Ironic Python Agent Documentation
Release 11.4.1.dev1

OpenStack Foundation

Jan 30, 2026

1 Overview

2 Contents

2.1 Installing Ironic Python Agent
2.1.1 ImageBuilders
212 IPAFlags e
2.1.3 TPAandTLS
2.1.4 Hardware Managers

2.2 TIronic Python Agent Administration
22.1 Howitworks
2.2.2 Built-in hardware managers
2.2.3 Custom hardware managers
224 Rescuemode
2.2.5 Troubleshooting Ironic-Python-Agent IPA)

2.3 Contributing to Ironic Python Agent
2.3.1 Hardware Managers
2.3.2 Emitting metrics from Ironic-Python-Agent (IPA)
233 RescueMode
2.3.4 Generated Developer Documentation.

3 Indices and tables
Python Module Index

Index

CONTENTS

............ 5

103

105

107

CHAPTER
ONE

OVERVIEW

Ironic Python Agent (often abbreviated as IPA) is an agent for controlling and deploying Ironic controlled
baremetal nodes. Typically run in a ramdisk, the agent exposes a REST API for provisioning servers.

https://docs.openstack.org/ironic/latest/

Ironic Python Agent Documentation, Release 11.4.1.dev1

2 Chapter 1. Overview

CHAPTER
TWO

CONTENTS

2.1 Installing Ironic Python Agent

2.1.1 Image Builders

Unlike most other python software, you must build or download an IPA ramdisk image before use. This
is because its not installed in an operating system, but instead is run from within a ramdisk.

* DIB images are suitable for production usage and can be downloaded from https://tarballs.
openstack.org/ironic-python-agent/dib/files/.

If you need to build your own image, use the tools from the ironic-python-agent-builder project.

2.1.2 IPA Flags

You can pass a variety of flags to IPA on start up to change its behavior.

* --debug: Enables debug logging.

2.1.3 IPA and TLS

Client Configuration

During its operation IPA makes HTTP requests to a number of other services, currently including
* ironic for lookup/heartbeats
* ironic-inspector to publish results of introspection

* HTTP image storage to fetch the user image to be written to the nodes disk (Object storage service
or other service storing user images when ironic is running in a standalone mode)

When these services are configured to require TLS-encrypted connections, IPA can be configured to
either properly use such secure connections or ignore verifying such TLS connections.

Configuration mostly happens in the IPA config file (default is /etc/ironic_python_agent/
ironic_python_agent.conf, can also be any file placed in /etc/ironic-python-agent.d) or
command line arguments passed to ironic-python-agent, and it is possible to provide some options
via kernel command line arguments instead.

Auvailable options in the [DEFAULT] config file section are:

insecure
Whether to verify server TLS certificates. When not specified explicitly, defaults to the value of
ipa-insecure kernel command line argument (converted to boolean). The default for this kernel
command line argument is taken to be False. Overriding it to True by adding ipa-insecure=1
to the value of [pxe]pxe_append_params in ironic configuration file will allow running the

3

https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://docs.openstack.org/ironic-python-agent-builder

Ironic Python Agent Documentation, Release 11.4.1.dev1

same IPA-based deploy ramdisk in a CI-like environment when services are using secure HTTPS
endpoints with self-signed certificates without adding a custom CA file to the deploy ramdisk (see
below).

cafile
Path to the PEM encoded Certificate Authority file. When not specified, available system-wide list
of CAs will be used to verify server certificates. Thus in order to use IPA with HTTPS endpoints
of other services in a secure fashion (with insecure option being False, see above), operators
should either ensure that certificates of those services are verifiable by root CAs present in the
deploy ramdisk, or add a custom CA file to the ramdisk and set this IPA option to point to this file
at ramdisk build time.

certfile
Path to PEM encoded client certificate cert file. This option must be used when services are config-
ured to require client certificates on SSL-secured connections. This cert file must be added to the
deploy ramdisk and path to it specified for IPA via this option at ramdisk build time. This option
has an effect only when the keyfile option is also set.

keyfile
Path to PEM encoded client certificate key file. This option must be used when services are config-
ured to require client certificates on SSL-secured connections. This key file must be added to the
deploy ramdisk and path to it specified for IPA via this option at ramdisk build time. This option
has an effect only when the certfile option is also set.

Currently a single set of cafile/certfile/keyfile options is used for all HTTP requests to the other services.

Server Configuration

Starting with the Victoria release, the API provided by ironic-python-agent can also be secured via TLS.
There are two options to do that:

Automatic TLS
This option is enabled by default if no other options are enabled. If ironic supports API version
1.68, a new self-signed TLS certificate will be generated in runtime and sent to ironic on heartbeat.

No special configuration is required on the ironic side.

Manual TLS
If you need to provide your own TLS certificate, you can configure it when building an image. Set
the following options in the ironic-python-agent configuration file:

4 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

If using DIB to build the ramdisk, use the ironic-python-agent-tls element to automate these steps.
On the ironic side you have two options:

* If the certificate can pass host validation, i.e. contains the correct host name or IP address of
the agent, add its path to each node with:

B |

* Usually, the IP address of the agent is not known in advance, so you need to disable host
validation instead:

[J

2.1.4 Hardware Managers

Hardware managers are how IPA supports multiple different hardware platforms in the same agent. Any
action performed on hardware can be overridden by deploying your own hardware manager.

Custom hardware managers allow you to include hardware-specific tools, files and cleaning steps in the
Ironic Python Agent. For example, you could include a BIOS flashing utility and BIOS file in a custom
ramdisk. Your custom hardware manager could expose a cleaning step that calls the flashing utility and
flashes the packaged BIOS version (or even download it from a tested web server).

Operators wishing to build their own hardware managers should reference the documentation available
at Hardware Managers.

2.2 Ironic Python Agent Administration

2.2.1 How it works
Integration with Ironic
For information on how to install and configure Ironic drivers, including drivers for IPA, see the Ironic

drivers documentation.

Lookup

On startup, the agent performs a lookup in Ironic to determine its node UUID by sending a hardware
profile to the Ironic lookup endpoint: /v1/lookup.

Heartbeat

After successfully looking up its node, the agent heartbeats via /v1/heartbeat/{node_ident} every N sec-
onds, where N is the Ironic conductors agent.heartbeat_timeout value multiplied by a number be-
tween .3 and .6.

For example, if your conductors ironic.conf contains:

IPA will heartbeat between every 20 and 36 seconds. This is to ensure jitter for any agents reconnecting
after a network or API disruption.

2.2. Ironic Python Agent Administration 5

https://opendev.org/openstack/ironic-python-agent-builder/src/branch/master/dib/ironic-python-agent-tls
https://docs.openstack.org/ironic/latest//admin/drivers/ipa.html
https://docs.openstack.org/ironic/latest//admin/drivers/ipa.html
https://docs.openstack.org/api-ref/baremetal/?expanded=agent-lookup-detail#agent-lookup
https://docs.openstack.org/api-ref/baremetal/?expanded=agent-heartbeat-detail#agent-heartbeat

Ironic Python Agent Documentation, Release 11.4.1.dev1

After the agent heartbeats, the conductor performs any actions needed against the node, including query-
ing status of an already run command. For example, initiating in-band cleaning tasks or deploying an
image to the node.

Inspection

IPA can conduct hardware inspection on start up and post data to the Ironic Inspector via the /v1/continue
endpoint.

Edit your default PXE/iPXE configuration or IPA options baked in the image, and set
ipa-inspection-callback-url to the full endpoint of Ironic Inspector, for example:

[

Make sure your DHCP environment is set to boot IPA by default.

If you use the new built-in Ironic in-band inspection, it is enough to only set a list of collectors (see
inspection data), for example:

[1

Then the correct callback URL will be determined from the Ironic URL in ipa-api-url.

Instance agent

For the cases where the infrastructure operator and cloud user are the same, an additional
tool exists that can be installed alongside the agent inside a running instance. This is the
ironic-collect-introspection-data command which allows for a node in ACTIVE state to pub-
lish updated introspection data to ironic-inspector. This ability requires ironic-inspector to be configured
with [processing]permit_active_introspection setto True. For example:

: |

Alternatively, this command may also be used with multicast DNS functionality to identify the Ironic
Inspector service endpoint. For example:

[J

An additional daemon mode may be useful for some operators who wish to receive regular updates, in
the form of the [DEFAULT]introspection_daemon boolean configuration option. For example:

: |

The above command will attempt to connect to introspection and will then enter a loop to publish ev-
ery 300 seconds. This can be tuned with the [DEFAULT]introspection_daemon_post_interval
configuration option.

Inspection Data

As part of the inspection process, data is collected on the machine and sent back to Ironic Inspector for
storage. It can be accessed via the introspection data API.

6 Chapter 2. Contents

https://docs.openstack.org/ironic-inspector/latest/
https://docs.openstack.org/api-ref/baremetal-introspection/?expanded=ramdisk-callback-detail#ramdisk-callback
https://docs.openstack.org/ironic/latest/admin/inspection/index.html
https://docs.openstack.org/ironic-inspector/latest/
https://docs.openstack.org/api-ref/baremetal-introspection/?expanded=get-introspection-data-detail#get-introspection-data

Ironic Python Agent Documentation, Release 11.4.1.dev1

The exact format of the data depends on the enabled collectors, which can be configured using the
ipa-inspection-collectors kernel parameter. Each collector appends information to the resulting
JSON object. The in-tree collectors are:

default
The default enabled collectors. Collects the following keys:

* inventory - Hardware Inventory.

* root_disk - The default root device for this machine, which will be used for deployment if
root device hints are not provided.

* configuration - Inspection configuration, an object with two keys:

— collectors - List of enabled collectors.

— managers - List of enabled Hardware Managers: items with keys name and version.
* boot_interface - Deprecated, use the inventory.boot.pxe_interface field.

logs
Collect system logs. To yield useful results it must always go last in the list of collectors. Provides
one key:

* logs - base64 encoded tarball with various logs.

pci-devices
Collects the list of PCI devices. Provides one key:

* pci_devices - list of objects with keys vendor_id and product_id.

extra-hardware
Collects a vast list of facts about the systems, using the hardware library, which is a required
dependency for this collector. Adds one key:

* data - raw data from the hardware-collect utility. Is a list of lists with 4 items each. It is
recommended to use this collector together with the extra_hardware processing hook on
the Ironic Inspector side to convert it to a nested dictionary in the extra key.

If ipa-inspection-benchmarks is set, the corresponding benchmarks are executed and
their result is also provided.

dmi-decode
Collects information from dmidecode. Provides one key:

¢ dmi DMI information in three keys: bios, cpu and memory.

numa-topology
Collects NUMA topology information. Provides one key:

* numa_topology with three nested keys:
— ram - list of objects with keys numa_node (node ID) and size_kb.

— cpus - list of objects with keys cpu (CPU ID), numa_node (node ID) and
thread_siblings (list of sibling threads).

— nics - list of objects with keys name (NIC name) and numa_node (node ID).

11dp
Collects information about the network connectivity using LLDP. Provides one key:

* 11dp_raw - mapping of interface names to lists of raw type-length-value (TLV) records.

2.2. Ironic Python Agent Administration 7

https://pypi.org/project/hardware/
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

Ironic Python Agent Documentation, Release 11.4.1.dev1

usb-devices
Collects USB devices information. Adds one key:

* usb_devices - list of objects with keys product, vendor and handle

Hardware Inventory

IPA collects various hardware information using its Hardware Managers, and sends it to Ironic on lookup
and to Ironic Inspector on Inspection.

The exact format of the inventory depends on the hardware manager used. Here is the basic format ex-
pected to be provided by all hardware managers. The inventory is a dictionary (JSON object), containing
at least the following fields:

cpu
CPU information: model_name, frequency, count, architecture, flags and
socket_count.

memory
RAM information: total (total size in bytes), physical_mb (physically installed memory size
in MiB, optional).

Note

The difference is that the latter includes the memory region reserved by the kernel and is always
slightly bigger. It also matches what the Nova flavor would contain for this node and thus is
used by the inspection process instead of total.

bmc_address
IPv4 address of the nodes BMC (aka IPMI v4 address), optional.

bmc_v6address
IPv6 address of the nodes BMC (aka IPMI v6 address), optional.

disks
list of disk block devices with fields: name, model, size (in bytes), rotational (boolean), wwn,
serial, uuid, vendor, wwn_with_extension, wwn_vendor_extension, hctl and by_path
(the full disk path, in the form /dev/disk/by-path/<rest-of-path>).

interfaces
list of network interfaces with fields: name, mac_address, ipv4_address, 11dp, vendor,
product, and optionally biosdevname (BIOS given NIC name) and speed_mbps (maximum
supported speed).

Note

For backward compatibility, interfaces may contain 11dp fields. They are deprecated, con-
sumers should rely on the 11dp inspection collector instead.

system_vendor
system vendor information from SMBIOS as reported by dmidecode: product_name,
serial_number and manufacturer, as well as a firmware structure with fields vendor,
version and build_date.

8 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

boot
boot information with fields: current_boot_mode (boot mode used for the current boot - BIOS
or UEFI) and pxe_interface (interface used for PXE booting, if any).

hostname
hostname for the system

Note

This is most likely to be set by the DHCP server. Could be localhost if the DHCP server does
not set it.

Image Checksums

As part of the process of downloading images to be written to disk as part of image deployment, a series
of fields are utilized to determine if the image which has been downloaded matches what the user stated
as the expected image checksum utilizing the instance_info/image_checksum value.

OpenStack, as a whole, has replaced the legacy checksum field with os_hash_value and
os_hash_algo fields, which allows for an image checksum and value to be asserted. An advantage
of this is a variety of algorithms are available, if a user/operator is so-inclined.

For the purposes of Ironic, we continue to support the pass-through checksum field as we support the
checksum being retrieved via a URL.

We also support determining the checksum by length.
The field can be utilized to designate:
* A URL to retrieve a checksum from.
* MDS5 (Disabled by default, see [DEFAULT]md5_enabled in the agent configuration file.)
* SHA-2 based SHA256
* SHA-2 based SHAS512

SHA-3 based checksums are not supported for auto-determination as they can have a variable length
checksum result. At of when this documentation was added, SHA-2 based checksum algorithms have
not been withdrawn from from approval. If you need to force use of SHA-3 based checksums, you must
utilize the os_hash_algo setting along with the os_hash_value setting.

2.2.2 Built-in hardware managers

GenericHardwareManager

This is the default hardware manager for ironic-python-agent. It provides support for Hardware Inventory
and the default deploy, clean, and service steps.

Deploy steps

deploy.write_image(node, ports, image_info, configdrive=None)
A deploy step backing the write_image deploy step of the direct deploy interface. Should not be
used explicitly, but can be overridden to provide a custom way of writing an image.

2.2. Ironic Python Agent Administration 9

https://docs.openstack.org/ironic/latest/admin/interfaces/deploy.html#direct-deploy

Ironic Python Agent Documentation, Release 11.4.1.dev1

deploy.erase_devices_metadata(node, ports)
Erases partition tables from all recognized disk devices. Can be used with software RAID since it
requires empty holder disks.

raid.apply_configuration(node, ports, raid_config, delete_existing=True)
Apply a software RAID configuration. It belongs to the raid interface and must be used through
the ironic RAID feature.

Injecting files

deploy.inject_files(node, ports, files, verify_ca=True)

This optional deploy step (introduced in the Wallaby release series) allows injecting arbitrary files into
the node. The list of files is built from the optional inject_files property of the node concatenated
with the explicit £iles argument. Each item in the list is a dictionary with the following fields:

path (required)
An absolute path to the file on the target partition. All missing directories will be created.

partition
Specifies the target partition in one of 3 ways:

* A number is treated as a partition index (starting with 1) on the root device.

* A path is treated as a block device path (e.g. /dev/sdal or /dev/disk/by-partlabel/
<something>.

* If missing, the agent will try to find a partition containing the first component of the path on
the root device. E.g. for /etc/sysctl.d/my.conf, look for a partition containing /etc.

deleted
If True, the file is deleted, not created. Incompatible with content.

content
Data to write. Incompatible with deleted. Can take two forms:

* A URL of the content. Can use Python-style formatting to build a node specific URL, e.g.
http://server/{node[uuid]}/{ports[0] [address]}.

* Base64 encoded binary contents.

mode, owner, group
Numeric mode, owner ID and group ID of the file.

dirmode
Numeric mode of the leaf directory if it has to be created.

This deploy step is disabled by default and can be enabled via a deploy template or via the
ipa-inject-files-priority kernel parameter.

Known limitations:
* Names are not supported for owner and group.

* LVM is not supported.

10 Chapter 2. Contents

https://docs.openstack.org/ironic/latest/admin/raid.html

Ironic Python Agent Documentation, Release 11.4.1.dev1

Clean steps

deploy.burnin_cpu
Stress-test the CPUs of a node via stress-ng for a configurable amount of time. Disabled by default.

deploy.burnin_disk
Stress-test the disks of a node via fio. Disabled by default.

deploy.burnin_memory
Stress-test the memory of a node via stress-ng for a configurable amount of time. Disabled by
default.

deploy.burnin_network
Stress-test the network of a pair of nodes via fio for a configurable amount of time. Disabled by
default.

deploy.erase_devices
Securely erases all information from all recognized disk devices. Relatively fast when secure ATA
erase is available, otherwise can take hours, especially on a virtual environment. Enabled by de-
fault.

deploy.erase_devices_metadata
Erases partition tables from all recognized disk devices. Can be used as an alternative to the much
longer erase_devices step.

deploy.erase_pstore
Erases entries from pstore, the kernels oops/panic logger. Disabled by default. Can be enabled via
priority overrides.

raid.create_configuration
Create a RAID configuration. This step belongs to the raid interface and must be used through
the ironic RAID feature.

raid.delete_configuration
Delete the RAID configuration. This step belongs to the raid interface and must be used through
the ironic RAID feature.

Service steps

Service steps can be invoked by an operator of a baremetal node, to modify or perform some intermediate
action outside the realm of normal use of a deployed bare metal instance. This is similar in form of
interaction to cleaning, and ultimately some cleaning and deployment steps are available to be used.

deploy.burnin_cpu
Stress-test the CPUs of a node via stress-ng for a configurable amount of time.

deploy.burnin_memory
Stress-test the memory of a node via stress-ng for a configurable amount of time.

deploy.burnin_network
Stress-test the network of a pair of nodes via fio for a configurable amount of time.

raid.create_configuration
Create a RAID configuration. This step belongs to the raid interface and must be used through
the ironic RAID feature.

raid.apply_configuration(node, ports, raid_config, delete_existing=True)
Apply a software RAID configuration. It belongs to the raid interface and must be used through

2.2. Ironic Python Agent Administration 11

https://docs.openstack.org/ironic/latest/admin/raid.html
https://docs.openstack.org/ironic/latest/admin/raid.html
https://docs.openstack.org/ironic/latest/admin/raid.html

Ironic Python Agent Documentation, Release 11.4.1.dev1

the ironic RAID feature.

raid.delete_configuration
Delete the RAID configuration. This step belongs to the raid interface and must be used through
the ironic RAID feature.

deploy.write_image(node, ports, image_info, configdrive=None)
A step backing the write_image deploy step of the direct deploy interface. Should not be used
explicitly, but can be overridden to provide a custom way of writing an image.

deploy.inject_files(node, ports, files, verify_ca=True)
A step to inject files into a system. Specifically this step is documented earlier in this documenta-
tion.

Note

The Ironic Developers chose to limit the items available for service steps such that the risk of data
destruction is generally minimized. That being said, it could be reasonable to reconfigure RAID
devices through local hardware managers or to write the base OS image as part of a service operation.
As such, caution should be taken, and if additional data erasure steps are needed you may want to
consider moving a node through cleaning to remove the workload. Otherwise, if you have a use case,
please feel free to reach out to the Ironic Developers so we can understand and enable your use case.

Cleaning safeguards

The stock hardware manager contains a number of safeguards to prevent unsafe conditions from occur-
ring.

Devices Skip List

A list of devices that Ironic does not touch during the cleaning and deployment process can be specified
in the node properties field under skip_block_devices. This should be a list of dictionaries containing
hints to identify the drives. For example:

]

To prevent software RAID devices from being deleted, put their volume name (defined in the
target_raid_config) to the list.

If a volume name is present in the skip_block_devices property, all logical disks in the
target_raid_config are required to have volume names defined.

Note: one dictionary with one value for each of the logical disks. For example:

Another option is to completely remove the device from the listing by implementing the filter_device
call in a site-specific hardware manager. This affects not just deployment and cleaning, but also inspection
and anything that is relying on built-in device listings.

12 Chapter 2. Contents

https://docs.openstack.org/ironic/latest/admin/raid.html
https://docs.openstack.org/ironic/latest/admin/raid.html
https://docs.openstack.org/ironic/latest/admin/interfaces/deploy.html#direct-deploy

Ironic Python Agent Documentation, Release 11.4.1.dev1

Shared Disk Cluster Filesystems

Commonly used shared disk cluster filesystems, when detected, causes cleaning processes on stock hard-
ware manager methods to abort prior to destroying the contents on the disk.

These filesystems include IBM General Parallel File System (GPFS), VmWare Virtual Machine File
System (VMEFES), and Red Hat Global File System (GFS2).

For information on troubleshooting, and disabling this check, see Troubleshooting Ironic-Python-Agent
(IPA).

2.2.3 Custom hardware managers

MellanoxDeviceHardwareManager

This is a custom hardware manager for ironic-python-agent. It provides support for Nvidia/Mellanox
NICs.

* You can get the binraies firmware for all Nvidia/Mellanox NICs from here Nvidia firmware down-
loads

* And you can get the devicelD from here Nvidia/Mellanox NICs list

* Also you can check here MFT decumentation for some supported parameters

Clean steps

update_nvidia_nic_firmware_image(node, ports, images)

A clean step used to update Nvidia/Mellanox NICs firmware images from the required parameter images
list. its disabled by default. Each image in the list is a dictionary with the following fields:

url (required)
The url of the firmware image (file://, http://).

checksum (required)
checksum of the provided image.

checksumType (required)
checksum type, it could be (md5/sha512/sha256).

componentFlavor (required)
The PSID of the nic.

version (required)
version of the firmware image , it must be the same as in the image file.

update_nvidia_nic_firmware_settings(node, ports, settings)

A clean step used to update Nvidia/Mellanox NICs firmware settings from the required parameter
settings list. its disabled by default. Each settings in the list is a dictionary with the following fields:

devicelD (required)
The ID of the NIC

globalConfig
The global configuration for NIC

function®Config
The per-function configuration of the first port of the NIC

2.2. Ironic Python Agent Administration 13

https://network.nvidia.com/support/firmware/firmware-downloads/
https://network.nvidia.com/support/firmware/firmware-downloads/
https://pci-ids.ucw.cz/read/PC/15b3
https://docs.nvidia.com/networking/display/MFTv4240/Using+mlxconfig
file://
http://

Ironic Python Agent Documentation, Release 11.4.1.dev1

functionlConfig
The per-function configuration of the second port of the NIC

Service steps

The Clean steps supported by the MellanoxDeviceHardwareManager are also available as Service steps
if an infrastructure operator wishes to apply new firmware for a running machine.

2.2.4 Rescue mode
Overview

Rescue mode is a feature that can be used to boot a ramdisk for a tenant in case the machine is otherwise
inaccessible. For example, if theres a disk failure that prevents access to another operating system, rescue
mode can be used to diagnose and fix the problem.

Support in ironic-python-agent images

Rescue is initiated when ironic-conductor sends the finalize_rescue command to ironic-python-
agent. A user rescue is created with a password provided as an argument to this command. DHCP
is then configured to facilitate network connectivity, thus enabling a user to login to the machine in res-
cue mode.

Warning

Rescue mode exposes the contents of the ramdisk to the tenant. Ensure that any rescue image you
build does not contain secrets (e.g. sensitive clean steps, proprietary firmware blobs).

The below has information about supported images that may be built to use rescue mode.

DIB

The DIB image supports rescue mode when used with DHCP tenant networks.

After the finalize_rescue command completes, DHCP will be configured on all network interfaces,
and a rescue user will be created with the specified rescue_password.

2.2.5 Troubleshooting Ironic-Python-Agent (IPA)

This document contains basic trouble shooting information for IPA.

Gaining Access to IPA on a node

In order to access a running IPA instance a user must be added or enabled on the image. Below we will
cover several ways to do this.

Access via ssh

14 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic-python-agent-builder

SSH access can be added to DIB built IPA images with the dynamic-login” or the devuser element'

The dynamic-login element allows the operator to inject a SSH key when the image boots. Kernel com-
mand line parameters are used to do this.

dynamic-login element example:
* Add sshkey="ssh-rsa BBAl..." to kernel_append_params setting in the ironic.conf file
* Restart the ironic-conductor with the command service ironic-conductor restart
Install ironic-python-agent-builder following the guide”

devuser element example:

export DIB_DEV_USER_USERNAME=username

export DIB_DEV_USER_PWDLESS_SUDO=yes

export DIB_DEV_USER_AUTHORIZED_KEYS=$HOME/.ssh/id_rsa.pub
ironic-python-agent-builder -o /path/to/custom-ipa -e devuser debian

Access via console

If you need to use console access, passwords must be enabled there are a couple ways to enable this
depending on how the IPA image was created:

ironic-python-agent-builder: dynamic-login

Users wishing to use password access can be add the dynamic-login” or the devuser element!

The dynamic-login element allows the operator to change the root password or SSH key dynamically
when the image boots. Kernel command line parameters are used to do this.

Generate a password hash with following command:

[openssl passwd -6 -stdin sed]

Add rootpwd="<openssl output>" value or add sshkey="<ssh public key>" on the
kernel_append_params setting in the Ironic configuration file (/etc/ironic/ironic.conf).
Restart the ironic-conductor e.g. with

[sudo systemctl restart ironic-conductor }

Warning
* The sed command is used to escape the $ symbols in the configuration file.
* The quotation marks around the value are mandatory.

* Only 1 password or 1 SSH key is supported.

% Dynamic-login DIB element: https:/github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/
dynamic-login

! DevUser DIB element: https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/
devuser

2 jronic-python-agent-builder: https://docs.openstack.org/ironic-python-agent-builder/latest/install/index.html

2.2. Ironic Python Agent Administration 15

https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/dynamic-login
https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/dynamic-login
https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/devuser
https://github.com/openstack/diskimage-builder/tree/master/diskimage_builder/elements/devuser
https://docs.openstack.org/ironic-python-agent-builder/latest/install/index.html

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic-python-agent-builder: devuser

Users can also be added to DIB built IPA images with the devuser element™ !> Install
ironic-python-agent-builder following the guide™ -2,

Example:

username
yes
PASSWORD
ironic-python-agent-builder -o /path/to/custom-ipa -e devuser debian

How to pause the IPA for debugging

When debugging issues with the IPA, in particular with cleaning, it may be necessary to log in to the
RAM disk before the IPA actually starts (and delay the launch of the IPA). One easy way to do this is to
set maintenance on the node and then trigger cleaning. Ironic will boot the node into the RAM disk,
but the IPA will stall until the maintenance state is removed. This opens a time window to log into the
node.

Another way to do this is to add simple cleaning steps in a custom hardware manager which sleep until
a certain condition is met, e.g. until a given file exists. Having multiple of these barrier steps allows to
go through the cleaning steps and have a break point in between them.

Set IPA to debug logging

Debug logging can be enabled a several different ways. The easiest way is to add ipa-debug=1 to the
kernel command line. To do this:

* Append ipa-debug=1 to the kernel_append_params setting in the ironic.conf file

* Restart the ironic-conductor with the command service ironic-conductor restart
If the system is running and uses systemd then editing the services file will be required.

e systemctl edit ironic-python-agent.service

* Append --debug to end of the ExecStart command

* Restart IPA. See the Manually restart IPA section below.

Where can | find the IPA logs
Retrieving the IPA logs will differ depending on which base image was used.
* Operating system that do not use systemd (ie Ubuntu 14.04)
— logs will be found in the /var/log/ folder.
* Operating system that do use systemd (ie Fedora, CentOS, RHEL)
— logs may be viewed with sudo journalctl -u ironic-python-agent

— if using a diskimage-builder ramdisk, it may be configured to output all contents of the jour-
nal, including ironic-python-agent logs, by enabling the journal-to-console element.

In addition, Ironic is configured to retrieve IPA logs upon failures by default, you can learn more about
this feature in the Ironic troubleshooting guide.

16 Chapter 2. Contents

https://docs.openstack.org/diskimage-builder/latest/elements/journal-to-console/README.html
https://docs.openstack.org/ironic/latest/admin/troubleshooting.html#retrieving-logs-from-the-deploy-ramdisk

Ironic Python Agent Documentation, Release 11.4.1.dev1

Manually restart IPA

In some cases it is helpful to enable debug mode on a running node. If the system does not use systemd
then IPA can be restarted directly:

[

If the system uses systemd then systemctl can be used to restart the service:

[

Cleaning halted with ProtectedDeviceError

The IPA service has halted cleaning as one of the block devices within or attached to the bare metal
node contains a class of filesystem which MAY cause irreparable harm to a potentially running cluster
if accidentally removed.

These filesystems may be used for only local storage and as a result be safe to erase. However if a shared
block device is in use, such as a device supplied via a Storage Area Network utilizing protocols such as
iSCSI or FibreChannel. Ultimately the Host Bus Adapter (HBA) may not be an entirely detectable entity
given the hardware market place and aspects such as SmartNICs and Converged Network Adapters with
specific offload functions to support standards like NVMe over Fabric (NVMe-oF).

By default, the agent will prevent these filesystems from being deleted and will halt the cleaning pro-
cess when detected. The cleaning process can be re-triggered via Ironics state machine once one of the
documented settings have been used to notify the agent that no action is required.

What filesystems are looked for

IBM General Parallel Filesystem
Red Hat Global Filesystem 2
VmWare Virtual Machine FileSystem (VMES)

Im okay with deleting, how do | tell IPA to clean the disk(s)?

Four potential ways exist to signal to IPA. Please note, all of these options require access either to the
node in Ironics API or ability to modify Ironic configuration.

Via Ironic

Note

This option requires that the version of Ironic be sufficient enough to understand and explicitly provide
this option to the Agent.

Inform Ironic to provide the option to the Agent:

[

2.2. Ironic Python Agent Administration 17

Ironic Python Agent Documentation, Release 11.4.1.dev1

Via a nodes kernel_append_params setting

This may be set on a node level by utilizing the override kernel_append_params setting which can be
utilized on a node level. Example:

q |

Alternatively, if you wish to set this only once, you may use the instance_info field, which is wiped
upon teardown of the node. Example:

Via Ironics Boot time PXE parameters (Globally)

Globally, this setting may be passed by modifying the ironic.conf configuration file on your cluster
by adding ipa-guard-special-filesystems=False string to the [pxe]kernel_append_params
parameter.

Warning

If your running a multi-conductor deployment, all of your ironic.conf configuration files will need
to be updated to match.

Via Ramdisk configuration

This option requires modifying the ramdisk, and is the most complex, but may be advisable if you have a
mixed environment cluster where shared clustered filesystems may be a concern on some machines, but
not others.

Warning

This requires rebuilding your agent ramdisk, and modifying the embedded configuration file for the
ironic-python-agent. If your confused at all by this statement, this option is not for you.

Edit /etc/ironic_python_agent/ironic_python_agent.conf and set the parameter
[DEFAULT]guard_special_filesystems to False.

References
2.3 Contributing to Ironic Python Agent

Ironic Python Agent is an agent for controlling and deploying Ironic controlled baremetal nodes. Typi-
cally run in a ramdisk, the agent exposes a REST API for provisioning servers.

Throughout the remainder of the document, Ironic Python Agent will be abbreviated to IPA.

18 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

2.3.1 Hardware Managers

Hardware managers are how IPA supports multiple different hardware platforms in the same agent. Any
action performed on hardware can be overridden by deploying your own hardware manager.

IPA ships with GenericHardwareManager, which implements basic cleaning and deployment methods
compatible with most hardware.

Warning

Some functionality inherent in the stock hardware manager cleaning methods may be useful in cus-
tom hardware managers, but should not be inherently expected to also work in custom managers.
Examples of this are clustered filesystem protections, and cleaning method fallback logic. Custom
hardware manager maintainers should be mindful when overriding the stock methods.

How are methods executed on HardwareManagers?

Methods that modify hardware are dispatched to each hardware manager in priority order. When
a method is dispatched, if a hardware manager does not have a method by that name or raises
IncompatibleHardwareMethodError, IPA continues on to the next hardware manager. Any hardware
manager that returns a result from the method call is considered a success and its return value passed on to
whatever dispatched the method. If the method is unable to run successfully on any hardware managers,
HardwareManagerMethodNotFound is raised.

Some methods, such as filter_device, are expected to return None to indicate a negative result (i.e.,
to exclude a device) which happens when one or more hardware managers override the method and at
least one explicitly returns None. If dispatch ever reaches the generic manager, the device is returned
without filtering.

This design allows granular control over filtering. To avoid unintentionally excluding
devices, hardware managers must either return the device (or a modified copy), raise
IncompatibleHardwareMethodError, or refrain from overriding the method at all.

Why build a custom HardwareManager?

Custom hardware managers allow you to include hardware-specific tools, files and cleaning steps in the
Ironic Python Agent. For example, you could include a BIOS flashing utility and BIOS file in a custom
ramdisk. Your custom hardware manager could expose a cleaning step that calls the flashing utility and
flashes the packaged BIOS version (or even download it from a tested web server).

How can | build a custom HardwareManager?

In general, custom HardwareManagers should subclass hardware.HardwareManager. Subclassing hard-
ware.GenericHardwareManager should only be considered if the aim is to raise the priority of all meth-
ods of the GenericHardwareManager. The only required method is evaluate_hardware_support(), which
should return one of the enums in hardware.HardwareSupport. Hardware support determines which
hardware manager is executed first for a given function (see: How are methods executed on HardwareM-
anagers? for more info). Common methods you may want to implement are 1ist_hardware_info(),
to add additional hardware the GenericHardwareManager is unable to identify and erase_devices(),
to erase devices in ways other than ATA secure erase or shredding.

Some reusable functions are provided by ironic-lib, its IPA is relatively stable.

The examples directory has two example hardware managers that can be copied and adapter for your use
case.

2.3. Contributing to Ironic Python Agent 19

https://docs.openstack.org/ironic-lib/latest/reference/api/modules.html
https://opendev.org/openstack/ironic-python-agent/src/branch/master/examples

Ironic Python Agent Documentation, Release 11.4.1.dev1

Custom HardwareManagers and Cleaning

One of the reasons to build a custom hardware manager is to expose extra steps in Ironic Cleaning. A node
will perform a set of cleaning steps any time the node is deleted by a tenant or moved from manageable
state to available state. Ironic will query IPA for a list of clean steps that should be executed on the
node. IPA will dispatch a call to get_clean_steps() on all available hardware managers and then
return the combined list to Ironic.

To expose extra clean steps, the custom hardware manager should have a function named
get_clean_steps() which returns a list of dictionaries. The dictionaries should be in the form:

Then, you should create functions which match each of the step keys in the clean steps you return. The
functions will take two parameters: node, a dictionary representation of the Ironic node, and ports, a
list of dictionary representations of the Ironic ports attached to node.

When a clean step is executed in IPA, the step key will be sent to the hardware managers in hard-
ware support order, using hardware.dispatch_to_managers(). For each hardware manager, if the
manager has a function matching the step key, it will be executed. If the function returns a value (in-
cluding None), that value is returned to Ironic and no further managers are called. If the function raises
IncompatibleHardwareMethodError, the next manager will be called. If the function raises any other
exception, the command will be considered failed, the command results error message will be set to the
exceptions error message, and no further managers will be called. An example step:

Note

If creating a new step, the value returned must be serializable into an API response and log message.
If replacing an existing step, you should return a response of the same type and style of the upstream
step.

If the step has args, you need to add them to argsinfo and provide the function with extra parameters.

20 Chapter 2. Contents

https://docs.openstack.org/ironic/latest//admin/cleaning.html

Ironic Python Agent Documentation, Release 11.4.1.dev1

Note

If two managers return steps with the same step key, the priority will be set to whichever manager
has a higher hardware support level and then use the higher priority in the case of a tie.

In some cases, it may be necessary to create a customized cleaning step to take a particular pattern of
behavior. Those doing such work may want to leverage file system safety checks, which are part of the
stock hardware managers.

Custom HardwareManagers and Deploying

Starting with the Victoria release cycle, deployment can be customized similarly to cleaning. A hardware
manager can define deploy steps that may be run during deployment by exposing a get_deploy_steps
call.

There are two kinds of deploy steps:

2.3. Contributing to Ironic Python Agent 21

https://docs.openstack.org/ironic/latest/admin/node-deployment.html

Ironic Python Agent Documentation, Release 11.4.1.dev1

1. Steps that need to be run automatically must have a non-zero priority and cannot take required
arguments. For example:

Priority should be picked based on when exactly in the process the step will run. See agent step
priorities for guidance.

2. Steps that will be requested via deploy templates should have a priority of 0 and may take both
required and optional arguments that will be provided via the deploy templates. For example:

(continues on next page)

22 Chapter 2. Contents

https://docs.openstack.org/ironic/latest/admin/node-deployment.html#agent-steps
https://docs.openstack.org/ironic/latest/admin/node-deployment.html#agent-steps
https://docs.openstack.org/ironic/latest/admin/node-deployment.html#deploy-templates

Ironic Python Agent Documentation, Release 11.4.1.dev1

(continued from previous page)

Custom HardwareManagers and Service operations

Starting with the Bobcat release cycle, A hardware manager can define service steps that may be run
during a service operation by exposing a get_service_steps call.

Service steps are intended to be invoked by an operator to perform an ad-hoc action upon a node. This
does not include automatic step execution, but may at some point in the future. The result is that steps
can be exposed similar to Clean steps and Deploy steps, just the priority value, should be 0 as the user
requested order is what is utilized.

2.3. Contributing to Ironic Python Agent 23

Ironic Python Agent Documentation, Release 11.4.1.dev1

Versioning

Each hardware manager has a name and a version. This version is used during cleaning to ensure the
same version of the agent is used to on a node through the entire process. If the version changes, cleaning
is restarted from the beginning to ensure consistent cleaning operations and to make updating the agent
in production simpler.

You can set the version of your hardware manager by creating a class variable named HARD-
WARE_MANAGER_VERSION, which should be a string. The default value is 1.0. You should change
this version string any time you update your hardware manager. You can also change the name your hard-
ware manager presents by creating a class variable called HARDWARE_MANAGER_NAME, which is
a string. The name defaults to the class name. Currently IPA only compares version as a string; any
version change whatsoever will induce cleaning to restart.

Priority

A hardware manager has a single overall priority, which should be based on how well it supports a given
piece of hardware. At load time, IPA executes evaluate_hardware_support() on each hardware
manager. This method should return an int representing hardware manager priority, based on what it
detects about the platform its running on. Suggested values are included in the HardwareSupport class.
Returning a value of 0 aka HardwareSupport.NONE, will prevent the hardware manager from being
used. IPA will never ship a hardware manager with a priority higher than 3, aka HardwareSupport.
SERVICE_PROVIDER.

2.3.2 Emitting metrics from Ironic-Python-Agent (IPA)

Warning

IPA metrics are deprecated and scheduled for removal at or after the 2026.1 OpenStack release cycle.

This document describes how to emit metrics from IPA, including timers and counters in code to directly
emitting hardware metrics from a custom HardwareManager.

Overview

IPA uses a vendored version of the metrics implementation originally from ironic-lib, with a few caveats
due to the dynamic configuration done at lookup time. You cannot cache the metrics instance as the
MetricsLogger returned will change after lookup if configs different than the default setting have been
used. This also means that the method decorator cannot be used in IPA.

Using a context manager

Using the context manager is the recommended way for sending metrics that time or count sec-
tions of code. However, given that you cannot cache the MetricsLogger, you have to explicitly call
get_metrics_logger() from every time. For example:

24 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

As a note, these metric collectors do work for custom HardwareManagers as well. However, you may
want to metric the portions of a method that determine compatibility separate from portions of a method
that actually do work, in order to assure the metrics are relevant and useful on all hardware.

Explicitly sending metrics

A feature that may be particularly helpful for deployers writing custom HardwareManagers is the ability
to explicitly send metrics. For instance, you could add a cleaning step which would retrieve metrics about
a device and ship them using the provided metrics library. For example:

2.3.3 Rescue Mode

Ironic supports putting nodes in rescue mode using hardware types that support rescue interfaces. A
rescue operation can be used to boot nodes into a rescue ramdisk so that the rescue user can access the
node. This provides the ability to access the node when normal access is not possible. For example, if
there is a need to perform manual password reset or data recovery in the event of some failure, a rescue
operation can be used. IPA rescue extension exposes a command finalize_rescue (that is used by
Ironic) to set the password for the rescue user when the rescue ramdisk is booted.

finalize_rescue command

The rescue extension exposes the command finalize_rescue; when invoked, it triggers rescue mode:

rescue_password is a required parameter for this command.

Upon success, it returns following data in response:

If successful, this synchronous command will:

1. Write the salted and encrypted rescue_password to /etc/ipa-rescue-config/
ipa-rescue-password in the chroot or filesystem that ironic-python-agent is running
in.

2.3. Contributing to Ironic Python Agent 25

Ironic Python Agent Documentation, Release 11.4.1.dev1

2. Stop the ironic-python-agent process after completing these actions and returning the response to
the API request.

2.3.4 Generated Developer Documentation

¢ modindex

ironic_python_agent

ironic_python_agent package
Subpackages
ironic_python_agent.api package
Submodules
ironic_python_agent.api.app module

class ironic_python_agent.api.app.Application(agent, conf)

Bases: object

api_get_command (request, *args, **kwargs)
api_list_commands (request, *args, **kwargs)
api_root (request)

api_run_command (request)

api_status (request)

api_v1(request)

handle_exception(environ, exc)

Handle an exception during request processing.
require_agent_token_for_command()
start (tls_cert_file=None, tls_key_file=None)

Start the API service in the background.

stop(
Stop the API service.

class ironic_python_agent.api.app.Request(environ: WSGIEnvironment, populate_request:
bool = True, shallow: bool = False)

Bases: Request
Custom request class with JSON support.
ironic_python_agent.api.app.format_exception(value)

ironic_python_agent.api.app.jsonify(value, status=200)

Convert value to a JSON response using the custom encoder.

26 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.api.app.make_link(url, rel_name, resource=", resource_args=",
bookmark=False, type_=None)

ironic_python_agent.api.app.version(url)

ironic_python_agent.api.request_log module

Middleware to log API request details including timing, status codes, and request information for debug-
ging purposes.

class ironic_python_agent.api.request_log.RequestLogMiddleware (app)

Bases: object
Middleware to log request details for debugging.

ironic_python_agent.api.request_log.get_real_ip(environ)

Safely retrieves the real IP address from a WSGI request.

Module contents
ironic_python_agent.cmd package
Submodules
ironic_python_agent.cmd.agent module

ironic_python_agent.cmd.agent.run()

Entrypoint for IronicPythonAgent.

ironic_python_agent.cmd.inspect module

ironic_python_agent.cmd.inspect.run()

Entrypoint for IronicPythonAgent.

Module contents
ironic_python_agent.extensions package
Submodules
ironic_python_agent.extensions.base module

class ironic_python_agent.extensions.base.AgentCommandStatus

Bases: object
Mapping of agent command statuses.

FAILED = 'FAILED'
RUNNING = 'RUNNING'
SUCCEEDED = 'SUCCEEDED'

VERSION_MISMATCH = 'CLEAN_VERSION_MISMATCH'

2.3. Contributing to Ironic Python Agent 27

Ironic Python Agent Documentation, Release 11.4.1.dev1

class ironic_python_agent.extensions.base.AsyncCommandResult (command_name,
command_params,
execute_method,
agent=None)

Bases: BaseCommandResult
A command that executes asynchronously in the background.

is_done()
Checks to see if command is still RUNNING.

Returns
True if command is done, False if still RUNNING

join(timeout=None)

Block until command has completed, and return result.

Parameters
timeout float indicating max seconds to wait for command to complete. De-
faults to None.

run()

Run a command.

serialize()

Serializes the AsyncCommandResult into a dict.

Returns
dict containing serializable fields in AsyncCommandResult

start()

Begin background execution of command.

class ironic_python_agent.extensions.base.BaseAgentExtension(agent=None)
Bases: object

check_cmd_presence (ext_obj, ext, cmd)
execute (command_name, **kwargs)

class ironic_python_agent.extensions.base.BaseCommandResult (command_name,
command_params)

Bases: SerializableComparable
Base class for command result.

is_done()
Checks to see if command is still RUNNING.

Returns
True if command is done, False if still RUNNING

join(Q

Returns
result of completed command.

28 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

serializable_fields = ('id', 'command_name', 'command_status’',
'command_error', 'command_result')
wait(Q

Join the result and extract its value.
Raises if the command failed.

class ironic_python_agent.extensions.base.ExecuteCommandMixin

Bases: object

execute_command (command_name, **kwargs)

Execute an agent command.

get_extension (extension_name)
split_command (command_name)

class ironic_python_agent.extensions.base.SyncCommandResult (command_name,
command_params,
success,
result_or_error)

Bases: BaseCommandResult
A result from a command that executes synchronously.

ironic_python_agent.extensions.base.async_command (command_name, validator=None)

Will run the command in an AsyncCommandResult in its own thread.

command_name is set based on the func name and command_params will be whatever args/kwargs
you pass into the decorated command. Return values of type str or unicode are prefixed with the
command_name parameter when returned for consistency.

ironic_python_agent.extensions.base.get_extension(name)

ironic_python_agent.extensions.base.init_ext_manager (agent)

ironic_python_agent.extensions.base.sync_command (command_name, validator=None)
Decorate a method to wrap its return value in a SyncCommandResult.

For consistency with @async_command() can also accept a validator which will be used to validate
input, although a synchronous command can also choose to implement validation inline.

ironic_python_agent.extensions.clean module
class ironic_python_agent.extensions.clean.CleanExtension(agenr=None)
Bases: BaseAgentExtension

execute_clean_step (step, node, ports, clean_version=None, **kwargs)

Execute a clean step.
Parameters
* step A clean step with step, priority and interface keys
* node A dict representation of a node

» ports A dict representation of ports attached to node

2.3. Contributing to Ironic Python Agent 29

Ironic Python Agent Documentation, Release 11.4.1.dev1

* clean_version The clean version as returned by hard-
ware.get_current_versions() at the beginning of cleaning/zapping

Returns
a CommandResult object with command_result set to whatever the step returns.

get_clean_steps (node, ports)
Get the list of clean steps supported for the node and ports

Parameters
* node A dict representation of a node
* ports A dict representation of ports attached to node

Returns
A list of clean steps with keys step, priority, and reboot_requested

ironic_python_agent.extensions.deploy module
class ironic_python_agent.extensions.deploy.DeployExtension(agent=None)
Bases: BaseAgentExtension

execute_deploy_step(step, node, ports, deploy_version=None, **kwargs)
Execute a deploy step.

Parameters
* step A deploy step with step, priority and interface keys
» node A dict representation of a node
» ports A dict representation of ports attached to node

* deploy_version The deploy version as returned by hard-
ware.get_current_versions() at the beginning of deploying.

» kwargs The remaining arguments are passed to the step.

Returns
a CommandResult object with command_result set to whatever the step returns.

get_deploy_steps (node, ports)
Get the list of deploy steps supported for the node and ports

Parameters
* node A dict representation of a node
» ports A dict representation of ports attached to node

Returns
A list of deploy steps with keys step, priority, and reboot_requested

ironic_python_agent.extensions.flow module

class ironic_python_agent.extensions. flow.FlowExtension (agent=None)

Bases: BaseAgentExtension, ExecuteCommandMixin

start_flow(flow=None)

30 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.extensions.image module
class ironic_python_agent.extensions.image.ImageExtension(agenr=None)
Bases: BaseAgentExtension

install_bootloader (root_uuid, efi_system_part_uuid=None, prep_boot_part_uuid=None,
target_boot_mode="bios’, ignore_bootloader_failure=None)

Install the GRUB2 bootloader on the image.
Parameters
» root_uuid The UUID of the root partition.

o efi_system_part_uuid The UUID of the efi system partition. To be used
only for uefi boot mode. For uefi boot mode, the boot loader will be installed
here.

» prep_boot_part_uuid The UUID of the PReP Boot partition. Used only
for booting ppc64* partition images locally. In this scenario the bootloader
will be installed here.

* target_boot_mode bios, uefi. Only taken into account for softraid, when
no efi partition is explicitly provided (happens for whole disk images)

Raises
CommandExecutionError if the installation of the bootloader fails.

Raises
DeviceNotFound if the root partition is not found.

ironic_python_agent.extensions.log module
class ironic_python_agent.extensions.log.LogExtension(agent=None)
Bases: BaseAgentExtension

collect_system_logs()
Collect system logs.

Collect and package diagnostic and support data from the ramdisk.

Raises
CommandExecutionError if failed to collect the system logs.

Returns
A dictionary with the key system_logs and the value of a gzipped and base64
encoded string of the file with the logs.

ironic_python_agent.extensions.poll module
class ironic_python_agent.extensions.poll.PollExtension(agent=None)
Bases: BaseAgentExtension

get_hardware_info()

Get the hardware information where IPA is running.

2.3. Contributing to Ironic Python Agent 31

Ironic Python Agent Documentation, Release 11.4.1.dev1

set_node_info (node_info=None)

Set node lookup data when IPA is running at passive mode.

Parameters
node_info A dictionary contains the information of the node where IPA is

running.

ironic_python_agent.extensions.rescue module
class ironic_python_agent.extensions.rescue.RescueExtension(agent=None)
Bases: BaseAgentExtension

finalize_rescue (rescue_password=", hashed=False)
Sets the rescue password for the rescue user.

write_rescue_password(rescue_password=", hashed=False)

Write rescue password to a file for use after IPA exits.
Parameters
» rescue_password Rescue password.

* hashed Boolean default False indicating if the password being provided is
hashed or not. This will be changed in a future version of ironic.

ironic_python_agent.extensions.service module
class ironic_python_agent.extensions.service.ServiceExtension(agent=None)
Bases: BaseAgentExtension

execute_service_step(step, node, ports, service_version=None, **kwargs)

Execute a service step.
Parameters
* step A step with step, priority and interface keys
* node A dict representation of a node
» ports A dict representation of ports attached to node

* service_version The service version as returned by hard-
ware.get_current_versions() at the beginning of the service operation.

Returns
a CommandResult object with command_result set to whatever the step returns.

get_service_steps (node, ports)
Get the list of service steps supported for the node and ports

Parameters
* node A dict representation of a node
» ports A dict representation of ports attached to node

Returns
A list of service steps with keys step, priority, and reboot_requested

32 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.extensions.standby module
class ironic_python_agent.extensions.standby.ImageDownload (image_info,
time_obj=None)
Bases: object

Helper class that opens a HTTP connection to download an image.

This class opens a HTTP connection to download an image from a URL and create an iterator
so the image can be downloaded in chunks. The MDS5 hash of the image being downloaded is
calculated on-the-fly.

property bytes_transferred

Property value to return the number of bytes transferred.

property content_length
Property value to return the server indicated length.
verify_image (image_location)

Verifies the checksum of the local images matches expectations.

If this function does not raise ImageChecksumError then it is very likely that the local copy
of the image was transmitted and stored correctly.

Parameters
image_location The location of the local image.

Raises
ImageChecksumError if the checksum of the local image does not match the
checksum as reported by glance in image_info.

class ironic_python_agent.extensions.standby.StandbyExtension(agent=None)

Bases: BaseAgentExtension
Extension which adds stand-by related functionality to agent.

execute_bootc_install (image_source, instance_info={}, pull_secret=None,
configdrive=None)

Asynchronously prepares specified image on local OS install device.

Identifies target disk device to deploy onto, and extracts necessary configuration data to trig-
ger podman, triggers podman, verifies partitioning changes were made, and finally executes
configuration drive write-out.

Parameters
» image_source The OCI Container registry URL supplied by Ironic.

» instance_info An Ironic Nodes instance_info filed for user requested spe-
cific configuration details be extracted.

* pull_secret The user requested or system required pull secret to authen-
ticate to remote container image registries.

» configdrive The user requested configuration drive content supplied by
Ironics step execution command.

Raises
ImageDownloadError if the image download encounters an error.

2.3. Contributing to Ironic Python Agent 33

Ironic Python Agent Documentation, Release 11.4.1.dev1

Raises
ImageChecksumError if the checksum of the local image does not match the
checksum as reported by glance in image_info.

Raises
ImageWriteError if writing the image fails.

Raises
InstanceDeployFailure if failed to create config drive. large to store on the given
device.
get_partition_uuids()
Return partition UUIDs.

power_off()
Powers off the agents system.
prepare_image (image_info, configdrive=None)
Asynchronously prepares specified image on local OS install device.
In this case, prepare means make local machine completely ready to reboot to the image
specified by image_info.
Downloads and writes an image to disk if necessary. Also writes a configdrive to disk if the
configdrive parameter is specified.
Parameters

» image_info Image information dictionary.

» configdrive A string containing the location of the config drive as a URL
OR the contents (as gzip/base64) of the configdrive. Optional, defaults to
None.

Raises
ImageDownloadError if the image download encounters an error.

Raises
ImageChecksumError if the checksum of the local image does not match the
checksum as reported by glance in image_info.

Raises
ImageWriteError if writing the image fails.

Raises
InstanceDeployFailure if failed to create config drive. large to store on the given
device.
run_image()

Runs image on agents system via reboot.

sync()
Flush file system buffers forcing changed blocks to disk.

Raises
CommandExecutionError if flushing file system buffers fails.

class ironic_python_agent.extensions.standby.SuppliedAuth (authorization)
Bases: HTTPBasicAuth

34 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.extensions.standby.check_md5_enabled()

Checks if md5 is permitted, otherwise raises ValueError.

ironic_python_agent.extensions.system module
class ironic_python_agent.extensions.system.SystemExtension(agent=None)
Bases: BaseAgentExtension

lockdown ()

Lock the agent down to prevent interactions with it.

Module contents

ironic_python_agent.hardware_managers package

Submodules

ironic_python_agent.hardware_managers.cha module

class ironic_python_agent.hardware_managers.cna.IntelCnaHardwareManager

Bases: HardwareManager
HARDWARE_MANAGER_NAME = 'IntelCnaHardwareManager'
HARDWARE_MANAGER_VERSION = '1.0'
evaluate_hardware_support ()
Evaluate the level of support for this hardware manager.
See the HardwareSupport object for more documentation.

Returns
One of the constants from the HardwareSupport object.

initialize()
Initialize the hardware manager.

This method is invoked for all hardware managers in the order of their support level after
their evaluate_hardware_support returns a value greater than NONE.

Be careful when making hardware manager calls from initialize: other hardware manager
with the same or lower support level may not be initialized yet. Its only safe when youre sure
that the current hardware manager provides the call.

ironic_python_agent.hardware_managers.container module

class ironic_python_agent.hardware_managers.container.ContainerHardwareManager
Bases: HardwareManager

Hardware manager for container-based cleanup.

HARDWARE_MANAGER_NAME = 'ContainerHardwareManager'

HARDWARE_MANAGER_VERSION = '1'

2.3. Contributing to Ironic Python Agent 35

Ironic Python Agent Documentation, Release 11.4.1.dev1

container_clean_step (node, ports, container_url, pull_options=None, run_options=None)

evaluate_hardware_support()

Determine if container runner exists and return support level.

get_clean_steps (node, ports)

Dynamically generate cleaning steps.

get_deploy_steps (node, ports)

Get a list of deploy steps with priority.

Returns a list of steps. Each step is represented by a dict:

-

J

If multiple hardware managers return the same step name, the following logic will be used to
determine which managers step wins:

* Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best suited
hardware manager. If you need a step to be executed by only your hardware manager, ensure
it has a unique step name.

node and ports can be used by other hardware managers to further determine if a deploy step
is supported for the node.

Parameters
* node Ironic node object
» ports list of Ironic port objects

Returns
a list of deploying steps, where each step is described as a dict as defined above

36

Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

get_service_steps (node, ports)

Get a list of service steps.

Returns a list of steps. Each step is represented by a dict:

J

If multiple hardware managers return the same step name, the following logic will be used to
determine which managers step wins:

* Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best suited
hardware manager. If you need a step to be executed by only your hardware manager, ensure
it has a unique step name.

node and ports can be used by other hardware managers to further determine if a step is
supported for the node.

Parameters
* node Ironic node object
» ports list of Ironic port objects

Returns
a list of service steps, where each step is described as a dict as defined above

2.3.

Contributing to Ironic Python Agent 37

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.hardware_managers.minx module

class ironic_python_agent.hardware_managers.mlnx.MellanoxDeviceHardwareManager

Bases: HardwareManager
Mellanox hardware manager to support a single device
HARDWARE_MANAGER_NAME = 'MellanoxDeviceHardwareManager'
HARDWARE_MANAGER_VERSION = '1'
evaluate_hardware_support()

Declare level of hardware support provided.

get_clean_steps (node, ports)

Get a list of clean steps with priority.
Parameters
* node The node object as provided by Ironic.
» ports Port objects as provided by Ironic.

Returns
A list of cleaning steps, as a list of dicts.

get_deploy_steps (node, ports)
Alias wrapper for method get_clean_steps.

get_interface_info (interface_name)

Return the interface information when its Mellanox and InfiniBand

In case of Mellanox and InfiniBand interface we do the following:
1. Calculate the InfiniBand MAC according to InfiniBand GUID
2. Calculate the client-id according to InfiniBand GUID

get_service_steps (node, ports)

Alias wrapper for method get_clean_steps.

update_nvidia_nic_firmware_image (node, ports, images)

update_nvidia_nic_firmware_settings (node, ports, settings)

Module contents

ironic_python_agent.metrics_lib package

Submodules

ironic_python_agent.metrics_lib.metrics module

class ironic_python_agent.metrics_lib.metrics.Counter (metrics, name, sample_rate)

Bases: object
A counter decorator and context manager.

This metric type increments a counter every time the decorated method or context manager is
executed. It is bound to this MetricLogger. For example:

38

Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

class ironic_python_agent.metrics_lib.metrics.Gauge (metrics, name)

Bases: object
A gauge decorator.

This metric type returns the value of the decorated method as a metric every time the method is
executed. It is bound to this MetricLogger. For example:

class ironic_python_agent.metrics_lib.metrics.MetricLogger (prefix=", delimiter=".")

Bases: object
Abstract class representing a metrics logger.

A MetricLogger sends data to a backend (noop or statsd). The data can be a gauge, a counter, or a
timer.

The data sent to the backend is composed of:
* a full metric name
* anumeric value

The format of the full metric name is:
_prefix<delim>name

where:
o _prefix: [global_prefix<delim>][uuid<delim>][host_name<delim> |prefix
* name: the name of this metric
e <delim>: the delimiter. Default is .

counter (name, sample_rate=None)

gauge (name)

2.3. Contributing to Ironic Python Agent 39

Ironic Python Agent Documentation, Release 11.4.1.dev1

get_metric_name (name)

Get the full metric name.

The format of the full metric name is:
_prefix<delim>name

where:
o _prefix: [global_prefix<delim>][uuid<delim>][host_name<delim>] prefix
* name: the name of this metric
e <delim>: the delimiter. Default is .
Parameters
name The metric name.
Returns

The full metric name, with logger prefix, as a string.

get_metrics_data()
Return the metrics collection, if available.

send_counter (name, value, sample_rate=None)
Send counter metric data.

Counters are used to count how many times an event occurred. The backend will increment
the counter name by the value value.

Optionally, specify sample_rate in the interval [0.0, 1.0] to sample data probabilistically
where:

E 1

If sample_rate is None, then always send metric data, but do not have the backend send sample
rate information (if supported).

Parameters
e name Metric name
e value Metric numeric value that will be sent to the backend

e sample_rate Probabilistic rate at which the values will be sent. Value must
be None or in the interval [0.0, 1.0].

send_gauge (name, value)

Send gauge metric data.
Gauges are simple values. The backend will set the value of gauge name to value.
Parameters
* name Metric name

e value Metric numeric value that will be sent to the backend

send_timer (name, value)
Send timer data.

Timers are used to measure how long it took to do something.

40 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

Parameters
e m_name Metric name
e m_value Metric numeric value that will be sent to the backend

timer (name)

class ironic_python_agent.metrics_lib.metrics.NoopMetricLogger (prefix=",
delimiter=".")

Bases: MetricLogger
Noop metric logger that throws away all metric data.

class ironic_python_agent.metrics_lib.metrics.Timer (metrics, name)
Bases: object

A timer decorator and context manager.

This metric type times the decorated method or code running inside the context manager, and emits
the time as the metric value. It is bound to this MetricLogger. For example:

ironic_python_agent.metrics_lib.metrics_collector module

class ironic_python_agent.metrics_lib.metrics_collector.DictCollectionMetricLogger (prefix,
de-
lim-
iter=".")
Bases: MetricLogger
Metric logger that collects internal counters.

COUNTER_TYPE = 'c'

GAUGE_TYPE

Il
«Q

TIMER_TYPE

]
S_
7]

get_metrics_data()
Return the metrics collection dictionary.

Returns
Dictionary containing the keys and values of data stored via the metrics collec-
tion hooks. The values themselves are dictionaries which contain a type field,
indicating if the statistic is a counter, gauge, or timer. A counter has a count

2.3. Contributing to Ironic Python Agent 41

Ironic Python Agent Documentation, Release 11.4.1.dev1

field, a gauge value has a value field, and a timer fiend las a count and sum
fields. The multiple fields for for a timer type allows for additional statistics to
be implied from the data once collected and compared over time.

ironic_python_agent.metrics_lib.metrics_statsd module

class ironic_python_agent.metrics_lib.metrics_statsd.StatsdMetricLogger (prefix,
delim-
iter=".",
host=None,
port=None)
Bases: MetricLogger

Metric logger that reports data via the statsd protocol.
COUNTER_TYPE = 'c'

GAUGE_TYPE = 'g'

TIMER_TYPE = 'ms'

ironic_python_agent.metrics_lib.metrics_statsd.list_opts()

Entry point for oslo-config-generator.

ironic_python_agent.metrics_lib.metrics_utils module

ironic_python_agent.metrics_lib.metrics_utils.get_metrics_logger (prefix=",
backend=None,
host=None,
delimiter="")

Return a metric logger with the specified prefix.

The format of the prefix is: [global_prefix<delim>][host_name<delim>]prefix where <delim> is
the delimiter (default is .)

Parameters
e prefix Prefix for this metric logger. Value should be a string or None.

* backend Backend to use for the metrics system. Possible values are noop and
statsd.

¢ host Name of this node.
¢ delimiter Delimiter to use for the metrics name.

Returns
The new MetricLogger.

Module contents
Submodules

ironic_python_agent.agent module

42 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

class ironic_python_agent.agent.Host (hostname, port)

Bases: tuple

hostname
Alias for field number O

port
Alias for field number 1

class ironic_python_agent.agent.IronicPythonAgent (api_url, advertise_address,
listen_address, ip_lookup_attempts,
ip_lookup_sleep, network_interface,
lookup_timeout, lookup_interval,
standalone, agent_token,
hardware_initialization_delay=0,
advertise_protocol="http")

Bases: ExecuteCommandMixin
Class for base agent functionality.

force_heartbeat ()
classmethod from_config(conf)

get_command_result (result_id)
Get a specific command result by ID.
Returns

a ironic_python_agent.extensions.base. BaseCommandResult ob-
ject.

Raises
RequestedObjectNotFoundError if command with the given ID is not found.
get_node_uuid()
Get UUID for Ironic node.

If the agent has not yet heartbeated to Ironic, it will not have the UUID and this will raise an
exception.

Returns
A string containing the UUID for the Ironic node.

Raises
UnknownNodeError if UUID is unknown.
get_status()
Retrieve a serializable status.
Returns
a ironic_python_agent.agent.IronicPythonAgent instance describing
the agents status.
list_command_results()

Get a list of command results.

2.3. Contributing to Ironic Python Agent 43

Ironic Python Agent Documentation, Release 11.4.1.dev1

Returns
list of ironic_python_agent.extensions.base. BaseCommandResult
objects.

process_lookup_data(content)

Update agent configuration from lookup data.

run()
Run the Ironic Python Agent.

serve_ipa_api()

Serve the API until an extension terminates it.

set_agent_advertise_addr()
Set advertised IP address for the agent, if not already set.

If agents advertised IP address is still default (None), try to find a better one. If the agents
network interface is None, replace that as well.

Raises
LookupAgentIPError if an IP address could not be found

validate_agent_token (foken)

class ironic_python_agent.agent.IronicPythonAgentHeartbeater (agent)
Bases: Thread
Thread that periodically heartbeats to Ironic.

do_heartbeat ()

Send a heartbeat to Ironic.

force_heartbeat()

max_error_jitter_multiplier = 2.0
max_jitter_multiplier = 0.6
min_error_jitter_multiplier = 1.0

min_heartbeat_interval = 5
min_jitter_multiplier = 0.3
run()

Start the heartbeat thread.

stop()
Stop the heartbeat thread.

class ironic_python_agent.agent.IronicPythonAgentStatus(started_at, version)

Bases: Serializable
Represents the status of an agent.

serializable_fields = ('started_at', 'version')

44 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.burnin module
ironic_python_agent.burnin. fio_disk(node)
Burn-in the disks with fio
Run an fio randrw job for a configurable number of iterations or a given amount of time.

Parameters
node Ironic node object

Raises
CommandExecutionError if the execution of fio fails.

ironic_python_agent.burnin. fio_network (node)

Burn-in the network with fio

Run an fio network job for a pair of nodes for a configurable amount of time. The pair is either
statically defined in driver_info via agent_burnin_fio_network_config or the role and partner is
found dynamically via a tooz backend.

The writer will wait for the reader to connect, then write to the network. Upon completion, the
roles are swapped.

Parameters
node Ironic node object

Raises
CommandExecutionError if the execution of fio fails.

Raises
CleaningError if the configuration is incomplete.

ironic_python_agent.burnin.gpu_burn(node)

Burn-in and check correct count of GPUs using gpu-burn

Check that the expected number of GPUs are available on the node and run a GPU burn-in job for
a configurable amount of time.

Parameters
node Ironic node object

ironic_python_agent.burnin.stress_ng(node, stressor_type, default_timeout=86400)

Run stress-ng for different stressor types

Burn-in a configurable number of CPU/VM with stress-ng, for a configurable amount of time but
default of 24 hours.

Parameters
* node Ironic node object
¢ stressor_type cpuor vim
¢ default_timeout Default timeout in seconds (default: 86400)

Raises
ValueError if an unknown stressor_type is provided

Raises
CommandExecutionError if the execution of stress-ng fails.

2.3. Contributing to Ironic Python Agent 45

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.burnin.stress_ng_cpu(node)
Burn-in the CPU with stress-ng

ironic_python_agent.burnin.stress_ng_vm(node)

Burn-in the memory with the vm stressor in stress-ng.

Run stress-ng with a configurable number of workers on a configurable amount of the available
memory for a configurable amount of time. Without config use as many workers as CPUs, 98% of
the memory and stress it for 24 hours.

ironic_python_agent.config module

ironic_python_agent.config.list_opts()

ironic_python_agent.config.override(params)
Override configuration with values from a dictionary.
This is used for configuration overrides from mDNS.

Parameters
params new configuration parameters as a dict.

ironic_python_agent.config.populate_config()

Populate configuration. In a method so tests can easily utilize it.

ironic_python_agent.device_hints module
ironic_python_agent.device_hints.find_devices_by_hints(devices, root_device_hints)
Find all devices that match the root device hints.

Try to find devices that match the root device hints. In order for a device to be matched it needs to
satisfy all the given hints.

Parameters
* devices
A list of dictionaries representing the devices
containing one or more of the following keys:
name
(String) The device name, e.g /dev/sda
size
(Integer) Size of the device in bytes

model
(String) Device model

vendor
(String) Device vendor name

serial
(String or List[String]) Device serial number(s)

wwn
(String or List[String]) Unique storage identifier(s)

46 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

wwn_with_extension
(String or List[String]): Unique storage identifier(s) with the vendor
extension appended

wwn_vendor_extension
(String or List[String]): United vendor storage identifier(s)

rotational
(Boolean) Whether its a rotational device or not. Useful to distinguish
HDDs (rotational) and SSDs (not rotational).

hctl
(String): The SCSI address: Host, channel, target and lun. For exam-
ple: 1:0:0:0.

by_path
(String): The alternative device name, e.g. /dev/disk/by-path/pci-
0000:00

e root_device_hints A dictionary with the root device hints.

Raises
ValueError, if some information is invalid.

Returns
A generator with all matching devices as dictionaries.

ironic_python_agent.device_hints.match_root_device_hints (devices, root_device_hints)

Try to find a device that matches the root device hints.

Try to find a device that matches the root device hints. In order for a device to be matched it needs
to satisfy all the given hints.

Parameters
* devices
A list of dictionaries representing the devices
containing one or more of the following keys:
name
(String) The device name, e.g /dev/sda
size
(Integer) Size of the device in bytes

model
(String) Device model

vendor
(String) Device vendor name

serial
(String or List[String]) Device serial number(s)

wwn
(String or List[String]) Unique storage identifier(s)

2.3. Contributing to Ironic Python Agent 47

Ironic Python Agent Documentation, Release 11.4.1.dev1

wwn_with_extension
(String or List[String]): Unique storage identifier(s) with the vendor
extension appended

wwn_vendor_extension
(String or List[String]): United vendor storage identifier(s)

rotational
(Boolean) Whether its a rotational device or not. Useful to distinguish
HDDs (rotational) and SSDs (not rotational).

hctl
(String): The SCSI address: Host, channel, target and lun. For exam-
ple: 1:0:0:0.

by_path
(String): The alternative device name, e.g. /dev/disk/by-path/pci-
0000:00

e root_device_hints A dictionary with the root device hints.

Raises
ValueError, if some information is invalid.

Returns
The first device to match all the hints or None.

ironic_python_agent.device_hints.parse_root_device_hints (root_device)

Parse the root_device property of a node.

Parses and validates the root_device property of a node. These are hints for how a nodes root device
is created. The size hint should be a positive integer. The rotational hint should be a Boolean value.

Parameters
root_device the root_device dictionary from the nodes property.

Returns
a dictionary with the root device hints parsed or None if there are no hints.

Raises
ValueError, if some information is invalid.

ironic_python_agent.disk_partitioner module

Code for creating partitions on a disk.

Imported from ironic-libs disk_utils as of the following commit: https://opendev.org/openstack/
ironic-lib/commit/42fa5d63861ba0f04b9a4f67212173d7013a1332

class ironic_python_agent.disk_partitioner.DiskPartitioner (device,
disk_label="msdos’,
alignment="optimal’)

Bases: object

add_partition(size, part_type="primary’, fs_type=", boot_flag=None, extra_flags=None)
Add a partition.

Parameters

48 Chapter 2. Contents

https://opendev.org/openstack/ironic-lib/commit/42fa5d63861ba0f04b9a4f67212173d7013a1332
https://opendev.org/openstack/ironic-lib/commit/42fa5d63861ba0f04b9a4f67212173d7013a1332

Ironic Python Agent Documentation, Release 11.4.1.dev1

» size The size of the partition in MiB.

» part_type The type of the partition. Valid values are: primary, logical, or
extended.

» fs_type The filesystem type. Valid types are: ext2, fat32, fat16, HFS,
linux-swap, NTFS, reiserfs, ufs. If blank (), it will create a Linux native
partition (83).

* boot_flag Boot flag that needs to be configured on the partition. Ignored
if None. It can take values bios_grub, boot.

» extra_flags List of flags to set on the partition. Ignored if None.

Returns
The partition number.

commit()
Write to the disk.

get_partitions()
Get the partitioning layout.

Returns
An iterator with the partition number and the partition layout.

ironic_python_agent.disk_utils module

Various utilities related to disk handling.

Imported from ironic-libs disk_utils as of the following commit: https://opendev.org/openstack/
ironic-lib/commit/42fa5d63861ba0f04b9a4f67212173d7013a1332

ironic_python_agent.disk_utils.block_uuid(dev)
Get UUID of a block device.

Try to fetch the UUID, if that fails, try to fetch the PARTUUID.

ironic_python_agent.disk_utils.count_mbr_partitions(device)

Count the number of primary and logical partitions on a MBR

Parameters
device The device path.

Returns
A tuple with the number of primary partitions and logical partitions.

Raise
ValueError if the device does not have a valid MBR partition table.

ironic_python_agent.disk_utils.dd(src, dst, conv_flags=None)

Execute dd from src to dst.

ironic_python_agent.disk_utils.destroy_disk_metadata(dev, node_uuid)

Destroy metadata structures on nodes disk.

Ensure that nodes disk magic strings are wiped without zeroing the entire drive. To do this we use
the wipefs tool from util-linux.

Parameters

2.3. Contributing to Ironic Python Agent 49

https://opendev.org/openstack/ironic-lib/commit/42fa5d63861ba0f04b9a4f67212173d7013a1332
https://opendev.org/openstack/ironic-lib/commit/42fa5d63861ba0f04b9a4f67212173d7013a1332

Ironic Python Agent Documentation, Release 11.4.1.dev1

¢ dev Path for the device to work on.
* node_uuid Nodes uuid. Used for logging.

ironic_python_agent.disk_utils.find_efi_partition(device)

Looks for the EFI partition on a given device.
A boot partition on a GPT disk is assumed to be an EFI partition as well.

Parameters
device the name of the device

Returns
the EFI partition record from list_partitions or None

ironic_python_agent.disk_utils.fix_gpt_partition(device, node_uuid)
Fix GPT partition

Fix GPT table information when image is written to a disk which has a bigger extend (e.g. 30GB
image written on a 60Gb physical disk).

Parameters
* device The device path.
¢ node_uuid UUID of the Node.

Raises
InstanceDeployFailure if exception is caught.

ironic_python_agent.disk_utils.get_and_validate_image_format (filename,
ironic_disk_format)

Get the format of a given image file and ensure its allowed.

This method uses the format inspector originally written for glance to safely detect the image
format. It also sanity checks to ensure any specified format matches the provided one and that the
format is in the allowed list of formats.

If the image format provided by Ironic is a type which doesnt need conversion, we avoid all intro-
spection of the image and use of gemu-img.

It also performs a basic safety check on the image.

This entire process can be bypassed, and the older code path used, by setting
CONF.disable_deep_image_inspection to True.

See https://bugs.launchpad.net/ironic/+bug/2071740 for full details on why this must always hap-
pen.

Parameters
o filename The name of the image file to validate.
e ironic_disk_format The ironic-provided expected format of the image

Returns
tuple of validated img_format (str) and size (int)

ironic_python_agent.disk_utils.get_dev_byte_size(dev)

Get the device size in bytes.

50 Chapter 2. Contents

https://bugs.launchpad.net/ironic/+bug/2071740

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.disk_utils.get_dev_sector_size(dev)

Get the device logical sector size in bytes.

ironic_python_agent.disk_utils.get_device_information(device, fields=None)

Get information about a device using blkid.
Can be applied to all block devices: disks, RAID, partitions.
Parameters
* device Device name.
o fields A list of fields to request (all by default).

Returns
A dictionary with requested fields as keys.

Raises
ProcessExecutionError

ironic_python_agent.disk_utils.get_disk_identifier(dev)
Get the disk identifier from the disk being exposed by the ramdisk.

This disk identifier is appended to the pxe config which will then be used by chain.c32 to detect
the correct disk to chainload. This is helpful in deployments to nodes with multiple disks.

http://www.syslinux.org/wiki/index.php/Comboot/chain.c32#mbr:

Parameters
dev Path for the already populated disk device.

Raises
OSError When the hexdump binary is unavailable.

Returns
The Disk Identifier.
ironic_python_agent.disk_utils.get_partition_table_type(device)
Get partition table type, msdos or gpt.

Parameters
device the name of the device

Returns
dos, gpt or None
ironic_python_agent.disk_utils.is_block_device(dev)

Check whether a device is block or not.

ironic_python_agent.disk_utils.is_last_char_digit(dev)
check whether device name ends with a digit

ironic_python_agent.disk_utils.list_partitions(device)

Get partitions information from given device.

Parameters
device The device path.

Returns
list of dictionaries (one per partition) with keys: number, start, end, size (in MiB),
filesystem, partition_name, flags, path.

2.3. Contributing to Ironic Python Agent 51

http://www.syslinux.org/wiki/index.php/Comboot/chain.c32#mbr

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.disk_utils.make_partitions(dev, root_mb, swap_mb, ephemeral_mb,
configdrive_mb, node_uuid,
commit=True, boot_option="netboot’,
boot_mode="bios’, disk_label=None,
cpu_arch="")

Partition the disk device.
Create partitions for root, swap, ephemeral and configdrive on a disk device.
Parameters
* dev Path for the device to work on.
e root_mb Size of the root partition in mebibytes (MiB).

» swap_mb Size of the swap partition in mebibytes (MiB). If 0, no partition will
be created.

* ephemeral_mb Size of the ephemeral partition in mebibytes (MiB). If 0, no
partition will be created.

» configdrive_mb Size of the configdrive partition in mebibytes (MiB). If 0,
no partition will be created.

» commit True/False. Default for this setting is True. If False partitions will not
be written to disk.

* boot_option Can be local or netboot. netboot by default.
* boot_mode Can be bios or uefi. bios by default.
» node_uuid Nodes uuid. Used for logging.

» disk_label The disk label to be used when creating the partition table. Valid
values are: msdos, gpt or None; If None Ironic will figure it out according to
the boot_mode parameter.

» cpu_arch Architecture of the node the disk device belongs to. When using
the default value of None, no architecture specific steps will be taken. This
default should be used for x86_64. When set to ppc64*, architecture specific
steps are taken for booting a partition image locally.

Returns
A dictionary containing the partition type as Key and partition path as Value for
the partitions created by this method.

ironic_python_agent.disk_utils.partition_index_to_path(device, index)

Guess a partition path based on its device and index.
Parameters
* device Device path.
e index Partition index.

ironic_python_agent.disk_utils.partprobe (device, attempts=None)

Probe partitions on the given device.

Parameters

52 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

* device The block device containing partitions that is attempting to be up-
dated.

* attempts Number of attempts to run partprobe, the default is read from the
configuration.

Returns
True on success, False otherwise.

ironic_python_agent.disk_utils.populate_image(src, dst, conv_flags=None,
source_format=None, is_raw=False,
sparse_size="0’, out_format="raw’,
**convert_args)

Populate a provided destination device with the image
Parameters

* src An image already security checked in format disk_format
e dst A location, usually a partition or block device, to write the image
* conv_flags Conversion flags to pass to dd if provided
* is_raw Ironic indicates image is raw; do not convert!
* sparse_size Sparse size to pass to gemu_img
» source_format format of the image
* out_format Output format
* convert_args Additional arguments to optionally pass to gemu_img

ironic_python_agent.disk_utils.trigger_device_rescan(device, attempts=None)
Sync and trigger device rescan.
Disk partition performed via parted, when performed on a ramdisk do not have to honor the fsync
mechanism. In essence, fsync is used on the file representing the block device, which falls to

the kernel filesystem layer to trigger a sync event. On a ramdisk using ramfs, this is an explicit
non-operation.

As a result of this, we need to trigger a system wide sync operation which will trigger cache to
flush to disk, after which partition changes should be visible upon re-scan.

When ramdisks are not in use, this also helps ensure that data has been safely flushed across the
wire, such as on iscsi connections.

Parameters

* device The block device containing partitions that is attempting to be up-
dated.

* attempts Number of attempts to run partprobe, the default is read from the
configuration.

Returns
True on success, False otherwise.

ironic_python_agent.disk_utils.udev_settle()
Wait for the udev event queue to settle.

2.3. Contributing to Ironic Python Agent 53

Ironic Python Agent Documentation, Release 11.4.1.dev1

Wait for the udev event queue to settle to make sure all devices are detected once the machine boots
up.

Returns
True on success, False otherwise.

ironic_python_agent.disk_utils.wait_for_disk_to_become_available(device)

Wait for a disk device to become available.

Waits for a disk device to become available for use by waiting until all process locks on the device
have been released.

Timeout and iteration settings come from the configuration options used by the in-library
disk_partitioner: check_device_interval and check_device_max_retries.

Params device
The path to the device.

Raises
IronicException If the disk fails to become available.

ironic_python_agent.dmi_inspector module
ironic_python_agent.dmi_inspector.collect_dmidecode_info(dara, failures)
Collect detailed processor, memory and bios info.
The data is gathered using dmidecode utility.
Parameters
* data mutable dict that well send to inspector
e failures AccumulatedFailures object

ironic_python_agent.dmi_inspector.parse_dmi (data)
Parse the dmidecode output.

Returns a dict.

ironic_python_agent.efi_utils module
ironic_python_agent.efi_utils.add_boot_record(device, efi_partition, loader, label)
Add an EFI boot record with efibootmgr.
Parameters

* device the device to be used

e efi_partition the number of the EFI partition on the device

* loader path to the EFI boot loader

* label the record label

ironic_python_agent.efi_utils.clean_boot_records (patterns)
Remove EFI boot records matching regex patterns.
Parameters

match_patterns A list of string regular expression patterns where any matching
entry will be deleted.

54 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.efi_utils.get_boot_records()
Executes efibootmgr and returns boot records.

Returns
An iterator yielding tuples (boot number, boot record, root device type, device
path).

ironic_python_agent.efi_utils.get_partition_path_by_number (device, part_num)
Get partition path (/dev/something) by a partition number on device.
Only works for GPT partition table.

ironic_python_agent.efi_utils.manage_uefi(device, efi_system_part_uuid=None)
Manage the device looking for valid efi bootloaders to update the nvram.

This method checks for valid efi bootloaders in the device, if they exist it updates the nvram using
the efibootmgr.

Parameters
¢ device the device to be checked.
o efi_system_part_uuid efi partition uuid.

Raises
DeviceNotFound if the efi partition cannot be found.

Returns
True - if it founds any efi bootloader and the nvram was updated using the efiboot-
mgr. False - if no efi bootloader is found.
ironic_python_agent.efi_utils.remove_boot_record(boot_num)
Remove an EFI boot record with efibootmgr.

Parameters
boot_num the number of the boot record

ironic_python_agent.encoding module

class ironic_python_agent.encoding.RESTISONEncoder (*, skipkeys=False,
ensure_ascii=True,
check_circular=True,
allow_nan=True, sort_keys=False,
indent=None, separators=None,
default=None)

Bases: JSONEncoder
A slightly customized JSON encoder.
default (o)

Turn an object into a serializable object.
In particular, by calling Serializable.serialize() on o.

encode (o)
Turn an object into JSON.

Appends a newline to responses when configured to pretty-print, in order to make use of curl
less painful from most shells.

2.3. Contributing to Ironic Python Agent 55

Ironic Python Agent Documentation, Release 11.4.1.dev1

class ironic_python_agent.encoding.Serializable

Bases: object
Base class for things that can be serialized.
serializable_fields = Q)
serialize()

Turn this object into a dict.

class ironic_python_agent.encoding.SerializableComparable
Bases: Serializable

A Serializable class which supports some comparison operators

This class supports the __eq__ and __ne__ comparison operators, but intentionally disables the
__hash__ operator as some child classes may be mutable. The addition of these comparison oper-
ators is mainly used to assist with unit testing.

ironic_python_agent.errors module

exception ironic_python_agent.errors.AgentIsBusy(command_name)
Bases: CommandExecutionError
message = 'Agent is busy'
status_code = 409

exception ironic_python_agent.errors.BlockDeviceEraseError (details)
Bases: RESTError
Error raised when an error occurs erasing a block device.

message = 'Error erasing block device'

exception ironic_python_agent.errors.BlockDeviceError (details)
Bases: RESTError

Error raised when a block devices causes an unknown error.
message = 'Block device caused unknown error'
exception ironic_python_agent.errors.CleaningError (details=None)
Bases: RESTError
Error raised when a cleaning step fails.

message = 'Clean step failed'

exception ironic_python_agent.errors.ClockSyncError (details=None, *args, **kwargs)
Bases: RESTError

Error raised when attempting to sync the system clock.

message = 'Error syncing system clock'

56 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

exception ironic_python_agent.errors.CommandExecutionError (details)
Bases: RESTError

Error raised when a command fails to execute.

message = 'Command execution failed'

exception ironic_python_agent.errors.DeploymentError (details=None)
Bases: RESTError

Error raised when a deploy step fails.
message = 'Deploy step failed'
exception ironic_python_agent.errors.DeviceNotFound (details)
Bases: NotFound
Error raised when the device to deploy the image onto is not found.

message = 'Error finding the disk or partition device to deploy the image
onto'

exception ironic_python_agent.errors.ExtensionError (details=None, *args, **kwargs)
Bases: RESTError

exception ironic_python_agent.errors.FileSystemNotSupported(fs)
Bases: RESTError

Error raised when a file system is not supported.

exception ironic_python_agent.errors.HardwareManagerConfigurationError (details=None)
Bases: RESTError

Error raised when a hardware manager has invalid configuration.

message = 'Hardware manager configuration error'’

exception ironic_python_agent.errors.HardwareManagerMethodNotFound (method)
Bases: RESTError

Error raised when all HardwareManagers fail to handle a method.

message = 'No HardwareManager found to handle method'

exception ironic_python_agent.errors.HardwareManagerNotFound (details=None)
Bases: RESTError

Error raised when no valid HardwareManager can be found.

message = 'No valid HardwareManager found'

exception ironic_python_agent.errors.HeartbeatConflictError (details)

Bases: IronicAPIError
ConflictError raised when a heartbeat to the agent API fails.

message = 'ConflictError heartbeating to agent API'

2.3. Contributing to Ironic Python Agent 57

Ironic Python Agent Documentation, Release 11.4.1.dev1

exception ironic_python_agent.errors.HeartbeatConnectionError (details)

Bases: IronicAPIError
Transitory connection failure occurred attempting to contact the API.

message = 'Error attempting to heartbeat - Possible transitory network
failure or blocking port may be present.'

exception ironic_python_agent.errors.HeartbeatError (details)
Bases: IronicAPIError
Error raised when a heartbeat to the agent API fails.

message = 'Error heartbeating to agent API'

exception ironic_python_agent.errors.ImageChecksumError (image_id, image_location,
checksum,
calculated_checksum)

Bases: RESTError
Error raised when an image fails to verify against its checksum.

details_str = 'Image failed to verify against checksum. location: {};
image ID: {}; image checksum: {}; verification checksum: {}'

message = 'Error verifying image checksum'

exception ironic_python_agent.errors.ImageDownloadError (image_id, msg)
Bases: RESTError

Error raised when an image cannot be downloaded.

message = 'Error downloading image'

exception ironic_python_agent.errors.ImageDownloadOutofSpaceError (image_id, msg)
Bases: ImageDownloadError

Raised when an image download fails due to insufficient storage.

exception ironic_python_agent.errors.ImageDownloadTimeoutError (image_id, msg)
Bases: RESTError

Raised when an image download operation exceeds its allowed time limit.
message = 'Image download timeout'

status_code = 408

exception ironic_python_agent.errors.ImageWriteError (device, exit_code, stdout, stderr)
Bases: RESTError

Error raised when an image cannot be written to a device.

message = 'Error writing image to device'

exception ironic_python_agent.errors.IncompatibleHardwareMethodError (defails=None)
Bases: RESTError

Error raised when HardwareManager method incompatible with hardware.

58 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

message = 'HardwareManager method is not compatible with hardware'

exception ironic_python_agent.errors.IncompatibleNumaFormatError (details=None,
*args, **kwargs)
Bases: RESTError

Error raised when unexpected format data in NUMA node.

message = 'Error in NUMA node data format'

exception ironic_python_agent.errors.InspectionError
Bases: Exception

Failure during inspection.

exception ironic_python_agent.errors.InvalidCommandError (details)

Bases: InvalidContentError
Error which is raised when an unknown command is issued.

message = 'Invalid command'

exception ironic_python_agent.errors.InvalidCommandParamsError (details)
Bases: InvalidContentError

Error which is raised when command parameters are invalid.

message = 'Invalid command parameters'

exception ironic_python_agent.errors.InvalidContentError (details)
Bases: RESTError

Error which occurs when a user supplies invalid content.

Either because that content cannot be parsed according to the advertised Content-Type, or due to
a content validation error.

message = 'Invalid request body'
status_code = 400

exception ironic_python_agent.errors.InvalidImage (details=None)
Bases: DeploymentError

Error raised when an image fails validation for any reason.

message = 'The provided image is not valid for use'

exception ironic_python_agent.errors.InvalidMetricConfig(details=None, *args,
**kwargs)
Bases: RESTError

Error raised when a metric config is invalid.

message = 'Invalid value for metrics config option.'

exception ironic_python_agent.errors.IronicAPIError (details)
Bases: RESTError

Error raised when a call to the agent API fails.

2.3. Contributing to Ironic Python Agent 59

Ironic Python Agent Documentation, Release 11.4.1.dev1

message = 'Error in call to ironic-api’

exception ironic_python_agent.errors.LookupAgentIPError (details)
Bases: IronicAPIError

Error raised when automatic IP lookup fails.

message = 'Error finding IP for Ironic Agent'

exception ironic_python_agent.errors.LookupNodeError (details)

Bases: IronicAPIError
Error raised when the node lookup to the Ironic API fails.

message = 'Error getting configuration from Ironic'

exception ironic_python_agent.errors.MetricsNotSupported(details=None, *args,

*¥kwargs)
Bases: RESTError
Error raised when a metrics action is not supported.
message = 'Metrics action is not supported. You may need to adjust the

[metrics] section in ironic.conf.'

exception ironic_python_agent.errors.NotFound(details=None, *args, **kwargs)
Bases: RESTError

Error which occurs if a non-existent API endpoint is called.
details = 'The requested URL was not found.'
message = 'Not found'

status_code = 404

exception ironic_python_agent.errors.ProtectedDeviceError (device, what)

Bases: CleaningError
Error raised when a cleaning is halted due to a protected device.

message = 'Protected device located, cleaning aborted.'

exception ironic_python_agent.errors.RESTError (details=None, *args, **kwargs)

Bases: Exception, Serializable
Base class for errors generated in ironic-python-client.

details = 'An unexpected error occurred. Please try back later.'
message = 'An error occurred'

serializable_fields = ('type', 'code', 'message', 'details')
status_code = 500

exception ironic_python_agent.errors.RequestedObjectNotFoundError (type_descr,
obj_id)
Bases: NotFound

60 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

exception ironic_python_agent.errors.ServicelLookupFailure (service="unknown’)
Bases: RESTError

Error raised when an mdns service lookup fails.

exception ironic_python_agent.errors.ServicingError (details=None)
Bases: RESTError

Error raised when a service step fails.
message = 'Service step failed'
exception ironic_python_agent.errors.SoftwareRAIDError (details)
Bases: RESTError
Error raised when a Software RAID causes an error.
message = 'Software RAID caused unknown error'
exception ironic_python_agent.errors.SystemRebootError (exit_code, stdout, stderr)
Bases: RESTError
Error raised when a system cannot reboot.
message = 'Error rebooting system'
exception ironic_python_agent.errors.UnknownNodeError (details=None)
Bases: RESTError
Error raised when the agent is not associated with an Ironic node.
message = 'Agent is not associated with an Ironic node'
exception ironic_python_agent.errors.VersionMismatch (agent version, node_version)
Bases: RESTError
Error raised when Ironic and the Agent have different versions.

If the agent version has changed since get_clean_steps or get_deploy_steps was called by the Ironic
conductor, it indicates the agent has been updated (either on purpose, or a new agent was de-
ployed and the node was rebooted). Since we cannot know if the upgraded IPA will work with
cleaning/deploy as it stands (steps could have different priorities, either in IPA or in other Ironic
interfaces), we should restart the process from the start.

message = 'Hardware managers version mismatch, reload agent with correct
version'

exception ironic_python_agent.errors.VirtualMediaBootError (details)
Bases: RESTError
Error raised when virtual media device cannot be found for config.

message = 'Configuring agent from virtual media failed'

2.3. Contributing to Ironic Python Agent 61

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.hardware module

class ironic_python_agent.hardware.BlockDevice (name, model, size, rotational,
wwn=None, serial=None, vendor=None,
wwn_with_extension=None,
wwn_vendor_extension=None,
hctl=None, by_path=None, uuid=None,
partuuid=None, logical_sectors=None,
physical_sectors=None, tran=None)

Bases: SerializableComparable

serializable_fields = ('name', 'model', 'size', 'rotational', 'wwn',
'serial', 'vendor', 'wwn_with_extension', 'wwn_vendor_extension', 'hctl’',
'by_path', 'logical_sectors', 'physical_sectors', 'tran')

class ironic_python_agent.hardware.BootInfo(current_boot_mode, pxe_interface=None)
Bases: SerializableComparable

serializable_fields = ('current_boot_mode', 'pxe_interface')

class ironic_python_agent.hardware.CPU(model_name, frequency, count, architecture,
flags=None, socket_count=None, cpus:
List/CPUCore] = None)

Bases: SerializableComparable

serializable_fields = ('model_name', 'frequency', 'count', 'architecture',
'flags', 'socket_count')

class ironic_python_agent.hardware.CPUCore (model_name, frequency, architecture, core_id,
flags=None)

Bases: SerializableComparable
serializable_fields = ('model_name', 'frequency', 'count', 'architecture',
'flags', 'core_id')

class ironic_python_agent.hardware.GenericHardwareManager

Bases: HardwareManager
HARDWARE_MANAGER_NAME = 'generic_hardware_manager'
HARDWARE_MANAGER_VERSION = '1.2'
any_ipmi_device_exists()

Check for an IPMI device to confirm IPMI capability.

apply_configuration(node, ports, raid_config, delete_existing=True)
Apply RAID configuration.

Parameters
* node A dictionary of the node object.
* ports A list of dictionaries containing information of ports for the node.
» raid_config The configuration to apply.

* delete_existing Whether to delete the existing configuration.

62 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

burnin_cpu(node, ports)
Burn-in the CPU

Parameters
* node Ironic node object
* ports list of Ironic port objects

burnin_disk (node, ports)
Burn-in the disk

Parameters
* node Ironic node object
» ports list of Ironic port objects

burnin_gpu(node, ports)
Burn-in the GPU

Parameters
* node Ironic node object
* ports list of Ironic port objects

burnin_memory (node, ports)

Burn-in the memory
Parameters
* node Ironic node object
» ports list of Ironic port objects

burnin_network (node, ports)

Burn-in the network
Parameters
* node Ironic node object
» ports list of Ironic port objects

clean_uefi_nvram(node, ports, match_patterns=None)
Clean UEFI NVRAM entries.

Parameters
* node A dictionary of the node object.
* ports A list of dictionaries containing information of ports for the node.

* match_patterns A list of string regular expression patterns where any
matching entry will be deleted.

collect_l1ldp_data(interface_names=None)
Collect and convert LLDP info from the node.

In order to process the LLDP information later, the raw data needs to be converted for seri-
alization purposes.

. Contributing to Ironic Python Agent 63

Ironic Python Agent Documentation, Release 11.4.1.dev1

Parameters
interface_names list of names of nodes interfaces.

Returns
a dict, containing the lldp data from every interface.

collect_system_logs (io_dict, file_list)

Collect logs from the system.
Implementations should update io_dict and file_list with logs to send to Ironic and Inspector.
Parameters

» io_dict Dictionary mapping file names to binary IO objects with corre-
sponding data.

o file_list List of full file paths to include.

create_configuration(node, ports)
Create a RAID configuration.

Unless overwritten by a local hardware manager, this method will create a software RAID
configuration as read from the nodes target_raid_config.

Parameters
* node A dictionary of the node object.
* ports A list of dictionaries containing information of ports for the node.

Returns
The current RAID configuration in the usual format.

Raises
SoftwareRAIDError if the desired configuration is not valid or if there was an
error when creating the RAID devices.

static create_cpu_info_dict(/ines)

delete_configuration(node, ports)
Delete a RAID configuration.
Unless overwritten by a local hardware manager, this method will delete all software RAID
devices on the node. NOTE(arne_wiebalck): It may be worth considering to only delete

RAID devices in the nodes target_raid_config. If that config has been lost, though, the
cleanup may become difficult. So, for now, we delete everything we detect.

Parameters
* node A dictionary of the node object
* ports A list of dictionaries containing information of ports for the node

erase_block_device (node, block_device)

Attempt to erase a block device.

Implementations should detect the type of device and erase it in the most appropriate way
possible. Generic implementations should support common erase mechanisms such as ATA
secure erase, or multi-pass random writes. Operators with more specific needs should over-
ride this method in order to detect and handle interesting cases, or delegate to the parent class
to handle generic cases.

64 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

For example: operators running ACME MagicStore (TM) cards alongside standard SSDs
might check whether the device is a MagicStore and use a proprietary tool to erase that, oth-

erwise call this method on their parent class. Upstream submissions of common functionality
are encouraged.

This interface could be called concurrently to speed up erasure, as such, it should be imple-
mented in a thread-safe way.

Parameters
* node Ironic node object

* block_device a BlockDevice indicating a device to be erased.

Raises

* IncompatibleHardwareMethodError when there is no known way to
erase the block device

* BlockDeviceEraseError when there is an error erasing the block device
erase_devices_express (node, ports)

Attempt to perform time-optimised disk erasure:

for NVMe devices, perform NVMe Secure Erase if supported. For other devices, perform
metadata erasure

Parameters
* node Ironic node object

» ports list of Ironic port objects

Raises
BlockDeviceEraseError when theres an error erasing the block device

Raises

ProtectedDeviceError if a device has been identified which may require manual
intervention due to the contents and operational risk which exists as it could also
be a sign of an environmental misconfiguration.

erase_devices_metadata(node, ports)
Attempt to erase the disk devices metadata.
Parameters

* node Ironic node object

» ports list of Ironic port objects
Raises
BlockDeviceEraseError when theres an error erasing the block device

Raises

ProtectedDeviceError if a device has been identified which may require manual
intervention due to the contents and operational risk which exists as it could also
be a sign of an environmental misconfiguration.

erase_pstore (node, ports)

Attempt to erase the kernel pstore.

Parameters

2.3. Contributing to Ironic Python Agent 65

Ironic Python Agent Documentation, Release 11.4.1.dev1

* node Ironic node object
» ports list of Ironic port objects

evaluate_hardware_support ()

Evaluate the level of support for this hardware manager.
See the HardwareSupport object for more documentation.

Returns
One of the constants from the HardwareSupport object.

execute_bootc_install (node, ports, image_source, configdrive, oci_pull_secret)

Deploy a container using bootc install.

Downloads, runs, and leverages bootc install to deploy the desired container to the disk using
bootc and writes any configuration drive to the disk if necessary.

Parameters
» node A dictionary of the node object
* ports A list of dictionaries containing information of ports for the node
» image_info Image information dictionary.

» configdrive A string containing the location of the config drive as a URL
OR the contents (as gzip/base64) of the configdrive. Optional, defaults to
None.

* oci_pull_secret The base64 encoded pull secret to utilize to retrieve the
user requested container.

filter_device(device)
Filter a device in various listings.
full_sync(Q

Synchronize all caches to the disk.

This method will be called on a/l managers before the ramdisk is powered off externally. It
is expected to try flush all caches to the disk to avoid data loss.

generate_tls_certificate(ip_address)
Generate a TLS certificate for the IP address.

get_bios_given_nic_name (interface_name)
Collect the BIOS given NICs name.

This function uses the biosdevname utility to collect the BIOS given name of network inter-
faces.

The collected data is added to the network interface inventory with an extra field named
biosdevname.

Parameters
interface_name list of names of nodes interfaces.

Returns
the BIOS given NIC name of nodes interfaces or default as None.

66 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

get_bmc_address()
Attempt to detect BMC IP address

Returns
IP address of lan channel or 0.0.0.0 in case none of them is configured properly
get_bmc_mac()
Attempt to detect BMC MAC address

Returns

MAC address of the first LAN channel or 00:00:00:00:00:00 in case none of
them has one or is configured properly

Raises
IncompatibleHardwareMethodError if no valid mac is found.
get_bmc_v6address()
Attempt to detect BMC v6 address
Returns

IPv6 address of lan channel or ::/0 in case none of them is configured properly.

May return None value if it cannot interact with system tools or critical error
occurs.

get_boot_info()

get_clean_steps (node, ports)

Get a list of clean steps with priority.

Returns a list of steps. Each step is represented by a dict:

L

J

If multiple hardware managers return the same step name, the following logic will be used to
determine which managers step wins:

* Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

. Contributing to Ironic Python Agent 67

Ironic Python Agent Documentation, Release 11.4.1.dev1

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best suited
hardware manager. If you need a step to be executed by only your hardware manager, ensure
it has a unique step name.

node and ports can be used by other hardware managers to further determine if a clean step
is supported for the node.

Parameters
* node Ironic node object
» ports list of Ironic port objects

Returns
a list of cleaning steps, where each step is described as a dict as defined above

get_cpu_cores()
get_cpus()

get_deploy_steps (node, ports)
Get a list of deploy steps with priority.

Returns a list of steps. Each step is represented by a dict:

If multiple hardware managers return the same step name, the following logic will be used to
determine which managers step wins:

* Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

68 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

The steps will be called using hardware.dispatch_to_managers and handled by the best suited

hardware manager. If you need a step to be executed by only your hardware manager, ensure
it has a unique step name.

node and ports can be used by other hardware managers to further determine if a deploy step
is supported for the node.

Parameters
* node Ironic node object
» ports list of Ironic port objects

Returns
a list of deploying steps, where each step is described as a dict as defined above

get_interface_info (interface_name)

get_ipv4_addr (interface_id)

get_

ipv6_addr (interface_id)
Get the default IPv6 address assigned to the interface.

With different networking environment, the address could be a link-local address, ULA or
something else.

get_memory ()

get_os_install_device(permit_refresh=False)

get_

-

service_steps (node, ports)

Get a list of service steps.

Returns a list of steps. Each step is represented by a dict:

2.3. Contributing to Ironic Python Agent 69

Ironic Python Agent Documentation, Release 11.4.1.dev1

If multiple hardware managers return the same step name, the following logic will be used to
determine which managers step wins:

* Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best suited
hardware manager. If you need a step to be executed by only your hardware manager, ensure
it has a unique step name.

node and ports can be used by other hardware managers to further determine if a step is
supported for the node.

Parameters
* node Ironic node object
* ports list of Ironic port objects

Returns
a list of service steps, where each step is described as a dict as defined above

get_skip_list_from_node_for_disks (node, block_devices=None)

Get the skip block devices list from the node for physical disks
Parameters
* node A node to be check for the skip_block_devices property
* block_devices a list of BlockDevices

Returns
A set of names of devices on the skip list

get_skip_list_from_node_for_raids (node)

Get the skip block devices list from the node

Parameters
node A node to be check for the skip_block_devices property

Returns
A set of volume names of RAID arrays on the skip list

get_system_vendor_info()

get_usb_devices()

Collect USB devices
List all USB final devices, based on 1shw information

Returns
a dict, containing product, vendor, and handle information

initialize()

Initialize the hardware manager.

70

Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

This method is invoked for all hardware managers in the order of their support level after
their evaluate_hardware_support returns a value greater than NONE.

Be careful when making hardware manager calls from initialize: other hardware manager
with the same or lower support level may not be initialized yet. Its only safe when youre sure
that the current hardware manager provides the call.

inject_files(node, ports, files=None, verify_ca=True)
A deploy step to inject arbitrary files.

Parameters
* node A dictionary of the node object

* ports A list of dictionaries containing information of ports for the node
(unused)

e files See inject_files
» verify_ca Whether to verify TLS certificate.

list_block_devices (include_partitions=False, all_serial_and_wwn=False)
List physical block devices

Parameters
include_partitions If to include partitions

Returns
A list of BlockDevices

list_block_devices_check_skip_list (node, include_partitions=False,
all_serial_and_wwn=False, include_wipe=False)

List physical block devices without the ones listed in
properties/skip_block_devices list
Parameters
* node A node used to check the skip list
* include_partitions If to include partitions

Returns
A list of BlockDevices

list_hardware_info()
Return full hardware inventory as a serializable dict.

This inventory is sent to Ironic on lookup and to Inspector on inspection.

Returns
a dictionary representing inventory

list_network_interfaces()
read_cpu_info()

validate_configuration(raid_config, node)
Validate a (software) RAID configuration

Validate a given raid_config, in particular with respect to the limitations of the current im-
plementation of software RAID support.

2.3.

Contributing to Ironic Python Agent 71

Ironic Python Agent Documentation, Release 11.4.1.dev1

Parameters
raid_config The current RAID configuration in the usual format.

write_image (node, ports, image_info, configdrive=None)

A deploy step to write an image.

Downloads and writes an image to disk if necessary. Also writes a configdrive to disk if the
configdrive parameter is specified.

Parameters
* node A dictionary of the node object
* ports A list of dictionaries containing information of ports for the node
» image_info Image information dictionary.

» configdrive A string containing the location of the config drive as a URL
OR the contents (as gzip/base64) of the configdrive. Optional, defaults to
None.

class ironic_python_agent.hardware.HardwareManager

Bases: object
collect_l1dp_data(interface_names=None)
collect_system_logs (io_dict, file_list)
Collect logs from the system.
Implementations should update io_dict and file_list with logs to send to Ironic and Inspector.
Parameters

* io_dict Dictionary mapping file names to binary IO objects with corre-
sponding data.

o file_list List of full file paths to include.

erase_block_device(node, block_device)

Attempt to erase a block device.

Implementations should detect the type of device and erase it in the most appropriate way
possible. Generic implementations should support common erase mechanisms such as ATA
secure erase, or multi-pass random writes. Operators with more specific needs should over-
ride this method in order to detect and handle interesting cases, or delegate to the parent class
to handle generic cases.

For example: operators running ACME MagicStore (TM) cards alongside standard SSDs
might check whether the device is a MagicStore and use a proprietary tool to erase that, oth-
erwise call this method on their parent class. Upstream submissions of common functionality
are encouraged.

This interface could be called concurrently to speed up erasure, as such, it should be imple-
mented in a thread-safe way.

Parameters
* node Ironic node object

* block_device a BlockDevice indicating a device to be erased.

72 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

Raises

* IncompatibleHardwareMethodError when there is no known way to
erase the block device

* BlockDeviceEraseError when there is an error erasing the block device

erase_devices(node, ports)
Erase any device that holds user data.
By default this will attempt to erase block devices. This method can be overridden in an

implementation-specific hardware manager in order to erase additional hardware, although
backwards-compatible upstream submissions are encouraged.

Parameters
* node Ironic node object
* ports list of Ironic port objects

Raises
ProtectedDeviceError if a device has been identified which may require manual
intervention due to the contents and operational risk which exists as it could also
be a sign of an environmental misconfiguration.

Returns
a dictionary in the form {device.name: erasure output}
abstract evaluate_hardware_support()

Evaluate the level of support for this hardware manager.
See the HardwareSupport object for more documentation.

Returns
One of the constants from the HardwareSupport object.

filter_device(device)
Filter a device in various listings.
This call allows hardware managers to change or remove devices in listings, such as

list_interfaces or list_block_devices without overriding these calls. Skipped devices will be
invisible to the agent, including security-sensitive processes like cleaning, so use with care.

The device type should be determined from the class of the device parameter.

If the hardware manager has no opinion about the provided device, it must raise Incompat-
ibleHardwareMethodError. Otherwise, it must return the (potentially modified) device to
keep it in the listing or None to exclude it.

The hardware manager must not modify the device if it returns None or raises Incompatible-
HardwareMethodError!

Parameters
device An object with the device information.

Raises
IncompatibleHardwareMethodError to delegate filtering to other hardware
managers.

Returns
The modified device or None to exclude it.

2.3.

Contributing to Ironic Python Agent 73

Ironic Python Agent Documentation, Release 11.4.1.dev1

full_sync(Q

Synchronize all caches to the disk.

This method will be called on all managers before the ramdisk is powered off externally. It

is expected to try flush all caches to the disk to avoid data loss.

generate_tls_certificate(ip_address)
get_bmc_address()

get_bmc_mac()

get_bmc_v6address()

get_boot_info()

get_clean_steps (node, ports)

Get a list of clean steps with priority.

Returns a list of steps. Each step is represented by a dict:

-

J

If multiple hardware managers return the same step name, the following logic will be used to
determine which managers step wins:

* Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best suited
hardware manager. If you need a step to be executed by only your hardware manager, ensure
it has a unique step name.

74

Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

node and ports can be used by other hardware managers to further determine if a clean step
is supported for the node.

Parameters
* node Ironic node object
» ports list of Ironic port objects

Returns
a list of cleaning steps, where each step is described as a dict as defined above

get_cpus()
get_deploy_steps (node, ports)
Get a list of deploy steps with priority.

Returns a list of steps. Each step is represented by a dict:

If multiple hardware managers return the same step name, the following logic will be used to
determine which managers step wins:

» Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best suited
hardware manager. If you need a step to be executed by only your hardware manager, ensure
it has a unique step name.

node and ports can be used by other hardware managers to further determine if a deploy step
is supported for the node.

Parameters
* node Ironic node object

* ports list of Ironic port objects

2.3. Contributing to Ironic Python Agent 75

Ironic Python Agent Documentation, Release 11.4.1.dev1

Returns
a list of deploying steps, where each step is described as a dict as defined above

get_interface_info (interface_name)
get_memory ()
get_os_install_device(permit_refresh=False)

get_service_steps (node, ports)
Get a list of service steps.

Returns a list of steps. Each step is represented by a dict:

If multiple hardware managers return the same step name, the following logic will be used to
determine which managers step wins:

» Keep the step that belongs to HardwareManager with highest HardwareSupport (larger
int) value.

* If equal support level, keep the step with the higher defined priority (larger int).

* If equal support level and priority, keep the step associated with the HardwareManager
whose name comes earlier in the alphabet.

The steps will be called using hardware.dispatch_to_managers and handled by the best suited
hardware manager. If you need a step to be executed by only your hardware manager, ensure
it has a unique step name.

node and ports can be used by other hardware managers to further determine if a step is
supported for the node.

Parameters

* node Ironic node object

76

Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

* ports list of Ironic port objects

Returns
a list of service steps, where each step is described as a dict as defined above
get_skip_list_from_node_for_disks (node, block_devices=None)
Get the skip block devices list from the node for physical disks

Parameters
* node A node to be check for the skip_block_devices property
* block_devices a list of BlockDevices

Returns
A set of names of devices on the skip list
get_skip_list_from_node_for_raids (node)
Get the skip block devices list from the node

Parameters
node A node to be check for the skip_block_devices property

Returns
A set of volume names of RAID arrays on the skip list

get_usb_devices()
Collect USB devices

List all USB final devices, based on Ishw information

Returns
a dict, containing product, vendor, and handle information

get_version()

Get a name and version for this hardware manager.

In order to avoid errors and make agent upgrades painless, cleaning will check the version
of all hardware managers during get_clean_steps at the beginning of cleaning and before
executing each step in the agent.

The agent isnt aware of the steps being taken before or after via out of band steps, so it can
never know if a new step is safe to run. Therefore, we default to restarting the whole process.

Returns
a dictionary with two keys: name and version, where name is a string identi-
fying the hardware manager and version is an arbitrary version string. name
will be a class variable called HARDWARE_MANAGER_NAME, or de-
fault to the class name and version will be a class variable called HARD-
WARE_MANAGER_VERSION or default to 1.0.

initialize()
Initialize the hardware manager.

This method is invoked for all hardware managers in the order of their support level after
their evaluate_hardware_support returns a value greater than NONE.

Be careful when making hardware manager calls from initialize: other hardware manager
with the same or lower support level may not be initialized yet. Its only safe when youre sure
that the current hardware manager provides the call.

2.3.

Contributing to Ironic Python Agent 77

Ironic Python Agent Documentation, Release 11.4.1.dev1

list_block_devices (include_partitions=False)
List physical block devices

Parameters
include_partitions If to include partitions

Returns
A list of BlockDevices

list_block_devices_check_skip_list (node, include_partitions=False)

List physical block devices without the ones listed in
properties/skip_block_devices list
Parameters
* node A node used to check the skip list
* include_partitions If to include partitions

Returns
A list of BlockDevices

list_hardware_info()
Return full hardware inventory as a serializable dict.

This inventory is sent to Ironic on lookup and to Inspector on inspection.

Returns
a dictionary representing inventory

list_network_interfaces()
wait_for_disks()
Wait for the root disk to appear.

Wait for at least one suitable disk to show up or a specific disk if any device hint is specified.
Otherwise neither inspection not deployment have any chances to succeed.

class ironic_python_agent.hardware.HardwareSupport
Bases: object

Example priorities for hardware managers.

Priorities for HardwareManagers are integers, where largest means most specific and smallest
means most generic. These values are guidelines that suggest values that might be returned by
calls to evaluate_hardware_support(). No HardwareManager in mainline IPA will ever return a
value greater than MAINLINE. Third party hardware managers should feel free to return values of
SERVICE_PROVIDER or greater to distinguish between additional levels of hardware support.

GENERIC = 1
MAINLINE = 2

NONE = 0
SERVICE_PROVIDER = 3

class ironic_python_agent.hardware.HardwareType
Bases: object

78 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

MAC_ADDRESS = 'mac_address'

class ironic_python_agent.hardware.Memory (total, physical_mb=None)

Bases: SerializableComparable

serializable_fields = ('total', 'physical_mb')

class ironic_python_agent.hardware.NetworkInterface (name, mac_addr,
ipv4_address=None,
ipv6_address=None,
has_carrier=True, lldp=None,
vendor=None, product=None,
client_id=None,
biosdevname=None,
speed_mbps=None,
pci_address=None, driver=None)

Bases: SerializableComparable

serializable_fields = ('name', 'mac_address', 'ipv4_address',
'ipv6_address', 'has_carrier', 'lldp', 'vendor', 'product', 'client_id’,
'biosdevname', 'speed_mbps', 'pci_address', 'driver')

class ironic_python_agent.hardware.SystemFirmware (vendor, version, build_date)

Bases: SerializableComparable

serializable_fields = ('vendor', 'version', 'build_date')

class ironic_python_agent.hardware.SystemVendorInfo (product_name, serial_number,
manufacturer, firmware)

Bases: SerializableComparable

serializable_fields = ('product_name', 'serial_number', 'manufacturer’,

'firmware')
class ironic_python_agent.hardware.USBInfo (product, vendor, handle)

Bases: SerializableComparable

serializable_fields = ('product', 'vendor', 'handle')
ironic_python_agent.hardware.cache_node (node)

Store the node object in the hardware module.

Stores the node object in the hardware module to facilitate the access of a node information in the
hardware extensions.

If the new node does not match the previously cached one, wait for the expected root device to
appear.

Parameters
node Ironic node object

ironic_python_agent.hardware.check_versions (provided_version=None)

Ensure the version of hardware managers hasnt changed.

Parameters
provided_version Hardware manager versions used by ironic.

2.3. Contributing to Ironic Python Agent 79

Ironic Python Agent Documentation, Release 11.4.1.dev1

Raises
errors. VersionMismatch if any hardware manager version on the currently running
agent doesnt match the one stored in provided_version.

Returns
None
ironic_python_agent.hardware.deduplicate_steps (candidate_steps)
Remove duplicated clean or deploy steps
Deduplicates steps returned from HardwareManagers to prevent running a given step more than
once. Other than individual step priority, it doesnt actually impact the deployment which specific

steps are kept and what HardwareManager they are associated with. However, in order to make
testing easier, this method returns deterministic results.

Uses the following filtering logic to decide which step wins:

» Keep the step that belongs to HardwareManager with highest HardwareSupport (larger int)
value.

* If equal support level, keep the step with the higher defined priority (larger int).
* Ifequal support level and priority, keep the step associated with the HardwareManager whose

name comes earlier in the alphabet.

Parameters
candidate_steps A dict containing all possible steps from all managers,
key=manager, value=list of steps

Returns

A deduplicated dictionary of {hardware_manager: [steps]}

ironic_python_agent.hardware.dispatch_to_all_managers (method, *args, **kwargs)

Dispatch a method to all hardware managers.

Dispatches the given method in priority order as sorted by get_managers. If the method doesnt
exist or raises IncompatibleHardwareMethodError, it continues to the next hardware manager. All
managers that have hardware support for this node will be called, and their responses will be added
to a dictionary of the form {HardwareManagerClassName: response}.

Parameters
* method hardware manager method to dispatch
* args arguments to dispatched method
* kwargs keyword arguments to dispatched method

Raises
errors.HardwareManagerMethodNotFound if all managers raise Incompati-
bleHardwareMethodError.

Returns
a dictionary with keys for each hardware manager that returns a response and the
value as a list of results from that hardware manager.

80 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.hardware.dispatch_to_managers (method, *args, **kwargs)

Dispatch a method to best suited hardware manager.

Dispatches the given method in priority order as sorted by get_managers. If the method doesnt
exist or raises IncompatibleHardwareMethodError, it is attempted again with a more generic hard-
ware manager. This continues until a method executes that returns any result without raising an

IncompatibleHardwareMethodError.
Parameters
* method hardware manager method to dispatch
* args arguments to dispatched method
» kwargs keyword arguments to dispatched method

Returns
result of successful dispatch of method

Raises

* HardwareManagerConfigurationError if a hardware manager is miscon-
figured

* HardwareManagerMethodNotFound if all managers failed the method
* HardwareManagerNotFound if no valid hardware managers found

ironic_python_agent.hardware.filter_devices (device_list)

Filter devices by using the Hardware Managers filter_device calls.

ironic_python_agent.hardware.get_cached_node()

Guard function around the module variable NODE.

ironic_python_agent.hardware.get_component_devices (raid_device)

Get the component devices of a Software RAID device.
Get the UUID of the md device and scan all other devices for the same md UUID.

Parameters
raid_device A Software RAID block device name.

Returns
A list of the component devices.

ironic_python_agent.hardware.get_current_versions()

Fetches versions from all hardware managers.

Returns
Dict in the format {name: version} containing one entry for every hardware man-
ager.

ironic_python_agent.hardware.get_holder_disks (raid_device)
Get the holder disks of a Software RAID device.

Examine an md device and return its underlying disks.

Parameters
raid_device A Software RAID block device name.

2.3. Contributing to Ironic Python Agent

81

Ironic Python Agent Documentation, Release 11.4.1.dev1

Returns
A list of the holder disks.
ironic_python_agent.hardware.get_managers()
Get a list of hardware managers in priority order.

This exists as a backwards compatibility shim, returning a simple list of managers where expected.
New usages should use get_managers_detail.

Returns
Priority-sorted list of hardware managers

Raises
HardwareManagerNotFound if no valid hardware managers found
ironic_python_agent.hardware.get_managers_detail ()
Get detailed information about hardware managers
Use stevedore to find all eligible hardware managers, sort them based on self-reported (via evalu-

ate_hardware_support()) priorities, and return a dict containing the manager object, its class name,
and hardware support value. The resulting list is cached in _global_managers.

Returns
list of dictionaries representing hardware managers and metadata

Raises
HardwareManagerNotFound if no valid hardware managers found
ironic_python_agent.hardware.get_multipath_status()
Return the status of multipath initialization.

ironic_python_agent.hardware.is_md_device (raid_device)

Check if a device is an md device
Check if a device is a Software RAID (md) device.

Parameters
raid_device A Software RAID block device name.

Returns
True if the device is an md device, False otherwise.

ironic_python_agent.hardware.list_all_block_devices(block_type='disk’,

ignore_raid=False,

ignore_floppy=True,
ignore_empty=True,
ignore_multipath=False,
all_serial_and wwn=False)

List all physical block devices

The switches we use for Isblk: P for KEY=value output, b for size output in bytes, i to ensure ascii
characters only, and o to specify the fields/columns we need.

Broken out as its own function to facilitate custom hardware managers that dont need to subclass
GenericHardwareManager.

Parameters

* block_type Type(s) of block device to find. Can be a string or a list of strings.

82 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

* ignore_raid Ignore auto-identified raid devices, example: mdO Defaults
to false as these are generally disk devices and should be treated as such if
encountered.

» ignore_floppy Ignore floppy disk devices in the block device list. By de-
fault, these devices are filtered out.

e ignore_empty Whether to ignore disks with size equal 0.

e ignore_multipath Whether to ignore devices backing multipath devices.
Default is to consider multipath devices, if possible.

* all_serial_and_wwn Dont collect serial and wwn numbers based on a pri-
ority order, instead collect wwn numbers from both udevadm and Isblk. When
enabled this option will also collect both the short and the long serial from
udevadm if possible.

Returns
A list of BlockDevices
ironic_python_agent.hardware.list_hardware_info (use_cache=True)

List hardware information with caching.

ironic_python_agent.hardware.md_get_raid_devices()
Get all discovered Software RAID (md) devices
Returns
A python dict containing details about the discovered RAID devices

ironic_python_agent.hardware.md_restart (raid_device)

Restart an md device
Stop and re-assemble a Software RAID (md) device.

Parameters
raid_device A Software RAID block device name.

Raises
CommandExecutionError in case the restart fails.

ironic_python_agent.hardware.safety_check_block_device (node, device)
Performs safety checking of a block device before destroying.
In order to guard against destruction of file systems such as shared-disk file systems (https://en.
wikipedia.org/wiki/Clustered_file_system#SHARED-DISK) or similar filesystems where multi-
ple distinct computers may have unlocked concurrent IO access to the entire block device or SAN

Logical Unit Number, we need to evaluate, and block cleaning from occurring on these filesystems
unless we have been explicitly configured to do so.

This is because cleaning is an intentionally destructive operation, and once started against such a
device, given the complexities of shared disk clustered filesystems where concurrent access is a
design element, in all likelihood the entire cluster can be negatively impacted, and an operator will
be forced to recover from snapshot and or backups of the volumes contents.

Parameters
* node A node, or cached node object.

» device String representing the path to the block device to be checked.

2.3. Contributing to Ironic Python Agent 83

https://en.wikipedia.org/wiki/Clustered_file_system#SHARED-DISK
https://en.wikipedia.org/wiki/Clustered_file_system#SHARED-DISK

Ironic Python Agent Documentation, Release 11.4.1.dev1

Raises
ProtectedDeviceError when a device is identified with one of these known clustered
filesystems, and the overall settings have not indicated for the agent to skip such
safety checks.

ironic_python_agent.hardware.save_api_client (client=None, timeout=None,
interval=None)

Preserves access to the API client for potential later reuse.

ironic_python_agent.hardware.update_cached_node()
Attempts to update the node cache via the API

ironic_python_agent.inject_files module

Implementation of the inject_files deploy step.

ironic_python_agent.inject_files.find partition_with_path(path, device=None)
Find a partition with the given path.

Parameters
* path Expected path.
* device Target device. If None, the root device is used.

Returns
A context manager that will unmount and delete the temporary mount point on
exit.

ironic_python_agent.inject_files.inject_files(node, ports, files, verify_ca=True)

A deploy step to inject arbitrary files.
Parameters
* node A dictionary of the node object
* ports A list of dictionaries containing information of ports for the node
» files See ARGSINFO.
» verify_ca Whether to verify TLS certificate.
Raises

InvalidCommandParamsError

ironic_python_agent.inspect module

class ironic_python_agent.inspect.IronicInspection
Bases: Thread

Class for manual inspection functionality.

backoff_factor = 2.7
max_delay = 1200

max_jitter_multiplier = 1.2

84 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

min_jitter_multiplier = 0.7

run()

Run Inspection.

ironic_python_agent.inspector module
ironic_python_agent.inspector.call_inspector (data, failures)
Post data to inspector.

ironic_python_agent.inspector.collect_default(data, failures)

The default inspection collector.

This is the only collector that is called by default. It collects the whole inventory as returned by
the hardware manager(s).

It also tries to get BMC address, PXE boot device and the expected root device.
Parameters
* data mutable data that well send to inspector
e failures AccumulatedFailures object

ironic_python_agent.inspector.collect_extra_hardware (data, failures)

Collect detailed inventory using hardware-detect utility.

Recognizes ipa-inspection-benchmarks with list of benchmarks (possible values are cpu, disk,
mem) to run. No benchmarks are run by default, as theyre pretty time-consuming.

Puts collected data as JSON under data key. Requires hardware python package to be installed on
the ramdisk in addition to the packages in requirements.txt.

Parameters
* data mutable data that well send to inspector
e failures AccumulatedFailures object

ironic_python_agent.inspector.collect_11dp(dara, failures)

Collect LLDP information for network interfaces.
Parameters
* data mutable data that well send to inspector
e failures AccumulatedFailures object

ironic_python_agent.inspector.collect_logs(data, failures)

Collect system logs from the ramdisk.

As inspection runs before any nodes details are known, its handy to have logs returned with data.
This collector sends logs to inspector in format expected by the ramdisk_error plugin: base64
encoded tar.gz.

This collector should be installed last in the collector chain, otherwise it wont collect enough logs.
This collector does not report failures.

Parameters

2.3. Contributing to Ironic Python Agent 85

Ironic Python Agent Documentation, Release 11.4.1.dev1

* data mutable data that well send to inspector
e failures AccumulatedFailures object

ironic_python_agent.inspector.collect_pci_devices_info(data, failures)
Collect a list of PCI devices.

Each PCI device entry in list is a dictionary containing vendor_id and product_id keys, which will
be then used by the ironic inspector to distinguish various PCI devices.

The data is gathered from /sys/bus/pci/devices directory.
Parameters
* data mutable data that well send to inspector
e failures AccumulatedFailures object

ironic_python_agent.inspector.collect_usb_devices(data, failures)

Collect USB information for connected devices.
Parameters
* data mutable data that well send to inspector
e failures AccumulatedFailures object
ironic_python_agent.inspector.extension_manager (names)
ironic_python_agent.inspector.inspect()
Optionally run inspection on the current node.

If inspection_callback_url is set in the configuration, get the hardware inventory from the
node and post it back to the inspector.

Returns
node UUID if inspection was successful, None if associated node was not found in
inspector cache. None is also returned if inspector support is not enabled.

ironic_python_agent.inspector.wait_for_dhcp()
Wait until NICs get their IP addresses via DHCP or timeout happens.

Depending on the value of inspection_dhcp_all_interfaces configuration option will wait for either
all or only PXE booting NIC.

Note: only supports IPv4 addresses for now.

Returns
True if all NICs got IP addresses, False if timeout happened. Also returns True if
waiting is disabled via configuration.

ironic_python_agent.ironic_api_client module
class ironic_python_agent.ironic_api_client.APIClient (api_urls)
Bases: object

agent_token = None

lvll

api_version

86 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

heartbeat (uuid, advertise_address, advertise_protocol="http’, generated_cert=None)
heartbeat_api = '/vl/heartbeat/{uuid}’

lookup_api = '/v1/lookup’

lookup_lock_pause = 0

lookup_node (hardware_info, timeout, starting_interval, node_uuid=None, max_interval=60)

supports_auto_tls()

ironic_python_agent.mdns module

Multicast DNS implementation for API discovery.

This implementation follows RFC 6763 as clarified by the API SIG guideline https://review.opendev.org/
651222,

class ironic_python_agent.mdns.Zeroconf

Bases: object
Multicast DNS implementation client and server.

Uses threading internally, so there is no start method. It starts automatically on creation.

Warning

The underlying library does not yet support IPv6.

close()

Shut down mDNS and unregister services.

Note

If another server is running for the same services, it will re-register them immediately.

get_endpoint (service_type, skip_loopback=True, skip_link_local=False)
Get an endpoint and its properties from mDNS.

If the requested endpoint is already in the built-in server cache, and its TTL is not exceeded,
the cached value is returned.

Parameters
» service_type OpenStack service type.
» skip_loopback Whether to ignore loopback addresses.
» skip_link local Whether to ignore link local V6 addresses.

Returns
tuple (endpoint URL, properties as a dict).

Raises
ServiceLookupFailure if the service cannot be found.

2.3.

Contributing to Ironic Python Agent 87

https://review.opendev.org/651222
https://review.opendev.org/651222

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.mdns.get_endpoint (service_type)

Get an endpoint and its properties from mDNS.

If the requested endpoint is already in the built-in server cache, and its TTL is not exceeded, the

cached value is returned.

Parameters
service_type OpenStack service type.

Returns
tuple (endpoint URL, properties as a dict).

Raises
ServiceLookupFailure if the service cannot be found.

ironic_python_agent.mdns.list_opts()

Entry point for oslo-config-generator.

ironic_python_agent.netutils module

class ironic_python_agent.netutils.RawPromiscuousSockets (interface_names, protocol)

Bases: object

ironic_python_agent.netutils.bring_up_vlan_interfaces(interfaces_list)

Bring up vlan interfaces based on kernel params

Use the configured value of enable_vlan_interfaces to determine if VLAN interfaces should
be brought up using ip commands. If enable_vlan_interfaces defines a particular vlan then
bring up that vlan. If it defines an interface or all then use LLDP info to figure out which VLANSs

should be brought up.

Parameters
interfaces_list List of current interfaces

Returns
List of vlan interface names that have been added

class ironic_python_agent.netutils.ethtoolPermAddr

Bases: Structure
Class for getting interface permanent MAC address

cmd

Structure/Union member

data

Structure/Union member
size
Structure/Union member

ironic_python_agent.netutils.get_default_ip_addr (family, interface_id)

Retrieve default IPv4, IPv6 or mac address.

ironic_python_agent.netutils.get_hostname()

ironic_python_agent.netutils.get_interface_driver (interface_name)

88 Chapter 2.

Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.netutils.get_interface_pci_address (interface_name)

ironic_python_agent.netutils.get_ipv4_addr (interface_id)

ironic_python_agent.netutils.get_ipv6_addr (interface_id)

ironic_python_agent.netutils.get_l1ldp_info (interface_names)

Get LLDP info from the switch(es) the agent is connected to.

Listens on either a single or all interfaces for LLDP packets, then parses them. If no LLDP packets
are received before lldp_timeout, returns a dictionary in the form {interface: [],}.

Parameters

interface_names The interface to listen for packets on. If None, will listen on

each interface.

Returns

A dictionary in the form {interface: [(lldp_type, lldp_data)],}

ironic_python_agent.netutils.get_mac_addr (interface_id)

Retrieve permanent mac address, if unable to fallback to default one

ironic_python_agent.netutils.get_wildcard_address()

class ironic_python_agent.netutils.ifreq

Bases: Structure
Class for ioctl on socket.

ifr_data

Structure/Union member

ifr_data_ethtool_perm_addr

Structure/Union member

ifr_flags

Structure/Union member

ifr_ifrn

Structure/Union member

class ironic_python_agent.netutils.ifreq_data

Bases: Union

ifr_data_ethtool_perm_addr

Structure/Union member

ifr_flags

Structure/Union member

ironic_python_agent.netutils

ironic_python_agent.netutils

ironic_python_agent.netutils.

ironic_python_agent.netutils

.interface_has_carrier (interface_name)

.is_bond (interface_name)

is_network_device (interface_name)

.is_vlan(interface_name)

2.3. Contributing to Ironic Python Agent 89

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.netutils.list_interfaces()

ironic_python_agent.netutils.wrap_ipv6 (ip)

ironic_python_agent.numa_inspector module
ironic_python_agent.numa_inspector.collect_numa_topology_info(data, failures)
Collect the NUMA topology information.

The data is gathered from /sys/devices/system/node/node<X> and /sys/class/net/ directories. The
information is collected in the form of:

Parameters
e data mutable data that well send to inspector
o failures AccumulatedFailures object
Returns

None

ironic_python_agent.numa_inspector.get_nodes_cores_info (numa_node_dirs)
Collect the NUMA nodes cpus and threads information.

NUMA nodes path: /sys/devices/system/node/node<node_id>
Thread dirs path: /sys/devices/system/node/node<node_id>/cpu<thread_id>

CPU id file path: /sys/devices/system/node/node<node_id>/cpu<thread_id>/
topology/core_id

The information is returned in the form of:

(continues on next page)

20 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

(continued from previous page)

Parameters
numa_node_dirs A list of NUMA node directories

Raises
IncompatibleNumaFormatError: when unexpected format data in NUMA node

Returns

A list of cpu information with NUMA node id and thread siblings

ironic_python_agent.numa_inspector.get_nodes_memory_info (numa_node_dirs)

Collect the NUMA nodes memory information.

The information is returned in the form of:

[

Parameters
numa_node_dirs A list of NUMA node directories

Raises
IncompatibleNumaFormatError: when unexpected format data in NUMA node

Returns

A list of memory information with NUMA node id

ironic_python_agent.numa_inspector.get_nodes_nics_info(nic_device_path)
Collect the NUMA nodes nics information.

The information is returned in the form of:

Parameters
nic_device_path nic device directory path

Raises
IncompatibleNumaFormatError: when unexpected format data in NUMA node

Returns
A list of nics information with NUMA node id

ironic_python_agent.numa_inspector.get_numa_node_id(numa_node_dir)
Provides the NUMA node id from NUMA node directory

2.3. Contributing to Ironic Python Agent 91

Ironic Python Agent Documentation, Release 11.4.1.dev1

Parameters
numa_node_dir NUMA node directory

Raises
IncompatibleNumaFormatError: when unexpected format data in NUMA node dir

Returns
NUMA node id

ironic_python_agent.partition_utils module

Logic related to handling partitions.

Imported from ironic-libs disk_utils as of the following commit: https://opendev.org/openstack/
ironic-lib/commit/9fb5be348202f4854a455cd08f400ae12b99e 112

ironic_python_agent.partition_utils.create_config_drive_partition(node_uuid,
device,
configdrive)

Create a partition for config drive
Checks if the device is GPT or MBR partitioned and creates config drive partition accordingly.
Parameters
* node_uuid UUID of the Node.
* device The device path.

e configdrive Base64 encoded Gzipped configdrive content or configdrive
HTTP URL.

Raises
InstanceDeployFailure if config drive size exceeds maximum limit or if it fails to
create config drive.

ironic_python_agent.partition_utils.get_configdrive (configdrive, node_uuid,
tempdir=None)

Get the information about size and location of the configdrive.
Parameters

» configdrive Base64 encoded Gzipped configdrive content or configdrive
HTTP URL.

* node_uuid Nodes uuid. Used for logging.
* tempdir temporary directory for the temporary configdrive file

Raises
InstanceDeployFailure if it cant download or decode the config drive.

Returns
A tuple with the size in MiB and path to the uncompressed configdrive file.

ironic_python_agent.partition_utils.get_labelled_partition(device_ path, label,
node_uuid)

Check and return if partition with given label exists

Parameters

92 Chapter 2. Contents

https://opendev.org/openstack/ironic-lib/commit/9fb5be348202f4854a455cd08f400ae12b99e1f2
https://opendev.org/openstack/ironic-lib/commit/9fb5be348202f4854a455cd08f400ae12b99e1f2

Ironic Python Agent Documentation, Release 11.4.1.dev1

Raises

device_path The device path.
label Partition label
node_uuid UUID of the Node. Used for logging.

InstanceDeployFailure, if any disk partitioning related commands fail.

Returns

block device file for partition if it exists; otherwise it returns None.

ironic_python_agent.partition_utils.get_partition(device, uuid)

Find the partition of a given device.

ironic_python_agent.partition_utils.work_on_disk(dev, root_mb, swap_mb,

ephemeral_mb, ephemeral_format,

image_path, node_uuid,
preserve_ephemeral=False,

configdrive=None, boot_mode="bios’,

tempdir=None, disk_label=None,
cpu_arch=", conv_flags=None,

source_format=None, is_raw=>False)

Create partitions and copy an image to the root partition.

Parameters

dev Path for the device to work on.
root_mb Size of the root partition in megabytes.
swap_mb Size of the swap partition in megabytes.

ephemeral_mb Size of the ephemeral partition in megabytes. If 0, no
ephemeral partition will be created.

ephemeral_format The type of file system to format the ephemeral partition.

image_path Path for the instances disk image. If None, the root partition is
prepared but not populated.

node_uuid nodes uuid. Used for logging.

preserve_ephemeral If True, no filesystem is written to the ephemeral
block device, preserving whatever content it had (if the partition table has not
changed).

configdrive Optional. Base64 encoded Gzipped configdrive content or
configdrive HTTP URL.

boot_mode Can be bios or uefi. bios by default.
tempdir A temporary directory

disk_label The disk label to be used when creating the partition table. Valid
values are: msdos, gpt or None; If None Ironic will figure it out according to
the boot_mode parameter.

cpu_arch Architecture of the node the disk device belongs to. When using
the default value of None, no architecture specific steps will be taken. This

2.3. Contributing to Ironic Python Agent

93

Ironic Python Agent Documentation, Release 11.4.1.dev1

default should be used for x86_64. When set to ppc64*, architecture specific
steps are taken for booting a partition image locally.

» conv_flags Flags that need to be sent to the dd command, to control the
conversion of the original file when copying to the host. It can contain several
options separated by commas.

» source_format The format of the disk image to be written. If set, must be
raw or the actual disk format of the image.

e is_raw Ironic indicator image is raw; not to be converted

Returns
a dictionary containing the following keys: root uuid: UUID of root partition efi
system partition uuid: UUID of the uefi system partition (if boot mode is uefi).
partitions: mapping of partition types to their device paths. NOTE: If key exists
but value is None, it means partition doesnt exist.

ironic_python_agent.gemu_img module

ironic_python_agent.qemu_img.convert_image (source, dest, out_format, cache=None,
out_of _order=False, sparse_size=None,
source_format=None)

Convert image to other format.

This method is only to be run against images who have passed format_inspectors safety check, and
with the format reported by it passed in. Any other usage is a major security risk.

ironic_python_agent.gemu_img.image_info (path, source_format=None)

Return an object containing the parsed output from gemu-img info.
This must only be called on images already validated as safe by the format inspector.
Parameters
e path The path to an image you need information on

* source_format The format of the source image. If this is omitted when deep
inspection is enabled, this will raise Invalidlmage.

ironic_python_agent.raid_utils module
ironic_python_agent.raid_utils.calc_raid_partition_sectors(psize, start)
Calculates end sector and converts start and end sectors including

the unit of measure, compatible with parted. :param psize: size of the raid partition :param start:
start sector of the raid partition in integer format :return: start and end sector in parted compatible
format, end sector

as integer

ironic_python_agent.raid_utils.calculate_raid_start(target_boot_mode,
partition_table_type, dev_name)

Define the start sector for the raid partition.
Parameters

* target_boot_mode the node boot mode.

94 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

* partition_table_type the node partition label, gpt or msdos.
* dev_name block device in the raid configuration.

Returns
The start sector for the raid partition.
ironic_python_agent.raid_utils.create_raid_device(index, logical_disk, indices=None)

Create a raid device.
Parameters
* index the index of the resulting md device.
* logical_disk the logical disk containing the devices used to crete the raid.

» indices Mapping to track the last used partition index for each physical de-
vice across calls to create_raid_device.

Raise
errors.SoftwareRAIDError if not able to create the raid device or fails to re-add a
device to a raid.

Returns
The name of the created md device.

ironic_python_agent.raid_utils.create_raid_partition_tables(block_devices,
partition_table_type,
target_boot_mode)

Creates partition tables in all disks in a RAID configuration and
reports the starting sector for each partition on each disk. :param block_devices: disks where we

want to create the partition tables. :param partition_table_type: type of partition table to create,
for example

gpt or msdos.
Parameters

target_boot_mode the node selected boot mode, for example uefi or bios.
Returns

a dictionary of devices and the start of the corresponding partition.

ironic_python_agent.raid_utils.find_esp_raid()

Find the ESP md device in case of a rebuild.
ironic_python_agent.raid_utils.get_block_devices_for_raid(block_devices,

logical_disks)

Get block devices that are involved in the RAID configuration.

This call does two things: * Collect all block devices that are involved in RAID. * Update each

logical disks with suitable block devices.
ironic_python_agent.raid_utils.get_next_free_raid_device()

Get a device name that is still free.

ironic_python_agent.raid_utils.get_volume_name_of_raid_device (raid_device,
examine=False)

2.3. Contributing to Ironic Python Agent 95

Ironic Python Agent Documentation, Release 11.4.1.dev1

Get the volume name of a RAID device
Parameters
* raid_device A Software RAID block device name.
* examine Use examine instead of detail

Returns
volume name of the device, or None

ironic_python_agent.raid_utils.prepare_boot_partitions_for_softraid(device,
holders,

efi_part, tar-
get_boot_mode)

Prepare boot partitions when relevant.

Create either a RAIDed EFI partition or bios boot partitions for software RAID, according to both
target boot mode and disk holders partition table types.

Parameters
* device the softraid device path
¢ holders the softraid drive members

e efi_part when relevant the efi partition coming from the image deployed on
softraid device, can be/is often None

* target_boot_mode target boot mode can be bios/uefi/None or anything else
for unspecified

Returns
the path to the ESP md device when target boot mode is uefi, nothing otherwise.

ironic_python_agent.tls_utils module
class ironic_python_agent.tls_utils.TlsCertificate(text, path, private_key_path)
Bases: tuple

path
Alias for field number 1

private_key_path
Alias for field number 2

text
Alias for field number 0

ironic_python_agent.tls_utils.generate_tls_certificate(ip_address,
common_name=None,
valid_for_days=90)

Generate a self-signed TLS certificate.
Parameters

e ip_address IP address the certificate will be valid for.

96 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

* common_name Content for the common name field (e.g. host name). Defaults
to the current host name.

» valid_for_days Number of days the certificate will be valid for.

Returns
a TlsCertificate object.

ironic_python_agent.utils module

class ironic_python_agent.utils.AccumulatedFailures(exc_class=<class
’RuntimeError’>)

Bases: object
Object to accumulate failures without raising exception.

add (fail, *fimt)
Add failure with optional formatting.

Parameters
o fail exception or error string
o fmt formatting arguments (only if fail is a string)

get_error()
Get error string or None.

raise_if_needed()

Raise exception if error list is not empty.

Raises
RuntimeError

class ironic_python_agent.utils.StreamingClient (verify_ca=True)
Bases: object

A wrapper around HTTP client with TLS, streaming and error handling.

ironic_python_agent.utils.collect_system_logs (journald_max_lines=None)
Collect system logs.

Collect system logs, for distributions using systemd the logs will come from journald. On other
distributions the logs will come from the /var/log directory and dmesg output.

Parameters
journald_max_lines Maximum number of lines to retrieve from the journald.
if None, return everything.

Returns
A tar, gzip base64 encoded string with the logs.

ironic_python_agent.utils.copy_config_from_vmedia()

Copies any configuration from a virtual media device.

Copies files under /etc/ironic-python-agent and /etc/ironic-python-agent.d.

2.3. Contributing to Ironic Python Agent 97

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.utils.create_partition_table(dev_name, partition_table_type)

Create a partition table on a disk using parted.
Parameters
* dev_name the disk where we want to create the partition table.

* partition_table_type the type of partition table we want to create, for
example gpt or msdos.

Raises
CommandExecutionError if an error is encountered while attempting to create the
partition table.

ironic_python_agent.utils.determine_time_method()

Helper method to determine what time utility is present.

Returns
ntpdate if ntpdate has been found, chrony if chrony was located, and None if neither
are located. If both tools are present, chrony will supersede ntpdate.

ironic_python_agent.utils.execute(*cmd, use_standard_locale=False, log_stdout=True,
**kwargs)

Convenience wrapper around oslos execute() method.

Executes and logs results from a system command. See docs for
oslo_concurrency.processutils.execute for usage.

Parameters
e cmd positional arguments to pass to processutils.execute()

¢ use_standard_locale Defaults to False. If set to True, execute command
with standard locale added to environment variables.

* log_stdout Defaults to True. If set to True, logs the output.
» kwargs keyword arguments to pass to processutils.execute()

Returns
(stdout, stderr) from process execution

Raises
UnknownArgumentError on receiving unknown arguments

Raises
ProcessExecutionError

Raises
OSError

ironic_python_agent.utils.extract_device(part)

Extract the device from a partition name or path.

Parameters
part the partition

Returns
a device if success, None otherwise

98 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.utils.find_in_lshw(ishw, by_id=None, by_class=None,
recursive=False, **fields)

Yield all suitable records from Ishw.

ironic_python_agent.utils.get_agent_params()
Gets parameters passed to the agent via kernel cmdline or vmedia.

Parameters can be passed using either the kernel commandline or through virtual media. If
boot_method is vmedia, merge params provided via vimedia with those read from the kernel com-
mand line.

Although it should never happen, if a variable is both set by vmedia and kernel command line, the
setting in vmedia will take precedence.

Returns
a dict of potential configuration parameters for the agent

ironic_python_agent.utils.get_command_output (command)

Return the output of a given command.

Parameters
command The command to be executed.

Raises
CommandExecutionError if the execution of the command fails.

Returns
A ByteslO string with the output.

ironic_python_agent.utils.get_journalctl_output (/ines=None, units=None)

Query the contents of the systemd journal.
Parameters

e lines Maximum number of lines to retrieve from the logs. If None, return
everything.

* units A list with the names of the units we should retrieve the logs from. If
None retrieve the logs for everything.

Returns
A log string.

ironic_python_agent.utils.get_node_boot_mode (node)

Returns the node boot mode.

It returns uefi if secure_boot is set to true in instance_info/capabilities of node. Otherwise it directly
look for boot mode hints into

Parameters
node dictionary.

Returns
bios or uefi

ironic_python_agent.utils.get_partition_table_type_from_specs (node)

Returns the node partition label, gpt or msdos.

If boot mode is uefi, return gpt. Else, choice is open, look for disk_label capabilities (instance_info
has priority over properties).

2.3. Contributing to Ironic Python Agent 99

Ironic Python Agent Documentation, Release 11.4.1.dev1

Parameters
node

Returns
gpt or msdos

ironic_python_agent.utils.get_route_source(dest, ignore_link_local=True)

Get the IP address to send packages to destination.

ironic_python_agent.utils.get_ssl_client_options(conf)
Format SSL-related requests options.

Parameters
conf oslo_config CONF object

Returns
tuple of verify and cert values to pass to requests

ironic_python_agent.utils.guess_root_disk(block_devices,
min_size_required=4294967296)

Find suitable disk provided that root device hints are not given.

If no hints are passed, order the devices by size (primary key) and name (secondary key), and
return the first device larger than min_size_required as the root disk.

ironic_python_agent.utils.gzip_and_b64encode (io_dict=None, file_list=None)
Gzip and base64 encode files and BytesIO buffers.

Parameters

* io_dict A dictionary containing whose the keys are the file names and the
value a BytesIO object.

o file_list A list of file path.

Returns
A gzipped and base64 encoded string.

ironic_python_agent.utils.is_char_device(path)
Check if the specified path is a character device.

ironic_python_agent.utils.is_journalctl_present()
Check if the journalctl command is present.

Returns
True if journalctl is present, False if not.

ironic_python_agent.utils.log_early_log_to_logger()
Logs early logging events to the configured logger.

ironic_python_agent.utils.mkfs(fs, path, label=None)
Format a file or block device

Parameters
» fs Filesystem type (examples include swap, ext3, ext4 btrfs, etc.)
e path Path to file or block device to format

e label Volume label to use

100 Chapter 2. Contents

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.utils.mounted(source, dest=None, opts=None, fs_type=None,
mount_attempts=1, umount_attempts=3)

A context manager for a temporary mount.
Parameters
e source A device to mount.

* dest Mountdestination. If not specified, a temporary directory will be created
and removed afterwards. An existing destination is not removed.

* opts Mount options (-0 argument).

» fs_type File system type (-t argument).

e mount_attempts A number of attempts to mount the device.

e umount_attempts A number of attempts to unmount the device.

Returns
A generator yielding the destination.
ironic_python_agent.utils.parse_capabilities(roor)
Extract capabilities from provided root dictionary-behaving object.

root.get(capabilities, {}) value can either be a dict, or a json str, or a keyl:valuel, key2:value2
formatted string.

Parameters
root Anything behaving like a dict and containing capabilities formatted as ex-
pected. Can be node.get(properties, {}), node.get(instance_info, {}).

Returns
A dictionary with the capabilities if found and well formatted, otherwise an empty
dictionary.

ironic_python_agent.utils.parse_device_tags (output)
Parse tags from the Isblk/blkid output.

Parses format KEY=VALUE KEY2=VALUE?2.

Returns
a generator yielding dicts with information from each line.

ironic_python_agent.utils.remove_large_keys (var)

Remove specific keys from the var, recursing into dicts and lists.

ironic_python_agent.utils.rescan_device(device)

Force the device to be rescanned

Parameters
device device upon which to rescan and update kernel partition records.

ironic_python_agent.utils.split_device_and_partition_number (part)

Extract the partition number from a partition name or path.

Parameters
part the partition

Returns
device and partition number if success, None otherwise

2.3. Contributing to Ironic Python Agent 101

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.utils.sync_clock(ignore_errors=False)

Syncs the software clock of the system.

This method syncs the system software clock if a NTP server was defined in the [DE-
FAULT ntp_server configuration parameter. This method does NOT attempt to sync the hardware
clock.

It will try to use either ntpdate or chrony to sync the software clock of the system. If neither is
found, an exception is raised.

Parameters
ignore_errors Boolean value default False that allows for the method to be
called and ultimately not raise an exception. This may be useful for opportunisti-
cally attempting to sync the system software clock.

Raises
CommandExecutionError if an error is encountered while attempting to sync the
software clock.

ironic_python_agent.utils.try_collect_command_output (io_dict, file_name, command)
ironic_python_agent.utils.try_execute(¥cmd, **kwargs)
The same as execute but returns None on error.

Executes and logs results from a system command. See docs for
oslo_concurrency.processutils.execute for usage.

Instead of raising an exception on failure, this method simply returns None in case of failure.
Parameters
* cmd positional arguments to pass to processutils.execute()
» kwargs keyword arguments to pass to processutils.execute()

Raises
UnknownArgumentError on receiving unknown arguments

Returns
tuple of (stdout, stderr) or None in some error cases

ironic_python_agent.utils.unlink without_raise(path)

ironic_python_agent.version module

Module contents

102 Chapter 2. Contents

CHAPTER
THREE

INDICES AND TABLES

* genindex

e search

103

Ironic Python Agent Documentation, Release 11.4.1.dev1

104 Chapter 3. Indices and tables

ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
48
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
29
ironic_python_agent.
30
ironic_python_agent.
ironic_python_agent.
31
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
32
ironic_python_agent.
32
ironic_python_agent.
33
ironic_python_agent.
35
ironic_python_agent.
ironic_python_agent.
38
ironic_python_agent.

agent, 42

api, 27
api.app, 26
api.request_log, 27
burnin, 45

cmd, 27
cmd.agent, 27

cmd . inspect, 27
config, 46
device_hints, 46
disk_partitioner,

disk_utils, 49
dmi_inspector, 54
efi_utils, 54
encoding, 55
errors, 56
extensions, 35
extensions.base, 27
extensions.clean,
extensions.deploy,
extensions. flow, 30
extensions.image,

extensions.
extensions.
extensions.

log, 31
poll, 31
rescue,
extensions.service,
extensions.standby,
extensions.system,

hardware, 62
hardware_managers,

PYTHON MODULE INDEX

35

ironic_python_agent.

35

ironic_python_agent.

38

ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.

86
ironic_python_agent
ironic_python_agent
ironic_python_agent

38
ironic_python_agent

41
ironic_python_agent

42
ironic_python_agent

42

ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.

ironic_python_agent,

hardware_managers.cna,

hardware_managers.container,
hardware_managers.mlnx,

inject_files, 84
inspect, 84
inspector, 85
ironic_api_client,

.mdns, 87

.metrics_lib, 42
.metrics_lib.metrics,
.metrics_lib.metrics_collector,

.metrics_lib.metrics_statsd,

.metrics_lib.metrics_utils,

netutils, 88
numa_inspector, 90
partition_utils, 92
gemu_img, 94
raid_utils, 94
tls_utils, 96
utils, 97
version, 102

102

105

Ironic Python Agent Documentation, Release 11.4.1.dev1

106 Python Module Index

INDEX

A (ironic_python_agent.hardware.GenericHardwareManage
AccumulatedFailures (class in method), 62
ironic_python_agent.utils), 97 async_command () (in module
add) (ironic_python_agent.utils.AccumulatedFailures ironic_python_agent.extensions.base), 29
method), 97 AsyncCommandResult (class in
add_boot_record() (in module ironic_python_agent.extensions.base), 27
ironic_python_agent.efi_utils), 54 B

add_partition()
(ironic_python_agent.disk_partitioner. Disk PAGkibrfactor

method), 48 (ironic_python_agent.inspect.Ironiclnspection
agent_token (ironic_python_agent.ironic_api_client. APICLiEA" ibute), 84

attribute), 86 BaseAgentExtension (class in
AgentCommandStatus (class in ironic_python_agent.extensions.base), 28

ironic_python_agent.extensions.base), 27 BaseCommandResult (class in
AgentIsBusy, 56 ironic_python_agent.extensions.base), 28
any_ipmi_device_exists() blOCk—u"IidQ (in . _ module

(ironic_python_agent.hardware.GenericHardwareM&UgE-PY thon_agent.disk_utils), 49

method), 62 BlockDevice (class in
api_get_command() ironic_python_agent.hardware), 62

(ironic_python_agent.api.app.Application BlockDeviceEraseError, 56
method), 26 BlockDeviceError, 56

api_list_commands() BootInfo (class in
(ironic_python_agent.api.app.Application ironic_python_agent.hardware), 62
method), 26 bring_up_vlan_interfaces() (in module

api_root () (ironic_python_agent.api.app.Application ironic_python_agent.netutils), 88
method), 26 burnin_cpu(Q) (ironic_python_agent.hardware.GenericHardwarei
method), 62

burnin_disk () (ironic_python_agent.hardware.GenericHardwar

api_run_command ()
(ironic_python_agent.api.app.Application

method), 26 method), 63
api_status() (il’OniC_python_agent.api.app.ApplicQW&Bin—gpu() (ironic_python_agent.hardware.GenericHardwarel
method), 26 method), 63
api_v1() (ironic_python_agent.api.app.ApplicationPurnin_memory (
method), 26 (ironic_python_agent.hardware.GenericHardwareManage
api_version (ironic _python_agent.ironl'c_api_client.API_Clié’?ﬁthOd)’ 63
attribute), 86 burnin_network ()
APIClient (class in (ironic_python_agent.hardware.GenericHardwareManage

ironic_python_agent.ironic_api_client), method), 63
36 bytes_transferred

Application (class in (ironic_python_agent.extensions.standby.ImageDownload

ironic_python_agent.api.app), 26 property), 33
apply_configuration()

107

Ironic Python Agent Documentation, Release 11.4.1.dev1

C

cache_node() (in module
ironic_python_agent.hardware), 79
calc_raid_partition_sectors() (in module
ironic_python_agent.raid_utils), 94
calculate_raid_start() (in module
ironic_python_agent.raid_utils), 94
call_inspector() (in module
ironic_python_agent.inspector), 85
check_cmd_presence()

ironic_python_agent.inspector), 86

collect_system_logs() (in module
ironic_python_agent.utils), 97

collect_system_logs()
(ironic_python_agent.extensions.log.LogExtension
method), 31

collect_system_logs()
(ironic_python_agent.hardware.GenericHardwareManage
method), 64

collect_system_logs()

(ironic_python_agent.extensions.base. BaseAgentExte(}liK?&’ic—Py thon_agent.hardware.HardwareManager

method), 28
check_md5_enabled() (in module
ironic_python_agent.extensions.standby),
34
check_versions() (in module
ironic_python_agent.hardware), 79
clean_boot_records() (in module
ironic_python_agent.efi_utils), 54
clean_uefi_nvram()

(ironic_python_agent.hardware.GenericHafeR@M&ardwareManager

method), 63

CleanExtension (class in
ironic_python_agent.extensions.clean),
29

CleaningError, 56

ClockSyncError, 56

close() (ironic_python_agent.mdns.Zeroconf
method), 87

cmd (ironic_python_agent.netutils.ethtoolPermAddr
attribute), 88

collect_default() (in module
ironic_python_agent.inspector), 85

collect_dmidecode_info() (in module
ironic_python_agent.dmi_inspector), 54

collect_extra_hardware() (in module
ironic_python_agent.inspector), 85

collect_11dp() (in module
ironic_python_agent.inspector), 85

collect_lldp_data(Q)

method), 72

collect_usb_devices() (in module
ironic_python_agent.inspector), 86

CommandExecutionError, 56

commit) (ironic_python_agent.disk_partitioner.DiskPartitioner
method), 49

container_clean_step()
(ironic_python_agent.hardware_managers.container.Cont
method), 35

(class in
ironic_python_agent.hardware_managers.container),
35

content_length
(ironic_python_agent.extensions.standby.ImageDownload
property), 33

convert_image() (in module
ironic_python_agent.qgemu_img), 94

copy_config_from_vmedia() (in module
ironic_python_agent.utils), 97
count_mbr_partitions() (in module

ironic_python_agent.disk_utils), 49
(class in

ironic_python_agent.metrics_lib.metrics),

38

counter () (ironic_python_agent.metrics_lib.metrics.MetricLogge
method), 39

COUNTER_TYPE (ironic_python_agent.metrics_lib.metrics_collector
attribute), 41

COUNTER_TYPE (ironic_python_agent.metrics_lib.metrics_statsd.St

Counter

(ironic _python_agent.hardware.GenericHardwareM&%H’g@We)’ 42

method), 63
collect_lldp_data()

CPU (class in ironic_python_agent.hardware), 62
CPUCore (class in ironic_python_agent.hardware),

(ironic_python_agent.hardware. HardwareManager 62

method), 72
collect_logs() (in module
ironic_python_agent.inspector), 85
collect_numa_topology_info() (in module
ironic_python_agent.numa_inspector),
90
collect_pci_devices_info()

(in module

create_config_drive_partition() (in mod-
ule ironic_python_agent.partition_utils),
92

create_configuration()
(ironic_python_agent.hardware.GenericHardwareManage
method), 64

create_cpu_info_dict()

108

Index

Ironic Python Agent Documentation, Release 11.4.1.dev1

(ironic_python_agent.hardware.GenericHardwareManetgerd), 55

static method), 64 erase_block_device()
create_partition_table() (in module (ironic_python_agent.hardware.GenericHardwareManage
ironic_python_agent.utils), 97 method), 64
create_raid_device() (in module erase_block_device()
ironic_python_agent.raid_utils), 95 (ironic_python_agent.hardware. HardwareManager
create_raid_partition_tables() (in module method), 72
ironic_python_agent.raid_utils), 95 erase_devices()
D (ironic_python_agent.hardware. HardwareManager
method), 73
data (ironic_python_agent.netutils.ethtoolPermAddrerase_devices_express()
attribute), 88 (ironic_python_agent.hardware.GenericHardwareManage
dd() (in module ironic_python_agent.disk_utils), method), 65
49 erase_devices_metadata()
deduplicate_steps(Q) (in module (ironic_python_agent.hardware.GenericHardwareManage
ironic_python_agent.hardware), 80 method), 65
default Q) (ironic _python_agent.encoding.RESTJSQNEgéggg}tore O
method), 55 (ironic_python_agent.hardware.GenericHardwareManage
delete_configuration() method), 65
(ironic_python_agent.hardware.GenericHarshware Maruige ddr (class in
method), 64 ironic_python_agent.netutils), 88
DeployExtension (class in evaluate_hardware_support()
ironic_python_agent.extensions.deploy), (ironic_python_agent.hardware.GenericHardwareManage
30 method), 66
DeploymentError, 57 evaluate_hardware_support()
destroy_disk_metadata() (in module (ironic_python_agent.hardware. HardwareManager
ironic_python_agent.disk_utils), 49 method), 73
details (ironic_python_agent.errors.NotFound evaluate_hardware_support ()
attribute), 60 (ironic_python_agent.hardware_managers.cna.IntelCnaH
details (ironic_python_agent.errors.RESTError method), 35
attribute), 60 evaluate_hardware_support()
details_str (ironic_python_agent.errors.ImageChecksumExipénic_python_agent.hardware_managers.container.Con
attribute), 58 method), 36
determine_time_method() (ll’l module evaluate_hardware_support O
ironic_python_agent.utils), 98 (ironic_python_agent.hardware_managers.minx.Mellanox
DeviceNotFound, 57 method), 38
DictCollectionMetricLogger (class in execute() (in module ironic_python_agent.utils),
ironic_python_agent.metrics_lib.metrics_collector), 98
41 execute() (ironic_python_agent.extensions.base.BaseAgentExten.
DiskPartitioner (class in method), 28
ironic_python_agent.disk_partitioner), execute_bootc_install ()
48 (ironic_python_agent.extensions.standby.StandbyExtensio
dispatch_to_all_managers() (in module method), 33
ironic_python_agent.hardware), 80 execute_bootc_install()
dispatch_to_managers() (in module (ironic_python_agent.hardware.GenericHardwareManage
ironic_python_agent.hardware), 80 method), 66
do_heartbeat () execute_clean_step()
(ironic_python_agent.agent.IronicPythonAgentHeartbgeigic_python_agent.extensions.clean.CleanExtension
method), 44 method), 29
E execute_command ()

(ironic_python_agent.extensions.base. Execute Commandl
encode () (ironic_python_agent.encoding. RESTJISONEncoder

Index 109

Ironic Python Agent Documentation, Release 11.4.1.dev1

method), 29 method), 43
execute_deploy_step() force_heartbeat()
(ironic_python_agent.extensions.deploy.DeployExten@iemic_python_agent.agent.IronicPythonAgentHeartbeate
method), 30 method), 44
execute_service_step() format_exception() (in module
(ironic_python_agent.extensions.service.ServiceExtefiiaic_python_agent.api.app), 26
method), 32 from_config () (ironic_python_agent.agent.IronicPythonAgent
ExecuteCommandMixin (class in class method), 43
ironic_python_agent.extensions.base), 29 full_sync () (ironic_python_agent.hardware.GenericHardwareM
extension_manager() (in module method), 66
ironic_python_agent.inspector), 86 full_sync () (ironic_python_agent.hardware. HardwareManager
ExtensionError, 57 method), 73
extract_device() (in module
ironic_python_agent.utils), 98 G
Gauge (class in
F ironic_python_agent.metrics_lib.metrics),
FATILED (ironic_python_agent.extensions.base.AgentCommandSiatus
attribute), 27 gauge Q) (ironic_python_agent.metrics_lib.metrics.MetricLogger
FileSystemNotSupported, 57 method), 39
filter_device() GAUGE_TYPE (ironic_python_agent.metrics_lib.metrics_collector.D
(ironic_python_agent.hardware.GenericHardwareMantrgbute), 4 1
method), 66 GAUGE_TYPE (ironic_python_agent.metrics_lib.metrics_statsd.Stats
filter_device() attribute), 42
(ironic_python_agent.hardware. HardwareMgemzrate_t1ls_certificate() (in module
method), 73 ironic_python_agent.tls_utils), 96
filter_devices() (in module dgenerate_tls_certificate()
ironic_python_agent.hardware), 81 (ironic_python_agent.hardware.GenericHardwareManage
finalize_rescue() method), 66
(ironic_python_agent.extensions.rescue.Resgeolertaneionl s_certificate()
method), 32 (ironic_python_agent.hardware. HardwareManager
find_devices_by_hints() (in module method), 74
ironic_python_agent.device_hints), GENERIC (ironic_python_agent.hardware. HardwareSupport
46 attribute), 78
find_efi_partition() (in module GenericHardwareManager (class in
ironic_python_agent.disk_utils), 50 ironic_python_agent.hardware), 62
find_esp_raid(Q) (in module get_agent_params() (in module
ironic_python_agent.raid_utils), 95 ironic_python_agent.utils), 99
find_in_lshw() (in module get_and_validate_image_format() (in mod-
ironic_python_agent.utils), 98 ule ironic_python_agent.disk_utils), 50
find_partition_with_path() (in module get_bios_given_nic_name()
ironic_python_agent.inject_files), 84 (ironic_python_agent.hardware.GenericHardwareManage
fio_disk() (in module method), 66
ironic_python_agent.burnin), 45 get_block_devices_for_raid() (in module
fio_network() (in module ironic_python_agent.raid_utils), 95
ironic_python_agent.burnin), 45 get_bmc_address()
fix_gpt_partition() (in module (ironic_python_agent.hardware.GenericHardwareManage
ironic_python_agent.disk_utils), 50 method), 66
FlowExtension (class in get_bmc_address()
ironic_python_agent.extensions.flow), 30 (ironic_python_agent.hardware. HardwareManager
force_heartbeat() method), 74

(ironic_python_agent.agent.IronicPythonAgget _bmc_mac () (ironic_python_agent.hardware.GenericHardwar

110 Index

Ironic Python Agent Documentation, Release 11.4.1.dev1

method), 67 get_current_versions() (in module
get_bmc_mac() (ironic_python_agent.hardware. HardwareMémoager python_agent.hardware), 81
method), 74 get_default_ip_addr() (in module
get_bmc_v6address() ironic_python_agent.netutils), 88
(ironic_python_agent.hardware.Generic Hagbtarddfdrogesteps ()
method), 67 (ironic_python_agent.extensions.deploy.DeployExtension
get_bmc_v6address() method), 30
(ironic_python_agent.hardware. HardwareMyetngdeploy_steps ()
method), 74 (ironic_python_agent.hardware.GenericHardwareManage
get_boot_info() method), 68
(ironic_python_agent.hardware.Generic Hagbtarddfidrogesteps ()
method), 67 (ironic_python_agent.hardware. HardwareManager
get_boot_info() method), 75
(ironic_python_agent.hardware. HardwareMgatugdeploy_steps ()
method), 74 (ironic_python_agent.hardware_managers.container.Coni
get_boot_records() (in module method), 36
ironic_python_agent.efi_utils), 54 get_deploy_steps()
get_cached_node() (in module (ironic_python_agent.hardware_managers.minx.Mellanox
ironic_python_agent.hardware), 81 method), 38
get_clean_steps() get_dev_byte_size() (in module
(ironic_python_agent.extensions.clean. CleanExtensioronic_python_agent.disk_utils), 50
method), 30 get_dev_sector_size() (in module
get_clean_steps() ironic_python_agent.disk_utils), 50
(ironic_python_agent.hardware.GenericHagbtardMureegeinformation () (in module
method), 67 ironic_python_agent.disk_utils), 51
get_clean_steps() get_disk_identifier() (in module
(ironic_python_agent.hardware. HardwareManager ironic_python_agent.disk_utils), 51
method), 74 get_endpoint () (in module
get_clean_steps() ironic_python_agent.mdns), 87
(ironic_python_agent.hardware_managers.@ettaerdfimuaigyrHardwareManager
method), 36 (ironic_python_agent.mdns.Zeroconf
get_clean_steps() method), 87
(ironic_python_agent.hardware_managers.gaix. kletlom 63 DizviceHpythomraddemagtits. AccumulatedFailures
method), 38 method), 97
get_command_output () (in module dget_extension() (in module
ironic_python_agent.utils), 99 ironic_python_agent.extensions.base), 29
get_command_result() get_extension()
(ironic_python_agent.agent.IronicPythonAgent (ironic_python_agent.extensions.base. Execute CommandM
method), 43 method), 29
get_component_devices() (in module get_hardware_info()
ironic_python_agent.hardware), 81 (ironic_python_agent.extensions.poll. PollExtension
get_configdrive() (in module method), 31
ironic_python_agent.partition_utils), get_holder_disks() (in module
92 ironic_python_agent.hardware), 81
get_cpu_cores() get_hostname () (in module
(ironic_python_agent.hardware.GenericHardwareMdrnmgier python_agent.netutils), 88
method), 68 get_interface_driver() (in module
get_cpus) (ironic_python_agent.hardware.Generic Hardwaieddimgpahon_agent.netutils), 88
method), 68 get_interface_info()
get_cpus) (ironic_python_agent.hardware. HardwareManagémonic_python_agent.hardware.GenericHardwareManage
method), 75 method), 69

Index 111

Ironic Python Agent Documentation, Release 11.4.1.dev1

get_interface_info() ironic_python_agent.utils), 99
(ironic_python_agent.hardware. HardwareMyetugaode _uuid ()
method), 76 (ironic_python_agent.agent.IronicPythonAgent
get_interface_info() method), 43
(ironic_python_agent.hardware_managers. g MedlesocDees:citid(ireMatimger module
method), 38 ironic_python_agent.numa_inspector),
get_interface_pci_address() (in module 90
ironic_python_agent.netutils), 88 get_nodes_memory_info() (in module
get_ipv4_addr() (in module ironic_python_agent.numa_inspector),
ironic_python_agent.netutils), 89 91
get_ipv4_addr() get_nodes_nics_info() (in module
(ironic_python_agent.hardware.GenericHardwareMdnager python_agent.numa_inspector),
method), 69 91
get_ipv6_addr() (in module det_numa_node_id() (in module
ironic_python_agent.netutils), 89 ironic_python_agent.numa_inspector),
get_ipv6_addr() 91
(ironic_python_agent.hardware.GenericHagbtared{dmegeal]l_device()
method), 69 (ironic_python_agent.hardware.GenericHardwareManage
get_journalctl_output() (in module method), 69
ironic_python_agent.utils), 99 get_os_install_device()
get_labelled_partition() (in module (ironic_python_agent.hardware. HardwareManager
ironic_python_agent.partition_utils), 92 method), 76
get_lldp_info() (in module get_partition() (in module
ironic_python_agent.netutils), 89 ironic_python_agent.partition_utils),
get_mac_addr() (in module 93
ironic_python_agent.netutils), 89 get_partition_path_by_number () (in module
get_managers() (in module ironic_python_agent.efi_utils), 55
ironic_python_agent.hardware), 82 get_partition_table_type() (in module
get_managers_detail() (in module ironic_python_agent.disk_utils), 51
ironic_python_agent.hardware), 82 get_partition_table_type_from_specs()
get_memory () (ironic_python_agent.hardware.Generic HardvimraMdnlegironic_python_agent.utils), 99
method), 69 get_partition_uuids()
get_memory () (ironic_python_agent.hardware. HardwareMafirgewc_python_agent.extensions.standby.StandbyExtensio
method), 76 method), 34
get_metric_name() get_partitions()
(ironic_python_agent.metrics_lib.metrics.MetricLoggéronic_python_agent.disk_partitioner.DiskPartitioner
method), 39 method), 49
get_metrics_data() get_real_ipQ) (in module
(ironic_python_agent.metrics_lib.metrics.MetricLoggeonic_python_agent.api.request_log), 27
method), 40 get_route_source() (in module
get_metrics_data() ironic_python_agent.utils), 100
(ironic_python_agent.metrics_lib.metrics_cgBectoePittEoltaapsl)etricLogger
method), 41 (ironic_python_agent.extensions.service.ServiceExtension
get_metrics_logger() (in module method), 32
ironic_python_agent.metrics_lib.metrics_utdel,_service_steps()
42 (ironic_python_agent.hardware.GenericHardwareManage
get_multipath_status() (in module method), 69
ironic_python_agent.hardware), 82 get_service_steps()
get_next_free_raid_device() (in module (ironic_python_agent.hardware. HardwareManager
ironic_python_agent.raid_utils), 95 method), 76
get_node_boot_mode() (in module get_service_steps()

112 Index

Ironic Python Agent Documentation, Release 11.4.1.dev1

(ironic_python_agent.hardware_managers. (OARDIRE. MANMeFRINNANEreManager

method), 36
get_service_steps()

(ironic_python_agent.hardware_managers.cna.lntelCnaH

attribute), 35

(ironic_python_agent.hardware_managers. AARDMEREMARDEGER [RME areManager

method), 38
get_skip_list_from_node_for_disks()

(ironic_python_agent.hardware_managers.container.Cont

attribute), 35

(ironic_python_agent.hardware.Generic HaHARDWARE1APNAGER _NAME

method), 70
get_skip_list_from_node_for_disks()

(ironic_python_agent.hardware_managers.minx.Mellanox

attribute), 38

(ironic_python_agent.hardware. Hardware VRARIP§ARE_MANAGER_VERSION

method), 77
get_skip_list_from_node_for_raids()

(ironic_python_agent.hardware.GenericHardwareManage

attribute), 62

(ironic_python_agent.hardware. Generic HaHHARDWARFAPNAGER_VERSTON

method), 70
get_skip_list_from_node_for_raids()

(ironic_python_agent.hardware_managers.cna.IntelCnaH

attribute), 35

(ironic_python_agent.hardware. Hardware VRARDIARE _MANAGER_VERSION

method), 77
get_ssl_client_options() (in
ironic_python_agent.utils), 100

module

get_status () (ironic_python_agent.agent.IronicPythonAgentironic_python_agent. hardware_managers.minx.Mellanox

method), 43
get_system_vendor_info()

(ironic_python_agent.hardware_managers.container.Cont

attribute), 35
HARDWARE_MANAGER_VERSION

attribute), 38

HardwareManager (class in

(ironic_python_agent.hardware.GenericHardwareMdnager python_agent.hardware), 72

method), 70
get_usb_devices()

HardwareManagerConfigurationError, 57
HardwareManagerMethodNotFound, 57

(ironic_python_agent.hardware.GenericHallamdeAtmeMewagerNotFound, 57

method), 70
get_usb_devices()

(ironic_python_agent.hardware. Hardware VitaxdsareType

method), 77

get_version() (ironic_python_agent.hardware. Hahbeardddanddetironic_python_agent.ironic_api_client. APIClient

method), 77
get_volume_name_of_raid_device() (in
module ironic_python_agent.raid_utils),

95

get_wildcard_address() (in module
ironic_python_agent.netutils), 89
gpu_burn() (in module
ironic_python_agent.burnin), 45
guess_root_disk() (in module
ironic_python_agent.utils), 100
gzip_and_b64encode() (in module

ironic_python_agent.utils), 100

H

handle_exception()
(ironic_python_agent.api.app.Application
method), 26

HARDWARE_MANAGER_NAME

HardwareSupport (class in
ironic_python_agent.hardware), 78
(class in

ironic_python_agent.hardware), 78

method), 86

heartbeat_api (ironic_python_agent.ironic_api_client. APIClien

attribute), 87
HeartbeatConflictError, 57
HeartbeatConnectionError, 57
HeartbeatError, 58
Host (class in ironic_python_agent.agent), 42
hostname (ironic_python_agent.agent. Host

attribute), 43

ifr_data (ironic_python_agent.netutils.ifreq at-
tribute), 89

ifr_data_ethtool_perm_addr
(ironic_python_agent.netutils.ifreq
attribute), 89

ifr_data_ethtool_perm_addr
(ironic_python_agent.netutils.ifreq_data

(ironic_python_agent.hardware.GenericHardwareMantrgbute), 89

attribute), 62

ifr_flags (ironic_python_agent.netutils.ifreq at-

Index

113

Ironic Python Agent Documentation, Release 11.4.1.dev1

tribute), 89

InvalidMetricConfig,

ifr_flags (ironic_python_agent.netutils.ifreq_dataironic_python_agent

attribute), 89
ifr_ifrn (ironic_python_agent.netutils.ifreq at-
tribute), 89
ifreq (class in ironic_python_agent.netutils), 89
ifreq_data (class in
ironic_python_agent.netutils), 89
image_info() (in module
ironic_python_agent.qgemu_img), 94
ImageChecksumError, 58
ImageDownload (class
ironic_python_agent.extensions.standby),
33
ImageDownloadError, 58
ImageDownloadOutofSpaceError, 58
ImageDownloadTimeoutError, 58
ImageExtension (class in
ironic_python_agent.extensions.image),
31
ImageWriteError, 58
IncompatibleHardwareMethodError, 58
IncompatibleNumaFormatError, 59
init_ext_manager() (in module
ironic_python_agent.extensions.base), 29

in

module, 102
ironic_python_agent.
module, 42
ironic_python_agent.
module, 27
ironic_python_agent.
module, 26
ironic_python_agent.
module, 27
ironic_python_agent.
module, 45
ironic_python_agent.
module, 27
ironic_python_agent.
module, 27
ironic_python_agent.
module, 27
ironic_python_agent.
module, 46
ironic_python_agent.
module, 46
ironic_python_agent.
module, 48

initialize () (ironic_python_agent.hardware.GendnioHuedpytdidnnagent .

method), 70

module, 49

59

agent

api

api.app
api.request_log
burnin

cmd

cmd.agent

cmd. inspect
config
device_hints
disk_partitioner

disk_utils

initialize(Q) (ironic_python_agent.hardware. HardworeMapygdon_agent .dmi_inspector

method), 77

module, 54

initialize() (ironic_python_agent.hardware_maningend cnpynizdfinalendwetdMuanadear

method), 35
inject_files() (in

ironic_python_agent.inject_files), 84
inject_files()

module, 54

module, 55
ironic_python_agent.

(ironic_python_agent.hardware.GenericHardwaneahegéH

method), 71
inspect() (in module
ironic_python_agent.inspector), 86
InspectionError, 59
install_bootloader()

ironic_python_agent.
module, 35

ironic_python_agent.
module, 27

ironic_python_agent.

(ironic_python_agent.extensions.image.lmage Extodidre, 29

method), 31
IntelCnaHardwareManager (class in

ironic_python_agent.
module, 30

ironic_python_agent.hardware_managers.ciapnic_python_agent.

35
interface_has_carrier() (in

ironic_python_agent.netutils), 89
InvalidCommandError, 59
InvalidCommandParamsError, 59
InvalidContentError, 59
InvalidImage, 59

module

module, 30
ironic_python_agent.
module, 31
ironic_python_agent.
module, 31
ironic_python_agent.
module, 31

module ironic_python_agent.encoding

errors
extensions
extensions.base
extensions.clean
extensions.deploy
extensions.flow
extensions.image
extensions.log

extensions.poll

114

Index

Ironic Python Agent Documentation, Release 11.4.1.dev1

ironic_python_agent.

module, 32

ironic_python_agent.

module, 32

ironic_python_agent.

module, 33

ironic_python_agent.

module, 35

ironic_python_agent.

module, 62

ironic_python_agent.

module, 38

ironic_python_agent.

module, 35

ironic_python_agent.

module, 35

ironic_python_agent.

module, 38

ironic_python_agent.

module, 84

ironic_python_agent.

module, 84

ironic_python_agent.

module, 85

ironic_python_agent.

module, 86
ironic_python_agent
module, 87
ironic_python_agent
module, 42
ironic_python_agent
module, 38
ironic_python_agent
module, 41

ironic_python_agent.

module, 42

ironic_python_agent.

module, 42

ironic_python_agent.

module, 88

ironic_python_agent.

module, 90

ironic_python_agent.

module, 92

ironic_python_agent.

module, 94

ironic_python_agent.

module, 94

ironic_python_agent.

module, 96

ironic_python_agent.

extensions

extensions

extensions

extensions

hardware

.rescue
.service
.standby

.system

hardware_managers

hardware_managers
hardware_managers

hardware_managers

inject_files

inspect

inspector

ironic_api_client

.mdns

.metrics_1lib

.metrics_lib.metrics is_vlan(Q)

module, 97
ironic_python_agent.version
module, 102
IronicAPIError, 59
IronicInspection (class in
ironic_python_agent.inspect), 84
IronicPythonAgent (class in
ironic_python_agent.agent), 43
IronicPythonAgentHeartbeater (class in
ironic_python_agent.agent), 44
IronicPythonAgentStatus (class in
ironic_python_agent.agent), 44
.cnds_block_device() (in module
ironic_python_agent.disk_utils), 51
. corsaioerd () (in module
ironic_python_agent.netutils), 89
.mlns_char_device() (in module

ironic_python_agent.utils), 100
is_done() (ironic_python_agent.extensions.base.AsyncCommand

method), 28

is_done() (ironic_python_agent.extensions.base.BaseCommandR
method), 28

is_journalctl_present() (in module
ironic_python_agent.utils), 100

is_last_char_digit(Q (in module

ironic_python_agent.disk_utils), 51
is_md_device() (in module

ironic_python_agent.hardware), 82
is_network_device() (in module

ironic_python_agent.netutils), 89
(in
ironic_python_agent.netutils), 89

module

.metrics_lib.metrics_Erllector

metrics_lib.metrics_dgedwdq (ironic_python_agent.extensions.base.AsyncCommandResi

method), 28
metrics_lib.metrics_ueild) (ironic_python_agent.extensions.base.BaseCommandResul
method), 28
jsonify () (in module

netutils

numa_inspector

partition_utils

gemu_img
raid_utils
tls_utils

utils

ironic_python_agent.api.app), 26

L

list_all_block_devices() (in
ironic_python_agent.hardware), 82

list_block_devices()
(ironic_python_agent.hardware.GenericHardwareManage
method), 71

list_block_devices()
(ironic_python_agent.hardware. HardwareManager
method), 78

list_block_devices_check_skip_list()
(ironic_python_agent.hardware.GenericHardwareManage

module

Index

115

Ironic Python Agent Documentation, Release 11.4.1.dev1

method), 71 attribute), 78
list_block_devices_check_skip_list() MAINLINE (ironic_python_agent.hardware. HardwareSupport
(ironic_python_agent.hardware. HardwareManager attribute), 78

method), 78 make_link() (in module
list_command_results() ironic_python_agent.api.app), 26

(ironic_python_agent.agent.IronicPythonAgeake_partitions() (in module

method), 43 ironic_python_agent.disk_utils), 52
list_hardware_info() (in module manage_uefi() (in module

ironic_python_agent.hardware), 83 ironic_python_agent.efi_utils), 55
list_hardware_info() match_root_device_hints() (in module

(ironic_python_agent.hardware.GenericHardwareMdnagier python_agent.device_hints), 47

method), 71 max_delay (ironic_python_agent.inspect.Ironiclnspection
list_hardware_info() attribute), 84

(ironic_python_agent.hardware. HardwareMuaamigerror_jitter_multiplier

method), 78 (ironic_python_agent.agent.IronicPythonAgentHeartbeate
list_interfaces() (in module attribute), 44

ironic_python_agent.netutils), 89 max_jitter_multiplier
list_network_interfaces() (ironic_python_agent.agent.IronicPythonAgentHeartbeate

(ironic_python_agent.hardware.GenericHardwareMantigbute), 44

method), 71 max_jitter_multiplier
list_network_interfaces() (ironic_python_agent.inspect.Ironiclnspection

(ironic_python_agent.hardware. HardwareManager attribute), 84

method), 78 md_get_raid_devices() (in module
list_opts() (in module ironic_python_agent.hardware), 83

ironic_python_agent.config), 46 md_restart() (in module
list_opts() (in module ironic_python_agent.hardware), 83

ironic_python_agent.mdns), 88 MellanoxDeviceHardwareManager (class in
list_opts(Q (in module ironic_python_agent.hardware_managers.mlnx),

ironic_python_agent.metrics_lib.metrics_statsd), 38

42 Memory (class in ironic_python_agent.hardware),
list_partitions() (in module 79

ironic_python_agent.disk_utils), 51 message (ironic_python_agent.errors.AgentlsBusy
lockdown () (ironic_python_agent.extensions.system.SystemEattnibigte), 56

method), 35 message (ironic_python_agent.errors.BlockDeviceEraseError
log_early_log_to_logger() (in module attribute), 56

ironic_python_agent.utils), 100 message (ironic_python_agent.errors.BlockDeviceError
LogExtension (class in attribute), 56

ironic_python_agent.extensions.log), message (ironic_python_agent.errors.CleaningError

31 attribute), 56
lookup_api (ironic_python_agent.ironic_api_clientel3Kagentironic_python_agent.errors.ClockSyncError

attribute), 87 attribute), 56
lookup_lock_pause message (ironic_python_agent.errors.CommandExecutionError

(ironic_python_agent.ironic_api_client. APIClient attribute), 57

attribute), 87 message (ironic_python_agent.errors.DeploymentError
lookup_node Q) (ironic_python_agent.ironic_api_client.APlGliieubute), 57

method), 87 message (ironic_python_agent.errors.DeviceNotFound
LookupAgentIPError, 60 attribute), 57
LookupNodeError, 60 message (ironic_python_agent.errors.HardwareManagerConfigurc

attribute), 57
M message (ironic_python_agent.errors.HardwareManagerMethodN
MAC_ADDRESS (ironic_python_agent.hardware. HardwareType attribute), 57

116 Index

Ironic Python Agent Documentation, Release 11.4.1.dev1

message (ironic_python_agent.errors.HardwareManagerNot Kauridute), 61
attribute), 57

message (ironic_python_agent.errors.HeartbeatConflictErrorattribute), 61
attribute), 57

message (ironic_python_agent.errors.HeartbeatConnectionEatoribute), 61
attribute), 58 MetricLogger

message (ironic_python_agent.errors.HeartbeatError
attribute), 58 39

message (ironic_python_agent.errors.ImageChecksuMigmraec sNotSupported, 60
attribute), 58

attribute), 58 attribute), 44
message (ironic_python_agent.errors.ImageDownload fiphearEbeat_interval

attribute), 58
message (ironic_python_agent.errors.ImageWriteError attribute), 44

attribute), 58 min_jitter_multiplier

message (ironic_python_agent.errors.Incompatible Hardware Meshéal Ipnndion_agent.agent.IronicPythonAgentHeartbeate

attribute), 58 attribute), 44
message (ironic_python_agent.errors.Incompatible Nuimg FdrenenFmwl tiplier
attribute), 59
message (ironic_python_agent.errors.InvalidCommandError attribute), 84
attribute), 59
message (ironic_python_agent.errors.Invalid CommarnoidakemsError
attribute), 59

attribute), 59

message (ironic_python_agent.errors.Invalidlmage
attribute), 59

message (ironic_python_agent.errors.InvalidMetricConfig
attribute), 59

message (ironic_python_agent.errors.IronicAPIError
attribute), 59

27

attribute), 60

attribute), 60
message (ironic_python_agent.errors.MetricsNotSupported 48
attribute), 60

(ironic_python_agent.errors.NotFound
attribute), 60

message
54

message (ironic_python_agent.errors.ProtectedDeviceEriamonic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.

attribute), 60

message (ironic_python_agent.errors.RESTError
attribute), 60

message (ironic_python_agent.errors.ServicingError

attribute), 61 27

message (ironic_python_agent.errors.SoftwareRAIDErroironic_python_agent.

attribute), 61 29

message (ironic_python_agent.errors.SystemRebootErrorironic_python_agent.

attribute), 61 30

message (ironic_python_agent.errors.UnknownNodeErrorronic_python_agent.

(class
ironic_python_agent.metrics_lib.metrics),

ironic_python_agent,
message (ironic_python_agent.errors.InvalidContentErraironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.

ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
message (ironic_python_agent.errors.LookupAgentIPErraronic_python_agent.
ironic_python_agent.
message (ironic_python_agent.errors.LookupNodeError ironic_python_agent.
ironic_python_agent.

ironic_python_agent.
ironic_python_agent.

message (ironic_python_agent.errors.VersionMismatch

message (ironic_python_agent.errors. VirtualMediaBootError

in

min_error_jitter_multiplier
message (ironic_python_agent.errors.ImageDownloadError (ironic_python_agent.agent.IronicPythonAgentHeartbeate

(ironic_python_agent.agent.IronicPythonAgentHeartbeate

(ironic_python_agent.inspect.IronicInspection

mkfs () (in module ironic_python_agent.utils), 100

102

agent, 42

api, 27
api.app, 26
api.request_log,

burnin, 45

cmd, 27
cmd.agent, 27
cmd.inspect, 27
config, 46
device_hints, 46
disk_partitioner,

disk_utils, 49
dmi_inspector,

efi_utils, 54
encoding, 55
errors, 56
extensions, 35
extensions.base,
extensions.clean,

extensions.deploy,

extensions. flow,

Index

117

Ironic Python Agent Documentation, Release 11.4.1.dev1

30

ironic_python_agent.

31

ironic_python_agent.

31

ironic_python_agent.

31

ironic_python_agent.

32

ironic_python_agent.

32

ironic_python_agent.

33

ironic_python_agent.

35

ironic_python_agent.
ironic_python_agent.

38

ironic_python_agent.

35

ironic_python_agent.

35

ironic_python_agent.

38

ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.

86
ironic_python_agent
ironic_python_agent
ironic_python_agent

38
ironic_python_agent

41
ironic_python_agent

42
ironic_python_agent

42

ironic_python_agent.
ironic_python_agent.

90

ironic_python_agent.

92

ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
ironic_python_agent.
mounted () (in module ironic_python_agent.utils),

100

extensions.

extensions.

extensions.

N

image, NetworkInterface (class
ironic_python_agent.hardware), 79
NONE (ironic_python_agent.hardware. HardwareSupport
attribute), 78
poll, NoopMetricLogger (class
ironic_python_agent.metrics_lib.metrics),

log,

in

extensions.rescue, 41
_ ~ NotFound, 60
extensions.service,
extensions.standbyyerride () (in module
ironic_python_agent.config), 46
exten51ons.systen%)
hardware, 62 parse_capabilities() (in module
hardware_managers, ironic_python_agent.utils), 101
parse_device_tags() (in module
hardware_managers.cna, ironic_python_agent.utils), 101
parse_dmi () (in module
hardware_managers. contaigefic_python_agent.dmi_inspector),
54
hardware_managerspa#s&.root_device_hints() (in module
ironic_python_agent.device_hints), 48
inject_files, 84 partition_index_to_path() (in module
inspect, 84 ironic_python_agent.disk_utils), 52
inspector, 85 partprobe() (in module
ironic_api_client, ironic_python_agent.disk_utils), 52

netutils, 88

numa_inspector,

partition_utils,

gemu_img, 94
raid_utils,

tls_utils, 96

utils, 97
version, 102

path (ironic_python_agent.tls_utils. TlsCertificate

.mdns, 87 attribute), 96
.metrics_lib,42 PollExtension (class in
.metrics_lib.metrics, ironic_python_agent.extensions.poll),
31
.metrics_lib.metrigspgbdiectontig() (in module
ironic_python_agent.config), 46
.metrics_lib.metrigspstatedimage () (in module

ironic_python_agent.disk_utils), 53

.metrics_lib.metrigsrut@dsic_pyrhon_agent.agent.Host attribute),

43
power_off () (ironic_python_agent.extensions.standby.StandbyEx
method), 34
prepare_boot_partitions_for_softraid()
(in module
ironic_python_agent.raid_utils), 96
prepare_image()
(ironic_python_agent.extensions.standby.StandbyExtensio
method), 34
private_key_path
(ironic_python_agent.tls_utils. TlsCertificate
attribute), 96
process_lookup_data()

94

118

Index

Ironic Python Agent Documentation, Release 11.4.1.dev1

(ironic _python_agent.agent.lronichthonAgSzt

method), 44
ProtectedDeviceError, 60

R

raise_if_needed()

(ironic_python_agent.utils.AccumulatedFailures

method), 97
RawPromiscuousSockets (class in
ironic_python_agent.netutils), 88
read_cpu_info()

safety_check_block_device() (in module
ironic_python_agent.hardware), 83

save_api_client() (in module
ironic_python_agent.hardware), 84

send_counter()

(ironic_python_agent.metrics_lib.metrics.MetricLogger

method), 40

send_gauge () (ironic_python_agent.metrics_lib.metrics.MetricLc
method), 40

send_timer () (ironic_python_agent.metrics_lib.metrics.MetricLo

(ironic _python_agent.hardware.GenericHardwarquﬂglggd) 40

method), 71
remove_boot_record() (in

ironic_python_agent.efi_utils), 55
remove_large_keys() (in

ironic_python_agent.utils), 101
Request (class in ironic_python_agent.api.app),

module

module

26
RequestedObjectNotFoundError, 60
RequestLoglMiddleware (class in

ironic_python_agent.api.request_log), 27

require_agent_token_for_command()
(ironic_python_agent.api.app.Application
method), 26

rescan_device() (in module
ironic_python_agent.utils), 101

RescueExtension (class in
ironic_python_agent.extensions.rescue),
32

RESTError, 60

RESTJSONEncoder (class in
ironic_python_agent.encoding), 55

run() (in module
ironic_python_agent.cmd.agent), 27

run() (in module
ironic_python_agent.cmd.inspect),
27

Serializable (class in
ironic_python_agent.encoding), 56

serializable_fields
(ironic_python_agent.agent.IronicPythonAgentStatus
attribute), 44

serializable_fields
(ironic_python_agent.encoding.Serializable
attribute), 56

serializable_fields
(ironic_python_agent.errors. RESTError
attribute), 60

serializable_fields
(ironic_python_agent.extensions.base. BaseCommandRest
attribute), 28

serializable_fields
(ironic_python_agent.hardware.BlockDevice
attribute), 62

serializable_fields
(ironic_python_agent.hardware. BootInfo
attribute), 62

serializable_fields
(ironic_python_agent.hardware. CPU
attribute), 62

serializable_fields
(ironic_python_agent.hardware. CPUCore
attribute), 62

run() (ironic_python_agent. agent.lronichthonAgené erializable_fields

method), 44

(ironic_python_agent.hardware.Memory

run() (ironic _python_agent.agent.IronichthonAgentHeartbeg[ﬁl;bute) 79

method), 44

serializable_fields

run() (ironic _python_agent.extensions.base.AsyncCommandlgﬁ.mﬁc _python_agent.hardware.NetworkInterface

method), 28

attribute), 79

run() (ironic_python_agent. inspect.Ironiclnspectiongari a1iz able_fields

method), 85

(ironic_python_agent.hardware.SystemFirmware

run_image () (ironic _python_agent.extensions.standby.Standgy#;g%éjmpg

method), 34

serializable_fields

RUNNING (ironic _python_agent.extensions.base.AgentCommar@l,%g[yfpython agent.hardware.SystemVendorInfo

attribute), 27

attribute), 79
serializable_fields

Index

119

Ironic Python Agent Documentation, Release 11.4.1.dev1

(ironic_python_agent.hardware.USBInfo status_code (ironic_python_agent.errors.NotFound

attribute), 79 attribute), 60
SerializableComparable (class in status_code (ironic_python_agent.errors.RESTError
ironic_python_agent.encoding), 56 attribute), 60
serialize() (ironic_python_agent.encoding.Serialgubp() (ironic_python_agent.agent.IronicPythonAgentHeartbeater
method), 56 method), 44
serialize() (ironic_python_agent.extensions.base.gtopdQ dirmaedRethiin_agent.api.app.Application
method), 28 method), 26
serve_ipa_api() StreamingClient (class in
(ironic_python_agent.agent.IronicPythonAgent ironic_python_agent.utils), 97
method), 44 stress_ng() (in module
SERVICE_PROVIDER ironic_python_agent.burnin), 45
(ironic_python_agent.hardware. HardwareSgppaeigs_ng_cpu() (in module
attribute), 78 ironic_python_agent.burnin), 45
ServiceExtension (class in stress_ng_vm() (in module
ironic_python_agent.extensions.service), ironic_python_agent.burnin), 46
32 SUCCEEDED (ironic_python_agent.extensions.base.AgentCommand,
ServiceLookupFailure, 60 attribute), 27
ServicingError, 61 SuppliedAuth (class in
set_agent_advertise_addr() ironic_python_agent.extensions.standby),
(ironic_python_agent.agent.IronicPythonAgent 34
method), 44 supports_auto_tls()
set_node_info() (ironic_python_agent.ironic_api_client. APIClient
(ironic_python_agent.extensions.poll. PollExtension method), 87
method), 31 sync Q) (ironic_python_agent.extensions.standby.StandbyExtensior
size (ironic_python_agent.netutils.ethtoolPermAddr method), 34
attribute), 88 sync_clock() (in module
SoftwareRAIDError, 61 ironic_python_agent.utils), 102
split_command() sync_command () (in module
(ironic_python_agent.extensions.base. Execute Commematixpmthon_agent.extensions.base), 29
method), 29 SyncCommandResult (class in
split_device_and_partition_number() (in ironic_python_agent.extensions.base), 29
module ironic_python_agent.utils), 101 SystemExtension (class in
StandbyExtension (class in ironic_python_agent.extensions.system),
ironic_python_agent.extensions.standby), 35
33 SystemFirmware (class in
start) (ironic_python_agent.api.app.Application ironic_python_agent.hardware), 79
method), 26 SystemRebootError, 61
start () (ironic_python_agent.extensions.base.Asyn8¢stemiedidexrIn fo (class in
method), 28 ironic_python_agent.hardware), 79
start_£flow() (ironic_python_agent.extensions.flow.FlowExtension
method), 30
StatsdMetricLogger (class in text (ironic_python_agent.tls_utils. TlsCertificate
ironic_python_agent.metrics_lib.metrics_statsd), attribute), 96
42 Timer (class in
status_code (ironic_python_agent.errors.AgentlsBusy ironic_python_agent.metrics_lib.metrics),
attribute), 56 41
status_code (ironic_python_agent.errors.ImageDowitteadDitivomidpython_agent.metrics_lib.metrics.MetricLogger
attribute), 58 method), 41
status_code (ironic_python_agent.errors.Invalid CIAMEREFSPE (ironic_python_agent.metrics_lib.metrics_collector.D
attribute), 59 attribute), 41

120 Index

Ironic Python Agent Documentation, Release 11.4.1.dev1

TIMER_TYPE (ironic_python_agent.metrics_lib.metriwaistatfdStdsskctachegome _available() (in

attribute), 42
TlsCertificate (class in
ironic_python_agent.tls_utils), 96
trigger_device_rescan() (in
ironic_python_agent.disk_utils), 53
try_collect_command_output() (in module
ironic_python_agent.utils), 102

module

try_execute() (in module
ironic_python_agent.utils), 102

U

udev_settle() (in module

ironic_python_agent.disk_utils), 53
UnknownNodeError, 61

unlink_without_raise() (in module
ironic_python_agent.utils), 102
update_cached_node() (in module

ironic_python_agent.hardware), 84
update_nvidia_nic_firmware_image()

module ironic_python_agent.disk_utils),
54

wait_for_disks()
(ironic_python_agent.hardware. HardwareManager
method), 78

work_on_disk() (in module
ironic_python_agent.partition_utils),
93

wrap_ipv6e () (in
ironic_python_agent.netutils), 90

write_image () (ironic_python_agent.hardware.GenericHardwar
method), 72

write_rescue_password()
(ironic_python_agent.extensions.rescue.Rescue Extension
method), 32

module

Z

Zeroconf (class in ironic_python_agent.mdns), 87

(ironic_python_agent.hardware_managers.mlnx.MellanoxDeviceHardwareManager

method), 38
update_nvidia_nic_firmware_settings()

(ironic_python_agent.hardware_managers.mlnx.MellanoxDeviceHardwareManager

method), 38
USBInfo (class in ironic_python_agent.hardware),
79

Vv

validate_agent_token()

(ironic_python_agent.agent.Ironic PythonAgent

method), 44
validate_configuration()

(ironic_python_agent.hardware.GenericHardwareManager

method), 71
verify_image()

(ironic_python_agent.extensions.standby.ImageDownload

method), 33
version() (in
ironic_python_agent.api.app), 27
VERSION_MISMATCH

module

(ironic_python_agent.extensions.base.AgentCommandStatus

attribute), 277
VersionMismatch, 61
VirtualMediaBootError, 61

W

wait) (ironic_python_agent.extensions.base.BaseCommandResult

method), 29
wait_for_dhcp((in
ironic_python_agent.inspector), 86

module

Index

121

	Overview
	Contents
	Installing Ironic Python Agent
	Image Builders
	IPA Flags
	IPA and TLS
	Client Configuration
	Server Configuration

	Hardware Managers

	Ironic Python Agent Administration
	How it works
	Integration with Ironic
	Lookup
	Heartbeat

	Inspection
	Instance agent
	Inspection Data

	Hardware Inventory
	Image Checksums

	Built-in hardware managers
	GenericHardwareManager
	Deploy steps
	Injecting files

	Clean steps
	Service steps
	Cleaning safeguards
	Devices Skip List
	Shared Disk Cluster Filesystems

	Custom hardware managers
	MellanoxDeviceHardwareManager
	Clean steps
	Service steps

	Rescue mode
	Overview
	Support in ironic-python-agent images
	DIB

	Troubleshooting Ironic-Python-Agent (IPA)
	Gaining Access to IPA on a node
	Access via ssh
	ironic-python-agent-builder

	Access via console
	ironic-python-agent-builder: dynamic-login
	ironic-python-agent-builder: devuser

	How to pause the IPA for debugging

	Set IPA to debug logging
	Where can I find the IPA logs
	Manually restart IPA
	Cleaning halted with ProtectedDeviceError
	What filesystems are looked for
	I’m okay with deleting, how do I tell IPA to clean the disk(s)?
	Via Ironic
	Via a node’s kernel_append_params setting
	Via Ironic’s Boot time PXE parameters (Globally)
	Via Ramdisk configuration

	References

	Contributing to Ironic Python Agent
	Hardware Managers
	How are methods executed on HardwareManagers?
	Why build a custom HardwareManager?
	How can I build a custom HardwareManager?
	Custom HardwareManagers and Cleaning
	Custom HardwareManagers and Deploying
	Custom HardwareManagers and Service operations
	Versioning
	Priority

	Emitting metrics from Ironic-Python-Agent (IPA)
	Overview
	Using a context manager
	Explicitly sending metrics

	Rescue Mode
	finalize_rescue command

	Generated Developer Documentation
	ironic_python_agent
	ironic_python_agent package
	Subpackages
	ironic_python_agent.api package
	Submodules
	ironic_python_agent.api.app module
	ironic_python_agent.api.request_log module
	Module contents
	ironic_python_agent.cmd package
	Submodules
	ironic_python_agent.cmd.agent module
	ironic_python_agent.cmd.inspect module
	Module contents
	ironic_python_agent.extensions package
	Submodules
	ironic_python_agent.extensions.base module
	ironic_python_agent.extensions.clean module
	ironic_python_agent.extensions.deploy module
	ironic_python_agent.extensions.flow module
	ironic_python_agent.extensions.image module
	ironic_python_agent.extensions.log module
	ironic_python_agent.extensions.poll module
	ironic_python_agent.extensions.rescue module
	ironic_python_agent.extensions.service module
	ironic_python_agent.extensions.standby module
	ironic_python_agent.extensions.system module
	Module contents
	ironic_python_agent.hardware_managers package
	Submodules
	ironic_python_agent.hardware_managers.cna module
	ironic_python_agent.hardware_managers.container module
	ironic_python_agent.hardware_managers.mlnx module
	Module contents
	ironic_python_agent.metrics_lib package
	Submodules
	ironic_python_agent.metrics_lib.metrics module
	ironic_python_agent.metrics_lib.metrics_collector module
	ironic_python_agent.metrics_lib.metrics_statsd module
	ironic_python_agent.metrics_lib.metrics_utils module
	Module contents
	Submodules
	ironic_python_agent.agent module
	ironic_python_agent.burnin module
	ironic_python_agent.config module
	ironic_python_agent.device_hints module
	ironic_python_agent.disk_partitioner module
	ironic_python_agent.disk_utils module
	ironic_python_agent.dmi_inspector module
	ironic_python_agent.efi_utils module
	ironic_python_agent.encoding module
	ironic_python_agent.errors module
	ironic_python_agent.hardware module
	ironic_python_agent.inject_files module
	ironic_python_agent.inspect module
	ironic_python_agent.inspector module
	ironic_python_agent.ironic_api_client module
	ironic_python_agent.mdns module
	ironic_python_agent.netutils module
	ironic_python_agent.numa_inspector module
	ironic_python_agent.partition_utils module
	ironic_python_agent.qemu_img module
	ironic_python_agent.raid_utils module
	ironic_python_agent.tls_utils module
	ironic_python_agent.utils module
	ironic_python_agent.version module
	Module contents

	Indices and tables
	Python Module Index
	Index

