set

140 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Ansible deploy

This interface is similar to direct in the sense that the image is downloaded by the ramdisk directly
from the image store (not from ironic-conductor host), but the logic of provisioning the node is held in a
set of Ansible playbooks that are applied by the ironic-conductor service handling the node. While
somewhat more complex to set up, this deploy interface provides greater flexibility in terms of advanced
node preparation during provisioning.

This interface is supported by most but not all hardware types declared in ironic. However this deploy
interface is not enabled by default. To enable it, add ansible to the list of enabled deploy interfaces in
enabled_deploy_interfaces option in the [DEFAULT] section of ironics configuration file:

Once enabled, you can specify this deploy interface when creating or updating a node:

baremetal node create --driver ipmi --deploy-interface ansible
baremetal node <NODE> --deploy-interface ansible

For more information about this deploy interface, its features and how to use it, see Ansible deploy inter-
face.

Ansible deploy interface

Ansible is a mature and popular automation tool, written in Python and requiring no agents running on
the node being configured. All communications with the node are by default performed over secure SSH
transport.

The ansible deploy interface uses Ansible playbooks to define the deployment logic. It is not based on
Ironic Python Agent (IPA) and does not generally need IPA to be running in the deploy ramdisk.

Overview

The main advantage of this deploy interface is extended flexibility in regards to changing and adapting
node deployment logic for specific use cases, via Ansible tooling that is already familiar to operators.

It can be used to shorten the usual feature development cycle of
* implementing logic in ironic,
* implementing logic in IPA,
* rebuilding deploy ramdisk,
* uploading deploy ramdisk to Glance/HTTP storage,

4.1. Drivers, Hardware Types and Hardware Interfaces 141

https://docs.ansible.com/ansible/latest/index.html
https://docs.openstack.org/ironic-python-agent/zed/

Ironic Documentation, Release 21.1.2.dev10

* reassigning deploy ramdisk to nodes,
* restarting ironic-conductor service(s) and
* running a test deployment
by using a stable deploy ramdisk and not requiring ironic-conductor restarts (see Extending playbooks).

The main disadvantage of this deploy interface is the synchronous manner of performing deploy-
ment/cleaning tasks. A separate ansible-playbook process is spawned for each node being provi-
sioned or cleaned, which consumes one thread from the thread pool available to the ironic-conductor
process and blocks this thread until the node provisioning or cleaning step is finished or fails. This has
to be taken into account when planning an ironic deployment that enables this deploy interface.

Each action (deploy, clean) is described by a single playbook with roles, which is run whole during
deployment, or tag-wise during cleaning. Control of cleaning steps is through tags and auxiliary clean
steps file. The playbooks for actions can be set per-node, as can the clean steps file.

Features

Similar to deploy interfaces relying on Ironic Python Agent (IPA), this deploy interface also depends on
the deploy ramdisk calling back to ironic APIs heartbeat endpoint.

However, the driver is currently synchronous, so only the first heartbeat is processed and is used as a
signal to start ansible-playbook process.

User images

Supports whole-disk images and partition images:
» compressed images are downloaded to RAM and converted to disk device;
* raw images are streamed to disk directly.

For partition images the driver will create root partition, and, if requested, ephemeral and swap partitions
as set in nodes instance_info by the Compute service or operator. The create partition table will be
of msdos type by default, the nodes disk_label capability is honored if set in nodes instance_info
(see also Choosing the disk label).

Configdrive partition

Creating a configdrive partition is supported for both whole disk and partition images, on both msdos
and GPT labeled disks.

142 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-python-agent/zed/

Ironic Documentation, Release 21.1.2.dev10

Root device hints

Root device hints are currently supported in their basic form only, with exact matches (see Specifying the
disk for deployment (root device hints) for more details). If no root device hint is provided for the node,
the first device returned as part of ansible_devices fact is used as root device to create partitions on
or write the whole disk image to.

Node cleaning

Cleaning is supported, both automated and manual. The driver has two default clean steps:
* wiping device metadata
* disk shredding

Their priority can be overridden via [deploy]\erase_devices_metadata_priority and
[deploy]\erase_devices_priority options, respectively, in the ironic configuration file.

As in the case of this driver all cleaning steps are known to the ironic-conductor service, booting the
deploy ramdisk is completely skipped when there are no cleaning steps to perform.

Note: Aborting cleaning steps is not supported.

Logging

Logging is implemented as custom Ansible callback module, that makes use of oslo.log and oslo.
config libraries and can re-use logging configuration defined in the main ironic configuration file to set
logging for Ansible events, or use a separate file for this purpose.

It works best when journald support for logging is enabled.

Requirements

Ansible Tested with, and targets, Ansible 2.5.x

Bootstrap image requirements

* password-less sudo permissions for the user used by Ansible
* python 2.7.x

* openssh-server

* GNU coreutils

e utils-linux

* parted

* gdisk

* gemu-utils

4.1. Drivers, Hardware Types and Hardware Interfaces 143

Ironic Documentation, Release 21.1.2.dev10

* python-requests (for ironic callback and streaming image download)

* python-netifaces (for ironic callback)

A set of scripts to build a suitable deploy ramdisk based on TinyCore Linux and tinyipa ramdisk, and
an element for diskimage-builder can be found in ironic-staging-drivers project but will be eventually
migrated to the new ironic-python-agent-builder project.

Setting up your environment

1. Install ironic (either as part of OpenStack or standalone)

* If using ironic as part of OpenStack, ensure that the Image service is configured to use the

Object Storage service as backend, and the Bare Metal service is configured accordingly, see
Configure the Image service for temporary URLs.

2. Install Ansible version as specified in ironic/driver-requirements.txt file

3. Edit ironic configuration file

N »nok

A.

C.

Add ansible to the list of deploy interfaces defined in [DEFAULT]\
enabled_deploy_interfaces option.

Ensure that a hardware type supporting ansible deploy interface is enabled in [DEFAULT]\
enabled_hardware_types option.

Modify options in the [ansible] section of ironics configuration file if needed (see Config-
uration file).

(Re)start ironic-conductor service

Build suitable deploy kernel and ramdisk images

Upload them to Glance or put in your HTTP storage

Create new or update existing nodes to use the enabled driver of your choice and populate Driver
properties for the Node when different from defaults.

Deploy the node as usual.

Ansible-deploy options

Configuration file

Driver options are configured in [ansible] section of ironic configuration file, for their descriptions
and default values please see configuration file sample.

144

Chapter 4. Administrator Guide

https://opendev.org/x/ironic-staging-drivers/src/branch/stable/pike/imagebuild
https://opendev.org/openstack/ironic-python-agent-builder
../../configuration/config.html#ansible

Ironic Documentation, Release 21.1.2.dev10

Driver properties for the Node

Set them per-node via baremetal node set command, for example:

baremetal node <node>
--deploy-interface ansible
--driver-info stack
--driver-info /etc/ironic/id_rsa

ansible_username User name to use for Ansible to access the node. Default is taken from [ansible]/
default_username option of the ironic configuration file (defaults to ansible).

ansible_key_file Private SSH key used to access the node. Default is taken from [ansible]/
default_key_file option of the ironic configuration file. If neither is set, the default private
SSH keys of the user running the ironic-conductor process will be used.

ansible_deploy_playbook Playbook to use when deploying this node. Default is taken from
[ansible]/default_deploy_playbook option of the ironic configuration file (defaults to
deploy.yaml).

ansible_shutdown_playbook Playbook to use to gracefully shutdown the node in-band. Default is taken
from [ansible]/default_shutdown_playbook option of the ironic configuration file (defaults
to shutdown.yaml).

ansible_clean_playbook Playbook to use when cleaning the node. Default is taken from [ansible]/
default_clean_playbook option of the ironic configuration file (defaults to clean.yaml).

ansible_clean_steps_config Auxiliary YAML file that holds description of cleaning steps used by this
node, and defines playbook tags in ansible_clean_playbook file corresponding to each clean-
ing step. Default is taken from [ansible]/default_clean_steps_config option of the ironic
configuration file (defaults to clean_steps.yaml).

ansible_python_interpreter Absolute path to the python interpreter on the managed machine. Default
is taken from [ansible]/default_python_interpreter option of the ironic configuration
file. Ansible uses /usr/bin/python by default.

Customizing the deployment logic
Expected playbooks directory layout

The [ansible]\playbooks_path option in the ironic configuration file is expected to have a standard
layout for an Ansible project with some additions:

~ - -

~ = ~

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces 145

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

\
\

The extra files relied by this driver are:

inventory Ansible inventory file containing a single entry of conductor
ansible_connection=local. This basically defines an alias to localhost. Its purpose
is to make logging for tasks performed by Ansible locally and referencing the localhost in
playbooks more intuitive. This also suppresses warnings produced by Ansible about hosts file
being empty.

add-ironic-nodes.yaml This file contains an Ansible play that populates in-memory Ansible inventory
with access information received from the ansible-deploy interface, as well as some per-node vari-
ables. Include it in all your custom playbooks as the first play.

The default deploy.yaml playbook is using several smaller roles that correspond to particular stages of
deployment process:

* discover - e.g. set root device and image target

* prepare - if needed, prepare system, for example create partitions

* deploy - download/convert/write user image and configdrive

* configure - post-deployment steps, e.g. installing the bootloader
Some more included roles are:

* shutdown - used to gracefully power the node off in-band

* clean - defines cleaning procedure, with each clean step defined as separate playbook tag.

Extending playbooks

Most probably youd start experimenting like this:
1. Create a copy of deploy.yaml playbook in the same folder, name it distinctively.
2. Create Ansible roles with your customized logic in roles folder.

A. In your custom deploy playbook, replace the prepare role with your own one that defines
steps to be run before image download/writing. This is a good place to set facts overriding
those provided/omitted by the driver, like ironic_partitions or ironic_root_device,
and create custom partitions or (software) RAIDs.

B. In your custom deploy playbook, replace the configure role with your own one that defines
steps to be run after image is written to disk. This is a good place for example to configure
the bootloader and add kernel options to avoid additional reboots.

C. Use those new roles in your new playbook.

3. Assign the custom deploy playbook youve created to the nodes driver_info/
ansible_deploy_playbook field.

4. Run deployment.

146 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

A. No ironic-conductor restart is necessary.

B. A new deploy ramdisk must be built and assigned to nodes only when you want to use a
command/script/package not present in the current deploy ramdisk and you can not or do not
want to install those at runtime.

Variables you have access to

This driver will pass the single JSON-ified extra var argument to Ansible (as in ansible-playbook -e
. .). Those values are then accessible in your plays as well (some of them are optional and might not be
defined):

ironic.nodes List of dictionaries (currently of only one element) that will be used by
add-ironic-nodes.yaml play to populate in-memory inventory. It also contains a copy of nodes
extra field so you can access it in the playbooks. The Ansibles host is set to nodes UUID.

ironic.image All fields of nodes instance_info that start with image_ are passed inside this vari-
able. Some extra notes and fields:

* mem_req is calculated from image size (if available) and config option
[ansible]extra_memory.

* if checksum is not in the form <hash-algo>:<hash-sum>, hashing algorithm is assumed
to be md5 (default in Glance).

* validate_certs - boolean (yes/no) flag that turns validating image store SSL certificate
on or off (default is yes). Governed by [ansible]image_store_insecure option in ironic
configuration file.

4.1. Drivers, Hardware Types and Hardware Interfaces 147

Ironic Documentation, Release 21.1.2.dev10

* cafile - custom CA bundle to use for validating image store SSL certificate. Takes value
of [ansible]image_store_cafile if that is defined. Currently is not used by default
playbooks, as Ansible has no way to specify the custom CA bundle to use for single HTTPS
actions, however you can use this value in your custom playbooks to for example upload and
register this CA in the ramdisk at deploy time.

* client_cert - cert file for client-side SSL authentication. Takes value of
[ansible]image_store_certfile option if defined. Currently is not used by de-
fault playbooks, however you can use this value in your custom playbooks.

* client_key - private key file for client-side SSL authentication. Takes value of
[ansible]image_store_keyfile option if defined. Currently is not used by default play-
books, however you can use this value in your custom playbooks.

ironic.partition_info.partitions Optional. List of dictionaries defining partitions to create on
the node in the form:

The driver will populate this list from root_gb, swap_mb and ephemeral_gb fields of
instance_info. The driver will also prepend the bios_grub-labeled partition when de-
ploying on GPT-labeled disk, and pre-create a 64 MiB partition for configdrive if it is set in
instance_info.

Please read the documentation included in the ironic_parted modules source for more info on
the module and its arguments.

ironic.partition_info.ephemeral_format Optional. Taken from instance_info, it defines
file system to be created on the ephemeral partition. Defaults to the value of [pxe]\
default_ephemeral_format option in ironic configuration file.

ironic.partition_info.preserve_ephemeral Optional. Taken from the instance_info, it
specifies if the ephemeral partition must be preserved or rebuilt. Defaults to no.

ironic.raid_config Taken from the target_raid_config if not empty, it specifies the RAID con-
figuration to apply.

As usual for Ansible playbooks, you also have access to standard Ansible facts discovered by setup
module.

148 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Included custom Ansible modules

The provided playbooks_path/library folder includes several custom Ansible modules used by de-
fault implementation of deploy and prepare roles. You can use these modules in your playbooks as
well.

stream_url Streaming download from HTTP(S) source to the disk device directly, tries to be compat-
ible with Ansibles get_url module in terms of module arguments. Due to the low level of such
operation it is not idempotent.

ironic_parted creates partition tables and partitions with parted utility. Due to the low level of such
operation it is not idempotent. Please read the documentation included in the modules source for
more information about this module and its arguments. The name is chosen so that the parted
module included in Ansible is not shadowed.

Anaconda deploy

The anaconda deploy interface is another option for highly customized deployments. See Deploying
with anaconda deploy interface for more details.

Ramdisk deploy

The ramdisk interface is intended to provide a mechanism to deploy an instance where the item to be
deployed is in reality a ramdisk. It is documented separately, see Booting a Ramdisk or an I1SO.

Custom agent deploy

The custom-agent deploy interface is designed for operators who want to completely orchestrate writ-
ing the instance image using in-band deploy steps from a custom agent image. If you use this deploy
interface, you are responsible to provide all necessary deploy steps with priorities between 61 and 99
(see Agent steps for information on priorities).

4.1.2 Hardware Types
iBMC driver

Overview

The ibmc driver is targeted for Huawei V5 series rack server such as 2288H V5, CH121 V5. The iBMC
hardware type enables the user to take advantage of features of Huawei iBMC to control Huawei server.

The ibmc hardware type supports the following Ironic interfaces:
* Management Interface: Boot device management
* Power Interface: Power management
* RAID Interface: RAID controller and disk management

* Vendor Interface: ibmc passthru interfaces

4.1. Drivers, Hardware Types and Hardware Interfaces 149

https://docs.openstack.org/ironic-python-agent/zed/admin/hardware_managers.html
https://e.huawei.com/en/products/cloud-computing-dc/servers/accessories/ibmc

Ironic Documentation, Release 21.1.2.dev10

Prerequisites

The HUAWEI iBMC Client library should be installed on the ironic conductor node(s).

For example, it can be installed with pip:

Enabling the iBMC driver

1. Add ibmc to the list of enabled_hardware_types, enabled_power_interfaces,
enabled_vendor_interfaces and enabled_management_interfaces in /etc/ironic/
ironic.conf. For example:

2. Restart the ironic conductor service:

Registering a node with the iBMC driver

Nodes configured to use the driver should have the driver property set to ibmc.
The following properties are specified in the nodes driver_info field:
* ibmc_address:

The URL address to the ibmc controller. It must include the authority portion of the URL, and
can optionally include the scheme. If the scheme is missing, https is assumed. For example:
https://ibmc.example.com. This is required.

* ibmc_username:

User account with admin/server-profile access privilege. This is required.
e ibmc_password:

User account password. This is required.
e ibmc_verify_ca:

If ibmc_address has the https scheme, the driver will use a secure (TLS) connection when talking
to the ibmc controller. By default (if this is set to True), the driver will try to verify the host

150 Chapter 4. Administrator Guide

https://pypi.org/project/python-ibmcclient/
https://ibmc.example.com
https://en.wikipedia.org/wiki/Transport_Layer_Security

Ironic Documentation, Release 21.1.2.dev10

certificates. This can be set to the path of a certificate file or directory with trusted certificates that
the driver will use for verification. To disable verifying TLS, set this to False. This is optional.

The baremetal node create command can be used to enroll a node with the ibmc driver. For exam-
ple:

baremetal node create --driver ibmc

--driver-info https://example.com
--driver-info admin
--driver-info password

For more information about enrolling nodes see Enrollment in the install guide.

RAID Interface

Currently, only RAID controller which supports OOB management can be managed.
See RAID Configuration for more information on Ironic RAID support.

The following properties are supported by the iBMC raid interface implementation, ibmc:

Mandatory properties

* size_gb: Size in gigabytes (integer) for the logical disk. Use MAX as size_gb if this logical disk
is supposed to use the rest of the space available.

* raid_level: RAID level for the logical disk. Valid values are JBOD, 0, 1, 5, 6, 1+0, 5+0 and 6+0.
And it is possible that some RAID controllers can only support a subset RAID levels.

Note: RAID level 2 is not supported by iBMC driver.

Optional properties
* is_root_volume: Optional. Specifies whether this disk is a root volume. By default, this is

False.

* volume_name: Optional. Name of the volume to be created. If this is not specified, it will be N/A.

Backing physical disk hints

See RAID Configuration for more information on backing disk hints.

These are machine-independent properties. The hints are specified for each logical disk to help Ironic
find the desired disks for RAID configuration.

e share_physical_disks
e disk_type

e interface_type

4.1. Drivers, Hardware Types and Hardware Interfaces 151

https://en.wikipedia.org/wiki/Transport_Layer_Security

Ironic Documentation, Release 21.1.2.dev10

e number_of_physical_disks

Backing physical disks

These are HUAWEI RAID controller dependent properties:

* controller: Optional. Supported values are: RAID storage id, RAID storage name or RAID
controller name. If a bare metal server have more than one controller, this is mandatory. Typical
values would look like:

— RAID Storage Id: RAIDStorage®
— RAID Storage Name: RAIDStorage®
— RAID Controller Name: RAID Cardl Controller.

* physical_disks: Optional. Supported values are: disk-id, disk-name or disk serial number.
Typical values for hdd disk would look like:

— Disk Id: HDDPlaneDisk®
— Disk Name: Disk®.
— Disk SerialNumber: 38DGK77LF77D

Delete RAID configuration

For delete_configuration step, ibmc will do:
* delete all logical disks

* delete all hot-spare disks

Logical disks creation priority

Logical Disks creation priority based on three properties:
e share_physical_disks
* physical_disks
e size_gb

The logical disks creation priority strictly follow the table below, if multiple logical disks have the same
priority, then they will be created with the same order in 1ogical_disks array.

Share physical disks | Specified Physical Disks | Size
no yes intlmax
no no int

yes yes int

yes yes max
yes no int

yes no max
no no max

152 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Physical disks choice strategy

Note: physical-disk-group: a group of physical disks which have been used by some logical-disks with
same RAID level.

* If no physical_disks are specified, the waste least strategy will be used to choose the physical
disks.

— waste least disk capacity: when using disks with different capacity, it will cause a waste of
disk capacity. This is to avoid with highest priority.

— using least total disk capacity: for example, we can create 400G RAID 5 with both 5 100G-
disks and 3 200G-disks. 5 100G disks is a better strategy because it uses a 500G capacity
totally. While 3 200G-disks are 600G totally.

— using least disk count: finally, if waste capacity and total disk capacity are both the same (it
rarely happens?), we will choose the one with the minimum number of disks.

* when share_physical_disks option is present, ibmc driver will create logical disk upon ex-
isting physical-disk-group list first. Only when no existing physical-disk-group matches, then it
chooses unused physical disks with same strategy described above. When multiple exists physical-
disk-groups matches, it will use waste least strategy too, the bigger capacity left the better. For
example, to create a logical disk shown below on a ibmc server which has two RAIDS logical
disks already. And the shareable capacity of this two logical-disks are 500G and 300G, then ibmc
driver will choose the second one.

And the ibmc server has two RAIDS logical disks already.

* When size_gb is set to MAX, ibmc driver will auto work through all possible cases and choose
the best solution which has the biggest capacity and use least capacity. For example: to create a
RAID 5+0 logical disk with MAX size in a server has 9 200G-disks, it will finally choose 8 disks +
span-number 2 but not 9 disks + span-number 3. Although they both have 1200G capacity totally,
but the former uses only 8 disks and the latter uses 9 disks. If you want to choose the latter solution,
you can specified the disk count to use by adding number_of_physical_disks option.

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces 153

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Examples

In a typical scenario we may want to create:

e RAID 5, 500G, root OS volume with 3 disks

* RAID 5, rest available space, data volume with rest disks

Vendor Interface

The ibmc hardware type provides vendor passthru interfaces shown below:

Method Name

HTTP Method

Description

boot_up_seq

GET

Query boot up sequence

get_raid_controller_list

GET

Query RAID controller summary info

154

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

iDRAC driver

Overview

The integrated Dell Remote Access Controller (iDRAC) is an out-of-band management platform on Dell
EMC servers, and is supported directly by the idrac hardware type. This driver uses the Dell Web
Services for Management (WSMAN) protocol and the standard Distributed Management Task Force
(DMTF) Redfish protocol to perform all of its functions.

iDRAC hardware is also supported by the generic ipmi and redfish hardware types, though with
smaller feature sets.

Key features of the Dell iDRAC driver include:
* Out-of-band node inspection
* Boot device management and firmware management
* Power management
* RAID controller management and RAID volume configuration

* BIOS settings configuration

Ironic Features

The idrac hardware type supports the following Ironic interfaces:
* BIOS Interface: BIOS management
* Inspect Interface: Hardware inspection
* Management Interface: Boot device and firmware management

* Power Interface: Power management

RAID Interface: RAID controller and disk management
* Vendor Interface: BIOS management (WSMAN) and eject virtual media (Redfish)

Prerequisites

The idrac hardware type requires the python-dracclient library to be installed on the ironic con-
ductor node(s) if an Ironic node is configured to use an idrac-wsman interface implementation, for
example:

Additionally, the idrac hardware type requires the sushy library to be installed on the ironic conductor
node(s) if an Ironic node is configured to use an idrac-redfish interface implementation, for example:

4.1. Drivers, Hardware Types and Hardware Interfaces 155

https://www.dell.com/idracmanuals
https://www.dell.com/idracmanuals

Ironic Documentation, Release 21.1.2.dev10

Enabling

The iDRAC driver supports WSMAN for the bios, inspect, management, power, raid, and vendor inter-
faces. In addition, it supports Redfish for the bios, inspect, management, power, and raid interfaces. The
iDRAC driver allows you to mix and match WSMAN and Redfish interfaces.

The idrac-wsman implementation must be enabled to use WSMAN for an interface. The
idrac-redfish implementation must be enabled to use Redfish for an interface.

To enable the idrac hardware type with the minimum interfaces, all using WSMAN, add the following
to your /etc/ironic/ironic.conf:

To enable all optional features (BIOS, inspection, RAID, and vendor passthru) using Redfish where it is
supported and WSMAN where not, use the following configuration:

Below is the list of supported interface implementations in priority order:

Interface Supported Implementations

bios idrac-wsman, idrac-redfish, no-bios

boot ipxe, pxe, idrac-redfish-virtual-media
console no-console

deploy direct, ansible, ramdisk

inspect idrac-wsman, idrac, idrac-redfish, inspector, no-inspect
management | idrac-wsman, idrac, idrac-redfish

network flat, neutron, noop

power idrac-wsman, idrac, idrac-redfish

raid idrac-wsman, idrac, idrac-redfish, no-raid
rescue no-rescue, agent

storage noop, cinder, external

vendor idrac-wsman, idrac, idrac-redfish, no-vendor

Note:

idrac is the legacy name of the WSMAN interface.

idrac-wsman and may be removed in a future release.

It has been deprecated in favor of

156

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Protocol-specific Properties

The WSMAN and Redfish protocols require different properties to be specified in the Ironic nodes
driver_info field to communicate with the bare metal systems iDRAC.

The WSMAN protocol requires the following properties:

* drac_username: The WSMAN user name to use when communicating with the iDRAC. Usually
root.

* drac_password: The password for the WSMAN user to use when communicating with the
iDRAC.

* drac_address: The IP address of the iDRAC.
The Redfish protocol requires the following properties:

* redfish_username: The Redfish user name to use when communicating with the iDRAC. Usu-
ally root.

* redfish_password: The password for the Redfish user to use when communicating with the
iDRAC.

* redfish_address: The URL address of the iDRAC. It must include the authority portion of the
URL, and can optionally include the scheme. If the scheme is missing, https is assumed.

* redfish_system_id: The Redfish ID of the server to be managed. This should always be: /
redfish/v1/Systems/System.Embedded. 1.

For other Redfish protocol parameters see Redfish driver.

If using only interfaces which use WSMAN (idrac-wsman), then only the WSMAN properties must be
supplied. If using only interfaces which use Redfish (idrac-redfish), then only the Redfish properties
must be supplied. If using a mix of interfaces, where some use WSMAN and others use Redfish, both
the WSMAN and Redfish properties must be supplied.

Enrolling

The following command enrolls a bare metal node with the idrac hardware type using WSMAN for all
interfaces:

baremetal node create --driver idrac

--driver-info user
--driver-info pa’ ‘wlrd
--driver-info drac.host

The following command enrolls a bare metal node with the idrac hardware type using Redfish for all
interfaces:

baremetal node create --driver idrac

--driver-info user

--driver-info pa’ ‘wlrd

--driver-info drac.host

--driver-info /redfish/v1/Systems/System.Embedded. 1

--bios-interface idrac-redfish

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces 157

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

--inspect-interface idrac-redfish
--management-interface idrac-redfish
--power-interface idrac-redfish
--raid-interface idrac-redfish
--vendor-interface idrac-redfish

The following command enrolls a bare metal node with the idrac hardware type assuming a mix of
Redfish and WSMAN interfaces are used:

baremetal node create --driver idrac

--driver-info user

--driver-info pa’ ‘wlrd

--driver-info drac.host

--driver-info user

--driver-info pa’ ‘wlrd

--driver-info drac.host

--driver-info /redfish/v1/Systems/System.Embedded. 1

--bios-interface idrac-redfish
--inspect-interface idrac-redfish
--management-interface idrac-redfish
--power-interface idrac-redfish

Note: If using WSMAN for the management interface, then WSMAN must be used for the power
interface. The same applies to Redfish. It is currently not possible to use Redfish for one and WSMAN
for the other.

BIOS Interface

The BIOS interface implementations supported by the idrac hardware type allows BIOS to be config-
ured with the standard clean/deploy step approach.

Example

A clean step to enable Virtualization and SRIOV in BIOS of an iDRAC BMC would be as follows:

(continues on next page)

158 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

See the Known Issues for a known issue with factory_reset clean step. For additional details of BIOS
configuration, see BIOS Configuration.

Inspect Interface

The Dell iDRAC out-of-band inspection process catalogs all the same attributes of the server as the
IPMI driver. Unlike IPMI, it does this without requiring the system to be rebooted, or even to be powered
on. Inspection is performed using the Dell WSMAN or Redfish protocol directly without affecting the
operation of the system being inspected.

The inspection discovers the following properties:
* cpu_arch: cpu architecture
* cpus: number of cpus
* local_gb: disk size in gigabytes
* memory_mb: memory size in megabytes
Extra capabilities:
* boot_mode: UEFI or BIOS boot mode.
e pci_gpu_devices: number of GPU devices connected to the bare metal.

It also creates baremetal ports for each NIC port detected in the system. The idrac-wsman inspect
interface discovers which NIC ports are configured to PXE boot and sets pxe_enabled to True on
those ports. The idrac-redfish inspect interface does not currently set pxe_enabled on the ports.
The user should ensure that pxe_enabled is set correctly on the ports following inspection with the
idrac-redfish inspect interface.

Management Interface

The management interface for idrac-redfish supports:

* updating firmware on nodes using a manual cleaning step. See Redfish driver for more information
on firmware update support.

* updating system and getting its inventory using configuration molds. For more information see
Import and export configuration.

4.1. Drivers, Hardware Types and Hardware Interfaces 159

Ironic Documentation, Release 21.1.2.dev10

Import and export configuration

The clean and deploy steps provided in this section allow to configure the system and collect the system
inventory using configuration mold files.

The introduction of this feature in the Wallaby release is experimental.
These steps are:

* export_configuration with the export_configuration_location input parameter to ex-
port the configuration from the existing system.

* import_configuration with the import_configuration_location input parameter to im-
port the existing configuration mold into the system.

e import_export_configuration with the export_configuration_location and
import_configuration_location input parameters. This step combines the previous
two steps into one step that first imports existing configuration mold into system, then exports the
resulting configuration.

The input parameters provided include the URL where the configuration mold is to be stored after the
export, or the reference location for an import. For more information on setting up storage and available
options see Storage setup.

Configuration molds are JSON files that contain three top-level sections: bios, raid and oem. The
following is an example of a configuration mold:

(continues on next page)

160 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

"Disk.Bay.0:Encl.Int.0-1:RAID.Integrated.1-1"
"Disk.Bay.l:Encl.Int.0-1:RAID.Integrated.1-1"

"size_gb": 100

"raid_level™: "5"

"controller": "RAID.Integrated.1-1"
"volume_name": "data_volume"
"physical_disks"

"Disk.Bay.2:Encl.Int.0-1:RAID.Integrated

L1-1"

"Disk.Bay.3:Encl.Int.0-1:RAID.Integrated.1-1"
"Disk.Bay.4:Encl.Int.0-1:RAID.Integrated.1-1"

oem

"interface"
"data"

"SystemConfiguration"

"idrac-redfish"

"Model": "PowerEdge R640"
"ServiceTag": "8CY9799"
"TimeStamp": "Fri Jun 26 08:43:15 2020"
"Components"
"FQDD": "NIC.Slot.1-1-1"
"Attributes"
"Name": "BlnkLeds"
"Value": "15"
"Set On Import": "True"
"Comment": "Read and Write"
"Name": "VirtMacAddr"
"Value": "00:00:00:00:00:00"
"Set On Import": "False"
"Comment": "Read and Write"
"Name": "VirtualizationMode"
"Value": "NONE"
"Set On Import": "True"
"Comment": "Read and Write"

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces

161

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Currently, the OEM section is the only section that is supported. The OEM section uses the iDRAC
Server Configuration Profile (SCP) and can be edited as necessary if it complies with the SCP. For more
information about SCP and its capabilities, see SCP_Reference_Guide.

Note: iDRAC BMC connection settings are not exported to avoid overwriting these in another system
when using unmodified exported configuration mold in import step. If need to replicate iDRAC BMC
connection settings, then add these settings manually to configuration mold for import step.

To replicate the system configuration to that of a similar system, perform the following steps:
1. Configure a golden, or one to many, system.
2. Use the export_configuration step to export the configuration to the wanted location.

3. Adjust the exported configuration mold for other systems to replicate. For example, remove sec-
tions that do not need to be replicated such as iDRAC connection settings. The configuration mold
can be accessed directly from the storage location.

4. Import the selected configuration mold into the other systems using the import_configuration
step.

It is not mandatory to use export_configuration step to create a configuration mold. Upload the file
to a designated storage location without using Ironic if it has been created manually or by other means.

Storage setup

To start using these steps, configure the storage location. The settings can be found in the [molds]
section. Configure the storage type from the [molds]storage setting. Currently, swift, which is
enabled by default, and http are supported.

In the setup input parameters, the complete HTTP URL is used. This requires that the containers (for
swift) and the directories (for http) are created beforehand, and that read/write access is configured
accordingly.

Note: Use of TLS is strongly advised.

This setup configuration allows a user to access these locations outside of Ironic to list, create, update,
and delete the configuration molds.

For more information see Swift configuration and HTTP configuration.

162 Chapter 4. Administrator Guide

http://downloads.dell.com/manuals/common/dellemc-server-config-profile-refguide.pdf

Ironic Documentation, Release 21.1.2.dev10

Swift configuration

To use Swift with configuration molds,
1. Create the containers to be used for configuration mold storage.

2. For Ironic Swift user that is configured in the [swift] section add read/write access to these
containers.

HTTP configuration

To use HTTP server with configuration molds,
1. Enable HTTP PUT support.
2. Create the directory to be used for the configuration mold storage.

3. Configure read/write access for HI'TP Basic access authentication and provide user credentials in
[molds]user and [molds]password fields.

The HTTP web server does not support multitenancy and is intended to be used in a stand-alone Ironic,
or single-tenant OpenStack environment.

RAID Interface

See RAID Configuration for more information on Ironic RAID support.

RAID interface of redfish hardware type can be used on iDRAC systems. Compared to redfish
RAID interface, using idrac-redfish adds:

* Waiting for real-time operations to be available on RAID controllers. When using redfish this is
not guaranteed and reboots might be intermittently required to complete,

* Converting non-RAID disks to RAID mode if there are any,
* Clearing foreign configuration, if any, after deleting virtual disks.

The following properties are supported by the iDRAC WSMAN and Redfish RAID interface implemen-
tation:

Note: When using idrac-redfish for RAID interface iDRAC firmware greater than 4.40.00.00 is
required.

Mandatory properties

* size_gb: Size in gigabytes (integer) for the logical disk. Use MAX as size_gb if this logical disk
is supposed to use the rest of the space available.

* raid_level: RAID level for the logical disk. Valid values are 0, 1, 5, 6, 1+0, 5+0 and 6+0.

Note: JBOD and 2 are not supported, and will fail with reason: Cannot calculate spans for RAID level.

4.1. Drivers, Hardware Types and Hardware Interfaces 163

Ironic Documentation, Release 21.1.2.dev10

Optional properties
e is_root_volume: Optional. Specifies whether this disk is a root volume. By default, this is

False.

* volume_name: Optional. Name of the volume to be created. If this is not specified, it will be
auto-generated.

Backing physical disk hints

See RAID Configuration for more information on backing disk hints.

These are machine-independent information. The hints are specified for each logical disk to help Ironic
find the desired disks for RAID configuration.

e disk_type
e interface_type
e share_physical_disks

e number_of_physical_disks

Backing physical disks

These are Dell RAID controller-specific values and must match the names provided by the iDRAC.
* controller: Mandatory. The name of the controller to use.

* physical_disks: Optional. The names of the physical disks to use.

Note: physical_disks is a mandatory parameter if the property size_gb is set to MAX.

Examples

Creation of RAID 1+0 logical disk with six disks on one controller:

164 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Manual RAID Invocation

The following command can be used to delete any existing RAID configuration. It deletes all virtual
disks/RAID volumes, unassigns all global and dedicated hot spare physical disks, and clears foreign
configuration:

baremetal node clean --clean-steps

The following command shows an example of how to set the target RAID configuration:

baremetal node --target-raid-config

The following command can be used to create a RAID configuration:

baremetal node clean --clean-steps
<node>

When the physical disk names or controller names are not known, the following Python code example
shows how the python-dracclient can be used to fetch the information directly from the Dell bare
metal:

Or using sushy with Redfish:

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces 165

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Vendor Interface

idrac-wsman

Dell iDRAC BIOS management is available through the Ironic WSMAN vendor passthru interface.

Method HTTPDescription
Name| Method
abandorDE] KA bamdtiga BIOS configuration job.

commi t_RfiSE_Comfiiig a BIOS configuration job submitted through set_bios_config. Required
argument: reboot - indicates whether a reboot job should be automatically created
with the config job. Returns a dictionary containing the job_id key with the ID of the
newly created config job, and the reboot_required key indicating whether the node
needs to be rebooted to execute the config job.

get_bidEXoridtgrns a dictionary containing the nodes BIOS settings.

list_urGHh] Redrgobslictionary containing the key unfinished_jobs; its value is a list of dic-
tionaries. Each dictionary represents an unfinished config job object.
set_bidNSHrdflignge the BIOS configuration on a node. Required argument: a dictio-
nary of {AttributeName: NewValue}. Returns a dictionary containing the
is_commit_required key indicating whether commit_bios_config needs to be
called to apply the changes and the is_reboot_required value indicating whether
the server must also be rebooted. Possible values are true and false.

Examples

Get BIOS Config

baremetal node passthru call --http-method GET <node> get_bios_config

Snippet of output showing virtualization enabled:

166 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

There are a number of items to note from the above snippet:
e name: this is the name to use in a call to set_bios_config.
* current_value: the current state of the setting.

* pending_value: if the value has been set, but not yet committed, the new value is shown here.
The change can either be committed or abandoned.

e possible_values: shows a list of valid values which can be used in a call to set_bios_config.

* read_only: indicates if the value is capable of being changed.

Set BIOS Config

baremetal node passthru call <node> set_bios_config --arg

Walkthrough of perfoming a BIOS configuration change:

The following section demonstrates how to change BIOS configuration settings, detect that a commit and
reboot are required, and act on them accordingly. The two properties that are being changed are:

* Enable virtualization technology of the processor

* Globally enable SR-IOV

baremetal node passthru call <node> set_bios_config
--arg
--arg

This returns a dictionary indicating what actions are required next:

Commit BIOS Changes

The next step is to commit the pending change to the BIOS. Note that in this example, the reboot
argument is set to true. The response indicates that a reboot is no longer required as it has been scheduled
automatically by the commit_bios_config call. If the reboot argument is not supplied, the job is still
created, however it remains in the scheduled state until a reboot is performed. The reboot can be
initiated through the Ironic power API.

baremetal node passthru call <node> commit_bios_config
--arg

4.1. Drivers, Hardware Types and Hardware Interfaces 167

Ironic Documentation, Release 21.1.2.dev10

The state of any executing job can be queried:

baremetal node passthru call --http-method GET <node> list_unfinished_jobs

Abandon BIOS Changes

Instead of committing, a pending change can be abandoned:

baremetal node passthru call --http-method DELETE <node> abandon_bios_config

The abandon command does not provide a response body.

Change Boot Mode

The boot mode of the iDRAC can be changed to:

BIOS - Also called legacy or traditional boot mode. The BIOS initializes the systems processors,
memory, bus controllers, and I/O devices. After initialization is complete, the BIOS passes control
to operating system (OS) software. The OS loader uses basic services provided by the system BIOS
to locate and load OS modules into system memory. After booting the system, the BIOS and
embedded management controllers execute system management algorithms, which monitor and
optimize the condition of the underlying hardware. BIOS configuration settings enable fine-tuning
of the performance, power management, and reliability features of the system.

UEFI - The Unified Extensible Firmware Interface does not change the traditional purposes of
the system BIOS. To a large extent, a UEFI-compliant BIOS performs the same initialization,
boot, configuration, and management tasks as a traditional BIOS. However, UEFI does change the
interfaces and data structures the BIOS uses to interact with I/O device firmware and operating
system software. The primary intent of UEFI is to eliminate shortcomings in the traditional BIOS
environment, enabling system firmware to continue scaling with industry trends.

The UEFI boot mode offers:

Improved partitioning scheme for boot media
Support for media larger than 2 TB
Redundant partition tables

Flexible handoff from BIOS to OS
Consolidated firmware user interface

Enhanced resource allocation for boot device firmware

168

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

The boot mode can be changed via the WSMAN vendor passthru interface as follows:

baremetal node passthru call <node> set_bios_config
--arg

baremetal node passthru call <node> commit_bios_config
--arg

baremetal node passthru call <node> set_bios_config
--arg

baremetal node passthru call <node> commit_bios_config
--arg

idrac-redfish

Through the idrac-redfish vendor passthru interface these methods are available:

Method HTTP | Description
Name | Method
eject_m@®DST | Eject a virtual media device. If no device is provided then all attached devices will
be ejected. Optional argument: boot_device - the boot device to eject, either,
cd, dvd, usb or floppy.

Known Issues
Nodes go into maintenance mode

After some period of time, nodes managed by the idrac hardware type may go into maintenance mode
in Ironic. This issue can be worked around by changing the Ironic power state poll interval to 70 seconds.
See [conductor]sync_power_state_interval in /etc/ironic/ironic.conf.

PXE reset with factory_reset BIOS clean step

When using the UEFI boot mode with non-default PXE interface, the factory reset can cause the PXE
interface to be reset to default, which doesnt allow the server to PXE boot for any further operations.
This can cause a clean_failed state on the node or deploy_failed if you attempt to deploy a node
after this step. For now, the only solution is for the operator to manually restore the PXE settings of the
server for it to PXE boot again, properly. The problem is caused by the fact that with the UEFI boot
mode, the idrac uses BIOS settings to manage PXE configuration. This is not the case with the BIOS
boot mode where the PXE configuration is handled as a configuration job on the integrated NIC itself,
independently of the BIOS settings.

4.1. Drivers, Hardware Types and Hardware Interfaces 169

Ironic Documentation, Release 21.1.2.dev10

WSMAN vendor passthru timeout

When iDRAC is not ready and executing WSMAN vendor passthru commands, they take more time as
waiting for iDRAC to become ready again and then time out, for example:

baremetal node passthru call --http-method GET
aed58dca-1b25-409a-a32f-3a817d59ele® list_unfinished_jobs

Timed out waiting a reply to message ID 547ce7995342418c99eflea4al054572, .

— (HTTP

To avoid this need to increase timeout for messaging in /etc/ironic/ironic.conf and restart Ironic
API service.

Timeout when powering off

Some servers might be slow when soft powering off and time out. The default
retry count is 6, resulting in 30 seconds timeout (the default retry interval set by
post_deploy_get_power_state_retry_interval is 5 seconds). To resolve this issue, increase the
timeout to 90 seconds by setting the retry count to 18 as follows:

Unable to mount remote share with iDRAC firmware before 4.40.40.00

When using iDRAC firmware 4.40.00.00 and consecutive versions before 4.40.40.00 with virtual media
boot and new Virtual Console plug-in type eHTMLS, there is an error: Unable to mount remote share.
This is a known issue that is fixed in 4.40.40.00 iDRAC firmware release. If cannot upgrade, then adjust
settings in iDRAC to use plug-in type HTMLS. In iDRAC web UI go to Configuration -> Virtual Console
and select Plug-in Type to HTMLS.

During upgrade to 4.40.00.00 or newer iDRAC firmware eHTMLS is automatically selected if default
plug-in type has been used and never changed. Systems that have plug-in type changed will keep selected
plug-in type after iDRAC firmware upgrade.

Firmware update from Swift fails before 6.00.00.00

With iDRAC firmware prior to 6.00.00.00 and when using Swift to stage firmware update files in Man-
agement interface firmware_update clean step of redfish or idrac hardware type, the cleaning fails
with error An internal error occurred. Unable to complete the specified operation. in iDRAC job. This
is fixed in iDRAC firmware 6.00.00.00. If cannot upgrade, then use HTTP service to stage firmware files
for iDRAC.

170 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

iLO driver

Overview

iLO driver enables to take advantage of features of iLO management engine in HPE ProLiant servers. The
ilo hardware type is targeted for HPE ProLiant Gen8 and Gen9 systems which have iLO 4 management
engine. From Pike release ilo hardware type supports ProLiant Genl0 systems which have iLO 5
management engine. iLOS5 conforms to Redfish API and hence hardware type redfish (see Redfish
driver) is also an option for this kind of hardware but it lacks the iLO specific features.

For more details and for up-to-date information (like tested platforms, known issues, etc), please check
the iLO driver wiki page.

For enabling Gen10 systems and getting detailed information on Gen10 feature support in Ironic please
check this Gen10 wiki section.

Hardware type

ProLiant hardware is primarily supported by the ilo hardware type. ilo5 hardware type is only sup-
ported on ProLiant Gen10 and later systems. Both hardware can be used with reference hardware type
ipmi (see /PMI driver) and redfish (see Redfish driver). For information on how to enable the ilo
and ilo5 hardware type, see Enabling hardware types.

Note: Only HPE ProLiant Gen10 servers supports hardware type redfish.

Warning: It is important to note that while the HPE Edgeline series of servers may contain iLO
adapters, they are known to not be compatible with the ilo hardware type. The redfish hardware
type should be used instead.

The hardware type ilo supports following HPE server features:
* Boot mode support
* UEFI Secure Boot Support
* Node Cleaning Support
* Node Deployment Customization
* Hardware Inspection Support
* Swiftless deploy for intermediate images
* HTTP(S) Based Deploy Support
* Support for iLO driver with Standalone Ironic
* RAID Support
* Disk Erase Support
* [Initiating firmware update as manual clean step

* Smart Update Manager (SUM) based firmware update

4.1. Drivers, Hardware Types and Hardware Interfaces 171

https://www.hpe.com/us/en/servers/integrated-lights-out-ilo.html
https://www.hpe.com/us/en/servers/integrated-lights-out-ilo.html
https://www.hpe.com/us/en/servers/integrated-lights-out-ilo.html#innovations
https://www.hpe.com/us/en/servers/integrated-lights-out-ilo.html#innovations
https://www.dmtf.org/standards/redfish
https://wiki.openstack.org/wiki/Ironic/Drivers/iLODrivers
https://wiki.openstack.org/wiki/Ironic/Drivers/iLODrivers/master#Enabling_ProLiant_Gen10_systems_in_Ironic

Ironic Documentation, Release 21.1.2.dev10

* Updating security parameters as manual clean step

* Update Minimum Password Length security parameter as manual clean step

* Update Authentication Failure Logging security parameter as manual clean step

* Create Certificate Signing Request(CSR) as manual clean step

* Add HTTPS Certificate as manual clean step

* Activating iLO Advanced license as manual clean step
* Removing CA certificates from iLO as manual clean step
* Firmware based UEFI iSCSI boot from volume support
* Certificate based validation in iLO

* Rescue mode support

* Inject NMI support

* Soft power operation support

* BIOS configuration support

* IPv6 support

* Layer 3 or DHCP-less ramdisk booting

» Events subscription

Apart from above features hardware type i1o5 also supports following features:

Har

The

* Out of Band RAID Support

* Out of Band Sanitize Disk Erase Support

* Out of Band One Button Secure Erase Support
* UEFI-HTTPS Boot support

dware interfaces

ilo hardware type supports following hardware interfaces:

* bios Supports ilo and no-bios. The default is ilo. They can be enabled by using the
[DEFAULT] enabled_bios_interfaces option in ironic.conf as given below:

[DEFAULT]

* boot Supports ilo-virtual-media, ilo-pxe and ilo-ipxe. The
ilo-virtual-media. The ilo-virtual-media interface provides security enhanced
PXE-less deployment by using iLO virtual media to boot up the bare metal node. The
ilo-pxe and ilo-ipxe interfaces use PXE and iPXE respectively for deployment(just like
PXE boot). These interfaces do not require iLO Advanced license. They can be enabled
by using the [DEFAULT]enabled_boot_interfaces option in ironic.conf as given

below:

172

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

* console Supports ilo and no-console. The default is ilo. They can be enabled by using the
[DEFAULT] enabled_console_interfaces option in ironic.conf as given below:

Note: To use ilo console interface you need to enable iLO feature IPMI/DCMI over LAN
Access on iLLO4 and iLO5 management engine.

* inspect Supports ilo and inspector. The default is ilo. They can be enabled by using the
[DEFAULT] enabled_inspect_interfaces option in ironic.conf as given below:

Note: Ironic Inspector needs to be configured to use inspector as the inspect interface.

* management Supports only 1ilo. It can be enabled by wusing the
[DEFAULT]enabled_management_interfaces option in ironic.conf as given
below:

* power Supports only ilo. It can be enabled by using the

[DEFAULT] enabled_power_interfaces option in ironic.conf as given below:

* raid Supports agent and no-raid. The default is no-raid. They can be enabled by using the
[DEFAULT]enabled_raid_interfaces option in ironic.conf as given below:

 storage Supports cinder and noop. The default is noop. They can be enabled by using the
[DEFAULT] enabled_storage_interfaces option in ironic.conf as given below:

4.1. Drivers, Hardware Types and Hardware Interfaces 173

https://support.hpe.com/hpsc/doc/public/display?docId=c03334051
https://support.hpe.com/hpsc/doc/public/display?docId=a00018324en_us
https://docs.openstack.org/ironic-inspector/zed/

Ironic Documentation, Release 21.1.2.dev10

Note: The storage interface cinder is supported only when corresponding boot interface
of the ilo hardware type based node is ilo-pxe or ilo-ipxe. Please refer to Boot From
Volume for configuring cinder as a storage interface.

* rescue Supports agent and no-rescue. The defaultisno-rescue. They can be enabled by using
the [DEFAULT] enabled_rescue_interfaces option in ironic.conf as given below:

* vendor Supports ilo, ilo-redfish and no-vendor. The default is ilo. They can be enabled
by using the [DEFAULT] enabled_vendor_interfaces option in ironic.conf as given
below:

The ilo5 hardware type supports all the ilo interfaces described above, except for boot and raid
interfaces. The details of boot and raid interfaces is as under:

* raid Supports ilo5 and no-raid. The default is ilo5. They can be enabled by using the
[DEFAULT]enabled_raid_interfaces option in ironic.conf as given below:

* boot Supports ilo-uefi-https apart from the other boot interfaces supported by ilo hardware
type. This can be enabled by using the [DEFAULT]enabled_boot_interfaces option in
ironic.conf as given below:

The ilo and ilo5 hardware type support all standard deploy and network interface implementations,
see Enabling hardware interfaces for details.

The following command can be used to enroll a ProLiant node with ilo hardware type:

(continues on next page)

174 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Note: The fields deploy_iso and rescue_iso used to be called ilo_deploy_iso and
ilo_rescue_iso before the Xena release.

The following command can be used to enroll a ProLiant node with 1105 hardware type:

Please refer to Enabling drivers and hardware types for detailed explanation of hardware type.

Node configuration

» Each node is configured for ilo and ilo5 hardware type by setting the following ironic node
objects properties in driver_info:

— ilo_address: IP address or hostname of the iLLO.
— ilo_username: Username for the iLO with administrator privileges.
— ilo_password: Password for the above iLO user.

— client_port: (optional) Port to be used for iLO operations if you are using a custom port
on the iLO. Default port used is 443.

— client_timeout: (optional) Timeout for iLO operations. Default timeout is 60 seconds.
— ca_file: (optional) CA certificate file to validate iLO.

— console_port: (optional) Nodes UDP port for console access. Any unused port on the
ironic conductor node may be used. This is required only when ilo-console interface is
used.

* The following properties are also required in node objects driver_info if ilo-virtual-media
boot interface is used:

— deploy_iso: The glance UUID of the deploy ramdisk ISO image.

— instance info/boot_iso property to be either boot iso Glance UUID or a HTTP(S) URL.
This is optional property and is used with Booting a Ramdisk or an 1SO.

4.1. Drivers, Hardware Types and Hardware Interfaces 175

Ironic Documentation, Release 21.1.2.dev10

Note: The boot_iso property used to be called ilo_boot_iso before the Xena release.

— rescue_iso: The glance UUID of the rescue ISO image. This is optional property and is
used when rescue interface is set to agent.

* The following properties are also required in node objects driver_info if ilo-pxe or ilo-ipxe
boot interface is used:

— deploy_kernel: The glance UUID or a HTTP(S) URL of the deployment kernel.
— deploy_ramdisk: The glance UUID or a HTTP(S) URL of the deployment ramdisk.

— rescue_kernel: The glance UUID or a HTTP(S) URL of the rescue kernel. This is optional
property and is used when rescue interface is set to agent.

— rescue_ramdisk: The glance UUID or a HTTP(S) URL of the rescue ramdisk. This is
optional property and is used when rescue interface is set to agent.

* The following properties are also required in node objects driver_infoif ilo-uefi-https boot
interface is used for ilo5 hardware type:

deploy_kernel: The glance UUID or a HTTPS URL of the deployment kernel.
deploy_ramdisk: The glance UUID or a HTTPS URL of the deployment ramdisk.
bootloader: The glance UUID or a HTTPS URL of the bootloader.

rescue_kernel: The glance UUID or a HTTPS URL of the rescue kernel. This is optional
property and is used when rescue interface is set to agent.

rescue_ramdisk: The glance UUID or a HTTP(S) URL of the rescue ramdisk. This is
optional property and is used when rescue interface is set to agent.

Note: ilo-uefi-https boot interface is supported by only ilo5 hardware type. If the images
are not hosted in glance, the references must be HT'TPS URLs hosted by secure webserver. This
boot interface can be used only when the current boot mode is UEFI.

Note: The fields deploy_kernel, deploy_ramdisk, rescue_kernel rescue_ramdisk and
bootloader used to have an ilo_ prefix before the Xena release.

* The following parameters are mandatory in driver_info if ilo-inspect inspect inteface is
used and SNMPv3 inspection (SNMPv3 Authentication in HPE iL.O4 User Guide) is desired:

— snmp_auth_user : The SNMPv3 user.

— snmp_auth_prot_password : The auth protocol pass phrase.

— snmp_auth_priv_password : The privacy protocol pass phrase.
The following parameters are optional for SNMPv3 inspection:

— snmp_auth_protocol : The Auth Protocol. The valid values are MD5 and SHA. The iLO
default value is MDS5.

— snmp_auth_priv_protocol : The Privacy protocol. The valid values are AES and DES.
The iLO default value is DES.

176 Chapter 4. Administrator Guide

https://h20566.www2.hpe.com/hpsc/doc/public/display?docId=c03334051

Ironic Documentation, Release 21.1.2.dev10

Note: If configuration values for ca_file, client_port and client_timeout are not provided in the
driver_info of the node, the corresponding config variables defined under [ilo] section in ironic.conf
will be used.

Prerequisites

* proliantutils is a python package which contains a set of modules for managing HPE ProLiant

hardware.

Install proliantutils module on the ironic conductor node. Minimum version required is 2.8.0:

$ pip install "proliantutils>=2.8.0"

* ipmitool command must be present on the service node(s) where ironic-conductor is run-

ning. On most distros, this is provided as part of the ipmitool package. Please refer to Hardware
Inspection Support for more information on recommended version.

Different configuration for ilo hardware type

Glance Configuration

. Configure Glance image service with its storage backend as Swift.

. Set a temp-url key for Glance user in Swift. For example, if you have configured Glance with user

glance-swift and tenant as service, then run the below command:

. Fill the required parameters in the [glance] section in /etc/ironic/ironic.conf. Normally

you would be required to fill in the following details:

The details can be retrieved by running the below command:

$ swift --os-username service:glance-swift stat -v grep -i url

StorageURL: http://10.10.1.10:8080/v1/AUTH_
—51ea2fb400c34c9eb005ca945c0dc9el
Meta Temp-Url-Key: mysecretkeyforglance

. Swift must be accessible with the same admin credentials configured in Ironic. For example, if

Ironic is configured with the below credentials in /etc/ironic/ironic.conf:

4.1,

Drivers, Hardware Types and Hardware Interfaces 177

https://pypi.org/project/proliantutils
https://docs.openstack.org/glance/zed/configuration/configuring.html#configuring-the-swift-storage-backend

Ironic Documentation, Release 21.1.2.dev10

Ensure auth_version in keystone_authtoken to 2.

Then, the below command should work.:

$ swift --os-username ironic --os-password password --os-tenant-name,.
—»service --auth-version 2 stat

Account: AUTH_22af34365a104e4689c46400297f00ch
Containers:
Objects:
Bytes:
Objects policy :
Bytes policy :
Meta Temp-Url-Key: mysecretkeyforglance

X-Timestamp: .84427
X-Trans-Id: tx51de96a28£27401eb2833-005433924b
Content-Type: text/plain utf-8

Accept-Ranges: bytes

5. Restart the Ironic conductor service:

$ service ironic-conductor restart

Web server configuration on conductor

* The HTTP(S) web server can be configured in many ways. For apache web server on Ubuntu, refer
here

* Following config variables need to be set in /etc/ironic/ironic.conf

— use_web_server_for_images in [ilo] section:

— http_url and http_root in [deploy] section:

use_web_server_for_images: If the variable is set to false, the ilo-virtual-media boot in-
terface uses swift containers to host the intermediate floppy image and the boot ISO. If the variable

178 Chapter 4. Administrator Guide

https://help.ubuntu.com/lts/serverguide/httpd.html

Ironic Documentation, Release 21.1.2.dev10

is set to true, it uses the local web server for hosting the intermediate files. The default value for
use_web_server_for_images is False.

http_url: The value for this variable is prefixed with the generated intermediate files to generate a URL
which is attached in the virtual media.

http_root: It is the directory location to which ironic conductor copies the intermediate floppy image
and the boot ISO.

Note: HTTPS is strongly recommended over HTTP web server configuration for security enhancement.
The ilo-virtual-media boot interface will send the instances configdrive over an encrypted channel
if web server is HTTPS enabled. However for ilo-uefi-https boot interface HTTPS webserver is
mandatory as this interface only supports HTTPS URLs.

Enable driver

1. Build a deploy ISO (and kernel and ramdisk) image, see Building or downloading a deploy ramdisk
image

2. See Glance Configuration for configuring glance image service with its storage backend as swift.

3. Upload this image to Glance:

4. Enable hardware type and hardware interfaces in /etc/ironic/ironic.conf:

5. Restart the ironic conductor service:

$ service ironic-conductor restart

4.1. Drivers, Hardware Types and Hardware Interfaces 179

Ironic Documentation, Release 21.1.2.dev10

Optional functionalities for the ilo hardware type

Boot mode support

The hardware type ilo supports automatic detection and setting of boot mode (Legacy BIOS or UEFI).
* When boot mode capability is not configured:

— If config variable default_boot_mode in [ilo] section of ironic configuration file is set
to either bios or uefi, then iLO driver uses that boot mode for provisioning the baremetal
ProLiant servers.

— If the pending boot mode is set on the node then iLO driver uses that boot mode for provi-
sioning the baremetal ProLiant servers.

— If the pending boot mode is not set on the node then iLO driver uses uefi boot mode for UEFI
capable servers and bios when UEFI is not supported.

* When boot mode capability is configured, the driver sets the pending boot mode to the configured
value.

* Only one boot mode (either uefi or bios) can be configured for the node.

* If the operator wants a node to boot always in uefi mode or bios mode, then they may use
capabilities parameter within properties field of an ironic node.

To configure a node in uefi mode, then set capabilities as below:

Nodes having boot_mode set to uefi may be requested by adding an extra_spec to the nova
flavor:

If capabilities is used in extra_spec as above, nova scheduler
(ComputeCapabilitiesFilter) will match only ironic nodes which have the boot_mode
set appropriately in properties/capabilities. It will filter out rest of the nodes.

The above facility for matching in nova can be used in heterogeneous environments where there is
a mix of uefi and bios machines, and operator wants to provide a choice to the user regarding
boot modes. If the flavor doesnt contain boot_mode then nova scheduler will not consider boot
mode as a placement criteria, hence user may get either a BIOS or UEFI machine that matches
with user specified flavors.

The automatic boot ISO creation for UEFI boot mode has been enabled in Kilo. The manual creation of
boot ISO for UEFI boot mode is also supported. For the latter, the boot ISO for the deploy image needs to
be built separately and the deploy images boot_iso property in glance should contain the glance UUID
of the boot ISO. For building boot ISO, add iso element to the diskimage-builder command to build the
image. For example:

180 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

UEFI Secure Boot Support

The hardware type ilo supports secure boot deploy, see UEF] secure boot mode for details.
iLO specific notes:

In UEFI secure boot, digitally signed bootloader should be able to validate digital signatures of kernel
during boot process. This requires that the bootloader contains the digital signatures of the kernel. For the
ilo-virtual-media boot interface, it is recommended that boot_iso property for user image contains
the glance UUID of the boot ISO. If boot_iso property is not updated in glance for the user image, it
would create the boot_iso using bootloader from the deploy iso. This boot_iso will be able to boot
the user image in UEFI secure boot environment only if the bootloader is signed and can validate digital
signatures of user image kernel.

For HPE ProLiant Gen9 servers, one can enroll public key using iLO System Utilities UI. Please refer
to section Accessing Secure Boot options in HP UEFI System Utilities User Guide. One can also
refer to white paper on Secure Boot for Linux on HP ProLiant servers for additional details.

For more up-to-date information, refer iLO driver wiki page

Node Cleaning Support

The hardware type ilo and ilo5 supports node cleaning.

For more information on node cleaning, see Node cleaning

Supported Automated Cleaning Operations

* The automated cleaning operations supported are:

— reset_bios_to_default: Resets system ROM settings to default. By default, enabled
with priority 10. This clean step is supported only on Gen9 and above servers.

— reset_secure_boot_keys_to_default: Resets secure boot keys to manufacturers de-
faults. This step is supported only on Gen9 and above servers. By default, enabled with
priority 20 .

— reset_ilo_credential: Resets the iLO password, if ilo_change_password is specified
as part of nodes driver_info. By default, enabled with priority 30.

— clear_secure_boot_keys: Clears all secure boot keys. This step is supported only on
Gen9 and above servers. By default, this step is disabled.

— reset_ilo: Resets the iLO. By default, this step is disabled.

— erase_devices: An inband clean step that performs disk erase on all the disks including
the disks visible to OS as well as the raw disks visible to Smart Storage Administrator (SSA).
This step supports erasing of the raw disks visible to SSA in Proliant servers only with the
ramdisk created using diskimage-builder from Ocata release. By default, this step is disabled.
See Disk Erase Support for more details.

* For supported in-band cleaning operations, see I/n-band vs out-of-band.

* All the automated cleaning steps have an explicit configuration option for priority. In order to
disable or change the priority of the automated clean steps, respective configuration option for
priority should be updated in ironic.conf.

4.1. Drivers, Hardware Types and Hardware Interfaces 181

https://h20628.www2.hp.com/km-ext/kmcsdirect/emr_na-c03886429-5.pdf
https://h50146.www5.hpe.com/products/software/oe/linux/mainstream/support/whitepaper/pdfs/2018_rev2_4AA5-4496ENW.pdf
https://wiki.openstack.org/wiki/Ironic/Drivers/iLODrivers

Ironic Documentation, Release 21.1.2.dev10

» Updating clean step priority to 0, will disable that particular clean step and will not run during
automated cleaning.

* Configuration Options for the automated clean steps are listed under [ilo] and [deploy] section
in ironic.conf

For more information on node automated cleaning, see Automated cleaning

Supported Manual Cleaning Operations

* The manual cleaning operations supported are:

activate_license: Activates the iLO Advanced license. This is an out-of-band manual clean-
ing step associated with the management interface. See Activating iLO Advanced license
as manual clean step for user guidance on usage. Please note that this operation cannot be
performed using the ilo-virtual-media boot interface as it needs this type of advanced
license already active to use virtual media to boot into to start cleaning operation. Virtual
media is an advanced feature. If an advanced license is already active and the user wants to
overwrite the current license key, for example in case of a multi-server activation key deliv-
ered with a flexible-quantity kit or after completing an Activation Key Agreement (AKA),
then the driver can still be used for executing this cleaning step.

clear_ca_certificates: Removes the CA certificates fromiLLO. See Removing CA certificates
Jfrom iLO as manual clean step for user guidance on usage.

apply_configuration: Applies given BIOS settings on the node. See BIOS configuration sup-
port. This step is part of the bios interface.

factory_reset: Resets the BIOS settings on the node to factory defaults. See BIOS configura-
tion support. This step is part of the bios interface.

create_configuration: Applies RAID configuration on the node. See RAID Configuration
for more information. This step is part of the raid interface.

delete_configuration: Deletes RAID configuration on the node. See RAID Configuration for
more information. This step is part of the raid interface.

update_firmware: Updates the firmware of the devices. Also an out-of-band step associated
with the management interface. See Initiating firmware update as manual clean step for user
guidance on usage. The supported devices for firmware update are: ilo, cpld, power_pic,
bios and chassis. Please refer to below table for their commonly used descriptions.

182 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Device Description

ilo BMC for HPE ProLiant servers
cpld System programmable logic device
power_pic Power management controller
bios HPE ProLiant System ROM
chassis System chassis device

Some devices firmware cannot be updated via this method, such as: storage controllers, host
bus adapters, disk drive firmware, network interfaces and Onboard Administrator (OA).

update_firmware_sum: Updates all or list of user specified firmware components on the node
using Smart Update Manager (SUM). It is an inband step associated with the management
interface. See Smart Update Manager (SUM) based firmware update for more information
on usage.

security_parameters_update: Updates the Security Parameters. See Updating security pa-
rameters as manual clean step for user guidance on usage. The supported security parame-
ters for this clean step are: Password_Complexity, RequiredLoginForiLORBSU, IPMI/
DCMI_Over_LAN, RequireHostAuthentication and Secure_Boot.

update_minimum_password_length: Updates the Minimum Password Length security param-
eter. See Update Minimum Password Length security parameter as manual clean step for user
guidance on usage.

update_auth_failure_logging_threshold: Updates the Authentication Failure Logging se-
curity parameter. See Update Authentication Failure Logging security parameter as manual
clean step for user guidance on usage.

create_csr: Creates the certificate signing request. See Create Certificate Signing Re-
quest(CSR) as manual clean step for user guidance on usage.

add_https_certificate: Adds the signed HTTPS certificate to the iLLO. See Add HTTPS Cer-
tificate as manual clean step for user guidance on usage.

* iLO with firmware version 1.5 is minimally required to support all the operations.

For more information on node manual cleaning, see Manual cleaning

Node Deployment Customization

The hardware type ilo and ilo5 supports customization of node deployment via deploy templates, see
Node Deployment.

The supported deploy steps are:

» apply_configuration: Applies given BIOS settings on the node. See BIOS configuration sup-
port. This step is part of the bios interface.

» factory_reset: Resets the BIOS settings on the node to factory defaults. See BIOS configura-
tion support. This step is part of the bios interface.

» reset_bios_to_default: Resets system ROM settings to default. This step is supported only
on Gen9 and above servers. This step is part of the management interface.

4.1. Drivers, Hardware Types and Hardware Interfaces 183

Ironic Documentation, Release 21.1.2.dev10

reset_secure_boot_keys_to_default: Resets secure boot keys to manufacturers defaults.
This step is supported only on Gen9 and above servers. This step is part of the management
interface.

reset_ilo_credential: Resets the iLO password. The password need to be specified in
ilo_password argument of the step. This step is part of the management interface.

* clear_secure_boot_keys: Clears all secure boot keys. This step is supported only on Gen9
and above servers. This step is part of the management interface.

» reset_ilo: Resets the iLO. This step is part of the management interface.

» update_firmware: Updates the firmware of the devices. This step is part of the management
interface. See Initiating firmware update as manual clean step for user guidance on usage.
The supported devices for firmware update are: ilo, cpld, power_pic, bios and chassis.
This step is part of management interface. Please refer to below table for their commonly
used descriptions.

Device Description

ilo BMC for HPE ProLiant servers
cpld System programmable logic device
power_pic Power management controller
bios HPE ProLiant System ROM
chassis System chassis device

Some devices firmware cannot be updated via this method, such as: storage controllers, host
bus adapters, disk drive firmware, network interfaces and Onboard Administrator (OA).

o flash_firmware_sum: Updates all or list of user specified firmware components on the node
using Smart Update Manager (SUM). It is an inband step associated with the management
interface. See Smart Update Manager (SUM) based firmware update for more information
on usage.

* apply_configuration: Applies RAID configuration on the node. See RAID Configuration for
more information. This step is part of the raid interface.

Example of using deploy template with the Compute service

Create a deploy template with a single step:

Add the trait CUSTOM_HYPERTHREADING_ON to the node represented by $node_ident:

Update the flavor bm-hyperthreading-on in the Compute service with the following property:

184 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Creating a Compute instance with this flavor will ensure that the instance is scheduled only
to Bare Metal nodes with the CUSTOM_HYPERTHREADING_ON trait. When an instance is
created using the bm-hyperthreading-on flavor, then the deploy steps of deploy template
CUSTOM_HYPERTHREADING_ON will be executed during the deployment of the scheduled node, causing
Hyperthreading to be enabled in the nodes BIOS configuration.

Hardware Inspection Support

The hardware type ilo supports hardware inspection.

Note:

* The disk size is returned by RIBCL/RIS only when RAID is preconfigured on the storage. If the
storage is Direct Attached Storage, then RIBCL/RIS fails to get the disk size.

* The SNMPv3 inspection gets disk size for all types of storages. If RIBCL/RIS is unable to get disk
size and SNMPv3 inspection is requested, the proliantutils does SNMPv3 inspection to get the
disk size. If proliantutils is unable to get the disk size, it raises an error. This feature is available
in proliantutils release version >= 2.2.0.

* The iLO must be updated with SNMPv3 authentication details. Pleae refer to the section SNMPv3
Authentication in HPE iLLO4 User Guide for setting up authentication details on iLO. The following
parameters are mandatory to be given in driver_info for SNMPv3 inspection:

— snmp_auth_user : The SNMPv3 user.

— snmp_auth_prot_password : The auth protocol pass phrase.

— snmp_auth_priv_password : The privacy protocol pass phrase.
The following parameters are optional for SNMPv3 inspection:

— snmp_auth_protocol : The Auth Protocol. The valid values are MD5 and SHA. The iLO
default value is MD5.

— smmp_auth_priv_protocol : The Privacy protocol. The valid values are AES and DES.
The iLO default value is DES.

The inspection process will discover the following essential properties (properties required for scheduling
deployment):

* memory_mb: memory size
* cpus: number of cpus
* cpu_arch: cpu architecture
¢ local_gb: disk size
Inspection can also discover the following extra capabilities for iLO driver:
* ilo_firmware_version: iLO firmware version

e rom_firmware_version: ROM firmware version

4.1. Drivers, Hardware Types and Hardware Interfaces 185

https://h20566.www2.hpe.com/hpsc/doc/public/display?docId=c03334051

Ironic Documentation, Release 21.1.2.dev10

secure_boot: secure boot is supported or not. The possible values are true or false. The value is
returned as true if secure boot is supported by the server.

server_model: server model

pci_gpu_devices: number of gpu devices connected to the bare metal.
nic_capacity: the max speed of the embedded NIC adapter.
sriov_enabled: true, if server has the SRIOV supporting NIC.
has_rotational: true, if server has HDD disk.

has_ssd: true, if server has SSD disk.

has_nvme_ssd: true, if server has NVME SSD disk.

cpu_vt: true, if server supports cpu virtualization.
hardware_supports_raid: true, if RAID can be configured on the server using RAID controller.
nvdimm_n: true, if server has NVDIMM_N type of persistent memory.
persistent_memory: true, if server has persistent memory.
logical_nvdimm_n: true, if server has logical NVDIMM_N configured.

rotational_drive_<speed>_rpm: The capabilities rotational_drive_4800_rpm,
rotational_drive_5400_rpm, rotational_drive_7200_rpm,
rotational_drive_10000_rpm and rotational_drive_15000_rpm are set to true if
the server has HDD drives with speed of 4800, 5400, 7200, 10000 and 15000 rpm respectively.

logical_raid_level_<raid_level>: The capabilities logical_raid_level_0,
logical_raid_level_1, logical_raid_level_2, logical_raid_level_ 5,
logical_raid_level_6, logical_raid_level_10, 1logical_raid_level 50 and
logical_raid_level 60 are set to true if any of the raid levels among O, 1, 2, 5, 6, 10,
50 and 60 are configured on the system.

overall_security_status: Ok or Risk or Ignored as returned by iLO security dashboard.
iLO computes the overall security status by evaluating the security status for each of the security
parameters. Admin needs to fix the actual parameters and then re-inspect so that iLO can recompute
the overall security status. If the all security params, whose security_status is Risk, have the
Ignore field set to True, then iLO sets the overall security status value as Ignored. All the
security params must have the security_status as Ok for the overall_security_status to
have the value as Ok.

last_firmware_scan_status: Ok or Risk as returned by iLO security dashboard. This denotes
security status of the last firmware scan done on the system. If it is Risk, the recommendation
is to run clean_step update_firmware_sum without any specific firmware components so that
firmware is updated for all the components using latest SPP (Service Provider Pack) ISO and then
re-inspect to get the security status again.

security_override_switch: Ok or Risk as returned by iL.O security dashboard. This is dis-
able/enable login to the iLO using credentials. This can be toggled only by physical visit to the
bare metal.

gpu_<vendor>_count: Integer value. The capability name is dynamically formed as
gpu_<vendor>_count. The vendor name is replaced in the <vendor>. If the vendor name is not
returned by the hardware, then vendor ID in hexadecimal form is replaced in the capability name.
Examples: {gpu_Nvidia_count: 1}, {gpu_0x102b_count: 1}.

186

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

* gpu_<vendor_device_name>_count: Integer value. The capability name is formed dynami-
cally by replacing the gpu device name as returned by ilo in <vendor_device_name>. Examples:
{gpu_Nvidia_Tesla_M10_count: 1}, {gpu_Embedded_Video_Controller_count: 1}

* gpu_<vendor_device_name>: Boolean. The capability name is formed dynamically by
replacing the gpu device name as returned by ilo in <vendor_device_name>. Examples:
{gpu_Nvidia_Tesla_M10: True}, {gpu_Embedded_Video_Controller: True}

Note:

— The capability nic_capacity can only be discovered if ipmitool version >= 1.8.15 is used

on the conductor. The latest version can be downloaded from here.
The iLO firmware version needs to be 2.10 or above for nic_capacity to be discovered.

To discover IPMI based attributes you need to enable iLO feature IPMI/DCMI over LAN
Access on iLO4 and iLO5 management engine.

The proliantutils returns only active NICs for Gen10 ProLiant HPE servers. The user would
need to delete the ironic ports corresponding to inactive NICs for Gen8 and Gen9 servers
as proliantutils returns all the discovered (active and otherwise) NICs for Gen8 and Gen9
servers and ironic ports are created for all of them. Inspection logs a warning if the node
under inspection is Gen8 or Gen9.

The security dashboard capabilities are applicable only for Gen10 ProLiant HPE servers and
above. To fix the security dashboard parameters value from Risk to Ok, user need to fix the
parameters separately and re-inspect to see the security status of the parameters.

The operator can specify these capabilities in nova flavor for node to be selected for scheduling:

See Capabilities discovery for more details and examples.

4.1,

Drivers, Hardware Types and Hardware Interfaces 187

https://sourceforge.net/projects/ipmitool/
https://support.hpe.com/hpsc/doc/public/display?docId=c03334051
https://support.hpe.com/hpsc/doc/public/display?docId=a00018324en_us

Ironic Documentation, Release 21.1.2.dev10

Swiftless deploy for intermediate images

The hardware type ilo with ilo-virtual-media as boot interface can deploy and boot the server with
and without swift being used for hosting the intermediate temporary floppy image (holding metadata
for deploy kernel and ramdisk) and the boot ISO. A local HTTP(S) web server on each conductor node
needs to be configured. Please refer to Web server configuration on conductor for more information.
The HTTPS web server needs to be enabled (instead of HTTP web server) in order to send management
information and images in encrypted channel over HTTPS.

Note: This feature assumes that the user inputs are on Glance which uses swift as backend. If swift
dependency has to be eliminated, please refer to HTTP(S) Based Deploy Support also.

Deploy Process

Please refer to Swiftless deploy for intermediate images.

HTTP(S) Based Deploy Support

The user input for the images given in driver_info like deploy_iso, deploy_kernel and
deploy_ramdisk and in instance_info like image_source, kernel, ramdisk and boot_iso may
also be given as HTTP(S) URLs.

The HTTP(S) web server can be configured in many ways. For the Apache web server on Ubuntu, refer
here. The web server may reside on a different system than the conductor nodes, but its URL must be
reachable by the conductor and the bare metal nodes.

Deploy Process

Please refer to HTTP(S) based deploy.

Support for iLO driver with Standalone Ironic

It is possible to use ironic as standalone services without other OpenStack services. The ilo hardware
type can be used in standalone ironic. This feature is referred to as iLO driver with standalone
ironic in this document.

Configuration

The HTTP(S) web server needs to be configured as described in HTTP(S) Based Deploy Support and Web
server configuration on conductor needs to be configured for hosting intermediate images on conductor
as described in Swiftless deploy for intermediate images.

188 Chapter 4. Administrator Guide

https://help.ubuntu.com/lts/serverguide/httpd.html

Ironic Documentation, Release 21.1.2.dev10

Deploy Process

Glance and swift for partition images

-Puw!rs BEE the node

Downloads deploy 1S0

de
t
e metal
t

Retieves the user inage o ba

virtual media COBOM

|
““““““““““““““““““ S T o OO SN B K A

i

bE g

: g m g)

; R k 3

- o £ g B¢ El H LR
$ 2 LR IE 1K Lk
1% HEEIEEIRIE I | HEIF
ik 2| 88 AR 3 |8 HRIE
H H H M
i, HHEEIEIER e ek

189

Drivers, Hardware Types and Hardware Interfaces

4.1,

Ironic Documentation, Release 21.1.2.dev10

Glance and swift with whole-disk images

-Puw!rs BEE the node

Downloads deploy 1S0

Writes user image
to disk

ba

image on

Retieves the user

£

inage

Boots deploy kemel/vandisk from SLe viptual medis COROM

Boot user
om disk.

Attaches the deploy 150 swift bempURL ak virtual media COROM

H
i £ s
; : | 3
- : 3 3 H K
v || 223 iis e LI AR IR
F g2 HEE! gl 2 H § HEIR]
¥ 238, | B3 3|3 H i
' ER BN M 1K H 2 HE
E-I- ;cnn mum £l o 2 - 2| °
2 Begt il HE H 248
POl TEEs | 1E|EE, il IR R

Swiftless deploy

[conductorvebser

Barenetal

ToRERTEL the node

3
j
H
i
UEE
g |3 H
i
§
3
:
3
:
i i s
HEE. !
] iy
4 23
.MW H is
H
il f g
I g
rHE ‘ :
B B Flalale . $ H
5[] ein (8] 1Rk
(RS PR HEE HHE
L] IR EEREEIR IR IR IS i | HEIN

Chapter 4. Administrator Guide

190

Ironic Documentation, Release 21.1.2.dev10

HTTP(S) based deploy

TOWEVESEE the node

Bownloads deploy 150

writes user image
to aisk

Boots deploy kernel/ramdisk from iLe virtual media comm
Retrieves the user inage om bare metal

Boot user image £r

Attaches the deploy ISO URL as virtusl hedia COROM

Sets one time boot to COREN

Creates the EATIZ
image containing i
Uploads the FATS2 image
mpURE, for FAT32 im
Beboot the node

erovides node UVID

Sets boot device o disk
Power off the nede

Ironic

Standalone

Downloads deploy 1S0

writes user image
to disk

ilrtual media coRON

Retieved the user inage o bare metal

Boots deploy kerel ramdisk from Lo v

media Eloppy
adia cOROM
Boot user inagye £r

™

Attaches the FAT3Z image WNL as virtual

Sets one time boot to CORIN

Creates the FATSZ
Uploads the FAT32 image
Generates URL for

Reboot the mode

Erovides node UUID

Sets boot device to disk
Power off the nede

Power ow the node

EAT32 image

191

4.1. Drivers, Hardware Types and Hardware Interfaces

Ironic Documentation, Release 21.1.2.dev10

Activating iLO Advanced license as manual clean step

iLO driver can activate the iLO Advanced license key as a manual cleaning step. Any manual cleaning
step can only be initiated when a node is in the manageable state. Once the manual cleaning is finished,
the node will be put in the manageable state again. User can follow steps from Manual cleaning to
initiate manual cleaning operation on a node.

An example of a manual clean step with activate_license as the only clean step could be:

The different attributes of activate_license clean step are as follows:

Attribute Description

interface Interface of clean step, here management

step Name of clean step, here activate_license

args Keyword-argument entry (<name>: <value>) being passed to clean step
args. iLO Advanced license key to activate enterprise features. This is mandatory.
ilo_license_key

Removing CA certificates from iLO as manual clean step

iLO driver can remove the invalidated CA certificates as a manual step. Any manual cleaning step can
only be initiated when a node is in the manageable state. Once the manual cleaning is finished, the
node will be put in the manageable state again. User can follow steps from Manual cleaning to initiate
manual cleaning operation on a node.

An example of a manual clean step with clear_ca_certificates as the only clean step could be:

The different attributes of clear_ca_certificates clean step are as follows:

192 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Attribute Description

interface Interface of clean step, here management

step Name of clean step, here clear_ca_certificates

args Keyword-argument entry (<name>: <value>) being passed to clean step
args. List of CA certificates which are to be removed.

certificate_files
This is manda-
tory.

Initiating firmware update as manual clean step

iLO driver can invoke secure firmware update as a manual cleaning step. Any manual cleaning step can
only be initiated when a node is in the manageable state. Once the manual cleaning is finished, the node
will be put in the manageable state again. A user can follow steps from Manual cleaning to initiate

manual cleaning operation on a node.

An example of a manual clean step with update_firmware as the only clean step could be:

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces 193

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

The different attributes of update_firmware clean step are as follows:

Attribute Description

interface Interface of clean step, here management

step Name of clean step, here update_firmware

args Keyword-argument entry (<name>: <value>) being passed to clean step

args. Mode (or mechanism) of out-of-band firmware update. Supported value is ilo.
firmware_update_Tibides mandatory.

args. Ordered list of dictionaries of images to be flashed. This is mandatory.
firmware_images

Each firmware image block is represented by a dictionary (JSON), in the form:

All the fields in the firmware image block are mandatory.

* The different types of firmware url schemes supported are: file, http, https and swift.

Note: This feature assumes that while using file url scheme the file path is on the conductor
controlling the node.

Note: The swift url scheme assumes the swift account of the service project. The service
project (tenant) is a special project created in the Keystone system designed for the use of the
core OpenStack services. When Ironic makes use of Swift for storage purpose, the account is
generally service and the container is generally ironic and ilo driver uses a container named
ironic_ilo_container for their own purpose.

Note: While using firmware files with a .rpm extension, make sure the commands rpm2cpio
and cpio are present on the conductor, as they are utilized to extract the firmware image from the
package.

The firmware components that can be updated are: ilo, cpld, power_pic, bios and chassis.

The firmware images will be updated in the order given by the operator. If there is any error during
processing of any of the given firmware images provided in the list, none of the firmware updates

194

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

will occur. The processing error could happen during image download, image checksum verifica-
tion or image extraction. The logic is to process each of the firmware files and update them on the
devices only if all the files are processed successfully. If, during the update (uploading and flash-
ing) process, an update fails, then the remaining updates, if any, in the list will be aborted. But it is
recommended to triage and fix the failure and re-attempt the manual clean step update_firmware
for the aborted firmware_images.

The devices for which the firmwares have been updated successfully would start functioning using
their newly updated firmware.

* As a troubleshooting guidance on the complete process, check Ironic conductor logs carefully to
see if there are any firmware processing or update related errors which may help in root causing
or gain an understanding of where things were left off or where things failed. You can then fix
or work around and then try again. A common cause of update failure is HPE Secure Digital
Signature check failure for the firmware image file.

* To compute md5 checksum for your image file, you can use the following command:

$ md5sum image.rpm
66cdb090c80b71daa21a67f06ecd3£33 image.rpm

Smart Update Manager (SUM) based firmware update

The firmware update based on SUM is an inband clean/deploy step supported by iLO driver. The firmware
update is performed on all or list of user specified firmware components on the node. Refer to SUM User
Guide to get more information on SUM based firmware update.

Note: update_firmware_sum clean step requires the agent ramdisk with Proliant Hardware
Manager from the proliantutils version 2.5.0 or higher. See DIB support for Proliant Hardware Manager
to create the agent ramdisk with Proliant Hardware Manager.

Note: flash_firmware_sum deploy step requires the agent ramdisk with Proliant Hardware
Manager from the proliantutils version 2.9.5 or higher. See DIB support for Proliant Hardware Manager
to create the agent ramdisk with Proliant Hardware Manager.

The attributes of update_firmware_sum/flash_firmware_sum step are as follows:

Attribute Description

interface Interface of the clean step, here management

step Name of the clean step, here update_firmware_sum

args Keyword-argument entry (<name>: <value>) being passed to the clean step

The keyword arguments used for the step are as follows:

* url: URL of SPP (Service Pack for Proliant) ISO. It is mandatory. The URL schemes supported
are http, https and swift.

* checksum: MD5 checksum of SPP ISO to verify the image. It is mandatory.

4.1. Drivers, Hardware Types and Hardware Interfaces 195

https://h17007.www1.hpe.com/us/en/enterprise/servers/products/service_pack/hpsum/index.aspx
https://h20565.www2.hpe.com/hpsc/doc/public/display?docId=c05210448
https://h20565.www2.hpe.com/hpsc/doc/public/display?docId=c05210448

Ironic Documentation, Release 21.1.2.dev10

» components: List of filenames of the firmware components to be flashed. It is optional. If not
provided, the firmware update is performed on all the firmware components.

The step performs an update on all or a list of firmware components and returns the SUM log files.
The log files include hpsum_log. txt and hpsum_detail_log. txt which holds the information about
firmware components, firmware version for each component and their update status. The log object will
be named with the following pattern:

Refer to Retrieving logs from the deploy ramdisk for more information on enabling and viewing the logs
returned from the ramdisk.

An example of update_firmware_sum clean step:

The step fails if there is any error in the processing of step arguments. The processing error could happen
during validation of components file extension, image download, image checksum verification or image
extraction. In case of a failure, check Ironic conductor logs carefully to see if there are any validation or
firmware processing related errors which may help in root cause analysis or gaining an understanding of
where things were left off or where things failed. You can then fix or work around and then try again.

Warning: This feature is officially supported only with RHEL and SUSE based IPA ramdisk. Refer
to SUM for supported OS versions for specific SUM version.

Note: Refer Guidelines for SPP ISO for steps to get SPP (Service Pack for ProLiant) ISO.

196 Chapter 4. Administrator Guide

https://h17007.www1.hpe.com/us/en/enterprise/servers/products/service_pack/hpsum/index.aspx
https://h17007.www1.hpe.com/us/en/enterprise/servers/products/service_pack/spp

Ironic Documentation, Release 21.1.2.dev10

Updating security parameters as manual clean step

iLO driver can invoke security parameters update as a manual clean step. Any manual cleaning step can
only be initiated when a node is in the manageable state. Once the manual cleaning is finished, the node
will be put in the manageable state again. A user can follow steps from Manual cleaning to initiate
manual cleaning operation on a node. This feature is only supported for iLO5 based hardware.

An example of a manual clean step with security_parameters_update as the only clean step could
be:

The different attributes of security_parameters_update clean step are as follows:

4.1. Drivers, Hardware Types and Hardware Interfaces 197

Ironic Documentation, Release 21.1.2.dev10

Attribute Description

interface Interface of clean step, here management

step Name of clean step, here security_parameters_update

args Keyword-argument entry (<name>: <value>) being passed to clean step

args. Ordered list of dictionaries of security parameters to be updated. This is manda-
security_parametery

Each security parameter block is represented by a dictionary (JSON), in the form:

In all of these fields, param field is mandatory. Remaining fields are boolean and are optional. If user
doesnt pass any value then for enable field the default will be True and for ignore field default will be
False.

* The Security Parameters which are supported for this clean step are: Password_Complexity,
RequiredLoginForiLORBSU, RequireHostAuthentication, IPMI/DCMI_Over_LAN and
Secure_Boot.

Update Minimum Password Length security parameter as manual clean step

iLO driver can invoke Minimum Password Length security parameter update as a manual clean step.
This feature is only supported for iLOS5 based hardware.

An example of a manual clean step with update_minimum_password_length as the only clean step
could be:

Both the arguments password_length and ignore are optional. The accepted values for pass-
word_length are 0 to 39. If user doesnt pass any value, the default value for password_length will be
8 and for ignore the default value be False.

198 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Update Authentication Failure Logging security parameter as manual clean step

iLO driver can invoke Authentication Failure Logging security parameter update as a manual
clean step. This feature is only supported for iLOS5 based hardware.

An example of a manual clean step with Authentication Failure Logging as the only clean step
could be:

Both the arguments logging_threshold and ignore are optional. The accepted values for log-
ging_threshold are 0 to 5. If user doesnt pass any value, the default value for logging_threshold will
be 1 and for ignore the default value be False. If user passes the value of logging_threshold as 0, the
Authentication Failure Logging security parameter will be disabled.

Create Certificate Signing Request(CSR) as manual clean step

iLO driver can invoke create_csr request as a manual clean step. This step is only supported for iLOS
based hardware.

An example of a manual clean step with create_csr as the only clean step could be:

The [ilo]cert_path option in ironic.conf is used as the directory path for creating the CSR,
which defaults to /var/lib/ironic/ilo. The CSR is created in the directory location given in
[ilo]cert_path in node_uuid directory as <node_uuid>.csr.

4.1. Drivers, Hardware Types and Hardware Interfaces 199

Ironic Documentation, Release 21.1.2.dev10

Add HTTPS Certificate as manual clean step

iLO driver can invoke add_https_certificate request as a manual clean step. This step is only
supported for iLOS5 based hardware.

An example of a manual clean step with add_https_certificate as the only clean step could be:

Argument cert_file is mandatory. The cert_file takes the path or url of the certificate file. The url
schemes supported are: file, http and https. The CSR generated in step create_csr needs to be
signed by a valid CA and the resultant HTTPS certificate should be provided in cert_file. It copies
the cert_file to [ilo]cert_path under node.uuid as <node_uuid>.crt before adding it to iLO.

RAID Support

The inband RAID functionality is supported by iLO driver. See RAID Configuration for more infor-
mation. Bare Metal service update node with following information after successful configuration of
RAID:

¢ Node properties/local_gb is set to the size of root volume.

* Node properties/root_device is filled with wwn details of root volume. It is used by iLO
driver as root device hint during provisioning.

e The value of raid level of root volume is added as raid_level capability to the nodes
capabilities parameter within properties field. The operator can specify the raid_level
capability in nova flavor for node to be selected for scheduling:

DIB support for Proliant Hardware Manager

Install ironic-python-agent-builder following the guide'

To create an agent ramdisk with Proliant Hardware Manager, use the proliant-tools elementin
DIB:

U ironic-python-agent-builder: https://docs.openstack.org/ironic-python-agent-builder/latest/install/index.html

200 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-python-agent-builder/latest/install/index.html

Ironic Documentation, Release 21.1.2.dev10

Disk Erase Support

erase_devices is an inband clean step supported by iLO driver. It performs erase on all the disks
including the disks visible to OS as well as the raw disks visible to the Smart Storage Administrator
(SSA).

This inband clean step requires ssacli utility starting from version 2.60-19.0 to perform the erase on
physical disks. See the ssacli documentation for more information on ssacli utility and different erase
methods supported by SSA.

The disk erasure via shred is used to erase disks visible to the OS and its implementation is available in
Ironic Python Agent. The raw disks connected to the Smart Storage Controller are erased using Sanitize
erase which is a ssacli supported erase method. If Sanitize erase is not supported on the Smart Storage
Controller the disks are erased using One-pass erase (overwrite with zeros).

This clean step is supported when the agent ramdisk contains the Proliant Hardware Manager from
the proliantutils version 2.3.0 or higher. This clean step is performed as part of automated cleaning and
it is disabled by default. See /n-band vs out-of-band for more information on enabling/disabling a clean
step.

Install ironic-python-agent-builder following the guide”ec200: !

To create an agent ramdisk with Proliant Hardware Manager, use the proliant-tools elementin
DIB:

See the proliant-tools for more information on creating agent ramdisk with proliant-tools element
in DIB.

Firmware based UEFI iSCSI boot from volume support

With Gen9 (UEFI firmware version 1.40 or higher) and Gen10 HPE Proliant servers, the driver supports
firmware based UEFI boot of an iSCSI cinder volume.

This feature requires the node to be configured to boot in UEFI boot mode, as well as user image should be
UEFI bootable image, and PortFast needs to be enabled in switch configuration for immediate spanning
tree forwarding state so it wouldnt take much time setting the iSCSI target as persistent device.

The driver does not support this functionality when in bios boot mode. In case the node is configured
with ilo-pxe or ilo-ipxe as boot interface and the boot mode configured on the bare metal is bios,
the iscsi boot from volume is performed using iPXE. See Boot From Volume for more details.

To use this feature, configure the boot mode of the bare metal to uefi and configure the corresponding
ironic node using the steps given in Boot From Volume. In a cloud environment with nodes configured
to boot from bios and uefi boot modes, the virtual media driver only supports uefi boot mode, and that
attempting to use iscsi boot at the same time with a bios volume will result in an error.

4.1. Drivers, Hardware Types and Hardware Interfaces 201

https://support.hpe.com/hpsc/doc/public/display?docId=c03909334
https://docs.openstack.org/diskimage-builder/latest/elements/proliant-tools/README.html

Ironic Documentation, Release 21.1.2.dev10

BIOS configuration support

The ilo and ilo5 hardware types support ilo BIOS interface. The support includes providing manual
clean steps apply_configuration and factory_reset to manage supported BIOS settings on the node. See

BIOS

Configuration for more details and examples.

Note:

Prior to the Stein release the user is required to reboot the node manually in order for the settings

to take into effect. Starting with the Stein release, iLO drivers reboot the node after running clean steps
related to the BIOS configuration. The BIOS settings are cached and the clean step is marked as success
only if all the requested settings are applied without any failure. If application of any of the settings fails,
the clean step is marked as failed and the settings are not cached.

Configuration

Following are the supported BIOS settings and the corresponding brief description for each of the set-

tings.

For a detailed description please refer to HPE Integrated Lights-Out REST API Documentation.

AdvancedMemProtection: Configure additional memory protection with ECC (Error Check-
ing and Correcting). Allowed values are AdvancedEcc, OnlineSpareAdvancedEcc,
MirroredAdvancedEcc.

AutoPowerOn: Configure the server to automatically power on when AC power is applied to the
system. Allowed values are AlwaysPowerOn, AlwaysPowerOff, RestorelLastState.

BootMode: Select the boot mode of the system. Allowed values are Uefi, LegacyBios

BootOrderPolicy: Configure how the system attempts to boot devices per the Boot Order
when no bootable device is found. Allowed values are RetryIndefinitely, AttemptOnce,
ResetAfterFailed.

CollabPowerControl: Enables the Operating System to request processor frequency changes
even if the Power Regulator option on the server configured for Dynamic Power Savings Mode.
Allowed values are Enabled, Disabled.

DynamicPowerCapping: Configure when the System ROM executes power calibration during the
boot process. Allowed values are Enabled, Disabled, Auto.

DynamicPowerResponse: Enable the System BIOS to control processor performance and power
states depending on the processor workload. Allowed values are Fast, Slow.

IntelligentProvisioning: Enable or disable the Intelligent Provisioning functionality. Al-
lowed values are Enabled, Disabled.

IntelPerflMonitoring: Exposes certain chipset devices that can be used with the Intel Perfor-
mance Monitoring Toolkit. Allowed values are Enabled, Disabled.

IntelProcVtd: Hypervisor or operating system supporting this option can use hardware capabil-
ities provided by Intels Virtualization Technology for Directed I/O. Allowed values are Enabled,
Disabled.

IntelQpiFreq: Set the QPI Link frequency to a lower speed. Allowed values are Auto,
MinQpiSpeed.

IntelTxt: Option to modify Intel TXT support. Allowed values are Enabled, Disabled.

202

Chapter 4. Administrator Guide

https://hewlettpackard.github.io/ilo-rest-api-docs

Ironic Documentation, Release 21.1.2.dev10

PowerProfile: Set the power profile to be used. Allowed values are BalancedPowerPerf,
MinPower, MaxPerf, Custom.

PowerRegulator: Determines how to regulate the power consumption. Allowed values are
DynamicPowerSavings, StaticLowPower, StaticHighPerf, OsControl.

ProcAes: Enable or disable the Advanced Encryption Standard Instruction Set (AES-NI) in the
processor. Allowed values are Enabled, Disabled.

ProcCoreDisable: Disable processor cores using Intels Core Multi-Processing (CMP) Technol-
ogy. Allowed values are Integers ranging from 0 to 24.

ProcHyperthreading: Enable or disable Intel Hyperthreading. Allowed values are Enabled,
Disabled.

ProcNoExecute: Protect your system against malicious code and viruses. Allowed values are
Enabled, Disabled.

ProcTurbo: Enables the processor to transition to a higher frequency than the processors rated
speed using Turbo Boost Technology if the processor has available power and is within temperature
specifications. Allowed values are Enabled, Disabled.

ProcVirtualization: Enables or Disables a hypervisor or operating system supporting this
option to use hardware capabilities provided by Intels Virtualization Technology. Allowed values
are Enabled, Disabled.

SecureBootStatus: The current state of Secure Boot configuration. Allowed values are
Enabled, Disabled.

Note: This setting is read-only and cant be modified with apply_configuration clean step.

Sriov: If enabled, SR-IOV support enables a hypervisor to create virtual instances of a PCI-
express device, potentially increasing performance. If enabled, the BIOS allocates additional re-
sources to PCI-express devices. Allowed values are Enabled, Disabled.

ThermalConfig: select the fan cooling solution for the system. Allowed values are
OptimalCooling, IncreasedCooling, MaxCooling

ThermalShutdown: Control the reaction of the system to caution level thermal events. Allowed
values are Enabled, Disabled.

TpmState: Current TPM device state. Allowed values are NotPresent, PresentDisabled,
PresentEnabled.

Note: This setting is read-only and cant be modified with apply_configuration clean step.

TpmType: Current TPM device type. Allowed values are NoTpm, Tpm12, Tpm20, Tm10.

Note: This setting is read-only and cant be modified with apply_configuration clean step.

UefiOptimizedBoot: Enables or Disables the System BIOS boot using native UEFI graphics
drivers. Allowed values are Enabled, Disabled.

4.1,

Drivers, Hardware Types and Hardware Interfaces 203

Ironic Documentation, Release 21.1.2.dev10

* WorkloadProfile: Change the Workload Profile to accomodate your desired workload. Al-
lowed values are GeneralPowerEfficientCompute, GeneralPeakFrequencyCompute,
General ThroughputCompute, Virtualization-PowerEfficient,
Virtualization-MaxPerformance, LowLatency, MissionCritical,
TransactionalApplicationProcessing, HighPerformanceCompute, DecisionSupport,
GraphicProcessing, I/0Throughput, Custom

Note: This setting is only applicable to ProLiant Gen10 servers with iLO 5 management systems.

Certificate based validation in iLO

The driver supports validation of certificates on the HPE Proliant servers. The path to certificate file
needs to be appropriately set in ca_file in the nodes driver_info. To update SSL certificates into
iLO, refer to HPE Integrated Lights-Out Security Technology Brief. Use iLO hostname or IP address
as a Common Name (CN) while generating Certificate Signing Request (CSR). Use the same value as
ilo_address while enrolling node to Bare Metal service to avoid SSL certificate validation errors related
to hostname mismatch.

Rescue mode support

The hardware type ilo supports rescue functionality. Rescue operation can be used to boot nodes into a
rescue ramdisk so that the rescue user can access the node.

Please refer to Rescue Mode for detailed explanation of rescue feature.

Inject NMI support

The management interface ilo supports injection of non-maskable interrupt (NMI) to a bare metal.
Following command can be used to inject NMI on a server:

Following command can be used to inject NMI via Compute service:

Note: This feature is supported on HPE ProLiant Gen9 servers and beyond.

204 Chapter 4. Administrator Guide

http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c04530504

Ironic Documentation, Release 21.1.2.dev10

Soft power operation support

The power interface ilo supports soft power off and soft reboot operations on a bare metal. Following
commands can be used to perform soft power operations on a server:

Note: The configuration [conductor]soft_power_off_ timeout is used as a default timeout value
when no timeout is provided while invoking hard or soft power operations.

Note: Server POST state is used to track the power status of HPE ProLiant Gen9 servers and beyond.

Out of Band RAID Support

With Gen10 HPE Proliant servers and later the ilo5 hardware type supports firmware based RAID
configuration as a clean step. This feature requires the node to be configured to i1o5 hardware type and
its raid interface to be i1o5. See RAID Configuration for more information.

After a successful RAID configuration, the Bare Metal service will update the node with the following
information:

* Node properties/local_gb is set to the size of root volume.

* Node properties/root_device is filled with wwn details of root volume. It is used by iLO
driver as root device hint during provisioning.

Later the value of raid level of root volume can be added in baremetal-with-RAID1® (RAIDI1O for
raid level 10) resource class. And consequently flavor needs to be updated to request the resource class
to create the server using selected node:

Note: Supported raid levels for ilo5 hardware type are: 0, 1, 5, 6, 10, 50, 60

4.1. Drivers, Hardware Types and Hardware Interfaces 205

Ironic Documentation, Release 21.1.2.dev10

IPv6 support

With the IPv6 support in proliantutils>=2.8.0, nodes can be enrolled into the baremetal service
using the iLO IPv6 addresses.

Note: No configuration changes (in e.g. ironic.conf) are required in order to support IPv6.

Out of Band Sanitize Disk Erase Support

With Gen10 HPE Proliant servers and later the 1105 hardware type supports firmware based sanitize
disk erase as a clean step. This feature requires the node to be configured to 1105 hardware type and its
management interface to be i105.

The possible erase pattern its supports are:
* For HDD - overwrite, zero, crypto
* For SSD - block, zero, crypto

The default erase pattern are, for HDD, overwrite and for SSD, block.

Note: In average 300GB HDD with default pattern overwrite would take approx. 9 hours and 300GB
SSD with default pattern block would take approx. 30 seconds to complete the erase.

Out of Band One Button Secure Erase Support

With Gen10 HPE Proliant servers which have been updated with SPP version 2019.03.0 or later the 1105
hardware type supports firmware based one button secure erase as a clean step.

The One Button Secure Erase resets iLO and deletes all licenses stored there, resets BIOS settings, and
deletes all Active Health System (AHS) and warranty data stored on the system. It also erases supported
non-volatile storage data and deletes any deployment settings profiles. See HPE Gen10 Security Refer-
ence Guide for more information.

Below are the steps to perform this clean step:

* Perform the cleaning using one_button_secure_erase clean step

* Once the clean step would triggered and node go to clean wait state and maintenance flag on node
would be set to True, then delete the node

206 Chapter 4. Administrator Guide

https://support.hpe.com/hpesc/public/docDisplay?docLocale=en_US&docId=a00018320en_us
https://support.hpe.com/hpesc/public/docDisplay?docLocale=en_US&docId=a00018320en_us

Ironic Documentation, Release 21.1.2.dev10

Note:
» Even after deleting the node, One Button Secure Erase operation would continue on the node.

* This clean step should be kept last if the multiple clean steps are to be executed. No clean step
after this step would be executed.

* One Button Secure Erase should be used with extreme caution, and only when a system is being
decommissioned. During the erase the iLO network would keep disconnecting and after the erase
user will completely lose iLO access along with the credentials of the server, which needs to be
regained by the administrator. The process can take up to a day or two to fully erase and reset all
user data.

* When you activate One Button Secure Erase, iLO 5 does not allow firmware update or reset oper-
ations.

Note: Do not perform any iLO 5 configuration changes until this process is completed.

UEFI-HTTPS Boot support

The UEFI firmware on Gen10 HPE Proliant servers supports booting from secured URLs. With this
capability 1105 hardware with ilo-uefi-https boot interface supports deploy/rescue features in more
secured environments.

If swift is used as glance backend and ironic is configured to use swift to store temporary images, it is
required that swift is configured on HTTPS so that the tempurl generated is HTTPS URL.

If the webserver is used for hosting the temporary images, then the webserver is required to serve requests
on HTTPS.

If the images are hosted on a HTTPS webserver or swift configured with HTTPS with custom certificates,
the user is required to export SSL certificates into iLO. Refer to HPE Integrated Lights-Out Security
Technology Brief for more information.

The following command can be used to enroll a ProLiant node with ilo5 hardware type and
ilo-uefi-https boot interface:

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces 207

http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c04530504
http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c04530504

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Layer 3 or DHCP-less ramdisk booting

DHCP-less deploy is supported by ilo and ilo5 hardware types. However it would work only with
ilo-virtual-media boot interface. See Layer 3 or DHCP-less ramdisk booting for more information.

Events subscription

Events subscription is supported by ilo and ilo5 hardware types with ilo vendor interface for Gen10
and Gen10 Plus servers. See Node Vendor Passthru Methods for more information.

Intel IPMI driver

Overview

The intel-ipmi hardware type is same as the /PMI driver hardware type except for the support of Intel
Speed Select Performance Profile (Intel SST-PP) feature. Intel SST-PP allows a server to run different
workloads by configuring the CPU to run at 3 distinct operating points or profiles.

Intel SST-PP supports three configuration levels:
* 0 - Intel SST-PP Base Config
* 1 - Intel SST-PP Config 1
* 2 - Intel SST-PP Config 2

The following table shows the list of active cores and their base frequency at different SST-PP config
levels:

Config | Cores | Base Freq (GHz)
Base 24 2.4
Config1 | 20 2.5
Config2 | 16 2.7

This configuration is managed by the management interface intel-ipmitool for IntelIPMI hardware.

IntelIPMI manages nodes by using IPMI (Intelligent Platform Management Interface) protocol versions
2.0 or 1.5. It uses the [PMItool utility which is an open-source command-line interface (CLI) for con-
trolling IPMI-enabled devices.

208 Chapter 4. Administrator Guide

https://www.intel.com/content/www/us/en/architecture-and-technology/speed-select-technology-article.html
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://sourceforge.net/projects/ipmitool/

Ironic Documentation, Release 21.1.2.dev10

Glossary

* [PMI - Intelligent Platform Management Interface.
* Intel SST-PP - Intel Speed Select Performance Profile.

Enabling the IntellPMI hardware type

Please see Configuring IPMI support for the required dependencies.

1. To enable intel-ipmi hardware, add the following configuration to your ironic.conf:

2. Restart the Ironic conductor service:

Registering a node with the IntellPMI driver

Nodes configured to use the Intel[PMI drivers should have the driver field set to intel-ipmi.

All the configuration value required for IntelIPMI is the same as the IPMI hardware type except the
management interface which is intel-ipmitool. Refer /PMI driver for details.

The baremetal node create command can be used to enroll a node with an IntelIPMI driver. For
example:

Features of the intel-ipmi hardware type
Intel SST-PP

A node with Intel SST-PP can be configured to use it via configure_intel_speedselect deploy step.
This deploy accepts:

* intel_speedselect_config: Hexadecimal code of Intel SST-PP configuration. Accepted val-
ues are 0x00, 0x01, 0x02. These values correspond to Intel SST-PP Config Base, Intel SST-PP
Config 1, Intel SST-PP Config 2 respectively. The input value must be a string.

* socket_count: Number of sockets in the node. The input value must be a positive integer (1 by
default).

4.1. Drivers, Hardware Types and Hardware Interfaces 209

Ironic Documentation, Release 21.1.2.dev10

The deploy step issues an IPMI command with the raw code for each socket in the node to set the requested
configuration. A reboot is required to reflect the changes.

Each configuration profile is mapped to traits that Ironic understands. Please note that these names are
used for example purpose only. Any name can be used. Only the parameter value should match the
deploy step configure_intel_speedselect.

* 0 - CUSTOM_INTEL_SPEED_SELECT_CONFIG_BASE
* 1 - CUSTOM_INTEL_SPEED_SELECT_CONFIG_1
e 2 - CUSTOM_INTEL_SPEED_SELECT_CONFIG_2

Now to configure a node with Intel SST-PP while provisioning, create deploy templates for each profiles
in Ironic.

All Intel SST-PP capable nodes should have these traits associated.

To trigger the Intel SST-PP configuration during node provisioning, one of the traits can be added to the
flavor.

Finally create a server with baremetal flavor to provision a baremetal node with Intel SST-PP profile
Config 1.

210 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

IPMI driver

Overview

The ipmi hardware type manage nodes by using IPMI (Intelligent Platform Management Interface) pro-
tocol versions 2.0 or 1.5. It uses the IPMItool utility which is an open-source command-line interface
(CLI) for controlling IPMI-enabled devices.

Glossary

IPMI - Intelligent Platform Management Interface.

IPMB - Intelligent Platform Management Bus/Bridge.

BMC - Baseboard Management Controller.

RMCP - Remote Management Control Protocol.

Enabling the IPMI hardware type

Please see Configuring IPMI support for the required dependencies.

1. The ipmi hardware type is enabled by default starting with the Ocata release. To enable it explicitly,
add the following to your ironic.conf:

Optionally, enable the vendor passthru interface and either or both console interfaces:

2. Restart the Ironic conductor service.

Please see Enabling drivers and hardware types for more details.

4.1. Drivers, Hardware Types and Hardware Interfaces 211

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://sourceforge.net/projects/ipmitool/
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface#Baseboard_management_controller

Ironic Documentation, Release 21.1.2.dev10

Registering a node with the IPMI driver

Nodes configured to use the [PMItool drivers should have the driver field set to ipmi.
The following configuration value is required and has to be added to the nodes driver_info field:
e ipmi_address: The IP address or hostname of the BMC.

Other options may be needed to match the configuration of the BMC, the following options are optional,
but in most cases, its considered a good practice to have them set:

e ipmi_username: The username to access the BMC; defaults to NULL user.
* ipmi_password: The password to access the BMC; defaults to NULL.
e ipmi_port: The remote IPMI RMCP port. By default ipmitool will use the port 623.

Note: It is highly recommend that you setup a username and password for your BMC.

The baremetal node create command can be used to enroll a node with an IPMItool-based driver.
For example:

Advanced configuration

When a simple configuration such as providing the address, username and password is not enough,
the IPMItool driver contains many other options that can be used to address special usages.

Single/Double bridging functionality

Note: A version of IPMlItool higher or equal to 1.8.12 is required to use the bridging functionality.

There are two different bridging functionalities supported by the [IPMItool-based drivers: single bridge
and dual bridge.

The following configuration values need to be added to the nodes driver_info field so bridging can be
used:

* ipmi_bridging: The bridging type; default is no; other supported values are single for single
bridge or dual for double bridge.

e ipmi_local_address: The local IPMB address for bridged requests. Required only if
ipmi_bridging is set to single or dual. This configuration is optional, if not specified it
will be auto discovered by IPMItool.

e ipmi_target_address: The destination address for bridged requests. Required only if
ipmi_bridging is set to single or dual.

212 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

e ipmi_target_channel: The destination channel for bridged requests. Required only if
ipmi_bridging is set to single or dual.

Double bridge specific options:

e ipmi_transit_address: The transit address for bridged requests. Required only if
ipmi_bridging is set to dual.

e ipmi_transit_channel: The transit channel for bridged requests. Required only if
ipmi_bridging is set to dual.

The parameter ipmi_bridging should specify the type of bridging required: single or dual to access
the bare metal node. If the parameter is not specified, the default value will be set to no.

The baremetal node set command can be used to set the required bridging information to the Ironic
node enrolled with the IPMItool driver. For example:

* Single Bridging:

* Double Bridging:

~ =

Changing the version of the IPMI protocol

The IPMItool-based drivers works with the versions 2.0 and 1.5 of the IPMI protocol. By default, the
version 2.0 is used.

In order to change the IPMI protocol version in the bare metal node, the following option needs to be set
to the nodes driver_info field:

* ipmi_protocol_version: The version of the IPMI protocol; default is 2.0. Supported values
are 1.5 or 2.0.

The baremetal node set command can be used to set the desired protocol version:

Warning: Version /.5 of the IPMI protocol does not support encryption. Therefore, it is highly
recommended that version 2.0 is used.

4.1. Drivers, Hardware Types and Hardware Interfaces 213

Ironic Documentation, Release 21.1.2.dev10

Cipher suites

IPMI 2.0 introduces support for encryption and allows setting which cipher suite to use. Traditionally,
ipmitool was using cipher suite 3 by default, but since SHA1 no longer complies with modern security
requirement, recent versions (e.g. the one used in RHEL 8.2) are switching to suite 17.

Normally, the cipher suite to use is negotiated with the BMC using the special command. On some
hardware the negotiation yields incorrect results and IPMI commands fail with

Another possible problem is ipmitool commands taking very long (tens of seconds or even minutes)
because the BMC does not support cipher suite negotiation. In both cases you can specify the required
suite yourself, e.g.

In scenarios where the operator cant specify the ipmi_cipher_suite for each node, the configuration
parameter [ipmi]/cipher_suite_versions can be set to alist of cipher suites that will be used, Ironic
will attempt to find a value that can be used from the list provided (from last to first):

To find the suitable values for this configuration, you can check the field RMCP+ Cipher Suites after
running an ipmitool command, e.g:

ipmitool -I lanplus -H -U -v -R -N lan print
output

Warning: Only the cipher suites 3 and 17 are considered secure by the modern standards. Cipher
suite 0 means no security at all.

214 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Using a different privilege level

By default Ironic requests the ADMINTISTRATOR privilege level of all commands. This is the easiest option,
but if its not available for you, you can change it to CALLBACK, OPERATOR or USER this way:

You must ensure that the user can still change power state and boot devices.

Static boot order configuration

See Static boot order configuration.

Vendor Differences

While the Intelligent Platform Management Interface (IPMI) interface is based upon a defined standard,
the Ironic community is aware of at least one vendor which utilizes a non-standard boot device selector.
In essence, this could be something as simple as different interpretation of the standard.

As of October 2020, the known difference is with Supermicro hardware where a selector of 0x24, sig-
nifying a REMOTE boot device in the standard, must be used when a boot operation from the local disk
subsystem is requested in UEFI mode. This is contrary to BIOS mode where the same BMCs expect
the selector to be a value of 9x08.

Because the BMC does not respond with any sort of error, nor do we want to risk BMC connectivity
issues by explicitly querying all BMCs what vendor it may be before every operation, the vendor can
automatically be recorded in the properties field vendor. When this is set to a value of supermicro,
Ironic will navigate the UEFI behavior difference enabling the UEFI to be requested with boot to disk.

Example:

Luckily, Ironic will attempt to perform this detection in power synchronization process, and record this
value if not already set.

While similar issues may exist when setting the boot mode and target boot device in other vendors BMCs,
we are not aware of them at present. Should you encounter such an issue, please feel free to report this
via Storyboard, and be sure to include the chassis bootparam get 5 output value along with the mc
info output from your BMC.

Example:

4.1. Drivers, Hardware Types and Hardware Interfaces 215

https://storyboard.openstack.org

Ironic Documentation, Release 21.1.2.dev10

iRMC driver

Overview

The iRMC driver enables control FUJIITSU PRIMERGY via ServerView Common Command Interface
(SCCI). Support for FUJIITSU PRIMERGY servers consists of the irmc hardware type and a few hard-
ware interfaces specific for that hardware type.

Prerequisites

* Install python-scciclient and pysnmp packages:

$ pip install "python-scciclient>=0.7.2" pysnmp

Hardware Type

The irmc hardware type is available for FUJITSU PRIMERGY servers. For information on how to
enable the irmc hardware type, see Enabling hardware types.

Hardware interfaces

The irmc hardware type overrides the selection of the following hardware interfaces:
* bios Supports irmc and no-bios. The default is irmc.

* boot Supports irmc-virtual-media, irmc-pxe, and pxe. The default is
irmc-virtual-media. The irmc-virtual-media boot interface enables the virtual
media based deploy with IPA (Ironic Python Agent).

Warning: We deprecated the pxe boot interface when used with irmc hardware
type. Support for this interface will be removed in the future. Instead, use irmc-pxe.
irmc-pxe boot interface was introduced in Pike.

* console Supports ipmitool-socat, ipmitool-shellinabox, and no-console. The default
is ipmitool-socat.

* inspect Supports irmc, inspector, and no-inspect. The default is irmc.

Note: Ironic Inspector needs to be present and configured to use inspector as the inspect
interface.

* management Supports only irmc.

* power Supports irmc, which enables power control via ServerView Common Command Interface
(SCCI), by default. Also supports ipmitool.

* raid Supports irmc, no-raid and agent. The default is no-raid.

216 Chapter 4. Administrator Guide

https://pypi.org/project/python-scciclient
https://pypi.org/project/pysnmp
https://docs.openstack.org/ironic-inspector/zed/

Ironic Documentation, Release 21.1.2.dev10

For other hardware interfaces, irmc hardware type supports the Bare Metal reference interfaces. For
more details about the hardware interfaces and how to enable the desired ones, see Enabling hardware
interfaces.

Here is a complete configuration example with most of the supported hardware interfaces enabled for
irmc hardware type.

Here is a command example to enroll a node with irmc hardware type.

Node configuration

Configuration via driver_info

* Each node is configured for irmc hardware type by setting the following ironic node objects prop-

erties:
— driver_info/irmc_address property to be IP address or hostname of the iRMC.

— driver_info/irmc_username property to be username for the iRMC with administrator
privileges.

— driver_info/irmc_password property to be password for irmc_username.

Note: Fuyjitsu server equipped with iRMC S6 2.00 or later version of firmware disables IPMI
over LAN by default. However user may be able to enable IPMI via BMC settings. To handle this
change, irmc hardware type first tries IPMI and, if IPMI operation fails, irmc hardware type uses
Redfish API of Fujitsu server to provide Ironic functionalities. So if user deploys Fujitsu server
with iRMC S6 2.00 or later, user needs to set Redfish related parameters in driver_info.

4.1,

Drivers, Hardware Types and Hardware Interfaces 217

Ironic Documentation, Release 21.1.2.dev10

driver_info/redifsh_address property to be IP address or hostname of the iRMC.
You can prefix it with protocol (e.g. https://). If you dont provide protocol, Ironic as-
sumes HTTPS (i.e. add https:// prefix). iRMC with S6 2.00 or later only support HTTPS
connection to Redfish API.

driver_info/redfish_username to be user name of iRMC with administrative privileges
driver_info/redfish_password to be password of redfish_username

driver_info/redfish_verify_ca accepts values those accepted in driver_info/
irmc_verify_ca

driver_info/redfish_auth_type to be one of basic, session or auto

e If port in [irmc] section of /etc/ironic/ironic.conf or driver_info/irmc_port is set
to 443, driver_info/irmc_verify_ca will take effect:

driver_info/irmc_verify_ca property takes one of 4 value (default value is True):

True: When set to True, which certification file iRMC driver uses is determined by
requests Python module.

Value of driver_info/irmc_verify_ca is passed to verify argument of functions de-
fined in requests Python module. So which certification will be used is depend on behavior
of requests module. (maybe certification provided by certifi Python module)

False: When set to False, iRMC driver wont verify server certification with certification
file during HTTPS connection with iRMC. Just stop to verify server certification, but does
HTTPS.

Warning: When set to False, user must notice that it can result in vulnerable situation.
Stopping verification of server certification during HTTPS connection means it cannot
prevent Man-in-the-middle attack. When set to False, Ironic user must take enough
care around infrastructure environment in terms of security. (e.g. make sure network
between Ironic conductor and iRMC is secure)

string representing filesystem path to directory which contains certification file: In this case,
iRMC driver uses certification file stored at specified directory. Ironic conductor must be
able to access that directory. For iRMC to recongnize certification file, Ironic user must run
openssl rehash <path_to_dir>.

string representing filesystem path to certification file: In this case, iRMC driver uses certi-
fication file specified. Ironic conductor must have access to that file.

* The following properties are also required if irmc-virtual-media boot interface is used:

driver_info/deploy_iso property to be either deploy iso file name, Glance UUID, or
Image Service URL.

instance info/boot_iso property to be either boot iso file name, Glance UUID, or Image
Service URL. This is used with the ramdisk deploy interface.

Note: The deploy_iso and boot_iso properties used to be called irmc_deploy_iso and
irmc_boot_iso accordingly before the Xena release.

218

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

* The following properties are also required if irmc inspect interface is enabled and SNMPv3 in-
spection is desired.

driver_info/irmc_snmp_user property to be the SNMPv3 username. SNMPv3 func-
tionality should be enabled for this user on iRMC server side.

driver_info/irmc_snmp_auth_password property to be the auth protocol pass phrase.
The length of pass phrase should be at least 8 characters.

driver_info/irmc_snmp_priv_password property to be the privacy protocol pass
phrase. The length of pass phrase should be at least 8 characters.

Configuration via properties

* Each node is configured for irmc hardware type by setting the following ironic node objects prop-
erties:

properties/capabilities property to be boot_mode:uefi if UEFI boot is required, or
boot_mode:bios if Legacy BIOS is required. If this is not set, default_boot_mode at
[default] section in ironic.conf will be used.

properties/capabilities property to be secure_boot:true if UEFI Secure Boot is
required. Please refer to UEFI Secure Boot Support for more information.

Configuration via ironic.conf

* All of the nodes are configured by setting the following configuration options in the [irmc] section
of /etc/ironic/ironic.conf:

port: Port to be used for iRMC operations; either 80 or 443. The default value is 443.
Optional.

auth_method: Authentication method for iRMC operations; either basic or digest. The
default value is basic. Optional.

client_timeout: Timeout (in seconds) for iRMC operations. The default value is 60.
Optional.

sensor_method: Sensor data retrieval method; either ipmitool or scci. The default value
is ipmitool. Optional.

* The following options are required if irmc-virtual-media boot interface is enabled:

remote_image_share_root: Ironic conductor nodes NFS or CIFS root path. The default
value is /remote_image_share_root.

remote_image_server: IP of remote image server.

remote_image_share_type: Share type of virtual media, either NFS or CIFS. The default
is CIFS.

remote_image_share_name: share name of remote_image_server. The default value
is share.

remote_image_user_name: User name of remote_image_server.

remote_image_user_password: Password of remote_image_user_name.

4.1. Drivers, Hardware Types and Hardware Interfaces 219

Ironic Documentation, Release 21.1.2.dev10

remote_image_user_domain: Domain name of remote_image_user_name.

* The following options are required if irmc inspect interface is enabled:

snmp_version: SNMP protocol version; either v1, v2c or v3. The default value is v2c.
Optional.

snmp_port: SNMP port. The default value is 161. Optional.

snmp_community: SNMP community required for versions v1 and v2c. The default value
is public. Optional.

snmp_security: SNMP security name required for version v3. Optional.

snmp_auth_proto: The SNMPv3 auth protocol. If using iRMC S4 or S5, the valid value of
this option is only sha. If using iRMC S6, the valid values are sha256, sha384 and sha512.
The default value is sha. Optional.

snmp_priv_proto: The SNMPv3 privacy protocol. The valid value and the default value
are both aes. We will add more supported valid values in the future. Optional.

Warning: We deprecated the snmp_security option when use SNMPv3 inspec-
tion. Support for this option will be removed in the future. Instead, set driver_info/
irmc_snmp_user parameter for each node if SNMPv3 inspection is needed.

Override ironic.conf configuration via driver_info

* Each node can be further configured by setting the following ironic node objects properties which
override the parameter values in [irmc] section of /etc/ironic/ironic.conf:

driver_info/irmc_port property overrides port.
driver_info/irmc_auth_method property overrides auth_method.
driver_info/irmc_client_timeout property overrides client_timeout.
driver_info/irmc_sensor_method property overrides sensor_method.
driver_info/irmc_snmp_version property overrides snmp_version.
driver_info/irmc_snmp_port property overrides snmp_port.
driver_info/irmc_snmp_community property overrides snmp_community.
driver_info/irmc_snmp_security property overrides snmp_security.
driver_info/irmc_snmp_auth_proto property overrides snmp_auth_proto.

driver_info/irmc_snmp_priv_proto property overrides snmp_priv_proto.

220

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Optional functionalities for the irmc hardware type

UEFI Secure Boot Support

The hardware type irmc supports secure boot deploy, see UEFI secure boot mode for details.

Warning: Secure boot feature is not supported with pxe boot interface.

Node Cleaning Support

The irmc hardware type supports node cleaning. For more information on node cleaning, see Node
cleaning.

Supported Automated Cleaning Operations

The automated cleaning operations supported are:

* restore_irmc_bios_config: Restores BIOS settings on a baremetal node from backup data. If
this clean step is enabled, the BIOS settings of a baremetal node will be backed up automatically
before the deployment. By default, this clean step is disabled with priority 8. Set its priority to a
positive integer to enable it. The recommended value is 10.

Warning: pxe bootinterface, when used with irmc hardware type, does not support this clean
step. If uses irmc hardware type, it is required to select irmc-pxe or irmc-virtual-media
as the boot interface in order to make this clean step work.

Configuration options for the automated cleaning steps are listed under [irmc] section in ironic.conf

For more information on node automated cleaning, see Automated cleaning

Boot from Remote Volume

The irmc hardware type supports the generic PXE-based remote volume booting when using the follow-
ing boot interfaces:

* irmc-pxe
* pxe

In addition, the irmc hardware type supports remote volume booting without PXE. This is available
when using the irmc-virtual-media boot interface. This feature configures a node to boot from a
remote volume by using the API of iRMC. It supports iSCSI and FibreChannel.

4.1. Drivers, Hardware Types and Hardware Interfaces 221

Ironic Documentation, Release 21.1.2.dev10

Configuration

In addition to the configuration for generic drivers to remote volume boot, the iRMC driver requires the
following configuration:

* Itis necessary to set physical port IDs to network ports and volume connectors. All cards including
those not used for volume boot should be registered.

The format of a physical port ID is: <Card Type><Slot No>-<Port No> where:
— <Card Type>: could be LAN, FC or CNA
— <Slot No>: 0 indicates onboard slot. Use 1 to 9 for add-on slots.
— <Port No>: A port number starting from 1.

These IDs are specified in a nodes driver_info[irmc_pci_physical_ids]. This value is a
dictionary. The key is the UUID of a resource (Port or Volume Connector) and its value is the
physical port ID. For example:

It can be set with the following command:

baremetal node set $NODE_UUID \

--driver-info irmc_pci_physical_ids={} \

--driver-info irmc_pci_physical_ids/$PORT_UUID=LANG®-1 \
--driver-info irmc_pci_physical_ids/$VOLUME_CONNECTOR_UUID=CNA1-1

* For iSCSI boot, volume connectors with both types iqn and ip are required. The configuration
with DHCP is not supported yet.

* For iSCSI, the size of the storage network is needed. This value should be specified in a nodes
driver_info[irmc_storage_network_size]. It must be a positive integer < 32. For example,
if the storage network is 10.2.0.0/22, use the following command:

baremetal node set $NODE_UUID --driver-info irmc_storage_network_size=22

Supported hardware

The driver supports the PCI controllers, Fibrechannel Cards, Converged Network Adapters supported by
Fujitsu ServerView Virtual-10 Manager.

222 Chapter 4. Administrator Guide

http://www.fujitsu.com/fts/products/computing/servers/primergy/management/primergy-blade-server-io-virtualization.html

Ironic Documentation, Release 21.1.2.dev10

Hardware Inspection Support

The irmc hardware type provides the iRMC-specific hardware inspection with irmc inspect interface.

Note: SNMP requires being enabled in ServerViews iRMC S4 Web Server(Network SettingsSNMP
section).

Configuration

The Hardware Inspection Support in the iRMC driver requires the following configuration:
* Itis necessary to set ironic configuration with gpu_ids and fpga_ids options in [irmc] section.
gpu_ids and fpga_ids are lists of <vendorID>/<deviceID> where:
— <vendorID>: 4 hexadecimal digits starts with Ox.
— <deviceID>: 4 hexadecimal digits starts with Ox.

Here are sample values for gpu_ids and fpga_ids:

» The python-scciclient package requires pyghmi version >= 1.0.22 and pysnmp version >= 4.2.3.
They are used by the conductor service on the conductor. The latest version of pyghmi can be
downloaded from here and pysnmp can be downloaded from here.

Supported properties

The inspection process will discover the following essential properties (properties required for scheduling
deployment):

* memory_mb: memory size

* cpus: number of cpus

* cpu_arch: cpu architecture

e local_gb: disk size
Inspection can also discover the following extra capabilities for iRMC driver:

e irmc_firmware_version: iRMC firmware version

* rom_firmware_version: ROM firmware version

* server_model: server model

* pci_gpu_devices: number of gpu devices connected to the bare metal.
Inspection can also set/unset nodes traits with the following cpu type for iRMC driver:

* CUSTOM_CPU_FPGA: The bare metal contains fpga cpu type.

4.1. Drivers, Hardware Types and Hardware Interfaces 223

https://pypi.org/project/pyghmi/
https://pypi.org/project/pysnmp/

Ironic Documentation, Release 21.1.2.dev10

Note:

* The disk size is returned only when eLCM License for FUIITSU PRIMERGY servers is activated.
If the license is not activated, then Hardware Inspection will fail to get this value.

* Before inspecting, if the server is power-off, it will be turned on automatically. System will wait for
a few second before start inspecting. After inspection, power status will be restored to the previous
state.

The operator can specify these capabilities in compute service flavor, for example:

See Capabilities discovery for more details and examples.

The operator can add a trait in compute service flavor, for example:

baremetal node add trait $NODE_UUID CUSTOM_CPU_FPGA

A valid trait must be no longer than 255 characters. Standard traits are defined in the os_traits library. A
custom trait must start with the prefix CUSTOM_ and use the following characters: A-Z, 0-9 and _.

RAID configuration Support

The irmc hardware type provides the iRMC RAID configuration with irmc raid interface.

Note:

* RAID implementation for irmc hardware type is based on eLCM license and SDCard. Otherwise,
SP(Service Platform) in lifecycle management must be available.

* RAID implementation only supported for RAIDAdapter O in Fujitsu Servers.

Configuration

The RAID configuration Support in the iRMC drivers requires the following configuration:

* Itis necessary to set ironic configuration into Node with JSON file option:

$ baremetal node set <node-uuid-or-name> \
--target-raid-config <JSON file containing target RAID configuration>

Here is some sample values for JSON file:

224 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

or:

Note: RAID 1+0 and 5+0 in iRMC driver does not support property physical_disks in
target_raid_config during create raid configuration yet. See following example:

See RAID Configuration for more details and examples.

Supported properties

The RAID configuration using iRMC driver supports following parameters in JSON file:

* size_gb: is mandatory properties in Ironic.

* raid_level: is mandatory properties in Ironic. Currently, iRMC Server supports following RAID
levels: O, 1, 5, 6, 1+0 and 5+0.

* controller: is name of the controller as read by the RAID interface.

4.1. Drivers, Hardware Types and Hardware Interfaces 225

Ironic Documentation, Release 21.1.2.dev10

* physical_disks: are specific values for each raid array in LogicalDrive which operator want to
set them along with raid_level.

The RAID configuration is supported as a manual cleaning step.

Note:

* iRMC server will power-on after create/delete raid configuration is applied, FGI (Foreground Ini-
tialize) will process raid configuration in iRMC server, thus the operation will completed upon
power-on and power-off when created RAID on iRMC server.

See RAID Configuration for more details and examples.

BIOS configuration Support

The irmc hardware type provides the iRMC BIOS configuration with irmc bios interface.

Warning: irmc bios interface does not support factory_reset.

Starting from version 0.10.0 of python-scciclient, the BIOS setting obtained may not be the
latest. If you want to get the latest BIOS setting, you need to delete the existing BIOS profile in iRMC.
For example:

Configuration

The BIOS configuration in the iRMC driver supports the following settings:

* boot_option_filter: Specifies from which drives can be booted. This supports following op-
tions: UefiAndLegacy, LegacyOnly, UefiOnly.

¢ check_controllers_health_status_enabled: The UEFI FW checks the controller health
status. This supports following options: true, false.

* cpu_active_processor_cores: The number of active processor cores 1n. Option 0 indicates
that all available processor cores are active.

* cpu_adjacent_cache_line_prefetch_enabled: The processor loads the requested cache line
and the adjacent cache line. This supports following options: true, false.

e cpu_vt_enabled: Supports the virtualization of platform hardware and several software environ-
ments, based on Virtual Machine Extensions to support the use of several software environments
using virtual computers. This supports following options: true, false.

e flash_write_enabled: The system BIOS can be written. Flash BIOS update is possible. This
supports following options: true, false.

* hyper_threading_enabled: Hyper-threading technology allows a single physical processor
core to appear as several logical processors. This supports following options: true, false.

226 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

keep_void_boot_options_enabled: Boot Options will not be removed from Boot Option Pri-
ority list. This supports following options: true, false.

launch_csm_enabled: Specifies whether the Compatibility Support Module (CSM) is executed.
This supports following options: true, false.

os_energy_performance_override_enabled: Prevents the OS from overruling any energy
efficiency policy setting of the setup. This supports following options: true, false.

pci_aspm_support: Active State Power Management (ASPM) is used to power-manage the PCI
Express links, thus consuming less power. This supports following options: Disabled, Auto,
LOLimited, Llonly, LOForce.

pci_above_4g_decoding_enabled: Specifies if memory resources above the 4GB address
boundary can be assigned to PCI devices. This supports following options: true, false.

power_on_source: Specifies whether the switch on sources for the system are managed by
the BIOS or the ACPI operating system. This supports following options: BiosControlled,
AcpiControlled.

single_root_io_virtualization_support_enabled: Single Root IO Virtualization Sup-
port is active. This supports following options: true, false.

The BIOS configuration is supported as a manual cleaning step. See B/OS Configuration for more details
and examples.

Supported platforms

This driver supports FUJITSU PRIMERGY RX M4 servers and above.

When irmc power interface is used, Soft Reboot (Graceful Reset) and Soft Power Off (Graceful Power
Off) are only available if ServerView agents are installed. See iRMC S4 Manual for more details.

RAID configuration feature supports FUJITSU PRIMERGY servers with RAID-Ctrl-SAS-6G-
1GB(D3116C) controller and above. For detail supported controller with OOB-RAID configuration,
please see the whitepaper for iRMC RAID configuration.

Redfish driver

Overview

The redfish driver enables managing servers compliant with the Redfish protocol.

Prerequisites

* The Sushy library should be installed on the ironic conductor node(s).

For example, it can be installed with pip:

4.1,

Drivers, Hardware Types and Hardware Interfaces 227

http://manuals.ts.fujitsu.com/index.php?id=5406-5873-5925-5945-16159
http://manuals.ts.fujitsu.com/index.php?id=5406-5873-5925-5988
http://manuals.ts.fujitsu.com/file/12073/wp-svs-oob-raid-hdd-en.pdf
http://redfish.dmtf.org/
https://opendev.org/openstack/sushy

Ironic Documentation, Release 21.1.2.dev10

Enabling the Redfish driver

1.

Add redfish to the list of enabled_hardware_types, enabled_power_interfaces,
enabled_management_interfaces and enabled_inspect_interfaces as well as
redfish-virtual-media to enabled_boot_interfaces in /etc/ironic/ironic.conf.
For example:

. Restart the ironic conductor service:

Registering a node with the Redfish driver

Nodes configured to use the driver should have the driver property set to redfish.

The following properties are specified in the nodes driver_info field:

e redfish_address: The URL address to the Redfish controller. It must include the author-

ity portion of the URL, and can optionally include the scheme. If the scheme is missing,
https is assumed. For example: https://mgmt.vendor.com. This is required.

redfish_system_id: The canonical path to the ComputerSystem resource that the driver
will interact with. It should include the root service, version and the unique resource path to
the ComputerSystem. This property is only required if target BMC manages more than one
ComputerSystem. Otherwise ironic will pick the only available ComputerSystem automati-
cally. For example: /redfish/v1/Systems/1.

redfish_username: User account with admin/server-profile access privilege. Although not
required, it is highly recommended.

redfish_password: User account password. Although not required, it is highly recom-
mended.

redfish_verify_ca: If redfish_address has the https scheme, the driver will use a secure
(TLS) connection when talking to the Redfish controller. By default (if this is not set or
set to True), the driver will try to verify the host certificates. This can be set to the path of
a certificate file or directory with trusted certificates that the driver will use for verification.
To disable verifying TLS, set this to False. This is optional.

redfish_auth_type: Redfish HTTP client authentication method. Can be basic, session or
auto. The auto mode first tries session and falls back to basic if session authentication is
not supported by the Redfish BMC. Default is set in ironic config as [redfish]auth_type.
Most operators should not need to leverage this setting. Session based authentication should

228

Chapter 4. Administrator Guide

https://mgmt.vendor.com
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security

Ironic Documentation, Release 21.1.2.dev10

generally be used in most cases as it prevents re-authentication every time a background task
checks in with the BMC.

Note: The redfish_address, redfish_username, redfish_password, and redfish_verify_ca
fields, if changed, will trigger a new session to be establsihed and cached with the BMC. The
redfish_auth_type field will only be used for the creation of a new cached session, or should one
be rejected by the BMC.

The baremetal node create command can be used to enroll a node with the redfish driver. For
example:

baremetal node create --driver redfish --driver-info
https://example.com --driver-info
/redfish/v1/Systems/CX34R87 --driver-info
admin --driver-info password
--name node-0

For more information about enrolling nodes see Enrollment in the install guide.

Boot mode support

The redfish hardware type can read current boot mode from the bare metal node as well as set it to
either Legacy BIOS or UEFI.

Note: Boot mode management is the optional part of the Redfish specification. Not all Redfish-
compliant BMCs might implement it. In that case it remains the responsibility of the operator to configure
proper boot mode to their bare metal nodes.

UEFI secure boot

Secure boot mode can be automatically set and unset during deployment for nodes in UEFI boot mode,
see UEFI secure boot mode for an explanation how to use it.

Two clean and deploy steps are provided for key management:

management.reset_secure_boot_keys_to_default resets secure boot keys to their manufactur-
ing defaults.

management .clear_secure_boot_keys removes all secure boot keys from the node.

4.1. Drivers, Hardware Types and Hardware Interfaces 229

Ironic Documentation, Release 21.1.2.dev10

Out-Of-Band inspection

The redfish hardware type can inspect the bare metal node by querying Redfish compatible BMC. This
process is quick and reliable compared to the way the inspector hardware type works i.e. booting bare
metal node into the introspection ramdisk.

Note: The redfish inspect interface relies on the optional parts of the Redfish specification. Not all
Redfish-compliant BMCs might serve the required information, in which case bare metal node inspection
will fail.

Note: The local_gb property cannot always be discovered, for example, when a node does not have lo-
cal storage or the Redfish implementation does not support the required schema. In this case the property
will be set to 0.

Virtual media boot

The idea behind virtual media boot is that BMC gets hold of the boot image one way or the other (e.g.
by HTTP GET, other methods are defined in the standard), then inserts it into nodes virtual drive as if
it was burnt on a physical CD/DVD. The node can then boot from that virtual drive into the operating
system residing on the image.

The major advantage of virtual media boot feature is that potentially unreliable TFTP image transfer
phase of PXE protocol suite is fully eliminated.

Hardware types based on the redfish fully support booting deploy/rescue and user images over virtual
media. Ironic builds bootable ISO images, for either UEFI or BIOS (Legacy) boot modes, at the moment
of node deployment out of kernel and ramdisk images associated with the ironic node.

To boot a node managed by redfish hardware type over virtual media using BIOS boot mode, it suffice
to set ironic boot interface to redfish-virtual-media, as opposed to ipmitool.

baremetal node --boot-interface redfish-virtual-media node-0

Note: iDRAC firmware before 4.40.10.00 (on Intel systems) and 6.00.00.00 (on AMD systems) requires
a non-standard Redfish call to boot from virtual media. Consider upgrading to 6.00.00.00, otherwise you
must use the idrac hardware type and the idrac-redfish-virtual-media boot interface with older
iDRAC firmware instead. For simplicity Ironic restricts both AMD and Intel systems before firmware
version 6.00.00.00. See iDRAC driver for more details on this hardware type.

If UEFI boot mode is desired, the user should additionally supply EFI System Partition image (ESP), see
Configuring an ESP image for details.

If [driver_info]/config_via_floppy boolean property of the node is set to true, ironic will create
a file with runtime configuration parameters, place into on a FAT image, then insert the image into nodes
virtual floppy drive.

When booting over PXE or virtual media, and user instance requires some specific kernel configuration,
the nodes instance_info[kernel_append_params] or driver_info[kernel_append_params]

230 Chapter 4. Administrator Guide

https://wiki.ubuntu.com/EFIBootLoaders#Booting_from_EFI

Ironic Documentation, Release 21.1.2.dev10

properties can be used to pass user-specified kernel command line parameters.

baremetal node node-0
--driver-info

Note: The driver_info field is supported starting with the Xena release.

Starting with the Zed cycle, you can combine the parameters from the configuration and from the node
using the special %defaul t% syntax:

baremetal node node-0
--driver-info

For ramdisk boot, the instance_info[ramdisk_kernel_arguments] property serves the same pur-
pose (%default¥% is not supported since there is no default value in the configuration).

Pre-built ISO images

By default an ISO images is built per node using the deploy kernel and initramfs provided in the config-
uration or the nodes driver_info. Starting with the Wallaby release its possible to provide a pre-built
ISO image:

baremetal node node-0
--driver_info http://url/of/deploy.iso
--driver_info http://url/of/rescue.iso

Note: OpenStack Image service (glance) image IDs and file:// links are also accepted.

Note: Before the Xena release the parameters were called redfish_deploy_iso and
redfish_rescue_iso accordingly. The old names are still supported for backward compatibility.

No customization is currently done to the image, so e.g. Layer 3 or DHCP-less ramdisk booting wont
work. Configuring an ESP image is also unnecessary.

Configuring an ESP image

An ESP image is an image that contains the necessary bootloader to boot the ISO in UEFI mode. You
will need a GRUB2 image file, as well as Shim for secure boot. See UEFI PXE - Grub setup for an
explanation how to get them.

Then the following script can be used to build an ESP image:

/path/to/esp.img

/path/to/grub.efi

/path/to/shim.efi
mktemp -d

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces 231

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

dd /dev/zero
mkfs.fat -s -r -S

sudo mount

sudo mkdir -p /EFI/BOOT
sudo cp /EFI/BOOT/BO0OTX64.efi
sudo cp /EFI/BOOT/GRUBX64.efi

sudo umount

Note: If you use an architecture other than x86-64, youll need to adjust the destination paths.

The resulting image should be provided via the driver_info/bootloader ironic node property in form
of an image UUID or a URL:

baremetal node --driver-info <glance-uuid-or-url> node-0

Alternatively, set the bootloader UUID or URL in the configuration file:

Finally, you need to provide the correct GRUB2 configuration path for your image. In most cases this
path will depend on your distribution, more precisely, the distribution you took the GRUB2 image from.
For example:

CentOS:

Ubuntu:

Note: Unlike in the script above, these paths are case-sensitive!

Virtual Media Ramdisk

The ramdisk deploy interface can be used in concert with the redfish-virtual-media boot interface
to facilitate the boot of a remote node utilizing pre-supplied virtual media. See Booting a Ramdisk or an
ISO for information on how to enable and configure it.

Instead of supplying an [instance_info]/image_source parameter, a [instance_info]/
boot_iso parameter can be supplied. The image will be downloaded by the conductor, and the instance
will be booted using the supplied ISO image. In accordance with the ramdisk deployment interface
behavior, once booted the machine will have a provision_state of ACTIVE.

232 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

baremetal node <node name or UUID>
--boot-interface redfish-virtual-media
--deploy-interface ramdisk
--instance_info http://url/to.iso

This initial interface does not support bootloader configuration parameter injection, as such the
[instance_info]/kernel_append_params setting is ignored.

Configuration drives are supported starting with the Wallaby release for nodes that have a free virtual
USB slot:

baremetal node deploy <node name or UUID>
--config-drive

or via a link to a raw image:

baremetal node deploy <node name or UUID>
--config-drive http://example.com/config.img

Layer 3 or DHCP-less ramdisk booting

DHCP-less deploy is supported by the Redfish virtual media boot. See Layer 3 or DHCP-less ramdisk
booting for more information.

Firmware update using manual cleaning

The redfish hardware type supports updating the firmware on nodes using a manual cleaning step.

The firmware update cleaning step allows one or more firmware updates to be applied to a node. If mul-
tiple updates are specified, then they are applied sequentially in the order given. The server is rebooted
once per update. If a failure occurs, the cleaning step immediately fails which may result in some updates
not being applied. If the node is placed into maintenance mode while a firmware update cleaning step is
running that is performing multiple firmware updates, the update in progress will complete, and process-
ing of the remaining updates will pause. When the node is taken out of maintenance mode, processing
of the remaining updates will continue.

When updating the BMC firmware, the BMC may become unavailable for a period of time as it resets.
In this case, it may be desireable to have the cleaning step wait after the update has been applied before
indicating that the update was successful. This allows the BMC time to fully reset before further opera-
tions are carried out against it. To cause the cleaning step to wait after applying an update, an optional
wait argument may be specified in the firmware image dictionary. The value of this argument indicates
the number of seconds to wait following the update. If the wait argument is not specified, then this
is equivalent to wait 0, meaning that it will not wait and immediately proceed with the next firmware
update if there is one, or complete the cleaning step if not.

The update_firmware cleaning step accepts JSON in the following format:

(continues on next page)

4.1. Drivers, Hardware Types and Hardware Interfaces 233

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

The different attributes of the update_firmware cleaning step are as follows:

Attribute Description

interface Interface of the cleaning step. Must be management for firmware update
step Name of cleaning step. Must be update_firmware for firmware update
args Keyword-argument entry (<name>: <value>) being passed to cleaning step
args. Ordered list of dictionaries of firmware images to be applied
firmware_images

Each firmware image dictionary, is of the form:

The url and checksum arguments in the firmware image dictionary are mandatory, while the source
and wait arguments are optional.

For url currently http, https, swift and file schemes are supported.

source corresponds to [redfish]firmware_source and by setting it here, it is possible to override
global setting per firmware image in clean step arguments.

Note: At the present time, targets for the firmware update cannot be specified. In testing, the BMC ap-
plied the update to all applicable targets on the node. It is assumed that the BMC knows what components
a given firmware image is applicable to.

To perform a firmware update, first download the firmware to a web server, Swift or filesystem that the
Ironic conductor or BMC has network access to. This could be the ironic conductor web server or another
web server on the BMC network. Using a web browser, curl, or similar tool on a server that has network

234 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

access to the BMC or Ironic conductor, try downloading the firmware to verify that the URLSs are correct
and that the web server is configured properly.

Next, construct the JSON for the firmware update cleaning step to be executed. When launching the
firmware update, the JSON may be specified on the command line directly or in a file. The following
example shows one cleaning step that installs four firmware updates. All except 3rd entry that has explicit
source added, uses setting from [redfish]firmware_source to determine if and where to stage the
files:

Finally, launch the firmware update cleaning step against the node. The following example assumes the
above JSON is in a file named firmware_update. json:

In the following example, the JSON is specified directly on the command line:

Note: Firmware updates may take some time to complete. If a firmware update cleaning step con-
sistently times out, then consider performing fewer firmware updates in the cleaning step or increasing

4.1. Drivers, Hardware Types and Hardware Interfaces 235

Ironic Documentation, Release 21.1.2.dev10

clean_callback_timeout in ironic.conf to increase the timeout value.

Warning: Warning: Removing power from a server while it is in the process of updating firmware
may result in devices in the server, or the server itself becoming inoperable.

Retrieving BIOS Settings

When the bios interface is set to redfish, Ironic will retrieve the nodes BIOS settings as described in
BIOS Configuration. In addition, via Sushy, Ironic will get the BIOS Attribute Registry (BIOS Registry)
from the node which is a schema providing details on the settings. The following fields will be returned
in the BIOS API (/v1/nodes/{node_ident}/bios) along with the setting name and value:

Field Description

attribute_typélhe type of setting - Enumeration, Integer, String, Boolean, or Password
allowable_valu&dist of allowable values when the attribute_type is Enumeration
lower_bound | The lowest allowed value when attribute_type is Integer

upper_bound | The highest allowed value when attribute_type is Integer

min_length The shortest string length that the value can have when attribute_type is String
max_length The longest string length that the value can have when attribute_type is String
read_only The setting is ready only and cannot be modified

unique The setting is specific to this node

reset_requiredAfter changing this setting a node reboot is required

Node Vendor Passthru Methods

Method Description

create_subscri@rehtma new subscription on the Node
delete_subscripetetma subscription of a Node
get_all_subscdijstaldsebscriptions of a Node
get_subscriptis$how a single subscription of a Node
eject_vmedia| Eject attached virtual media from a Node

Create Subscription

Table 1: Request

Name In Type Description

Destination body string The URI of the destination Event Service

EventTypes body array List of ypes of events that shall be sent to the destination
(optional)

Context (op- | body string A client-supplied string that is stored with the event destina-
tional) tion subscription

Protocol body string The protocol type that the event will use for sending the event
(optional) to the destination

236 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic/latest/admin/bios.html
https://opendev.org/openstack/sushy
https://redfish.dmtf.org/schemas/v1/AttributeRegistry.v1_3_5.json

Ironic Documentation, Release 21.1.2.dev10

Example JSON to use in create_subscription:

Delete Subscription

Table 2: Request

Name

In

Type

Description

id

body

string

The Id of the subscription generated
by the BMC

Example JSON to use in delete_subscription:

Get Subscription

Table 3: Request

Name

In

Type

Description

id

body

string

The Id of the subscription generated
by the BMC

Example JSON to use in get_subscription:

Get All Subscriptions

The get_all_subscriptions doesnt require any parameters.

4.1. Drivers, Hardware Types and Hardware Interfaces

237

Ironic Documentation, Release 21.1.2.dev10

Eject Virtual Media

Table 4: Request

Name In Type Description
boot_device body string Type of the device to eject (all devices by default)
(optional)

Internal Session Cache

The redfish hardware type, and derived interfaces, utilizes a built-in session cache which prevents
Ironic from re-authenticating every time Ironic attempts to connect to the BMC for any reason.

This consists of cached connectors objects which are used and tracked by a unique consideration
of redfish_username, redfish_password, redfish_verify_ca, and finally redfish_address.
Changing any one of those values will trigger a new session to be created. The redfish_system_id
value is explicitly not considered as Redfish has a model of use of one BMC to many systems, which is
also a model Ironic supports.

The session cache default size is 1000 sessions per conductor. If you are operating a deployment with
a larger number of Redfish BMCs, it is advised that you do appropriately tune that number. This can be
tuned via the API service configuration file, [redfish]connection_cache_size.

Session Cache Expiration

By default, sessions remain cached for as long as possible in memory, as long as they have not experienced
an authentication, connection, or other unexplained error.

Under normal circumstances, the sessions will only be rolled out of the cache in order of oldest first when
the cache becomes full. There is no time based expiration to entries in the session cache.

Of course, the cache is only in memory, and restarting the ironic-conductor will also cause the cache
to be rebuilt from scratch. If this is due to any persistent connectivity issue, this may be sign of an
unexpected condition, and please consider contacting the Ironic developer community for assistance.

SNMP driver

The SNMP hardware type enables control of power distribution units of the type frequently found in
data centre racks. PDUs frequently have a management ethernet interface and SNMP support enabling
control of the power outlets.

The SNMP power interface works with the PXE boot interface for network deployment and network-
configured boot.

Note: Unlike most of the other power interfaces, the SNMP power interface does not have a correspond-
ing management interface. The SNMP hardware type uses the noop management interface instead.

238 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

List of supported devices

This is a non-exhaustive list of supported devices. Any device not listed in this table could possibly work

using a similar driver.

Please report any device status.

Manufacturer | Model Supported? | Driver name
APC AP7920 Yes apc_masterswitch
APC AP9606 Yes apc_masterswitch
APC AP9225 Yes apc_masterswitchplus
APC AP7155 Yes apc_rackpdu
APC AP7900 Yes apc_rackpdu
APC AP7901 Yes apc_rackpdu
APC AP7902 Yes apc_rackpdu
APC AP7911a Yes apc_rackpdu
APC AP7921 Yes apc_rackpdu
APC AP7922 Yes apc_rackpdu
APC AP7930 Yes apc_rackpdu
APC AP7931 Yes apc_rackpdu
APC AP7932 Yes apc_rackpdu
APC AP7940 Yes apc_rackpdu
APC AP7941 Yes apc_rackpdu
APC AP7951 Yes apc_rackpdu
APC AP7960 Yes apc_rackpdu
APC AP7990 Yes apc_rackpdu
APC AP7998 Yes apc_rackpdu
APC AP8941 Yes apc_rackpdu
APC AP8953 Yes apc_rackpdu
APC AP8959 Yes apc_rackpdu
APC AP8961 Yes apc_rackpdu
APC AP8965 Yes apc_rackpdu
Aten all? Yes aten

CyberPower all? Untested cyberpower
EatonPower all? Untested eatonpower
Teltronix all? Yes teltronix

BayTech MRP27 Yes baytech_mrp27
Raritan PX3-5547V-V2 Yes raritan_pdu2
Raritan PX3-5726V Yes raritan_pdu2
Raritan PX3-5776U-N2 Yes raritan_pdu2
Raritan PX3-5969U-V2 Yes raritan_pdu2
Raritan PX3-596112U-V2 | Yes raritan_pdu2
Vertiv NU30212 Yes vertivgeist_pdu
ServerTech CW-16VE-P32M | Yes servertech_sentry3
ServerTech C2WG24SN Yes servertech_sentry4

4.1. Drivers, Hardware Types and Hardware Interfaces

239

Ironic Documentation, Release 21.1.2.dev10

Software Requirements

The PySNMP package must be installed, variously referred to as pysnmp or python-pysnmp

Enabling the SNMP Hardware Type

1.

3.

Add snmp to the list of enabled_hardware_types in ironic.conf. Also update
enabled_management_interfaces and enabled_power_interfaces in ironic.conf as
shown below:

. To enable the network boot fallback, update enable_netboot_fallback in ironic.conf:

Note: It is important to enable the fallback as SNMP hardware type does not support setting of
boot devices. When booting in legacy (BIOS) mode, the generated network booting artifact will
force booting from local disk. In UEFI mode, Ironic will configure the boot order using UEFI
variables.

Restart the Ironic conductor service.

service ironic-conductor restart

Ironic Node Configuration

Nodes configured to use the SNMP hardware type should have the driver field set to the hardware type

snmp.

The following property values have to be added to the nodes driver_info field:

snmp_driver: PDU manufacturer driver name or auto to automatically choose ironic snmp driver
based on SNMPv2-MIB: : sysObjectID value as reported by PDU.

snmp_address: the IPv4 address of the PDU controlling this node.

snmp_port: (optional) A non-standard UDP port to use for SNMP operations. If not specified,
the default port (161) is used.

snmp_outlet: The power outlet on the PDU (1-based indexing).

snmp_version: (optional) SNMP protocol version (permitted values 1, 2c or 3). If not specified,
SNMPv1 is chosen.

snmp_community: (Required for SNMPv1/SNMPv2c unless snmp_community_read and/or
snmp_community_write properties are present in which case the latter take over) SNMP com-
munity name parameter for reads and writes to the PDU.

240

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

snmp_community_read: SNMP community name parameter for reads to the PDU. Takes prece-
dence over the snmp_community property.

snmp_community_write: SNMP community name parameter for writes to the PDU. Takes prece-
dence over the snmp_community property.

snmp_user: (Required for SNMPv3) SNMPv3 User-based Security Model (USM) user name.
Synonym for now obsolete snmp_security parameter.

snmp_auth_protocol: SNMPv3 message authentication protocol ID. Valid values include:
none, md5, sha for all pysnmp versions and additionally sha224, sha256, sha384, sha512 for
pysnmp versions 4.4.1 and later. Default is none unless snmp_auth_key is provided. In the latter
case md5 is the default.

snmp_auth_key: SNMPv3 message authentication key. Must be 8+ characters long. Required
when message authentication is used.

snmp_priv_protocol: SNMPv3 message privacy (encryption) protocol ID. Valid values in-
clude: none, des, 3des, aes, aesl192, aes256 for all pysnmp version and additionally
aes192blmt, aes256blmt for pysnmp versions 4.4.3+. Note that message privacy requires using
message authentication. Default is none unless snmp_priv_key is provided. In the latter case
des is the default.

snmp_priv_key: SNMPv3 message privacy (encryption) key. Must be 8+ characters long. Re-
quired when message encryption is used.

snmp_context_engine_id: SNMPv3 context engine ID. Default is the value of authoritative
engine ID.

snmp_context_name: SNMPv3 context name. Default is an empty string.

The following command can be used to enroll a node with the snmp hardware type:

baremetal node create

--driver snmp --driver-info <pdu_manufacturer>
--driver-info <ip_address>

--driver-info <outlet_index>

--driver-info <community_string>

XClarity driver

Overview

The xclarity driver is targeted for IMM 2.0 and IMM 3.0 managed Lenovo servers. The xclarity
hardware type enables the user to take advantage of XClarity Manager by using the XClarity Python
Client.

4.1,

Drivers, Hardware Types and Hardware Interfaces 241

http://www3.lenovo.com/us/en/data-center/software/systems-management/xclarity/
http://pypi.org/project/python-xclarityclient/
http://pypi.org/project/python-xclarityclient/

Ironic Documentation, Release 21.1.2.dev10

Prerequisites

* The XClarity Client library should be installed on the ironic conductor node(s).

For example, it can be installed with pip:

Enabling the XClarity driver

1. Add xclarity to the list of enabled_hardware_types, enabled_power_interfaces and
enabled_management_interfaces in /etc/ironic/ironic.conf. For example:

2. Restart the ironic conductor service:

Registering a node with the XClarity driver

Nodes configured to use the driver should have the driver property set to xclarity.
The following properties are specified in the nodes driver_info field and are required:
* xclarity_manager_ip: The IP address of the XClarity Controller.

* xclarity_username: User account with admin/server-profile access privilege to the XClarity
Controller.

* xclarity_password: User account password corresponding to the xclarity_username to the
XClarity Controller.

* xclarity_hardware_id: The hardware ID of the XClarity managed server.

The baremetal node create command can be used to enroll a node with the xclarity driver. For
example:

baremetal node create --driver xclarity

--driver-info https://10.240.217.101
--driver-info admin

--driver-info password

--driver-info hardware_id

For more information about enrolling nodes see Enrollment in the install guide.

242 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Fake driver

Overview

The fake-hardware hardware type is what it claims to be: fake. Use of this type or the fake interfaces
should be temporary or limited to non-production environments, as the fake interfaces do not perform
any of the actions typically expected.

The fake interfaces can be configured to be combined with any of the real hardware interfaces, allowing
you to effectively disable one or more hardware interfaces for testing by simply setting that interface to
fake.

Use cases
Development

Developers can use fake-hardware hardware-type to mock out nodes for testing without those nodes
needing to exist with physical or virtual hardware.

Adoption

Some OpenStack deployers have used fake interfaces in Ironic to allow an adoption-style workflow with
Nova. By setting a nodes hardware interfaces to fake, its possible to deploy to that node with Nova
without causing any actual changes to the hardware or an OS already deployed on it.

This is generally an unsupported use case, but it is possible. For more information, see the relevant post
from CERN TechBlog.

4.1.3 Changing Hardware Types and Interfaces

Hardware types and interfaces are enabled in the configuration as described in Enabling drivers and
hardware types. Usually, a hardware type is configured on enrolling as described in Enrollment:

Any hardware interfaces can be specified on enrollment as well:

\

For the remaining interfaces the default value is assigned as described in Defaults for hardware interfaces.
Both the hardware type and the hardware interfaces can be changed later via the node update APIL.

4.1. Drivers, Hardware Types and Hardware Interfaces 243

https://techblog.web.cern.ch/techblog/post/ironic-nova-adoption/
https://techblog.web.cern.ch/techblog/post/ironic-nova-adoption/

Ironic Documentation, Release 21.1.2.dev10

Changing Hardware Interfaces

Hardware interfaces can be changed by the following command:

\

The modified interfaces must be enabled and compatible with the current nodes hardware type.

Changing Hardware Type

Changing the nodes hardware type can pose a problem. When the driver field is updated, the final result
must be consistent, that is, the resulting hardware interfaces must be compatible with the new hardware
type. This will not work:

This is because the fake-hardware hardware type defaults to fake implementations for some or all
interfaces, but the ipmi hardware type is not compatible with them. There are three ways to deal with
this situation:

1. Provide new values for all incompatible interfaces, for example:

\

2. Request resetting some of the interfaces to their new defaults by using the
--reset-<IFACE>-interface family of arguments, for example:

\

Note: This feature is available starting with ironic 11.1.0 (Rocky series, API version 1.45).

3. Request resetting all interfaces to their new defaults:

You can still specify explicit values for some interfaces:

244 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Note: This feature is available starting with ironic 11.1.0 (Rocky series, API version 1.45).

Static boot order configuration

Some hardware is known to misbehave when changing the boot device through the BMC. To work around
it you can use the noop management interface implementation with the ipmi and redfish hardware
types. In this case the Bare Metal service will not change the boot device for you, leaving the pre-
configured boot order.

For example, in case of the PXE boot:
1. Via any available means configure the boot order on the node as follows:

1. Boot from PXE/iPXE on the provisioning NIC.

Warning: If it is not possible to limit network boot to only provisioning NIC, make sure
that no other DHCP/PXE servers are accessible by the node.

2. Boot from hard drive.

2. Make sure the noop management interface is enabled, for example:

3. Change the node to use the noop management interface:

4.1.4 Unsupported drivers
The following drivers were declared as unsupported in ironic Newton release and as of Ocata release they
are removed from ironic:

* AMT driver - available as part of ironic-staging-drivers

* iBoot driver - available as part of ironic-staging-drivers

* Wake-On-Lan driver - available as part of ironic-staging-drivers

Virtualbox drivers
e SeaMicro drivers

MSFT OCS drivers

The SSH drivers were removed in the Pike release. Similar functionality can be achieved either with
Virtual BMC or using libvirt drivers from ironic-staging-drivers.

4.1. Drivers, Hardware Types and Hardware Interfaces 245

http://ironic-staging-drivers.readthedocs.io
http://ironic-staging-drivers.readthedocs.io
http://ironic-staging-drivers.readthedocs.io
https://opendev.org/openstack/virtualbmc
http://ironic-staging-drivers.readthedocs.io

Ironic Documentation, Release 21.1.2.dev10

4.2 Administrators Guide

If you are a system administrator running Ironic, this section contains information that may help you
understand how to operate and upgrade the services.

4.2.1 Ironic Python Agent
Overview

Ironic Python Agent (also often called IPA or just agent) is a Python-based agent which handles ironic
bare metal nodes in a variety of actions such as inspect, configure, clean and deploy images. IPA is
distributed over nodes and runs, inside of a ramdisk, the process of booting this ramdisk on the node.

For more information see the ironic-python-agent documentation.

Drivers

Starting with the Kilo release all deploy interfaces (except for fake ones) are using IPA. For nodes using
the Direct deploy interface, the conductor prepares a swift temporary URL or a local HTTP URL for the
image. IPA then handles the whole deployment process: downloading an image from swift, putting it on
the machine and doing any post-deploy actions.

Requirements

Using IPA requires it to be present and configured on the deploy ramdisk, see Building or downloading
a deploy ramdisk image

Using proxies for image download

Overview

When using the Direct deploy, IPA supports using proxies for downloading the user image. For example,
this could be used to speed up download by using a caching proxy.

Steps to enable proxies

1. Configure the proxy server of your choice (for example Squid, Apache Traffic Server). This will
probably require you to configure the proxy server to cache the content even if the requested URL
contains a query, and to raise the maximum cached file size as images can be pretty big. If you
have HTTPS enabled in swift (see swift deployment guide), it is possible to configure the proxy
server to talk to swift via HT'TPS to download the image, store it in the cache unencrypted and
return it to the node via HTTPS again. Because the image will be stored unencrypted in the cache,
this approach is recommended for images that do not contain sensitive information. Refer to your
proxy servers documentation to complete this step.

2. Set [glance]swift_temp_url_cache_enabled in the ironic conductor config file to True. The
conductor will reuse the cached swift temporary URLSs instead of generating new ones each time an
image is requested, so that the proxy server does not create new cache entries for the same image,

246 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-python-agent/zed/
http://www.squid-cache.org/Doc/
https://docs.trafficserver.apache.org/en/latest/index.html
https://docs.openstack.org/swift/zed/deployment_guide.html

Ironic Documentation, Release 21.1.2.dev10

based on the query part of the URL (as it contains some query parameters that change each time it
is regenerated).

3. Set [glance]swift_temp_url_expected_download_start_delay option in the ironic con-
ductor config file to the value appropriate for your hardware. This is the delay (in seconds) from
the time of the deploy request (when the swift temporary URL is generated) to when the URL is
used for the image download. You can think of it as roughly the time needed for IPA ramdisk to
startup and begin download. This value is used to check if the swift temporary URL duration is
large enough to let the image download begin. Also if temporary URL caching is enabled, this
will determine if a cached entry will still be valid when the download starts. It is used only if
[glance]swift_temp_url_cache_enabled is True.

4. Increase [glance]swift_temp_url_duration option inthe ironic conductor config file, as only
non-expired links to images will be returned from the swift temporary URLSs cache. This means
that if swift_temp_url_duration=1200 then after 20 minutes a new image will be cached by
the proxy server as the query in its URL will change. The value of this option must be greater than
or equal to [glance]swift_temp_url_expected_download_start_delay.

5. Add one or more of image_http_proxy, image_https_proxy, image_no_proxy to
driver_info properties in each node that will use the proxy.

Advanced configuration

Out-of-band vs. in-band power off on deploy

After deploying an image onto the nodes hard disk, Ironic will reboot the machine into the new image.
By default this power action happens in-band, meaning that the ironic-conductor will instruct the IPA
ramdisk to power itself off.

Some hardware may have a problem with the default approach and would require Ironic to talk directly
to the management controller to switch the power off and on again. In order to tell Ironic to do that, you
have to update the nodes driver_info field and set the deploy_forces_oob_reboot parameter with
the value of True. For example, the below command sets this configuration in a specific node:

4.2.2 Hardware Inspection
Overview

Inspection allows Bare Metal service to discover required node properties once required driver_info
fields (for example, IPMI credentials) are set by an operator. Inspection will also create the Bare Metal
service ports for the discovered ethernet MACs. Operators will have to manually delete the Bare Metal
service ports for which physical media is not connected. This is required due to the bug 1405131.

There are two kinds of inspection supported by Bare Metal service:

1. Out-of-band inspection is currently implemented by several hardware types, including ilo, idrac
and irmc.

2. In-band inspection by utilizing the ironic-inspector project.

4.2. Administrators Guide 247

https://bugs.launchpad.net/ironic/+bug/1405131
https://pypi.org/project/ironic-inspector

Ironic Documentation, Release 21.1.2.dev10

The node should be in the manageable state before inspection is initiated. If it is in the enroll or
available state, move it to manageable first:

Then inspection can be initiated using the following command:

Capabilities discovery

This is an incomplete list of capabilities we want to discover during inspection. The exact support is
hardware and hardware type specific though, the most complete list is provided by the iLO Hardware
Inspection Support.

secure_boot (true or false) whether secure boot is supported for the node
boot_mode (bios or uefi) the boot mode the node is using

cpu_vt (true or false) whether the CPU virtualization is enabled

cpu_aes (true or false) whether the AES CPU extensions are enabled
max_raid_level (integer, 0-10) maximum RAID level supported by the node
pci_gpu_devices (non-negative integer) number of GPU devices on the node

The operator can specify these capabilities in nova flavor for node to be selected for scheduling:

Please see a specific hardware type page for the exact list of capabilities this hardware type can discover.

In-band inspection

In-band inspection involves booting a ramdisk on the target node and fetching information directly from
it. This process is more fragile and time-consuming than the out-of-band inspection, but it is not vendor-
specific and works across a wide range of hardware. In-band inspection is using the ironic-inspector
project.

It is supported by all hardware types, and used by default, if enabled, by the ipmi hardware type. The
inspector inspect interface has to be enabled to use it:

If the ironic-inspector service is not registered in the service catalog, set the following option:

248 Chapter 4. Administrator Guide

https://pypi.org/project/ironic-inspector

Ironic Documentation, Release 21.1.2.dev10

In order to ensure that ports in Bare Metal service are synchronized with NIC ports on the node, the
following settings in the ironic-inspector configuration file must be set:

There are two modes of in-band inspection: managed inspection and unmanaged inspection.

Managed inspection

Inspection is managed when the Bare Metal conductor fully configures the node for inspection, including
setting boot device, boot mode and power state. This is the only way to conduct inspection using Virfual
media boot or with Layer 3 or DHCP-less ramdisk booting. This mode is engaged automatically when
the node has sufficient information to configure boot (e.g. ports in case of iPXE).

There are a few configuration options that tune managed inspection, the most important is
extra_kernel_params, which allows adding kernel parameters for inspection specifically. This is
where you can configure inspection collectors and other parameters, for example:

For the callback URL the ironic-inspector endpoint from the service catalog is used. If you want to
override the endpoint for callback only, set the following option:

Unmanaged inspection

Under unmanaged inspection we understand in-band inspection orchestrated by ironic-inspector or a
third party. This was the only inspection mode before the Ussuri release, and it is still used when the
nodes boot cannot be configured by the conductor. The options described above do not affect unmanaged
inspection. See ironic-inspector installation guide for more information.

If you want to prevent unmanaged inspection from working, set this option:

4.2. Administrators Guide 249

https://docs.openstack.org/ironic-python-agent/zed/admin/how_it_works.html#inspection
https://docs.openstack.org/ironic-inspector/zed/install/index.html

Ironic Documentation, Release 21.1.2.dev10

4.2.3 Node Deployment

Contents
* Node Deployment
— Overview

— Deploy Steps

— Deploy Templates

Overview

Node deployment is performed by the Bare Metal service to prepare a node for use by a workload. The
exact work flow used depends on a number of factors, including the hardware type and interfaces assigned
to a node.

Deploy Steps

The Bare Metal service implements deployment by collecting a list of deploy steps to perform on a
node from the Power, Deploy, Management, BIOS, and RAID interfaces of the driver assigned to the
node. These steps are then ordered by priority and executed on the node when the node is moved to the
deploying state.

Nodes move to the deploying state when attempting to move to the active state (when the hardware is
prepared for use by a workload). For a full understanding of all state transitions into deployment, please
see Bare Metal State Machine.

The Bare Metal service added support for deploy steps in the Rocky release.

Order of execution

Deploy steps are ordered from higher to lower priority, where a larger integer is a higher priority. If
the same priority is used by deploy steps on different interfaces, the following resolution order is used:
Power, Management, Deploy, BIOS, and RAID interfaces.

Agent steps

All deploy interfaces based on ironic-python-agent (i.e. direct, ansible and any derivatives) expose
the following deploy steps:

deploy.deploy (priority 100) In this step the node is booted using a provisioning image.

deploy.write_image (priority 80) An out-of-band (ansible) or in-band (direct) step that down-
loads and writes the image to the node.

deploy.tear_down_agent (priority 40) In this step the provisioning image is shut down.

deploy.switch_to_tenant_network (priority 30) In this step networking for the node is switched
from provisioning to tenant networks.

250 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

deploy.boot_instance (priority 20) In this step the node is booted into the user image.
Additionally, the direct deploy interfaces has:

deploy.prepare_instance_boot (priority 60) In this step the boot device is configured and the
bootloader is installed.

Note: For the ansible deploy interface these steps are done in deploy.write_image.

Accordingly, the following priority ranges can be used for custom deploy steps:

> 100 Out-of-band steps to run before deployment.

81 to 99 In-band deploy steps to run before the image is written.

61 to 79 In-band deploy steps to run after the image is written but before the bootloader is installed.
41 to 59 In-band steps to run after the image is written the bootloader is installed.

21 to 39 Out-of-band steps to run after the provisioning image is shut down.

1to 19 Any steps that are run when the user instance is already running.

In-band steps

More deploy steps can be provided by the ramdisk, see IPA hardware managers documentation for a
listing.

Requesting steps

Starting with Bare Metal API version 1.69 user can optionally supply deploy steps for node deployment
when invoking deployment or rebuilding. Overlapping steps will take precedence over Agent steps and
Deploy Templates steps.

Using baremetal client deploy steps can be passed via --deploy-steps argument. The argument
--deploy-steps is one of:

* a JSON string
* path to a JSON file whose contents are passed to the API
* -, to read from stdin. This allows piping in the deploy steps.

An example by passing a JSON string:

Format of JSON for deploy steps argument is described in Deploy step format section.

Note: Starting with ironicclient 4.6.0 you can provide a YAML file for --deploy-steps.

4.2. Administrators Guide 251

https://docs.openstack.org/ironic-python-agent/zed/admin/hardware_managers.html

Ironic Documentation, Release 21.1.2.dev10

Excluding the default steps

Starting with the Xena release, you can use the new Custom agent deploy interface to exclude the default
step write_image and skip bootloader installation in the prepare_instance_boot step.

Writing a Deploy Step

Please refer to Developing deploy and clean steps.

FAQ
What deploy step is running?

To check what deploy step the node is performing or attempted to perform and failed, run the following
command; it will return the value in the nodes driver_internal_info field:

The deploy_steps field will contain a list of all remaining steps with their priorities, and the first one
listed is the step currently in progress or that the node failed before going into deploy failed state.

Troubleshooting

If deployment fails on a node, the node will be put into the deploy failed state until the node is
deprovisioned. A deprovisioned node is moved to the available state after the cleaning process has
been performed successfully.

Strategies for determining why a deploy step failed include checking the ironic conductor logs, checking
logs from the ironic-python-agent that have been stored on the ironic conductor, or performing general
hardware troubleshooting on the node.

Deploy Templates
Starting with the Stein release, with Bare Metal API version 1.55, deploy templates offer a way to define
a set of one or more deploy steps to be executed with particular sets of arguments and priorities.

Each deploy template has a name, which must be a valid trait. Traits can be either standard or custom.
Standard traits are listed in the os_traits library. Custom traits must meet the following requirements:

* prefixed with CUSTOM_
* contain only upper case characters A to Z, digits O to 9, or underscores

* no longer than 255 characters in length

252 Chapter 4. Administrator Guide

https://docs.openstack.org/os-traits/zed/

Ironic Documentation, Release 21.1.2.dev10

Deploy step format

An invocation of a deploy step is defined in a deploy template as follows:

A deploy template contains a list of one or more such steps. Each combination of inferface and step may
only be specified once in a deploy template.

Matching deploy templates

During deployment, if any of the traits in a nodes instance_info.traits field match the name of a
deploy template, then the steps from that deploy template will be added to the list of steps to be executed
by the node.

When using the Compute service, any traits in the instances flavor properties or image properties are
stored in instance_info.traits during deployment. See Scheduling based on traits for further in-
formation on how traits are used for scheduling when the Bare Metal service is used with the Compute
service.

Note that there is no ongoing relationship between a node and any templates that are matched during
deployment. The set of matching deploy templates is checked at deployment time. Any subsequent
updates to or deletion of those templates will not be reflected in the nodes configuration unless it is
redeployed or rebuilt. Similarly, if a node is rebuilt and the set of matching deploy templates has changed
since the initial deployment, then the resulting configuration of the node may be different from the initial
deployment.

Overriding default deploy steps

A deploy step is enabled by default if it has a non-zero default priority. A default deploy step may be
overridden in a deploy template. If the steps priority is a positive integer it will be executed with the
specified priority and arguments. If the steps priority is zero, the step will not be executed.

If the deploy.deploy step is included in a deploy template, it can only be assigned a priority of zero to
disable it.

4.2. Administrators Guide 253

Ironic Documentation, Release 21.1.2.dev10

Creating a deploy template via API

A deploy template can be created using the Bare Metal API:

Here is an example of the body of a request to create a deploy template with a single step:

Further information on this API is available here.

Creating a deploy template via baremetal client

A deploy template can be created via the baremetal deploy template create command, starting
with python-ironicclient 2.7.0.

The argument --steps must be specified. Its value is one of:
* a JSON string
* path to a JSON file whose contents are passed to the API
* -, to read from stdin. This allows piping in the deploy steps.

Example of creating a deploy template with a single step using a JSON string:

Or with a file:

254 Chapter 4. Administrator Guide

https://docs.openstack.org/api-ref/baremetal/index.html?expanded=create-deploy-template-detail#create-deploy-template

Ironic Documentation, Release 21.1.2.dev10

Or with stdin:

Example of use with the Compute service

Note: The deploy steps used in this example are for example purposes only.

In the following example, we first add the trait CUSTOM_HYPERTHREADING_ON to the node represented
by <node>:

We also update the flavor bm-hyperthreading-on in the Compute service with the following property:

Creating a Compute instance with this flavor will ensure that the instance is scheduled only to Bare Metal
nodes with the CUSTOM_HYPERTHREADING_ON trait.

We could then create a Bare Metal deploy template with the name CUSTOM_HYPERTHREADING_ON and a
deploy step that enables Hyperthreading:

4.2. Administrators Guide 255

Ironic Documentation, Release 21.1.2.dev10

When an instance is created using the bm-hyperthreading-on flavor, then the deploy steps of deploy
template CUSTOM_HYPERTHREADING_ON will be executed during the deployment of the scheduled node,
causing Hyperthreading to be enabled in the nodes BIOS configuration.

To make this example more dynamic, lets add a second trait CUSTOM_HYPERTHREADING_OFF to the node:

We could also update a second flavor, bm-hyperthreading-off, with the following property:

Finally, we create a deploy template with the name CUSTOM_HYPERTHREADING_OFF and a deploy step
that disables Hyperthreading:

Creating a Compute instance with the bm-hyperthreading-off instance will cause the scheduled node
to have Hyperthreading disabled in the BIOS during deployment.

We now have a way to create Compute instances with different configurations, by choosing between
different Compute flavors, supported by a single Bare Metal node that is dynamically configured during
deployment.

4.2.4 Node cleaning
Overview

Ironic provides two modes for node cleaning: automated and manual.

Automated cleaning is automatically performed before the first workload has been assigned to a node
and when hardware is recycled from one workload to another.

Manual cleaning must be invoked by the operator.

256 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Automated cleaning

When hardware is recycled from one workload to another, ironic performs automated cleaning on the
node to ensure its ready for another workload. This ensures the tenant will get a consistent bare metal
node deployed every time.

Ironic implements automated cleaning by collecting a list of cleaning steps to perform on a node from
the Power, Deploy, Management, BIOS, and RAID interfaces of the driver assigned to the node. These
steps are then ordered by priority and executed on the node when the node is moved to cleaning state,
if automated cleaning is enabled.

With automated cleaning, nodes move to cleaning state when moving from active -> available
state (when the hardware is recycled from one workload to another). Nodes also traverse cleaning when
going from manageable -> available state (before the first workload is assigned to the nodes). For a
full understanding of all state transitions into cleaning, please see Bare Metal State Machine.

Ironic added support for automated cleaning in the Kilo release.

Enabling automated cleaning

To enable automated cleaning, ensure that your ironic.conf is set as follows:

This will enable the default set of cleaning steps, based on your hardware and ironic hardware types used
for nodes. This includes, by default, erasing all of the previous tenants data.

You may also need to configure a Cleaning Network.

Cleaning steps

Cleaning steps used for automated cleaning are ordered from higher to lower priority, where a larger inte-
ger is a higher priority. In case of a conflict between priorities across interfaces, the following resolution
order is used: Power, Management, Deploy, BIOS, and RAID interfaces.

You can skip a cleaning step by setting the priority for that cleaning step to zero or None.
You can reorder the cleaning steps by modifying the integer priorities of the cleaning steps.

See How do I change the priority of a cleaning step? for more information.

Storage cleaning options

Clean steps specific to storage are erase_devices, erase_devices_metadata and (added in Yoga)
erase_devices_express.

erase_devices aims to ensure that the data is removed in the most secure way available. On
devices that support hardware assisted secure erasure (many NVMe and some ATA drives) this
is the preferred option. If hardware-assisted secure erasure is not available and if [deploy]l/
continue_if_ disk_secure_erase_fails is set to True, cleaning will fall back to using shred
to overwrite the contents of the device. Otherwise cleaning will fail. It is important to note that
erase_devices may take a very long time (hours or even days) to complete, unless fast, hardware

4.2. Administrators Guide 257

Ironic Documentation, Release 21.1.2.dev10

assisted data erasure is supported by all the devices in a system. Generally, it is very difficult (if possible
at all) to recover data after performing cleaning with erase_devices.

erase_devices_metadata clean step doesnt provide as strong assurance of irreversible destruction
of data as erase_devices. However, it has the advantage of a reasonably quick runtime (seconds to
minutes). It operates by destroying metadata of the storage device without erasing every bit of the data
itself. Attempts of restoring data after running erase_devices_metadata may be successful but would
certainly require relevant expertise and specialized tools.

Lastly, erase_devices_express combines some of the perks of both erase_devices and
erase_devices_metadata. It attempts to utilize hardware assisted data erasure features if available
(currently only NVMe devices are supported). In case hardware-asssisted data erasure is not available,
it falls back to metadata erasure for the device (which is identical to erase_devices_metadata). It
can be considered a time optimized mode of storage cleaning, aiming to perform as thorough data era-
sure as it is possible within a short period of time. This clean step is particularly well suited for en-
vironments with hybrid NVMe-HDD storage configuration as it allows fast and secure erasure of data
stored on NVMes combined with equally fast but more basic metadata-based erasure of data on HDDs.
erase_devices_express is disabled by default. In order to use it, the following configuration is rec-
ommended.

This ensures that erase_devices and erase_devices_metadata are disabled so that storage is not
cleaned twice and then assigns a non-zero priority to erase_devices_express, hence enabling it. Any
non-zero priority specified in the priority override will work.

Also [deploy]/enable_nvme_secure_erase should not be disabled (it is on by default).

Management Interface

Table 6: idrac cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
clear_job_queue Clear the job queue. 0 no
known_good_stateReset the iDRAC, Clear the | O no
job queue.
reset_idrac Reset the iDRAC. 0 no

258 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Table 7: idrac-redfish cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
clear_job_queue Clear iDRAC job queue. 0 no
clear_secure_bootldaeynsl secure boot keys. 0 no
export_configuratiport the configuration of | 0 no export_configuration_location

the server.
Exports the configuration of
the server against which the
step is run and stores it in
specific format in indicated
location.
Uses Dells Server Config-
uration Profile (SCP) from
sushy-oem-idrac library to
get ALL configuration for
cloning.
param task A

task from

TaskMan-

ager.

param export_configuration_location

URL
location
to save
the con-
figuration
to.

of

(required) URL of location
to save the configuration to.

import_configuralmport and apply the config-

uration to the server.
Gets pre-created configura-
tion from storage by given
location and imports that
into given server. Uses Dells
Server Configuration Profile
(SCP).
param task A

task from

TaskMan-

ager.

param import_configuration_lo

URL
location
to fetch
desired
config-
uration
from.

of

no

cation

import_configuration_location

(required) URL of location
to fetch desired configura-
tion from.

import_export_d

no

export_configuration_1g

(reaired)—1URIL -of location
Feqit F—oii=—01H10caon

pcation

4.2. Administrata

tion from storage by given

name and imports that into
A ftor that oav

OIvAan carvAar

128 =277

to save the configuration 99
import_configuration_lg
(required) URL of location

tAn fatrh Aocivrad ~AAanfoilira

pcation

Ironic Documentation, Release 21.1.2.dev10

Table 8: idrac-wsman cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
clear_job_queue Clear the job queue. 0 no
known_good_stateReset the iDRAC, Clear the | O no
job queue.
reset_idrac Reset the iDRAC. 0 no

260 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Table 9: ilo cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
activate_licenseActivates iLO Advanced li- | O no ilo_license_key (re-
cense. quired) The HPE iLO
Advanced license key to
activate enterprise features.
add_https_certifAddtére signed HTTPS cer- | 0 no cert_file (required) This
tificate to the iLO. argument represents the path
to the signed HTTPS certifi-
cate which will be added to
the iL.O.
clear_secure_bgotldaendl secure boot keys. 0 no
Clears all the secure boot
keys. This operation is sup-
ported only on HP Proliant
Gen9 and above servers.
create_csr Creates the CSR. 0 no csr_params (required)
This arguments represents
the information needed to
create the CSR certificate.
The keys to be provided
are City, CommonName,
OrgName, State.
reset_bios_to_deRasett the BIOS settings to | 10 no
default values.
Resets BIOS to default set-
tings. This operation is
currently supported only on
HP Proliant Gen9 and above
servers.
reset_ilo Resets the iLO. 0 no
reset_ilo_credernRésels the iLO password. 30 no
reset_secure_booRedstysecuwe dedamkeys to | 20 no
manufacturing defaults.
Resets the secure boot keys
to manufacturing defaults.
This operation is supported
only on HP Proliant Gen9
and above servers.
security_paramet€pdatepdh¢security param- | 0 no security_parameters
eters. (required) This argument
represents the ordered list
of JSON dictionaries of
security parameters. Each
security parameter consists
of three fields, namely
param, ignore and enable
from which param field
will be mandatory. These
fields represent security
PaldlllCtCl jirisniilon igllUlC ﬂd
4.2. Administrators Guide and state of the securf@]1
parameter. The supported
security parameter names
D Uk B [R

https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step

Ironic Documentation, Release 21.1.2.dev10

Table 10: ilo5 cleaning steps

tificate to the iLO.

Name Details Prior- | Stop- | Arguments
ity pable
activate_licenseActivates iLO Advanced li- | O no ilo_license_key (re-
cense. quired) The HPE iLO
Advanced license key to
activate enterprise features.
add_https_certifAddtére signed HTTPS cer- | 0 no cert_file (required) This

argument represents the path
to the signed HTTPS certifi-
cate which will be added to
the iL.O.

clear_ca_certifiChenes the certificates pro- | 0 no
vided in the list of files to
iLO.

certificate_files (re-
quired) The list of files
containing the certificates to
be cleared. If empty list is
specified, all the certificates
on the ilo will be cleared,
except the certificates in
the file configured with
configuration parameter
webserver_verify_ca are
spared as they are required
for booting the deploy image
for some boot interfaces.

clear_secure_bootldaewnsdl secure boot keys. 0 no
Clears all the secure boot
keys. This operation is sup-
ported only on HP Proliant
Gen9 and above servers.

create_csr Creates the CSR. 0 no

Ccsr_params (required)
This arguments represents
the information needed to
create the CSR certificate.
The keys to be provided
are City, CommonName,
OrgName, State.

erase_devices | Erase all the drives on the | 0 no
node.

This method performs out-
of-band sanitize disk erase
on all the supported physi-
cal drives in the node. This
erase cannot be performed
on logical drives.

erase_pattern Dic-
tionary of disk type and
corresponding erase pattern
to be used to perform spe-
cific out-of-band sanitize
disk erase. Supported
values are, for hdd: (over-
write, crypto, zero), for
ssd: (block, crypto, zero).
Default pattern is: {hdd:
overwrite, ssd: block}.

one_button_securkraseake whole system se- | 0 no
curely.
The One-button secure

araca nracace racate i l-O-and
CrasCProCossSTOSCHS TIEOahtr

there, resets BIOS settings,

and deletes all Active Health
Crrctrmant L ALTICN av A vxraseeem 1 <7

https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step
https://docs.openstack.org/ironic/latest/admin/drivers/ilo.html#initiating-firmware-update-as-manual-clean-step

Ironic Documentation, Release 21.1.2.dev10

Table 11: irmc cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
clear_secure_bootldaeynsdl secure boot keys. 0 no
reset_secure_booRedmtysectwe dedaikeys to | 0 no
manufacturing defaults.
restore_irmc_bijoRestoref BJOS config for a | 0 no
node.
update_firmware Updates the firmware on the | O no firmware_images (re-
node. quired) A list of firmware
images to apply.

Table 12: redfish cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
clear_secure_bootldaeynsl secure boot keys. 0 no
reset_secure_booRedmtyseciwe dedatikeys to | 0 no
manufacturing defaults.
update_firmware Updates the firmware on the | 0 no firmware_images (re-
node. quired) A list of firmware
images to apply.

Bios Interface

Table 13: idrac-redfish cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
apply_configuratAepply the BIOS settings to | O no settings (required) A list
the node. of BIOS settings to be ap-
plied
factory_reset | Reset the BIOS settings of | 0 no
the node to the factory de-
fault.

4.2. Administrators Guide

263

Ironic Documentation, Release 21.1.2.dev10

Table 14: idrac-wsman cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
apply_configuratAeply the BIOS configura- | 0 no settings (required) List
tion to the node of BIOS settings to apply
param task a
TaskMan-
ager
instance
contain-
ing the
node to
act on
param settings
List of
BIOS
settings to
apply
raises DRA-
COpera-
tionError
upon
an error
from
python-
dracclient
factory_reset | Reset the BIOS settings of | 0 no
the node to the factory de-
fault.
This uses the Lifecycle Con-
troller configuration to per-
form BIOS configuration re-
set. Leveraging the python-
dracclient methods already
available.
Table 15: ilo cleaning steps
Name Details Prior- | Stop- | Arguments
ity pable
apply_configuratAeplies the provided config- | 0 no settings (required) Dic-
uration on the node. tionary with current BIOS
configuration.
factory_reset | Reset the BIOS settings to | 0 no
factory configuration.

264 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Table 16: irmc cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
apply_configuratAeplies BIOS configuration | 0 no settings (required) Dic-

on the given node.

This method takes the
BIOS settings from the
settings param and applies
BIOS configuration on
the given node. After the
BIOS configuration is done,
self.cache_bios_settings()
may be called to sync
the nodes BIOS-related
information with the BIOS
configuration applied on the
node. It will also validate
the given settings before
applying any settings and
manage failures when set-
ting an invalid BIOS config.
In the case of needing pass-
word to update the BIOS
config, it will be taken from
the driver_info properties.

tionary containing the BIOS
configuration.

Table 17: redfish cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
apply_configuratApply the BIOS settings to | O no settings (required) A list
the node. of BIOS settings to be ap-
plied
factory_reset | Reset the BIOS settings of | 0 no
the node to the factory de-
fault.

4.2. Administrators Guide

265

Ironic Documentation, Release 21.1.2.dev10

Raid Interface

Table 18: agent cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
create_configura€icme a RAID configura- | 0 no

tion on a bare metal using
agent ramdisk.

This method creates a RAID
configuration on the given
node.
delete_configuraBebmes RAID configuration | O no
on the given node.

Table 19: ibmc cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
create_configura€ieme a RAID configura- | 0 no create_nonroot_volumes
tion. This specifies whether to
This method creates a RAID create the non-root volumes.
configuration on the given Defaults to True.
node. create_root_volume

This specifies whether to
create the root volume.
Defaults to True.
delete_existing Setting
this to True indicates to
delete existing RAID con-
figuration prior to creating
the new configuration. De-
fault value is False.

delete_configuraebme the RAID configura- | 0 no
tion.

266 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Table 20: idrac cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
create_configuratismne the RAID configura- | 0 no create_nonroot_volumes
tion. This specifies whether to
This method creates the create the non-root volumes.
RAID configuration on the Defaults to True.
given node. create_root_volume
This specifies whether to
create the root volume.
Defaults to True.
delete_existing Setting
this to True indicates to
delete existing RAID con-
figuration prior to creating
the new configuration. De-
fault value is False.
delete_configuraebme the RAID configura- | 0 no
tion.
Table 21: idrac-redfish cleaning steps
Name Details Prior- | Stop- | Arguments
ity pable
create_configuratimme RAID configuration | 0 no create_nonroot_volumes
on the node. This specifies whether to
This method creates create the non-root volumes.
the RAID configu- Defaults to True.
ration as read from create_root_volume
node.target_raid_config. This specifies whether to
This method by default will create the root volume.
create all logical disks. Defaults to True.
delete_existing Setting
this to True indicates to
delete existing RAID con-
figuration prior to creating
the new configuration. De-
fault value is False.
delete_configuraebme RAID configuration | O no
on the node.

4.2. Administrators Guide

267

Ironic Documentation, Release 21.1.2.dev10

Table 22: idrac-wsman cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
create_configuratismne the RAID configura- | 0 no create_nonroot_volumes
tion. This specifies whether to
This method creates the create the non-root volumes.
RAID configuration on the Defaults to True.
given node. create_root_volume
This specifies whether to
create the root volume.
Defaults to True.
delete_existing Setting
this to True indicates to
delete existing RAID con-
figuration prior to creating
the new configuration. De-
fault value is False.
delete_configuraebme the RAID configura- | 0 no
tion.
Table 23: ilo5 cleaning steps
Name Details Prior- | Stop- | Arguments
ity pable
create_configuratimme a RAID configura- | O no create_nonroot_volumes
tion on a bare metal using This specifies whether to
agent ramdisk. create the non-root volumes.
This method creates a RAID Defaults to True.
configuration on the given create_root_volume
node. This specifies whether to
create the root volume.
Defaults to True.
delete_configuraebme the RAID configura- | 0 no
tion.

Table 24: irmc cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable
create_configuratisme the RAID configura- | 0 no create_nonroot_volumes
tion. This specifies whether to
This method creates the create the non-root volumes.
RAID configuration on the Defaults to True.
given node. create_root_volume
This specifies whether
to create the root vol-
ume.Defaults to True.
delete_configuraebme the RAID configura- | 0 no

tion.

268

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Table 25: redfish cleaning steps

Name Details Prior- | Stop- | Arguments
ity pable

create_configuratimme RAID configuration | 0 no create_nonroot_volumes
on the node. This specifies whether to
This method creates create the non-root volumes.
the RAID configu- Defaults to True.
ration as read from create_root_volume
node.target_raid_config. This specifies whether to
This method by default will create the root volume.
create all logical disks. Defaults to True.

delete_existing Setting
this to True indicates to
delete existing RAID con-
figuration prior to creating
the new configuration. De-
fault value is False.

delete_configuraelme RAID configuration | O no
on the node.

Manual cleaning

Manual cleaningis typically used to handle long running, manual, or destructive tasks that an operator
wishes to perform either before the first workload has been assigned to a node or between workloads.
When initiating a manual clean, the operator specifies the cleaning steps to be performed. Manual clean-
ing can only be performed when a node is in the manageable state. Once the manual cleaning is finished,
the node will be put in the manageable state again.

Ironic added support for manual cleaning in the 4.4 (Mitaka series) release.

Setup

In order for manual cleaning to work, you may need to configure a Cleaning Network.

Starting manual cleaning via API

Manual cleaning can only be performed when a node is in the manageable state. The REST API request
to initiate it is available in API version 1.15 and higher:

(Additional information is available here.)

This API will allow operators to put a node directly into cleaning provision state from manageable
state via target: clean. The PUT will also require the argument clean_steps to be specified. This is an
ordered list of cleaning steps. A cleaning step is represented by a dictionary (JSON), in the form:

4.2. Administrators Guide 269

https://docs.openstack.org/api-ref/baremetal/index.html?expanded=change-node-provision-state-detail#change-node-provision-state

Ironic Documentation, Release 21.1.2.dev10

The interface and step keys are required for all steps. If a cleaning step method takes keyword arguments,
the args key may be specified. It is a dictionary of keyword variable arguments, with each keyword-
argument entry being <name>: <value>.

If any step is missing a required keyword argument, manual cleaning will not be performed and the node
will be put in clean failed provision state with an appropriate error message.

If, during the cleaning process, a cleaning step determines that it has incorrect keyword arguments, all
earlier steps will be performed and then the node will be put in clean failed provision state with an
appropriate error message.

An example of the request body for this API:

In the above example, the nodes RAID interface would configure hardware RAID without non-root vol-
umes, and then all devices would be erased (in that order).

Starting manual cleaning via openstack metal CLI

Manual cleaning is available via the baremetal node clean command, starting with Bare Metal API
version 1.15.

The argument --clean-steps must be specified. Its value is one of:
* a JSON string
* path to a JSON file whose contents are passed to the API

* -, to read from stdin. This allows piping in the clean steps. Using - to signify stdin is common in
Unix utilities.

The following examples assume that the Bare Metal API version was set via the
OS_BAREMETAL_API_VERSION environment variable. (The alternative is to add
--os-baremetal-api-version 1.15 to the command.):

270 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Examples of doing this with a JSON string:

\

\
Or with a file:

\

Or with stdin:

Cleaning Network

If you are using the Neutron DHCP provider (the default) you will also need to ensure you have configured
a cleaning network. This network will be used to boot the ramdisk for in-band cleaning. You can use the
same network as your tenant network. For steps to set up the cleaning network, please see Configure the
Bare Metal service for cleaning.

In-band vs out-of-band

Ironic uses two main methods to perform actions on a node: in-band and out-of-band. Ironic supports
using both methods to clean a node.

In-band

In-band steps are performed by ironic making API calls to a ramdisk running on the node using a deploy
interface. Currently, all the deploy interfaces support in-band cleaning. By default, ironic-python-agent
ships with a minimal cleaning configuration, only erasing disks. However, you can add your own cleaning
steps and/or override default cleaning steps with a custom Hardware Manager.

4.2. Administrators Guide 271

Ironic Documentation, Release 21.1.2.dev10

Out-of-band

Out-of-band are actions performed by your management controller, such as IPMI, iLO, or DRAC. Out-
of-band steps will be performed by ironic using a power or management interface. Which steps are
performed depends on the hardware type and hardware itself.

For Out-of-Band cleaning operations supported by iLO hardware types, refer to Node Cleaning Support.

FAQ

How are cleaning steps ordered?

For automated cleaning, cleaning steps are ordered by integer priority, where a larger integer is a higher
priority. In case of a conflict between priorities across hardware interfaces, the following resolution order
is used:

1. Power interface

2. Management interface
3. Deploy interface

4. BIOS interface

5. RAID interface

For manual cleaning, the cleaning steps should be specified in the desired order.

How do | skip a cleaning step?

For automated cleaning, cleaning steps with a priority of 0 or None are skipped.

How do | change the priority of a cleaning step?

For manual cleaning, specify the cleaning steps in the desired order.
For automated cleaning, it depends on whether the cleaning steps are out-of-band or in-band.
Most out-of-band cleaning steps have an explicit configuration option for priority.

Changing the priority of an in-band (ironic-python-agent) cleaning step requires use of a custom Hard-
wareManager. The only exception is erase_devices, which can have its priority set in ironic.conf. For
instance, to disable erase_devices, youd set the following configuration option:

To enable/disable the in-band disk erase using ilo hardware type, use the following configuration option:

272 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

The generic hardware manager first identifies whether a device is an NVMe drive or an ATA drive so
that it can attempt a platform-specific secure erase method. In case of NVMe drives, it tries to perform
a secure format operation by using the nvme-cli utility. This behavior can be controlled using the
following configuration option (by default it is set to True):

In case of ATA drives, it tries to perform ATA disk erase by using the hdparm utility.

If neither method is supported, it performs software based disk erase using the shred utility. By default,
the number of iterations performed by shred for software based disk erase is 1. To configure the number
of iterations, use the following configuration option:

Overriding step priority

[conductor]clean_step_priority_override is a new configuration option which allows specify-
ing priority of each step using multiple configuration values:

This parameter can be specified as many times as required to define priorities for several cleaning steps
- the values will be combined.

What cleaning step is running?

To check what cleaning step the node is performing or attempted to perform and failed, run the following
command; it will return the value in the nodes driver_internal_info field:

baremetal node show $node_ident -f value -c driver_internal_info

The clean_steps field will contain a list of all remaining steps with their priorities, and the first one
listed is the step currently in progress or that the node failed before going into clean failed state.

Should | disable automated cleaning?

Automated cleaning is recommended for ironic deployments, however, there are some tradeoffs to hav-
ing it enabled. For instance, ironic cannot deploy a new instance to a node that is currently cleaning,
and cleaning can be a time consuming process. To mitigate this, we suggest using NVMe drives with
support for NVMe Secure Erase (based on nvme-cli format command) or ATA drives with support for
cryptographic ATA Security Erase, as typically the erase_devices step in the deploy interface takes the
longest time to complete of all cleaning steps.

4.2. Administrators Guide 273

Ironic Documentation, Release 21.1.2.dev10

Why cant | power on/off a node while its cleaning?

During cleaning, nodes may be performing actions that shouldnt be interrupted, such as BIOS or
Firmware updates. As a result, operators are forbidden from changing power state via the ironic API
while a node is cleaning.

Troubleshooting

If cleaning fails on a node, the node will be put into clean failed state. If the failure happens while
running a clean step, the node is also placed in maintenance mode to prevent ironic from taking actions
on the node. The operator should validate that no permanent damage has been done to the node and no
processes are still running on it before removing the maintenance mode.

Note: Older versions of ironic may put the node to maintenance even when no clean step has been
running.

Nodes in clean failed will not be powered off, as the node might be in a state such that powering it
off could damage the node or remove useful information about the nature of the cleaning failure.

A clean failed node can be moved to manageable state, where it cannot be scheduled by nova and
you can safely attempt to fix the node. To move a node from clean failed to manageable:

baremetal node manage $node_ident

You can now take actions on the node, such as replacing a bad disk drive.

Strategies for determining why a cleaning step failed include checking the ironic conductor logs, viewing
logs on the still-running ironic-python-agent (if an in-band step failed), or performing general hardware
troubleshooting on the node.

When the node is repaired, you can move the node back to available state, to allow it to be scheduled
by nova.

First, move it out of maintenance mode
baremetal node maintenance unset $node_ident

Now, make the node available for scheduling by nova
baremetal node provide $node_ident

The node will begin automated cleaning from the start, and move to available state when complete.

4.2.5 Node adoption
Overview
As part of hardware inventory lifecycle management, it is not an unreasonable need to have the capability

to be able to add hardware that should be considered in-use by the Bare Metal service, that may have been
deployed by another Bare Metal service installation or deployed via other means.

274 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

As such, the node adoption feature allows a user to define a node as active while skipping the
available and deploying states, which will prevent the node from being seen by the Compute service
as ready for use.

This feature is leveraged as part of the state machine workflow, where a node in manageable can be
moved to active state via the provision_state verb adopt. To view the state transition capabilities,
please see Bare Metal State Machine.

Note: For deployments using Ironic in conjunction with Nova, Ironics node adoption feature is not
suitable. If you need to adopt production nodes into Ironic and Nova, you can find a high-level recipe in
Adoption with Nova.

How it works

A node initially enrolled begins in the enroll state. An operator must then move the node to
manageable state, which causes the nodes power interface to be validated. Once in manageable state,
an operator can then explicitly choose to adopt a node.

Adoption of a node results in the validation of its boot interface, and upon success the process leverages
what is referred to as the takeover logic. The takeover process is intended for conductors to take over the
management of nodes for a conductor that has failed.

The takeover process involves the deploy interfaces prepare and take_over methods being called.
These steps take specific actions such as downloading and staging the deployment kernel and ramdisk,
ISO image, any required boot image, or boot ISO image and then places any PXE or virtual media
configuration necessary for the node should it be required.

The adoption process makes no changes to the physical node, with the exception of operator supplied
configurations where virtual media is used to boot the node under normal circumstances. An operator
should ensure that any supplied configuration defining the node is sufficient for the continued operation
of the node moving forward.

Possible Risk

The main risk with this feature is that supplied configuration may ultimately be incorrect or invalid which
could result in potential operational issues:

* rebuild verb - Rebuild is intended to allow a user to re-deploy the node to a fresh state. The risk
with adoption is that the image defined when an operator adopts the node may not be the valid
image for the pre-existing configuration.

If this feature is utilized for a migration from one deployment to another, and pristine original
images are loaded and provided, then ultimately the risk is the same with any normal use of the
rebuild feature, the server is effectively wiped.

* When deleting a node, the deletion or cleaning processes may fail if the incorrect deployment
image is supplied in the configuration as the node may NOT have been deployed with the supplied
image and driver or compatibility issues may exist as a result.

Operators will need to be cognizant of that possibility and should plan accordingly to ensure that
deployment images are known to be compatible with the hardware in their environment.

4.2. Administrators Guide 275

Ironic Documentation, Release 21.1.2.dev10

* Networking - Adoption will assert no new networking configuration to the newly adopted node as
that would be considered modifying the node.

Operators will need to plan accordingly and have network configuration such that the nodes will
be able to network boot.

How to use

Note: The power state that the ironic-conductor observes upon the first successful power state check, as
part of the transition to the manageable state will be enforced with a node that has been adopted. This
means a node that is in power off state will, by default, have the power state enforced as power off
moving forward, unless an administrator actively changes the power state using the Bare Metal service.

Requirements

Requirements for use are essentially the same as to deploy a node:
* Sufficient driver information to allow for a successful power management validation.
» Sufficient instance_info to pass deploy interface preparation.

Each driver may have additional requirements dependent upon the configuration that is supplied. An
example of this would be defining a node to always boot from the network, which will cause the conductor
to attempt to retrieve the pertinent files. Inability to do so will result in the adoption failing, and the node
being placed in the adopt failed state.

Example

This is an example to create a new node, named testnode, with sufficient information to pass basic
validation in order to be taken from the manageable state to active state:

= -

(continues on next page)

276 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Note: In the above example, the image_source setting must reference a valid image or file, however that
image or file can ultimately be empty.

Note: The above example utilizes a capability that defines the boot operation to be local. It is recom-
mended to define the node as such unless network booting is desired.

Note: The above example will fail a re-deployment as a fake image is defined and no in-
stance_info/image_checksum value is defined. As such any actual attempt to write the image out will
fail as the image_checksum value is only validated at time of an actual deployment operation.

Note: A user may wish to assign an instance_uuid to a node, which could be used to match an instance
in the Compute service. Doing so is not required for the proper operation of the Bare Metal service.

baremetal node set <node name or uuid> instance-uuid <uuid>

Note: In Newton, coupled with API version 1.20, the concept of a network_interface was introduced.
A user of this feature may wish to add new nodes with a network_interface of noop and then change the
interface at a later point and time.

Troubleshooting

Should an adoption operation fail for a node, the error that caused the failure will be logged in the nodes
last_error field when viewing the node. This error, in the case of node adoption, will largely be due
to failure of a validation step. Validation steps are dependent upon what driver is selected for the node.

Any node that is in the adopt failed state can have the adopt verb re-attempted. Example:

If a user wishes to abort their attempt at adopting, they can then move the node back to manageable
from adopt failed state by issuing the manage verb. Example:

If all else fails the hardware node can be removed from the Bare Metal service. The node delete
command, which is not the same as setting the provision state to deleted, can be used while the node
is in adopt failed state. This will delete the node without cleaning occurring to preserve the nodes
current state. Example:

4.2. Administrators Guide 277

Ironic Documentation, Release 21.1.2.dev10

Adoption with Nova

Since there is no mechanism to create bare metal instances in Nova when nodes are adopted into Ironic,
the node adoption feature described above cannot be used to add in production nodes to deployments
which use Ironic together with Nova.

One option to add in production nodes to an Ironic/Nova deployment is to use the fake drivers. The overall
idea is that for Nova the nodes are instantiated normally to ensure the instances are properly created in
the compute project while Ironic does not touch them.

Here are some high level steps to be used as a guideline:
* create a bare metal flavor and a hosting project for the instances
* enroll the nodes into Ironic, create the ports, move them to manageable
* change the hardware type and the interfaces to fake drivers
* provide the nodes to make them available
* one by one, add the nodes to the placement aggregate and create instances
 change the hardware type and the interfaces back to the real ones

Make sure you change the drivers to the fake ones before providing the nodes as cleaning will otherwise
wipe your production servers!

The reason to make all nodes available and manage access via the aggregate is that this is much faster
than providing nodes one by one and relying on the resource tracker to find them. Enabling them one by
one is required to make sure the instance name and the (pre-adoption) name of the server match.

The above recipe does not cover Neutron which, depending on your deployment, may need to be handled
in addition.

4.2.6 Node retirement

Overview

Retiring nodes is a natural part of a servers life cycle, for instance when the end of the warranty is reached
and the physical space is needed for new deliveries to install replacement capacity.

However, depending on the type of the deployment, removing nodes from service can be a full workflow
by itself as it may include steps like moving applications to other hosts, cleaning sensitive data from disks
or the BMC, or tracking the dismantling of servers from their racks.

Ironic provides some means to support such workflows by allowing to tag nodes as retired which will
prevent any further scheduling of instances, but will still allow for other operations, such as cleaning, to
happen (this marks an important difference to nodes which have the maintenance flag set).

278 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

How to use

When it is known that a node shall be retired, set the retired flag on the node with:

This can be done irrespective of the state the node is in, so in particular while the node is active.

Note: An exception are nodes which are in available. For backwards compatibility reasons, these
nodes need to be moved to manageable first. Trying to set the retired flag for available nodes will
result in an error.

Optionally, a reason can be specified when a node is retired, e.g.:

\

Upon instance deletion, an active node with the retired flag set will not move to available, but to
manageable. The node will hence not be eligible for scheduling of new instances.

Equally, nodes with retired set to True cannot move from manageable to available: the provide
verb is blocked. This is to prevent accidental re-use of nodes tagged for removal from the fleet. In order
to move these nodes to available none the less, the retired field needs to be removed first. This can
be done via:

In order to facilitate the identification of nodes marked for retirement, e.g. by other teams, ironic also
allows to list all nodes which have the retired flag set:

4.2.7 RAID Configuration
Overview

Ironic supports RAID configuration for bare metal nodes. It allows operators to specify the desired RAID
configuration via the OpenStackClient CLI or REST API. The desired RAID configuration is applied on
the bare metal during manual cleaning.

The examples described here use the OpenStackClient CLI; please see the REST API reference for their
corresponding REST API requests.

4.2. Administrators Guide 279

https://docs.openstack.org/api-ref/baremetal/

Ironic Documentation, Release 21.1.2.dev10

Prerequisites

The bare metal node needs to use a hardware type that supports RAID configuration. RAID interfaces
may implement RAID configuration either in-band or out-of-band. Software RAID is supported on all
hardware, although with some caveats - see Software RAID for details.

In-band RAID configuration (including software RAID) is done using the Ironic Python Agent ramdisk.
For in-band hardware RAID configuration, a hardware manager which supports RAID should be bundled
with the ramdisk.

Whether a node supports RAID configuration could be found using the CLI command baremetal node
validate <node>. In-band RAID is usually implemented by the agent RAID interface.

Build agent ramdisk which supports RAID configuration

For doing in-band hardware RAID configuration, Ironic needs an agent ramdisk bundled with a hard-
ware manager which supports RAID configuration for your hardware. For example, the DIB support for
Proliant Hardware Manager should be used for HPE Proliant Servers.

Note: For in-band software RAID, the agent ramdisk does not need to be bundled with a hardware
manager as the generic hardware manager in the Ironic Python Agent already provides (basic) support
for software RAID.

RAID configuration JSON format

The desired RAID configuration and current RAID configuration are represented in JSON format.

Target RAID configuration

This is the desired RAID configuration on the bare metal node. Using the OpenStackClient CLI (or
REST API), the operator sets target_raid_config field of the node. The target RAID configuration
will be applied during manual cleaning.

Target RAID configuration is a dictionary having logical_disks as the key. The value for the
logical_disks is a list of JSON dictionaries. It looks like:

If the target_raid_config is an empty dictionary, it unsets the value of target_raid_config if the
value was set with previous RAID configuration done on the node.

Each dictionary of logical disk contains the desired properties of logical disk supported by the hardware
type. These properties are discoverable by:

280 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Mandatory properties

These properties must be specified for each logical disk and have no default values:

» size_gb - Size (Integer) of the logical disk to be created in GiB. MAX may be specified if the logical
disk should use all of the remaining space available. This can be used only when backing physical
disks are specified (see below).

* raid_level - RAID level for the logical disk. Ironic supports the following RAID levels: 0, 1, 2,
5, 6, 1+0, 5+0, 6+0.

Optional properties

These properties have default values and they may be overridden in the specification of any logical disk.
None of these options are supported for software RAID.

* volume_name - Name of the volume. Should be unique within the Node. If not specified, volume
name will be auto-generated.

e is_root_volume - Set to true if this is the root volume. At most one logical disk can have this
set to true; the other logical disks must have this set to false. The root device hint will be
saved, if the RAID interface is capable of retrieving it. This is false by default.

Backing physical disk hints

These hints are specified for each logical disk to let Ironic find the desired disks for RAID configuration.
This is machine-independent information. This serves the use-case where the operator doesnt want to
provide individual details for each bare metal node. None of these options are supported for software
RAID.

* share_physical_disks - Set to true if this logical disk can share physical disks with other
logical disks. The default value is false, except for software RAID which always shares disks.

* disk_type - hdd or ssd. If this is not specified, disk type will not be a criterion to find backing
physical disks.

* interface_type - sata or scsi or sas. If this is not specified, interface type will not be a
criterion to find backing physical disks.

* number_of_physical_disks - Integer, number of disks to use for the logical disk. Defaults to
minimum number of disks required for the particular RAID level, except for software RAID which
always spans all disks.

4.2. Administrators Guide 281

Ironic Documentation, Release 21.1.2.dev10

Backing physical disks

These are the actual machine-dependent information. This is suitable for environments where the op-
erator wants to automate the selection of physical disks with a 3rd-party tool based on a wider range
of attributes (eg. S.M.A.R.T. status, physical location). The values for these properties are hardware
dependent.

» controller - The name of the controller as read by the RAID interface. In order to trigger the
setup of a Software RAID via the Ironic Python Agent, the value of this property needs to be set
to software.

* physical_disks - A list of physical disks to use as read by the RAID interface.

For software RAID physical_disks is a list of device hints in the same format as used for Spec-
ifying the disk for deployment (root device hints). The number of provided hints must match the
expected number of backing devices (repeat the same hint if necessary).

Note: If properties from both Backing physical disk hints or Backing physical disks are specified, they
should be consistent with each other. If they are not consistent, then the RAID configuration will fail
(because the appropriate backing physical disks could not be found).

Examples for target_raid_config

Example 1. Single RAID disk of RAID level 5 with all of the space available. Make this the root volume
to which Ironic deploys the image:

Example 2. Two RAID disks. One with RAID level 5 of 100 GiB and make it root volume and use SSD.
Another with RAID level 1 of 500 GiB and use HDD:

(continues on next page)

282 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

"disk_type": "hdd"

Example 3. Single RAID disk. I know which disks and controller to use:

"logical_disks"

"size_gb": 100

"raid_level™: "5"
"controller": "Smart Array P822 in Slot 3"
"physical_disks" "6I:1:5", "6I:1:6", "6I:1:7"

"is_root_volume": true

Example 4. Using backing physical disks:

"logical_disks"

"size_gb": 50

"raid_level"”: "1+0"

"controller": "RAID.Integrated.1-1"
"volume_name": "root_volume"

"is_root_volume": true

"physical_disks"
"Disk.Bay.0:Encl.Int.0-1:RAID.Integrated.1-1
"Disk.Bay.l:Encl.Int.0-1:RAID.Integrated.1-

"size_gb": 100

"raid_level”: "5"
"controller": "RAID.Integrated.1-1"
"volume_name": "data_volume"

"physical_disks"
"Disk.Bay.2:Encl.Int.0-1:RAID.Integrated.1-1"
"Disk.Bay.3:Encl.Int.0-1:RAID.Integrated.1-1"
"Disk.Bay.4:Encl.Int.0-1:RAID.Integrated.1-1"

Example 5. Software RAID with two RAID devices:

4.2. Administrators Guide

283

Ironic Documentation, Release 21.1.2.dev10

Example 6. Software RAID, limiting backing block devices to exactly two devices with the size exceeding
100 GiB:

Current RAID configuration

After target RAID configuration is applied on the bare metal node, Ironic populates the current RAID
configuration. This is populated in the raid_config field in the Ironic node. This contains the details
about every logical disk after they were created on the bare metal node. It contains details like RAID con-
troller used, the backing physical disks used, WWN of each logical disk, etc. It also contains information
about each physical disk found on the bare metal node.

To get the current RAID configuration:

284 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Workflow

* Operator configures the bare metal node with a hardware type that has a RAIDInterface other
than no-raid. For instance, for Software RAID, this would be agent.

* For in-band RAID configuration, operator builds an agent ramdisk which supports RAID con-
figuration by bundling the hardware manager with the ramdisk. See Build agent ramdisk which
supports RAID configuration for more information.

* Operator prepares the desired target RAID configuration as mentioned in Target RAID configura-
tion. The target RAID configuration is set on the Ironic node:

\

The CLI command can accept the input from standard input also:

\

* Create a JSON file with the RAID clean steps for manual cleaning. Add other clean steps as desired:

Note: create_configuration doesnt remove existing disks. It is recommended to add
delete_configuration before create_configuration to make sure that only the desired logical disks
exist in the system after manual cleaning.

* Bring the node to manageable state and do a clean action to start cleaning on the node:

\

* After manual cleaning is complete, the current RAID configuration is reported in the
raid_config field when running:

4.2. Administrators Guide 285

Ironic Documentation, Release 21.1.2.dev10

Software RAID

Building Linux software RAID in-band (via the Ironic Python Agent ramdisk) is supported starting with
the Train release. It is requested by using the agent RAID interface and RAID configuration with all
controllers set to software. You can find a software RAID configuration example in Examples for
target_raid_config.

There are certain limitations to be aware of:

Only the mandatory properties (plus the required controller property) from Target RAID con-

Jiguration are currently supported.

The number of created Software RAID devices must be 1 or 2. If there is only one Software RAID
device, it has to be a RAID-1. If there are two, the first one has to be a RAID-1, while the RAID
level for the second one can be 0, 1, 1+0, 5, or 6. As the first RAID device will be the deployment
device, enforcing a RAID-1 reduces the risk of ending up with a non-booting node in case of a
disk failure.

Building RAID will fail if the target disks are already partitioned. Wipe the disks using e.g. the
erase_devices_metadata clean step before building RAID:

The final instance image must have the mdadm utility installed and needs to be able to detect soft-
ware RAID devices at boot time (which is usually done by having the RAID drivers embedded in
the images initrd).

Regular cleaning will not remove RAID configuration (similarly to hardware RAID). To destroy
RAID run the delete_configuration manual clean step.

There is no support for partition images, only whole-disk images are supported with Software
RAID. See Add images to the Image service. This includes flavors requesting dynamic creation of
swap filesystems. Swap should be pre-allocated inside of a disk image partition layout.

Images utilizing LVM for their root filesystem are not supported. Patches are welcome to explicitly
support such functionality.

If the root filesystem UUID is not known to Ironic via metadata, then the disk image layout MUST
have the first partition consist of the root filesystem. Ironic is agnostic if the partition table is a
DOS MBR or a GPT partition.

Starting in Ironic 14.0.0 (Ussuri), the root filesystem UUID can be set and passed through to Ironic
through the Glance Image Service properties sub-field rootfs_uuid for the image to be de-
ployed.

286

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Starting in Ironic 16.1.0 (Wallaby), similar functionality is available via the baremetal node
instance_info field value image_rootfs_uuid. See Using Bare Metal service as a standalone
service for more details on standalone usage including an example command.

* In UEFI mode, the Ironic Python Agent creates EFI system partitions (ESPs) for the bootloader and
the boot configuration (grub.cfg or grubenv) on all holder devices. The content of these partitions
is populated upon deployment from the deployed user image. Depending on how the partitions are
mounted, the content of the partitions may get out of sync, e.g. when new kernels are installed
or the bootloader is updated, so measures to keep these partitions in sync need to be taken. Note
that starting with the Victoria release, the Ironic Python Agent configures a RAID-1 mirror for the
ESPs, so no additional measures to ensure consistency of the ESPs should be required any longer.

* In BIOS mode, the Ironic Python Agent installs the boot loader onto all disks. While nothing is
required for kernel or grub package updates, re-installing the bootloader on one disk, e.g. during a
disk replacement, may require to re-install the bootloader on all disks. Otherwise, there is a risk of
an incompatibility of the grub components stored on the device (i.e. stagel/boot.img in the MBR
and stagel.5/core.img in the MBR gap) with the ones stored in /boot (stage2). This incompatibility
can render the node unbootable if the wrong disk is selected for booting.

* Linux kernel device naming is not consistent across reboots for RAID devices and may be num-
bered in a distribution specific pattern. Operators will need to be mindful of this if a root device
hint is utilized. A particular example of this is that the first md0 device on a Ubuntu based ramdisk
may start as device md0, whereas on a Centos or Red Hat Enterprise Linux based ramdisk may
start at device md127. After a reboot, these device names may change entirely.

Note: Root device hints should not be explicitly required to utilize software RAID. Candidate
devices are chosen by sorting the usable device list looking for the smallest usable device which
is then sorted by name. The secondary sort by name improves the odds for matching the first
initialized block device. In the case of software RAID, they are always a little smaller than the
primary block devices due to metadata overhead, which helps make them the most likely candidate
devices.

Image requirements

Since Ironic needs to perform additional steps when deploying nodes with software RAID, there are some
requirements the deployed images need to fulfill. Up to and including the Train release, the image needs
to have its root file system on the first partition. Starting with Ussuri, the image can also have additional
metadata to point Ironic to the partition with the root file system: for this, the image needs to set the
rootfs_uuid property with the file system UUID of the root file system. One way to extract this UUID
from an existing image is to download the image, mount it as a loopback device, and use blkid:

$ sudo losetup -f

$ sudo losetup /dev/loop® /tmp/myimage.raw
$ sudo kpartx -a /dev/loop®

$ blkid

The pre-Ussuri approach, i.e. to have the root file system on the first partition, is kept as a fallback and
hence allows software RAID deployments where Ironic does not have access to any image metadata (e.g.
Ironic stand-alone).

4.2. Administrators Guide 287

Ironic Documentation, Release 21.1.2.dev10

Using RAID in nova flavor for scheduling

The operator can specify the raid_level capability in nova flavor for node to be selected for scheduling:

Developer documentation

In-band RAID configuration is done using IPA ramdisk. IPA ramdisk has support for pluggable hardware
managers which can be used to extend the functionality offered by IPA ramdisk using stevedore plugins.
For more information, see Ironic Python Agent Hardware Manager documentation.

The hardware manager that supports RAID configuration should do the following:

1. Implement a method named create_configuration. This method creates the RAID config-
uration as given in target_raid_config. After successful RAID configuration, it returns the
current RAID configuration information which ironic uses to set node.raid_config.

2. Implement a method named delete_configuration. This method deletes all the RAID disks
on the bare metal.

3. Return these two clean steps in get_clean_steps method with priority as 0. Example:

4.2.8 BIOS Configuration
Overview
The Bare Metal service supports BIOS configuration for bare metal nodes. It allows administrators to

retrieve and apply the desired BIOS settings via CLI or REST API. The desired BIOS settings are applied
during manual cleaning.

Prerequisites

Bare metal servers must be configured by the administrator to be managed via ironic hardware type that
supports BIOS configuration.

288 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-python-agent/zed/install/index.html#hardware-managers

Ironic Documentation, Release 21.1.2.dev10

Enabling hardware types

Enable a specific hardware type that supports BIOS configuration. Refer to Enabling drivers and hard-
ware types for how to enable a hardware type.

Enabling hardware interface

To enable the bios interface:

Append the actual bios interface name supported by the enabled hardware type to
enabled_bios_interfaces with comma separated values in ironic.conf.

All available in-tree bios interfaces are listed in setup.cfg file in the source code tree, for example:

Retrieve BIOS settings

To retrieve the cached BIOS configuration from a specified node:

$ baremetal node bios setting list <node>

BIOS settings are cached on each node cleaning operation or when settings have been applied successfully
via BIOS cleaning steps. The return of above command is a table of last cached BIOS settings from
specified node. If -f json is added as suffix to above command, it returns BIOS settings as following:

To get a specified BIOS setting for a node:

4.2. Administrators Guide 289

Ironic Documentation, Release 21.1.2.dev10

$ baremetal node bios setting show <node> <setting-name>

If -f jsonis added as suffix to above command, it returns BIOS settings as following:

Configure BIOS settings

Two Manual cleaning steps are available for managing nodes BIOS settings:

Factory reset

This cleaning step resets all BIOS settings to factory default for a given node:

The factory_reset cleaning step does not require any arguments, as it resets all BIOS settings to
factory defaults.

Apply BIOS configuration

This cleaning step applies a set of BIOS settings for a node:

(continues on next page)

290 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

The representation of apply_configuration cleaning step follows the same format of Manual clean-
ing. The desired BIOS settings can be provided via the settings argument which contains a list of
BIOS options to be applied, each BIOS option is a dictionary with name and value keys.

To check whether the desired BIOS configuration is set properly, use the command mentioned in the
Retrieve BIOS settings section.

Note: When applying BIOS settings to a node, vendor-specific driver may take the given BIOS settings
from the argument and compare them with the current BIOS settings on the node and only apply when
there is a difference.

4.2.9 Rescue Mode
Overview
The Bare Metal Service supports putting nodes in rescue mode using hardware types that support res-

cue interfaces. The hardware types utilizing ironic-python-agent with PXE/Virtual Media based boot
interface can support rescue operation when configured appropriately.

Note: The rescue operation is currently supported only when tenant networks use DHCP to obtain IP
addresses.

Rescue operation can be used to boot nodes into a rescue ramdisk so that the rescue user can access the
node, in order to provide the ability to access the node in case access to OS is not possible. For example,
if there is a need to perform manual password reset or data recovery in the event of some failure, rescue
operation can be used.

4.2. Administrators Guide 291

Ironic Documentation, Release 21.1.2.dev10

Configuring The Bare Metal Service

Configure the Bare Metal Service appropriately so that the service has the information needed to boot
the ramdisk before a user tries to initiate rescue operation. This will differ somewhat between different
deploy environments, but an example of how to do this is outlined below:

1. Create and configure ramdisk that supports rescue operation. Please see Building or downloading
a deploy ramdisk image for detailed instructions to build a ramdisk.

2. Configure a network to use for booting nodes into the rescue ramdisk in neutron, and note the UUID
or name of this network. This is required if youre using the neutron DHCP provider and have Bare
Metal Service managing ramdisk booting (the default). This can be the same network as your
cleaning or tenant network (for flat network). For an example of how to configure new networks
with Bare Metal Service, see the Configure the Networking service for bare metal provisioning
documentation.

3. Add the unique name or UUID of your rescue network to ironic.conf:

Note: This can be set per node via driver_info[rescuing_network]

4. Restart the ironic conductor service.

5. Specity a rescue kernel and ramdisk or rescue ISO compatible with the nodes driver for pxe based
boot interface or virtual-media based boot interface respectively.

Example for pxe based boot interface:

See Add images to the Image service for details. If you are not using Image service, it is possible
to provide images to Bare Metal service via hrefs.

After this, The Bare Metal Service should be ready for rescue operation. Test it out by attempting to
rescue an active node and connect to the instance using ssh, as given below:

To move a node back to active state after using rescue mode you can use unrescue. Please unmount
any filesystems that were manually mounted before proceeding with unrescue. The node unrescue can
be done as given below:

rescue and unrescue operations can also be triggered via the Compute Service using the following
commands:

292 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

4.2.10 Boot From Volume
Overview

The Bare Metal service supports booting from a Cinder iSCSI volume as of the Pike release. This guide
will primarily deal with this use case, but will be updated as more paths for booting from a volume, such
as FCoE, are introduced.

The boot from volume is supported on both legacy BIOS and UEFI (iPXE binary for EFI booting) boot
mode. We need to perform with suitable images which will be created by diskimage-builder tool.

How this works - From Ironics point of view

In essence, ironic sets the stage for the process, by providing the required information to the boot interface
to facilitate the configuration of the the node OR the iPXE boot templates such that the node CAN be
booted.

In this example, the boot interface does the heavy lifting. For drivers the irmc and ilo hardware types
with hardware type specific boot interfaces, they are able to signal via an out of band mechanism to the
baremetal nodes BMC that the integrated iSCSI initiators are to connect to the supplied volume target
information.

In most hardware this would be the network cards of the machine.

In the case of the ipxe boot interface, templates are created on disk which point to the iscsi target infor-
mation that was either submitted as part of the volume target, or when integrated with Nova, what was
requested as the baremetals boot from volume disk upon requesting the instance.

In terms of network access, both interface methods require connectivity to the iscsi target. In the vendor
driver specific path, additional network configuration options may be available to allow separation of
standard network traffic and instance network traffic. In the iPXE case, this is not possible as the OS
userspace re-configures the iSCSI connection after detection inside the OS ramdisk boot.

An iPXE user may be able to leverage multiple VIFs, one specifically set to be set with pxe_enabled
to handle the initial instance boot and back-end storage traffic where as external facing network traffic
occurs on a different interface. This is a common pattern in iSCSI based deployments in the physical
realm.

4.2. Administrators Guide 293

Ironic Documentation, Release 21.1.2.dev10

Prerequisites

Currently booting from a volume requires:
e Bare Metal service version 9.0.0
e Bare Metal API microversion 1.33 or later

* A driver that utilizes the PXE boot mechanism. Currently booting from a volume is supported by
the reference drivers that utilize PXE boot mechanisms when iPXE is enabled.

* iPXE is an explicit requirement, as it provides the mechanism that attaches and initiates booting
from an iSCSI volume.

* Metadata services need to be configured and available for the instance images to obtain configura-
tion such as keys. Configuration drives are not supported due to minimum disk extension sizes.

Conductor Configuration

In ironic.conf, you «can specify a list of enabled storage interfaces. Check
[DEFAULT]enabled_storage_interfaces in your ironic.conf to ensure that your desired inter-
face is enabled. For example, to enable the cinder and noop storage interfaces:

If you want to specify a default storage interface rather than setting the storage interface
on a per node basis, set [DEFAULT]default_storage_interface in ironic.conf. The
default_storage_interface will be used for any node that doesnt have a storage interface
defined.

Node Configuration
Storage Interface

You will need to specify what storage interface the node will use to handle storage operations. For
example, to set the storage interface to cinder on an existing node:

baremetal node set --storage-interface cinder $NODE_UUID

A default storage interface can be specified in ironic.conf. See the Conductor Configuration section for
details.

294 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

iSCSI Configuration

In order for a bare metal node to boot from an iSCSI volume, the iscsi_boot capability for the node
must be set to True. For example, if you want to update an existing node to boot from volume:

baremetal node set --property capabilities=iscsi_boot:True $NODE_UUID

You will also need to create a volume connector for the node, so the storage interface will know how
to communicate with the node for storage operation. In the case of iSCSI, you will need to provide an
iSCSI Qualifying Name (IQN) that is unique to your SAN. For example, to create a volume connector
for iSCSI:

baremetal volume connector create \
--node $NODE_UUID --type ign --connector-id ign.2017-08.org.
—openstack.$NODE_UUID

Image Creation
We use disk-image-create in diskimage-builder tool to create images for boot from volume feature.
Some required elements for this mechanism for corresponding boot modes are as following:

* Legacy BIOS boot mode: iscsi-boot element.

* UEFI boot mode: iscsi-boot and block-device-efi elements.

An example below:

export IMAGE_NAME=<image_name>

export DIB_CLOUD_INIT_DATASOURCES="ConfigDrive, OpenStack"

disk-image-create centos7 vm cloud-init-datasources dhcp-all-interfaces iscsi-
—boot dracut-regenerate block-device-efi -o $IMAGE_NAME

Note:

* For CentOS images, we must add dependent element named dracut-regenerate during image
creation. Otherwise, the image creation will fail with an error.

* For Ubuntu images, we only support iscsi-boot element without dracut-regenerate element
during image creation.

Advanced Topics

Use without the Compute Service

As discussed in other sections, the Bare Metal service has a concept of a connector that is used to repre-
sent an interface that is intended to be utilized to attach the remote volume.

In addition to the connectors, we have a concept of a farget that can be defined via the API. While a user
of this feature through the Compute service would automatically have a new target record created for
them, it is not explicitly required, and can be performed manually.

4.2. Administrators Guide 295

Ironic Documentation, Release 21.1.2.dev10

A target record can be created using a command similar to the example below:

baremetal volume target create \
--node $NODE_UUID --type iscsi --boot-index 0 --volume $VOLUME_UUID

Note: A boot-index value of 0 represents the boot volume for a node. As the boot-index is per-node
in sequential order, only one boot volume is permitted for each node.

Use Without Cinder

In the Rocky release, an external storage interface is available that can be utilized without a Block
Storage Service installation.

Under normal circumstances the cinder storage interface interacts with the Block Storage Service to
orchestrate and manage attachment and detachment of volumes from the underlying block service system.

The external storage interface contains the logic to allow the Bare Metal service to determine if the
Bare Metal node has been requested with a remote storage volume for booting. This is in contrast to the
default noop storage interface which does not contain logic to determine if the node should or could boot
from a remote volume.

It must be noted that minimal configuration or value validation occurs with the external storage inter-
face. The cinder storage interface contains more extensive validation, that is likely un-necessary in a
external scenario.

Setting the external storage interface:

baremetal node set --storage-interface external $NODE_UUID

Setting a volume:

baremetal volume target create --node $NODE_UUID \
--type iscsi --boot-index ® --volume-id $VOLUME_UUID \
--property target_ign="iqn.2010-10.com.example:vol-X" \
--property target_lun="0" \
--property target_portal="192.168.0.123:3260" \
--property auth_method="CHAP" \
--property auth_username="ABC" \
--property auth_password="XYZ" \

Ensure that no image_source is defined:

baremetal node unset \
--instance-info image_source $NODE_UUID

Deploy the node:

baremetal node deploy $NODE_UUID

Upon deploy, the boot interface for the baremetal node will attempt to either create iPXE configuration
OR set boot parameters out-of-band via the management controller. Such action is boot interface specific
and may not support all forms of volume target configuration. As of the Rocky release, the bare metal

296 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

service does not support writing an Operating System image to a remote boot from volume target, so that
also must be ensured by the user in advance.

Records of volume targets are removed upon the node being undeployed, and as such are not persistent
across deployments.

Cinder Multi-attach

Volume multi-attach is a function that is commonly performed in computing clusters where dedicated
storage subsystems are utilized. For some time now, the Block Storage service has supported the concept
of multi-attach. However, the Compute service, as of the Pike release, does not yet have support to
leverage multi-attach. Concurrently, multi-attach requires the backend volume driver running as part of
the Block Storage service to contain support for multi-attach volumes.

When support for storage interfaces was added to the Bare Metal service, specifically for the cinder
storage interface, the concept of volume multi-attach was accounted for, however has not been fully
tested, and is unlikely to be fully tested until there is Compute service integration as well as volume
driver support.

The data model for storage of volume targets in the Bare Metal service has no constraints on the same
target volume from being utilized. When interacting with the Block Storage service, the Bare Metal
service will prevent the use of volumes that are being reported as in-use if they do not explicitly support
multi-attach.

4.2.11 Multi-tenancy in the Bare Metal service
Overview

It is possible to use dedicated tenant networks for provisioned nodes, which extends the current Bare
Metal service capabilities of providing flat networks. This works in conjunction with the Networking
service to allow provisioning of nodes in a separate provisioning network. The result of this is that
multiple tenants can use nodes in an isolated fashion. However, this configuration does not support trunk
ports belonging to multiple networks.

Concepts

Network interfaces

Network interface is one of the driver interfaces that manages network switching for nodes. There are 3
network interfaces available in the Bare Metal service:

* noop interface is used for standalone deployments, and does not perform any network switching;

» flat interface places all nodes into a single provider network that is pre-configured on the Net-
working service and physical equipment. Nodes remain physically connected to this network dur-
ing their entire life cycle.

* neutron interface provides tenant-defined networking through the Networking service, separating
tenant networks from each other and from the provisioning and cleaning provider networks. Nodes
will move between these networks during their life cycle. This interface requires Networking ser-
vice support for the switches attached to the baremetal servers so they can be programmed.

4.2. Administrators Guide 297

Ironic Documentation, Release 21.1.2.dev10

Local link connection

The Bare Metal service allows local_link_connection information to be associated with Bare Metal
ports. This information is provided to the Networking services ML2 driver when a Virtual Interface
(VIF) is attached. The ML2 driver uses the information to plug the specified port to the tenant network.

Table 26: 1local_link_connection fields

Field Description

switch_id Required. Identifies a switch and can be a MAC address or an OpenFlow-based
datapath_id.

port_id | Required. Port ID on the switch/Smart NIC, for example, Gig0/1, rep0-0.
switch_inf@ptional. Used to distinguish different switch models or other vendor-specific identifier.
Some ML2 plugins may require this field.

hostname | Required in case of a Smart NIC port. Hostname of Smart NIC device.

Note: This isnt applicable to Infiniband ports because the network topology is discoverable by the
Infiniband Subnet Manager. If specified, local_link_connection information will be ignored. If port is
Smart NIC port then:

1. port_id is the representor port name on the Smart NIC.

2. switch_id is not mandatory.

Physical networks

A Bare Metal port may be associated with a physical network using its physical_network field. The
Bare Metal service uses this information when mapping between virtual ports in the Networking service
and physical ports and port groups in the Bare Metal service. A ports physical network field is optional,
and if not set then any virtual port may be mapped to that port, provided that no free Bare Metal port
with a suitable physical network assignment exists.

The physical network of a port group is defined by the physical network of its constituent ports. The Bare
Metal service ensures that all ports in a port group have the same value in their physical network field.

When attaching a virtual interface (VIF) to a node, the following ordered criteria are used to select a
suitable unattached port or port group:

* Require ports or port groups to not have a physical network or to have a physical network that
matches one of the VIFs allowed physical networks.

* Prefer ports and port groups that have a physical network to ports and port groups that do not have
a physical network.

* Prefer port groups to ports. Prefer ports with PXE enabled.

298 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Configuring the Bare Metal service

See the Configure tenant networks section in the installation guide for the Bare Metal service.

Configuring nodes
1. Ensure that your python-ironicclient version and requested API version are sufficient for your re-
quirements.

* Multi-tenancy support was added in API version 1.20, and is supported by python-ironicclient
version 1.5.0 or higher.

* Physical network support for ironic ports was added in API version 1.34, and is supported by
python-ironicclient version 1.15.0 or higher.

* Smart NIC support for ironic ports was added in API version 1.53, and is supported by
python-ironicclient version 2.7.0 or higher.

The following examples assume you are using python-ironicclient version 2.7.0 or higher.

Export the following variable:

2. The nodes network_interface field should be set to a valid network interface. Valid interfaces
are listed in the [DEFAULT]/enabled_network_interfaces configuration option in the ironic-
conductors configuration file. Set it to neutron to use the Networking services ML2 driver:

Note: If the [DEFAULT]/default_network_interface configuration option is set, the
--network-interface option does not need to be specified when creating the node.

3. To update an existing nodes network interface to neutron, use the following commands:

baremetal node set $NODE_UUID_OR_NAME \
--network-interface neutron

4. Create a port as follows:

baremetal port create $HW_MAC_ADDRESS --node $NODE_UUID \
--local-link-connection switch_id=$SWITCH_MAC_ADDRESS \
--local-link-connection switch_info=$SWITCH_HOSTNAME \
--local-link-connection port_id=$SWITCH_PORT \
--pxe-enabled true \
--physical -network physnetl

An Infiniband port requires client ID, while local link connection information will be pop-
ulated by Infiniband Subnet Manager. The client ID consists of <12-byte vendor pre-
fix>:<8 byte port GUID>. There is no standard process for deriving the ports MAC address
(SHW_MAC_ADDRESS); it is vendor specific. For example, Mellanox ConnectX Family De-
vices prefix is ff:00:00:00:00:00:02:00:00:02:¢9:00. If port GUID was f4:52:14:03:00:38:39:81
the client ID would be f:00:00:00:00:00:02:00:00:02:¢9:00:4:52:14:03:00:38:39:81. Mellanox

4.2. Administrators Guide 299

Ironic Documentation, Release 21.1.2.dev10

ConnectX Family Devices HW_MAC_ADDRESS consists of 6 bytes; the port GUIDs lower 3
and higher 3 bytes. In this example it would be f4:52:14:38:39:81. Putting it all together, create
an Infiniband port as follows:

baremetal port create $HW_MAC_ADDRESS --node $NODE_UUID \
--pxe-enabled true \
--extra client-id=$CLIENT_ID \
--physical-network physnetl

5. Create a Smart NIC port as follows:

baremetal port create $HW_MAC_ADDRESS --node $NODE_UUID \
--local-link-connection hostname=$HOSTNAME \
--local-link-connection port_id=$REP_NAME \
--pxe-enabled true \
--physical-network physnetl \
--is-smartnic

A Smart NIC port requires hostname which is the hostname of the Smart NIC, and port_id
which is the representor port name within the Smart NIC.

6. Check the port configuration:

baremetal port show $PORT_UUID

After these steps, the provisioning of the created node will happen in the provisioning network, and then
the node will be moved to the tenant network that was requested.

Configuring the Networking service

In addition to configuring the Bare Metal service some additional configuration of the Networking service
is required to ensure ports for bare metal servers are correctly programmed. This configuration will be
determined by the Bare Metal service network interfaces you have enabled and which top of rack switches
you have in your environment.

flat network interface

In order for Networking service ports to correctly operate with the Bare Metal service flat network
interface the baremetal ML2 mechanism driver from networking-baremetal needs to be loaded into the
Networking service configuration. This driver understands that the switch should be already configured
by the admin, and will mark the networking service ports as successfully bound as nothing else needs to
be done.

1. Install the networking-baremetal library

pip install networking-baremetal

2. Enable the baremetal driver in the Networking service ML2 configuration file

300 Chapter 4. Administrator Guide

https://opendev.org/openstack/networking-baremetal

Ironic Documentation, Release 21.1.2.dev10

neutron network interface

The neutron network interface allows the Networking service to program the physical top of rack
switches for the bare metal servers. To do this an ML2 mechanism driver which supports the baremetal
VNIC type for the make and model of top of rack switch in the environment must be installed and enabled.

This is a list of known top of rack ML2 mechanism drivers which work with the neutron network
interface:

Cisco Nexus 9000 series To install and configure this ML2 mechanism driver see Nexus Mechanism
Driver Installation Guide.

FUJITSU CFX2000 networking-fujitsu ML2 driver supports this switch. The documentation is
available here.

Networking Generic Switch This is an ML2 mechanism driver built for testing against virtual bare
metal environments and some switches that are not covered by hardware specific ML2 mechanism
drivers. More information is available in the projects README.

4.2.12 Port groups support

The Bare Metal service supports static configuration of port groups (bonds) in the instances via config-
drive. See kernel documentation on bonding to see why it may be useful and how it is setup in linux.
The sections below describe how to make use of them in the Bare Metal service.

Switch-side configuration

If port groups are desired in the ironic deployment, they need to be configured on the switches. It needs
to be done manually, and the mode and properties configured on the switch have to correspond to the
mode and properties that will be configured on the ironic side, as bonding mode and properties may be
named differently on your switch, or have possible values different from the ones described in kernel
documentation on bonding. Please refer to your switch configuration documentation for more details.

Provisioning and cleaning cannot make use of port groups if they need to boot the deployment ramdisk
via (i)PXE. If your switches or desired port group configuration do not support port group fall-
back, which will allow port group members to be used by themselves, you need to set port groups
standalone_ports_supported value to be False in ironic, as it is True by default.

Physical networks
If any port in a port group has a physical network, then all ports in that port group must have the same
physical network.

In order to change the physical network of the ports in a port group, all ports must first be removed from
the port group, before changing their physical networks (to the same value), then adding them back to
the port group.

See physical networks for further information on using physical networks in the Bare Metal service.

4.2. Administrators Guide 301

https://networking-cisco.readthedocs.io/projects/test/en/latest/install/ml2-nexus.html#nexus-mechanism-driver-installation-guide
https://networking-cisco.readthedocs.io/projects/test/en/latest/install/ml2-nexus.html#nexus-mechanism-driver-installation-guide
https://opendev.org/x/networking-fujitsu/src/branch/master/doc/source/ml2_cfab.rst
https://opendev.org/openstack/networking-generic-switch/src/branch/master/README.rst
https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt

Ironic Documentation, Release 21.1.2.dev10

Port groups configuration in the Bare Metal service

Port group configuration is supported in ironic API microversions 1.26, the CLI commands below specify
it for completeness.

1. When creating a port group, the node to which it belongs must be specified, along with, optionally,

its name, address, mode, properties, and if it supports fallback to standalone ports:

baremetal port group create \

--node $NODE_UUID --name test --address fa:ab:25:48:fd:ba --mode 802.3ad \
--property miimon=100 --property xmit_hash_policy="layer2+3" \
--support-standalone-ports

A port group can also be updated with baremetal port group set command, see its help for
more details.

If an address is not specified, the port group address on the deployed instance will be the same as
the address of the neutron port that is attached to the port group. If the neutron port is not attached,
the port group will not be configured.

Note: In standalone mode, port groups have to be configured manually. It can be done either stati-
cally inside the image, or by generating the configdrive and adding it to the nodes instance_info.
For more information on how to configure bonding via configdrive, refer to cloud-init documenta-
tion and code. cloud-init version 0.7.7 or later is required for bonding configuration to work.

The following is a simple sample for configuring bonding via configdrive:

When booting an instance, it needs to add user-data file for configuring bonding via --user-data
option. For example:

302

Chapter 4. Administrator Guide

https://cloudinit.readthedocs.io/en/latest/topics/datasources/configdrive.html#version-2
https://cloudinit.readthedocs.io/en/latest/topics/datasources/configdrive.html#version-2
https://git.launchpad.net/cloud-init/tree/cloudinit

Ironic Documentation, Release 21.1.2.dev10

If the port groups address is not explicitly set in standalone mode, it will be set automatically by
the process described in kernel documentation on bonding.

During interface attachment, port groups have higher priority than ports, so they will be used
first. (It is not yet possible to specify which one is desired, a port group or a port, in an interface
attachment request). Port groups that dont have any ports will be ignored.

The mode and properties values are described in the kernel documentation on bonding. The
default port group mode is active-backup, and this default can be changed by setting the
[DEFAULT]default_portgroup_mode configuration option in the ironic API service configu-
ration file.

2. Associate ports with the created port group.

It can be done on port creation:

baremetal port create \
--node $NODE_UUID --address fa:ab:25:48:fd:ba --port-group test

Or by updating an existing port:

baremetal port set $PORT_UUID --port-group $PORT_GROUP_UUID

When updating a port, the node associated with the port has to be in enroll, manageable, or
inspecting states. A port group can have the same or different address as individual ports.

3. Boot an instance (or node directly, in case of using standalone ironic) providing an image that has
cloud-init version 0.7.7 or later and supports bonding.

When the deployment is done, you can check that the port group is set up properly by running the fol-
lowing command in the instance:

where X is a number autogenerated by cloud-init for each configured port group, in no particular order.
It starts with O and increments by 1 for every configured port group.

Link aggregation/teaming on windows

Portgroups are supported for Windows Server images, which can created by Building images for Windows
instruction.

You can customise an instance after it is launched along with script file in Configuration of Instance
and selected Configuration Drive option. Then ironic virt driver will generate network metadata and
add all the additional information, such as bond mode, transmit hash policy, MII link monitoring interval,
and of which links the bond consists. The information in InstanceMetadata will be used afterwards to
generate the config drive.

4.2. Administrators Guide 303

https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://opendev.org/openstack/ironic/src/branch/master/tools/link_aggregation_on_windows.ps1

Ironic Documentation, Release 21.1.2.dev10

4.2.13 Configuring Web or Serial Console
Overview

There are two types of console which are available in Bare Metal service, one is web console (Node web
console) which is available directly from web browser, another is serial console (Node serial console).

Node web console

The web console can be configured in Bare Metal service in the following way:

* Install shellinabox in ironic conductor node. For RHEL/CentOS, shellinabox package is not present
in base repositories, user must enable EPEL repository, you can find more from FedoraProject page.

Note: shellinabox is no longer maintained by the authorized author. This is a fork of the project
on GitHub that aims to continue with maintenance of the shellinabox project.

Installation example:

Ubuntu:

RHELS&/CentOS8/Fedora:

You can find more about shellinabox on the shellinabox page.

You can optionally use the SSL certificate in shellinabox. If you want to use the SSL certificate in
shellinabox, you should install openssl and generate the SSL certificate.

1. Install openssl, for example:

Ubuntu:

RHELS8/CentOS8/Fedora:

2. Generate the SSL certificate, here is an example, you can find more about openssl on the
openssl page:

304 Chapter 4. Administrator Guide

https://fedoraproject.org/wiki/Infrastructure/Mirroring
https://github.com/shellinabox/shellinabox
https://code.google.com/archive/p/shellinabox/
https://www.openssl.org/

Ironic Documentation, Release 21.1.2.dev10

* Customize the console section in the Bare Metal service configuration file (/etc/ironic/ironic.conf),
if you want to use SSL certificate in shellinabox, you should specify terminal_cert_dir. for
example:

* Append console parameters for bare metal PXE boot in the Bare Metal service configuration file
(/etcf/ironic/ironic.conf). See the reference for configuration in Appending kernel parameters to
boot instances.

* Enable the ipmitool-shellinabox console interface, for example:

* Configure node web console.

If the node uses a hardware type, for example ipmi, set the nodes console interface to
ipmitool-shellinabox:

Enable the web console, for example:

\

4.2. Administrators Guide 305

Ironic Documentation, Release 21.1.2.dev10

Check whether the console is enabled, for example:

Disable the web console, for example:

The <terminal_port> is driver dependent. The actual name of this field can be checked in driver
properties, for example:

For the ipmi hardware type, this option is ipmi_terminal_port. Give a customized port number
to <customized_port>, for example 8023, this customized port is used in web console url.

Get web console information for a node as follows:

You can open web console using above url through web browser. If console_enabledis false,
console_info is None, web console is disabled. If you want to launch web console, see the
Configure node web console part.

Note: An error message you may encounter when enabling the console can read Console
subprocess failed to start. Timeout or error while waiting for console
subprocess to start for node along with [server] Failed to find any available
port!. This error is coming from shellinabox itself, not from the communication with the BMC.
One potential cause for this issue is that there are already shellinabox daemons running which
block the configured port (remove them if appropriate and retry to enable the console).

306

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Node serial console

Serial consoles for nodes are implemented using socat. It is supported by the ipmi and irmc hardware
types.

Serial consoles can be configured in the Bare Metal service as follows:

« Install socat on the ironic conductor node. Also, socat needs to be in the $PATH environment
variable that the ironic-conductor service uses.

Installation example:

Ubuntu:

RHELS8/CentOS8/Fedora:

* Append console parameters for bare metal PXE boot in the Bare Metal service configuration file.
See the reference on how to configure them in Appending kernel parameters to boot instances.

* Enable the ipmitool-socat console interface, for example:

* Configure node console.

If the node uses a hardware type, for example ipmi, set the nodes console interface to
ipmitool-socat:

Enable the serial console, for example:

Check whether the serial console is enabled, for example:

Disable the serial console, for example:

Serial console information is available from the Bare Metal service. Get serial console information for a
node from the Bare Metal service as follows:

(continues on next page)

4.2. Administrators Guide 307

http://www.dest-unreach.org/socat

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

[}

If console_enabled is false or console_info is None then the serial console is disabled. If you
want to launch serial console, see the Configure node console.

Node serial console of the Bare Metal service is compatible with the serial console of the Compute
service. Hence, serial consoles to Bare Metal nodes can be seen and interacted with via the Dashboard
service. In order to achieve that, you need to follow the documentation for Serial Console from the
Compute service.

Configuring HA

When using Bare Metal serial console under High Availability (HA) configuration, you may consider
some settings below.

* If you use HAProxy, you may need to set the timeout for both client and server sides with appro-
priate values. Here is an example of the configuration for the timeout parameter.

* The Compute services caching feature may need to be enabled in order to make the Bare Metal
serial console work under a HA configuration. Here is an example of caching configuration in
nova.conf.

308 Chapter 4. Administrator Guide

https://docs.openstack.org/nova/zed/admin/remote-console-access.html#serial

Ironic Documentation, Release 21.1.2.dev10

4.2.14 Notifications

Ironic, when configured to do so, will emit notifications over a message bus that indicate different events
that occur within the service. These can be consumed by any external service. Examples may include a
billing or usage system, a monitoring data store, or other OpenStack services. This page describes how to
enable notifications and the different kinds of notifications that ironic may emit. The external consumer
will see notifications emitted by ironic as JSON objects structured in the following manner:

Configuration

To enable notifications with ironic, there are two configuration options in ironic.conf that must be ad-
justed.

The first option is the notification_level option in the [DEFAULT] section of the configuration file.
This can be set to debug, info, warning, error, or critical, and determines the minimum priority level for
which notifications are emitted. For example, if the option is set to warning, all notifications with priority
level warning, error, or critical are emitted, but not notifications with priority level debug or info. For
information about the semantics of each log level, see the OpenStack logging standards'. If this option
is unset, no notifications will be emitted. The priority level of each available notification is documented
below.

The second option is the transport_url option in the [oslo_messaging_notifications] section
of the configuration. This determines the message bus used when sending notifications. If this is unset,
the default transport used for RPC is used.

All notifications are emitted on the ironic_versioned_notifications topic in the message bus. Generally,
each type of message that traverses the message bus is associated with a topic describing what the message
is about. For more information, see the documentation of your chosen message bus, such as the RabbitMQ
documentation’.

Note that notifications may be lossy, and theres no guarantee that a notification will make it across the
message bus to a consumer.

! https://wiki.openstack.org/wiki/LoggingStandards#Log_level_definitions
2 https://www.rabbitmq.com/documentation.html

4.2. Administrators Guide 309

https://wiki.openstack.org/wiki/LoggingStandards#Log_level_definitions
https://www.rabbitmq.com/documentation.html

Ironic Documentation, Release 21.1.2.dev10

Versioning

Each notification has an associated version in the ironic_object.version field of the payload. Consumers
are guaranteed that microversion bumps will add new fields, while macroversion bumps are backwards-
incompatible and may have fields removed.

Versioned notifications are emitted by default to the ironic_versioned_notifications topic. This can be
changed and it is configurable in the ironic.conf with the versioned_notifications_topics config option.

Available notifications

The notifications that ironic emits are described here. They are listed (alphabetically) by service first,
then by event_type. All examples below show payloads before serialization to JSON.

ironic-api notifications
Resources CRUD notifications

These notifications are emitted from API service when ironic resources are modified as part of create,
update, or delete (CRUD)’ procedures. All CRUD notifications are emitted at INFO level, except for
error status that is emitted at ERROR level.

List of CRUD notifications for chassis:
* baremetal.chassis.create.start
* baremetal.chassis.create.end
* baremetal.chassis.create.error
e baremetal.chassis.update.start
* baremetal.chassis.update.end
e baremetal.chassis.update.error
* baremetal.chassis.delete.start
* baremetal.chassis.delete.end
* baremetal.chassis.delete.error

Example of chassis CRUD notification:

(continues on next page)

® https://en.wikipedia.org/wiki/Create, _read,_update_and_delete

310 Chapter 4. Administrator Guide

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

List of CRUD notifications for deploy template:

baremetal.
baremetal.
baremetal.

baremetal.

baremetal

baremetal.
baremetal.

baremetal.

baremetal

deploy_template

deploy_template.
deploy_template.
deploy_template.
.deploy_template.
deploy_template.
deploy_template.
deploy_template.

.deploy_template.

.Create.

Example of deploy template CRUD notification:

create.
create.
update.
update.
update.
delete.
delete.

delete.

start
end
error
start
end
error
start
end

error

(continues on next page)

4.2. Administrators Guide

311

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

List of CRUD notifications for node:

baremetal.
baremetal.
baremetal.
baremetal.
baremetal.
baremetal.
baremetal.
baremetal.

baremetal.

node.create.
node.create.
node.create.
node.update.
node.update.
node.update.
node.delete.
node.delete.

node.delete.

start
end
error
start
end
error
start
end

error

Example of node CRUD notification:

(continues on next page)

312

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

"instance_uuid": None
"last_error": None
"lessee": None
"maintenance": False
"maintenance_reason": None
"fault": None

"bios_interface": "no-bios"
"boot_interface": "pxe"
"console_interface": "no-console"
"deploy_interface": "direct"
"inspect_interface": "no-inspect"
"management_interface": "ipmitool"
"network_interface": "flat"
"power_interface": "ipmitool"
"raid_interface": "no-raid"
"rescue_interface": "no-rescue"
"storage_interface": "noop"
"vendor_interface": "no-vendor"

"name": None
"owner": None

"power_state": "power off"
"properties"
"memory_mb" 4096
"cpu_arch" "x86_64"
"local_gb" 10
"cpus" 8

"protected": False
"protected_reason": None
"provision_state": "deploying"
"provision_updated_at": "2016-01-27T20:41:03+00:00"
"resource_class": None
"retired": None
"retired_reason": None
"target_power_state": None
"target_provision_state": "active"
"traits"

"CUSTOM_TRAIT1"

"HW_CPU_X86_VMX"
"updated_at": "2016-01-27T20:41:03+00:00"
"uuid": "1be26cO®b-03f2-4d2e-ae87-c02d7£33c123"

"event_type":"baremetal.node.update.end"
"publisher_id":"ironic-api.hostname02"

List of CRUD notifications for port:
e baremetal.port.create.start

* baremetal.port.create.end

4.2. Administrators Guide 313

Ironic Documentation, Release 21.1.2.dev10

baremetal.
baremetal.
baremetal.
baremetal.
baremetal.
baremetal.

baremetal.

port.create.error

port.update.start

port.update.end

port.update.error

port.delete.start

port.delete.end

port.delete.error

Example of port CRUD notification:

List of CRUD notifications for port group:

baremetal.
baremetal.
baremetal.
baremetal.
baremetal.
baremetal.
baremetal.
baremetal.

baremetal.

portgroup.
portgroup.
portgroup.
portgroup.
portgroup.

portgroup.

portgroup

portgroup.

portgroup.

create.
create.
create.
update.
update.

update.

.delete.

delete.

delete.

start
end
error
start
end
error
start
end

error

314

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Example of portgroup CRUD notification:

List of CRUD notifications for volume connector:

* baremetal.volumeconnector.
* baremetal.volumeconnector.
* baremetal.volumeconnector.
* baremetal.volumeconnector.
* baremetal.volumeconnector.
e baremetal.volumeconnector.
* baremetal.volumeconnector.
* baremetal.volumeconnector.

e baremetal.volumeconnector.

create.
create.
create.
update.
update.
update.
delete.
delete.

delete.

start
end
error
start
end
error
start
end

error

Example of volume connector CRUD notification:

(continues on next page)

4.2. Administrators Guide

315

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

List of CRUD notifications for volume target:

baremetal.
baremetal.
baremetal.
baremetal.
baremetal.
baremetal
baremetal.
baremetal.

baremetal.

volumetarget

volumetarget.

volumetarget.

volumetarget

volumetarget

.volumetarget
volumetarget.
volumetarget.

volumetarget.

.Create.start
create.end
create.error
.update.start
.update.end
.update.error
delete.start
delete.end

delete.error

Example of volume target CRUD notification:

(continues on next page)

316

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Node maintenance notifications

These notifications are emitted from API service when maintenance mode is changed via API service.
List of maintenance notifications for a node:

e baremetal.node.maintenance_set.start
e baremetal.node.maintenance_set.end
e baremetal.node.maintenance_set.error

start and end notifications have INFO level, error has ERROR. Example of node maintenance notification:

(continues on next page)

4.2. Administrators Guide 317

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

"fault": None

"bios_interface": "no-bios"
"boot_interface": "pxe"
"console_interface": "no-console"
"deploy_interface": "direct"
"inspect_interface": "no-inspect"
"management_interface": "ipmitool"
"network_interface": "flat"
"power_interface": "ipmitool"
"raid_interface": "no-raid"
"rescue_interface": "no-rescue"
"storage_interface": "noop"
"vendor_interface": "no-vendor"

"name": None
"owner'": None

"power_state": "power off"
"properties"”
"memory_mb" 4096
"cpu_arch" "x86_64"
"local_gb" 10
"cpus" 8

"protected": False
"protected_reason": None
"provision_state": "available"
"provision_updated_at": "2016-01-27T20:41:03+00:00"
"resource_class": None
"retired": None
"retired_reason": None
"target_power_state": None
"target_provision_state": None
"traits"

"CUSTOM_TRAIT1"

"HW_CPU_X86_VMX"
"updated_at": "2016-01-27T20:41:03+00:00"
"uuid": "1be26cO®b-03f2-4d2e-ae87-c02d7£33c123"

"event_type" :"baremetal.node.maintenance_set.start"
"publisher_id":"ironic-api.hostname02"

318 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

ironic-conductor notifications

Node console notifications

These notifications are emitted by the ironic-conductor service when conductor service starts or stops
console for the node. The notification event types for a node console are:

* baremetal.node.console_set.start

e baremetal.node.console_set.end

* baremetal.node.console_set.error

* baremetal .node.console_restore.start
e baremetal.node.console_restore.end

* baremetal.node.console_restore.error

console_set action is used when start or stop console is initiated. The console_restore action
is used when the console was already enabled, but a driver must restart the console because an ironic-
conductor was restarted. This may also be sent when an ironic-conductor takes over a node that was being
managed by another ironic-conductor. start and end notifications have INFO level, error has ERROR.
Example of node console notification:

(continues on next page)

4.2. Administrators Guide 319

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

baremetal.node.power_set

* baremetal.node.power_set.start is emitted by the ironic-conductor service when it begins
a power state change. It has notification level info.

* baremetal.node.power_set.end is emitted when ironic-conductor successfully completes a
power state change task. It has notification level info.

* baremetal.node.power_set.error is emitted by ironic-conductor when it fails to set a nodes
power state. It has notification level error. This can occur when ironic fails to retrieve the old power
state prior to setting the new one on the node, or when it fails to set the power state if a change is
requested.

Here is an example payload for a notification with this event type. The to_power payload field indicates
the power state to which the ironic-conductor is attempting to change the node:

320 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

"priority": "info"
"payload"
"ironic_object.namespace":"ironic"
"ironic_object.name":"NodeSetPowerStatePayload"
"ironic_object.version":"1.15"
"ironic_object.data"
"clean_step": None
"conductor_group"
"console_enabled": False
"created_at": "2016-01-26T20:41:03+00:00"
"deploy_step": None

"description": "my sample node"
"driver": "ipmi"
"extra"

"inspection_finished_at": None

"inspection_started_at": None

"instance_uuid": "d6ea®0cl-1f94-4e95-90b3-3462d7031678"
"last_error": None

"lessee": None

"maintenance": False

"maintenance_reason": None

"fault": None

"bios_interface": "no-bios"
"boot_interface": "pxe"
"console_interface": "no-console"
"deploy_interface": "direct"
"inspect_interface": "no-inspect"
"management_interface": "ipmitool"
"network_interface": "flat"
"power_interface": "ipmitool"
"raid_interface": "no-raid"
"rescue_interface": "no-rescue"
"storage_interface": "noop"
"vendor_interface": "no-vendor"

"name": None
"owner": None

"power_state": "power off"
"properties"
"memory_mb" 4096
"cpu_arch" "x86_64"
"local_gb" 10
"cpus" 8

"protected": False

"protected_reason": None

"provision_state": "available"
"provision_updated_at": "2016-01-27T20:41:03+00:00"
"resource_class": None

"retired": None

"retired_reason": None

(continues on next page)

4.2. Administrators Guide 321

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

baremetal.node.power_state_corrected

* baremetal.node.power_state_corrected.success is emitted by ironic-conductor when the
power state on the baremetal hardware is different from the previous known power state of the node
and the database is corrected to reflect this new power state. It has notification level info.

Here is an example payload for a notification with this event_type. The from_power payload field indi-
cates the previous power state on the node, prior to the correction:

(continues on next page)

322 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

baremetal.node.provision_set

* baremetal.node.provision_set.start is emitted by the ironic-conductor service when it
begins a provision state transition. It has notification level INFO.

* baremetal.node.provision_set.end is emitted when ironic-conductor successfully com-
pletes a provision state transition. It has notification level INFO.

* baremetal.node.provision_set.success is emitted when ironic-conductor successfully
changes provision state instantly, without any intermediate work required (example is AVAIL-
ABLE to MANAGEABLE). It has notification level INFO.

4.2. Administrators Guide 323

Ironic Documentation, Release 21.1.2.dev10

* baremetal.node.provision_set.error is emitted by ironic-conductor when it changes pro-
vision state as result of error event processing. It has notification level ERROR.

Here is an example payload for a notification with this event type. The previous_provision_state and
previous_target_provision_state payload fields indicate a nodes provision states before state change, event

is the FSM (finite state machine) event that triggered the state change:

"priority": "info"
"payload"

"ironic_object.namespace":"ironic"

"ironic_object.name":"NodeSetProvisionStatePayload"

"ironic_object.version":"1.16"

"ironic_object.data"
"clean_step": None
"conductor_group"
"console_enabled": False
"created_at": "2016-01-26T20:41:03+00:00"
"deploy_step": None
"description": "my sample node"

"driver": "ipmi"
"driver_internal_info"
"is_whole_disk_image": True
"extra"
"inspection_finished_at": None
"inspection_started_at": None
"instance_info"
"instance_uuid": None
"last_error": None
"lessee": None
"maintenance": False
"maintenance_reason": None
"fault": None

"bios_interface": "no-bios"
"boot_interface": "pxe"
"console_interface": "no-console"
"deploy_interface": "direct"
"inspect_interface": "no-inspect"
"management_interface": "ipmitool"
"network_interface": "flat"
"power_interface": "ipmitool"
"raid_interface": "no-raid"
"rescue_interface": "no-rescue"
"storage_interface": "noop"
"vendor_interface": "no-vendor"

"name": None
"owner'": None

"power_state": "power off"
"properties"
"memory_mb" 4096
"cpu_arch" "x86_64"

(continues on next page)

324 Chapter 4.

Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

4.2.15 Conductor Groups
Overview

Large scale operators tend to have needs that involve creating well defined and delinated resources. In
some cases, these systems may reside close by or in far away locations. Reasoning may be simple or
complex, and yet is only known to the deployer and operator of the infrastructure.

A common case is the need for delineated high availability domains where it would be much more efficient
to manage a datacenter in Antarctica with a conductor in Antarctica, as opposed to a conductor in New
York City.

How it works

Starting in ironic 11.1, each node has a conductor_group field which influences how the ironic
conductor calculates (and thus allocates) baremetal nodes under ironics management. This calcu-
lation is performed independently by each operating conductor and as such if a conductor has a
[conductor]conductor_group configuration option defined in its ironic.conf configuration file, the
conductor will then be limited to only managing nodes with a matching conductor_group string.

Note: Any conductor without a [conductor]conductor_group setting will only manage baremetal
nodes without a conductor_group value set upon node creation. If no such conductor is present when

4.2. Administrators Guide 325

Ironic Documentation, Release 21.1.2.dev10

conductor groups are configured, node creation will fail unless a conductor_group is specified upon
node creation.

Warning: Nodes without a conductor_group setting can only be managed when a conductor
exists that does not have a [conductor]conductor_group defined. If all conductors have been
migrated to use a conductor group, such nodes are effectively orphaned.

How to use
A conductor group value may be any case insensitive string up to 255 characters long which matches the
Afa-zA-Z0-9_\-\.]*$ regular expression.

1. Set the [conductor]conductor_group option in ironic.conf on one or more, but not all con-
ductors:

2. Restart the ironic-conductor service.

3. Set the conductor group on one or more nodes:

\

4. As desired and as needed, remaining conductors can be updated with the first two steps. Please be
mindful of the constraints covered earlier in the document related to ability to manage nodes.

4.2.16 Security Overview

While the Bare Metal service is intended to be a secure application, it is important to understand what it
does and does not cover today.

Deployers must properly evaluate their use case and take the appropriate actions to secure their envi-
ronment(s). This document is intended to provide an overview of what risks an operator of the Bare
Metal service should be aware of. It is not intended as a How-To guide for securing a data center or an
OpenStack deployment.

REST API: user roles and policy settings

Warning: This information is presently in flux as of the Wallaby release with the implementation of
Secure RBAC where system and project scoped requests are able to be parsed and default access
controls support a delineation of roles and responsibilities through the roles. Please see Secure RBAC.

Beginning with the Newton (6.1.0) release, the Bare Metal service allows operators significant control
over API access:

326 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

* Access may be restricted to each method (GET, PUT, etc) for each REST resource. Defaults are
provided with the release and defined in code.

* Access may be divided between an administrative role with full access and observer role with
read-only access. By default, these roles are assigned the names baremetal_admin and
baremetal_observer, respectively.

* By default, passwords and instance secrets are hidden in driver_info and instance_info,
respectively. In case of debugging or diagnosing, the behavior can be overridden by changing the
policy file. To allow password in driver_info unmasked for users with administrative privileges,
apply following changes to policy configuration file:

And restart the Bare Metal API service to take effect. Please check Policies for more details.
Prior to the Newton (6.1.0) release, the Bare Metal service only supported two policy options:

* API access may be secured by a simple policy rule: users with administrative privileges may
access all API resources, whereas users without administrative privileges may only access public
API resources.

* Passwords contained in the driver_info field may be hidden from all API responses with the
show_password policy setting. This defaults to always hide passwords, regardless of the users
role. You can override it with policy configuration as described above.

Multi-tenancy

There are two aspects of multitenancy to consider when evaluating a deployment of the Bare Metal
Service: interactions between tenants on the network, and actions one tenant can take on a machine that
will affect the next tenant.

Network Interactions

Interactions between tenants workloads running simultaneously on separate servers include, but are not
limited to: IP spoofing, packet sniffing, and network man-in-the-middle attacks.

By default, the Bare Metal service provisions all nodes on a flat network, and does not take any pre-
cautions to avoid or prevent interaction between tenants. This can be addressed by integration with the
OpenStack Identity, Compute, and Networking services, so as to provide tenant-network isolation. Ad-
ditional documentation on network multi-tenancy is available.

Lingering Effects

Interactions between tenants placed sequentially on the same server include, but are not limited to:
changes in BIOS settings, modifications to firmware, or files left on disk or peripheral storage devices (if
these devices are not erased between uses).

By default, the Bare Metal service will erase (clean) the local disk drives during the cleaning phase,
after deleting an instance. It does not reset BIOS or reflash firmware or peripheral devices. This can
be addressed through customizing the utility ramdisk used during the cleaning phase. See details in the
Firmware security section.

4.2. Administrators Guide 327

Ironic Documentation, Release 21.1.2.dev10

Firmware security

When the Bare Metal service deploys an operating system image to a server, that image is run natively
on the server without virtualization. Any user with administrative access to the deployed instance has
administrative access to the underlying hardware.

Most servers default settings do not prevent a privileged local user from gaining direct access to hardware
devices. Such a user could modify device or firmware settings, and potentially flash new firmware to the
device, before deleting their instance and allowing the server to be allocated to another user.

If the [conductor]/automated_clean configuration option is enabled (and the [deploy]l/
erase_devices_priority configuration option is not zero), the Bare Metal service will securely erase
all local disk devices within a machine during instance deletion. However, the service does not ship with
any code that will validate the integrity of, or make any modifications to, system or device firmware or
firmware settings.

Operators are encouraged to write their own hardware manager plugins for the ironic-python-agent
ramdisk. This should include custom clean steps that would be run during the Node cleaning process,
as part of Node de-provisioning. The clean steps would perform the specific actions necessary within
that environment to ensure the integrity of each servers firmware.

Ideally, an operator would work with their hardware vendor to ensure that proper firmware security mea-
sures are put in place ahead of time. This could include:

* installing signed firmware for BIOS and peripheral devices
* using a TPM (Trusted Platform Module) to validate signatures at boot time
* booting machines in UEFI secure boot mode, rather than BIOS mode, to validate kernel signatures
* disabling local (in-band) access from the host OS to the management controller (BMC)
* disabling modifications to boot settings from the host OS
Additional references:

* Node cleaning

UEFI secure boot mode
Some hardware types support turning UEFI secure boot dynamically when deploying an instance. Cur-
rently these are iLO driver, iRMC driver and Redfish driver.

Support for the UEFI secure boot is declared by adding the secure_boot capability in the
capabilities parameter in the properties field of a node. secure_boot is a boolean parameter
and takes value as true or false.

To enable secure_boot on a node add it to capabilities:

Alternatively use Hardware Inspection to automatically populate the secure boot capability.

Warning: UEFI secure boot only works in UEFI boot mode, see Boot mode support for how to turn
it on and off.

328 Chapter 4. Administrator Guide

https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface#Secure_boot

Ironic Documentation, Release 21.1.2.dev10

Compatible images

Use element ubuntu-signed or fedora to build signed deploy ISO and user images with diskimage-
builder.

The below command creates files named cloud-image-boot.iso, cloud-image.initrd, cloud-image.vmlinuz
and cloud-image.qcow? in the current working directory:

Ensure the public key of the signed image is loaded into bare metal to deploy signed images.

Enabling with OpenStack Compute

Nodes having secure_boot set to true may be requested by adding an extra_spec to the nova flavor:

If capabilities is used in extra_spec as above, nova scheduler (ComputeCapabilitiesFilter)
will match only ironic nodes which have the secure_boot set appropriately in properties/
capabilities. It will filter out rest of the nodes.

The above facility for matching in nova can be used in heterogeneous environments where there is a mix
of machines supporting and not supporting UEFI secure boot, and operator wants to provide a choice to
the user regarding secure boot. If the flavor doesnt contain secure_boot then nova scheduler will not
consider secure boot mode as a placement criteria, hence user may get a secure boot capable machine
that matches with user specified flavors but deployment would not use its secure boot capability. Secure
boot deploy would happen only when it is explicitly specified through flavor.

Enabling standalone

To request secure boot for an instance in standalone mode (without OpenStack Compute), you need to
add the capability directly to the nodes instance_info:

Other considerations

Internal networks

Access to networks which the Bare Metal service uses internally should be prohibited from outside. These
networks are the ones used for management (with the nodes BMC controllers), provisioning, cleaning (if
used) and rescuing (if used).

This can be done with physical or logical network isolation, traffic filtering, etc.

4.2. Administrators Guide 329

https://pypi.org/project/diskimage-builder
https://pypi.org/project/diskimage-builder

Ironic Documentation, Release 21.1.2.dev10

Management interface technologies

Some nodes support more than one management interface technology (vendor and IPMI for example).
If you use only one modern technology for out-of-band node access, it is recommended that you disable
IPMI since the IPMI protocol is not secure. If IPMI is enabled, in most cases a local OS administra-
tor is able to work in-band with IPMI settings without specifying any credentials, as this is a DCMI
specification requirement.

Tenant network isolation

If you use tenant network isolation, services (TFTP or HTTP) that handle the nodes boot files should
serve requests only from the internal networks that are used for the nodes being deployed and cleaned.

TFTP protocol does not support per-user access control at all.
For HTTP, there is no generic and safe way to transfer credentials to the node.

Also, tenant network isolation is not intended to work with network-booting a node by default, once the
node has been provisioned.

API endpoints for RAM disk use

There are two (unauthorized) endpoints in the Bare Metal API that are intended for use by the ironic-
python-agent RAM disk. They are not intended for public use.

These endpoints can potentially cause security issues. Access to these endpoints from external or un-
trusted networks should be prohibited. An easy way to do this is to:

 set up two groups of API services: one for external requests, the second for deploy RAM disks
requests.

* to disable unauthorized access to these endpoints in the (first) API services group that serves ex-
ternal requests, the following lines should be added to the policy.yaml file:

4.2.17 Troubleshooting Ironic
Nova returns No valid host was found Error

Sometimes Nova Conductor log file nova-conductor.log or a message returned from Nova API contains
the following error:

No valid host was found means that the Nova Scheduler could not find a bare metal node suitable for
booting the new instance.

330 Chapter 4. Administrator Guide

https://docs.openstack.org/api-ref/baremetal/#utility
https://docs.openstack.org/ironic/zed/configuration/sample-policy.html

Ironic Documentation, Release 21.1.2.dev10

This in turn usually means some mismatch between resources that Nova expects to find and resources
that Ironic advertised to Nova.

A few things should be checked in this case:

1. Make sure that enough nodes are in available state, not in maintenance mode and not already
used by an existing instance. Check with the following command:

If this command does not show enough nodes, use generic baremetal node 1list to check other
nodes. For example, nodes in manageable state should be made available:

The Bare metal service automatically puts a node in maintenance mode if there are issues with
accessing its management interface. See Power fault and recovery for details.

The node validate command can be used to verify that all required fields are present. The
following command should not return anything:

Maintenance mode will be also set on a node if automated cleaning has failed for it previously.

2. Make sure that you have Compute services running and enabled:

$ openstack compute service list --service nova-compute

et et fommm - o - e it Fommm -
e e e +

| ID | Binary | Host | Zone | Status | State | Updated At .
- |

e Fommmmmm - it Fommm - Fommm - e e
B e +

| 7 | nova-compute | example.com | nova | enabled | up | 2017-09-
—04T13:14:03.000000 |

e e e et e et Fom—m - e e
Cmmmmmmmm oo +

By default, a Compute service is disabled after 10 consecutive build failures on it. This is to ensure
that new build requests are not routed to a broken Compute service. If it is the case, make sure to
fix the source of the failures, then re-enable it:

3. Starting with the Pike release, check that all your nodes have the resource_class field set using
the following command:

Then check that the flavor(s) are configured to request these resource classes via their properties:

4.2. Administrators Guide 331

Ironic Documentation, Release 21.1.2.dev10

For example, if your node has resource class baremetal-large, it will be matched by a flavor
with property resources: CUSTOM_BAREMETAL_LARGE set to 1. See Create flavors for use with
the Bare Metal service for more details on the correct configuration.

. Upon scheduling, Nova will query the Placement API service for the available resource providers

(in the case of Ironic: nodes with a given resource class). If placement does not have any allocation
candidates for the requested resource class, the request will result in a No valid host was found error.
It is hence sensible to check if Placement is aware of resource providers (nodes) for the requested
resource class with:

§ openstack allocation candidate list --resource CUSTOM_BAREMETAL_LARGE='1

s e e it e et et e e T e
B T e T +

| # | allocation | resource provider o
| inventory used/capacity

e e it E R bt et e e e
B T +

| 1 | CUSTOM_BAREMETAL_LARGE=1 | 2£7b9c69-cldf-4e40-b94e-5821a4eal®453..
<+ | CUSTOM_BAREMETAL_LARGE=0/1 |

s e e e o
o +

For Ironic, the resource provider is the UUID of the available Ironic node. If this command returns
an empty list (or does not contain the targeted resource provider), the operator needs to understand
first, why the resource tracker has not reported this provider to placement. Potential explanations
include:

* the resource tracker cycle has not finished yet and the resource provider will appear once it
has (the time to finish the cycle scales linearly with the number of nodes the corresponding
nova-compute service manages);

* the node is in a state where the resource tracker does not consider it to be eligible for schedul-
ing, e.g. when the node has maintenance set to True; make sure the target nodes are in
available and maintenance is False;

. If you do not use scheduling based on resource classes, then the nodes properties must have been set

either manually or via inspection. For each node with available state check that the properties
JSON field has valid values for the keys cpus, cpu_arch, memory_mb and local_gb. Example
of valid properties:

$ baremetal node show <IRONIC NODE> --fields properties

Fmmm - T T T T
e +

| Property | Value o
o

T o
e +

| properties | {u'memory_mb': u'8192', u'cpu_arch': u'x86_64', u'local_gb

—~':u'4l', u'cpus': u'4'} |

(continues on next page)

332

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Warning: If youre using exact match filters in the Nova Scheduler, make sure the flavor and
the node properties match exactly.

6. The Nova flavor that you are using does not match any properties of the available Ironic nodes.
Use

to compare. The extra specs in your flavor starting with capability: should match ones in
node.properties['capabilities'].

Note: The format of capabilities is different in Nova and Ironic. E.g. in Nova flavor:

$ openstack flavor show <FLAVOR NAME> -c properties
o e +
| Field | Value |
o B e e L e e +
| properties | capabilities:boot_mode='uefi' |
Fomm - B e e e e +

But in Ironic node:

$ baremetal node show <IRONIC NODE> --fields properties

o e +
| Property | Value |
o B Tt +
| properties | {u'capabilities': u'boot_mode:uefi'} |
o e +

7. After making changes to nodes in Ironic, it takes time for those changes to propagate from Ironic
to Nova. Check that

correctly shows total amount of resources in your system. You can also check openstack
hypervisor show <IRONIC NODE> to see the status of individual Ironic nodes as reported to
Nova.

8. Figure out which Nova Scheduler filter ruled out your nodes. Check the nova-scheduler logs
for lines containing something like:

The name of the filter that removed the last hosts may give some hints on what exactly was not
matched. See Nova filters documentation for more details.

4.2. Administrators Guide 333

https://docs.openstack.org/nova/zed/filter_scheduler.html

Ironic Documentation, Release 21.1.2.dev10

9. If none of the above helped, check Ironic conductor log carefully to see if there are any conductor-
related errors which are the root cause for No valid host was found. If there are any Error in deploy
of node <IRONIC-NODE-UUID>: [Errno 28] error messages in Ironic conductor log, it means
the conductor run into a special error during deployment. So you can check the log carefully to fix
or work around and then try again.

Patching the Deploy Ramdisk

When debugging a problem with deployment and/or inspection you may want to quickly apply a change
to the ramdisk to see if it helps. Of course you can inject your code and/or SSH keys during the ramdisk
build (depends on how exactly youve built your ramdisk). But its also possible to quickly modify an
already built ramdisk.

Create an empty directory and unpack the ramdisk content there:

$ mkdir unpack
$ unpack
$ gzip -dc /path/to/the/ramdisk @ cpio -id

The last command will result in the whole Linux file system tree unpacked in the current directory. Now
you can modify any files you want. The actual location of the files will depend on the way youve built
the ramdisk.

Note: On a systemd-based system you can use the systemd-nspawn tool (from the
systemd-container package) to create a lightweight container from the unpacked filesystem tree:

$ sudo systemd-nspawn --directory /path/to/unpacked/ramdisk/ /bin/bash

This will allow you to run commands within the filesystem, e.g. use package manager. If the ramdisk is
also systemd-based, and you have login credentials set up, you can even boot a real ramdisk enviroment
with

$ sudo systemd-nspawn --directory /path/to/unpacked/ramdisk/ --boot

After youve done the modifications, pack the whole content of the current directory back:

$ find . | cpio -H newc -o | gzip -c > /path/to/the/new/ramdisk

Note: You dont need to modify the kernel (e.g. tinyipa-master.vmlinuz), only the ramdisk part.

334 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

API Errors

The debug_tracebacks_in_api config option may be set to return tracebacks in the API response for all
4xx and 5xx errors.

Retrieving logs from the deploy ramdisk

When troubleshooting deployments (specially in case of a deploy failure) its important to have access to
the deploy ramdisk logs to be able to identify the source of the problem. By default, Ironic will retrieve
the logs from the deploy ramdisk when the deployment fails and save it on the local filesystem at /var/
log/ironic/deploy.

To change this behavior, operators can make the following changes to /etc/ironic/ironic.conf
under the [agent] group:

* deploy_logs_collect: Whether Ironic should collect the deployment logs on deployment.
Valid values for this option are:

— on_failure (default): Retrieve the deployment logs upon a deployment failure.
— always: Always retrieve the deployment logs, even if the deployment succeed.
— never: Disable retrieving the deployment logs.

* deploy_logs_storage_backend: The name of the storage backend where the logs will be
stored. Valid values for this option are:

— local (default): Store the logs in the local filesystem.
— swift: Store the logs in Swift.

* deploy_logs_local_path: The path to the directory where the logs should be stored, used when
the deploy_logs_storage_backend is configured to local. By default logs will be stored at
/var/log/ironic/deploy.

* deploy_logs_swift_container: The name of the Swift container to store the
logs, used when the deploy_logs_storage_backend is configured to swift. By default
ironic_deploy_logs_container.

* deploy_logs_swift_days_to_expire: Number of days before a log object is marked as ex-
pired in Swift. If None, the logs will be kept forever or until manually deleted. Used when the
deploy_logs_storage_backend is configured to swift. By default 30 days.

When the logs are collected, Ironic will store a tar.gz file containing all the logs according to the
deploy_logs_storage_backend configuration option. All log objects will be named with the fol-
lowing pattern:

Note: The instance_uuid field is not required for deploying a node when Ironic is configured to be used
in standalone mode. If present it will be appended to the name.

4.2. Administrators Guide 335

Ironic Documentation, Release 21.1.2.dev10

Accessing the log data
When storing in the local filesystem

When storing the logs in the local filesystem, the log files can be found at the path configured in
the deploy_logs_local_path configuration option. For example, to find the logs from the node
5e9258c4-cfda-40b6-86e2-e192£523d668:

$ 1s /var/log/ironic/deploy @ grep 5e9258c4-cfda-40b6-86e2-e192£523d668
5e9258c4-cfda-40b6-86e2-e192£523d668_88595d8a-6725-4471-8cd5-c0£3106b6898_
—2016-08-08-13:52:12.tar.gz
5e9258c4-cfda-40b6-86e2-e192£523d668_db87f2c5-7a9a-48c2-9a76-604287257c1b_
—2016-08-08-14:07:25.tar.gz

Note: When saving the logs to the filesystem, operators may want to enable some form of rotation for
the logs to avoid disk space problems.

When storing in Swift

When using Swift, operators can associate the objects in the container with the nodes in Ironic and search
for the logs for the node 5e9258c4-cfda-40b6-86e2-e1921523d668 using the prefix parameter. For
example:

$ swift list ironic_deploy_logs_container -p 5e9258c4-cfda-40b6-86e2-
—e192£523d668
5e9258c4-cfda-40b6-86e2-e192£523d668_88595d8a-6725-4471-8cd5-c0£3106b6898_
—2016-08-08-13:52:12.tar.gz
5e9258c4-cfda-40b6-86e2-e192£523d668_db87£f2c5-7a%9a-48c2-9a76-604287257c1b_
—2016-08-08-14:07:25.tar.gz

To download a specific log from Swift, do:

$ swift download ironic_deploy_logs_container

—

5e9258c4-cfda-40b6-86e2-e192£523d668_db87f2c5-7a9%9a-48c2-9a76-604287257clb_
—2016-08-08-14:07:25.tar.gz auth 0.341s, headers 0.391s, total 0.391s,
531 MB/s

336 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

The contents of the log file

The log is just a . tar.gz file that can be extracted as:

$ tar xvf <file path>

The contents of the file may differ slightly depending on the distribution that the deploy ramdisk is using:

* For distributions using systemd there will be a file called journal which contains all the system
logs collected via the journalctl command.

* For other distributions, the ramdisk will collect all the contents of the /var/log directory.

For all distributions, the log file will also contain the output of the following commands (if present): ps,
df, ip addr and iptables.

Heres one example when extracting the content of a log file for a distribution that uses systemd:

$ tar xvf 5e9258c4-cfda-40b6-86e2-e192£523d668_88595d8a-6725-4471-8cd5-
—c0£3106b6898_2016-08-08-13:52:12.tar.gz

df

ps

journal

ip_addr

iptables

DHCP during PXE or iPXE is inconsistent or unreliable

This can be caused by the spanning tree protocol delay on some switches. The delay prevents the switch
port moving to forwarding mode during the nodes attempts to PXE, so the packets never make it to the
DHCEP server. To resolve this issue you should set the switch port that connects to your baremetal nodes
as an edge or PortFast type port. Configured in this way the switch port will move to forwarding mode
as soon as the link is established. An example on how to do that for a Cisco Nexus switch is:

$ config terminal
$ ‘config interface ethl/11
$ ‘config-if spanning-tree port edge

Why does X issue occur when | am using LACP bonding with iPXE?

If you are using iPXE, an unfortunate aspect of its design and interaction with networking is an automatic
response as a Link Aggregation Control Protocol (or LACP) peer to remote switches. iPXE does this for
only the single port which is used for network booting.

In theory, this may help establish the port link-state faster with some switch vendors, but the official
reasoning as far as the Ironic Developers are aware is not documented for iPXE. The end result of this
is that once iPXE has stopped responding to LACP messages from the peer port, which occurs as part
of the process of booting a ramdisk and iPXE handing over control to a full operating-system, switches
typically begin a timer to determine how to handle the failure. This is because, depending on the mode
of LACEP, this can be interpreted as a switch or network fabric failure.

4.2. Administrators Guide 337

Ironic Documentation, Release 21.1.2.dev10

This may demonstrate as any number of behaviors or issues from ramdisks finding they are unable to
acquire DHCP addresses over the network interface to downloads abruptly stalling, to even minor issues
such as LLDP port data being unavailable in introspection.

Overall:

* Ironics agent doesnt officially support LACP and the Ironic community generally believes this may

cause more problems than it would solve. During the Victoria development cycle, we added retry
logic for most actions in an attempt to navigate the worst-known default hold-down timers to help
ensure a deployment does not fail due to a short-lived transitory network connectivity failure in the
form of a switch port having moved to a temporary blocking state. Where applicable and possible,
many of these patches have been backported to supported releases. These patches also require that
the switchport has an eventual fallback to a non-bonded mode. If the port remains in a blocking
state, then traffic will be unable to flow and the deployment is likely to time out.

If you must use LACP, consider passive LACP negotiation settings in the network switch as
opposed to active. The difference being with passive the connected workload is likely a server
where it should likely request the switch to establish the Link Aggregate. This is instead of being
treated as if its possibly another switch.

Consult your switch vendors support forums. Some vendors have recommended port settings for
booting machines using iPXE with their switches.

IPMI errors

When working with IPMI, several settings need to be enabled depending on vendors.

Enable IPMI over LAN

Machines may not have IPMI access over LAN enabled by default. This could cause the IPMI port to be
unreachable through ipmitool, as shown:

$ ipmitool -I lan -H ipmi_host -U ipmi_user -P ipmi_pass chassis power status
Error: Unable to establish LAN session

To fix this, enable IPMI over lan setting using your BMC tool or web app.

Troubleshooting lanplus interface

When working with lanplus interfaces, you may encounter the following error:

$ ipmitool -I lanplus -H ipmi_host -U ipmi_user -P ipmi_pass power status
Error open session response message : insufficient resources session
Error: Unable to establish IPMI v2 / RMCP+ session

To fix that issue, please enable RMCP+ Cipher Suite3 Configuration setting using your BMC tool or web

app.

338

Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Why are my nodes stuck in a -ing state?

The Ironic conductor uses states ending with ing as a signifier that the conductor is actively working on
something related to the node.

Often, this means there is an internal lock or reservation set on the node and the conductor is down-
loading, uploading, or attempting to perform some sort of Input/Output operation - see Why does API
return Node is locked by host? for details.

In the case the conductor gets stuck, these operations should timeout, but there are cases in operating
systems where operations are blocked until completion. These sorts of operations can vary based on the
specific environment and operating configuration.

What can cause these sorts of failures?

Typical causes of such failures are going to be largely rooted in the concept of iowait, either in the form
of downloading from a remote host or reading or writing to the disk of the conductor. An operator can
use the iostat tool to identify the percentage of CPU time spent waiting on storage devices.

The fields that will be particularly important are the iowait, await, and tps ones, which can be read
about in the iostat manual page.

In the case of network file systems, for backing components such as image caches or distributed tftpboot
or httpboot folders, IO operations failing on these can, depending on operating system and underlying
client settings, cause threads to be stuck in a blocking wait state, which is realistically undetectable short
the operating system logging connectivity errors or even lock manager access errors.

For example with nfs, the underlying client recovery behavior, in terms of soft, hard, softreval,
nosoftreval, will largely impact this behavior, but also NFS server settings can impact this behavior.
A solid sign that this is a failure, is when an 1s /path/to/nfs command hangs for a period of time.
In such cases, the Storage Administrator should be consulted and network connectivity investigated for
errors before trying to recover to proceed.

The bad news for 10 related failures

If the node has a populated reservation field, and has not timed out or proceeded to a fail state, then
the conductor process will likely need to be restarted. This is because the worker thread is hung with-in
the conductor.

Manual intervention with-in Ironics database is not advised to try and un-wedge the machine in this state,
and restarting the conductor is encouraged.

Note: Ironics conductor, upon restart, clears reservations for nodes which were previously managed by
the conductor before restart.

If a distributed or network file system is in use, it is highly recommended that the operating system of
the node running the conductor be rebooted as the running conductor may not even be able to exit in the
state of an 1O failure, again dependent upon site and server configuration.

4.2. Administrators Guide 339

https://man7.org/linux/man-pages/man1/iostat.1.html
https://www.man7.org/linux/man-pages/man5/nfs.5.html

Ironic Documentation, Release 21.1.2.dev10

File Size != Disk Size

An easy to make misconception is that a 2.4 GB file means that only 2.4 GB is written to disk. But if
that files virtual size is 20 GB, or 100 GB things can become very problematic and extend the amount of
time the node spends in deploying and deploy wait states.

Again, these sorts of cases will depend upon the exact configuration of the deployment, but hopefully
these are areas where these actions can occur.

* Conversion to raw image files upon download to the conductor, from the
[DEFAULT] force_raw_images option. Users using Glance may also experience is-
sues here as the conductor will cache the image to be written which takes place when the
[agent]image_download_source is set to http instead of swift.

Note: The QCOW?2 image conversion utility does consume quite a bit of memory when converting
images or writing them to the end storage device. This is because the files are not sequential in nature,
and must be re-assembled from an internal block mapping. Internally Ironic limits this to 1GB of RAM.
Operators performing large numbers of deployments may wish to disable raw images in these sorts of
cases in order to minimize the conductor becoming a limiting factor due to memory and network I1O.

Why are my nodes stuck in a wait state?

The Ironic conductor uses states containing wait as a signifier that the conductor is waiting for a callback
from another component, such as the Ironic Python Agent or the Inspector. If this feedback does not
arrive, the conductor will time out and the node will eventually move to a failed state. Depending on
the configuration and the circumstances, however, a node can stay in a wait state for a long time or even
never time out. The list of such wait states includes:

* clean wait for cleaning,
* inspect wait for introspection,
* rescue wait for rescueing, and

* wait call-back for deploying.

Communication issues between the conductor and the node

One of the most common issues when nodes seem to be stuck in a wait state occur when the node never
received any instructions or does not react as expected: the conductor moved the node to a wait state but
the node will never call back. Examples include wrong ciphers which will make ipmitool get stuck or
BMC:s in a state where they accept commands, but dont do the requested task (or only a part of it, like
shutting off, but not starting). It is useful in these cases to see via a ping or the console if and which action
the node is performing. If the node does not seem to react to the requests sent be the conductor, it may
be worthwhile to try the corresponding action out-of-band, e.g. confirm that power on/off commands
work when directly sent to the BMC. The section on /PMI errors. above gives some additional points to
check. In some situations, a BMC reset may be necessary.

340 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Ironic Python Agent stuck

Nodes can also get remain in a wait state when the component the conductor is waiting for gets stuck,
e.g. when a hardware manager enters a loop or is waiting for an event that is never happening. In these
cases, it might be helpful to connect to the IPA and inspect its logs, see the trouble shooting guide of the
ironic-python-agent (IPA) on how to do this.

Stopping the operation

Cleaning, inspection and rescuing can be stopped while in clean wait, inspect wait and rescue
wait states using the abort command. It will move the node to the corresponding failure state (clean
failed, inspect failed or rescue failed):

Deploying can be aborted while inthe wait call-back state by starting an undeploy (normally resulting
in cleaning):

See Bare Metal State Machine for more details.

Note: Since the Bare Metal service is not doing anything actively in waiting states, the nodes are not
moved to failed states on conductor restart.

Deployments fail with failed to update MAC address

The design of the integration with the Networking service (neutron) is such that once virtual ports have
been created in the API, their MAC address must be updated in order for the DHCP server to be able to
appropriately reply.

This can sometimes result in errors being raised indicating that the MAC address is already in use. This
is because at some point in the past, a virtual interface was orphaned either by accident or by some
unexpected glitch, and a previous entry is still present in Neutron.

This error looks something like this when reported in the ironic-conductor log output.:

Failed to update MAC address on Neutron port 305beda7-0dd0-4fec-b4d2-78b7aade8eba.:
MacAddressInUseClient: Unable to complete operation for network 1€252627-6223-4076-
a2b9-656493c9bac. The mac address 52:54:00:7c:c4:56 is in use.

Because we have no idea about this entry, we fail the deployment process as we cant make a number of
assumptions in order to attempt to automatically resolve the conflict.

4.2. Administrators Guide 341

https://docs.openstack.org/ironic-python-agent/zed/

Ironic Documentation, Release 21.1.2.dev10

How did | get here?

Originally this was a fairly easy issue to encounter. The retry logic path which resulted between the
Orchestration (heat) and Compute (nova) services, could sometimes result in additional un-necessary
ports being created.

Bugs of this class have been largely resolved since the Rocky development cycle. Since then, the way this
can become encountered is due to Networking (neutron) VIF attachments not being removed or deleted
prior to deleting a port in the Bare Metal service.

Ultimately, the key of this is that the port is being deleted. Under most operating circumstances, there
really is no need to delete the port, and VIF attachments are stored on the port object, so deleting the port
CAN result in the VIF not being cleaned up from Neutron.

Under normal circumstances, when deleting ports, a node should be in a stable state, and the node should
not be provisioned. If the baremetal port delete command fails, this may indicate that a known VIF
is still attached. Generally if they are transitory from cleaning, provisioning, rescuing, or even inspection,
getting the node to the available state wil unblock your delete operation, that is unless there is a tenant
VIF attahment. In that case, the vif will need to be removed from with-in the Bare Metal service using
the baremetal node vif detach command.

A port can also be checked to see if there is a VIF attachment by consulting the ports internal_info
field.

Warning: Themaintenance flag can be used to force the nodes port to be deleted, however this will
disable any check that would normally block the user from issuing a delete and accidently orphaning
the VIF attachment record.

How do | resolve this?

Generally, you need to identify the port with the offending MAC address. Example:

openstack port list --mac-address :54:00:7c:c4:56

From the commands output, you should be able to identify the id field. Using that, you can delete the
port. Example:

openstack port delete <id>

Warning: Before deleting a port, you should always verify that it is no longer in use or no longer
seems applicable/operable. If multiple deployments of the Bare Metal service with a single Neutron,
the possibility that a inventory typo, or possibly even a duplicate MAC address exists, which could
also produce the same basic error message.

342 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

My test VM image does not deploy mount point does not exist

What is likely occuring

The image attempting to be deployed likely is a partition image where the file system that the user wishes
to boot from lacks the required folders, such as /dev and /proc, which are required to install a bootloader
for a Linux OS image

It should be noted that similar errors can also occur with whole disk images where we are attempting
to setup the UEFI bootloader configuration. That being said, in this case, the image is likely invalid or
contains an unexpected internal structure.

Users performing testing may choose something that they believe will work based on it working for
virtual machines. These images are often attractive for testing as they are generic and include basic
support for establishing networking and possibly installing user keys. Unfortunately, these images often
lack drivers and firmware required for many different types of physical hardware which makes using them
very problematic. Additionally, images such as Cirros do not have any contents in the root filesystem (i.e.
an empty filesystem), as they are designed for the ramdisk to write the contents to disk upon boot.

How do | not encounter this issue?

We generally recommend using diskimage-builder or vendor supplied images. Centos, Ubuntu, Fedora,
and Debian all publish operating system images which do generally include drivers and firmware for
physical hardware. Many of these published cloud images, also support auto-configuration of networking
AND population of user keys.

Issues with autoconfigured TLS

These issues will manifest as an error in ironic-conductor logs looking similar to (lines are wrapped
for readability):

ERROR ironic.drivers.modules.agent_client [-]

Failed to connect to the agent running on node d7c322f0-0354-4008-92b4-
—£49fb2201001

for invoking command clean.get_clean_steps. Error:

HTTPSConnectionPool Chost="'192.168.123.126"', port=9999): Max retries exceeded.
—with url:

/v1/commands/?wait=true&agent_token=<token> (Caused by

SSLError (SSLError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify.
—failed (_ssl.c:897)'),)):

requests.exceptions.SSLError: HTTPSConnectionPool Chost='192.168.123.126"',.
—port=9999):

Max retries exceeded with url: /vl1/commands/?wait=true&agent_token=<token>
(Caused by SSLError(SSLError(l, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate.
—verify failed (_ssl.c:897)"),))

The cause of the issue is that the Bare Metal service cannot access the ramdisk with the TLS certificate
provided by the ramdisk on first heartbeat. You can inspect the stored certificate in /var/lib/ironic/
certificates/<node>.crt.

You can try connecting to the ramdisk using the IP address in the log message:

4.2. Administrators Guide 343

https://download.cirros-cloud.net
https://docs.openstack.org/diskimage-builder

Ironic Documentation, Release 21.1.2.dev10

You can get the detailed information about the certificate using openSSL:

Clock skew

One possible source of the problem is a discrepancy between the hardware clock on the node and the
time on the machine with the Bare Metal service. It can be detected by comparing the Not Before field
in the openss1 output with the timestamp of a log message.

The recommended solution is to enable the NTP support in ironic-python-agent by passing the
ipa-ntp-server argument with an address of an NTP server reachable by the node.

If it is not possible, you need to ensure the correct hardware time on the machine. Keep in mind a potential
issue with timezones: an ability to store timezone in hardware is pretty recent and may not be available.
Since ironic-python-agent is likely operating in UTC, the hardware clock should also be set in UTC.

Note: Microsoft Windows uses local time by default, so a machine that has previously run Windows
will likely have wrong time.

| changed ironic.conf, and now | cant edit my nodes.

Whenever a node is created in ironic, default interfaces are identified as part of driver composition. This
maybe sourced from explicit default values which have been set in ironic.conf or by the interface
order for the enabled interfaces list. The result of this is that the ironic-conductor cannot spawn a
task using the composed driver, as a portion of the driver is no longer enabled. This makes it difficult
to edit or update the node if the settings have been changed.

For example, with networking interfaces, if you have default_network_interface=neutron or
enabled_network_interfaces=neutron, flat in your ironic.conf, nodes would have been cre-
ated with the neutron network interface.

This is because default_network_interface overrides the setting for new nodes, and that setting is
saved to the database nodes table.

Similarly, the order of enabled_network_interfaces takes priority, and the first entry in the list is
generally set to the default for the node upon creation, and that record is saved to the database nodes
table.

The only case where driver composition does not calculate a default is if an explicit value is provided
upon the creation of the node.

344 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Example failure

A node in this state, when the network_interface was saved as neutron, yet the neutron interface
is no longer enabled will fail basic state transition requests:

baremetal node manage 7164efca-37ab-1213-1112-b731cf795a5a

How to fix this?

Revert the changes you made to ironic.conf.

This applies to any changes to any default_*_interface options or the order of interfaces in the for
the enabled_*_interfaces options.

Once the conductor has been restarted with the updated configuration, you should now be able
to update the interface using the baremetal node set command. In this example we use the
network_interface as this is most commonly where it is encountered:

baremetal node --network-interface flat

Note: There are additional paths one can take to remedy this sort of issue, however we encourage
operators to be mindful of operational consistency when making major configuration changes.

Once you have updated the saved interfaces, you should be able to safely return the ironic.conf con-
figuration change in changing what interfaces are enabled by the conductor.

Im getting Out of Memory errors

This issue, also known as the the OOMKiller got my conductor case, is where your OS system memory
reaches a point where the operating system engages measures to shed active memory consumption in
order to prevent a complete failure of the machine. Unfortunately this can cause unpredictable behavior.

How did | get here?

One of the major consumers of memory in a host running an ironic-conductor is transformation of disk
images using the gemu-img tool. This tool, because the disk images it works with are both compressed
and out of linear block order, requires a considerable amount of memory to efficently re-assemble and
write-out a disk to a device, or to simply convert the format such as to a raw image.

By default, ironics configuration limits this conversion to 1 GB of RAM for the process, but each conver-
sion does cause additional buffer memory to be used, which increases overall system memory pressure.
Generally memory pressure alone from buffers will not cause an out of memory condition, but the multi-
ple conversions or deployments running at the same time CAN cause extreme memory pressure and risk
the system running out of memory.

4.2. Administrators Guide 345

Ironic Documentation, Release 21.1.2.dev10

How do | resolve this?

This can be addressed a few different ways:

» Use raw images, however these images can be substantially larger and require more data to be
transmitted over the wire.

* Add more physical memory.
* Add swap space.

* Reduce concurrency, possibly via another conductor or changing the nova-compute.conf
max_concurrent_builds parameter.

* Or finally, adjust the [DEFAULTJminimum_required_memory parameter in your ironic.conf file.
The default should be considered a default of last resort and you may need to reserve additional
memory. You may also wish to adjust the [DEFAULT]minimum_memory_wait_retries and
[DEFAULT]minimum_memory_wait_time parameters.

Why does API return Node is locked by host?

This error usually manifests as HT'TP error 409 on the client side:

Node d7e2aed8-50a9-4427-baaa-f8f595e2ceb3 is locked by host 192.168.122.1, please retry
after the current operation is completed.

It happens, because an operation that modifies a node is requested, while another such operation is run-
ning. The conflicting operation may be user requested (e.g. a provisioning action) or related to the
internal processes (e.g. changing power state during Power Synchronization). The reported host name
corresponds to the conductor instance that holds the lock.

Normally, these errors are transient and safe to retry after a few seconds. If the lock is held for significant
time, these are the steps you can take.

First of all, check the current provision_state of the node:

verifying means that the conductor is trying to access the nodes BMC. If it happens for minutes,
it means that the BMC is either unreachable or misbehaving. Double-check the information in
driver_info, especially the BMC address and credentials.

If the access details seem correct, try resetting the BMC using, for example, its web UL

deploying/inspecting/cleaning means that the conductor is doing some active work. It may in-
clude downloading or converting images, executing synchronous out-of-band deploy or clean steps,
etc. A node can stay in this state for minutes, depending on various factors. Consult the conductor
logs.

available/manageable/wait call-back/clean wait means that some background process is
holding the lock. Most commonly its the power synchronization loop. Similarly to the verifying
state, it may mean that the BMC access is broken or too slow. The conductor logs will provide you
insights on what is happening.

To trace the process using conductor logs:

1. Isolate the relevant log parts. Lock messages come from the ironic.conductor. task_manager
module. You can also check the ironic.common. states module for any state transitions:

346 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

grep -E

conductor.log > state.log

2. Find the first instance of NodeLocked. It may look like this (stripping timestamps and request IDs
here and below for readability):

The events right before this failure will provide you a clue on why the lock is held.

3. Find the last successful exclusive locking event before the failure, for example:

This is your root cause, the lock is held because of the BMC credentials verification.

4. Find when the lock is released (if at all). The messages look like this:

The message tells you the reason the lock was held (for provision action manage) and the
amount of time it was held (60.02 seconds, which is way too much for accessing a BMC).

Unfortunately, due to the way the conductor is designed, it is not possible to gracefully break a stuck lock
held in *-ing states. As the last resort, you may need to restart the affected conductor. See Why are my
nodes stuck in a -ing state?.

4.2. Administrators Guide 347

Ironic Documentation, Release 21.1.2.dev10

What is ConcurrentActionLimit?

ConcurrentActionLimit is an exception which is raised to clients when an operation is requested, but
cannot be serviced at that moment because the overall threshold of nodes in concurrent Deployment or
Cleaning operations has been reached.

These limits exist for two distinct reasons.

The first is they allow an operator to tune a deployment such that too many concurrent deployments
cannot be triggered at any given time, as a single conductor has an internal limit to the number of overall
concurrent tasks, this restricts only the number of running concurrent actions. As such, this accounts for
the number of nodes in deploy and deploy wait states. In the case of deployments, the default value
is relatively high and should be suitable for most larger operators.

The second is to help slow down the ability in which an entire population of baremetal nodes can be moved
into and through cleaning, in order to help guard against authenticated malicious users, or accidental
script driven operations. In this case, the total number of nodes in deleting, cleaning, and clean
wait are evaluated. The default maximum limit for cleaning operations is 50 and should be suitable for
the majority of baremetal operators.

These settings can be modified by using the [conductor]max_concurrent_deploy and
[conductor]max_concurrent_clean settings from the ironic.conf file supporting the
ironic-conductor service. Neither setting can be explicity disabled, however there is also no
upper limit to the setting.

Note: This was an infrastructure operator requested feature from actual lessons learned in the operation
of Ironic in large scale production. The defaults may not be suitable for the largest scale operators.

4.2.18 Power Synchronization

Baremetal Power Sync

Each Baremetal conductor process runs a periodic task which synchronizes the power state of
the nodes between its database and the actual hardware. If the value of the conductor.
force_power_state_during_sync option is set to true the power state in the database will be forced
on the hardware and if it is set to false the hardware state will be forced on the database. If this periodic
task is enabled, it runs at an interval defined by the conductor. sync_power_state_interval config
option for those nodes which are not in maintenance. The requests sent to Baseboard Management Con-
trollers (BMCs) are done with a parallelism controlled by conductor. sync_power_state_workers.
The motivation to send out requests to BMCs in parallel is to handle misbehaving BMCs which may
delay or even block the synchronization otherwise.

Note: In deployments with many nodes and IPMI as the configured BMC protocol, the default values
of a 60 seconds power sync interval and 8 worker threads may lead to a high rate of required retries due
to client-side UDP packet loss (visible via the corresponding warnings in the conductor logs). While
Ironic automatically retries to get the power status for the affected nodes, the failure rate may be reduced
by increasing the power sync cycle, e.g. to 300 seconds, and/or by reducing the number of power sync
workers, e.g. to 2. Pleae keep in mind, however, that depending on the concrete setup increasing the
power sync interval may have an impact on other components relying on up-to-date power states.

348 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Compute-Baremetal Power Sync

Each nova-compute process in the Compute service runs a periodic task which synchronizes the power
state of servers between its database and the compute driver. If enabled, it runs at an interval defined
by the sync_power_state_interval config option on the nova-compute process. In case of the compute
driver being baremetal driver, this sync will happen between the databases of the compute and baremetal
services. Since the sync happens on the nova-compute process, the state in the compute database will
be forced on the baremetal database in case of inconsistencies. Hence a node which was put down using
the compute service API cannot be brought up through the baremetal service API since the power sync
task will regard the compute services knowledge of the power state as the source of truth. In order to
get around this disadvantage of the compute-baremetal power sync, baremetal service does power state
change callbacks to the compute service using external events.

Power State Change Callbacks to the Compute Service

Whenever the Baremetal service changes the power state of a node, it can issue a notification to the
Compute service. The Compute service will consume this notification and update the power state of the
instance in its database. By conveying all the power state changes to the compute service, the baremetal
service becomes the source of truth thus preventing the compute service from forcing wrong power states
on the physical instance during the compute-baremetal power sync. It also adds the possibility of bringing
up/down a physical instance through the baremetal service API even if it was put down/up through the
compute service APL.

This change requires the nova section and the necessary authentication options like the nova. auth_url
to be defined in the configuration file of the baremetal service. If it is not configured the baremetal service
will not be able to send notifications to the compute service and it will fall back to the behaviour of the
compute service forcing power states on the baremetal service during the power sync. See nova group
for more details on the available config options.

In case of baremetal stand alone deployments where there is no compute service running, the nova.
send_power_notifications config option should be set to False to disable power state change call-
backs to the compute service.

Note: The baremetal service sends notifications to the compute service only if the target power state is
power on or power off. Other error and None states will be ignored. In situations where the power
state change is originally coming from the compute service, the notification will still be sent by the
baremetal service and it will be a no-op on the compute service side with a debug log stating the node is
already powering on/off.

Note: Although an exclusive lock is used when sending notifications to the compute service, there can
still be a race condition if the compute-baremetal power sync happens to happen a nano-second before
the power state change event is received from the baremetal service in which case the power state from
compute services database will be forced on the node.

4.2. Administrators Guide 349

Ironic Documentation, Release 21.1.2.dev10

Power fault and recovery

When Baremetal Power Sync is enabled, and the Bare Metal service loses access to a node
(usually because of invalid credentials, BMC issues or networking interruptions), the node enters
maintenance mode and its fault field is set to power failure. The exact reason is stored in the
maintenance_reason field.

As always with maintenance mode, only a subset of operations will work on such nodes, and both the
Compute service and the Ironics native allocation API will refuse to pick them. Any in-progress opera-
tions will either pause or fail.

The conductor responsible for the node will try to recover the connection periodically (with the interval
configured by the conductor.power_failure_recovery_interval option). If the power sync is
successful, the fault field is unset and the node leaves the maintenance mode.

Note: This only applies to automatic maintenance mode with the fault field set. Maintenance mode
set manually is never left automatically.

Alternatively, you can disable maintenance mode yourself once the problem is resolved:

4.2.19 Node Multi-Tenancy

This guide explains the steps needed to enable node multi-tenancy. This feature enables non-admins to
perform API actions on nodes, limited by policy configuration. The Bare Metal service supports two
kinds of non-admin users:

* Owner: owns specific nodes and performs administrative actions on them
* Lessee: receives temporary and limited access to a node

Setting the Owner and Lessee

Non-administrative access to a node is controlled through a nodes owner or lessee attribute:

Configuring the Bare Metal Service Policy

By default, the Bare Metal service policy is configured so that a node owner or lessee has no access to
any node APIs. However, the policy policy file contains rules that can be used to enable node API access:

350 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

An administrator can then modify the policy file to expose individual node APIs as follows:

In addition, it is safe to expose the baremetal :node:1ist rule, as the node list function now filters
non-admins by owner and lessee:

Note that baremetal :node:1list_all permits users to see all nodes regardless of owner/lessee, so it
should remain restricted to admins.

Ports

Port APIs can be similarly exposed to node owners and lessees:

4.2. Administrators Guide 351

Ironic Documentation, Release 21.1.2.dev10

Allocations

Allocations respect node tenancy as well. A restricted allocation creates an allocation tied to a project,
and that can only match nodes where that project is the owner or lessee. Here is a sample set of allocation
policy rules that allow non-admins to use allocations effectively:

Retrieve Allocation records

GET /allocations/{allocation_id}

GET /nodes/{node_ident}/allocation

#"baremetal :allocation:get": "rule:is_admin or rule:is_observer"
"baremetal:allocation:get": "rule:is_admin or rule:is_observer or rule:is_
—allocation_owner"

Retrieve multiple Allocation records, filtered by owner

GET /allocations

#"baremetal :allocation:1ist": "rule:baremetal:allocation:get"
"baremetal:allocation:1list": ""

Retrieve multiple Allocation records
GET /allocations
#"baremetal:allocation:1list_all": "rule:baremetal:allocation:get"

Create Allocation records
POST /allocations
#'"baremetal :allocation:create': "rule:is_admin"

Create Allocation records that are restricted to an owner

POST /allocations

#"baremetal:allocation:create_restricted": "rule:baremetal:allocation:create"
"baremetal:allocation:create_restricted": ""

Delete Allocation records

DELETE /allocations/{allocation_id}

DELETE /nodes/{node_ident}/allocation

#"baremetal:allocation:delete": "rule:is_admin"
"baremetal:allocation:delete": "rule:is_admin or rule:is_allocation_owner"

Change name and extra fields of an allocation

PATCH /allocations/{allocation_id}

#"baremetal:allocation:update": "rule:is_admin"
"baremetal:allocation:update": "rule:is_admin or rule:is_allocation_owner"

352 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Deployment and Metalsmith

Provisioning a node requires a specific set of APIs to be made available. The following policy specifica-
tions are enough to allow a node owner to use Metalsmith to deploy upon a node:

4.2.20 Fast-Track Deployment

Fast track is a mode of operation where the Bare Metal service keeps a machine powered on with the
agent running between provisioning operations. It is first booted during in-band inspection or cleaning
(whatever happens first) and is only shut down before rebooting into the final instance. Depending on the
configuration, this mode can save several reboots and is particularly useful for scenarios where nodes are
enrolled, prepared and provisioned within a short period of time.

Warning: Fast track deployment targets standalone use cases and is only tested with the noop
networking. The case where inspection, cleaning and provisioning networks are different is not sup-
ported.

Note: Fast track mode is very sensitive to long-running processes on the conductor side that may prevent
agent heartbeats from being registered.

For example, converting a large image to the raw format may take long enough to reach the fast track
timeout. In this case, you can either use raw images or move the conversion to the agent side with:

4.2. Administrators Guide 353

https://docs.openstack.org/metalsmith/zed/index.html

Ironic Documentation, Release 21.1.2.dev10

Enabling

Fast track is off by default and should be enabled in the configuration:

Starting with the Yoga release series, it can also be enabled or disabled per node:

Inspection

If using In-band inspection, you need to tell ironic-inspector not to power off nodes afterwards. Depend-
ing on the inspection mode (managed or unmanaged), you need to configure two places. In ironic.
conf:

And in inspector.conf:

Finally, you need to update the inspection PXE configuration to include the ipa-api-url kernel param-
eter, pointing at the ironic endpoint, in addition to the existing ipa-inspection-callback-url.

4.2.21 Booting a Ramdisk or an ISO

Ironic supports booting a user provided ramdisk or an ISO image (starting with the Victoria release)
instead of deploying a node. Most commonly this is performed when an instance is booted via PXE,
iPXE or Virtual Media, with the only local storage contents being those in memory. It is suported by
pxe, ipxe, redfish-virtual-media and ilo-virtual-media boot interfaces.

Configuration

Ramdisk/ISO boot requires using the ramdisk deploy interface. It is enabled by default starting with the
Zed release cycle. On an earlier release, it must be enabled explicitly:

Once enabled and the conductor(s) have been restarted, the interface can be set upon creation of a new
node:

354 Chapter 4. Administrator Guide

https://docs.openstack.org/ironic-inspector/zed/install/index.html#configuration

Ironic Documentation, Release 21.1.2.dev10

baremetal node create --driver ipmi
--deploy-interface ramdisk
--boot-interface ipxe

or update an existing node:

baremetal node <NODE> --deploy-interface ramdisk

You can also use it with redfish virtual media instead of iPXE.

Creating a ramdisk

A ramdisk can be created using the ironic-ramdisk-base element from ironic-python-agent-builder,
e.g. with Debian:

/opt/stack/ironic-python-agent-builder/dib
disk-image-create -o /output/ramdisk
debian-minimal ironic-ramdisk-base openssh-server dhcp-all-interfaces

You should consider using the following elements:
* openssh-server to install the SSH server since its not provided by default by some minimal images.
* devuser or dynamic-login to provide SSH access.
* dhcp-all-interfaces or simple-init to configure networking.

The resulting files (/output/ramdisk.kernel and /output/ramdisk.initramfs in this case) can
then be used when Booting a ramdisk.

Booting a ramdisk

Pass the kernel and ramdisk as normally, also providing the ramdisk as an image source, for example,

baremetal node <NODE>
--instance-info http://path/to/ramdisk.kernel
--instance-info http://path/to/ramdisk.initramfs

baremetal node deploy <NODE>

Note: Before the Xena release, the image_source field was also required:

4.2. Administrators Guide 355

https://opendev.org/openstack/ironic-python-agent-builder
https://docs.openstack.org/diskimage-builder/latest/elements/openssh-server/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/devuser/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/dynamic-login/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/dhcp-all-interfaces/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/simple-init/README.html

Ironic Documentation, Release 21.1.2.dev10

Booting an ISO

The ramdisk deploy interface can also be used to boot an ISO image. For example,

baremetal node <NODE>
--instance-info http://path/to/boot.iso
baremetal node deploy <NODE>

Warning: This feature, when utilized with the ipxe boot_interface, will only allow a kernel and
ramdisk to be booted from the supplied ISO file. Any additional contents, such as additional ramdisk
contents or installer package files will be unavailable after the boot of the Operating System. Opera-
tors wishing to leverage this functionality for actions such as OS installation should explore use of the
standard ramdisk deploy_interface along with the instance_info/kernel_append_params
setting to pass arbitrary settings such as a mirror URL for the initial ramdisk to load data from. This
is a limitation of iPXE and the overall boot process of the operating system where memory allocated
by iPXE is released.

By default the Bare Metal service will cache the ISO locally and serve from its HTTP server. If you want
to avoid that, set the following:

baremetal node <NODE>
--instance-info http

ISO images are also cached across deployments, similarly to how it is done for normal instance images.
The URL together with the last modified response header are used to determine if an image needs updat-
ing.

Limitations

The intended use case is for advanced scientific and ephemeral workloads where the step of writing an
image to the local storage is not required or desired. As such, this interface does come with several
caveats:

» Configuration drives are not supported with network boot, only with Redfish virtual media.
* Disk image contents are not written to the bare metal node.

» Users and Operators who intend to leverage this interface should expect to leverage a metadata ser-
vice, custom ramdisk images, or the instance_info/ramdisk_kernel_arguments parameter
to add options to the kernel boot command line.

* When using PXE/iPXE boot, bare metal nodes must continue to have network access to PXE and
iPXE network resources. This is contrary to most tenant networking enabled configurations where
this access is restricted to the provisioning and cleaning networks

* As with all deployment interfaces, automatic cleaning of the node will still occur with the contents
of any local storage being wiped between deployments.

356 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Common options

Disable persistent boot device for ramdisk iso boot

For iso boot, Ironic sets the boot target to continuously boot from the iso attached over virtual me-
dia. This behaviour may not always be desired e.g. if the vmedia is installing to hard drive and
then rebooting. In order to instead set the virtual media to be one time boot Ironic provides the
force_persistent_boot_device flag in the nodes driver_info. Which can be set to Never:

$ openstack baremetal node set --driver-info force_persistent_boot_device=
— 'Never' <node>

4.2.22 Hardware Burn-in
Overview

Workflows to onboard new hardware often include a stress-testing step to provoke early failures and
to avoid that these load-triggered issues only occur when the nodes have already moved to production.
These burn-in tests typically include CPU, memory, disk, and network. With the Xena release, Ironic
supports such tests as part of the cleaning framework.

The burn-in steps rely on standard tools such as stress-ng for CPU and memory, or fio for disk and
network. The burn-in cleaning steps are part of the generic hardware manager in the Ironic Python Agent
(IPA) and therefore the agent ramdisk does not need to be bundled with a specific IPA hardware manager
to have them available.

Each burn-in step accepts (or in the case of network: needs) some basic configuration options, mostly to
limit the duration of the test and to specify the amount of resources to be used. The options are set on a
nodes driver-info and prefixed with agent_burnin_. The options available for the individual tests
will be outlined below.

CPU burn-in

The options, following a agent_burnin_ + stress-ng stressor (cpu) + stress-ng option schema, are:
e agent_burnin_cpu_timeout (default: 24 hours)
e agent_burnin_cpu_cpu (default: 0, meaning all CPUs)

to limit the overall runtime and to pick the number of CPUs to stress.

For instance, in order to limit the time of the CPU burn-in to 10 minutes do:

NODE_NAME_OR_UUID

Then launch the test with:

4.2. Administrators Guide 357

https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://fio.readthedocs.io/en/latest/
https://docs.openstack.org/ironic-python-agent/zed/admin/hardware_managers.html

Ironic Documentation, Release 21.1.2.dev10

Memory burn-in

The options, following a agent_burnin_ + stress-ng stressor (vim) + stress-ng option schema, are:
e agent_burnin_vm_timeout (default: 24 hours)
e agent_burnin_vm_vm-bytes (default: 98%)

to limit the overall runtime and to set the fraction of RAM to stress.

For instance, in order to limit the time of the memory burn-in to 1 hour and the amount of RAM to be
used to 75% run:

NODE_NAME_OR_UUID

NODE_NAME_OR_UUID

Then launch the test with:

Disk burn-in

The options, following a agent_burnin_ + fio stressor (fio_disk) + fio option schema, are:
* agent_burnin_fio_disk_runtime (default: 0, meaning no time limit)
 agent_burnin_fio_disk_loops (default: 4)

to set the time limit and the number of iterations when going over the disks.

For instance, in order to limit the number of loops to 2 set:

NODE_NAME_OR_UUID

Then launch the test with:

Network burn-in

Burning in the network needs a little more config, since we need a pair of nodes to perform the test. This
pairing can be done either in a static way, i.e. pairs are defined upfront, or dynamically via a distributed
coordination backend which orchestrates the pair matching. While the static approach is more predictable
in terms of which nodes test each other, the dynamic approach avoids nodes being blocked in case there
are issues with servers and simply pairs all available nodes.

358 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Static network burn-in configuration

To define pairs of nodes statically, each node can be assigned a agent_burnin_fio_network_config
JSON which requires a role field (values: reader, writer) and a partner field (value is the hostname
of the other node to test), like:

Dynamic network burn-in configuration

In order to use dynamic pair matching, a coordination backend is used via tooz. The corresponding
backend URL then needs to be added to the node, e.g. for a Zookeeper backend it would look similar to:

NODE_NAME_OR_UUID1

NODE_NAME_OR_UUID2

NODE_NAME_OR_UUIDN

Different deliveries or network ports can be separated by creating different rooms on the backend with:

This allows to control which nodes (or interfaces) connect with which other nodes (or interfaces).

Launching network burn-in

In addition and similar to the other tests, there is a runtime option to be set (only on the writer):

NODE_NAME_OR_UUID

The actual network burn-in can then be launched with:

4.2. Administrators Guide 359

https://docs.openstack.org/tooz/latest/

Ironic Documentation, Release 21.1.2.dev10

Both nodes will wait for the other node to show up and block while waiting. If the partner does not show
up, the cleaning timeout will step in.

Logging

Since most of the burn-in steps are also providing information about the performance of the stressed
components, keeping this information for verification or acceptance purposes may be desirable. By
default, the output of the burn-in tools goes to the journal of the Ironic Python Agent and is therefore
sent back as an archive to the conductor. In order to consume the output of the burn-in steps more easily,
or even in real-time, the nodes can be configured to store the output of the individual steps to files in the
ramdisk (from where they can be picked up by a logging pipeline).

The configuration of the outpout file is done via one of agent_burnin_cpu_outputfile,
agent_burnin_vm_outputfile, agent_burnin_fio_disk_outputfile, and
agent_burnin_fio_network_outputfile parameters which need to be added to a node like:

Additional Information

All tests can be aborted at any moment with

One can also launch multiple tests which will be run in sequence, e.g.:

If desired, configuring fast-track may be helpful here as it allows to keep the node up between con-
secutive calls of baremetal node clean.

4.2.23 Vendor Passthru

The bare metal service allows drivers to expose vendor-specific API known as vendor passthru.

Node Vendor Passthru

Drivers may implement a passthrough API, which is accessible via the /v1/nodes/<Node UUID or
Name>/vendor_passthru?method={METHOD} endpoint. Beyond basic checking, Ironic does not in-
trospect the message body and simply passes it through to the relevant driver.

A method:
* can support one or more HTTP methods (for example, GET, POST)
* is asynchronous or synchronous

— For asynchronous methods, a 202 (Accepted) HTTP status code is returned to indicate that the
request was received, accepted and is being acted upon. No body is returned in the response.

360 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

— For synchronous methods, a 200 (OK) HTTP status code is returned to indicate that the
request was fulfilled. The response may include a body.

* can require an exclusive lock on the node. This only occurs if the method doesnt specify re-
quire_exclusive_lock=False in the decorator. If an exclusive lock is held on the node, other requests
for the node will be delayed and may fail with an HTTP 409 (Conflict) error code.

This endpoint exposes a nodes driver directly, and as such, it is expressly not part of Ironics standard
REST API. There is only a single HTTP endpoint exposed, and the semantics of the message body are
determined solely by the driver. Ironic makes no guarantees about backwards compatibility; this is solely
up to the discretion of each drivers author.

To get information about all the methods available via the vendor_passthru endpoint for a particular node,
use CLI:

baremetal node passthru list <redfish-node>

4.2. Administrators Guide 361

Ironic Documentation, Release 21.1.2.dev10

The response will contain information for each method, such as the methods name, a description, the
HTTP methods supported, and whether its asynchronous or synchronous.

You can call a method with CLI, for example:

baremetal node passthru call <redfish-node> eject_vmedia

Driver Vendor Passthru
Drivers may implement an API for requests not related to any node, at /vl/drivers/<driver name>/
vendor_passthru?method={METHOD}.
A method:
* can support one or more HTTP methods (for example, GET, POST)
* is asynchronous or synchronous

— For asynchronous methods, a 202 (Accepted) HTTP status code is returned to indicate that the
request was received, accepted and is being acted upon. No body is returned in the response.

— For synchronous methods, a 200 (OK) HTTP status code is returned to indicate that the
request was fulfilled. The response may include a body.

Note: Unlike methods in Node Vendor Passthru, a request does not lock any resource, so it will not
delay other requests and will not fail with an HTTP 409 (Conflict) error code.

Ironic makes no guarantees about the semantics of the message BODY sent to this endpoint. That is left
up to each drivers author.

To get information about all the methods available via the driver vendor_passthru endpoint, use CLI:

baremetal driver passthru list redfish

The response will contain information for each method, such as the methods name, a description, the
HTTP methods supported, and whether its asynchronous or synchronous.

Warning: Currently only the methods available in the default interfaces of the hardware type are
available.

You can call a method with CLI, for example:

baremetal driver passthru call <driver> <method>

362 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

4.2.24 Drivers, Hardware Types and Hardware Interfaces

4.2.25 Advanced Topics

Ceph Object Gateway support

Overview

Ceph project is a powerful distributed storage system. It contains object store and provides a RADOS
Gateway Swift API which is compatible with OpenStack Swift APL

Ironic added support for RADOS Gateway temporary URL in the Mitaka release.

Configure Ironic and Glance with RADOS Gateway

1. Install Ceph storage with RADOS Gateway. See Ceph documentation.

2. Configure RADOS Gateway to use keystone for authentication. See Integrating with OpenStack
Keystone

3. Register RADOS Gateway endpoint in the keystone catalog, with the same format swift uses, as
the object-store service. URL example:

http://rados.example.com:8080/swift/v1/AUTH_$(project_id)s.

In the ceph configuration, make sure radosgw is configured with the following value:

4. Configure Glance API service for RADOS Swift API as backend. Edit the configuration file for
the Glance API service (is typically located at /etc/glance/glance-api.conf):

In the file referenced in swift_store_config_file option, add the following:

Values for user and key options correspond to keystone credentials for RADOS Gateway service
user.

4.2. Administrators Guide 363

http://docs.ceph.com/docs
http://docs.ceph.com/docs/master/radosgw/keystone/
http://docs.ceph.com/docs/master/radosgw/keystone/

Ironic Documentation, Release 21.1.2.dev10

Note: RADOS Gateway uses FastCGI protocol for interacting with HTTP server. Read your HTTP
server documentation if you want to enable HTTPS support.

5. Restart Glance API service and upload all needed images.

6. If youre using custom container name in RADOS, change Ironic configuration file on the conductor
host(s) as follows:

7. Restart Ironic conductor service(s).

Building images for Windows

We can use New-WindowsOnlineImage in windows-openstack-imaging-tools tool as an option to create
Windows images (whole disk images) corresponding boot modes which will support for Windows NIC
Teaming. And allow the utilization of link aggregation when the instance is spawned on hardware servers
(Bare metals).

Requirements:

* A Microsoft Windows Server Operating System along with Hyper-V virtualization enabled,
PowerShell version >=4 supported, Windows Assessment and Deployment Kit, in short
Windows ADK.

* The windows Server compatible drivers.

* Working git environment.

Preparation:

* Download a Windows Server 2012R2/ 2016 installation ISO.
* Install Windows Server 2012R2/ 2016 OS on workstation PC along with following feature:

Enable Hyper-V virtualization.

Install PowerShell 4.0.

Install Git environment & import git proxy (if have).

Create new Path in Microsoft Windows Server Operating System which support for sub-
module update via git submodule update init command:

\ \ \ \VI.O\;C:\
< AR

Rename virtual switch name in Windows Server 2012R2/ 2016 in Virtual Switch
Manager into external.

364 Chapter 4. Administrator Guide

https://github.com/cloudbase/windows-openstack-imaging-tools

Ironic Documentation, Release 21.1.2.dev10

Implementation:

* Step 1: Create folders: C:\<folder_name_1> where output images will be located, C:\
<folder_name_2> where you need to place the necessary hardware drivers.

* Step 2: Copy and extract necessary hardware drivers in C:\<folder_name_2>.
e Step 3: Insert or burn Windows Server 2016 ISO to D:\.

e Step 4: Download windows-openstack-imaging-tools tools.

* Step 5: Create & running script create-windows-cloud-image.ps1:

After executing this command you will get two output files, first one being
C:<folder_name_1><output_file_name>.qcow2, which is the resulting windows whole disk
image and C:<folder_name_1>virtio.iso, which is virtio iso contains all the synthetic drivers for
the KVM hypervisor.

See example_windows_images for more details and examples.

Note: We can change SizeBytes, CpuCores and Memory depending on requirements.

4.2. Administrators Guide 365

https://github.com/cloudbase/windows-openstack-imaging-tools/blob/master/Examples

Ironic Documentation, Release 21.1.2.dev10

Emitting Software Metrics
Beginning with the Newton (6.1.0) release, the ironic services support emitting internal performance
data to statsd. This allows operators to graph and understand performance bottlenecks in their system.

This guide assumes you have a statsd server setup. For information on using and configuring statsd,
please see the statsd README and documentation.

These performance measurements, herein referred to as metrics, can be emitted from the Bare Metal
service, including ironic-api, ironic-conductor, and ironic-python-agent. By default, none of the services
will emit metrics.

Configuring the Bare Metal Service to Enable Metrics
Enabling metrics in ironic-api and ironic-conductor

The ironic-api and ironic-conductor services can be configured to emit metrics to statsd by adding the
following to the ironic configuration file, usually located at /etc/ironic/ironic.conf:

If a statsd daemon is installed and configured on every host running an ironic service, listening on the
default UDP port (8125), no further configuration is needed. If you are using a remote statsd server, you
must also supply connection information in the ironic configuration file:

Enabling metrics in ironic-python-agent

The ironic-python-agent process receives its configuration in the response from the initial lookup request
to the ironic-api service. This means to configure ironic-python-agent to emit metrics, you must enable
the agent metrics backend in your ironic configuration file on all ironic-conductor hosts:

In order to reliably emit metrics from the ironic-python-agent, you must provide a statsd server that is
reachable from both the configured provisioning and cleaning networks. The agent statsd connection
information is configured in the ironic configuration file as well:

366 Chapter 4. Administrator Guide

https://github.com/etsy/statsd
https://github.com/etsy/statsd

Ironic Documentation, Release 21.1.2.dev10

Types of Metrics Emitted

The Bare Metal service emits timing metrics for every API method, as well as for most driver methods.
These metrics measure how long a given method takes to execute.

A deployer with metrics enabled should expect between 100 and 500 distinctly named data points to be
emitted from the Bare Metal service. This will increase if the metrics.preserve_host option is set to true
or if multiple drivers are used in the Bare Metal deployment. This estimate may be used to determine if
a deployer needs to scale their metrics backend to handle the additional load before enabling metrics. To
see which metrics have changed names or have been removed between releases, refer to the ironic release
notes.

Note: With the default statsd configuration, each timing metric may create additional metrics due to
how statsd handles timing metrics. For more information, see statds documentation on metric types.

The ironic-python-agent ramdisk emits timing metrics for every API method.

Deployers who use custom HardwareManagers can emit custom metrics for their hardware. For more in-
formation on custom HardwareManagers, and emitting metrics from them, please see the ironic-python-
agent documentation.

Adding New Metrics

If youre a developer, and would like to add additional metrics to ironic, please see the ironic-lib developer
documentation for details on how to use the metrics library. A release note should also be created each
time a metric is changed or removed to alert deployers of the change.

API Audit Logging

Audit middleware supports delivery of CADF audit events via Oslo messaging notifier capability. Based
on notification_driver configuration, audit events can be routed to messaging infrastructure (notifica-
tion_driver = messagingv2) or can be routed to a log file ([oslo_messaging_notifications [/driver = log).

Audit middleware creates two events per REST API interaction. First event has information extracted
from request data and the second one has request outcome (response).

Enabling API Audit Logging

Audit middleware is available as part of keystonemiddleware (>= 1.6) library. For information regarding
how audit middleware functions refer here.

Auditing can be enabled for the Bare Metal service by making the following changes to /etc/ironic/
ironic.conf.

1. To enable audit logging of API requests:

4.2. Administrators Guide 367

https://docs.openstack.org/releasenotes/ironic/
https://docs.openstack.org/releasenotes/ironic/
https://github.com/etsy/statsd/blob/master/docs/metric_types.md#timing
https://docs.openstack.org/ironic-python-agent/zed/
https://docs.openstack.org/ironic-python-agent/zed/
https://docs.openstack.org/ironic-lib/zed/
https://docs.openstack.org/ironic-lib/zed/
https://docs.openstack.org/keystonemiddleware/zed/audit.html

Ironic Documentation, Release 21.1.2.dev10

2. To customize auditing API requests, the audit middleware requires the audit_map_file set-
ting to be defined. Update the value of configuration setting audit_map_file to set its lo-
cation. Audit map file configuration options for the Bare Metal service are included in the
etc/ironic/ironic_api_audit_map.conf.sample file. To understand CADF format specified in
ironic_api_audit_map.conf file refer to CADF Format.:

3. Comma separated list of Ironic REST API HTTP methods to be ignored during audit. It is used
only when API audit is enabled. For example:

Sample Audit Event

Following is the sample of audit event for ironic node list request.

(continues on next page)

368 Chapter 4. Administrator Guide

http://www.dmtf.org/sites/default/files/standards/documents/DSP2038_1.0.0.pdf

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

Bare Metal Service state report (via Guru Meditation Reports)

The Bare Metal service contains a mechanism whereby developers and system administrators can gen-
erate a report about the state of running Bare Metal executables (ironic-api and ironic-conductor). This
report is called a Guru Meditation Report (GMR for short). GMR provides useful debugging information
that can be used to obtain an accurate view on the current live state of the system. For example, what
threads are running, what configuration parameters are in effect, and more. The eventlet backdoor facility
provides an interactive shell interface for any eventlet based process, allowing an administrator to telnet
to a pre-defined port and execute a variety of commands.

Configuration

The GMR feature is optional and requires the oslo.reports package to be installed. For example, using
pip:

4.2. Administrators Guide 369

https://opendev.org/openstack/oslo.reports

Ironic Documentation, Release 21.1.2.dev10

Generating a GMR

A GMR can be generated by sending the USR2 signal to any Bare Metal process that supports it. The
GMR will then be output to stderr for that particular process. For example:

Suppose that ironic-api has process ID 6385, and was run with 2>/var/log/ironic/
ironic-api-err.log. Then, sending the USR signal:

will trigger the Guru Meditation report to be printed to /var/log/ironic/ironic-api-err.log.

Structure of a GMR

The GMR consists of the following sections:

Package Shows information about the package to which this process belongs, including version infor-
mation.

Threads Shows stack traces and thread IDs for each of the threads within this process.

Green Threads Shows stack traces for each of the green threads within this process (green threads dont
have thread IDs).

Configuration Lists all the configuration options currently accessible via the CONF object for the cur-
rent process.

Agent Token

Purpose

The concept of agent tokens is to provide a mechanism by which the relationship between an operating
deployment of the Bare Metal Service and an instance of the ironic-python-agent is verified. In a
sense, this token can be viewed as a session identifier or authentication token.

Warning: This functionality does not remove the risk of a man-in-the-middle attack that could occur
from connection intercept or when TLS is not used for all communication.

This becomes useful in the case of deploying an edge node where intermediate networks are not trust-
worthy.

370 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

How it works

These tokens are provided in one of two ways to the running agent.
1. A pre-generated token which is embedded into virtual media ISOs.
2. A one-time generated token that are provided upon the first lookup of the node.

In both cases, the tokens are a randomly generated using the Python secrets library. As of mid-2020,
the default length is 43 characters.

Once the token has been provided, the token cannot be retrieved or accessed. It remains available to the
conductors, and is stored in memory of the ironic-python-agent.

Note: In the case of the token being embedded with virtual media, it is read from a configuration file
with-in the image. Ideally this should be paired with Swift temporary URLs.

With the token is available in memory in the agent, the token is embedded with heartbeat opera-
tions to the ironic API endpoint. This enables the API to authenticate the heartbeat request, and refuse
heartbeat requests from the ironic-python-agent. As of the Victoria release, use of Agent Token is
required for all agents and the previously available setting to force this functionality to be mandatory,
[DEFAULT]require_agent_token no longer has any effect.

Warning: If the Bare Metal Service is updated, and the version of ironic-python-agent should
be updated to enable this feature.

In addition to heartbeats being verified, commands from the ironic-conductor service to the
ironic-python-agent also include the token, allowing the agent to authenticate the caller.

With Virtual Media

-
Generates a ramdom

— 1

Gemerates configur

PE—

1
1
1
1
1
1
1
1
1
1
|
IPA inage, with configuration is uploadpd

Attach IPA virtual media in Sw
ift as virtual co

Conductor twms pover on

v

Lookup node

APL responds with node UVID and token value of 7***xss’

Heartbeat with agent token

4.2. Administrators Guide 371

Ironic Documentation, Release 21.1.2.dev10

With PXE/iPXE/etc.

Tonductor twems power on

Bavemetal reads kernel/randisk
and starts boot

Boots IPA iPXE dima
ge

1PA is started

IPA loads configuration

Lookup node

API requests conductor to geme
rates a random token

APL responds with wode vuID and tokew vplue

Heartbeat with agent token

Agent Configuration

An additional setting which may be Ileveraged with the ironic-python-agent is a
agent_token_required setting. Under normal circumstances, this setting can be asserted via
the configuration supplied from the Bare Metal service deployment upon the 1ookup action, but can be
asserted via the embedded configuration for the agent in the ramdisk. This setting is also available via
kernel command line as ipa-agent-token-required.

Deploying without BMC Credentials

The Bare Metal service usually requires BMC credentials for all provisioning operations. Starting with
the Victoria release series there is limited support for inspection, cleaning and deployments without the
credentials.

Warning: This feature is experimental and only works in a limited scenario. When using it, you
have to be prepared to provide BMC credentials in case of a failure or any non-supported actions.

How it works

The expected workflow is as follows:

1. The node is discovered by manually powering it on and gets the manual-management hardware
type and agent power interface.

If discovery is not used, a node can be enrolled through the API and then powered on manually.

2. The operator moves the node to manageable. It works because the agent power only requires to be
able to connect to the agent.

3. The operator moves the node to available. Cleaning happens normally via the already running
agent. If reboot is needed, it is done by telling the agent to reboot the node in-band.

4. A user deploys the node. Deployment happens normally via the already running agent.

5. Inthe end of the deployment, the node is rebooted via the reboot command instead of power off+on.

372 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Enabling

Fast-Track Deployment is a requirement for this feature to work. After enabling it, adds the agent power
interface and the manual-management hardware type to the enabled list:

As usual with the noop management, enable the networking boot fallback:

If using discovery, configure discovery in ironic-inspector with the default driver set to
manual -management.

Limitations

* Only the noop network interface is supported.
* Undeploy and rescue are not supported, you need to add BMC credentials first.
* If any errors happens in the process, recovery will likely require BMC credentials.

* Only rebooting is possible through the API, power on/off commands will fail.

Layer 3 or DHCP-less ramdisk booting

Booting nodes via PXE, while universally supported, suffers from one disadvantage: it requires a direct
L2 connectivity between the node and the control plane for DHCP. Using virtual media it is possible to
avoid not only the unreliable TFTP protocol, but DHCP altogether.

When network data is provided for a node as explained below, the generated virtual media ISO will also
serve as a configdrive, and the network data will be stored in the standard OpenStack location.

The simple-init element needs to be used when creating the deployment ramdisk. The Glean tool will
look for a media labeled as config-2. If found, the network information from it will be read, and the
nodes networking stack will be configured accordingly.

Warning: Ramdisks based on distributions with NetworkManager require Glean 1.19.0 or newer to
work.

4.2. Administrators Guide 373

https://docs.openstack.org/ironic-inspector/zed/user/usage.html#discovery
https://docs.openstack.org/nova/queens/user/config-drive.html
https://docs.openstack.org/diskimage-builder/latest/elements/simple-init/README.html
https://docs.openstack.org/infra/glean/
https://docs.openstack.org/infra/glean/

Ironic Documentation, Release 21.1.2.dev10

Note: If desired, some interfaces can still be configured to use DHCP.

Hardware type support

This feature is known to work with the following hardware types:
* Redfish with redfish-virtual-media boot

e O with ilo-virtual-media boot

Configuring network data

When the Bare Metal service is running within OpenStack, no additional configuration is required - the
network configuration will be fetched from the Network service.

Alternatively, the user can build and pass network configuration in form of a network_data JSON to a
node via the network_data field. Node-based configuration takes precedence over the configuration
generated by the Network service and also works in standalone mode.

baremetal node --network-data ~/network_data.json <node>

An example network data:

Note: Some fields are redundant with the port information. Were looking into simplifying the format,
but currently all these fields are mandatory.

374 Chapter 4. Administrator Guide

https://specs.openstack.org/openstack/nova-specs/specs/liberty/implemented/metadata-service-network-info.html

Ironic Documentation, Release 21.1.2.dev10

Youll need the deployed image to support network data, e.g. by pre-installing cloud-init or Glean on
it (most cloud images have the former). Then you can provide the network data when deploying, for
example:

baremetal node deploy <node>
--config-drive cat ~/network_data.json

Some first-boot services, such as Ignition, dont support network data. You can provide their configuration
as part of user data instead:

baremetal node deploy <node>
--config-drive

Deploying outside of the provisioning network

If you need to combine traditional deployments using a provisioning network with virtual media de-
ployments over L3, you may need to provide an alternative IP address for the remote nodes to connect
to:

You may also need to override the callback URL, which is normally fetched from the service catalog or
configured in the [service_catalog] section:

In case you need specific URLs for each node, you can use the driver_info[external_http_url]
node property. When used it overrides the [deploy]http_url and [deploy]external_http_url
settings in the configuration file.

baremetal node node-0
--driver-info

Tuning Ironic

Memory Utilization

Memory utilization is a difficult thing to tune in Ironic as largely we may be asked by API consumers to
perform work for which the underlying tools require large amounts of memory.

The biggest example of this is image conversion. Images not in a raw format need to be written out to
disk for conversion (when requested) which requires the conversion process to generate an in-memory
map to re-assemble the image contents into a coherent stream of data. This entire process also stresses
the kernel buffers and cache.

This ultimately comes down to a trade-off of Memory versus Performance, similar to the trade-off of
Performance versus Cost.

4.2. Administrators Guide 375

https://cloudinit.readthedocs.io/en/latest/
https://docs.openstack.org/infra/glean/
https://coreos.github.io/ignition/

Ironic Documentation, Release 21.1.2.dev10

On a plus side, an idle Ironic deployment does not need much in the way of memory. On the down side,
a highly bursty environment where a large number of concurrent deployments may be requested should
consider two aspects:

* How is the ironic-api service/process set up? Will more processes be launched automatically?

» Are images prioritized for storage size on disk? Or are they compressed and require format con-
version?

API

Ironics API should have a fairly stable memory footprint with activity, however depending on how the
webserver is running the API, additional processes can be launched.

Under normal conditions, as of Ironic 15.1, the ironic-api service/process consumes approximately
270MB of memory per worker. Depending on how the process is being launched, the number of workers
and maximum request threads per worker may differ. Naturally there are configuration and performance
trade-offs.

* Directly as a native python process, i.e. execute ironic-api processes. Each single worker allows
for multiple requests to be handled and threaded at the same time which can allow high levels of
request concurrency. As of the Victoria cycle, a direct invocation of the ironic-api program will
only launch a maximum of four workers.

* Launched via a wrapper such as Apache+uWSGI may allow for multiple distinct worker processes,
but these workers typically limit the number of request processing threads that are permitted to
execute. This means requests can stack up in the front-end webserver and be released to the
ironic-api as prior requests complete. In environments with long running synchronous calls,
such as use of the vendor passthru interface, this can be very problematic.

When the webserver is launched by the API process directly, the default is based upon the number of
CPU sockets in your machine.

When launching using uwsgi, this will entirely vary upon your configuration, but balancing work-
ers/threads based upon your load and needs is highly advisable. Each worker process is unique and
consumes far more memory than a comparable number of worker threads. At the same time, the sched-
uler will focus on worker processes as the threads are greenthreads.

Note: Host operating systems featuring in-memory de-duplication should see an improvement in the
overall memory footprint with multiple processes, but this is not something the development team has
measured and will vary based upon multiple factors.

One important item to note: each Ironic API service/process does keep a copy of the hash ring as gen-
erated from the database in-memory. This is done to help allocate load across a cluster in-line with how
individual nodes and their responsible conductors are allocated across the cluster. In other words, your
amount of memory WILL increase corresponding to the number of nodes managed by each ironic con-
ductor. It is important to understand that features such as conductor groups means that only matching
portions of nodes will be considered for the hash ring if needed.

376 Chapter 4. Administrator Guide

./conductor-groups.rst

Ironic Documentation, Release 21.1.2.dev10

Conductor

A conductor process will launch a number of other processes, as required, in order to complete the
requested work. Ultimately this means it can quickly consume large amounts of memory because it was
asked to complete a substantial amount of work all at once.

The ironic-conductor from ironic 15.1 consumes by default about 340MB of RAM in an idle config-
uration. This process, by default, operates as a single process. Additional processes can be launched, but
they must have unique resolvable hostnames and addresses for JSON-RPC or use a central oslo.messaging
supported message bus in order for Webserver API to Conductor API communication to be functional.

Typically, the most memory intensive operation that can be triggered is a image conversion for deploy-
ment, which is limited to 1GB of RAM per conversion process.

Most deployments, by default, do have a concurrency limit depending on their Compute (See nova.conf
setting max_concurrent_builds) configuration. However, this is only per nova-compute worker, so
naturally this concurrency will scale with additional workers.

Stand-alone users can easily request deployments exceeding the Compute service default maximum con-
current builds. As such, if your environment is used this way, you may wish to carefully consider your
deployment architecture.

With a single nova-compute process talking to a single conductor, asked to perform ten concurrent de-
ployments of images requiring conversion, the memory needed may exceed 10GB. This does however,
entirely depend upon image block structure and layout, and what deploy interface is being used.

Database

Query load upon the database is one of the biggest potential bottlenecks which can cascade across a
deployment and ultimately degrade service to an Ironic user.

Often, depending on load, query patterns, periodic tasks, and so on and so forth, additional indexes may
be needed to help provide hints to the database so it can most efficently attempt to reduce the number of
rows which need to be examined in order to return a result set.

Adding indexes

This example below is specific to MariaDB/MySQL, but the syntax should be easy to modify for operators
using PostgreSQL.

Note: The indexes noted have been added automatically by Xena versions of Ironic and later. They are
provided here as an example and operators can add them manually prior with versions of Ironic. The

4.2. Administrators Guide 377

https://docs.openstack.org/nova/latest/configuration/sample-config.html

Ironic Documentation, Release 21.1.2.dev10

database upgrade for the Xena release of Ironic which adds these indexes are only aware of being able to
skip index creation if it already exists on MySQL/MariaDB.

Note: It may be possible to use LOCK = NONE. Basic testing indicates this takes a little bit longer, but
shouldnt result in the database table becoming write locked during the index creation. If the database
engine cannot support this, then the index creation will fail.

Database platforms also have a concept of what is called a compound index where the index is aligned
with the exact query pattern being submitted to the database. The database is able to use this compound
index to attempt to drastically reduce the result set generation time for the remainder of the query. As
of the composition of this document, we do not ship compound indexes in Ironic as we feel the most
general benefit is single column indexes, and depending on data present, an operator may wish to ex-
plore compound indexes with their database administrator, as comound indexes can also have negative
performance impacts if improperly constructed.

The risk, and WHY you should engage a Database Administrator, is depending on your configuration,
the actual index may need to include one or more additional fields such as owner or lessee which may
be added on to the index. At the same time, queries with less field matches, or in different orders will
exhibit different performance as the compound index may not be able to be consulted.

Indexes will not fix everything

Indexes are not a magical cure-all for all API or database performance issues, but they are an increadibly
important part depending on data access and query patterns.

The underlying object layer and data conversions including record pagination do add a substantial amount
of overhead to what may otherwise return as a result set on a manual database query. In Ironics case, due
to the object model and the need to extract multiple pieces of data at varying levels of the data model to
handle cases such as upgrades, the entire result set is downloaded and transformed which is an overhead
you do not experience with a command line database client.

BMC interaction

In its default configuration, Ironic runs a periodic task to synchronize the power state of the managed
physical nodes with the Ironic database. For the hardware type ipmi (see /PMI driver) and depending on
the number of nodes, the network connectivity, and the parallelism of these queries, this synchronization
may fail and retries will be triggered. Please find more details on the power synchronization and which
options to adapt in case too many power sync failures occur in the section on Power Synchronization.

378 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

What can | do?

Previously in this document, weve already suggested some architectural constraints and limitations, but
there are some things that can be done to maximize performance. Again, this will vary greatly depending
on your use.

* Use the direct deploy interface. This offloads any final image conversion to the host running the
ironic-python-agent. Additionally, if Swift or other object storage such as RadosGW is used,
downloads can be completely separated from the host running the ironic-conductor.

* Use small/compact raw images. Qcow?2 files are generally compressed and require substantial
amounts of memory to decompress and stream.

* Tune the internal memory limit for the conductor using the
[DEFAULTJmemory_required_minimum setting. This will help the conductor throttle back
memory intensive operations. The default should prevent Out-of-Memory operations, but under
extreme memory pressure this may still be sub-optimal. Before changing this setting, it is highly
advised to consult with your resident Unix wizard or even the Ironic development team in upstream
IRC. This feature was added in the Wallaby development cycle.

* If network bandwidth is the problem you are seeking to solve for, you may wish to explore a mix
of the direct deploy interface and caching proxies. Such a configuration can be highly beneficial
in wide area deployments. See Using proxies for image download.

* If youre making use of large configuration drives, you may wish to ensure youre using Swift to
store them as opposed to housing them inside of the database. The entire object and contents
are returned whenever Ironic needs to evaluate the entire node, which can become a performance
impact. For more information on configuration drives, please see Enabling the configuration drive.

Secure RBAC

Suggested Reading

It is likely an understatement to say that policy enforcement is a complex subject. It requires operational
context to craft custom policy to meet general use needs. Part of this is why the Secure RBAC effort
was started, to provide consistency and a good starting place for most users who need a higher level of
granularity.

That being said, it would likely help anyone working to implement customization of these policies to
consult some reference material in hopes of understanding the context.

* Keystone Adminstrator Guide - Service API Protection

* Ironic Scoped Role Based Access Control Specification

4.2. Administrators Guide 379

https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://specs.openstack.org/openstack/ironic-specs/specs/17.0/secure-rbac.html

Ironic Documentation, Release 21.1.2.dev10

Historical Context - How we reached our access model

Ironic has reached the access model through an evolution the API and the data stored. Along with the
data stored, the enforcement of policy based upon data stored in these fields.

* Ownership Information Storage
¢ Allow Node owners to Administer

e Allow Leasable Nodes

System Scoped

System scoped authentication is intended for administrative activities such as those crossing ten-
ants/projects, as all tenants/projects should be visible to system scoped users in Ironic.

System scoped requests do not have an associated project_id value for the Keystone request autho-
rization token utilized to speak with Ironic. These requests are translated through keystonemiddleware
into values which tell Ironic what to do. Or to be more precise, tell the policy enforcement framework
the information necessary to make decisions.

System scoped requests very much align with the access controls of Ironic before the Secure RBAC
effort. The original custom role baremetal_admin privileges are identical to a system scoped admins
privileges. Similarly baremetal_observer is identical to a system scoped reader. In these concepts,
the admin is allowed to create/delete objects/items. The reader is allowed to read details about items and
is intended for users who may need an account with read-only access for or front-line support purposes.

In addition to these concepts, a member role exists in the Secure RBAC use model. Ironic does support
this role, and in general member role users in a system scope are able to perform basic updates/changes,
with the exception of special fields like those to disable cleaning.

Project Scoped

Project scoped authentication is when a request token and associated records indicate an associated
project_id value.

The Secure RBAC model, since the introduction of the base capability has been extended as a result of
an OpenStack community goal to include a manager role in the project scope. By default, this access is
equivelent to a Project scoped admin user, however it may be delineated further as time moves forward.

Legacy Behavior

The legacy behavior of API service is that all requests are treated as project scoped requests where access
is governed using an admin project. This behavior is deprecated. The new behavior is a delineation of
access through system scoped and project scoped requests.

In essence, what would have served as an admin project, is now system scoped usage.

Previously, Ironic API, by default, responded with access denied or permitted based upon the admin
project and associated role. These responses would generate an HTTP 403 if the project was incorrect
or if a user role.

380 Chapter 4. Administrator Guide

https://specs.openstack.org/openstack/ironic-specs/specs/12.1/ownership-field.html
https://specs.openstack.org/openstack/ironic-specs/specs/14.0/node-owner-policy.html
https://specs.openstack.org/openstack/ironic-specs/specs/15.0/node-lessee.html
https://docs.openstack.org/keystonemiddleware/latest/

Ironic Documentation, Release 21.1.2.dev10

Note: While Ironic has had the concept of an owner and a 1essee, they are NOT used by default. They
require custom policy configuration files to be used in the legacy operating mode.

Supported Endpoints

¢ /nodes

/nodes/<uuid>/ports

* /nodes/<uuid>/portgroups

* /nodes/<uuid>/volume/connectors
* /nodes/<uuid>/volume/targets

* /nodes/<uuid>/allocation

* /ports

* /portgroups

* /volume/connectors

* /volume/targets

e /allocations

How Project Scoped Works

Ironic has two project use models where access is generally more delegative to an owner and access to
a lessee is generally more utilitarian.

The purpose of an owner, is more to enable the System Operator to delegate much of the administrative
activity of a Node to the owner. This may be because they physically own the hardware, or they are in
charge of the node. Regardless of the use model that the fields and mechanics support, these fields are to
support humans, and possibly services where applicable.

The purpose of a lessee is more for a tenant in their project to be able to have access to perform basic
actions with the API. In some cases that may be to reprovision or rebuild a node. Ultimately that is the
lessees prerogative, but by default there are actions and field updates that cannot be performed by default.
This is also governed by access level within a project.

These policies are applied in the way data is viewed and how data can be updated. Generally, an inability
to view a node is an access permission issue in term of the project ID being correct for owner/lessee.

The ironic project has attempted to generally codify what we believe is reasonable, however operators
may wish to override these policy settings. For details general policy setting details, please see Policies.

4.2. Administrators Guide 381

Ironic Documentation, Release 21.1.2.dev10

Field value visibility restrictions

Ironics API, by default has a concept of filtering node values to prevent sensitive data from being
leaked. System scoped users are subjected to basic restrictions, whereas project scoped users are,
by default, examined further and against additional policies. This threshold is controlled with the
baremetal :node:get:filter_threshold.

By default, the following fields are masked on Nodes and are controlled by the associated policies. By
default, owners are able to see insight into the infrastructure, whereas lessee users CANNOT view these
fields by default.

e last_error - baremetal :node:get:last_error
* reservation - baremetal :node:get:reservation
e driver_internal_info - baremetal :node:get:driver_internal_info

e driver_info - baremetal :node:get:driver_info

Field update restrictions

Some of the fields in this list are restricted to System scoped users, or even only System Administrators.
Some of these default restrictions are likely obvious. Owners cant change the owner. Lessees cant change
the owner.

e driver_info - baremetal :node:update:driver_info

e properties - baremetal :node:update:properties

e chassis_uuid - baremetal :node:update:chassis_uuid

e instance_uuid - baremetal :node:update:instance_uuid

e lessee - baremetal :node:update:lessee

e owner - baremetal :node:update:owner

e driver - baremetal :node:update:driver_interfaces

e *_interface - baremetal :node:update:driver_interfaces
* network_data - baremetal :node:update:network_data

e conductor_group - baremetal :node:update:conductor_group
* name - baremetal :node:update:name

e retired - baremetal :node:update:driver_info

e retired_reason - baremetal :node:update:retired

Warning: The chassis_uuid field is a write-once-only field. As such it is restricted to system
scoped administrators.

More information is available on these fields in Policies.

382 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

Allocations

The allocations endpoint of the API is somewhat different than other endpoints as it allows for the
allocation of physical machines to an admin. In this context, there is not already an owner or project_id
to leverage to control access for the creation process, any project member does have the inherent privilege
of requesting an allocation. That being said, their allocation request will require physical nodes to be
owned or leased to the project_id through the node fields owner or lessee.

Ability to override the owner is restricted to system scoped users by default and any new allocation being
requested with a specific owner, if made in project scope, will have the project_id recorded as the
owner of the allocation.

Ultimately, an operational behavior difference exists between the owner and lessee rights in terms of
allocations. With the standard access rights, 1essee users are able to create allocations if they own nodes
which are not allocated or deployed, but they cannot reprovision nodes when using only a member role.
This limitation is not the case for project-scoped users with the admin role.

Warning: The allocation endpoints use is restricted to project scoped interac-
tions until [oslo_policy]enforce_new_defaults has been set to True using the
baremetal:allocation:create_pre_rbac policy rule. This is in order to prevent end-
point misuse. Afterwards all project scoped allocations will automatically populate an owner.
System scoped request are not subjected to this restriction, and operators may change the default
restriction via the baremetal :allocation:create_restricted policy.

Practical differences

Most users, upon implementing the use of system scoped authentication should not notice a difference
as long as their authentication token is properly scoped to system and with the appropriate role for their
access level. For most users who used a baremetal project, or other custom project via a custom policy
file, along with a custom role name such as baremetal_admin, this will require changing the user to be
a system scoped user with admin privileges.

The most noticeable difference for API consumers is the HTTP 403 access code is now mainly a HTTP
404 access code. The access concept has changed from Does the user broadly have access to the API? to
Does user have access to the node, and then do they have access to the specific resource?.

What is an owner or lessee?

An owner or lessee is the project which has been assigned baremetal resources. Generally these should
be service projects as opposed to a project dedicated to a specific user. This will help prevent the need to
involve a system scoped administrator from having to correct ownership records should a project need
to be removed due to an individuals departure.

The underlying project_id is used to represent and associate the owner or lessee.

4.2. Administrators Guide 383

Ironic Documentation, Release 21.1.2.dev10

How do | assign an owner?

baremetal node --owner <project_id> <node>

Note: With the default access policy, an owner is able to change the assigned lessee of a node.
However the 1lessee is unable to do the same.

How do | assign a lessee?

baremetal node --lessee <project_id> <node>

What is the difference between an owner and lessee?

This is largely covered in How Project Scoped Works although as noted it is largely in means of access.
A lessee is far more restrictive and an owner may revoke access to lessee.

Access to the underlying baremetal node is not exclusive between the owner and lessee, and this use
model expects that some level of communication takes place between the appropriate parties.

Can |, a project admin, create a node?

Starting in API version 1. 80, the capability was added to allow users with an admin role to be able to
create and delete their own nodes in Ironic.

This functionality is enabled by default, and automatically imparts owner privileges to the created Bare
Metal node.

This functionality can be disabled by setting [api]lproject_admin_can_manage_own_nodes to
False.

Deploying with anaconda deploy interface

Ironic supports deploying an OS with the anaconda installer. This anaconda deploy interface works with
pxe and ipxe boot interfaces.

Configuration

The anaconda deploy interface is not enabled by default. To enable this, add anaconda to the value of
the enabled_deploy_interfaces configuration option in ironic.conf. For example:

384 Chapter 4. Administrator Guide

https://fedoraproject.org/wiki/Anaconda

Ironic Documentation, Release 21.1.2.dev10

This change takes effect after all the ironic conductors have been restarted.

The default kickstart template is specified ~ via the configuration option
[anaconda]default_ks_template. It is set to this ks.cfg.template but can be modified to be
some other template.

When creating an ironic node, specify anaconda as the deploy interface. For example:

baremetal node create --driver ipmi
--deploy-interface anaconda
--boot-interface ipxe

You can also set the anaconda deploy interface via --deploy-interface on an existing node:

baremetal node <node> --deploy-interface anaconda

Creating an OS Image

While anaconda allows installing individual RPMs, the default kickstart file expects an OS tarball to be
used as the OS image.

This baremetal . yum file contains all the yum/dnf commands that need to be run in order to generate
the OS tarball. These commands install packages and package groups that need to be in the image:

An OS tarball can be created using following set of commands, along with the above baremetal . yum
file:

/home/<user>/os-image
mkdir -p $(CHROOT
mkdir -p CHROOT) / ' dev,proc,run,sys
chown -hR root:root CHROOT
mount --bind /var/cache/yum $(CHROOT)/var/cache/yum
mount --bind /dev $(CHROOT)/dev
mount -t proc proc CHROOT) /proc
mount -t tmpfs tmpfs $(CHROOT)/run
mount -t sysfs sysfs $(CHROOT)/sys
dnf -y --installroot $(CHROOT) makecache
dnf -y --installroot $(CHROOT) shell baremetal.yum
rpm --root $(CHROOT) --import $(CHROOT)/etc/pki/rpm-gpg/RPM-GPG-KEY-*
truncate -s CHROOT) /etc/machine-id
umount $(CHROOT) /var/cache/yum
umount $(CHROOT) /dev
umount $(CHROOT) /proc
umount CHROOT) /run

(continues on next page)

4.2. Administrators Guide 385

https://opendev.org/openstack/ironic/src/branch/master/ironic/drivers/modules/ks.cfg.template

Ironic Documentation, Release 21.1.2.dev10

(continued from previous page)

umount $(CHROOT) /sys
tar cpzf os-image.tar.gz --xattrs --acls --selinux -C $(CHROOT

Configuring the OS Image in glance

Anaconda is a two-stage installer stage 1 consists of the kernel and ramdisk and stage 2 lives in a squashfs
file. All these components can be found in the CentOS/RHEL/Fedora ISO images.

The kernel and ramdisk can be found at /images/pxeboot/vmlinuz and /images/pxeboot/
initrd.img respectively in the ISO. The stage 2 squashfs image can be normally found at /LiveOS/
squashfs.img or /images/install.img.

The OS tarball must be configured with the following properties in glance, in order to be used with the
anaconda deploy driver:

e kernel_id

* ramdisk_id

* stage2_id

* disk_file_extension (optional)

Valid disk_file_extension values are .img, .tar, .tbz, .tgz, .txz, .tar.gz, .tar.bz2, and .
tar.xz. When disk_file_extension property is not set to one of the above valid values the anaconda
installer will assume that the image provided is a mountable OS disk.

This is an example of adding the anaconda-related images and the OS tarball to glance:

openstack image create --file ./vmlinuz --container-format aki
--disk-format aki --shared anaconda-kernel-<version>

openstack image create --file ./initrd.img --container-format ari
--disk-format ari --shared anaconda-ramdisk-<version>

openstack image create --file ./squashfs.img --container-format ari
--disk-format ari --shared anaconda-stage-<verison>

openstack image create --file ./os-image.tar.gz
--container-format bare --disk-format raw --shared

--property <glance_uuid_vmlinuz>

--property <glance_uuid_ramdisk>

--property <glance_uuid_stage2> disto-name-version
--property .tgz

Creating a bare metal server

Apart from uploading a custom kickstart template to glance and associating it with the OS image via
the ks_template property in glance, operators can also set the kickstart template in the ironic nodes
instance_info field. The kickstart template set in instance_info takes precedence over the one
specified via the OS image in glance. If no kickstart template is specified (via the nodes instance_info
or ks_template glance image property), the default kickstart template will be used to deploy the OS.

This is an example of how to set the kickstart template for a specific ironic node:

386 Chapter 4. Administrator Guide

Ironic Documentation, Release 21.1.2.dev10

openstack baremetal node <node>
--instance_info glance://uuid

Warning: In the Ironic Project terminology, the word template often refers to a file which is
supplied to the deployment, which Ironic supplies parameters to render a specific output. One critical
example of this in the Ironic workflow, specifically with this driver, is that the generated agent token
is conveyed to the booting ramdisk, facilitating it to call back to Ironic and indicate the state. This
token is randomly generated for every deploy, and is required. Specifically this is leveraged in the
templates pre, onerror, and post steps. For more infomation on Agent Token, please see Agent
Token.

Standalone deployments

While this deployment interface driver was developed around the use of other OpenStack services, it is
not explicitly required. For example HTTP(S) URLs can be supplied by the API user to explictly set the
expected baremetal node instance_info fields

baremetal node <node>
--instance_info <Mirror URL>
--instance_info <Kernel URL>
--instance_info <Initial Ramdisk URL>
--instance_info <Installer Stage2 Ramdisk URL>

When doing so, you may wish to also utilize a customized kickstart template, which can also be a URL.
Please reference the ironic community provided template ks.cfg.template and use it as a basis of your
own kickstart as it accounts for the particular stages and appropriate callbacks to Ironic.

Warning: The default template (for the kickstart liveimg command) expects an instance_info\
image_info setting to be provided by the user, which serves as a base operating system image. In
the context of the anaconda driver, it should be thought of almost like stage3. If youre using a custom
template, it may not be required, but proceed with caution. See pykickstart documentation for more
information on liveimg file format, structure, and use.

baremetal node <node>
--instance_info <URL>

If you do choose to use a liveimg with a customized template, or if you wish to use the stock template
with a liveimg, you will need to provide this setting.

baremetal node <node>
--instance_info <URL>

Warning: This is required if you do nor utilize a customised template. As in use Ironics stock
template.

4.2. Administrators Guide 387

https://pykickstart.readthedocs.io/en/latest/kickstart-docs.html#liveimg

Ironic Documentation, Release 21.1.2.dev10

The pattern of deployment in this case is identical to a deployment case where Ironic is integrated with
OpenStack, however in this case Ironic collects the files, and stages them appropriately.

At this point, you should be able to request the baremetal node to deploy.

Standalone using a repository

Anaconda supports a concept of passing a repository as opposed to a dedicated URL path which has a .
treeinfo file, which tells the initial boot scripts where to get various dependencies, such as what would
be used as the anaconda stage?2 ramdisk. Unfortunately, this functionality is not well documented.

An example . treeinfo file can be found at http://mirror.stream.centos.org/9-stream/BaseOS/x86_64/
os/.treeinfo.

Note: In the context of the .treeinfo file and the related folder structure for a deployment utilizing
the anaconda deployment interface, images/install.img file represents a stage2 ramdisk.

In the context of one wishing to deploy Centos Stream-9, the following may be useful.

baremetal node <node>

--instance_info http://mirror.stream.centos.org/9-stream/
—.Base0S/x86_64/0s/

--instance_info http://mirror.stream.centos.org/9-stream/Base0S/
—+x86_64/0s/images/pxeboot/vmlinuz

--instance_info http://mirror.stream.centos.org/9-stream/Base0S/

—+x86_64/0s/images/pxeboot/initrd.img

Once set, a kickstart template can be provided via an instance_info parameter, and the node deployed.

Deployment Process

At a high level, the mechanics of the anaconda driver works in the following flow, where we also note
the stages and purpose of each part for informational purposes.

1. Network Boot Program (Such as iPXE) downloads the kernel, and initial ramdisk.
2. Kernel launches, uncompresses initial ramdisk, and executes init inside of the ramdisk.

3. The initial ramdisk boot scripts, such as Dracut, recognize the kernel command line parameters
Ironic supplied with the boot configuration, and downloads the second stage artifacts, in this case
called the stage2 image. This image contains Anaconda and base dependencies.

4. Anaconda downloads and parses the kickstart configuration which was also supplied on the kernel
command line, and executes the commands as defined in the kickstart template.

5. The kickstart template, if specified in its contents, downloads a 1iveimg which is used as the base
operating system image to start with.

388 Chapter 4. Administrator Guide

http://mirror.stream.centos.org/9-stream/BaseOS/x86_64/os/.treeinfo
http://mirror.stream.centos.org/9-stream/BaseOS/x86_64/os/.treeinfo

Ironic Documentation, Release 21.1.2.dev10

Limitations

This deploy interface has only been tested with Red Hat based operating systems that use anaconda.
Other systems are not supported.

Runtime TLS certifiate injection into ramdisks is not supported. Assets such as ramdisk or a stage2
ramdisk image need to have trusted Certificate Authority certificates present within the images or the
Ironic API endpoint utilized should utilize a known trusted Certificate Authority.

Deploy Steps

The deploy steps section has moved to Node Deployment.

4.2.26 Dashboard Integration

A plugin for the OpenStack Dashboard (horizon) service is under development. Documentation for that
can be found within the ironic-ui project.

* Dashboard (horizon) plugin

4.2. Administrators Guide 389

https://docs.openstack.org/ironic-ui/zed/

Ironic Documentation, Release 21.1.2.dev10

390 Chapter 4. Administrator Guide

CHAPTER
FIVE

CONFIGURATION GUIDE

5.1 Configuration Reference

Many aspects of the Bare Metal service are specific to the environment it is deployed in. The following
pages describe configuration options that can be used to adjust the service to your particular situation.

5.1.1 Configuration Options

The following is an overview of all available configuration options in Ironic. For a sample configuration
file, refer to Sample Configuration File.

DEFAULT

debug

Type boolean
Default False
Mutable This option can be changed without restarting.
If set to true, the logging level will be set to DEBUG instead of the default INFO level.
log_config_append

Type string
Default <None>
Mutable This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 1: Deprecated Variations
Group Name

DEFAULT | log-config
DEFAULT | log_config

391

Ironic Documentation, Release 21.1.2.dev10

log_date_format

Type string
Default %Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file

Type string
Default <None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 2: Deprecated Variations

Group Name
DEFAULT | logfile

log_dir

Type string
Default <None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 3: Deprecated Variations

Group Name
DEFAULT | logdir

watch_log_file

Type boolean
Default False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

use_syslog

Type boolean
Default False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type boolean
Default False

392 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type string
Default LOG_USER
Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type boolean
Default False
Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type boolean
Default False
Log output to standard error. This option is ignored if log_config_append is set.

use_eventlog

Type boolean
Default False
Log output to Windows Event Log.
log_rotate_interval
Type integer
Default 1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to interval.

log_rotate_interval_type

Type string
Default days

Valid Values Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count
Type integer
Default 30

Maximum number of rotated log files.

5.1. Configuration Reference 393

Ironic Documentation, Release 21.1.2.dev10

max_logfile_size_mb

Type integer
Default 200
Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.

log_rotation_type

Type string
Default none
Valid Values interval, size, none

Log rotation type.

Possible values

interval Rotate logs at predefined time intervals.
size Rotate logs once they reach a predefined size.

none Do not rotate log files.

logging_context_format_string

Type string

Default %(asctime)s.%(msecs)®3d %(process)d %(levelname)s %(name)s
[%(global_request_id)s %(request_id)s %(user_identity)s]
%(instance) s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string

Type string

Default %(asctime)s.%(msecs)®3d %(process)d %(levelname)s %(name)s
[-1 %(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type string
Default %(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type string

Default %(asctime)s.%(msecs)®3d %(process)d ERROR %(name)s
%(instance)s

394 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type string

Default %(user)s %(project)s %(domain)s %(system_scope)s
%(user_domain)s %(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

Type list

Default ['amgp=WARNING', 'amgplib=WARNING', 'qpid.
messaging=INFO', 'oslo.messaging=INFO', 'oslo_messaging=INFO',
'sqlalchemy=WARNING', 'stevedore=INFO', 'eventlet.wsgi.
server=INFO', 'iso8601=WARNING', 'requests=WARNING',
'glanceclient=WARNING', 'urllib3.connectionpool=WARNING',
'keystonemiddleware.auth_token=INFO', 'keystoneauth.
session=INFO', 'openstack=WARNING', 'oslo_policy=WARNING']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

Type boolean
Default False
Enables or disables publication of error events.

instance_format

Type string

Default "[instance: %(uuid)s] "
The format for an instance that is passed with the log message.

instance_uuid_format

Type string

Default "[instance: %(uuid)s] "
The format for an instance UUID that is passed with the log message.
rate_limit_interval
Type integer
Default 0

Interval, number of seconds, of log rate limiting.

5.1. Configuration Reference 395

Ironic Documentation, Release 21.1.2.dev10

rate_limit_burst

Type integer
Default 0
Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level

Type string
Default CRITICAL

Log level name used by rate limiting: CRITICAL, ERROR, INFO, WARNING, DEBUG or empty
string. Logs with level greater or equal to rate_limit_except_level are not filtered. An empty string
means that all levels are filtered.

fatal_deprecations

Type boolean
Default False
Enables or disables fatal status of deprecations.

run_external_periodic_tasks

Type boolean
Default True
Some periodic tasks can be run in a separate process. Should we run them here?

backdoor_port

Type string
Default <None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0O results in
listening on a random tcp port number; <port> results in listening on the specified port number (and
not enabling backdoor if that port is in use); and <start>:<end> results in listening on the smallest
unused port number within the specified range of port numbers. The chosen port is displayed in
the services log file.

backdoor_socket

Type string
Default <None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both
are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

log_options

Type boolean

Default True

396 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Enables or disables logging values of all registered options when starting a service (at DEBUG

level).
graceful _shutdown_timeout
Type integer
Default 60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless

wait.
rpc_conn_pool_size
Type integer
Default 30
Minimum Value 1

Size of RPC connection pool.

conn_pool_min_size

Type integer
Default 2

Table 4: Deprecated Variations

Group

Name

DEFAULT

rpc_conn_pool_size

The pool size limit for connections expiration policy

conn_pool_ttl

Type integer
Default 1200

The time-to-live in sec of idle connections in the pool

executor_thread_pool_size

Type integer
Default 64

Size of executor thread pool when executor is threading or eventlet.

Table 5: Deprecated Variations

Group

Name

DEFAULT

rpc_thread_pool_size

rpc_response_timeout

Type integer
Default 60

5.1. Configuration Reference

397

Ironic Documentation, Release 21.1.2.dev10

Seconds to wait for a response from a call.

transport_url

Type string
Default rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass @ host:port[,[userN:passN @ JhostN:portN]/virtual_host?query
Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type string

Default openstack

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type boolean
Default False
Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping
auth_strategy
Type string
Default keystone
Valid Values noauth, keystone, http_basic

Authentication strategy used by ironic-api. noauth should not be used in a production environment
because all authentication will be disabled.

Possible values

noauth no authentication
keystone use the Identity service for authentication

http_basic HTTP basic authentication

http_basic_auth_user_file

Type string
Default /etc/ironic/htpasswd

Path to Apache format user authentication file used when auth_strategy=http_basic

398 Chapter 5. Configuration Guide

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Ironic Documentation, Release 21.1.2.dev10

debug_tracebacks_in_api

Type boolean
Default False

Return server tracebacks in the API response for any error responses. WARNING: this is insecure
and should not be used in a production environment.

pecan_debug

Type boolean
Default False

Enable pecan debug mode. WARNING: this is insecure and should not be used in a production
environment.

default_resource_class

Type string
Default <None>
Mutable This option can be changed without restarting.
Resource class to use for new nodes when no resource class is provided in the creation request.

enabled_hardware_types

Type list
Default ['ipmi', 'redfish']

Specify the list of hardware types to load during service initialization. Missing hardware types,
or hardware types which fail to initialize, will prevent the conductor service from starting. This
option defaults to a recommended set of production-oriented hardware types. A complete list of
hardware types present on your system may be found by enumerating the ironic.hardware.types
entrypoint.

enabled_bios_interfaces

Type list
Default ['no-bios', 'redfish']

Specify the list of bios interfaces to load during service initialization. Missing bios interfaces, or
bios interfaces which fail to initialize, will prevent the ironic-conductor service from starting. At
least one bios interface that is supported by each enabled hardware type must be enabled here,
or the ironic-conductor service will not start. Must not be an empty list. The default value is a
recommended set of production-oriented bios interfaces. A complete list of bios interfaces present
on your system may be found by enumerating the ironic.hardware.interfaces.bios entrypoint. When
setting this value, please make sure that every enabled hardware type will have the same set of
enabled bios interfaces on every ironic-conductor service.

default_bios_interface
Type string

Default <None>

5.1. Configuration Reference 399

Ironic Documentation, Release 21.1.2.dev10

Default bios interface to be used for nodes that do not have bios_interface field set. A
complete list of bios interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.bios entrypoint.

enabled_boot_interfaces

Type list
Default ['ipxe', 'pxe', 'redfish-virtual-media']

Specify the list of boot interfaces to load during service initialization. Missing boot interfaces,
or boot interfaces which fail to initialize, will prevent the ironic-conductor service from starting.
At least one boot interface that is supported by each enabled hardware type must be enabled here,
or the ironic-conductor service will not start. Must not be an empty list. The default value is a
recommended set of production-oriented boot interfaces. A complete list of boot interfaces present
on your system may be found by enumerating the ironic.hardware.interfaces.boot entrypoint. When
setting this value, please make sure that every enabled hardware type will have the same set of
enabled boot interfaces on every ironic-conductor service.

default_boot_interface

Type string

Default <None>

Default boot interface to be used for nodes that do not have boot_interface field set. A
complete list of boot interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.boot entrypoint.

enabled_console_interfaces

Type list

Default ['no-console']

Specify the list of console interfaces to load during service initialization. Missing console in-
terfaces, or console interfaces which fail to initialize, will prevent the ironic-conductor service
from starting. At least one console interface that is supported by each enabled hardware type
must be enabled here, or the ironic-conductor service will not start. Must not be an empty
list. The default value is a recommended set of production-oriented console interfaces. A
complete list of console interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.console entrypoint. When setting this value, please make sure that ev-
ery enabled hardware type will have the same set of enabled console interfaces on every ironic-
conductor service.

default_console_interface

Type string

Default <None>

Default console interface to be used for nodes that do not have console_interface field set. A
complete list of console interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.console entrypoint.

enabled_deploy_interfaces

Type list
Default ['direct', 'ramdisk']

400 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Specify the list of deploy interfaces to load during service initialization. Missing deploy interfaces,
or deploy interfaces which fail to initialize, will prevent the ironic-conductor service from starting.
At least one deploy interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value is
a recommended set of production-oriented deploy interfaces. A complete list of deploy interfaces
present on your system may be found by enumerating the ironic.hardware.interfaces.deploy entry-
point. When setting this value, please make sure that every enabled hardware type will have the
same set of enabled deploy interfaces on every ironic-conductor service.

default_deploy_interface

Type string
Default <None>

Default deploy interface to be used for nodes that do not have deploy_interface field set. A
complete list of deploy interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.deploy entrypoint.

enabled_inspect_interfaces

Type list
Default ['no-inspect', 'redfish']

Specify the list of inspect interfaces to load during service initialization. Missing inspect interfaces,
or inspect interfaces which fail to initialize, will prevent the ironic-conductor service from start-
ing. At least one inspect interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value
is a recommended set of production-oriented inspect interfaces. A complete list of inspect inter-
faces present on your system may be found by enumerating the ironic.hardware.interfaces.inspect
entrypoint. When setting this value, please make sure that every enabled hardware type will have
the same set of enabled inspect interfaces on every ironic-conductor service.

default_inspect_interface

Type string
Default <None>

Default inspect interface to be used for nodes that do not have inspect_interface field set. A
complete list of inspect interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.inspect entrypoint.

enabled_management_interfaces

Type list

Default <None>

Specify the list of management interfaces to load during service initialization. Missing manage-
ment interfaces, or management interfaces which fail to initialize, will prevent the ironic-conductor
service from starting. At least one management interface that is supported by each enabled hard-
ware type must be enabled here, or the ironic-conductor service will not start. Must not be an
empty list. The default value is a recommended set of production-oriented management interfaces.
A complete list of management interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.management entrypoint. When setting this value, please make sure that
every enabled hardware type will have the same set of enabled management interfaces on every
ironic-conductor service.

5.1.

Configuration Reference 401

Ironic Documentation, Release 21.1.2.dev10

default_management_interface

Type string

Default <None>

Default management interface to be used for nodes that do not have management_interface field
set. A complete list of management interfaces present on your system may be found by enumerating
the ironic.hardware.interfaces.management entrypoint.

enabled_network_interfaces

Type list
Default ['flat', 'noop']

Specify the list of network interfaces to load during service initialization. Missing network in-
terfaces, or network interfaces which fail to initialize, will prevent the ironic-conductor service
from starting. At least one network interface that is supported by each enabled hardware type
must be enabled here, or the ironic-conductor service will not start. Must not be an empty
list. The default value is a recommended set of production-oriented network interfaces. A
complete list of network interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.network entrypoint. When setting this value, please make sure that ev-
ery enabled hardware type will have the same set of enabled network interfaces on every ironic-
conductor service.

default_network_interface

Type string

Default <None>

Default network interface to be used for nodes that do not have network_interface field set. A
complete list of network interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.network entrypoint.

enabled_power_interfaces

Type list

Default <None>

Specify the list of power interfaces to load during service initialization. Missing power interfaces,
or power interfaces which fail to initialize, will prevent the ironic-conductor service from start-
ing. At least one power interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value is
a recommended set of production-oriented power interfaces. A complete list of power interfaces
present on your system may be found by enumerating the ironic.hardware.interfaces.power entry-
point. When setting this value, please make sure that every enabled hardware type will have the
same set of enabled power interfaces on every ironic-conductor service.

default_power_interface

Type string
Default <None>

Default power interface to be used for nodes that do not have power_interface field set. A
complete list of power interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.power entrypoint.

402 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

enabled_raid_interfaces

Type list
Default ['agent', 'no-raid', 'redfish']

Specify the list of raid interfaces to load during service initialization. Missing raid interfaces, or
raid interfaces which fail to initialize, will prevent the ironic-conductor service from starting. At
least one raid interface that is supported by each enabled hardware type must be enabled here,
or the ironic-conductor service will not start. Must not be an empty list. The default value is a
recommended set of production-oriented raid interfaces. A complete list of raid interfaces present
on your system may be found by enumerating the ironic.hardware.interfaces.raid entrypoint. When
setting this value, please make sure that every enabled hardware type will have the same set of
enabled raid interfaces on every ironic-conductor service.

default_raid_interface

Type string
Default <None>

Default raid interface to be used for nodes that do not have raid_interface field set. A
complete list of raid interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.raid entrypoint.

enabled_rescue_interfaces

Type list
Default ['no-rescue']

Specify the list of rescue interfaces to load during service initialization. Missing rescue interfaces,
or rescue interfaces which fail to initialize, will prevent the ironic-conductor service from starting.
At least one rescue interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value is
a recommended set of production-oriented rescue interfaces. A complete list of rescue interfaces
present on your system may be found by enumerating the ironic.hardware.interfaces.rescue entry-
point. When setting this value, please make sure that every enabled hardware type will have the
same set of enabled rescue interfaces on every ironic-conductor service.

default_rescue_interface

Type string

Default <None>

Default rescue interface to be used for nodes that do not have rescue_interface field set. A
complete list of rescue interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.rescue entrypoint.

enabled_storage_interfaces

Type list

Default ['cinder', 'noop']

Specify the list of storage interfaces to load during service initialization. Missing storage interfaces,
or storage interfaces which fail to initialize, will prevent the ironic-conductor service from start-
ing. Atleast one storage interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value

5.1. Configuration Reference 403

Ironic Documentation, Release 21.1.2.dev10

is a recommended set of production-oriented storage interfaces. A complete list of storage inter-
faces present on your system may be found by enumerating the ironic.hardware.interfaces.storage
entrypoint. When setting this value, please make sure that every enabled hardware type will have
the same set of enabled storage interfaces on every ironic-conductor service.

default_storage_interface

Type string
Default noop

Default storage interface to be used for nodes that do not have storage_interface field set. A
complete list of storage interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.storage entrypoint.

enabled_vendor_interfaces

Type list
Default ['ipmitool', 'redfish', 'no-vendor']

Specify the list of vendor interfaces to load during service initialization. Missing vendor interfaces,
or vendor interfaces which fail to initialize, will prevent the ironic-conductor service from start-
ing. At least one vendor interface that is supported by each enabled hardware type must be enabled
here, or the ironic-conductor service will not start. Must not be an empty list. The default value is
a recommended set of production-oriented vendor interfaces. A complete list of vendor interfaces
present on your system may be found by enumerating the ironic.hardware.interfaces.vendor entry-
point. When setting this value, please make sure that every enabled hardware type will have the
same set of enabled vendor interfaces on every ironic-conductor service.

default_vendor_interface

Type string
Default <None>

Default vendor interface to be used for nodes that do not have vendor_interface field set. A
complete list of vendor interfaces present on your system may be found by enumerating the
ironic.hardware.interfaces.vendor entrypoint.

log_in_db_max_size
Type integer
Default 4096
Max number of characters of any node last_error/maintenance_reason pushed to database.

hash_partition_exponent

Type integer
Default 5

Exponent to determine number of hash partitions to use when distributing load across conductors.
Larger values will result in more even distribution of load and less load when rebalancing the ring,
but more memory usage. Number of partitions per conductor is (2”*hash_partition_exponent). This
determines the granularity of rebalancing: given 10 hosts, and an exponent of the 2, there are 40
partitions in the ring.A few thousand partitions should make rebalancing smooth in most cases.

404 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

The default is suitable for up to a few hundred conductors. Configuring for too many partitions has
a negative impact on CPU usage.

hash_ring_reset_interval
Type integer
Default 15

Time (in seconds) after which the hash ring is considered outdated and is refreshed on the next
access.

hash_ring_algorithm
Type string
Default md5

Valid Values sha384, blake2b, shal, sha3_512, shake_ 128, blake2s, sha3_256,
sha3_384, shake_256, sha512, sha3_224, md5, sha256, sha224

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Hash function to use when building the hash ring. If running on a FIPS system, do not use md5.
WARNING: all ironic services in a cluster MUST use the same algorithm at all times. Changing
the algorithm requires an offline update.

force_raw_images

Type boolean

Default True

Mutable This option can be changed without restarting.
If True, convert backing images to raw disk image format.

raw_image_growth_factor

Type floating point
Default 2.0
Minimum Value 1.0

The scale factor used for estimating the size of a raw image converted from compact image formats
such as QCOW?2. Default is 2.0, must be greater than 1.0.

isolinux_bin
Type string
Default /usr/lib/syslinux/isolinux.bin
Path to isolinux binary file.
isolinux_config_template
Type string
Default $pybasedir/common/isolinux_config.template

Template file for isolinux configuration file.

5.1. Configuration Reference 405

Ironic Documentation, Release 21.1.2.dev10

grub_config_path

Type string
Default /boot/grub/grub.cfg

GRUB?2 configuration file location on the UEFI ISO images produced by ironic. The default value
is usually incorrect and should not be relied on. If you use a GRUB2 image from a certain distri-
bution, use a distribution-specific path here, e.g. EFl/ubuntu/grub.cfg

grub_config_template

Type string
Default $pybasedir/common/grub_conf.template
Template file for grub configuration file.

1ldlinux_c32

Type string
Default <None>

Path to Idlinux.c32 file. This file is required for syslinux 5.0 or later. If not specified, the file is
looked for in /usr/lib/syslinux/modules/bios/ldlinux.c32 and /usr/share/syslinux/ldlinux.c32.

esp_image

Type string

Default <None>

Path to EFI System Partition image file. This file is recommended for creating UEFI bootable ISO
images efficiently. ESP image should contain a FAT12/16/32-formatted file system holding EFI
boot loaders (e.g. GRUB2) for each hardware architecture ironic needs to boot. This option is only
used when neither ESP nor ISO deploy image is configured to the node being deployed in which
case ironic will attempt to fetch ESP image from the configured location or extract ESP image from
UEFI-bootable deploy ISO image.

parallel_image_downloads
Type boolean
Default True
Mutable This option can be changed without restarting.

Run image downloads and raw format conversions in parallel.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Use image_download_concurrency

image_download_concurrency

Type integer
Default 20

406 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Minimum Value 1

How many image downloads and raw format conversions to run in parallel. Only affects image
caches.

my_ip
Type string
Default 127.0.0.1

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

IPv4 address of this host. If unset, will determine the IP programmatically. If unable to do so,
will use 127.0.0.1. NOTE: This field does accept an IPv6 address as an override for templates and
URLs, however it is recommended that [DEFAULT]my_ipv6 is used along with DNS names for
service URLs for dual-stack environments.

my_ipv6
Type string
Default 2001:db8::1

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

IP address of this host using IPv6. This value must be supplied via the configuration and cannot
be adequately programmatically determined like the [DEFAULT my_ip parameter for IPv4.

notification_level

Type string
Default <None>
Valid Values debug, info, warning, error, critical

Specifies the minimum level for which to send notifications. If not set, no notifications will be
sent. The default is for this option to be unset.

Possible values

debug debug level
info info level
warning warning level
error error level

critical critical level

versioned_notifications_topics

Type list

Default ['ironic_versioned_notifications']

5.1. Configuration Reference 407

Ironic Documentation, Release 21.1.2.dev10

Specifies the topics for the versioned notifications issued by Ironic.

The default value is fine for most deployments and rarely needs to be changed. However, if you
have a third-party service that consumes versioned notifications, it might be worth getting a topic
for that service. Ironic will send a message containing a versioned notification payload to each
topic queue in this list.

The list of versioned notifications is visible in https://docs.openstack.org/ironic/latest/admin/
notifications.html

pybasedir

Type string
Default /usr/lib/python/site-packages/ironic/ironic

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Directory where the ironic python module is installed.
bindir
Type string
Default $pybasedir/bin
Directory where ironic binaries are installed.

state_path

Type string
Default $pybasedir
Top-level directory for maintaining ironics state.

default_portgroup_mode

Type string
Default active-backup
Mutable This option can be changed without restarting.

Default mode for portgroups. Allowed values can be found in the linux kernel documentation on
bonding: https://www.kernel.org/doc/Documentation/networking/bonding.txt.

host

Type string
Default localhost

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Name of this node. This can be an opaque identifier. It is not necessarily a hostname, FQDN, or IP
address. However, the node name must be valid within an AMQP key, and if using ZeroMQ (will
be removed in the Stein release), a valid hostname, FQDN, or IP address.

408 Chapter 5. Configuration Guide

https://docs.openstack.org/ironic/latest/admin/notifications.html
https://docs.openstack.org/ironic/latest/admin/notifications.html
https://www.kernel.org/doc/Documentation/networking/bonding.txt

Ironic Documentation, Release 21.1.2.dev10

pin_release_version

Type string

Default <None>

Valid Values zed, yoga, 9.2, 21.1, 21.0, 20.2, 20.1, 20.0, 19.0, 18.2, 18.1, 18.0, 17.0,
16.2,16.1, 16.0, 15.1, 15.0, 14.0, 13.0, 12.2, 12.1, 12.0, 11.1, 11.0, 10.1, 10.0

Mutable This option can be changed without restarting.

Used for rolling upgrades. Setting this option downgrades (or pins) the Bare Metal API, the inter-
nal ironic RPC communication, and the database objects to their respective versions, so they are
compatible with older services. When doing a rolling upgrade from version N to version N+1, set
(to pin) this to N. To unpin (default), leave it unset and the latest versions will be used.

Possible values

zed zed release

yoga yoga release
9.2 9.2 release

21.1 21.1 release
21.0 21.0 release
20.2 20.2 release
20.1 20.1 release
20.0 20.0 release
19.0 19.0 release
18.2 18.2 release
18.1 18.1 release
18.0 18.0 release
17.0 17.0 release
16.2 16.2 release
16.1 16.1 release
16.0 16.0 release
15.1 15.1 release
15.0 15.0 release
14.0 14.0 release
13.0 13.0 release
12.2 12.2 release
12.1 12.1 release
12.0 12.0 release

5.1. Configuration Reference 409

Ironic Documentation, Release 21.1.2.dev10

11.1 11.1 release
11.0 11.0 release
10.1 10.1 release
10.0 10.0 release

rpc_transport

Type string
Default oslo

Valid Values oslo, json-rpc, none

Which RPC transport implementation to use between conductor and API services

Possible values

oslo use oslo.messaging transport
json-rpc use JSON RPC transport

none No RPC, only use local conductor

minimum_memory_warning_only

Type boolean
Default False
Mutable This option can be changed without restarting.

Setting to govern if Ironic should only warn instead of attempting to hold back the request in order
to prevent the exhaustion of system memory.

minimum_required_memory

Type integer
Default 1024
Mutable This option can be changed without restarting.

Minimum memory in MiB for the system to have available prior to starting a memory intensive
process on the conductor.

minimum_memory_wait_time
Type integer
Default 15
Mutable This option can be changed without restarting.

Seconds to wait between retries for free memory before launching the process. This, combined
with memory_wait_retries allows the conductor to determine how long we should attempt to
directly retry.

410 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

minimum_memory_wait_retries

Type integer
Default 6
Mutable This option can be changed without restarting.

Number of retries to hold onto the worker before failing or returning the thread to the pool if the
conductor can automatically retry.

rootwrap_config

Type string
Default /etc/ironic/rootwrap.conf
Path to the rootwrap configuration file to use for running commands as root.

tempdir

Type string
Default /tmp

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Temporary working directory, default is Python temp dir.

webserver_verify_ca

Type string
Default True

Mutable This option can be changed without restarting.

CA certificates to be used for certificate verification. This can be either a Boolean value or a path
to a CA_BUNDLE file.If set to True, the certificates present in the standard path are used to verify
the host certificates.If set to False, the conductor will ignore verifying the SSL certificate presented
by the host.If its a path, conductor uses the specified certificate for SSL verification. If the path
does not exist, the behavior is same as when this value is set to True i.e the certificates present in
the standard path are used for SSL verification.Defaults to True.

webserver_connection_timeout
Type integer
Default 60

Connection timeout when accessing remote web servers with images.

5.1. Configuration Reference 411

Ironic Documentation, Release 21.1.2.dev10

agent

manage_agent_boot

Type boolean
Default True

Whether Ironic will manage booting of the agent ramdisk. If set to False, you will need to configure
your mechanism to allow booting the agent ramdisk.

memory_consumed_by_agent
Type integer
Default 0
Mutable This option can be changed without restarting.

The memory size in MiB consumed by agent when it is booted on a bare metal node. This is used
for checking if the image can be downloaded and deployed on the bare metal node after booting
agent ramdisk. This may be set according to the memory consumed by the agent ramdisk image.

stream_raw_images

Type boolean
Default True
Mutable This option can be changed without restarting.

Whether the agent ramdisk should stream raw images directly onto the disk or not. By streaming
raw images directly onto the disk the agent ramdisk will not spend time copying the image to a
tmpfs partition (therefore consuming less memory) prior to writing it to the disk. Unless the disk
where the image will be copied to is really slow, this option should be set to True. Defaults to True.

post_deploy_get_power_state_retries
Type integer
Default 6

Number of times to retry getting power state to check if bare metal node has been powered off after
a soft power off.

post_deploy_get_power_state_retry_interval
Type integer
Default 5
Amount of time (in seconds) to wait between polling power state after trigger soft poweroft.
agent_api_version
Type string
Default v1

API version to use for communicating with the ramdisk agent.

412 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

deploy_logs_collect

Type string

Default on_failure

Valid Values always, on_failure, never

Mutable This option can be changed without restarting.

Whether Ironic should collect the deployment logs on deployment failure (on_failure), always or
never.

Possible values

always always collect the logs
on_failure only collect logs if there is a failure

never never collect logs

deploy_logs_storage_backend

Type string

Default local

Valid Values local, swift

Mutable This option can be changed without restarting.

The name of the storage backend where the logs will be stored.

Possible values

local store the logs locally

swift store the logs in Object Storage service

deploy_logs_local_path

Type string
Default /var/log/ironic/deploy
Mutable This option can be changed without restarting.

The path to the directory where the logs should be stored, used when the de-
ploy_logs_storage_backend is configured to local.

deploy_logs_swift_container

Type string
Default ironic_deploy_logs_container
Mutable This option can be changed without restarting.

The name of the Swift container to store the logs, used when the deploy_logs_storage_backend is
configured to swift.

5.1.

Configuration Reference 413

Ironic Documentation, Release 21.1.2.dev10

deploy_logs_swift_days_to_expire

Type integer
Default 30
Mutable This option can be changed without restarting.

Number of days before a log object is marked as expired in Swift. If None, the logs will be kept
forever or until manually deleted. Used when the deploy_logs_storage_backend is configured to
swift.

image_download_source

Type string
Default http

Valid Values swift, http, local
Mutable This option can be changed without restarting.

Specifies whether direct deploy interface should try to use the image source directly or if ironic
should cache the image on the conductor and serve it from ironics own http server.

Possible values

swift [PA ramdisk retrieves instance image from the Object Storage service.
http IPA ramdisk retrieves instance image from HTTP service served at conductor nodes.
local Same as http, but HT'TP images are also cached locally, converted and served from the con-

ductor

command_timeout

Type integer

Default 60

Mutable This option can be changed without restarting.

Timeout (in seconds) for IPA commands.

max_command_attempts

Type integer

Default 3

This is the maximum number of attempts that will be done for IPA commands that fails due to
network problems.

command_wait_attempts
Type integer
Default 100

Number of attempts to check for asynchronous commands completion before timing out.

414 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

command_wait_interval

Type integer
Default 6
Number of seconds to wait for between checks for asynchronous commands completion.
neutron_agent_poll_interval
Type integer
Default 2
Mutable This option can be changed without restarting.

The number of seconds Neutron agent will wait between polling for device changes. This value
should be the same as CONF.AGENT.polling_interval in Neutron configuration.

neutron_agent_max_attempts
Type integer
Default 100

Max number of attempts to validate a Neutron agent status before raising network error for a dead
agent.

neutron_agent_status_retry_interval
Type integer
Default 10
Wait time in seconds between attempts for validating Neutron agent status.

require_tls

Type boolean
Default False
Mutable This option can be changed without restarting.
If set to True, callback URLs without https:// will be rejected by the conductor.

certificates_path

Type string
Default /var/lib/ironic/certificates
Path to store auto-generated TLS certificates used to validate connections to the ramdisk.
verify_ca
Type string
Default True

Path to the TLS CA to validate connection to the ramdisk. Set to True to use the system default
CA storage. Set to False to disable validation. Ignored when automatic TLS setup is used.

5.1. Configuration Reference 415

https://

Ironic Documentation, Release 21.1.2.dev10

api_ca_file

Type string

Default <None>

Path to the TLS CA that is used to start the bare metal API. In some boot methods this file can be
passed to the ramdisk.

anaconda

default_ks_template

Type string
Default $pybasedir/drivers/modules/ks.cfg.template
Mutable This option can be changed without restarting.

kickstart template to use when no kickstart template is specified in the instance_info or the glance
OS image.

insecure_heartbeat

Type boolean
Default False
Mutable This option can be changed without restarting.

Option to allow the kickstart configuration to be informed if SSL/TLS certificate verificaiton should
be enforced, or not. This option exists largely to facilitate easy testing and use of the anaconda
deployment interface. When this option is set, heartbeat operations, depending on the contents of
the utilized kickstart template, may not enfore TLS certificate verification.

ansible

ansible_extra_args

Type string
Default <None>
Extra arguments to pass on every invocation of Ansible.

verbosity

Type integer

Default <None>

Minimum Value 0

Maximum Value 4

Set ansible verbosity level requested when invoking ansible-playbook command. 4 includes de-
tailed SSH session logging. Default is 4 when global debug is enabled and O otherwise.

416 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

ansible_playbook_script

Type string
Default ansible-playbook

Path to ansible-playbook script. Default will search the $PATH configured for user running ironic-
conductor process. Provide the full path when ansible-playbook is not in $PATH or installed in
not default location.

playbooks_path

Type string
Default $pybasedir/drivers/modules/ansible/playbooks

Path to directory with playbooks, roles and local inventory.

config_file_path

Type string
Default $pybasedir/drivers/modules/ansible/playbooks/ansible.cfg

Path to ansible configuration file. If set to empty, system default will be used.

post_deploy_get_power_state_retries

Type integer
Default 6
Minimum Value 0

Number of times to retry getting power state to check if bare metal node has been powered off after
a soft power off. Value of 0 means do not retry on failure.

post_deploy_get_power_state_retry_interval

Type integer
Default 5
Minimum Value 0
Amount of time (in seconds) to wait between polling power state after trigger soft poweroff.
extra_memory
Type integer
Default 10

Extra amount of memory in MiB expected to be consumed by Ansible-related processes on the
node. Affects decision whether image will fit into RAM.

image_store_insecure

Type boolean
Default False

Skip verifying SSL connections to the image store when downloading the image. Setting it to True
is only recommended for testing environments that use self-signed certificates.

5.1. Configuration Reference 417

Ironic Documentation, Release 21.1.2.dev10

image_store_cafile

Type string

Default <None>

Specific CA bundle to use for validating SSL connections to the image store. If not specified, CA
available in the ramdisk will be used. Is not used by default playbooks included with the driver.
Suitable for environments that use self-signed certificates.

image_store_certfile

Type string
Default <None>

Client cert to use for SSL connections to image store. Is not used by default playbooks included
with the driver.

image_store_keyfile

Type string

Default <None>

Client key to use for SSL connections to image store. Is not used by default playbooks included
with the driver.

default_username

Type string
Default ansible

Name of the user to use for Ansible when connecting to the ramdisk over SSH. It may be overridden
by per-node ansible_username option in nodes driver_info field.

default_key_file

Type string

Default <None>

Absolute path to the private SSH key file to use by Ansible by default when connecting to the
ramdisk over SSH. Default is to use default SSH keys configured for the user running the ironic-
conductor service. Private keys with password must be pre-loaded into ssh-agent. It may be over-
ridden by per-node ansible_key_file option in nodes driver_info field.

default_deploy_playbook

Type string
Default deploy.yaml

Path (relative to $playbooks_path or absolute) to the default playbook used for deployment. It may
be overridden by per-node ansible_deploy_playbook option in nodes driver_info field.

default_shutdown_playbook
Type string

Default shutdown.yaml

418 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Path (relative to $playbooks_path or absolute) to the default playbook used for graceful in-band
shutdown of the node. It may be overridden by per-node ansible_shutdown_playbook option in
nodes driver_info field.

default_clean_playbook

Type string
Default clean.yaml

Path (relative to $playbooks_path or absolute) to the default playbook used for node cleaning. It
may be overridden by per-node ansible_clean_playbook option in nodes driver_info field.

default_clean_steps_config

Type string
Default clean_steps.yaml

Path (relative to $playbooks_path or absolute) to the default auxiliary cleaning steps file used dur-
ing the node cleaning. It may be overridden by per-node ansible_clean_steps_config option in
nodes driver_info field.

default_python_interpreter

Type string
Default <None>

Absolute path to the python interpreter on the managed machines. It may be overridden by
per-node ansible_python_interpreter option in nodes driver_info field. By default, ansible uses
/ust/bin/python

api
host_ip

Type host address
Default 0.0.0.0
The IP address or hostname on which ironic-api listens.

port

Type port number
Default 6385
Minimum Value 0
Maximum Value 65535
The TCP port on which ironic-api listens.

unix_socket

Type string

Default <None>

Unix socket to listen on. Disables host_ip and port.

5.1. Configuration Reference 419

Ironic Documentation, Release 21.1.2.dev10

unix_socket_mode

Type unknown type
Default <None>
File mode (an octal number) of the unix socket to listen on. Ignored if unix_socket is not set.
max_limit
Type integer
Default 1000
Mutable This option can be changed without restarting.
The maximum number of items returned in a single response from a collection resource.

public_endpoint

Type string

Default <None>
Mutable This option can be changed without restarting.

Public URL to use when building the links to the API resources (for example, https://ironic.rocks:
6384). If None the links will be built using the requests host URL. If the API is operating behind a
proxy, you will want to change this to represent the proxys URL. Defaults to None. Ignored when
proxy headers parsing is enabled via [oslo_middleware]enable_proxy_headers_parsing option.

api_workers
Type integer
Default <None>

Number of workers for OpenStack Ironic API service. The default is equal to the number of CPUs
available, but not more than 4. One worker is used if the CPU number cannot be detected.

enable_ssl_api

Type boolean
Default False

Enable the integrated stand-alone API to service requests via HTTPS instead of HTTP.
If there is a front-end service performing HTTPS offloading from the service, this
option should be False; note, you will want to enable proxy headers parsing with
[oslo_middleware]enable_proxy_headers_parsing option or configure [api]public_endpoint option
to set URLSs in responses to the SSL terminated one.

restrict_lookup
Type boolean
Default True
Mutable This option can be changed without restarting.

Whether to restrict the lookup API to only nodes in certain states.

420 Chapter 5. Configuration Guide

https://ironic.rocks:6384
https://ironic.rocks:6384

Ironic Documentation, Release 21.1.2.dev10

ramdisk_heartbeat_timeout

Type integer

Default 300

Mutable This option can be changed without restarting.
Maximum interval (in seconds) for agent heartbeats.

network_data_schema

Type string
Default $pybasedir/api/controllers/vl/network-data-schema.json
Schema for network data used by this deployment.
project_admin_can_manage_own_nodes
Type boolean
Default True
Mutable This option can be changed without restarting.

If a project scoped administrative user is permitted to create/delte baremetal nodes in their project.

audit

enabled

Type boolean
Default False
Enable auditing of API requests (for ironic-api service).

audit_map_file

Type string
Default /etc/ironic/api_audit_map.conf
Path to audit map file for ironic-api service. Used only when API audit is enabled.

ignore_req_list

Type string
Default "'
Comma separated list of [ronic REST API HTTP methods to be ignored during audit logging. For

example: auditing will not be done on any GET or POST requests if this is set to GET,POST. It is
used only when API audit is enabled.

5.1. Configuration Reference 421

Ironic Documentation, Release 21.1.2.dev10

audit_middleware_notifications

use_oslo_messaging

Type boolean
Default True

Indicate whether to use oslo_messaging as the notifier. If set to False, the local logger will be used
as the notifier. If set to True, the oslo_messaging package must also be present. Otherwise, the
local will be used instead.

driver

Type string

Default <None>

The Driver to handle sending notifications. Possible values are messaging, messagingv2, routing,
log, test, noop. If not specified, then value from oslo_messaging_notifications conf section is used.

topics
Type list
Default <None>

List of AMQP topics used for OpenStack notifications. If not specified, then value from
oslo_messaging_notifications conf section is used.

transport_url
Type string
Default <None>

A URL representing messaging driver to use for notification. If not specified, we fall back to the
same configuration used for RPC.

cinder

action_retries
Type integer
Default 3
Number of retries in the case of a failed action (currently only used when detaching volumes).
action_retry_interval
Type integer
Default 5
Retry interval in seconds in the case of a failed action (only specific actions are retried).

auth_url

Type unknown type

Default <None>

422 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Authentication URL
auth_type
Type unknown type
Default <None>

Authentication type to load

Table 6: Deprecated Variations

Group | Name
cinder | auth_plugin

cafile

Type string
Default <None>
PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string
Default <None>
PEM encoded client certificate cert file

collect_timing

Type boolean
Default False
Collect per-API call timing information.

connect_retries

Type integer
Default <None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type floating point
Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type unknown type
Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

5.1. Configuration Reference 423

Ironic Documentation, Release 21.1.2.dev10

default_domain_name

Type unknown type
Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type unknown type
Default <None>
Domain ID to scope to

domain_name

Type unknown type
Default <None>
Domain name to scope to

endpoint_override

Type string
Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

insecure

Type boolean
Default False
Verify HTTPS connections.
keyfile
Type string
Default <None>
PEM encoded client certificate key file

max_version

Type string
Default <None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version
Type string

Default <None>

424 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version

it is as if max version is latest.

password

Type unknown type
Default <None>
Users password
project_domain_id
Type unknown type
Default <None>
Domain ID containing project
project_domain_name
Type unknown type
Default <None>
Domain name containing project
project_id
Type unknown type
Default <None>

Project ID to scope to

project_name

Type unknown type
Default <None>

Project name to scope to

region_name

Type string

Default <None>

Table 7: Deprecated Variations
Group | Name

cinder | tenant-id
cinder | tenant_id

Table 8: Deprecated Variations
Group | Name

cinder | tenant-name
cinder | tenant_name

5.1. Configuration Reference

425

Ironic Documentation, Release 21.1.2.dev10

The default region_name for endpoint URL discovery.
retries
Type integer
Default 3
Client retries in the case of a failed request connection.

service_name

Type string

Default <None>
The default service_name for endpoint URL discovery.

service_type

Type string
Default volumev3
The default service_type for endpoint URL discovery.

split_loggers

Type boolean
Default False
Log requests to multiple loggers.
status_code_retries
Type integer
Default <None>
The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type floating point
Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope
Type unknown type
Default <None>
Scope for system operations

tenant_id

Type unknown type
Default <None>

Tenant ID

426 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

tenant_name

Type unknown type
Default <None>
Tenant Name
timeout
Type integer
Default <None>
Timeout value for http requests

trust_id

Type unknown type

Default <None>

ID of the trust to use as a trustee use

user_domain_id

Type unknown type
Default <None>
Users domain id

user_domain_name

Type unknown type
Default <None>
Users domain name

user_id

Type unknown type
Default <None>
User id

username

Type unknown type
Default <None>

Username

Table 9: Deprecated Variations
Group | Name

cinder | user-name
cinder | user_name

5.1. Configuration Reference

427

Ironic Documentation, Release 21.1.2.dev10

valid_interfaces

Type list
Default ['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type string
Default <None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

conductor

workers_pool_size
Type integer
Default 100

Minimum Value 3

The size of the workers greenthread pool. Note that 2 threads will be reserved by the conductor
itself for handling heart beats and periodic tasks. On top of that, sync_power_state_workers will
take up to 7 green threads with the default value of 8.

heartbeat_interval

Type integer

Default 10

Seconds between conductor heart beats.

heartbeat_timeout

Type integer

Default 60

Maximum Value 315576000

Mutable This option can be changed without restarting.

Maximum time (in seconds) since the last check-in of a conductor. A conductor is considered
inactive when this time has been exceeded.

sync_power_state_interval
Type integer
Default 60

Interval between syncing the node power state to the database, in seconds. Set to O to disable
syncing.

428 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

check_provision_state_interval

Type integer
Default 60
Minimum Value 0
Interval between checks of provision timeouts, in seconds. Set to 0 to disable checks.

check_rescue_state_interval

Type integer
Default 60
Minimum Value 1
Interval (seconds) between checks of rescue timeouts.

check_allocations_interval

Type integer
Default 60
Minimum Value 0
Interval between checks of orphaned allocations, in seconds. Set to O to disable checks.
cache_clean_up_interval
Type integer
Default 3600
Minimum Value 0
Interval between cleaning up image caches, in seconds. Set to 0 to disable periodic clean-up.
deploy_callback_timeout
Type integer
Default 1800
Minimum Value 0
Timeout (seconds) to wait for a callback from a deploy ramdisk. Set to O to disable timeout.

force_power_state_during_sync

Type boolean
Default True
Mutable This option can be changed without restarting.

During sync_power_state, should the hardware power state be set to the state recorded in the
database (True) or should the database be updated based on the hardware state (False).

power_state_sync_max_retries
Type integer
Default 3

5.1. Configuration Reference 429

Ironic Documentation, Release 21.1.2.dev10

During sync_power_state failures, limit the number of times Ironic should try syncing the hardware
node power state with the node power state in DB

sync_power_state_workers
Type integer
Default 8
Minimum Value 1

The maximum number of worker threads that can be started simultaneously to sync nodes power
states from the periodic task.

periodic_max_workers
Type integer
Default 8

Maximum number of worker threads that can be started simultaneously by a periodic task. Should
be less than RPC thread pool size.

node_locked_retry_attempts
Type integer
Default 3
Number of attempts to grab a node lock.
node_locked_retry_interval
Type integer
Default 1

Seconds to sleep between node lock attempts.

send_sensor_data

Type boolean
Default False
Enable sending sensor data message via the notification bus
send_sensor_data_interval
Type integer
Default 600
Minimum Value 1
Seconds between conductor sending sensor data message to ceilometer via the notification bus.
send_sensor_data_workers
Type integer
Default 4

Minimum Value 1

430 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

The maximum number of workers that can be started simultaneously for send data from sensors
periodic task.

send_sensor_data_wait_timeout

Type integer
Default 300

The time in seconds to wait for send sensors data periodic task to be finished before allowing
periodic call to happen again. Should be less than send_sensor_data_interval value.

send_sensor_data_types

Type list
Default ['ALL']

List of comma separated meter types which need to be sent to Ceilometer. The default value, ALL,
is a special value meaning send all the sensor data.

send_sensor_data_for_undeployed_nodes

Type boolean
Default False

The default for sensor data collection is to only collect data for machines that are deployed, however
operators may desire to know if there are failures in hardware that is not presently in use. When set
to true, the conductor will collect sensor information from all nodes when sensor data collection
is enabled via the send_sensor_data setting.

sync_local_state_interval
Type integer
Default 180

When conductors join or leave the cluster, existing conductors may need to update any persistent
local state as nodes are moved around the cluster. This option controls how often, in seconds, each
conductor will check for nodes that it should take over. Set it to O (or a negative value) to disable
the check entirely.

configdrive_swift_container
Type string
Default ironic_configdrive_container

Name of the Swift container to store config drive data. Used when configdrive_use_object_store
is True.

configdrive_swift_temp_url_duration
Type integer
Default <None>
Minimum Value 60

The timeout (in seconds) after which a configdrive temporary URL becomes invalid. De-
faults to deploy_callback_timeout if it is set, otherwise to 1800 seconds. Used when config-
drive_use_object_store is True.

5.1. Configuration Reference 431

Ironic Documentation, Release 21.1.2.dev10

inspect_wait_timeout

Type integer
Default 1800
Minimum Value 0

Timeout (seconds) for waiting for node inspection. 0 - unlimited.

automated_clean

Type boolean
Default True
Mutable This option can be changed without restarting.

Enables or disables automated cleaning. Automated cleaning is a configurable set of steps, such as
erasing disk drives, that are performed on the node to ensure it is in a baseline state and ready to be
deployed to. This is done after instance deletion as well as during the transition from a manageable
to available state. When enabled, the particular steps performed to clean a node depend on which
driver that node is managed by; see the individual drivers documentation for details. NOTE: The
introduction of the cleaning operation causes instance deletion to take significantly longer. In an
environment where all tenants are trusted (eg, because there is only one tenant), this option could
be safely disabled.

allow_provisioning_in_maintenance

Type boolean
Default True
Mutable This option can be changed without restarting.

Whether to allow nodes to enter or undergo deploy or cleaning when in maintenance mode. If this
option is set to False, and a node enters maintenance during deploy or cleaning, the process will be
aborted after the next heartbeat. Automated cleaning or making a node available will also fail. If
True (the default), the process will begin and will pause after the node starts heartbeating. Moving
it from maintenance will make the process continue.

clean_callback_timeout

Type integer
Default 1800

Minimum Value 0

Timeout (seconds) to wait for a callback from the ramdisk doing the cleaning. If the timeout is
reached the node will be put in the clean failed provision state. Set to 0 to disable timeout.

rescue_callback_timeout

Type integer
Default 1800

Minimum Value 0

Timeout (seconds) to wait for a callback from the rescue ramdisk. If the timeout is reached the

node will be put in the rescue failed provision state. Set to O to disable timeout.

432

Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

soft_power_off_timeout

Type integer

Default 600

Minimum Value 1

Mutable This option can be changed without restarting.

Timeout (in seconds) of soft reboot and soft power off operation. This value always has to be
positive.

power_state_change_timeout

Type integer

Default 60

Minimum Value 2

Mutable This option can be changed without restarting.

Number of seconds to wait for power operations to complete, i.e., so that a baremetal node is in
the desired power state. If timed out, the power operation is considered a failure.

power_failure_recovery_interval

Type integer
Default 300
Minimum Value 0

Interval (in seconds) between checking the power state for nodes previously put into maintenance
mode due to power synchronization failure. A node is automatically moved out of maintenance
mode once its power state is retrieved successfully. Set to O to disable this check.

conductor_group

Type string
Default '’

Name of the conductor group to join. Can be up to 255 characters and is case insensitive. This
conductor will only manage nodes with a matching conductor_group field set on the node.

allow_deleting_available_nodes

Type boolean

Default True

Mutable This option can be changed without restarting.
Allow deleting nodes which are in state available. Defaults to True.

enable_mdns

Type boolean
Default False

Whether to enable publishing the baremetal API endpoint via multicast DNS.

5.1. Configuration Reference 433

Ironic Documentation, Release 21.1.2.dev10

deploy_kernel

Type string

Default <None>
Mutable This option can be changed without restarting.
Glance ID, http:// or file:// URL of the kernel of the default deploy image.
deploy_ramdisk

Type string

Default <None>
Mutable This option can be changed without restarting.
Glance ID, http:// or file:// URL of the initramfs of the default deploy image.

rescue_kernel

Type string

Default <None>
Mutable This option can be changed without restarting.
Glance ID, http:// or file:// URL of the kernel of the default rescue image.

rescue_ramdisk

Type string
Default <None>
Mutable This option can be changed without restarting.
Glance ID, http:// or file:// URL of the initramfs of the default rescue image.

rescue_password_hash_algorithm

Type string

Default sha256

Valid Values sha256, sha512

Mutable This option can be changed without restarting.
Password hash algorithm to be used for the rescue password.

require_rescue_password_hashed

Type boolean
Default False
Mutable This option can be changed without restarting.

Option to cause the conductor to not fallback to an un-hashed version of the rescue password,
permitting rescue with older ironic-python-agent ramdisks.

434 Chapter 5. Configuration Guide

http://
file://
http://
file://
http://
file://
http://
file://

Ironic Documentation, Release 21.1.2.dev10

bootloader

Type string

Default <None>
Mutable This option can be changed without restarting.

Glance ID, http:// or file:// URL of the EFI system partition image containing EFI boot loader.
This image will be used by ironic when building UEFI-bootable ISO out of kernel and ramdisk.
Required for UEFI boot from partition images.

clean_step_priority_override

Type unknown type
Default {}

Priority to run automated clean steps for both in-band and out of band clean steps, provided in
interface.step_name:priority format, e.g. deploy.erase_devices_metadata:123. The option can be
specified multiple times to define priorities for multiple steps. If set to 0, this specific step will not
run during cleaning. If unset for an inband clean step, will use the priority set in the ramdisk.

node_history

Type boolean
Default True
Mutable This option can be changed without restarting.

Boolean value, default True, if node event history is to be recorded. Errors and other noteworthy
events in relation to a node are journaled to a database table which incurs some additional load. A
periodic task does periodically remove entries from the database. Please note, if this is disabled, the
conductor will continue to purge entries as long as [conductor]node_history_cleanup_batch_count
is not 0.

node_history_max_entries

Type integer

Default 300

Minimum Value 0

Mutable This option can be changed without restarting.

Maximum number of history entries which will be stored in the database per node. De-
fault is 300. This setting excludes the minimum number of days retained using the [conduc-
tor]node_history_minimum_days setting.

node_history_cleanup_interval
Type integer
Default 86400
Minimum Value 0

Interval in seconds at which node history entries can be cleaned up in the database. Setting to 0
disables the periodic task. Defaults to once a day, or 86400 seconds.

5.1. Configuration Reference 435

http://
file://

Ironic Documentation, Release 21.1.2.dev10

node_history_cleanup_batch_count

Type integer
Default 1000
Minimum Value 0

The target number of node history records to purge from the database when performing clean-up.
Deletes are performed by node, and a node with excess records for a node will still be deleted.
Defaults to 1000. Operators who find node history building up may wish to lower this threshold
and decrease the time between cleanup operations using the node_history_cleanup_interval
setting.

node_history_minimum_days

Type integer

Default 0

Minimum Value 0

Mutable This option can be changed without restarting.

The minimum number of days to explicitly keep on hand in the database history entries for nodes.
This is exclusive from the [conductor]node_history_max_entries setting as users of this setting are
anticipated to need to retain history by policy.

verify_step_priority_override

Type unknown type
Default {}
Mutable This option can be changed without restarting.

Priority to run automated verify steps provided in interface.step_name:priority format,e.g. man-
agement.clear_job_queue:123. The option can be specified multiple times to define priorities for
multiple steps. If set to 0, this specific step will not run during verification.

automatic_lessee

Type boolean
Default False
Mutable This option can be changed without restarting.

If the conductor should record the Project ID indicated by Keystone for a requested deployment.
Allows rights to be granted to directly access the deployed node as a lessee within the RBAC
security model. The conductor does not record this value otherwise, and this information is not
backfilled for prior instances which have been deployed.

max_concurrent_deploy

Type integer
Default 250
Minimum Value 1

Mutable This option can be changed without restarting.

436

Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

The maximum number of concurrent nodes in deployment which are permitted in this Ironic sys-
tem. If this limit is reached, new requests will be rejected until the number of deployments in
progress is lower than this maximum. As this is a security mechanism requests are not queued,
and this setting is a global setting applying to all requests this conductor receives, regardless of
access rights. The concurrent deployment limit cannot be disabled.

max_concurrent_clean
Type integer
Default 50
Minimum Value 1
Mutable This option can be changed without restarting.

The maximum number of concurrent nodes in cleaning which are permitted in this Ironic system.
If this limit is reached, new requests will be rejected until the number of nodes in cleaning is lower
than this maximum. As this is a security mechanism requests are not queued, and this setting is
a global setting applying to all requests this conductor receives, regardless of access rights. The
concurrent clean limit cannot be disabled.

console

terminal

Type string
Default shellinaboxd
Path to serial console terminal program. Used only by Shell In A Box console.

terminal_cert_dir

Type string
Default <None>

Directory containing the terminal SSL cert (PEM) for serial console access. Used only by Shell In
A Box console.

terminal_pid_dir

Type string
Default <None>
Directory for holding terminal pid files. If not specified, the temporary directory will be used.
terminal_timeout
Type integer
Default 600
Minimum Value 0

Timeout (in seconds) for the terminal session to be closed on inactivity. Set to O to disable timeout.
Used only by Socat console.

5.1. Configuration Reference 437

Ironic Documentation, Release 21.1.2.dev10

subprocess_checking_interval

Type integer
Default 1
Time interval (in seconds) for checking the status of console subprocess.
subprocess_timeout
Type integer
Default 10
Time (in seconds) to wait for the console subprocess to start.
kill_timeout
Type integer
Default 1
Time (in seconds) to wait for the console subprocess to exit before sending SIGKILL signal.

socat_address

Type ip address
Default $my_ip
IP address of Socat service running on the host of ironic conductor. Used only by Socat console.

port_range

Type string
Default 10000:20000

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

A range of ports available to be used for the console proxy service running on the host of ironic
conductor, in the form of <start>:<stop>. This option is used by both Shellinabox and Socat console

cors

allowed_origin

Type list
Default <None>

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

allow_credentials
Type boolean
Default True

Indicate that the actual request can include user credentials

438 Chapter 5. Configuration Guide

https://horizon.example.com
https://horizon.example.com

Ironic Documentation, Release 21.1.2.dev10

expose_headers
Type list
Default []
Indicate which headers are safe to expose to the API. Defaults to HT'TP Simple Headers.
max_age
Type integer
Default 3600
Maximum cache age of CORS preflight requests.

allow_methods

Type list

Default ['OPTIONS', 'GET', 'HEAD', 'POST', 'PUT', 'DELETE',
"TRACE', 'PATCH']

Indicate which methods can be used during the actual request.
allow_headers
Type list
Default []

Indicate which header field names may be used during the actual request.

database

sqlite_synchronous
Type boolean
Default True

If True, SQLite uses synchronous mode.

Table 10: Deprecated Variations

Group Name
DEFAULT | sqlite_synchronous

backend

Type string
Default sqlalchemy

The back end to use for the database.

Table 11: Deprecated Variations

Group Name
DEFAULT | db_backend

5.1. Configuration Reference 439

Ironic Documentation, Release 21.1.2.dev10

connection

Type string

Default <None>

The SQLAIchemy connection string to use to connect to the database.

Table 12: Deprecated Variations
Group Name
DEFAULT sql_connection
DATABASE | sql_connection
sql connection

slave_connection

Type string

Default <None>
The SQLAIchemy connection string to use to connect to the slave database.
mysql_sql_mode
Type string
Default TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_enable_ndb
Type boolean
Default False
If True, transparently enables support for handling MySQL Cluster (NDB).
connection_recycle_time
Type integer
Default 3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

max_pool_size
Type integer
Default 5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

440 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

max_retries
Type integer
Default 10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

Table 13: Deprecated Variations
Group Name

DEFAULT sql_max_retries
DATABASE | sql_max_retries

retry_interval
Type integer
Default 10

Interval between retries of opening a SQL connection.

Table 14: Deprecated Variations
Group Name

DEFAULT sql_retry_interval
DATABASE | reconnect_interval

max_overflow

Type integer
Default 50

If set, use this value for max_overflow with SQLAlchemy.

Table 15: Deprecated Variations
Group Name
DEFAULT sql_max_overflow
DATABASE | sqlalchemy_max_overflow

connection_debug
Type integer
Default 0
Minimum Value 0
Maximum Value 100

Verbosity of SQL debugging information: 0=None, 100=Everything.

Table 16: Deprecated Variations

Group Name
DEFAULT | sql_connection_debug

5.1. Configuration Reference 441

Ironic Documentation, Release 21.1.2.dev10

connection_trace
Type boolean

Default False

Add Python stack traces to SQL as comment strings.

Table 17: Deprecated Variations

Group Name
DEFAULT | sql_connection_trace

pool_timeout

Type integer
Default <None>

If set, use this value for pool_timeout with SQLAIchemy.

Table 18: Deprecated Variations

Group Name
DATABASE | sqlalchemy_pool_timeout

use_db_reconnect

Type boolean
Default False
Enable the experimental use of database reconnect on connection lost.
db_retry_interval
Type integer
Default 1
Seconds between retries of a database transaction.
db_inc_retry_interval
Type boolean
Default True
If True, increases the interval between retries of a database operation up to db_max_retry_interval.
db_max_retry_interval
Type integer
Default 10
If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries

Type integer

442 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Default 20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters

Type string
Default "'

Optional URL parameters to append onto the connection URL at connect time; specify as
paraml=valuel¶m2=value2&

mysql_engine
Type string
Default InnoDB

MySQL engine to use.

deploy

http_url

Type string
Default <None>
ironic-conductor nodes HTTP server URL. Example: http://192.1.2.3:8080

http_root

Type string
Default /httpboot
ironic-conductor nodes HTTP root path.

external_http_url

Type string
Default <None>

URL of the ironic-conductor nodes HTTP server for boot methods such as virtual media, where
images could be served outside of the provisioning network. Does not apply when Swift is used.
Defaults to http_url.

external_callback_url

Type string
Default <None>
Agent callback URL of the bare metal API for boot methods such as virtual media, where im-

ages could be served outside of the provisioning network. Defaults to the configuration from [ser-
vice_catalog].

5.1. Configuration Reference 443

http://192.1.2.3:8080

Ironic Documentation, Release 21.1.2.dev10

enable_ata_secure_erase

Type boolean
Default True
Mutable This option can be changed without restarting.
Whether to support the use of ATA Secure Erase during the cleaning process. Defaults to True.

enable_nvme_secure_erase

Type boolean
Default True
Mutable This option can be changed without restarting.

Whether to support the use of NVMe Secure Erase during the cleaning process. Currently nvme-
cli format command is supported with user-data and crypto modes, depending on device capabili-
ties.Defaults to True.

erase_devices_priority
Type integer
Default <None>
Mutable This option can be changed without restarting.

Priority to run in-band erase devices via the Ironic Python Agent ramdisk. If unset, will use the
priority set in the ramdisk (defaults to 10 for the GenericHardwareManager). If set to 0, will not
run during cleaning.

erase_devices_metadata_priority
Type integer
Default <None>
Mutable This option can be changed without restarting.

Priority to run in-band clean step that erases metadata from devices, via the Ironic Python Agent
ramdisk. If unset, will use the priority set in the ramdisk (defaults to 99 for the GenericHardware-
Manager). If set to 0, will not run during cleaning.

delete_configuration_priority
Type integer
Default <None>
Mutable This option can be changed without restarting.

Priority to run in-band clean step that erases RAID configuration from devices, via the Ironic
Python Agent ramdisk. If unset, will use the priority set in the ramdisk (defaults to O for the
GenericHardwareManager). If set to 0, will not run during cleaning.

create_configuration_priority

Type integer

Default <None>

444 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Mutable This option can be changed without restarting.

Priority to run in-band clean step that creates RAID configuration from devices, via the Ironic
Python Agent ramdisk. If unset, will use the priority set in the ramdisk (defaults to O for the
GenericHardwareManager). If set to 0, will not run during cleaning.

shred_random_overwrite_iterations
Type integer
Default 1
Minimum Value 0
Mutable This option can be changed without restarting.

During shred, overwrite all block devices N times with random data. This is only used if a device
could not be ATA Secure Erased. Defaults to 1.

shred_final_overwrite_with_zeros

Type boolean
Default True
Mutable This option can be changed without restarting.

Whether to write zeros to a nodes block devices after writing random data. This will write zeros
to the device even when deploy.shred_random_overwrite_iterations is 0. This option is only used
if a device could not be ATA Secure Erased. Defaults to True.

continue_if_disk_secure_erase_fails

Type boolean
Default False
Mutable This option can be changed without restarting.

Defines what to do if a secure erase operation (NVMe or ATA) fails during cleaning in the Ironic
Python Agent. If False, the cleaning operation will fail and the node will be putin clean failed
state. If True, shred will be invoked and cleaning will continue.

disk_erasure_concurrency
Type integer
Default 4
Minimum Value 1
Mutable This option can be changed without restarting.

Defines the target pool size used by Ironic Python Agent ramdisk to erase disk devices. The number
of threads created to erase disks will not exceed this value or the number of disks to be erased.

power_off_after_deploy_failure
Type boolean
Default True

Mutable This option can be changed without restarting.

5.1. Configuration Reference 445

Ironic Documentation, Release 21.1.2.dev10

Whether to power off a node after deploy failure. Defaults to True.
default_boot_mode
Type string
Default uefi
Valid Values uefi, bios
Mutable This option can be changed without restarting.

Default boot mode to use when no boot mode is requested in nodes driver_info, capabilities or in
the instance_info configuration. Currently the default boot mode is uefi, but it was bios previously
in Ironic. It is recommended to set an explicit value for this option, and if the setting or default
differs from nodes, to ensure that nodes are configured specifically for their desired boot mode.

Possible values

uefi UEFI boot mode
bios Legacy BIOS boot mode

configdrive_use_object_store

Type boolean
Default False
Mutable This option can be changed without restarting.

Whether to upload the config drive to object store. Set this option to True to store config drive in
a swift endpoint.

Table 19: Deprecated Variations

Group Name
conductor | configdrive_use_swift

http_image_subdir

Type string
Default agent_images

The name of subdirectory under ironic-conductor nodes HTTP root path which is used to place
instance images for the direct deploy interface, when local HTTP service is incorporated to provide
instance image instead of swift tempurls.

fast_track
Type boolean
Default False

Mutable This option can be changed without restarting.

446 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Whether to allow deployment agents to perform lookup, heartbeat operations during initial states
of a machine lifecycle and by-pass the normal setup procedures for a ramdisk. This feature also
enables power operations which are part of deployment processes to be bypassed if the ramdisk
has performed a heartbeat operation using the fast_track_timeout setting.

fast_track_timeout

Type integer

Default 300

Minimum Value 0

Maximum Value 300

Mutable This option can be changed without restarting.

Seconds for which the last heartbeat event is to be considered valid for the purpose of a fast track
sequence. This setting should generally be less than the number of seconds for Power-On Self Test
and typical ramdisk start-up. This value should not exceed the [api]ramdisk_heartbeat_timeout
setting.

erase_skip_read_only

Type boolean
Default False
Mutable This option can be changed without restarting.

If the ironic-python-agent should skip read-only devices when running the erase_devices clean step
where block devices are zeroed out. This requires ironic-python-agent 6.0.0 or greater. By default
a read-only device will cause non-metadata based cleaning operations to fail due to the possible
operational security risk of data being retained between deployments of the bare metal node.

ramdisk_image_download_source

Type string
Default local

Valid Values http, local, swift
Mutable This option can be changed without restarting.

Specifies whether a boot iso image should be served from its own original location using the image
source url directly, or if ironic should cache the image on the conductor and serve it from ironics
own http server.

Possible values
http In case the ramdisk is already a bootable iso, using this option it will be directly provided by
an external HTTP service using its full url.

local This is the default behavior. The image is downloaded, prepared and cached locally, to be
served from the conductor.

swift Same as http, but if the image is a Glance UUID, it is exposed via a Swift temporary URL.

5.1. Configuration Reference 447

Ironic Documentation, Release 21.1.2.dev10

iso_master_path

Type string

Default /var/lib/ironic/master_iso_images

On the ironic-conductor node, directory where master ISO images are stored on disk. Setting to
the empty string disables image caching.

iso_cache_size
Type integer
Default 20480
Maximum size (in MiB) of cache for master ISO images, including those in use.
iso_cache_ttl
Type integer
Default 10080

Maximum TTL (in minutes) for old master ISO images in cache.

dhcp

dhcp_provider
Type string
Default neutron

DHCP provider to use. neutron uses Neutron, dnsmasq uses the Dnsmasq provider, and none uses
a no-op provider.

disk_partitioner

check_device_interval

Type integer
Default 1

After Ironic has completed creating the partition table, it continues to check for activity on the
attached iSCSI device status at this interval prior to copying the image to the node, in seconds

check_device_max_retries
Type integer
Default 20

The maximum number of times to check that the device is not accessed by another process. If the
device is still busy after that, the disk partitioning will be treated as having failed.

448 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

disk _utils
efi_system_partition_size

Type integer
Default 200
Size of EFI system partition in MiB when configuring UEFI systems for local boot.
bios_boot_partition_size
Type integer
Default 1

Size of BIOS Boot partition in MiB when configuring GPT partitioned systems for local boot in
BIOS.

dd_block_size

Type string
Default 1M

Block size to use when writing to the nodes disk.

partition_detection_attempts

Type integer
Default 3
Minimum Value 1
Maximum attempts to detect a newly created partition.
partprobe_attempts
Type integer
Default 10
Maximum number of attempts to try to read the partition.
image_convert_memory_limit
Type integer
Default 2048
Memory limit for gemu-img convert in MiB. Implemented via the address space resource limit.
image_convert_attempts
Type integer
Default 3

Number of attempts to convert an image.

5.1. Configuration Reference 449

Ironic Documentation, Release 21.1.2.dev10

drac

query_raid_config_job_status_interval

Type integer
Default 120
Minimum Value 1

Interval (in seconds) between periodic RAID job status checks to determine whether the asyn-
chronous RAID configuration was successfully finished or not.

boot_device_job_status_timeout
Type integer
Default 30

Minimum Value 1

Maximum amount of time (in seconds) to wait for the boot device configuration job to transition
to the correct state to allow a reboot or power on to complete.

config_job_max_retries
Type integer
Default 240
Minimum Value 1
Maximum number of retries for the configuration job to complete successfully.
query_import_config_job_status_interval
Type integer
Default 60
Minimum Value 0
Number of seconds to wait between checking for completed import configuration task
bios_factory_reset_timeout
Type integer
Default 600
Minimum Value 1
Maximum time (in seconds) to wait for factory reset of BIOS settings to complete.
raid_job_timeout
Type integer
Default 300
Minimum Value 1

Maximum time (in seconds) to wait for RAID job to complete

450 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

glance

allowed_direct_url_schemes
Type list
Default []

A list of URL schemes that can be downloaded directly via the direct_url. Currently supported
schemes: [file].

auth_url

Type unknown type
Default <None>
Authentication URL
auth_type
Type unknown type
Default <None>

Authentication type to load

Table 20: Deprecated Variations

Group | Name
glance | auth_plugin

cafile
Type string
Default <None>
PEM encoded Certificate Authority to use when verifying HTTPs connections.
certfile
Type string
Default <None>
PEM encoded client certificate cert file

collect_timing

Type boolean
Default False
Collect per-API call timing information.
connect_retries
Type integer
Default <None>

The maximum number of retries that should be attempted for connection errors.

5.1. Configuration Reference 451

Ironic Documentation, Release 21.1.2.dev10

connect_retry_delay

Type floating point
Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type unknown type
Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type unknown type
Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type unknown type
Default <None>
Domain ID to scope to

domain_name

Type unknown type
Default <None>
Domain name to scope to

endpoint_override

Type string
Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

insecure

Type boolean
Default False
Verify HTTPS connections.

452 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

keyfile
Type string
Default <None>
PEM encoded client certificate key file

max_version

Type string
Default <None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type string

Default <None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

num_retries

Type integer

Default 0

Mutable This option can be changed without restarting.
Number of retries when downloading an image from glance.

password

Type unknown type
Default <None>
Users password

project_domain_id

Type unknown type
Default <None>
Domain ID containing project

project_domain_name

Type unknown type
Default <None>

Domain name containing project

5.1. Configuration Reference 453

Ironic Documentation, Release 21.1.2.dev10

project_id
Type unknown type

Default <None>

Project ID to scope to

Table 21: Deprecated Variations
Group | Name

glance | tenant-id
glance | tenant_id

project_name

Type unknown type
Default <None>

Project name to scope to

Table 22: Deprecated Variations

Group | Name
glance | tenant-name

glance | tenant_name

region_name

Type string

Default <None>
The default region_name for endpoint URL discovery.

service_name

Type string

Default <None>
The default service_name for endpoint URL discovery.
service_type
Type string
Default image
The default service_type for endpoint URL discovery.
split_loggers
Type boolean
Default False

Log requests to multiple loggers.

454 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

status_code_retries

Type integer
Default <None>
The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type floating point
Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

swift_account

Type string

Default <None>

The account that Glance uses to communicate with Swift. The format is AUTH_uuid. uuid is
the UUID for the account configured in the glance-api.conf. For example: AUTH_a422b2-91f3-
2f46-74b7-d7c¢9e8958f5d30. If not set, the default value is calculated based on the ID of the
project used to access Swift (as set in the [swift] section). Swift temporary URL format: end-
point_url/api_version/account/container/object_id

swift_account_prefix

Type string
Default AUTH

The prefix added to the project uuid to determine the swift account.

swift_api_version

Type string
Default v1

The Swift API version to create a temporary URL for. Defaults to vl. Swift temporary URL
format: endpoint_url/api_version/account/container/object_id

swift_container

Type string
Default glance

The Swift container Glance is configured to store its images in. Defaults to
glance, which is the default in glance-api.conf. Swift temporary URL format: end-
point_url/api_version/account/container/object_id

swift_endpoint_url

Type string

Default <None>

5.1. Configuration Reference 455

Ironic Documentation, Release 21.1.2.dev10

The endpoint (scheme, hostname, optional port) for the Swift URL of the form end-
point_url/api_version/account/container/object_id. Do not include trailing /. For example, use
https://swift.example.com. If using RADOS Gateway, endpoint may also contain /swift path; if it
does not, it will be appended. Used for temporary URLSs, will be fetched from the service catalog,
if not provided.

swift_store_multiple_containers_seed
Type integer
Default 0

This should match a config by the same name in the Glance configuration file. When set to 0, a
single-tenant store will only use one container to store all images. When set to an integer value
between 1 and 32, a single-tenant store will use multiple containers to store images, and this value
will determine how many containers are created.

swift_temp_url_cache_enabled

Type boolean
Default False

Whether to cache generated Swift temporary URLs. Setting it to true is only useful when an image
caching proxy is used. Defaults to False.

swift_temp_url_duration

Type integer
Default 1200

The length of time in seconds that the temporary URL will be valid for. Defaults to 20 min-
utes. If some deploys get a 401 response code when trying to download from the tempo-
rary URL, try raising this duration. This value must be greater than or equal to the value for
swift_temp_url_expected_download_start_delay

swift_temp_url_expected_download_start_delay
Type integer
Default 0
Minimum Value 0

This is the delay (in seconds) from the time of the deploy request (when the Swift temporary URL is
generated) to when the IPA ramdisk starts up and URL is used for the image download. This value
is used to check if the Swift temporary URL duration is large enough to let the image download
begin. Also if temporary URL caching is enabled this will determine if a cached entry will still be
valid when the download starts. swift_temp_url_duration value must be greater than or equal to
this options value. Defaults to 0.

swift_temp_url_key

Type string
Default <None>

The secret token given to Swift to allow temporary URL downloads. Required for temporary
URLs. For the Swift backend, the key on the service project (as set in the [swift] section) is used
by default.

456 Chapter 5. Configuration Guide

https://swift.example.com

Ironic Documentation, Release 21.1.2.dev10

system_scope
Type unknown type
Default <None>
Scope for system operations

tenant_id

Type unknown type
Default <None>
Tenant ID

tenant_name

Type unknown type
Default <None>
Tenant Name
timeout
Type integer
Default <None>
Timeout value for http requests

trust_id

Type unknown type
Default <None>
ID of the trust to use as a trustee use
user_domain_id
Type unknown type
Default <None>
Users domain id

user_domain_name

Type unknown type
Default <None>

Users domain name

user_id
Type unknown type
Default <None>
User id

5.1. Configuration Reference

457

Ironic Documentation, Release 21.1.2.dev10

username

Type unknown type
Default <None>

Username

Table 23: Deprecated Variations
Group | Name

glance | user-name
glance | user_name

valid_interfaces
Type list
Default ['internal', 'public']
List of interfaces, in order of preference, for endpoint URL.
version
Type string
Default <None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

healthcheck

path

Type string
Default /healthcheck

The path to respond to healtcheck requests on.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

detailed

Type boolean
Default False

Show more detailed information as part of the response. Security note: Enabling this option may
expose sensitive details about the service being monitored. Be sure to verify that it will not violate
your security policies.

458 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

backends

Type list
Default []

Additional backends that can perform health checks and report that information back as part of a
request.

disable_by_file_path

Type string
Default <None>

Check the presence of a file to determine if an application is running on a port. Used by Disable-
ByFileHealthcheck plugin.

disable_by_file_paths
Type list
Default []

Check the presence of a file based on a port to determine if an application is running on a port.
Expects a port:path list of strings. Used by DisableByFilesPortsHealthcheck plugin.

enabled

Type boolean
Default False

Enable the health check endpoint at /healthcheck. Note that this is unauthenticated. More in-
formation is available at https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck _
plugins.html.

ilo
client_timeout

Type integer

Default 60

Timeout (in seconds) for iLO operations

client_port

Type port number

Default 443

Minimum Value 0

Maximum Value 65535

Port to be used for iLO operations

5.1. Configuration Reference 459

https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html
https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html

Ironic Documentation, Release 21.1.2.dev10

swift_ilo_container

Type string
Default ironic_ilo_container
The Swift iLO container to store data.
swift_object_expiry_timeout
Type integer
Default 900
Amount of time in seconds for Swift objects to auto-expire.

use_web_server_for_images

Type boolean
Default False

Set this to True to use http web server to host floppy images and generated boot ISO. This requires
http_root and http_url to be configured in the [deploy] section of the config file. If this is set to
False, then Ironic will use Swift to host the floppy images and generated boot_iso.

clean_priority_reset_ilo
Type integer
Default
Priority for reset_ilo clean step.
clean_priority_reset_bios_to_default
Type integer
Default 10
Priority for reset_bios_to_default clean step.

clean_priority_reset_secure_boot_keys_to_default

Type integer
Default 20

Priority for reset_secure_boot_keys clean step. This step will reset the secure boot keys to manu-
facturing defaults.

clean_priority_clear_secure_boot_keys
Type integer
Default 0

Priority for clear_secure_boot_keys clean step. This step is not enabled by default. It can be
enabled to clear all secure boot keys enrolled with iLO.

clean_priority_reset_ilo_credential
Type integer
Default 30

460 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Priority for reset_ilo_credential clean step. This step requires ilo_change_password parameter to
be updated in nodess driver_info with the new password.

power_wait

Type integer

Default 2

Amount of time in seconds to wait in between power operations

oob_erase_devices_job_status_interval

Type integer

Default 300

Minimum Value 10

Interval (in seconds) between periodic erase-devices status checks to determine whether the asyn-
chronous out-of-band erase-devices was successfully finished or not. On an average, a 300GB
HDD with default pattern overwrite would take approximately 9 hours and 300GB SSD with de-
fault pattern block would take approx. 30 seconds to complete sanitize disk erase.

ca_file
Type string
Default <None>

CA certificate file to validate iLO.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Its being replaced by new configuration parameter verify_ca.

verify_ca

Type string
Default True

CA certificate to validate iLO. This can be either a Boolean value, a path to a CA_BUNDLE file or
directory with certificates of trusted CAs. If set to True the driver will verify the host certificates;
if False the driver will ignore verifying the SSL certificate. If its a path the driver will use the
specified certificate or one of the certificates in the directory. Defaults to True.

default_boot_mode
Type string
Default auto
Valid Values auto, bios, uefi

Default boot mode to be used in provisioning when boot_mode capability is not provided in the
properties/capabilities of the node. The default is auto for backward compatibility. When auto is
specified, default boot mode will be selected based on boot mode settings on the system.

5.1. Configuration Reference 461

Ironic Documentation, Release 21.1.2.dev10

Possible values

auto based on boot mode settings on the system
bios BIOS boot mode
uefi UEFI boot mode

file_permission
Type integer
Default 420

File permission for swift-less image hosting with the octal permission representation of file access
permissions. This setting defaults to 644, or as the octal number 00644 in Python. This setting
must be set to the octal number representation, meaning starting with 0o.

kernel_append_params
Type string
Default nofb nomodeset vga=normal
Mutable This option can be changed without restarting.

Additional kernel parameters to pass down to the instance kernel. These parameters can be con-
sumed by the kernel or by the applications by reading /proc/cmdline. Mind severe cmdline size
limit! Can be overridden by instance_info/kernel_append_params property.

cert_path
Type string
Default /var/lib/ironic/ilo/

On the ironic-conductor node, directory where ilo driver stores the CSR and the cert.

inspector

auth_url

Type unknown type
Default <None>
Authentication URL
auth_type
Type unknown type
Default <None>

Authentication type to load

Table 24: Deprecated Variations

Group Name
inspector | auth_plugin

462 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

cafile

Type string

Default <None>
PEM encoded Certificate Authority to use when verifying HTTPs connections.

callback_endpoint_override

Type string
Default <None>

endpoint to use as a callback for posting back introspection data when boot is managed by ironic.
Standard keystoneauth options are used by default.

certfile

Type string

Default <None>
PEM encoded client certificate cert file

collect_timing

Type boolean
Default False
Collect per-API call timing information.
connect_retries
Type integer
Default <None>
The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type floating point
Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type unknown type
Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type unknown type

Default <None>

5.1. Configuration Reference 463

Ironic Documentation, Release 21.1.2.dev10

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type unknown type
Default <None>
Domain ID to scope to

domain_name

Type unknown type
Default <None>
Domain name to scope to

endpoint_override

Type string
Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

extra_kernel_params

Type string
Default "'

extra kernel parameters to pass to the inspection ramdisk when boot is managed by ironic (not
ironic-inspector). Pairs key=value separated by spaces.

insecure

Type boolean
Default False
Verify HTTPS connections.
keyfile
Type string
Default <None>
PEM encoded client certificate key file

max_version

Type string
Default <None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

464 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

min_version

Type string

Default <None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version

it is as if max version is latest.

password

Type unknown type
Default <None>
Users password

power_off

Type boolean

Default True

whether to power off a node after inspection finishes. Ignored for nodes that have fast track mode

enabled.

project_domain_id

Type unknown type
Default <None>
Domain ID containing project

project_domain_name

Type unknown type

Default <None>

Domain name containing project

project_id

Type unknown type
Default <None>

Project ID to scope to

project_name

Type unknown type

Default <None>

Table 25: Deprecated Variations

Group Name
inspector | tenant-id
inspector | tenant_id

5.1. Configuration Reference

465

Ironic Documentation, Release 21.1.2.dev10

Project name to scope to

Table 26: Deprecated Variations
Group Name

inspector | tenant-name
inspector | tenant_name

region_name

Type string
Default <None>
The default region_name for endpoint URL discovery.

require_managed_boot

Type boolean
Default False

require that the in-band inspection boot is fully managed by ironic. Set this to True if your instal-
lation of ironic-inspector does not have a separate PXE boot environment.

service_name

Type string
Default <None>
The default service_name for endpoint URL discovery.

service_type

Type string
Default baremetal-introspection
The default service_type for endpoint URL discovery.

split_loggers

Type boolean
Default False
Log requests to multiple loggers.
status_code_retries
Type integer
Default <None>
The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type floating point

Default <None>

466 Chapter 5. Configuration Guide

Ironic Documentation, Release 21.1.2.dev10

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
s