Ironic Python Agent Documentation
Release 6.4.5.dev2

OpenStack Foundation

Jan 27, 2023

CONTENTS

1 Overview 1
2 Contents 3
2.1 Installing Ironic Python Agent L 3
2.1.1 ImageBuilders 3

2.1.2 IPAFlags e e e e 3

2.1.3 TPAand TLS o e 3

2.1.4 Hardware Managers o v i it e e e 5

2.2 TIronic Python Agent Administration 5
22,1 Howitworks e 5

2.2.2 Built-in hardware managerso e 9

223 Rescuemode e 9

2.2.4 Troubleshooting Ironic-Python-Agent (IPA) 10

2.3 Contributing to Ironic Python Agent 13
2.3.1 Hardware Managers. o i it e e e 13

2.3.2 Emitting metrics from Ironic-Python-Agent (IPA) 17

233 RescueMode 18

2.3.4 Generated Developer Documentation 19

3 Indices and tables 59
Python Module Index 61
Index 63

CHAPTER
ONE

OVERVIEW

Ironic Python Agent (often abbreviated as IPA) is an agent for controlling and deploying Ironic con-
trolled baremetal nodes. Typically run in a ramdisk, the agent exposes a REST API for provisioning
Servers.

https://docs.openstack.org/ironic/victoria/

Ironic Python Agent Documentation, Release 6.4.5.dev2

2 Chapter 1. Overview

CHAPTER
TWO

CONTENTS

2.1 Installing Ironic Python Agent

2.1.1 Image Builders

Unlike most other python software, you must build or download an IPA ramdisk image before use. This
is because its not installed in an operating system, but instead is run from within a ramdisk.

Two kinds of images are published on every commit from every branch of IPA:

* DIB images are suitable for production usage and can be downloaded from https://tarballs.
openstack.org/ironic-python-agent/dib/files/.

* TinyIPA images are suitable for CI and testing environments and can be downloaded from https:
/ltarballs.openstack.org/ironic-python-agent/tinyipa/files/.

If you need to build your own image, use the tools from the ironic-python-agent-builder project.

2.1.2 IPA Flags

You can pass a variety of flags to IPA on start up to change its behavior.

* ——standalone: This disables the initial lookup and heartbeats to Ironic. Lookup sends some
information to Ironic in order to determine Ironics node UUID for the node. Heartbeat sends
periodic pings to Ironic to tell Ironic the node is still running. These heartbeats also trigger parts of
the deploy and cleaning cycles. This flag is useful for debugging IPA without an Ironic installation.

* ——debug: Enables debug logging.

2.1.3 IPA and TLS

Client Configuration

During its operation IPA makes HTTP requests to a number of other services, currently including
* ironic for lookup/heartbeats
* ironic-inspector to publish results of introspection

» HTTP image storage to fetch the user image to be written to the nodes disk (Object storage service
or other service storing user images when ironic is running in a standalone mode)

https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/tinyipa.html
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/
https://docs.openstack.org/ironic-python-agent-builder

Ironic Python Agent Documentation, Release 6.4.5.dev2

When these services are configured to require TLS-encrypted connections, IPA can be configured to
either properly use such secure connections or ignore verifying such TLS connections.

Configuration mostly happens in the IPA config file (default is /etc/ironic_python_agent/
ironic_python_agent.conf, can also be any file placedin /etc/ironic-python—agent.
d) or command line arguments passed to i ronic-python—agent, and it is possible to provide some
options via kernel command line arguments instead.

Available options in the [DEFAULT] config file section are:

insecure Whether to verify server TLS certificates. When not specified explicitly, defaults to the value
of ipa-insecure kernel command line argument (converted to boolean). The default for
this kernel command line argument is taken to be False. Overriding it to True by adding
ipa—-insecure=1 to the value of [pxe]pxe_append_params in ironic configuration file
will allow running the same [PA-based deploy ramdisk in a CI-like environment when services
are using secure HTTPS endpoints with self-signed certificates without adding a custom CA file
to the deploy ramdisk (see below).

cafile Path to the PEM encoded Certificate Authority file. When not specified, available system-wide list
of CAs will be used to verify server certificates. Thus in order to use IPA with HTTPS endpoints
of other services in a secure fashion (with insecure option being False, see above), operators
should either ensure that certificates of those services are verifiable by root CAs present in the
deploy ramdisk, or add a custom CA file to the ramdisk and set this IPA option to point to this file
at ramdisk build time.

certfile Path to PEM encoded client certificate cert file. This option must be used when services are
configured to require client certificates on SSL-secured connections. This cert file must be added
to the deploy ramdisk and path to it specified for IPA via this option at ramdisk build time. This
option has an effect only when the keyfile option is also set.

keyfile Path to PEM encoded client certificate key file. This option must be used when services are
configured to require client certificates on SSL-secured connections. This key file must be added
to the deploy ramdisk and path to it specified for IPA via this option at ramdisk build time. This
option has an effect only when the cert £ile option is also set.

Currently a single set of cafile/certfile/keyfile options is used for all HTTP requests to the other services.

Server Configuration
Starting with the Victoria release, the API provided by ironic-python-agent can also be secured via TLS.
There are two options to do that:

Automatic TLS This option is enabled by default if no other options are enabled. If ironic supports
API version 1.68, a new self-signed TLS certificate will be generated in runtime and sent to ironic
on heartbeat.

No special configuration is required on the ironic side.

Manual TLS If you need to provide your own TLS certificate, you can configure it when building an
image. Set the following options in the ironic-python-agent configuration file:

(continues on next page)

4 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

(continued from previous page)

If using DIB to build the ramdisk, use the ironic-python-agent-tls element to automate these steps.
On the ironic side you have two options:

« If the certificate can pass host validation, i.e. contains the correct host name or IP address of
the agent, add its path to each node with:

set

* Usually, the IP address of the agent is not known in advance, so you need to disable host
validation instead:

set

2.1.4 Hardware Managers
Hardware managers are how IPA supports multiple different hardware platforms in the same agent. Any
action performed on hardware can be overridden by deploying your own hardware manager.

Custom hardware managers allow you to include hardware-specific tools, files and cleaning steps in the
Ironic Python Agent. For example, you could include a BIOS flashing utility and BIOS file in a custom
ramdisk. Your custom hardware manager could expose a cleaning step that calls the flashing utility and
flashes the packaged BIOS version (or even download it from a tested web server).

Operators wishing to build their own hardware managers should reference the documentation available
at Hardware Managers.

2.2 Ironic Python Agent Administration

2.2.1 How it works
Integration with Ironic

For information on how to install and configure Ironic drivers, including drivers for IPA, see the Ironic
drivers documentation.

2.2. Ironic Python Agent Administration 5

https://opendev.org/openstack/ironic-python-agent-builder/src/branch/master/dib/ironic-python-agent-tls
https://docs.openstack.org/ironic/victoria//admin/drivers/ipa.html
https://docs.openstack.org/ironic/victoria//admin/drivers/ipa.html

Ironic Python Agent Documentation, Release 6.4.5.dev2

Lookup

On startup, the agent performs a lookup in Ironic to determine its node UUID by sending a hardware
profile to the Ironic lookup endpoint: /v1/lookup.

Heartbeat

After successfully looking up its node, the agent heartbeats via /v1/heartbeat/{node_ident} every N sec-
onds, where N is the Ironic conductors agent . heartbeat_timeout value multiplied by a number
between .3 and .6.

For example, if your conductors ironic.conf contains:

60

IPA will heartbeat between every 20 and 36 seconds. This is to ensure jitter for any agents reconnecting
after a network or API disruption.

After the agent heartbeats, the conductor performs any actions needed against the node, including query-
ing status of an already run command. For example, initiating in-band cleaning tasks or deploying an
image to the node.

Inspection
IPA can conduct hardware inspection on start up and post data to the Ironic Inspector via the /v1/continue
endpoint.

Edit your default PXE/iPXE configuration or IPA options baked in the image, and set
ipa-inspection-callback-url to the full endpoint of Ironic Inspector, for example:

5050

Make sure your DHCP environment is set to boot IPA by default.

For the cases where the infrastructure operator and cloud user are the same, an additional
tool exists that can be installed alongside the agent inside a running instance. This is the
ironic-collect-introspection-data command which allows for a node in ACTIVE state
to publish updated introspection data to ironic-inspector. This ability requires ironic-inspector to be
configured with [processing]lpermit_active_introspection setto True. For example:

5050

Alternatively, this command may also be used with multicast DNS functionality to identify the Ironic
Inspector service endpoint. For example:

An additional daemon mode may be useful for some operators who wish to receive regular updates, in
the form of the [DEFAULT] introspection_daemon boolean configuration option. For example:

6 Chapter 2. Contents

https://docs.openstack.org/api-ref/baremetal/?expanded=agent-lookup-detail#agent-lookup
https://docs.openstack.org/api-ref/baremetal/?expanded=agent-heartbeat-detail#agent-heartbeat
https://docs.openstack.org/ironic-inspector/victoria/
https://docs.openstack.org/api-ref/baremetal-introspection/?expanded=ramdisk-callback-detail#ramdisk-callback

Ironic Python Agent Documentation, Release 6.4.5.dev2

The above command will attempt to connect to introspection and will then en-
ter a loop to publish every 300 seconds. This can be tuned with the
[DEFAULT] introspection_daemon_post_interval configuration option.

Inspection Data

As part of the inspection process, data is collected on the machine and sent back to Ironic Inspector for
storage. It can be accessed via the introspection data API.

The exact format of the data depends on the enabled collectors, which can be configured using the
ipa-inspection-collectors kernel parameter. Each collector appends information to the re-
sulting JSON object. The in-tree collectors are:

default The default enabled collectors. Collects the following keys:
* inventory - Hardware Inventory.

* root_disk - The default root device for this machine, which will be used for deployment
if root device hints are not provided.

* configuration - Inspection configuration, an object with two keys:
— collectors - List of enabled collectors.

— managers - List of enabled Hardware Managers: items with keys name and
version.

* boot_interface - Deprecated, use the inventory.boot .pxe_interface field.

logs Collect system logs. To yield useful results it must always go last in the list of collectors. Provides
one key:

* logs - base64 encoded tarball with various logs.
pci-devices Collects the list of PCI devices. Provides one key:
* pci_devices - list of objects with keys vendor_id and product_id.

extra-hardware Collects a vast list of facts about the systems, using the hardware library, which is
a required dependency for this collector. Adds one key:

* data - raw data from the hardware—collect utility. Is a list of lists with 4 items each.
It is recommended to use this collector together with the extra_hardware processing
hook on the Ironic Inspector side to convert it to a nested dictionary in the ext ra key.

If ipa-inspection-benchmarks is set, the corresponding benchmarks are executed
and their result is also provided.

dmi-decode Collects information from dmidecode. Provides one key:
* dmi DMI information in three keys: bios, cpu and memory.
numa—-topology Collects NUMA topology information. Provides one key:
* numa_topology with three nested keys:

— ram - list of objects with keys numa_node (node ID) and size_kb.

2.2. Ironic Python Agent Administration 7

https://docs.openstack.org/ironic-inspector/victoria/
https://docs.openstack.org/api-ref/baremetal-introspection/?expanded=get-introspection-data-detail#get-introspection-data
https://pypi.org/project/hardware/
https://en.wikipedia.org/wiki/Non-uniform_memory_access

Ironic Python Agent Documentation, Release 6.4.5.dev2

— cpus - list of objects with keys cpu (CPU ID), numa_node (node ID) and
thread_siblings (list of sibling threads).

— nics - list of objects with keys name (NIC name) and numa_ node (node ID).

Hardware Inventory
IPA collects various hardware information using its Hardware Managers, and sends it to Ironic on
lookup and to Ironic Inspector on Inspection.

The exact format of the inventory depends on the hardware manager used. Here is the basic format ex-
pected to be provided by all hardware managers. The inventory is a dictionary (JSON object), containing
at least the following fields:

cpu CPU information: model_name, frequency, count, architecture and flags.

memory RAM information: total (total size in bytes), physical_mb (physically installed memory
size in MiB, optional).

Note: The difference is that the latter includes the memory region reserved by the kernel and is
always slightly bigger. It also matches what the Nova flavor would contain for this node and thus
is used by the inspection process instead of total.

bmc_address [Pv4 address of the nodes BMC (aka IPMI v4 address), optional.
bmc_vé6address IPv6 address of the nodes BMC (aka IPMI v6 address), optional.

disks list of disk block devices with fields: name, model, size (in bytes), rotational
(boolean), wwn, serial, vendor, wwn_with_extension, wwn_vendor_extension,
hctl and by_path (the full disk path, in the form /dev/disk/by-path/
<rest-of-path>).

interfaces list of network interfaces with fields: name, mac_address, ipv4_address,
11dp, vendor, product, and optionally biosdevname " (BIOS given NIC name) .
If configuration option "“collect_11dpissetto Truethe 11dp field will be pop-
ulated by a list of type-length-value(TLV) fields retrieved using the Link Layer Discovery Protocol
(LLDP).

system_vendor system vendor information from SMBIOS as reported by dmidecode:
product_name, serial_number and manufacturer.

boot boot information with fields: current_boot_mode (boot mode used for the current boot -
BIOS or UEF]) and pxe_interface (interface used for PXE booting, if any).

hostname hostname for the system

Note: This is most likely to be set by the DHCP server. Could be localhost if the DHCP server
does not set it.

8 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

2.2.2 Built-in hardware managers
GenericHardwareManager

This is the default hardware manager for ironic-python-agent. It provides support for Hardware Inven-
tory and the default deploy and clean steps.

Deploy steps

deploy.write_image (node, ports, image_info, configdrive=None) A deploy
step backing the write_image deploy step of the direct deploy interface. Should not be used
explicitly, but can be overridden to provide a custom way of writing an image.

deploy.erase_devices_metadata(node, ports) Erases partition tables from all recog-
nized disk devices. Can be used with software RAID since it requires empty holder disks.

raid.apply_configuration (node, ports, raid_config, delete_existing=True)
Apply a software RAID configuration. It belongs to the raid interface and must be used through
the ironic RAID feature.

Clean steps

deploy.erase_devices Securely erases all information from all recognized disk devices. Rela-
tively fast when secure ATA erase is available, otherwise can take hours, especially on a virtual
environment. Enabled by default.

deploy.erase_devices_metadata Erases partition tables from all recognized disk devices.
Can be used as an alternative to the much longer erase_devices step.

raid.create_configuration Create a RAID configuration. This step belongs to the raid
interface and must be used through the ironic RAID feature.

raid.delete_configuration Delete the RAID configuration. This step belongs to the raid
interface and must be used through the ironic RAID feature.

2.2.3 Rescue mode
Overview
Rescue mode is a feature that can be used to boot a ramdisk for a tenant in case the machine is otherwise

inaccessible. For example, if theres a disk failure that prevents access to another operating system,
rescue mode can be used to diagnose and fix the problem.

2.2. Ironic Python Agent Administration 9

https://docs.openstack.org/ironic/victoria/admin/interfaces/deploy.html#direct-deploy
https://docs.openstack.org/ironic/victoria/admin/raid.html
https://docs.openstack.org/ironic/victoria/admin/raid.html
https://docs.openstack.org/ironic/victoria/admin/raid.html

Ironic Python Agent Documentation, Release 6.4.5.dev2

Support in ironic-python-agent images

Rescue is initiated when ironic-conductor sends the finalize_rescue command to ironic-python-
agent. A user rescue is created with a password provided as an argument to this command. DHCP is
then configured to facilitate network connectivity, thus enabling a user to login to the machine in rescue
mode.

Warning: Rescue mode exposes the contents of the ramdisk to the tenant. Ensure that any rescue
image you build does not contain secrets (e.g. sensitive clean steps, proprietary firmware blobs).

The below has information about supported images that may be built to use rescue mode.

DIB

The DIB image supports rescue mode when used with DHCP tenant networks.

After the finalize_rescue command completes, DHCP will be configured on all network inter-
faces, and a rescue user will be created with the specified rescue_password.

TinylPA

The TinyIPA image supports rescue mode when used with DHCP tenant networks. No special action is
required to build a TinyIPA image with this support.

After the finalize_rescue command completes, DHCP will be configured on all network inter-
faces, and a rescue user will be created with the specified rescue_password.

2.2.4 Troubleshooting Ironic-Python-Agent (IPA)

This document contains basic trouble shooting information for IPA.

Gaining Access to IPA on a node

In order to access a running IPA instance a user must be added or enabled on the image. Below we will
cover several ways to do this.

Access via ssh
ironic-python-agent-builder

SSH access can be added to DIB built IPA images with the dynamic-login” or the devuser element’

The dynamic-login element allows the operator to inject a SSH key when the image boots. Kernel
command line parameters are used to do this.

O Dynamic-login DIB element: https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/
dynamic-login
! DevUser DIB element: https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/devuser

10 Chapter 2. Contents

https://docs.openstack.org/ironic-python-agent-builder/latest/admin/tinyipa.html
https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/dynamic-login
https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/dynamic-login
https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/devuser

Ironic Python Agent Documentation, Release 6.4.5.dev2

dynamic-login element example:

* Add sshkey="ssh-rsa BBAl..." to pxe_append_params setting in the ironic.conf
file

¢ Restart the ironic-conductor with the command service ironic-conductor restart
Install ironic-python-agent-builder following the guide2

devuser element example:

export DIB_DEV_USER_USERNAME=username

export DIB_DEV_USER_PWDLESS_SUDO=yes

export DIB_DEV_USER_AUTHORIZED_KEYS=S$HOME/.ssh/id_rsa.pub
ironic-python-agent-builder -o /path/to/custom-ipa -e devuser debian

tinyipa

If you want to enable SSH access to the image, set AUTHORIZE_SSH variable in your shell to t rue
before building the tinyipa image:

By default it will use default public RSA (or, if not available, DSA) key of the user running the build
(~/.ssh/id_{rsa,dsa} .pub).

To provide other public SSH key, export full path to it in your shell before building tinyipa as follows:

The user to use for access is default Tiny Core Linux user tc. This user has no password and has
password-less sudo permissions. Installed SSH server is configured to disable Password authentication.

Access via console

If you need to use console access, passwords must be enabled there are a couple ways to enable this
depending on how the IPA image was created:

ironic-python-agent-builder

Users wishing to use password access can be add the dynamic-login® or the devuser element!

The dynamic-login element allows the operator to change the root password dynamically when the
image boots. Kernel command line parameters are used to do this.

dynamic-login element example:

2 ironic-python-agent-builder: https://docs.openstack.org/ironic-python-agent-builder/latest/install/index.html

2.2. Ironic Python Agent Administration 11

https://docs.openstack.org/ironic-python-agent-builder/latest/install/index.html

Ironic Python Agent Documentation, Release 6.4.5.dev2

Users can also be added to DIB built IPA images with the devuser element!
Install ironic-python-agent-builder following the guide’

Example:

tinyipa

The image built with scripts provided in t inyipa folder of Ironic Python Agent Builder repository by
default auto-logins the default Tiny Core Linux user tc to the console. This user has no password and
has password-less sudo permissions.

How to pause the IPA for debugging

When debugging issues with the IPA, in particular with cleaning, it may be necessary to log in to the
RAM disk before the IPA actually starts (and delay the launch of the IPA). One easy way to do this is to
set maintenance on the node and then trigger cleaning. Ironic will boot the node into the RAM disk,
but the IPA will stall until the maintenance state is removed. This opens a time window to log into the
node.

Another way to do this is to add simple cleaning steps in a custom hardware manager which sleep until
a certain condition is met, e.g. until a given file exists. Having multiple of these barrier steps allows to
go through the cleaning steps and have a break point in between them.

Set IPA to debug logging
Debug logging can be enabled a several different ways. The easiest way is to add ipa-debug=1 to
the kernel command line. To do this:

* Append ipa-debug=1 to the pxe_append_params setting in the ironic.conf file

* Restart the ironic-conductor with the command service ironic-conductor restart
If the system is running and uses systemd then editing the services file will be required.

e systemctl edit ironic-python-agent.service

* Append ——debug to end of the ExecStart command

» Restart IPA. See the Manually restart IPA section below.

12 Chapter 2. Contents

https://opendev.org/openstack/ironic-python-agent-builder

Ironic Python Agent Documentation, Release 6.4.5.dev2

Where can | find the IPA logs

Retrieving the IPA logs will differ depending on which base image was used.
* Operating system that do not use systemd (ie Ubuntu 14.04)
— logs will be found in the /var/log/ folder.
* Operating system that do use systemd (ie Fedora, CentOS, RHEL)
— logs may be viewed with sudo journalctl -u ironic-python-agent

— if using a diskimage-builder ramdisk, it may be configured to output all contents of the
journal, including ironic-python-agent logs, by enabling the journal-to-console element.

Manually restart IPA

In some cases it is helpful to enable debug mode on a running node. If the system does not use systemd
then IPA can be restarted directly:

bin

If the system uses systemd then systemctl can be used to restart the service:

References
2.3 Contributing to Ironic Python Agent

Ironic Python Agent is an agent for controlling and deploying Ironic controlled baremetal nodes. Typi-
cally run in a ramdisk, the agent exposes a REST API for provisioning servers.

Throughout the remainder of the document, Ironic Python Agent will be abbreviated to IPA.

2.3.1 Hardware Managers
Hardware managers are how IPA supports multiple different hardware platforms in the same agent. Any
action performed on hardware can be overridden by deploying your own hardware manager.

IPA ships with GenericHardwareManager, which implements basic cleaning and deployment methods
compatible with most hardware.

2.3. Contributing to Ironic Python Agent 13

https://docs.openstack.org/diskimage-builder/latest/elements/journal-to-console/README.html

Ironic Python Agent Documentation, Release 6.4.5.dev2

How are methods executed on HardwareManagers?

Methods that modify hardware are dispatched to each hardware manager in priority order. When a
method is dispatched, if a hardware manager does not have a method by that name or raises Incompat-
ibleHardwareMethodError, IPA continues on to the next hardware manager. Any hardware manager
that returns a result from the method call is considered a success and its return value passed on to what-
ever dispatched the method. If the method is unable to run successfully on any hardware managers,
HardwareManagerMethodNotFound is raised.

Why build a custom HardwareManager?

Custom hardware managers allow you to include hardware-specific tools, files and cleaning steps in the
Ironic Python Agent. For example, you could include a BIOS flashing utility and BIOS file in a custom
ramdisk. Your custom hardware manager could expose a cleaning step that calls the flashing utility and
flashes the packaged BIOS version (or even download it from a tested web server).

How can | build a custom HardwareManager?

In general, custom HardwareManagers should subclass hardware.HardwareManager. Subclassing hard-
ware.GenericHardwareManager should only be considered if the aim is to raise the priority of all
methods of the GenericHardwareManager. The only required method is evaluate_hardware_support(),
which should return one of the enums in hardware.HardwareSupport. Hardware support deter-
mines which hardware manager is executed first for a given function (see: How are methods exe-
cuted on HardwareManagers? for more info). Common methods you may want to implement are
list_hardware_info (), to add additional hardware the GenericHardwareManager is unable to
identify and erase_devices (), to erase devices in ways other than ATA secure erase or shredding.

Some reusable functions are provided by ironic-lib, its IPA is relatively stable.

The examples directory has two example hardware managers that can be copied and adapter for your
use case.

Custom HardwareManagers and Cleaning

One of the reasons to build a custom hardware manager is to expose extra steps in Ironic Cleaning.
A node will perform a set of cleaning steps any time the node is deleted by a tenant or moved from
manageable state to available state. Ironic will query IPA for a list of clean steps that should be
executed on the node. IPA will dispatch a call to get_clean_steps() on all available hardware managers
and then return the combined list to Ironic.

To expose extra clean steps, the custom hardware manager should have a function named
get_clean_steps() which returns a list of dictionaries. The dictionaries should be in the form:

get_clean_steps(self

10

(continues on next page)

14 Chapter 2. Contents

https://docs.openstack.org/ironic-lib/victoria/reference/api/modules.html
https://opendev.org/openstack/ironic-python-agent/src/branch/master/examples
https://docs.openstack.org/ironic/victoria//admin/cleaning.html

Ironic Python Agent Documentation, Release 6.4.5.dev2

(continued from previous page)

Then, you should create functions which match each of the step keys in the clean steps you return. The
functions will take two parameters: node, a dictionary representation of the Ironic node, and ports, a list
of dictionary representations of the Ironic ports attached to node.

When a clean step is executed in IPA, the step key will be sent to the hardware managers in hardware
support order, using hardware.dispatch_to_managers(). For each hardware manager, if the manager has
a function matching the step key, it will be executed. If the function returns a value (including None),
that value is returned to Ironic and no further managers are called. If the function raises Incompatible-
HardwareMethodError, the next manager will be called. If the function raises any other exception, the
command will be considered failed, the command results error message will be set to the exceptions
error message, and no further managers will be called. An example step:

upgrade_firmware (self
self

Note: If two managers return steps with the same step key, the priority will be set to whichever manager
has a higher hardware support level and then use the higher priority in the case of a tie.

Custom HardwareManagers and Deploying

Starting with the Victoria release cycle, deployment can be customized similarly to cleaning. A
hardware manager can define deploy steps that may be run during deployment by exposing a
get_deploy_steps call.

There are two kinds of deploy steps:

1. Steps that need to be run automatically must have a non-zero priority and cannot take required
arguments. For example:

get_deploy_steps(self

10

(continues on next page)

2.3. Contributing to Ironic Python Agent 15

https://docs.openstack.org/ironic/victoria/admin/node-deployment.html

Ironic Python Agent Documentation, Release 6.4.5.dev2

(continued from previous page)

upgrade_firmware (self
self

Priority should be picked based on when exactly in the process the step will run. See agent step
priorities for guidance.

2. Steps that will be requested via deploy templates should have a priority of 0 and may take both
required and optional arguments that will be provided via the deploy templates. For example:

get_deploy_steps(self

write_a_file(self 0o644

16 Chapter 2. Contents

https://docs.openstack.org/ironic/victoria/admin/node-deployment.html#agent-steps
https://docs.openstack.org/ironic/victoria/admin/node-deployment.html#agent-steps
https://docs.openstack.org/ironic/victoria/admin/node-deployment.html#deploy-templates

Ironic Python Agent Documentation, Release 6.4.5.dev2

Versioning

Each hardware manager has a name and a version. This version is used during cleaning to ensure the
same version of the agent is used to on a node through the entire process. If the version changes, cleaning
is restarted from the beginning to ensure consistent cleaning operations and to make updating the agent
in production simpler.

You can set the version of your hardware manager by creating a class variable named HARD-
WARE_MANAGER_VERSION, which should be a string. The default value is 1.0. You should change
this version string any time you update your hardware manager. You can also change the name your hard-
ware manager presents by creating a class variable called HARDWARE_MANAGER_NAME, which is
a string. The name defaults to the class name. Currently IPA only compares version as a string; any
version change whatsoever will induce cleaning to restart.

Priority

A hardware manager has a single overall priority, which should be based on how well it supports a
given piece of hardware. At load time, IPA executes evaluate_hardware_support() on each hardware
manager. This method should return an int representing hardware manager priority, based on what
it detects about the platform its running on. Suggested values are included in the HardwareSupport
class. Returning a value of 0 aka HardwareSupport. NONE, will prevent the hardware manager from
being used. IPA will never ship a hardware manager with a priority higher than 3, aka HardwareSup-
port.SERVICE_PROVIDER.

2.3.2 Emitting metrics from Ironic-Python-Agent (IPA)

This document describes how to emit metrics from IPA, including timers and counters in code to directly
emitting hardware metrics from a custom HardwareManager.

Overview

IPA uses the metrics implementation from ironic-lib, with a few caveats due to the dynamic configuration
done at lookup time. You cannot cache the metrics instance as the MetricsLogger returned will change
after lookup if configs different than the default setting have been used. This also means that the method
decorator supported by ironic-lib cannot be used in IPA.

Using a context manager

Using the context manager is the recommended way for sending metrics that time or count sec-
tions of code. However, given that you cannot cache the MetricsLogger, you have to explicitly call
get_metrics_logger() from ironic-lib every time. For example:

ironic_1lib

my_method

2.3. Contributing to Ironic Python Agent 17

Ironic Python Agent Documentation, Release 6.4.5.dev2

As a note, these metric collectors do work for custom HardwareManagers as well. However, you may
want to metric the portions of a method that determine compatibility separate from portions of a method
that actually do work, in order to assure the metrics are relevant and useful on all hardware.

Explicitly sending metrics

A feature that may be particularly helpful for deployers writing custom HardwareManagers is the ability
to explicitly send metrics. For instance, you could add a cleaning step which would retrieve metrics
about a device and ship them using the provided metrics library. For example:

ironic_1lib

my_cleaning_step

References

For more information, please read the source of the metrics module in ironic-lib.

2.3.3 Rescue Mode

Ironic supports putting nodes in rescue mode using hardware types that support rescue interfaces. A
rescue operation can be used to boot nodes into a rescue ramdisk so that the rescue user can access
the node. This provides the ability to access the node when normal access is not possible. For example,
if there is a need to perform manual password reset or data recovery in the event of some failure, a rescue
operation can be used. IPA rescue extension exposes a command finalize_rescue (thatis used by
Ironic) to set the password for the rescue user when the rescue ramdisk is booted.

finalize_rescue command

The rescue extension exposes the command finalize_rescue; when invoked, it triggers rescue
mode:

rescue_password is a required parameter for this command.

Upon success, it returns following data in response:

(continues on next page)

18 Chapter 2. Contents

https://opendev.org/openstack/ironic-lib/src/branch/master/ironic_lib

Ironic Python Agent Documentation, Release 6.4.5.dev2

(continued from previous page)

If successful, this synchronous command will:

1. Write the salted and crypted rescue_password to /etc/ipa-rescue-config/
ipa-rescue-password in the chroot or filesystem that ironic-python-agent is running in.

2. Stop the ironic-python-agent process after completing these actions and returning the response to
the API request.

2.3.4 Generated Developer Documentation

¢ modindex

ironic_python_agent

ironic_python_agent package
Subpackages
ironic_python_agent.api package
Submodules
ironic_python_agent.api.app module

class ironic_python_agent.api.app.Application (agent, conf)
Bases: object

api_get_command (request, cmd)
api_list_commands (request)
api_root (request)
api_run_command (request)
api_status (request)

api_v1 (request)

handle_exception (environ, exc)
Handle an exception during request processing.

start (tls_cert_file=None, tls_key_file=None)
Start the API service in the background.

stop ()
Stop the API service.

2.3. Contributing to Ironic Python Agent 19

Ironic Python Agent Documentation, Release 6.4.5.dev2

class ironic_python_agent.api.app.Request (environ, populate_request=True,

shallow=False)
Bases: werkzeug.wrappers.request.Request, werkzeug.wrappers.json.

JSONMixin
Custom request class with JSON support.
ironic_python_agent.api.app.format_exception (value)

ironic_python_agent.api.app.jsonify (value, status=200)
Convert value to a JSON response using the custom encoder.

ironic_python_agent.api.app.make_link (url, rel_name, resource=", re-
source_args="", bookmark=Fualse,
type_=None)

ironic_python_agent.api.app.version (url)

Module contents

ironic_python_agent.cmd package

Submodules

ironic_python_agent.cmd.agent module

ironic_python_agent.cmd.agent.run ()
Entrypoint for IronicPythonAgent.

ironic_python_agent.cmd.inspect module

ironic_python_agent.cmd.inspect.run/()
Entrypoint for IronicPythonAgent.

Module contents

ironic_python_agent.extensions package

Submodules

ironic_python_agent.extensions.base module

class ironic_python_agent.extensions.base.AgentCommandStatus
Bases: object

Mapping of agent command statuses.
FAILED = 'FAILED'
RUNNING = 'RUNNING'

SUCCEEDED = 'SUCCEEDED'

20 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

VERSION_MISMATCH = 'CLEAN_VERSION_MISMATCH'

class ironic_python_agent.extensions.base.AsyncCommandResult (command_name,
com-
mand_params,
exe-
cute_method,

agent=None)
Bases: ironic_python_agent.extensions.base.BaseCommandResult

A command that executes asynchronously in the background.

is_done ()
Checks to see if command is still RUNNING.

Returns True if command is done, False if still RUNNING

join (timeout=None)
Block until command has completed, and return result.

Parameters timeout floatindicating max seconds to wait for command to com-
plete. Defaults to None.

run ()
Run a command.

serialize()
Serializes the AsyncCommandResult into a dict.

Returns dict containing serializable fields in AsyncCommandResult

start ()
Begin background execution of command.

class ironic_python_agent.extensions.base.BaseAgentExtension (agent=None)
Bases: object

check_cmd_presence (ext_obj, ext, cmd)
execute (command_name, **kwargs)

class ironic_python_agent.extensions.base.BaseCommandResult (command_name,
com-

mand_params)
Bases: ironic _python_agent.encoding.SerializableComparable

Base class for command result.

is_done ()
Checks to see if command is still RUNNING.

Returns True if command is done, False if still RUNNING

join ()

Returns result of completed command.
serializable_fields = ('id', 'command name', 'command_params', 'command_stat
wait ()

Join the result and extract its value.

Raises if the command failed.

2.3. Contributing to Ironic Python Agent 21

Ironic Python Agent Documentation, Release 6.4.5.dev2

class ironic_python_agent.extensions.base.ExecuteCommandMixin
Bases: object

execute_command (command_name, **kwargs)
Execute an agent command.

get_extension (extension_name)
split_command (command_name)

class ironic_python_agent.extensions.base.SyncCommandResult (command_name,
com-
mand_params,
suc-
cess,
re-

sult_or_error)
Bases: ironic_python_agent.extensions.base.BaseCommandResult

A result from a command that executes synchronously.

ironic_python_agent.extensions.base.async_command (command_name, val-

]) o idator=None)
Will run the command in an AsyncCommandResult in its own thread.

command_name is set based on the func name and command_params will be whatever
args/kwargs you pass into the decorated command. Return values of type str or unicode are
prefixed with the command_name parameter when returned for consistency.

ironic_python_agent.extensions.base.get_extension (name)
ironic_python_agent.extensions.base.init_ext_manager (agent)

ironic_python_agent.extensions.base.sync_command (command_name,

. . validator=None)
Decorate a method to wrap its return value in a SyncCommandResult.

For consistency with @async_command() can also accept a validator which will be used to vali-
date input, although a synchronous command can also choose to implement validation inline.

ironic_python_agent.extensions.clean module

class ironic_python_agent.extensions.clean.CleanExtension (agent=None)
Bases: ironic python _agent.extensions.base.BaseAgentExtension

execute_clean_step (step, node, ports, clean_version=None, **kwargs)
Execute a clean step.

Parameters
* step A clean step with step, priority and interface keys
* node A dict representation of a node
* ports A dict representation of ports attached to node

e clean_version The clean version as returned by hard-
ware.get_current_versions() at the beginning of cleaning/zapping

22 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

Returns a CommandResult object with command_result set to whatever the step
returns.

get_clean_steps (node, ports)
Get the list of clean steps supported for the node and ports

Parameters
* node A dict representation of a node
* ports A dict representation of ports attached to node

Returns A list of clean steps with keys step, priority, and reboot_requested

ironic_python_agent.extensions.deploy module

class ironic_python_agent.extensions.deploy.DeployExtension (agent=None)
Bases: ironic_python agent.extensions.base.BaseAgentExtension

execute_deploy_step (step, node, ports, deploy_version=None, **kwargs)
Execute a deploy step.

Parameters
* step A deploy step with step, priority and interface keys
* node A dict representation of a node
* ports A dict representation of ports attached to node

* deploy_version The deploy version as returned by hard-
ware.get_current_versions() at the beginning of deploying.

* kwargs The remaining arguments are passed to the step.

Returns a CommandResult object with command_result set to whatever the step
returns.

get_deploy_steps (node, ports)
Get the list of deploy steps supported for the node and ports

Parameters
* node A dict representation of a node
* ports A dict representation of ports attached to node

Returns A list of deploy steps with keys step, priority, and reboot_requested

ironic_python_agent.extensions.flow module

class ironic_python_agent.extensions.flow.FlowExtension (agent=None)
Bases: ironic python agent.extensions.base.BaseAgentExtension,
ironic_python_agent.extensions.base.ExecuteCommandMixin

start_flow (flow=None)

2.3. Contributing to Ironic Python Agent 23

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.extensions.image module

class ironic_python_agent.extensions.image.ImageExtension (agent=None)
Bases: ironic _python_agent.extensions.base.BaseAgentExtension

install bootloader (root_uuid, efi_system_part_uuid=None,
prep_boot_part_uuid=None, target_boot_mode="bios’,

ignore_bootloader_failure=None)
Install the GRUB2 bootloader on the image.

Parameters
* root_uuid The UUID of the root partition.

* efi_system part_uuid The UUID of the efi system partition. To be
used only for uefi boot mode. For uefi boot mode, the boot loader will be
installed here.

* prep_boot_part_uuid The UUID of the PReP Boot partition. Used
only for booting ppc64* partition images locally. In this scenario the boot-
loader will be installed here.

* target_boot_mode bios, uefi. Only taken into account for softraid,
when no efi partition is explicitely provided (happens for whole disk images)

Raises CommandExecutionError if the installation of the bootloader fails.

Raises DeviceNotFound if the root partition is not found.

ironic_python_agent.extensions.iscsi module

class ironic_python_agent.extensions.iscsi.ISCSIExtension (agent=None)
Bases: ironic python_agent.extensions.base.BaseAgentExtension

start_iscsi_target (ign=None, wipe_disk_metadata=False, portal_port=None)
Expose the disk as an ISCSI target.

Parameters
* ign IQN for iSCSI target. If None, a new IQN is generated.

* wipe_disk_metadata if the disk metadata should be wiped out before
the disk is exposed.

* portal_port customized port for iSCSI port, can be None.
Returns a dict that provides IQN of iSCSI target.

ironic_python_agent.extensions.iscsi.clean_up (device)
Clean up iSCSI for a given device.

24 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.extensions.log module

class ironic_python_agent.extensions.log.LogExtension (agent=None)
Bases: ironic _python_agent.extensions.base.BaseAgentExtension

collect_system_logs ()
Collect system logs.

Collect and package diagnostic and support data from the ramdisk.
Raises CommandExecutionError if failed to collect the system logs.

Returns A dictionary with the key system_logs and the value of a gzipped and
base64 encoded string of the file with the logs.

ironic_python_agent.extensions.poll module

class ironic_python_agent.extensions.poll.PollExtension (agent=None)
Bases: ironic python _agent.extensions.base.BaseAgentExtension

get_hardware_info ()
Get the hardware information where IPA is running.

set_node_info (node_info=None)
Set node lookup data when IPA is running at passive mode.

Parameters node_info A dictionary contains the information of the node
where IPA is running.

ironic_python_agent.extensions.rescue module

class ironic_python_agent.extensions.rescue.RescueExtension (agent=None)

Bases: ironic python _agent.extensions.base.BaseAgentExtension

finalize_rescue (rescue_password=", hashed=False)
Sets the rescue password for the rescue user.

write_rescue_password (rescue_password=", hashed=False)
Write rescue password to a file for use after IPA exits.

Parameters
* rescue_password Rescue password.

* hashed Boolean default False indicating if the password being provided
is hashed or not. This will be changed in a future version of ironic.

2.3. Contributing to Ironic Python Agent

25

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.extensions.standby module

class ironic_python_agent.extensions.standby.ImageDownload (image_info,

time_obj=None)
Bases: object

Helper class that opens a HTTP connection to download an image.

This class opens a HTTP connection to download an image from a URL and create an iterator
so the image can be downloaded in chunks. The MDS5 hash of the image being downloaded is
calculated on-the-fly.

verify_ image (image_location)
Verifies the checksum of the local images matches expectations.

If this function does not raise ImageChecksumError then it is very likely that the local copy
of the image was transmitted and stored correctly.

Parameters image_location The location of the local image.

Raises ImageChecksumError if the checksum of the local image does not match
the checksum as reported by glance in image_info.

class ironic_python_agent.extensions.standby.StandbyExtension (agent=None)
Bases: ironic python_agent.extensions.base.BaseAgentExtension

Extension which adds stand-by related functionality to agent.

cache_image (image_info=None, force=False)
Asynchronously caches specified image to the local OS device.

Parameters
* image_info Image information dictionary.

» force Optional. If True forces cache_image to download and cache im-
age, even if the same image already exists on the local OS install device.
Defaults to False.

Raises ImageDownloadError if the image download fails for any reason.

Raises ImageChecksumError if the downloaded images checksum does not match
the one reported in image_info.

Raises ImageWriteError if writing the image fails.

get_partition_uuids ()
Return partition UUIDs.

power_off ()
Powers off the agents system.

prepare_image (image_info=None, configdrive=None)
Asynchronously prepares specified image on local OS install device.

In this case, prepare means make local machine completely ready to reboot to the image
specified by image_info.

Downloads and writes an image to disk if necessary. Also writes a configdrive to disk if the
configdrive parameter is specified.

Parameters

26 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

* image_info Image information dictionary.

* configdrive A string containing the location of the config drive as a
URL OR the contents (as gzip/base64) of the configdrive. Optional, defaults
to None.

Raises ImageDownloadError if the image download encounters an error.

Raises ImageChecksumError if the checksum of the local image does not match
the checksum as reported by glance in image_info.

Raises ImageWriteError if writing the image fails.

Raises InstanceDeployFailure if failed to create config drive. large to store on the
given device.

run_image ()
Runs image on agents system via reboot.

sync ()
Flush file system buffers forcing changed blocks to disk.

Raises CommandExecutionError if flushing file system buffers fails.

Module contents
ironic_python_agent.hardware_managers package
Submodules
ironic_python_agent.hardware_managers.cha module

class ironic_python_agent.hardware_managers.cna.IntelCnaHardwareManager
Bases: ironic python_agent.hardware.HardwareManager

HARDWARE_MANAGER_NAME = 'IntelCnaHardwareManager'
HARDWARE MANAGER VERSION = '1.0'

evaluate_hardware_support ()

ironic_python_agent.hardware_managers.minx module

class ironic_python_agent.hardware_managers.mlnx.MellanoxDeviceHardwareManager

Bases: ironic python_agent.hardware.HardwareManager
Mellanox hardware manager to support a single device
HARDWARE_MANAGER_NAME = 'MellanoxDeviceHardwareManager'
HARDWARE MANAGER_VERSION = '1'

evaluate_hardware_support ()
Declare level of hardware support provided.

get_interface_info (interface_name)
Return the interface information when its Mellanox and InfiniBand

2.3. Contributing to Ironic Python Agent 27

Ironic Python Agent Documentation, Release 6.4.5.dev2

In case of Mellanox and InfiniBand interface we do the following:
1. Calculate the InfiniBand MAC according to InfiniBand GUID
2. Calculate the client-id according to InfiniBand GUID

Module contents
Submodules
ironic_python_agent.agent module

class ironic_python_agent.agent .Host (hostname, port)
Bases: tuple

hostname
Alias for field number O

port
Alias for field number 1

class ironic_python_agent.agent.IronicPythonAgent (api_url, adver-
tise_address,
listen_address,
ip_lookup_attempts,
ip_lookup_sleep,
network_interface,
lookup_timeout,
lookup_interval,
standalone,
agent_token, hard-
ware_initialization_delay=0,
adver-

tise_protocol="http’)
Bases: ironic _python _agent.extensions.base.ExecuteCommandMixin

Class for base agent functionality.
force_heartbeat ()

get_command_result (result_id)
Get a specific command result by ID.

Returns a ironic_python_agent.extensions.base.
BaseCommandResult object.

Raises RequestedObjectNotFoundError if command with the given ID is not
found.

get_node_uuid()
Get UUID for Ironic node.

If the agent has not yet heartbeated to Ironic, it will not have the UUID and this will raise an
exception.

Returns A string containing the UUID for the Ironic node.

28 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

Raises UnknownNodeError if UUID is unknown.

get_status ()
Retrieve a serializable status.

Returns a ironic python agent.agent.IronicPythonAgent in-
stance describing the agents status.

list command results ()
Get a list of command results.

Returns list of ironic_python_agent.extensions.base.
BaseCommandResult objects.

process_lookup_data (content)
Update agent configuration from lookup data.

run ()
Run the Ironic Python Agent.

serve_ipa_ api ()
Serve the API until an extension terminates it.

set_agent_advertise_addr ()
Set advertised IP address for the agent, if not already set.

If agents advertised IP address is still default (None), try to find a better one. If the agents
network interface is None, replace that as well.

Raises LookupAgentIPError if an IP address could not be found
validate_agent_token (foken)

class ironic_python_agent.agent.IronicPythonAgentHeartbeater (agent)
Bases: threading.Thread

Thread that periodically heartbeats to Ironic.

do_heartbeat ()
Send a heartbeat to Ironic.

force heartbeat ()

[
o
o)

max_Jjitter_multiplier

I
o
w

min_jitter_multiplier

run ()
Start the heartbeat thread.

stop ()
Stop the heartbeat thread.

class ironic_python_agent.agent.IronicPythonAgentStatus (started_at,

version)
Bases: ironic python_agent.encoding.Serializable

Represents the status of an agent.

serializable_fields = ('started at', 'version')

2.3. Contributing to Ironic Python Agent 29

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.config module

ironic_python_agent.config.list_opts ()

ironic_python_agent.config.override (params)
Override configuration with values from a dictionary.

This is used for configuration overrides from mDNS.

Parameters params new configuration parameters as a dict.

ironic_python_agent.dmi_inspector module

ironic_python_agent.dmi_inspector.collect_dmidecode_info (data, fail-

ures)
Collect detailed processor, memory and bios info.

The data is gathered using dmidecode utility.
Parameters
* data mutable dict that well send to inspector
* failures AccumulatedFailures object

ironic_python_agent.dmi_inspector.parse_dmi (data)
Parse the dmidecode output.

Returns a dict.

ironic_python_agent.encoding module

class ironic_python_agent.encoding.RESTJIJSONEncoder (* skipkeys=False,
ensure_ascii=True,
check_circular=True,
allow_nan=True,
sort_keys=False,
indent=None, sep-
arators=None,

default=None)
Bases: json.encoder.JSONEncoder

A slightly customized JSON encoder.

default (o)
Turn an object into a serializable object.

In particular, by calling Serializable.serialize () ono.

encode (0)
Turn an object into JSON.

Appends a newline to responses when configured to pretty-print, in order to make use of curl
less painful from most shells.

class ironic_python_agent.encoding.Serializable
Bases: object

30 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

Base class for things that can be serialized.
serializable_fields = ()

serialize ()
Turn this object into a dict.

class ironic_python_agent.encoding.SerializableComparable
Bases: ironic_python _agent.encoding.Serializable

A Serializable class which supports some comparison operators

This class supports the __eq__ and __ne__ comparison operators, but intentionally disables the
__hash__ operator as some child classes may be mutable. The addition of these comparison
operators is mainly used to assist with unit testing.

ironic_python_agent.encoding.serialize_1lib_exc (exc)
Serialize an ironic-lib exception.

ironic_python_agent.errors module

exception ironic_python_agent.errors.AgentIsBusy (command_name)
Bases: ironic_python _agent.errors.CommandExecutionError

message = 'Agent is busy'
status_code = 409

exception ironic_python_agent.errors.BlockDeviceEraseError (details)
Bases: ironic python agent.errors.RESTError

Error raised when an error occurs erasing a block device.
message = 'Error erasing block device'

exception ironic_python_agent.errors.BlockDeviceError (details)
Bases: ironic_python agent.errors.RESTError

Error raised when a block devices causes an unknown error.
message = 'Block device caused unknown error'

exception ironic_python_agent.errors.CleaningError (details=None)
Bases: ironic python agent.errors.RESTError

Error raised when a cleaning step fails.
message = 'Clean step failed'

exception ironic_python_agent.errors.ClockSyncError (details=None,
*args, **kwargs)
Bases: ironic_python agent.errors.RESTError

Error raised when attempting to sync the system clock.
message = 'Error syncing system clock'

exception ironic_python_agent.errors.CommandExecutionError (details)
Bases: ironic python agent.errors.RESTError

Error raised when a command fails to execute.

2.3. Contributing to Ironic Python Agent 31

Ironic Python Agent Documentation, Release 6.4.5.dev2

message = 'Command execution failed'

exception ironic_python_agent.errors.DeploymentError (details=None)
Bases: ironic _python_agent.errors.RESTError

Error raised when a deploy step fails.
message = 'Deploy step failed'

exception ironic_python_agent.errors.DeviceNotFound (details)
Bases: ironic_python_agent.errors.NotFound

Error raised when the device to deploy the image onto is not found.
message = 'Error finding the disk or partition device to deploy the image or

exception ironic_python_agent.errors.ExtensionError (details=None,

*args, **kwargs)
Bases: ironic _python_agent.errors.RESTError

exception ironic_python_agent.errors.HardwareManagerMethodNotFound (method)
Bases: ironic _python_agent.errors.RESTError

Error raised when all HardwareManagers fail to handle a method.
message = 'No HardwareManager found to handle method’

exception ironic_python_agent.errors.HardwareManagerNotFound (details=None)
Bases: ironic python _agent.errors.RESTError

Error raised when no valid HardwareManager can be found.
message = 'No valid HardwareManager found'

exception ironic_python_agent.errors.HeartbeatConflictError (details)
Bases: ironic _python agent.errors.IronicAPIError

ConflictError raised when a heartbeat to the agent API fails.
message = 'ConflictError heartbeating to agent API'

exception ironic_python_agent.errors.HeartbeatConnectionError (details)
Bases: ironic python_agent.errors.IronicAPIError

Transitory connection failure occured attempting to contact the APIL.
message = 'Error attempting to heartbeat - Possible transitory network failwvu

exception ironic_python_agent.errors.HeartbeatError (details)
Bases: ironic _python agent.errors.IronicAPIError

Error raised when a heartbeat to the agent API fails.
message = 'Error heartbeating to agent API'

exception ironic_python_agent.errors.ISCSICommandError (error_msg,
exit_code, std-

out, stderr)
Bases: ironic python _agent.errors.ISCSIError

Error executing TGT command.

exception ironic_python_agent.errors.ISCSIError (error_msg)
Bases: ironic python_agent.errors.RESTError

32 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

Error raised when an image cannot be written to a device.
message = 'Error starting iSCSI target'

exception ironic_python_agent.errors.ImageChecksumError (image_id,
im-
age_location,
checksum,
calcu-

lated_checksum)
Bases: ironic _python_agent.errors.RESTError

Error raised when an image fails to verify against its checksum.
details_str = 'Image failed to verify against checksum. location: {}; image
message = 'Error verifying image checksum'

exception ironic_python_agent.errors.ImageDownloadError (image_id,

msg)
Bases: ironic python agent.errors.RESTError

Error raised when an image cannot be downloaded.
message = 'Error downloading image'

exception ironic_python_agent.errors.ImageWriteError (device, exit_code,

stdout, stderr)
Bases: ironic _python_agent.errors.RESTError

Error raised when an image cannot be written to a device.
message = 'Error writing image to device'

exception ironic_python_agent.errors.IncompatibleHardwareMethodError (details=None)
Bases: ironic python _agent.errors.RESTError

Error raised when HardwareManager method incompatible with hardware.
message = 'HardwareManager method is not compatible with hardware'

exception ironic_python_agent.errors.IncompatibleNumaFormatError (details=None,
*args,
**ywargs)
Bases: ironic python _agent.errors.RESTError

Error raised when unexpected format data in NUMA node.
message = 'Error in NUMA node data format'

exception ironic_python_agent.errors.InspectionError
Bases: Exception

Failure during inspection.

exception ironic_python_agent.errors.InvalidCommandError (details)
Bases: ironic _python _agent.errors.InvalidContentError

Error which is raised when an unknown command is issued.
message = 'Invalid command'

exception ironic_python_agent.errors.InvalidCommandParamsError (details)
Bases: ironic_python _agent.errors.InvalidContentError

2.3. Contributing to Ironic Python Agent 33

Ironic Python Agent Documentation, Release 6.4.5.dev2

Error which is raised when command parameters are invalid.
message = 'Invalid command parameters'

exception ironic_python_agent.errors.InvalidContentError (details)
Bases: ironic python _agent.errors.RESTError

Error which occurs when a user supplies invalid content.

Either because that content cannot be parsed according to the advertised Content-Type, or due to
a content validation error.

message = 'Invalid request body'
status_code = 400

exception ironic_python_agent.errors.IronicAPIError (details)
Bases: ironic _python_agent.errors.RESTError

Error raised when a call to the agent API fails.
message = 'Error in call to ironic-api'

exception ironic_python_agent.errors.LookupAgentIPError (details)
Bases: ironic_python _agent.errors.IronicAPIError

Error raised when automatic IP lookup fails.
message = 'Error finding IP for Ironic Agent'

exception ironic_python_agent.errors.LookupNodeError (details)
Bases: ironic _python _agent.errors.IronicAPIError

Error raised when the node lookup to the Ironic API fails.

message = 'Error getting configuration from Ironic'
exception ironic_python_agent.errors.NotFound (details=None, *args,
**kwargs)

Bases: ironic_python _agent.errors.RESTError
Error which occurs if a non-existent API endpoint is called.
details = 'The requested URL was not found.'
message = 'Not found'

status_code = 404

exception ironic_python_agent.errors.RESTError (details=None, *args,

**kwargs)
Bases: Exception, ironic_python_agent.encoding.Serializable

Base class for errors generated in ironic-python-client.

details = 'An unexpected error occurred. Please try back later.'
message = 'An error occurred'
serializable_fields = ('type', 'code', 'message', 'details')

status_code = 500

34 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

exception ironic_python_agent.errors.RequestedObjectNotFoundError (type_descr,
obj_id)
Bases: ironic python_agent.errors.NotFound

exception ironic_python_agent.errors.SoftwareRAIDError (details)
Bases: ironic_python _agent.errors.RESTError

Error raised when a Software RAID causes an error.
message = 'Software RAID caused unknown error'

exception ironic_python_agent.errors.SystemRebootError (exit_code, std-
out, stderr)
Bases: ironic _python_agent.errors.RESTError
Error raised when a system cannot reboot.

message = 'Error rebooting system'’

exception ironic_python_agent.errors.UnknownNodeError (details=None)
Bases: ironic_python _agent.errors.RESTError

Error raised when the agent is not associated with an Ironic node.
message = 'Agent is not associated with an Ironic node'

exception ironic_python_agent.errors.VersionMismatch (agent version,

node_version)
Bases: ironic _python_agent.errors.RESTError

Error raised when Ironic and the Agent have different versions.

If the agent version has changed since get_clean_steps or get_deploy_steps was called by the
Ironic conductor, it indicates the agent has been updated (either on purpose, or a new agent was
deployed and the node was rebooted). Since we cannot know if the upgraded IPA will work with
cleaning/deploy as it stands (steps could have different priorities, either in IPA or in other Ironic
interfaces), we should restart the process from the start.

message = 'Hardware managers version mismatch, reload agent with correct ver

exception ironic_python_agent.errors.VirtualMediaBootError (details)
Bases: ironic _python_agent.errors.RESTError

Error raised when virtual media device cannot be found for config.

message = 'Configuring agent from virtual media failed'

ironic_python_agent.hardware module

class ironic_python_agent.hardware.BlockDevice (name, model, size, rota-
tional, wwn=None, se-
rial=None, vendor=None,
wwn_with_extension=None,
wwn_vendor_extension=None,
hctl=None,

by_path=None)
Bases: ironic python_agent.encoding.SerializableComparable

serializable_fields = ('name', 'model', 'size', 'rotational', 'wwn', 'serial

2.3. Contributing to Ironic Python Agent 35

Ironic Python Agent Documentation, Release 6.4.5.dev2

class ironic_python_agent.hardware.BootInfo (current_boot_mode,

pxe_interface=None)
Bases: ironic python_agent.encoding.SerializableComparable

serializable_fields = ('current_boot_mode', 'pxe_interface')

class ironic_python_agent.hardware.CPU (model_name, frequency, count, archi-

tecture, flags=None)
Bases: ironic python_agent.encoding.SerializableComparable

serializable_fields = ('model_name', 'frequency', 'count', 'architecture',

class ironic_python_agent.hardware.GenericHardwareManager
Bases: ironic _python_agent.hardware.HardwareManager

HARDWARE_MANAGER_NAME = 'generic_hardware_manager'
HARDWARE_ MANAGER VERSION = '1l.1'

apply_configuration (node, ports, raid_config, delete_existing=True)
Apply RAID configuration.

Parameters
* node A dictionary of the node object.
* ports A list of dictionaries containing information of ports for the node.
* raid_config The configuration to apply.
* delete_existing Whether to delete the existing configuration.

collect_1l1ldp_data (interface_names)
Collect and convert LLDP info from the node.

In order to process the LLDP information later, the raw data needs to be converted for seri-
alization purposes.

Parameters interface_names list of names of nodes interfaces.
Returns a dict, containing the lldp data from every interface.

create_configuration (node, ports)
Create a RAID configuration.

Unless overwritten by a local hardware manager, this method will create a software RAID
configuration as read from the nodes target_raid_config.

Parameters

* node A dictionary of the node object.

» ports A list of dictionaries containing information of ports for the node.
Returns The current RAID configuration in the usual format.

Raises SoftwareRAIDError if the desired configuration is not valid or if there was
an error when creating the RAID devices.

delete_configuration (node, ports)
Delete a RAID configuration.

Unless overwritten by a local hardware manager, this method will delete all software RAID
devices on the node. NOTE(arne_wiebalck): It may be worth considering to only delete

36 Chapter 2. Contents

1

Ironic Python Agent Documentation, Release 6.4.5.dev2

RAID devices in the nodes target_raid_config. If that config has been lost, though, the
cleanup may become difficult. So, for now, we delete everything we detect.

Parameters
* node A dictionary of the node object
* ports A list of dictionaries containing information of ports for the node

erase_block device (node, block_device)
Attempt to erase a block device.

Implementations should detect the type of device and erase it in the most appropriate way
possible. Generic implementations should support common erase mechanisms such as ATA
secure erase, or multi-pass random writes. Operators with more specific needs should over-
ride this method in order to detect and handle interesting cases, or delegate to the parent
class to handle generic cases.

For example: operators running ACME MagicStore (TM) cards alongside standard SSDs
might check whether the device is a MagicStore and use a proprietary tool to erase that,
otherwise call this method on their parent class. Upstream submissions of common func-
tionality are encouraged.

This interface could be called concurrently to speed up erasure, as such, it should be imple-
mented in a thread-safe way.

Parameters

* node Ironic node object

* block_device aBlockDevice indicating a device to be erased.
Raises

* IncompatibleHardwareMethodError when there is no known way
to erase the block device

* BlockDeviceEraseError when there is an error erasing the block
device

erase_devices_metadata (node, ports)
Attempt to erase the disk devices metadata.

Parameters
* node Ironic node object
* ports list of [ronic port objects

Raises BlockDeviceEraseError when theres an error erasing the block de-
vice

evaluate_hardware_support ()

generate_tls_certificate (ip_address)
Generate a TLS certificate for the IP address.

get_bios_given_nic_name (interface_name)
Collect the BIOS given NICs name.

This function uses the biosdevname utility to collect the BIOS given name of network inter-
faces.

2.3. Contributing to Ironic Python Agent 37

Ironic Python Agent Documentation, Release 6.4.5.dev2

The collected data is added to the network interface inventory with an extra field named
biosdevname.

Parameters interface name list of names of nodes interfaces.

Returns the BIOS given NIC name of nodes interfaces or default as None.

get_bmc_address ()
Attempt to detect BMC IP address

Returns IP address of lan channel or 0.0.0.0 in case none of them is configured
properly

get_bmc_véaddress ()
Attempt to detect BMC v6 address

Returns IPv6 address of lan channel or ::/0 in case none of them is configured

properly. May return None value if it cannot interract with system tools or
critical error occurs.

get_boot_info ()

get_clean_steps (node, ports)
Get a list of clean steps with priority.

Returns a list of steps. Each step is represented by a dict:

all

U]
—

set
-0

set set

If multiple hardware managers return the same step name, the following logic will be used
to determine which managers step wins:

* Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

38

Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best
suited hardware manager. If you need a step to be executed by only your hardware man-
ager, ensure it has a unique step name.

node and ports can be used by other hardware managers to further determine if a clean step
is supported for the node.

Parameters
* node Ironic node object
» ports list of Ironic port objects

Returns a list of cleaning steps, where each step is described as a dict as defined
above

get_cpus ()

get_deploy_steps (node, ports)
Get a list of deploy steps with priority.

Returns a list of steps. Each step is represented by a dict:

all

V)
—
-

L

set
0

If multiple hardware managers return the same step name, the following logic will be used
to determine which managers step wins:

» Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best
suited hardware manager. If you need a step to be executed by only your hardware man-
ager, ensure it has a unique step name.

2.3. Contributing to Ironic Python Agent 39

Ironic Python Agent Documentation, Release 6.4.5.dev2

node and ports can be used by other hardware managers to further determine if a deploy step
is supported for the node.

Parameters
* node Ironic node object
* ports list of [ronic port objects

Returns a list of deploying steps, where each step is described as a dict as defined
above

get_interface_info (interface_name)
get_ipv4_addr (interface_id)

get_ipv6_addr (interface_id)
Get the default IPv6 address assigned to the interface.

With different networking environment, the address could be a link-local address, ULA or
something else.

get_memory ()
get_os_install_device (permit_refresh=False)
get_system vendor_ info ()

list_block_devices (include_partitions=False)
List physical block devices

Parameters include_partitions If to include partitions
Returns A list of BlockDevices
list_network_interfaces ()

validate_configuration (raid_config, node)
Validate a (software) RAID configuration

Validate a given raid_config, in particular with respect to the limitations of the current im-
plementation of software RAID support.

Parameters raid_config The current RAID configuration in the usual for-
mat.

write_image (node, ports, image_info, configdrive=None)
A deploy step to write an image.

Downloads and writes an image to disk if necessary. Also writes a configdrive to disk if the
configdrive parameter is specified.

Parameters
* node A dictionary of the node object
» ports A list of dictionaries containing information of ports for the node
* image_info Image information dictionary.

* configdrive A string containing the location of the config drive as a
URL OR the contents (as gzip/base64) of the configdrive. Optional, defaults
to None.

40 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

class ironic_python_agent.hardware.HardwareManager
Bases: object

erase_block device (node, block_device)
Attempt to erase a block device.

Implementations should detect the type of device and erase it in the most appropriate way
possible. Generic implementations should support common erase mechanisms such as ATA
secure erase, or multi-pass random writes. Operators with more specific needs should over-
ride this method in order to detect and handle interesting cases, or delegate to the parent
class to handle generic cases.

For example: operators running ACME MagicStore (TM) cards alongside standard SSDs
might check whether the device is a MagicStore and use a proprietary tool to erase that,
otherwise call this method on their parent class. Upstream submissions of common func-
tionality are encouraged.

This interface could be called concurrently to speed up erasure, as such, it should be imple-
mented in a thread-safe way.

Parameters

* node Ironic node object

* block_device aBlockDevice indicating a device to be erased.
Raises

* IncompatibleHardwareMethodError when there is no known way
to erase the block device

* BlockDeviceEraseError when there is an error erasing the block
device

erase_devices (node, ports)
Erase any device that holds user data.

By default this will attempt to erase block devices. This method can be overridden in an
implementation-specific hardware manager in order to erase additional hardware, although
backwards-compatible upstream submissions are encouraged.

Parameters
* node Ironic node object
» ports list of Ironic port objects
Returns a dictionary in the form {device.name: erasure output}
abstract evaluate_hardware_support ()
generate_tls_certificate (ip_address)
get_bmc_address ()
get_bmc_véaddress ()
get_boot_info ()

get_clean_steps (node, ports)
Get a list of clean steps with priority.

Returns a list of steps. Each step is represented by a dict:

2.3. Contributing to Ironic Python Agent 41

Ironic Python Agent Documentation, Release 6.4.5.dev2

all
all -
s
set .
-0
N
.
set set
<

If multiple hardware managers return the same step name, the following logic will be used
to determine which managers step wins:

* Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best
suited hardware manager. If you need a step to be executed by only your hardware man-
ager, ensure it has a unique step name.

node and ports can be used by other hardware managers to further determine if a clean step
is supported for the node.

Parameters
* node Ironic node object
* ports list of [ronic port objects

Returns a list of cleaning steps, where each step is described as a dict as defined
above

get_cpus ()

get_deploy_steps (node, ports)
Get a list of deploy steps with priority.

Returns a list of steps. Each step is represented by a dict:

42 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

all

V)
—
—
L

set

—0

If multiple hardware managers return the same step name, the following logic will be used
to determine which managers step wins:

» Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best
suited hardware manager. If you need a step to be executed by only your hardware man-
ager, ensure it has a unique step name.

node and ports can be used by other hardware managers to further determine if a deploy step
is supported for the node.

Parameters
* node Ironic node object
» ports list of Ironic port objects

Returns a list of deploying steps, where each step is described as a dict as defined
above

get_interface_info (interface_name)
get_memory ()
get_os_install_device (permit_refresh=False)

get_version ()
Get a name and version for this hardware manager.

In order to avoid errors and make agent upgrades painless, cleaning will check the version
of all hardware managers during get_clean_steps at the beginning of cleaning and before
executing each step in the agent.

2.3. Contributing to Ironic Python Agent 43

Ironic Python Agent Documentation, Release 6.4.5.dev2

The agent isnt aware of the steps being taken before or after via out of band steps, so it can
never know if a new step is safe to run. Therefore, we default to restarting the whole process.

Returns a dictionary with two keys: name and version, where name is a string
identifying the hardware manager and version is an arbitrary version string.
name will be a class variable called HARDWARE_MANAGER_NAME, or
default to the class name and version will be a class variable called HARD-
WARE_MANAGER_VERSION or default to 1.0.

list_block_devices (include_partitions=False)
List physical block devices

Parameters include_partitions If to include partitions
Returns A list of BlockDevices

list hardware info ()
Return full hardware inventory as a serializable dict.

This inventory is sent to Ironic on lookup and to Inspector on inspection.
Returns a dictionary representing inventory
list_network_interfaces ()

wait for disks ()
Wait for the root disk to appear.

Wait for at least one suitable disk to show up or a specific disk if any device hint is specified.
Otherwise neither inspection not deployment have any chances to succeed.

class ironic_python_agent.hardware.HardwareSupport
Bases: object

Example priorities for hardware managers.

Priorities for HardwareManagers are integers, where largest means most specific and smallest
means most generic. These values are guidelines that suggest values that might be returned by
calls to evaluate_hardware_support(). No HardwareManager in mainline IPA will ever return a
value greater than MAINLINE. Third party hardware managers should feel free to return values of
SERVICE_PROVIDER or greater to distinguish between additional levels of hardware support.

GENERIC =1
MAINLINE = 2

NONE = 0
SERVICE_PROVIDER = 3

class ironic_python_agent.hardware.HardwareType
Bases: object

MAC_ADDRESS = 'mac_address'

class ironic_python_agent.hardware.Memory (total, physical_mb=None)
Bases: ironic_python _agent.encoding.SerializableComparable

serializable_fields = ('total', 'physical mb')

44 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

class ironic_python_agent.hardware.NetworkInterface (name, mac_addr,
ipv4_address=None,
ipv6_address=None,
has_carrier=True,
lldp=None,
vendor=None,
product=None,
client_id=None,
biosdev-

name=None)
Bases: ironic python_agent.encoding.SerializableComparable

serializable_fields = ('name', 'mac_address', 'ipv4_address',

class ironic_python_agent.hardware.SystemVendorInfo (product_name, se-
rial_number, man-

ufacturer)
Bases: ironic _python_agent.encoding.SerializableComparable

'ipv6_address'

serializable_fields = ('product_name', 'serial_number', 'manufacturer')

ironic_python_agent.hardware.cache_node (node)
Store the node object in the hardware module.

Stores the node object in the hardware module to facilitate the access of a node information in the

hardware extensions.

If the new node does not match the previously cached one, wait for the expected root device to

appear.
Parameters
* node Ironic node object

* wait_for_disks Default True switch to wait for disk setup to be com-
pleted so the node information can be aligned with the physical storage de-
vices of the host. This is likely to be used in unit testing.

ironic_python_agent.hardware.check_versions (provided_version=None)
Ensure the version of hardware managers hasnt changed.

Parameters provided_version Hardware manager versions used by ironic.

Raises errors.VersionMismatch if any hardware manager version on the currently run-
ning agent doesnt match the one stored in provided_version.

Returns None

ironic_python_agent.hardware.deduplicate_steps (candidate_steps)
Remove duplicated clean or deploy steps

Deduplicates steps returned from HardwareManagers to prevent running a given step more than
once. Other than individual step priority, it doesnt actually impact the deployment which specific
steps are kept and what HardwareManager they are associated with. However, in order to make
testing easier, this method returns deterministic results.

Uses the following filtering logic to decide which step wins:

» Keep the step that belongs to HardwareManager with highest HardwareSupport (larger int)
value.

2.3. Contributing to Ironic Python Agent 45

Ironic Python Agent Documentation, Release 6.4.5.dev2

* If equal support level, keep the step with the higher defined priority (larger int).
* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.
Parameters candidate_steps A dict containing all possible steps from all man-
agers, key=manager, value=list of steps
Returns A deduplicated dictionary of {hardware_manager: [steps]}
ironic_python_agent.hardware.dispatch_to_all_managers (method, *args,

**kwargs)
Dispatch a method to all hardware managers.

Dispatches the given method in priority order as sorted by get_managers. If the method doesnt
exist or raises IncompatibleHardwareMethodError, it continues to the next hardware manager. All
managers that have hardware support for this node will be called, and their responses will be added
to a dictionary of the form {HardwareManagerClassName: response}.

Parameters
* method hardware manager method to dispatch
* args arguments to dispatched method
* kwargs keyword arguments to dispatched method

Raises errors.HardwareManagerMethodNotFound if all managers raise
IncompatibleHardwareMethodError.

Returns a dictionary with keys for each hardware manager that returns a response and
the value as a list of results from that hardware manager.

ironic_python_agent.hardware.dispatch_to_managers (method, *args,
**lwargs)
Dispatch a method to best suited hardware manager.

Dispatches the given method in priority order as sorted by get_managers. If the method doesnt
exist or raises IncompatibleHardwareMethodError, it is attempted again with a more generic hard-
ware manager. This continues until a method executes that returns any result without raising an
IncompatibleHardwareMethodError.

Parameters
* method hardware manager method to dispatch
* args arguments to dispatched method
* kwargs keyword arguments to dispatched method
Returns result of successful dispatch of method
Raises
* HardwareManagerMethodNotFound if all managers failed the method
* HardwareManagerNotFound if no valid hardware managers found

ironic_python_agent.hardware.get_cached_node ()
Guard function around the module variable NODE.

46 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.hardware.get_current_versions ()
Fetches versions from all hardware managers.

Returns Dict in the format {name: version} containing one entry for every hardware
manager.

ironic_python_agent.hardware.get_holder_disks (raid_device)
Get the holder disks of a Software RAID device.

Examine an md device and return its underlying disks.
Parameters raid device A Software RAID block device name.
Returns A list of the holder disks.

ironic_python_agent.hardware.get_managers ()
Get a list of hardware managers in priority order.

Use stevedore to find all eligible hardware managers, sort them based on self-reported (via eval-
uate_hardware_support()) priorities, and return them in a list. The resulting list is cached in
_global_managers.

Returns Priority-sorted list of hardware managers
Raises HardwareManagerNotFound if no valid hardware managers found

ironic_python_agent.hardware.is_md_device (raid_device)
Check if a device is an md device

Check if a device is a Software RAID (md) device.
Parameters raid device A Software RAID block device name.
Returns True if the device is an md device, False otherwise.

ironic_python_agent.hardware.list_all_block_devices (block_type="disk’,
ig-
nore_raid=Fualse,
ig-
nore_floppy=True,
ig-
nore_empty=True)
List all physical block devices
The switches we use for Isblk: P for KEY=value output, b for size output in bytes, i to ensure ascii
characters only, and o to specify the fields/columns we need.

Broken out as its own function to facilitate custom hardware managers that dont need to subclass
GenericHardwareManager.

Parameters
* block_type Type of block device to find

* ignore_raid Ignore auto-identified raid devices, example: md0 Defaults
to false as these are generally disk devices and should be treated as such if
encountered.

* ignore_floppy Ignore floppy disk devices in the block device list. By
default, these devices are filtered out.

* ignore_empty Whether to ignore disks with size equal 0.

2.3. Contributing to Ironic Python Agent 47

Ironic Python Agent Documentation, Release 6.4.5.dev2

Returns A list of BlockDevices

ironic_python_agent.hardware.list_hardware_info (use_cache=True)
List hardware information with caching.

ironic_python_agent.hardware.md_get_raid devices ()
Get all discovered Software RAID (md) devices

Returns A python dict containing details about the discovered RAID devices

ironic_python_agent.hardware.md_restart (raid_device)
Restart an md device

Stop and re-assemble a Software RAID (md) device.
Parameters raid device A Software RAID block device name.
Raises CommandExecutionError in case the restart fails.

ironic_python_agent.hardware.save_api_client (client=None, timeout=None,

') interval=None)
Preserves access to the API client for potential later re-use.

ironic_python_agent.hardware.update_cached_node ()
Attmepts to update the node cache via the API

ironic_python_agent.inspect module

class ironic_python_agent.inspect.IronicInspection
Bases: threading.Thread

Class for manual inspection functionality.
backoff factor = 2.7
max_delay = 1200

Il
[ary
N

max_jitter_multiplier

]
o
~

min_jitter_multiplier

run ()
Run Inspection.

ironic_python_agent.inspector module

ironic_python_agent.inspector.call_inspector (data, failures)
Post data to inspector.

ironic_python_agent.inspector.collect_default (data, failures)
The default inspection collector.

This is the only collector that is called by default. It collects the whole inventory as returned by
the hardware manager(s).

It also tries to get BMC address, PXE boot device and the expected root device.
Parameters

* data mutable data that well send to inspector

48 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

e failures AccumulatedFailures object

ironic_python_agent.inspector.collect_extra_hardware (data, failures)
Collect detailed inventory using hardware-detect utility.

Recognizes ipa-inspection-benchmarks with list of benchmarks (possible values are cpu, disk,
mem) to run. No benchmarks are run by default, as theyre pretty time-consuming.

Puts collected data as JSON under data key. Requires hardware python package to be installed on
the ramdisk in addition to the packages in requirements.txt.

Parameters
* data mutable data that well send to inspector
* failures AccumulatedFailures object

ironic_python_agent.inspector.collect_logs (data, failures)
Collect system logs from the ramdisk.

As inspection runs before any nodes details are known, its handy to have logs returned with data.
This collector sends logs to inspector in format expected by the ramdisk_error plugin: base64
encoded tar.gz.

This collector should be installed last in the collector chain, otherwise it wont collect enough logs.
This collector does not report failures.
Parameters
* data mutable data that well send to inspector
* failures AccumulatedFailures object

ironic_python_agent.inspector.collect_pci_devices_info (data, failures)
Collect a list of PCI devices.

Each PCI device entry in list is a dictionary containing vendor_id and product_id keys, which will
be then used by the ironic inspector to distinguish various PCI devices.

The data is gathered from /sys/bus/pci/devices directory.
Parameters
* data mutable data that well send to inspector
* failures AccumulatedFailures object
ironic_python_agent.inspector.extension_manager (names)

ironic_python_agent.inspector.inspect ()
Optionally run inspection on the current node.

If inspection_callback_url is set in the configuration, get the hardware inventory from
the node and post it back to the inspector.

Returns node UUID if inspection was successful, None if associated node was not
found in inspector cache. None is also returned if inspector support is not enabled.

ironic_python_agent.inspector.wait_for_dhcp ()
Wait until NICs get their IP addresses via DHCP or timeout happens.

Depending on the value of inspection_dhcp_all_interfaces configuration option will wait for either
all or only PXE booting NIC.

2.3. Contributing to Ironic Python Agent 49

Ironic Python Agent Documentation, Release 6.4.5.dev2

Note: only supports IPv4 addresses for now.

Returns True if all NICs got IP addresses, False if timeout happened. Also returns
True if waiting is disabled via configuration.

ironic_python_agent.ironic_api_client module

class ironic_python_agent.ironic_api_client .APIClient (api_url)
Bases: object

agent_token None

api_version = 'vl'

heartbeat (uuid, advertise_address, advertise_protocol="http’, generated_cert=None)
heartbeat_api = '/vl/heartbeat/{uuid}'

lookup_api = '/vl1l/lookup'

lookup_node (hardware_info, timeout, starting_interval, node_uuid=None,
max_interval=30)

supports_auto_tls ()

ironic_python_agent.netutils module

class ironic_python_agent.netutils.RawPromiscuousSockets (interface_names,

protocol)
Bases: object

ironic_python_agent.netutils.bring_up_vlan_interfaces (inferfaces_list)
Bring up vlan interfaces based on kernel params

Use the configured value of enable_vlan_interfaces to determine if VLAN interfaces
should be brought up using ip commands. If enable_vlan_interfaces defines a particular
vlan then bring up that vlan. If it defines an interface or all then use LLDP info to figure out
which VLANSs should be brought up.

Parameters interfaces_1list List of current interfaces
Returns List of vlan interface names that have been added

ironic_python_agent.netutils.get_default_ip_addr (type, interface_id)
Retrieve default IPv4 or IPv6 address.

ironic_python_agent.netutils.get_hostname ()
ironic_python_agent.netutils.get_ipv4_addr (interface_id)
ironic_python_agent.netutils.get_ipv6_addr (interface_id)

ironic_python_agent.netutils.get_1l1ldp_info (interface_names)
Get LLDP info from the switch(es) the agent is connected to.

Listens on either a single or all interfaces for LLDP packets, then parses them. If no LLDP packets
are received before 1ldp_timeout, returns a dictionary in the form {interface: [],}.

50 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

Parameters interface_names The interface to listen for packets on. If None,
will listen on each interface.

Returns A dictionary in the form {interface: [(lldp_type, lldp_data)],}

ironic_python_agent.netutils.get_mac_addr (inferface_id)

ironic_python_agent.netutils.get_wildcard_ address ()

class ironic_python_agent.netutils.ifreq

Bases: _ctypes.Structure
Class for setting flags on a socket.

ifr flags
Structure/Union member

ifr ifrn
Structure/Union member

ironic_python_agent.netutils.interface_has_carrier (interface_name)

ironic_python_agent.netutils.wrap_ipveé (ip)

ironic_python_agent.numa_inspector module

ironic_python_agent.numa_inspector.collect_numa_ topology_info (data,

fail-
ures)
Collect the NUMA topology information.

The data is gathered from /sys/devices/system/node/node<X> and /sys/class/net/ directories. The
information is collected in the form of:

list

Parameters
* data mutable data that well send to inspector

* failures AccumulatedFailures object

2.3.

Contributing to Ironic Python Agent 51

Ironic Python Agent Documentation, Release 6.4.5.dev2

Returns None
ironic_python_agent.numa_inspector.get_nodes_cores_info (numa_node_dirs)
Collect the NUMA nodes cpus and threads information.
NUMA nodes path: /sys/devices/system/node/node<node_id>
Thread dirs path: /sys/devices/system/node/node<node_id>/cpu<thread_id>

CPU id file path: /sys/devices/system/node/node<node_id>/cpu<thread_id>/
topology/core_id

The information is returned in the form of:

list

Parameters numa_node_dirs A list of NUMA node directories
Raises IncompatibleNumaFormatError: when unexpected format datain NUMA node
Returns A list of cpu information with NUMA node id and thread siblings
ironic_python_agent.numa_inspector.get_nodes_memory_ info (numa_node_dirs)
Collect the NUMA nodes memory information.

The information is returned in the form of:

Parameters numa_node_dirs A list of NUMA node directories
Raises IncompatibleNumaFormatError: when unexpected format data in NUMA node
Returns A list of memory information with NUMA node id
ironic_python_agent.numa_inspector.get_nodes_nics_info (nic_device_path)
Collect the NUMA nodes nics information.

The information is returned in the form of:

Parameters nic_device_path nic device directory path
Raises IncompatibleNumaFormatError: when unexpected format datain NUMA node

Returns A list of nics information with NUMA node id

52 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.numa_inspector.get_numa_node_id (numa_node_dir)
Provides the NUMA node id from NUMA node directory

Parameters numa_node_dir NUMA node directory

Raises IncompatibleNumaFormatError: when unexpected format datain NUMA node
dir

Returns NUMA node id

ironic_python_agent.raid_utils module

ironic_python_agent.raid_utils.calec_raid partition_sectors (psize,

start)
Calculates end sector and converts start and end sectors including

the unit of measure, compatible with parted. :param psize: size of the raid partition :param start:
start sector of the raid partion in integer format :return: start and end sector in parted compatible
format, end sector

as integer

ironic_python_agent.raid_utils.calculate_raid_start (target_boot_mode,
parti-
tion_table_type,

dev_name)
Define the start sector for the raid partition.

Parameters
* target_boot_mode the node boot mode.
* partition_table_type the node partition label, gpt or msdos.
* dev_name block device in the raid configuration.

Returns The start sector for the raid partition.

ironic_python_agent.raid_utils.create_raid partition_tables (block_devices,
parti-
tion_table_type,
tar-

get_boot_mode)
Creates partition tables in all disks in a RAID configuration and

reports the starting sector for each partition on each disk. :param block_devices: disks where we
want to create the partition tables. :param partition_table_type: type of partition table to create,
for example

gpt or msdos.
Parameters target_boot_mode the node selected boot mode, for example uefi
or bios.

Returns a dictionary of devices and the start of the corresponding partition.

2.3. Contributing to Ironic Python Agent 53

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.raid_utils.get_block_devices_for_raid (block_devices,
logi-
cal_disks)
Get block devices that are involved in the RAID configuration.

This call does two things: * Collect all block devices that are involved in RAID. * Update each
logical disks with suitable block devices.

ironic_python_agent.tls_utils module

class ironic_python_agent.tls_utils.TlsCertificate (fext, path, pri-
vate_key_path)
Bases: tuple

path
Alias for field number 1

private_key_ path
Alias for field number 2

text
Alias for field number O

ironic_python_agent.tls_utils.generate_tls_certificate (ip_address,
com-
mon_name=None,
valid_for_days=90)
Generate a self-signed TLS certificate.

Parameters
* ip_ address IP address the certificate will be valid for.

* common_name Content for the common name field (e.g. host name). De-
faults to the current host name.

* valid_for_days Number of days the certificate will be valid for.

Returns a TlsCertificate object.

ironic_python_agent.utils module

class ironic_python_agent.utils.AccumulatedFailures (exc_class=<class

’RuntimeError’>)
Bases: object

Object to accumulate failures without raising exception.

add (fail, *fmt)
Add failure with optional formatting.

Parameters
* fail exception or error string

* fmt formatting arguments (only if fail is a string)

54 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

get_error ()
Get error string or None.

raise if needed ()
Raise exception if error list is not empty.

Raises RuntimeError

ironic_python_agent.utils.collect_system_logs (journald_max_lines=None)
Collect system logs.

Collect system logs, for distributions using systemd the logs will come from journald. On other
distributions the logs will come from the /var/log directory and dmesg output.

Parameters journald max_ lines Maximum number of lines to retrieve from
the journald. if None, return everything.

Returns A tar, gzip base64 encoded string with the logs.

ironic_python_agent.utils.create_partition_table (dev_name, parti-
tion_table_type)
Create a partition table on a disk using parted.

Parameters
* dev_name the disk where we want to create the partition table.

* partition_table_type the type of partition table we want to create,
for example gpt or msdos.

Raises CommandExecutionError if an error is encountered while attempting to create
the partition table.

ironic_python_agent.utils.determine_time_method ()
Helper method to determine what time utility is present.

Returns ntpdate if ntpdate has been found, chrony if chrony was located, and None if
neither are located. If both tools are present, chrony will supercede ntpdate.

ironic_python_agent.utils.execute (*cmd, **kwargs)
Convenience wrapper around ironic_libs execute() method.

Executes and logs results from a system command.

ironic_python_agent.utils.extract_device (part)
Extract the device from a partition name or path.

Parameters part the partition
Returns a device if success, None otherwise

ironic_python_agent.utils.get_agent_params ()
Gets parameters passed to the agent via kernel cmdline or vmedia.

Parameters can be passed using either the kernel commandline or through virtual media. If
boot_method is vmedia, merge params provided via vmedia with those read from the kernel com-
mand line.

Although it should never happen, if a variable is both set by vmedia and kernel command line, the
setting in vmedia will take precedence.

Returns a dict of potential configuration parameters for the agent

2.3. Contributing to Ironic Python Agent 55

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.utils.get_command_output (command)
Return the output of a given command.

Parameters command The command to be executed.
Raises CommandExecutionError if the execution of the command fails.
Returns A ByteslO string with the output.

ironic_python_agent.utils.get_efi_part_on_device (device)
Looks for the efi partition on a given device.

A boot partition on a GPT disk is assumed to be an EFI partition as well.
Parameters device lock device upon which to check for the efi partition
Returns the efi partition or None

ironic_python_agent.utils.get_journalctl_output (lines=None,

) units=None)
Query the contents of the systemd journal.

Parameters

* lines Maximum number of lines to retrieve from the logs. If None, return
everything.

* units A list with the names of the units we should retrieve the logs from. If
None retrieve the logs for everything.

Returns A log string.

ironic_python_agent.utils.get_node_boot_mode (node)
Returns the node boot mode.

It returns uefi if secure_boot is set to true in instance_info/capabilities of node. Otherwise it
directly look for boot mode hints into

Parameters node dictionnary.
Returns bios or uefi

ironic_python_agent.utils.get_partition_table_type_from_specs (node)
Returns the node partition label, gpt or msdos.

If boot mode is uefi, return gpt. Else, choice is open, look for disk_label capabilities (instance_info
has priority over properties).

Parameters node
Returns gpt or msdos

ironic_python_agent.utils.get_ssl_client_options (conf)
Format SSL-related requests options.

Parameters conf oslo_config CONF object
Returns tuple of verify and cert values to pass to requests

ironic_python_agent.utils.guess_root_disk (block_devices,

min_size_required=4294967296)
Find suitable disk provided that root device hints are not given.

56 Chapter 2. Contents

Ironic Python Agent Documentation, Release 6.4.5.dev2

If no hints are passed, order the devices by size (primary key) and name (secondary key), and
return the first device larger than min_size_required as the root disk.

ironic_python_agent.utils.gzip_and_bé64encode (io_dict=None,
file_list=None)
Gzip and base64 encode files and BytesIO buffers.

Parameters

* io_diect A dictionary containing whose the keys are the file names and the
value a BytesIO object.

« file list A listof file path.
Returns A gzipped and base64 encoded string.

ironic_python_agent.utils.is_journalctl_present ()
Check if the journalctl command is present.

Returns True if journalctl is present, False if not.

ironic_python_agent.utils.parse_capabilities (root)
Extract capabilities from provided root dictionary-behaving object.

root.get(capabilities, {}) value can either be a dict, or a json str, or a keyl:valuel key2:value2
formatted string.

Parameters root Anything behaving like a dict and containing capabilities format-
ted as expected. Can be node.get(properties, {}), node.get(instance_info, {}).

Returns A dictionary with the capabilities if found and well formatted, otherwise an
empty dictionary.
ironic_python_agent.utils.remove_large_keys (var)

Remove specific keys from the var, recursing into dicts and lists.

ironic_python_agent.utils.scan_partition_table_type (device)
Get partition table type, msdos or gpt.

Parameters device_ name the name of the device
Returns msdos, gpt or unknown

ironic_python_agent.utils.sync_clock (ignore_errors=False)
Syncs the software clock of the system.

This method syncs the system software clock if a NTP server was defined in the [DE-
FAULT]ntp_server configuration parameter. This method does NOT attempt to sync the hardware
clock.

It will try to use either ntpdate or chrony to sync the software clock of the system. If neither is
found, an exception is raised.

Parameters ignore_errors Boolean value default False that allows for the
method to be called and ultimately not raise an exception. This may be useful
for opportunistically attempting to sync the system software clock.

Raises CommandExecutionError if an error is encountered while attempting to sync
the software clock.

ironic_python_agent.utils.try_execute (*cmd, **kwargs)
The same as execute but returns None on error.

2.3. Contributing to Ironic Python Agent 57

Ironic Python Agent Documentation, Release 6.4.5.dev2

Executes and logs results from a system command. See docs for
oslo_concurrency.processutils.execute for usage.

Instead of raising an exception on failure, this method simply returns None in case of failure.
Parameters
* cmd positional arguments to pass to processutils.execute()
* kwargs keyword arguments to pass to processutils.execute()
Raises UnknownArgumentError on receiving unknown arguments

Returns tuple of (stdout, stderr) or None in some error cases

ironic_python_agent.version module

Module contents

58 Chapter 2. Contents

CHAPTER
THREE

INDICES AND TABLES

* genindex

e search

59

Ironic Python Agent Documentation, Release 6.4.5.dev2

60

Chapter 3. Indices and tables

ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.

30

ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.

20

ironic_python_agent.

22

ironic_python_agent.

23

ironic_python_agent.

23

ironic_python_agent.

24

ironic_python_agent.

24

ironic_python_agent.

25

ironic_python_agent.

25

ironic_python_agent.

25

ironic_python_agent.

26
ironic_python_agent

28

ironic_python_agent.

27
ironic_python_agent
27

ironic_python_agent.

agent, 28

api, 20
api.app, 19
cmd, 20

cmd. agent, 20
cmd. inspect, 20
config, 30
dmi_inspector,

PYTHON MODULE INDEX

ironic_python_agent.
ironic_python_agent.

50

ironic_python_agent.
ironic_python_agent.

51

ironic_python_agent.
ironic_python_agent.
.utils, 54

.version, 58

ironic_python_agent
ironic_python_agent

inspector, 48

ironic_api_client,

netutils, 50
numa_inspector,

raid_utils, 53
tls_utils, 54

encoding, 30
errors, 31

extensions,
extensions.
extensions.
extensions.
extensions.
extensions.
extensions
extensions.
extensions

extensions.

extensions.

.hardware, 35
ironic_python_agent.

27 ironic_python_agent, 58

base,

clean,

deploy,

flow,

image,

.1scsi,

log,

.poll,

rescue,

standby,

hardware_managers,

hardware_managers.cna,

inspect, 48

.hardware_managers.mlnx,

61

Ironic Python Agent Documentation, Release 6.4.5.dev2

62

Python Module Index

A

AccumulatedFailures (class in

ironic_python_agent.utils), 54

add () (ironic_python_agent.utils.AccumulatedFailures

method), 54

INDEX

B

backoff factor
(ironic_python_agent.inspect.Ironiclnspection
attribute), 48

BaseAgentExtension (class in

agent_token (ironic_python_agent.ironic_api_client. APIGlienic_python_agent.extensions.base), 21

attribute), 50

AgentCommandStatus (class in
ironic_python_agent.extensions.base), 20

AgentIsBusy, 31

api_get_command ()
(ironic_python_agent.api.app.Application
method), 19

api_list_commands ()
(ironic_python_agent.api.app.Application
method), 19

api_root () (ironic_python_agent.api.app.Applic

method), 19

api_run_command ()
(ironic_python_agent.api.app.Application
method), 19

api_status () (ironic_python_agent.api.app.Applieatiom_node ()

method), 19

api_v1 () (ironic_python_agent.api.app.Applicationalc_raid_partition_sectors()

method), 19

BaseCommandResult (class in
ironic_python_agent.extensions.base), 21

BlockDevice (class in
ironic_python_agent.hardware), 35

BlockDeviceEraseError, 31

BlockDeviceError, 31

BootInfo (class in
ironic_python_agent.hardware), 35

bring_up_vlan_interfaces () (in module
ironic_python_agent.netutils), 50

aé'on

cache_image ()
(ironic_python_agent.extensions.standby.StandbyExtensio
method), 26

(in module

ironic_python_agent.hardware), 45

(in

module ironic_python_agent.raid_utils),

api_version (ironic_python_agent.ironic_api_client. APICiient

attribute), 50

APIClient (class in
ironic_python_agent.ironic_api_client),
50

Application (class in

ironic_python_agent.api.app), 19
apply_configuration ()

(ironic_python_agent.hardware.Generic HardwaeéMmengen ons ()

method), 36
async_command () (in module
ironic_python_agent.extensions.base), 22
AsyncCommandResult (class in
ironic_python_agent.extensions.base), 21

calculate_raid_start () (in module
ironic_python_agent.raid_utils), 53

call_inspector () (in module
ironic_python_agent.inspector), 48

check_cmd_presence ()
(ironic_python_agent.extensions.base. BaseAgentExtensio

method), 21
(in module

ironic_python_agent.hardware), 45
clean_up () (in module

ironic_python_agent.extensions.iscsi), 24
CleanExtension (class in

ironic_python_agent.extensions.clean),

22

CleaningError, 31

63

Ironic Python Agent Documentation, Release 6.4.5.dev2

ClockSyncError, 31
collect_default () (in
ironic_python_agent.inspector), 48
collect_dmidecode_info () (in module
ironic_python_agent.dmi_inspector), 30
collect_extra_hardware () (in module
ironic_python_agent.inspector), 49
collect_11ldp_data()

module

attribute), 33
determine_time_method () (in
ironic_python_agent.utils), 55
DeviceNotFound, 32
dispatch_to_all_managers () (in module
ironic_python_agent.hardware), 46
dispatch_to_managers () (in module
ironic_python_agent.hardware), 46

module

(ironic_python_agent.hardware.GenericHaidwareddardgernt ()

method), 36
collect_logs () (in

ironic_python_agent.inspector), 49
collect_numa_topology_info ()

module

(in module
ironic_python_agent.numa_inspector),
51

collect_pci_devices_info () (in module
ironic_python_agent.inspector), 49

collect_system_logs () (in module
ironic_python_agent.utils), 55

collect_system_logs()

(ironic_python_agent.agent.IronicPythonAgentHeartbeate

method), 29
E

encode () (ironic_python_agent.encoding. RESTJISONEncoder

method), 30
erase_block_device ()

(ironic_python_agent.hardware.GenericHardwareManag

method), 37
erase_block_device ()

(ironic_python_agent.hardware. HardwareManager

method), 41

(ironic_python_agent.extensions.log.LogExtensiere_devices ()

method), 25
CommandExecutionError, 31
CPU (class in ironic_python_agent.hardware), 36
create_configuration ()

(ironic_python_agent.hardware. HardwareManager

method), 41
erase_devices_metadata ()

(ironic_python_agent.hardware.GenericHardwareManag

(ironic_python_agent.hardware.GenericHardware Mametgexd), 37

method), 36
create_partition_table () (in module

ironic_python_agent.utils), 55
create_raid_partition_tables () (in

module ironic_python_agent.raid_utils),
53

D

deduplicate_steps () (in module
ironic_python_agent.hardware), 45

default () (ironic_python_agent.encoding. RESTISONEncddamic_python_agent.hardware_managers.milnx.Mellanox

method), 30
delete_configuration ()

evaluate_hardware_support ()

(ironic_python_agent.hardware.GenericHardwareManag

method), 37
evaluate_hardware_support ()

(ironic_python_agent.hardware. HardwareManager

method), 41
evaluate_hardware_support ()

(ironic_python_agent.hardware_managers.cna.lntelCnaH

method), 27
evaluate_hardware_support ()

method), 27

execute () (in module

(ironic_python_agent.hardware.GenericHardwareMdrager python_agent.utils), 55

method), 36

DeployExtension (class in
ironic_python_agent.extensions.deploy),
23

DeploymentError, 32

execute () (ironic_python_agent.extensions.base. BaseAgentEXxte

method), 21
execute_clean_step()

(ironic_python_agent.extensions.clean.CleanExtension

method), 22

details (ironic_python_agent.errors.NotFound execute_command ()

attribute), 34

details (ironic_python_agent.errors.RESTError

attribute), 34

(ironic_python_agent.extensions.base. Execute CommandM

method), 22

execute_deploy_step ()
details_str (ironic_python_agent.errors.ImageChecksum@ronic_python_agent.extensions.deploy.DeployExtension

64

Index

Ironic Python Agent Documentation, Release 6.4.5.dev2

method), 23 method), 41
ExecuteCommandMixin (class in get_bmc_vo6baddress ()
ironic_python_agent.extensions.base), 21 (ironic_python_agent.hardware.GenericHardwareManag
extension_manager () (in module method), 38
ironic_python_agent.inspector), 49 get_bmc_v6address ()
ExtensionError, 32 (ironic_python_agent.hardware.HardwareManager
extract_device () (in module method), 41
ironic_python_agent.utils), 55 get_boot_info ()
F (ironic_python_agent.hardware.GenericHardwareManag
method), 38
FATILED (ironic_python_agent.extensions.base.AgentfcommahStaims o ()
attribute), 20 (ironic_python_agent.hardware.HardwareManager
finalize_rescue () method), 41
(ironic_python_agent.extensions.rescue.Resguefxtensiasd_node () (in module
method), 25 ironic_python_agent.hardware), 46
FlowExtension (class in get_clean_steps ()
ironic_python_agent.extensions.flow), 23 (ironic_python_agent.extensions.clean.CleanExtension
force_heartbeat () method), 23
(ironic_python_agent.agent.IronicPythonAggal _clean_steps ()
method), 28 (ironic_python_agent.hardware.GenericHardwareManag
force_heartbeat () method), 38
(ironic_python_agent.agent.IronicPythonAggaitlegnibadiers t eps ()
method), 29 (ironic_python_agent.hardware. HardwareManager
format_exception () (in module method), 41
ironic_python_agent.api.app), 20 get_command_output () (in module
G ironic_python_agent.utils), 55

get_command_result ()

generate_tls_certificate () (in module (ironic_python_agent.agent.IronicPythonAgent
ironic_python_agent.tls_utils), 54 method), 28

generate_tls certificate () get_cpus () (ironic_python_agent.hardware.GenericHardwarel
(ironic_python_agent.hardware. GenericHardwareM%éltgﬁfd)’ 39

method), 37 get_cpus () (ironic_python_agent.hardware.HardwareManager
generate_tls_certificate() method), 42

(ironic_python_agent.hardware.HardwareMézézgg;q{urrent_ve rsions () (in module

method), 41

ironic_python_agent.hardware), 46
GENERIC (ironic _python_agent.hardware.Hardwaregglgpod”é fault_ip_addr ()

attribute), 44

(in module
ironic_python_agent.netutils), 50

Generic;Ha.dewareManager (class in get_deploy_steps ()
ironic_python_agent.hardware), 36 (ironic_python_agent.extensions.deploy.DeployExtension
get_agent_params () (in module method), 23

ironic_python_agent.utils), 55 get_deploy steps ()

get_bios_given_nic_name () (ironic_python_agent.hardware.GenericHardwareManag
(ironic_python_agent.hardware. GenericHardwareM%gtglgd) 39

method), 37 . ~ get_deploy_steps ()
get_block_devices_for_raid() (in (ironic_python_agent.hardware. HardwareManager

module ironic_python_agent.raid_utils), method), 42

53

get_efi_part_on_device () (in module

get_bmc._ac.ldress 0 . ironic_python_agent.utils), 56
(ironic_python_agent.hardware.Gener. ’CHW&ZML M‘f’; (ironic_python_agent.utils. AccumulatedFailures
method), 33 method), 54

get_bmc_address () get_extension () (in module
(ironic_python_agent.hardware.HardwareManager

Index 65

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.extensions.base), 22 ironic_python_agent.numa_inspector),
get_extension () 52
(ironic_python_agent.extensions.base. ExeciugeCommdrdMixincs_info () (in module
method), 22 ironic_python_agent.numa_inspector),
get_hardware_info () 52
(ironic_python_agent.extensions.poll. PollExgeisiomuma_node_id () (in module
method), 25 ironic_python_agent.numa_inspector),
get_holder_disks () (in module 52
ironic_python_agent.hardware), 47 get_os_install_device ()
get_hostname () (in module (ironic_python_agent.hardware.GenericHardwareManag
ironic_python_agent.netutils), 50 method), 40
get_interface_info() get_os_install_device()
(ironic_python_agent.hardware.GenericHardwareMdivogée_python_agent.hardware.HardwareManager
method), 40 method), 43
get_interface_info () get_partition_table_type_from_specs ()
(ironic_python_agent.hardware. HardwareManager (in module ironic_python_agent.utils), 56
method), 43 get_partition_uuids ()
get_interface_info () (ironic_python_agent.extensions.standby.StandbyExtensio
(ironic_python_agent.hardware_managers.minx.Mellanthddyy e HardwareManager
method), 27 get_ssl_client_options () (in module
get_ipv4_addr () (in module ironic_python_agent.utils), 56
ironic_python_agent.netutils), 50 get_status () (ironic_python_agent.agent.IronicPythonAgent
get_ipv4_addr () method), 29
(ironic_python_agent.hardware.GenericHargaareMantager vendor_info ()
method), 40 (ironic_python_agent.hardware.GenericHardwareManag
get_ipv6_addr () (in module method), 40
ironic_python_agent.netutils), 50 get_version ()
get_ipv6_addr () (ironic_python_agent.hardware. HardwareManager
(ironic_python_agent.hardware. GenericHardware M ametgexl), 43
method), 40 get_wildcard_address () (in module
get_journalctl_output () (in module ironic_python_agent.netutils), 51
ironic_python_agent.utils), 56 guess_root_disk () (in module
get_11ldp_info () (in module ironic_python_agent.utils), 56
ironic_python_agent.netutils), 50 gzip_and_b6dencode () (in module
get_mac_addr () (in module ironic_python_agent.utils), 57
ironic_python_agent.netutils), 51
get_managers () (in module H
ironic_python_agent.hardware), 47 handle_exception ()
get_memory () (ironic_python_agent.hardware.GenericHafilwnireMytlugeragent.api.app.Application
method), 40 method), 19
get_memory () (ironic_python_agent.hardware. HitiRaMRInddeNAGER_NAME
method), 43 (ironic_python_agent.hardware.GenericHardwareManag
get_node_boot_mode () (in module attribute), 36
ironic_python_agent.utils), 56 HARDWARE_MANAGER_NAME
get_node_uuid /() (ironic_python_agent.hardware_managers.cna.IntelCnaH
(ironic_python_agent.agent.IronicPythonAgent attribute), 27
method), 28 HARDWARE_MANAGER_NAME
get_nodes_cores_info () (in module (ironic_python_agent.hardware_managers.minx.Mellano:
ironic_python_agent.numa_inspector), attribute), 27
52 HARDWARE_MANAGER_VERSION
get_nodes_memory_info () (in module (ironic_python_agent.hardware.GenericHardwareManag

66 Index

Ironic Python Agent Documentation, Release 6.4.5.dev2

attribute), 36
HARDWARE_MANAGER_VERSION

method), 24

IntelCnaHardwareManager

(class

in

(ironic_python_agent.hardware_managers.cna.Intel GrovtiplythoeMagurgerardware_managers.cna),

attribute), 27
HARDWARE_MANAGER_VERSTION

27

interface_has_carrier ()

(in

(ironic_python_agent.hardware_managers.minx. MellamoiDpyiheH angentrablutilsdetd |
InvalidCommandError, 33
InvalidCommandParamsError, 33
InvalidContentError, 34

attribute), 27
HardwareManager (class in
ironic_python_agent.hardware), 40
HardwareManagerMethodNotFound, 32
HardwareManagerNotFound, 32

HardwareSupport (class in
ironic_python_agent.hardware), 44
HardwareType (class in

ironic_python_agent.hardware), 44

ironic_python_agent
module, 58

ironic_python_agent.

module, 28
ironic_python_agent
module, 20

heartbeat () (ironic_python_agent.ironic_api_cliemtARIClieyt- hon_agent

method), 50
heartbeat_api

module, 19

ironic_python_agent.

(ironic_python_agent.ironic_api_client. APICliemtodule, 20

attribute), 50
HeartbeatConflictError, 32
HeartbeatConnectionError, 32
HeartbeatError, 32
Host (class in ironic_python_agent.agent), 28
hostname (ironic_python_agent.agent.Host at-

tribute), 28

ifr_flags (ironic_python_agent.netutils.ifreq
attribute), 51

ifr_1frn (ironic_python_agent.netutils.ifreq at-
tribute), 51

ifreq (class in ironic_python_agent.netutils), 51

ImageChecksumError, 33

ImageDownload (class in
ironic_python_agent.extensions.standby),
26

ImageDownloadError, 33

ImageExtension (class in
ironic_python_agent.extensions.image),
24

ImageWriteError, 33
IncompatibleHardwareMethodError, 33
IncompatibleNumaFormatError, 33

init_ext_manager () (in module
ironic_python_agent.extensions.base), 22
inspect () (in module

ironic_python_agent.inspector), 49
InspectionError, 33
install bootloader ()

ironic_python_agent
module, 20

ironic_python_agent.

module, 20

ironic_python_agent.

module, 30
ironic_python_agent
module, 30

ironic_python_agent.

module, 30

ironic_python_agent.

module, 31

ironic_python_agent.

module, 27

ironic_python_agent.

module, 20
ironic_python_agent
module, 22

ironic_python_agent.

module, 23

ironic_python_agent.

module, 23
ironic_python_agent
module, 24

ironic_python_agent.

module, 24

ironic_python_agent.

module, 25

ironic_python_agent.

module, 25

ironic_python_agent.

(ironic_python_agent.extensions.image.Image Extendiohe, 25

agent

.api

.api.app

cmd

.cmd.agent

cmd.inspect

config

encoding

errors

extensions

extensions

.extensions.

extensions.

extensions.

.extensions.

extensions.

extensions.

extensions

extensions.

module

.dmi_inspector

.base

clean

deploy

flow

image

iscsi

log

.poll

rescue

Index

67

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent
module, 26
ironic_python_agent
module, 35
ironic_python_agent
module, 28
ironic_python_agent
module, 27
ironic_python_agent
module, 27

ironic_python_agent.

module, 48

ironic_python_agent.

module, 48

ironic_python_agent.

module, 50

ironic_python_agent.

module, 50

ironic_python_agent.

module, 51

ironic_python_agent.

module, 53
ironic_python_agent
module, 54
ironic_python_agent
module, 54
ironic_python_agent
module, 58
IronicAPIError, 34
IronicInspection

.hardware

.hardware_managers

inspect

inspector

.extensions. standjoy

join () (ironic_python_agent.extensions.base.AsyncCommandRe:

method), 21

join () (ironic_python_agent.extensions.base.Base CommandResi
method), 21

jsonify () (in module

-hardware_managers.cna jropjc_python_agent.api.app), 20

. hardware_managei:s .mlnx

list_all_block_devices () (in module
ironic_python_agent.hardware), 47

list_block_devices ()
(ironic_python_agent.hardware.GenericHardwareManag
method), 40

ironic_api_clienf st block devices ()

netutils

numa_inspector

raid_utils

ironic_python_agent.inspect), 48

IronicPythonAgent

ironic_python_agent.agent), 28

IronicPythonAgentHeartbeater

in ironic_python_agent.agent), 29

IronicPythonAgentStatus

.tls_utils
.utils
.version
(class in
(class in
(class
(class in

ironic_python_agent.agent), 29
is_done () (ironic_python_agent.extensions.base.Async Congifitie)s1d0

method), 21

(ironic_python_agent.hardware.HardwareManager
method), 44

list _command_results ()
(ironic_python_agent.agent.IronicPythonAgent
method), 29

list_hardware_info () (in module
ironic_python_agent.hardware), 48

list_hardware_info ()
(ironic_python_agent.hardware. HardwareManager
method), 44

list_network_interfaces ()
(ironic_python_agent.hardware.GenericHardwareManag
method), 40

list_network_ interfaces ()
(ironic_python_agent.hardware. HardwareManager

method), 44
list_opts() (in module
ironic_python_agent.config), 30
LogExtension (class in
ironic_python_agent.extensions.log),
25

lookup_api (ironic_python_agent.ironic_api_client. APIClient

lookup_node ()

is_done () (ironic_python_agent.extensions.base.BaseComngggRepython_agent.ironic_api_client. APIClient

method), 21

is_journalctl_present ()

(in module

ironic_python_agent.utils), 57

is_md_device ()

(in module

ironic_python_agent.hardware), 47

ISCSICommandError, 32
ISCSIError, 32
ISCSIExtension

(class in

ironic_python_agent.extensions.iscsi), 24

method), 50
LookupAgentIPError, 34
LookupNodeError, 34

MAC_ADDRESS (ironic_python_agent.hardware. HardwareType
attribute), 44

MAINLINE (ironic_python_agent.hardware.HardwareSupport
attribute), 44

make_link ()

(in module

ironic_python_agent.api.app), 20

68

Index

Ironic Python Agent Documentation, Release 6.4.5.dev2

max_delay (ironic_python_agent.inspect.Ironiclnspection attribute), 33

attribute), 48 message (ironic_python_agent.errors.IncompatibleNumaFormatl
max_Jjitter_multiplier attribute), 33
(ironic_python_agent.agent.Ironic PythonA gertiteantbdinenic_python_agent.errors.InvalidCommandError
attribute), 29 attribute), 33
max_Jjitter_multiplier message (ironic_python_agent.errors.InvalidCommandParamsEr
(ironic_python_agent.inspect.Ironiclnspection attribute), 34
attribute), 48 message (ironic_python_agent.errors.InvalidContentError
md_get_raid_devices () (in module attribute), 34
ironic_python_agent.hardware), 48 message (ironic_python_agent.errors.IronicAPIError
md_restart () (in module attribute), 34
ironic_python_agent.hardware), 48 message (ironic_python_agent.errors.ISCSIError
MellanoxDeviceHardwareManager attribute), 33
(class in message (ironic_python_agent.errors.LookupAgentIPError
ironic_python_agent.hardware_managers.minx), attribute), 34
27 message (ironic_python_agent.errors.LookupNodeError
Memory (class in ironic_python_agent.hardware), attribute), 34
44 message (ironic_python_agent.errors.NotFound
message (ironic_python_agent.errors.AgentlsBusy attribute), 34
attribute), 31 message (ironic_python_agent.errors.RESTError
message (ironic_python_agent.errors.BlockDeviceErase Errauttribute), 34
attribute), 31 message (ironic_python_agent.errors.SoftwareRAIDError
message (ironic_python_agent.errors.BlockDeviceError attribute), 35
attribute), 31 message (ironic_python_agent.errors.SystemRebootError
message (ironic_python_agent.errors.CleaningError attribute), 35
attribute), 31 message (ironic_python_agent.errors.UnknownNodeError
message (ironic_python_agent.errors.ClockSyncError attribute), 35
attribute), 31 message (ironic_python_agent.errors. VersionMismatch
message (ironic_python_agent.errors. CommandExecutionEasribute), 35
attribute), 31 message (ironic_python_agent.errors.VirtualMediaBootError
message (ironic_python_agent.errors.DeploymentError attribute), 35
attribute), 32 min_Jjitter multiplier
message (ironic_python_agent.errors.DeviceNotFound (ironic_python_agent.agent.IronicPythonAgentHeartbeate
attribute), 32 attribute), 29
message (ironic_python_agent.errors.HardwareManagerethostNothoundplier
attribute), 32 (ironic_python_agent.inspect.Ironiclnspection
message (ironic_python_agent.errors.HardwareManagerNotiftnibdlte), 48
attribute), 32 module
message (ironic_python_agent.errors.HeartbeatConflictEroori c_python_agent, 58
attribute), 32 ironic_python_agent.agent, 28
message (ironic_python_agent.errors.HeartbeatConnectionkirver python_agent .api, 20
attribute), 32 ironic_python_agent.api.app, 19
message (ironic_python_agent.errors.HeartbeatError ironic_python_agent.cmd, 20
attribute), 32 ironic_python_agent.cmd.agent,
message (ironic_python_agent.errors.ImageChecksumError20
attribute), 33 ironic_python_agent.cmd. inspect,
message (ironic_python_agent.errors.ImageDownloadError2(0
attribute), 33 ironic_python_agent.config, 30
message (ironic_python_agent.errors.ImageWriteErrorironic_python_agent .dmi_inspector,
attribute), 33 30

message (ironic_python_agent.errors.Incompatible HardwweMethogErron_agent .encoding, 30

Index 69

Ironic Python Agent Documentation, Release 6.4.5.dev2

ironic_python_agent.
ironic_python_agent.
27
ironic_python_agent.
20
ironic_python_agent.
22
ironic_python_agent.
23
ironic_python_agent.
23
ironic_python_agent.
24
ironic_python_agent.
24
ironic_python_agent.
25
ironic_python_agent.
25
ironic_python_agent.
25
ironic_python_agent.
26
ironic_python_agent.
ironic_python_agent.
28
ironic_python_agent.
27
ironic_python_agent.
27
ironic_python_agent.
ironic_python_agent.
48
ironic_python_agent.
50
ironic_python_agent.
ironic_python_agent.
51
ironic_python_agent.
53
ironic_python_agent.
54
ironic_python_agent.
ironic_python_agent.

N

errors, 31 O

extensions, gyerride() (in module

ironic_python_agent.config), 30
extensions.base,

extensions.cp@dle capabilities () (in module
ironic_python_agent.utils), 57
extensions.depie®, dmi () (in module
ironic_python_agent.dmi_inspector),
extensions.flow, 30

path (ironic_python_agent.tls_utils. TlsCertificate
extensions.image, grtribute), 54

PollExtension (class in
extensions.iscsi, jronic_python_agent.extensions.poll),
25
extensions.le@rt (ironic_python_agent.agent.Host attribute),
28
extensions.p@blwer_off () (ironic_python_agent.extensions.standby.Standbyl
method), 26

extensions. resepare_image ()
(ironic_python_agent.extensions.standby.StandbyExtensio

extensions.standbymerhod), 26

private_key_path
hardware, 35 (ironic_python_agent.tls_utils. TlsCertificate
hardware_managers, attribute), 54

process_lookup_data ()
hardware_managers. ¢ignic_python_agent.agent.IronicPythonAgent

method), 29
hardware_manaﬁ;ers .mlnx,

inspect,48 raise_ if needed()

inspector, (ironic_python_agent.utils. AccumulatedFailures
method), 55
ironic_api_ckRé&PromiscuousSockets (class in
ironic_python_agent.netutils), 50
netutils, 50 remove_large_keys () (in module
numa_inspector, ironic_python_agent.utils), 57
Request (class in ironic_python_agent.api.app),
raid_utils, 19
RequestedObjectNotFoundError, 34
tls_utils, RescueExtension (class in
ironic_python_agent.extensions.rescue),
utils, 54 25
version, 58 RESTError, 34
RESTJSONEncoder (class in

ironic_python_agent.encoding), 30

NetworkInterface (class in run () (in module
ironic_python_agent.hardware), 44 ironic_python_agent.cmd.agent), 20
NONE (ironic_python_agent.hardware.HardwareSuppaih () (in module

attribute), 44
NotFound, 34

ironic_python_agent.cmd.inspect),
20

70

Index

Ironic Python Agent Documentation, Release 6.4.5.dev2

run () (ironic_python_agent.agent.IronicPythonAgent ironic_python_agent.encoding), 31
method), 29 serialize () (ironic_python_agent.encoding.Serializable
run () (ironic_python_agent.agent.IronicPythonAgentHeartbewtdrod), 3 1
method), 29 serialize () (ironic_python_agent.extensions.base.AsyncComn
run () (ironic_python_agent.extensions.base.AsyncCommandReshitl), 21
method), 21 serialize 1lib_exc () (in module
run () (ironic_python_agent.inspect.Ironiclnspection ironic_python_agent.encoding), 31
method), 48 serve_ipa_api ()
run_image () (ironic_python_agent.extensions.standby.Stakitoylioitershem_agent.agent.IronicPythonAgent
method), 27 method), 29
RUNNING (ironic_python_agent.extensions.base.AgeRFONTMEndSRONSI DER
attribute), 20 (ironic_python_agent.hardware. HardwareSupport

attribute), 44
set_agent_advertise_addr ()

S

save_api_client () (in module (ironic_python_agent.agent.IronicPythonAgent
ironic_python_agent.hardware), 48 method), 29
scan_partition_table_type () (in mod- set node_info ()
ule ironic_python_agent.utils), 57 (ironic_python_agent.extensions.poll. PollExtension
Serializable (class in method), 25
ironic_python_agent.encoding), 30 SoftwareRAIDError, 35
serializable_fields split_command ()
(ironic_python_agent.agent.IronicPythonAgentStatus(ironic_python_agent.extensions.base. ExecuteCommand)
attribute), 29 method), 22
serializable_fields StandbyExtension (class in
(ironic_python_agent.encoding.Serializable ironic_python_agent.extensions.standby),
attribute), 31 26
serializable_fields start () (ironic_python_agent.api.app.Application
(ironic_python_agent.errors. RESTError method), 19
attribute), 34 start () (ironic_python_agent.extensions.base.AsyncCommandR
serializable_ fields method), 21
(ironic_python_agent.extensions.base. Base GammmandResull) (ironic_python_agent.extensions.flow.FlowExten
attribute), 21 method), 23
serializable_fields start_iscsi_target ()
(ironic_python_agent.hardware. BlockDevice (ironic_python_agent.extensions.iscsi.ISCSIExtension
attribute), 35 method), 24
serializable_fields status_code (ironic_python_agent.errors.AgentlsBusy
(ironic_python_agent.hardware.BootInfo attribute), 31
attribute), 36 status_code (ironic_python_agent.errors.InvalidContentError
serializable_fields attribute), 34
(ironic_python_agent.hardware. CPU status_code (ironic_python_agent.errors.NotFound
attribute), 36 attribute), 34
serializable_fields status_code (ironic_python_agent.errors.RESTError
(ironic_python_agent.hardware.Memory attribute), 34
attribute), 44 stop () (ironic_python_agent.agent.IronicPythonAgentHeartbeat
serializable_fields method), 29
(ironic_python_agent.hardware.NetworkIntesfase () (ironic_python_agent.api.app.Application
attribute), 45 method), 19
serializable_fields SUCCEEDED (ironic_python_agent.extensions.base.AgentComman
(ironic_python_agent.hardware.SystemVendorInfo attribute), 20
attribute), 45 supports_auto_tls ()
SerializableComparable (class in (ironic_python_agent.ironic_api_client. APIClient

Index 71

Ironic Python Agent Documentation, Release 6.4.5.dev2

method), 50 wrap_1ipvé () (in module
sync () (ironic_python_agent.extensions.standby.StandbyExtawsiion python_agent.netutils), 51
method), 27 write_image ()
sync_clock () (in module (ironic_python_agent.hardware.GenericHardwareManag
ironic_python_agent.utils), 57 method), 40
sync_command () (in module write_rescue_password ()
ironic_python_agent.extensions.base), 22 (ironic_python_agent.extensions.rescue.RescueExtension
SyncCommandResult (class in method), 25

ironic_python_agent.extensions.base), 22
SystemRebootError, 35
SystemVendorInfo (class in

ironic_python_agent.hardware), 45

T

text (ironic_python_agent.tls_utils. TlsCertificate
attribute), 54

TlsCertificate (class in
ironic_python_agent.tls_utils), 54
try_execute () (in module

ironic_python_agent.utils), 57

U

UnknownNodeError, 35
update_cached_node () (in module
ironic_python_agent.hardware), 48

\Y

validate_agent_token ()
(ironic_python_agent.agent.IronicPythonAgent
method), 29

validate_configuration ()
(ironic_python_agent.hardware.GenericHardwareManager
method), 40

verify_image ()
(ironic_python_agent.extensions.standby.ImageDownload
method), 26

version () (in module
ironic_python_agent.api.app), 20

VERSION_MISMATCH
(ironic_python_agent.extensions.base.AgentCommandStatus
attribute), 20

VersionMismatch, 35

VirtualMediaBootError, 35

W

wait () (ironic_python_agent.extensions.base.BaseCommandResult
method), 21

wait_for_dhcp () (in module
ironic_python_agent.inspector), 49

walilt_for_ disks ()
(ironic_python_agent.hardware. HardwareManager
method), 44

72 Index

	Overview
	Contents
	Installing Ironic Python Agent
	Image Builders
	IPA Flags
	IPA and TLS
	Hardware Managers

	Ironic Python Agent Administration
	How it works
	Built-in hardware managers
	Rescue mode
	Troubleshooting Ironic-Python-Agent (IPA)

	Contributing to Ironic Python Agent
	Hardware Managers
	Emitting metrics from Ironic-Python-Agent (IPA)
	Rescue Mode
	Generated Developer Documentation

	Indices and tables
	Python Module Index
	Index

