Heat Documentation
Release 24.1.0.dev11

Heat Developers

Apr 16, 2025

CONTENTS

1 Heats purpose and vision 3
2 Operating Heat 5
2.1 Installing Heat e 5
2.1.1 Orchestration service overview L. 5

2.1.2 Installand configure 5
Install and configure for openSUSE and SUSE Linux Enterprise 6

Install and configure for Red Hat Enterprise Linux and CentOS 13

Install and configure for Ubuntu 20

Install and configure for Debian 0oL, 27

2.1.3 Verifyoperation e e e e e 34

2.1.4 Launchaninstance i 35
Createatemplate e e e 35
Createastack e 36

2.1.5 0 NEXESEEPS . o v v v o e e e e e e e e e e e e e e e e e e e 37

2.2 Running Heat API services in HTTP Server 38
221 mod-WSZi e e e e e e e 38

2220 UWSZL .. oL e e e e e e e e e 38
MOd_ProXy_UWSZi . . . v v v vt e e e e e e e e e e e 39

2.3 Configuring Heat e 39
2.3.1 Configuration options for the Orchestration service 39
DEFAULT e 39
auth_password L 60

cache L 61

clients oL e 69

clients_aodh 69
clients_barbican 70
clients_cinder 71
clients_designate 72
clients_glance 73

clients_heat e s 74
clients_keystone L. 75
clients_magnum e e 76
clients_manila 77
clients_mistral L. e e e e e e 77

clients_ monascao e e e e e e e e e e 78
clients_neutron e e e e 79

clients_ nova. e e e 80
clients_octavia e 81

24

2.5

clients_swift s 82

clients_trove e e 83
clients_vitrage e e e e e e e 84
clients_zaqar e 84
constraint_validation_cache o 85
COTS & v v e e i e e e e e e e e e e e e e e e e 86
database e e 87
ec2authtoken e e e 91
eventlet_opts e e e e e e 92
healthcheck e 92
heat_api e 94
heat_api_cfn e 96
keystone_authtoken L 98
noauth L e e e 105
oslo_messaging kafka o oL 105
oslo_messaging_notifications 108
oslo_messaging rabbito o oL 108
oslo_middleware e 117
oslo_policy 117
0SIO_IePOItS v v e e e e e e e e e e 120
oslo_versionedobjects 120
paste_deploy e 120
profiler e e e e e 121
profiler_jaeger 124
profiler_otlp e 124
resource_finder_cache 124
TEVISION o e e e e e e e e e e e e e 125
service_extension_cache e 125
] 125
180] 1 127
VOIUMES e 131
vagl . .o 131
2.3.2 Heat Configuration Sample 131
2.3.3 Orchestrationlogfiles L o 131
234 HeatSamplePolicy 132
Administering Heat 150
24.1 Introduction L e 150
2.4.2 Orchestration authorization model 150
Password authorization Lo o 150
OpenStack Identity trusts authorization 151
Authorization model configuration oL oL 151
24.3 Stackdomain users L. e 152
Stack domain users configuration oL L. 152
Usageworkflow e 153
Scaling a Deployment L 154
2.5.1 ASsumptions e e e e e e e 154
2.5.2 Architecture e 154
Basic Architecture L 154
Load Balancing e 155
Target Architecture L 155
2.5.3 Deploying Multiple APIs 155

2.54 Deploying Multiple Engines oL 156

2.5.5 Deployingthe Proxy 156

2.5.6 Sample e e e 157
Architecture L e 157

Running the API and Engine Services 158

Setting Up HAProxy 159

2.6 Upgrades Guideline 160
2.6.1 Plantoupgrade L 160

2.6.2 ColdUpgrades o i i ittt e e 160

2.6.3 RollingUpgrades e 160
Prerequisites 161

Procedure 161

2,64 References. 162

2.7 Man pages for services and utilities oL 162
2.7.1 Heatservices o i i e e e e e e e 162
heat-engine e e 162

heat-api 163

heat-api-cfn 163

2772 Heatutilities L 164
heat-manage e 164
heat-db-setup L. 165
heat-keystone-setup-domaino oL 166

heat-statis o e e e e e e e e e e e 167

3 Using Heat 169
3.1 Creating your firststack L e 169
3.1.1 Confirming you can access a Heatendpoint 169

3.1.2 Preparingtocreateastack 169

3.1.3 Launchingastack e 170
Liststacks o o o o e e 170
Liststackevents e 170

Describe the wordpress stack oL oL oL 170

Verify instance creation L. o 171

Delete the instance whendone oo 171

3.2 GlosSary e e e e e e e 171
3.3 Working with Templates e 173
33.1 Template Guideo 173

Heat Orchestration Template (HOT) Guide 173

Writing a hello world HOT template 176

Guideline for features Lo 180

Heat Orchestration Template (HOT) specification 183

Instances 218

Software configuration oL oL 226
Environments 240

Template composition 244

OpenStack Resource Types o v i i it 247
CloudFormation Compatible Resource Types 575

Unsupported Heat Resource Types 613

Contributed Heat Resource Types 632
CloudFormation Compatible Functions 632

3.3.2 Example Templates 639

Example HOT Templates oo 639

Example CEN Templates o ittt et 640

34 Usingthe Heat Service i 642
4 Developing Heat 643
4.1 Heat Developer Guidelines 643
4.1.1 Heatand DevStack 643
Configure DevStack toenableheat 643

Configure DevStack to enable ceilometer and aodh (if using alarms) 644

Configure DevStack to enable OSprofiler 644
Createastack L 645

4.1.2 Blueprintsand Specs e e e 645

Spec from existing storieso 645

4.1.3 Heatarchitecture 645
Detailed description L 645
Heatservices e 645

4.1.4 Heat Resource Plug-in Development Guide 646
Resource Plug-in Life Cycle 646

Configuring the Engine oL oL, 658

Testing e e e e e e e 658

Putting It All Together L L 658

Resource Contributions L 658

4.1.5 Heat Stack Lifecycle Scheduler Hints 658
Enabling the scheduler hints 658

Thehints e 659

Purpose L e 659

4.1.6 Guru Meditation Reports 659
GeneratingaGMRo 659

Structureof aGMRo 659

Adding support for GMRs to new executable 659
Extendingthe GMR 660

4.1.7 Heat Support Status usage Guide 660
Support Status option and its parameters 660

Life cycle of resource, property, attribute L. 661

Using Support Status during code writing 662

Translating mechanism for hidden properties 663

4.1.8 UsingRallyonHeatgates 664

How to run Rally for particularpatch 664

Examplesof usingRally 665
create_stack_and_show_output_old 667
create_stack_and_show_output_ new 667
create_stack_and_list_output_old 667
create_stack_and_list_output_new 667

4.2 Source CodeIndex e 668
421 heat e e e 668

heat package 668

5 For Contributors 903
5.1 Heat Contributor Guidelines L 903
5.1.1 So You Wantto Contribute 903
Communication L 903

Contacting the Core Team 903

New Feature Planning 903

Task Tracking e 903
ReportingaBug 903
Getting Your Patch Merged L ... 903
Project Team Lead Duties 904
6 Indices and tables 905

Vi

Heat Documentation, Release 24.1.0.dev11

Heat is a service to orchestrate composite cloud applications using a declarative template format through
an OpenStack-native REST APL

CONTENTS 1

Heat Documentation, Release 24.1.0.dev11

2 CONTENTS

CHAPTER
ONE

HEATS PURPOSE AND VISION

Heat provides a template based orchestration for describing a cloud application by executing ap-
propriate OpenStack API calls to generate running cloud applications.

A Heat template describes the infrastructure for a cloud application in text files which are readable
and writable by humans, and can be managed by version control tools.

Templates specify the relationships between resources (e.g. this volume is connected to this server).
This enables Heat to call out to the OpenStack APIs to create all of your infrastructure in the correct
order to completely launch your application.

The software integrates other components of OpenStack. The templates allow creation of most
OpenStack resource types (such as instances, floating ips, volumes, security groups, users, etc), as
well as some more advanced functionality such as instance high availability, instance autoscaling,
and nested stacks.

Heat primarily manages infrastructure, but the templates integrate well with software configuration
management tools such as Puppet and Ansible.

Operators can customise the capabilities of Heat by installing plugins.

This documentation offers information aimed at end-users, operators and developers of Heat.

Heat Documentation, Release 24.1.0.dev11

4 Chapter 1. Heats purpose and vision

CHAPTER
TWO

OPERATING HEAT

2.1 Installing Heat

2.1.1 Orchestration service overview

The Orchestration service provides a template-based orchestration for describing a cloud application by
running OpenStack API calls to generate running cloud applications. The software integrates other core
components of OpenStack into a one-file template system. The templates allow you to create most Open-
Stack resource types such as instances, floating IPs, volumes, security groups, and users. It also provides
advanced functionality such as instance high availability, instance auto-scaling, and nested stacks. This
enables OpenStack core projects to receive a larger user base.

The service allows deployers to integrate with the Orchestration service directly or through custom plug-
ins.

The Orchestration service consists of the following components:

heat command-line client
A CLI that communicates with the heat-api to run AWS CloudFormation APIs. End developers
can directly use the Orchestration REST API.

heat-api component
An OpenStack-native REST API that processes API requests by sending them to the heat-engine
over Remote Procedure Call (RPC).

heat-api-cfn component
An AWS Query API that is compatible with AWS CloudFormation. It processes API requests by
sending them to the heat-engine over RPC.

heat-engine
Orchestrates the launching of templates and provides events back to the API consumer.
2.1.2 Install and configure

This section describes how to install and configure the Orchestration service, code-named heat, on the
controller node.

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Note that installation and configuration vary by distribution.

Heat Documentation, Release 24.1.0.dev11

Install and configure for openSUSE and SUSE Linux Enterprise
This section describes how to install and configure the Orchestration service for openSUSE Leap 42.2

and SUSE Linux Enterprise Server 12 SP2.

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

» Use the database access client to connect to the database server as the root user:

{ mysql -u root -p

¢ Create the heat database:

[

» Grant proper access to the heat database:

Replace HEAT_DBPASS with a suitable password.
 Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the heat user:

openstack user create --domain default --password-prompt heat

L

¢ Add the admin role to the heat user:

openstack role add --project service --user heat admin

6 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Note

This command provides no output.

¢ Create the heat and heat-cfn service entities:

openstack service create --name heat
--description orchestration

openstack service create --name heat-cfn
--description cloudformation

4. Create the Orchestration service API endpoints:

openstack endpoint create --region RegionOne
orchestration public http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration internal http://controller:8004/v1/%\ (tenant_id\)s

(continues on next page)

2.1. Installing Heat 7

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

openstack endpoint create --region RegionOne
orchestration admin http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
cloudformation public http://controller:8000/v1

openstack endpoint create --region RegionOne
cloudformation internal http://controller:8000/vl

(continues on next page)

8 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

openstack endpoint create --region RegionOne
cloudformation admin http://controller:8000/v1

L

J

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

* Create the heat domain that contains projects and users for stacks:

e

openstack domain create --description o
—heat

* Create the heat_domain_admin user to manage projects and users in the heat domain:

openstack user create --domain heat --password-prompt heat_domain_
—admin

(continues on next page)

2.1.

Installing Heat 9

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

* Add the admin role to the heat_domain_admin user in the heat domain to enable admin-
istrative stack management privileges by the heat_domain_admin user:

openstack role add --domain heat --user-domain heat --user heat_
—domain_admin admin

Note

This command provides no output.

e Create the heat_stack_owner role:

s N

openstack role create heat_stack_owner

L J

* Add the heat_stack_owner role to the demo project and user to enable stack management
by the demo user:

[openstack role add --project demo --user demo heat_stack_owner]

Note

This command provides no output.

Note

You must add the heat_stack_owner role to each user that manages stacks.

¢ Create the heat_stack_user role:

10 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

openstack role create heat_stack_user

Note

The Orchestration service automatically assigns the heat_stack_user role to users that
it creates during stack deployment. By default, this role restricts API <Application Pro-
gramming Interface (API)> operations. To avoid conflicts, do not add this role to users
with the heat_stack_owner role.

Install and configure components

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

1. Install the packages:

zypper install openstack-heat-api openstack-heat-api-cfn
openstack-heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

* In the [database] section, configure database access:

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [keystone_authtoken], [trustee] and [clients_keystone] sections, config-
ure Identity service access:

2.1. Installing Heat 11

Heat Documentation, Release 24.1.0.dev11

L

Replace HEAT_PASS with the password you chose for the heat user in the Identity service.

* In the [DEFAULT] section, configure the metadata and wait condition URLs:

* In the [DEFAULT] section, configure the stack domain and administrative credentials:

Replace HEAT_DOMAIN_PASS with the password you chose for the heat_domain_admin
user in the Identity service.

Finalize installation

« Start the Orchestration services and configure them to start when the system boots:

systemctl openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service

(continues on next page)

12 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

systemctl start openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service

Install and configure for Red Hat Enterprise Linux and CentOS
This section describes how to install and configure the Orchestration service for Red Hat Enterprise Linux

7 and CentOS 7.

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

[mysql -u root -p

¢ Create the heat database:

|

» Grant proper access to the heat database:

Replace HEAT_DBPASS with a suitable password.
¢ Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

{ . admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the heat user:

-

openstack user create --domain default --password-prompt heat

2.1. Installing Heat 13

Heat Documentation, Release 24.1.0.dev11

¢ Add the admin role to the heat user:

[openstack role add --project service --user heat admin

Note

If installing OpenStack manually following the Keystone install guide, the name of the
services project is service as given above. However, traditional methods of installing
RDO (such as PackStack and TripleO) use services as the name of the service project.
If you installed RDO using a Puppet-based method, substitute services as the project
name.

Note

This command provides no output.

¢ Create the heat and heat-cfn service entities:

openstack service create --name heat
--description orchestration

openstack service create --name heat-cfn
--description cloudformation

4. Create the Orchestration service API endpoints:

(

openstack endpoint create --region RegionOne
orchestration public http://controller:8004/v1/%\ (tenant_id\)s

(continues on next page)

14 Chapter 2. Operating Heat

https://docs.openstack.org/keystone/latest/install/keystone-users-rdo.html

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

openstack endpoint create --region RegionOne
orchestration internal http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration admin http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
cloudformation public http://controller:8000/v1

(continues on next page)

2.1. Installing Heat 15

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

openstack endpoint create --region RegionOne
cloudformation internal http://controller:8000/vl

openstack endpoint create --region RegionOne
cloudformation admin http://controller:8000/v1

L

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

* Create the heat domain that contains projects and users for stacks:

openstack domain create --description o
—heat

(continues on next page)

16 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

* Create the heat_domain_admin user to manage projects and users in the heat domain:

openstack user create --domain heat --password-prompt heat_domain_
—admin

L J

¢ Add the admin role to the heat_domain_admin user in the heat domain to enable admin-
istrative stack management privileges by the heat_domain_admin user:

openstack role add --domain heat --user-domain heat --user heat_
—domain_admin admin

Note

This command provides no output.

¢ Create the heat_stack_owner role:

openstack role create heat_stack_owner

* Add the heat_stack_owner role to the demo project and user to enable stack management
by the demo user:

openstack role add --project demo --user demo heat_stack_owner

2.1. Installing Heat 17

Heat Documentation, Release 24.1.0.dev11

Note

This command provides no output.

Note

You must add the heat_stack_owner role to each user that manages stacks.

¢ Create the heat_stack_user role:

openstack role create heat_stack_user

Note

The Orchestration service automatically assigns the heat_stack_user role to users that
it creates during stack deployment. By default, this role restricts API <Application Pro-
gramming Interface (API)> operations. To avoid conflicts, do not add this role to users
with the heat_stack_owner role.

Install and configure components

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

1. Install the packages:

dnf install openstack-heat-api openstack-heat-api-cfn
openstack-heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

* In the [database] section, configure database access:

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

18 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [keystone_authtoken], [trustee], and [clients_keystone] sections, config-
ure Identity service access:

-

Replace HEAT_PASS with the password you chose for the heat user in the Identity service.

* In the [DEFAULT] section, configure the metadata and wait condition URLs:

* In the [DEFAULT] section, configure the stack domain and administrative credentials:

2.1. Installing Heat 19

Heat Documentation, Release 24.1.0.dev11

Replace HEAT_DOMAIN_PASS with the password you chose for the heat_domain_admin
user in the Identity service.

3. Populate the Orchestration database:

[su -s /bin/sh -c heat J

Note

Ignore any deprecation messages in this output.

Finalize installation

« Start the Orchestration services and configure them to start when the system boots:

systemctl openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service
systemctl start openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service

Install and configure for Ubuntu

This section describes how to install and configure the Orchestration service for Ubuntu 14.04 (LTS).

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

[mysql -u root -p }

¢ Create the heat database:

|

* Grant proper access to the heat database:

Replace HEAT_DBPASS with a suitable password.
¢ Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

{ . admin-openrc

20 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

3. To create the service credentials, complete these steps:

¢ Create the heat user:

openstack user create --domain default --password-prompt heat

L

¢ Add the admin role to the heat user:

openstack role add --project service --user heat admin

Note

This command provides no output.

¢ Create the heat and heat-cfn service entities:

openstack service create --name heat
--description orchestration

openstack service create --name heat-cfn
--description cloudformation

4. Create the Orchestration service API endpoints:

2.1. Installing Heat 21

Heat Documentation, Release 24.1.0.dev11

openstack endpoint create --region RegionOne
orchestration public http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration internal http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration admin http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne

cloudformation public http://controller:8000/v1
(continues on next page)

22

Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

openstack endpoint create --region RegionOne
cloudformation internal http://controller:8000/vl

openstack endpoint create --region RegionOne
cloudformation admin http://controller:8000/v1

. Orchestration requires additional information in the Identity service to manage stacks. To add this

information, complete these steps:

* Create the heat domain that contains projects and users for stacks:

2.1.

Installing Heat 23

Heat Documentation, Release 24.1.0.dev11

openstack domain create --description o
—heat

L

Create the heat_domain_admin user to manage projects and users in the heat domain:

openstack user create --domain heat --password-prompt heat_domain_
—admin

e Add the admin role to the heat_domain_admin user in the heat domain to enable admin-
istrative stack management privileges by the heat_domain_admin user:

openstack role add --domain heat --user-domain heat --user heat_
—domain_admin admin

Note

This command provides no output.

¢ Create the heat_stack_owner role:

-

openstack role create heat_stack_owner

L

* Add the heat_stack_owner role to the demo project and user to enable stack management
by the demo user:

24 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

[openstack role add --project demo --user demo heat_stack_owner

Note

This command provides no output.

Note

You must add the heat_stack_owner role to each user that manages stacks.

e Create the heat_stack_user role:

openstack role create heat_stack_user

Note

The Orchestration service automatically assigns the heat_stack_user role to users that
it creates during stack deployment. By default, this role restricts API <Application Pro-
gramming Interface (API)> operations. To avoid conflicts, do not add this role to users

with the heat_stack_owner role.

Install and configure components

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

1. Install the packages:

[apt-get install heat-api heat-api-cfn heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

* In the [database] section, configure database access:

2.1.

Installing Heat

25

Heat Documentation, Release 24.1.0.dev11

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [keystone_authtoken], [trustee] and [clients_keystone] sections, config-
ure Identity service access:

Replace HEAT_PASS with the password you chose for the heat user in the Identity service.

* In the [DEFAULT] section, configure the metadata and wait condition URLs:

* In the [DEFAULT] section, configure the stack domain and administrative credentials:

(continues on next page)

26 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

|

3. Populate the Orchestration database:

Replace HEAT_DOMAIN_PASS with the password you chose for the heat_domain_admin
user in the Identity service.

[su -s /bin/sh -c heat }

Note

Ignore any deprecation messages in this output.

Finalize installation

1. Restart the Orchestration services:

service heat-api restart
service heat-api-cfn restart
service heat-engine restart

Install and configure for Debian

This section describes how to install and configure the Orchestration service for Debian.

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

{ mysql -u root -p

¢ Create the heat database:

|

* Grant proper access to the heat database:

Replace HEAT_DBPASS with a suitable password.
* Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

2.1. Installing Heat 27

Heat Documentation, Release 24.1.0.dev11

[. admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the heat user:

openstack user create --domain default --password-prompt heat

¢ Add the admin role to the heat user:

[openstack role add --project service --user heat admin

Note

This command provides no output.

e Create the heat and heat-cfn service entities:

openstack service create --name heat
--description orchestration

openstack service create --name heat-cfn
--description cloudformation

(continues on next page)

28

Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

4. Create the Orchestration service API endpoints:

openstack endpoint create --region RegionOne
orchestration public http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration internal http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration admin http://controller:8004/v1/%\ (tenant_id\)s

(continues on next page)

2.1. Installing Heat 29

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

openstack endpoint create --region RegionOne
cloudformation public http://controller:8000/v1

openstack endpoint create --region RegionOne
cloudformation internal http://controller:8000/v1

openstack endpoint create --region RegionOne
cloudformation admin http://controller:8000/v1

30 Chapter 2

. Operating Heat

Heat Documentation, Release 24.1.0.dev11

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

* Create the heat domain that contains projects and users for stacks:

openstack domain create --description o
—heat

L

* Create the heat_domain_admin user to manage projects and users in the heat domain:

openstack user create --domain heat --password-prompt heat_domain_
—admin

* Add the admin role to the heat_domain_admin user in the heat domain to enable admin-
istrative stack management privileges by the heat_domain_admin user:

openstack role add --domain heat --user-domain heat --user heat_
—domain_admin admin

Note

This command provides no output.

e Create the heat_stack_owner role:

-

openstack role create heat_stack_owner

2.1. Installing Heat 31

Heat Documentation, Release 24.1.0.dev11

* Add the heat_stack_owner role to the demo project and user to enable stack management
by the demo user:

openstack role add --project demo --user demo heat_stack_owner

Note

This command provides no output.

Note

You must add the heat_stack_owner role to each user that manages stacks.

¢ Create the heat_stack_user role:

openstack role create heat_stack_user

Note

The Orchestration service automatically assigns the heat_stack_user role to users that
it creates during stack deployment. By default, this role restricts API <Application Pro-
gramming Interface (API)> operations. To avoid conflicts, do not add this role to users
with the heat_stack_owner role.

Install and configure components

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

1. Install the packages:

apt-get install heat-api heat-api-cfn heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

* In the [database] section, configure database access:

32 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [keystone_authtoken], [trustee] and [clients_keystone] sections, config-
ure Identity service access:

-

Replace HEAT_PASS with the password you chose for the heat user in the Identity service.

* In the [DEFAULT] section, configure the metadata and wait condition URLs:

* In the [DEFAULT] section, configure the stack domain and administrative credentials:

2.1. Installing Heat 33

Heat Documentation, Release 24.1.0.dev11

Replace HEAT_DOMAIN_PASS with the password you chose for the heat_domain_admin
user in the Identity service.

3. Populate the Orchestration database:

[su -s /bin/sh -c heat

Note

Ignore any deprecation messages in this output.

Finalize installation

1. Restart the Orchestration services:

service heat-api restart
service heat-api-cfn restart
service heat-engine restart

2.1.3 Verify operation

Verify operation of the Orchestration service.

Note

Perform these commands on the controller node.

1. Source the admin tenant credentials:

[. admin-openrc

2. List service components to verify successful launch and registration of each process:

openstack orchestration service list

(continues on next page)

34 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

—

Note

This output should indicate four heat-engine components (default to 4 or number of CPUs

on the host, whichever is greater) on the controller node.

2.1.4 Launch an instance

In environments that include the Orchestration service, you can create a stack that launches an instance.

Create a template

The Orchestration service uses templates to describe stacks. To learn about the template language, see

the Template Guide.

* Create the demo-template.yml file with the following content:

heat_template_version
description

parameters
NetID
type
description

resources
server
type
properties
image
flavor
key_name
networks
network get_param
outputs
instance_name
description
value get_attr
instance_ip
description
value get_attr

2.1. Installing Heat

35

Heat Documentation, Release 24.1.0.dev11

Create a stack
Create a stack using the demo-template.yml template.

1. Source the demo credentials to perform the following steps as a non-administrative project:

. demo-openrc

2. Determine available networks.

-

openstack network list

Note

This output may differ from your environment.

3. Setthe NET_ID environment variable to reflect the ID of a network. For example, using the provider
network:

openstack network list awk

4. Create a stack of one CirrOS instance on the provider network:

openstack stack create -t demo-template.yml --parameter o
—stack

5. After a short time, verify successful creation of the stack:

36 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

openstack stack list

6. Show the name and IP address of the instance and compare with the output of the OpenStack client:

(

openstack stack output show --all stack

openstack server list

7. Delete the stack.

[openstack stack delete --yes stack

2.1.5 Next steps

Your OpenStack environment now includes the heat service.

To add more services, see the additional documentation on installing OpenStack.

To learn more about the heat service, read the Heat documentation.

2.1. Installing Heat

37

https://docs.openstack.org/#install-guides

Heat Documentation, Release 24.1.0.dev11

The Orchestration service (heat) uses a Heat Orchestration Template (HOT) to create and manage cloud
resources.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorial.

2.2 Running Heat API services in HTTP Server

Since the Liberty release Heat has packaged a set of wsgi script entrypoints that enables users to run api
services with a real web server like Apache HTTP Server (httpd).

There are several patterns for deployment. This doc shows some common ways of deploying api services
with httpd.

2.2.1 mod-wsgi

This deployment method is possible since Liberty release.

The httpd/files directory contains sample files that can be changed and copied to the appropriate location
in your httpd server.

On Debian/Ubuntu systems it is:

On Red Hat based systems it is:

2.2.2 uwsgi

In this deployment method we use uwsgi as a web server bound to a random local port. Then we configure
apache using mod_proxy to forward all incoming requests on the specified endpoint to that local web-
server. This has the advantage of letting apache manage all inbound http connections, and uwsgi manage
running the python code. It also means when we make changes to Heat api code or configuration, we
dont need to restart all of apache (which may be running other services too) and just need to restart the
local uwsgi daemons.

The httpd/files directory contains sample files for configuring httpd to run Heat api services under uwsgi
in this configuration. To use the sample configs simply copy uwsgi-heat-api.conf and uwsgi-heat-api-
cfn.conf to the appropriate location for your web server.

On Debian/Ubuntu systems it is:

On Red Hat based systems it is:

Enable mod_proxy by running sudo a2enmod proxy

38 Chapter 2. Operating Heat

https://docs.openstack.org/#install-guides

Heat Documentation, Release 24.1.0.dev11

Then on Ubuntu/Debian systems enable the site by creating a symlink from the file in sites-available
to sites-enabled. (This is not required on Red Hat based systems):

Start or restart httpd to pick up the new configuration.

Now we need to configure and start the uwsgi service. Copy the following files to /etc/heat:

Update the files to match your system configuration (for example, youll want to set the number of pro-
cesses and threads).

Install uwsgi and start the heat-api server using uwsgi:

Note

In the sample configs some random ports are used, but this doesnt matter and is just a randomly
selected number. This is not a contract on the port used for the local uwsgi daemon.

mod_proxy uwsgi

Instead of running uwsgi as a webserver listening on a local port and then having Apache HTTP proxy all
the incoming requests with mod_proxy, the normally recommended way of deploying uwsgi with Apache
httpd is to use mod_proxy_uwsgi and set up a local socket file for uwsgi to listen on. Apache will send
the requests using the uwsgi protocol over this local socket file.

The dsvm jobs in heat upstream gate uses this deployment method.

For more details on using mod_proxy_uwsgi see the official docs.

2.3 Configuring Heat

2.3.1 Configuration options for the Orchestration service

The following options can be set in the /etc/heat/heat.conf config file. A sample configuration file
is also available.

DEFAULT
debug

Type
boolean

2.3. Configuring Heat 39

https://uwsgi-docs.readthedocs.io/en/latest/Apache.html?highlight=mod_uwsgi_proxy#mod-proxy-uwsgi

Heat Documentation, Release 24.1.0.dev11

Default
False

Mutable
This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.
log_config_append
Type
string

Default
<None>

Mutable
This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 1: Deprecated Variations

Group Name

DEFAULT log-config
DEFAULT log_config

log_date_format

Type

string

Default
%Y -%m-%d %H:%M: %S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file

Type
string

Default
<None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 2: Deprecated Variations

Group Name
DEFAULT logfile

40 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

log_dir

Type
string

Default
<None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 3: Deprecated Variations

Group Name
DEFAULT logdir

watch_log_file
Type

boolean

Default
False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
This function is known to have bene broken for long time, and depends on
the unmaintained library

use_syslog
Type
boolean

Default
False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal
Type
boolean

Default
False

2.3. Configuring Heat 41

Heat Documentation, Release 24.1.0.dev11

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type

string

Default
LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type

boolean

Default
False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type
boolean

Default
False

Log output to standard error. This option is ignored if log_config_append is set.

log_color
Type
boolean

Default
False

(Optional) Set the color key according to log levels. This option takes effect only when logging to
stderr or stdout is used. This option is ignored if log_config_append is set.

log_rotate_interval

Type

integer

Default
1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to interval.

log_rotate_interval_type

Type
string

42 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Default
days

Valid Values
Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type

integer

Default
30

Maximum number of rotated log files.

max_logfile_size_mb

Type

integer

Default
200

Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.

log_rotation_type

Type

string

Default
none

Valid Values
interval, size, none

Log rotation type.

Possible values

interval
Rotate logs at predefined time intervals.

size
Rotate logs once they reach a predefined size.
none

Do not rotate log files.

logging_context_format_string
Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s

2.3. Configuring Heat 43

Heat Documentation, Release 24.1.0.dev11

[%(global_request_id)s %(request_id)s %(user_identity)s]
%(instance)s¥%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string
Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s [-]
%(instance) s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type
string

Default
%(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type
string
Default
%(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s
Prefix each line of exception output with this format. Used by

oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type

string

Default
%(user)s %(project)s %(domain)s %(system_scope)s
%(user_domain)s %(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels
Type
list

Default
["amqp=WARN', 'amqplib=WARN', 'boto=WARN', 'qpid=WARN',
'sqlalchemy=WARN', 'suds=INFO', 'oslo.messaging=INFO',

44 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

'oslo_messaging=INFO', 'iso8601=WARN', 'requests.packages.
urllib3.connectionpool=WARN', 'urllib3.connectionpool=WARN',
'websocket=WARN', 'requests.packages.urllib3.util.retry=WARN',
'urllib3.util.retry=WARN', 'keystonemiddleware=WARN',
'routes.middleware=WARN', 'stevedore=WARN', 'taskflow=WARN',
'keystoneauth=WARN', 'oslo.cache=INFO', 'oslo_policy=INFO',
'dogpile.core.dogpile=INFO"']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

Type

boolean

Default
False

Enables or disables publication of error events.

instance_format

Type

string

Default
"[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type
integer

Default
0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type
integer

Default
0

Maximum number of logged messages per rate_limit_interval.

2.3. Configuring Heat 45

Heat Documentation, Release 24.1.0.dev11

rate_limit_except_level
Type
string

Default
CRITICAL

Valid Values
CRITICAL, ERROR, INFO, WARNING, DEBUG,

Log level name used by rate limiting. Logs with level greater or equal to rate_limit_except_level
are not filtered. An empty string means that all levels are filtered.

fatal_deprecations

Type

boolean

Default
False

Enables or disables fatal status of deprecations.
host
Type
string

Default
<Hostname>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Name of the engine node. This can be an opaque identifier. It is not necessarily a hostname, FQDN,
or IP address.

plugin_dirs
Type
list

Default
['/usr/1ib64/heat', '/usr/lib/heat', '/usr/local/lib/heat’,
'/usr/local/l1ib64/heat']

List of directories to search for plug-ins.

environment_dir

Type
string

Default
/etc/heat/environment.d

The directory to search for environment files.

46 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

template_dir

Type

string

Default
/etc/heat/templates

The directory to search for template files.

deferred_auth_method

Type
string

Default
trusts

Valid Values
password, trusts

Select deferred auth method, stored password or trusts.

Warning

This option is deprecated for removal since 9.0.0. Its value may be silently ignored in the future.

Reason
Stored password based deferred auth is broken when used with keystone v3
and is not supported.

reauthentication_auth_method

Type

string

Default

Valid Values
, trusts

Allow reauthentication on token expiry, such that long-running tasks may complete. Note this
defeats the expiry of any provided user tokens.

allow_trusts_redelegation

Type
boolean

Default
False

Create trusts with redelegation enabled. This option is only used when reauthentica-
tion_auth_method is set to trusts. Note that enabling this option does have security implications
as all trusts created by Heat will use both impersonation and redelegation enabled. Enable it only
when there are other services that need to create trusts from tokens Heat uses to access them,
examples are Aodh and Heat in another region when configured to use trusts too.

2.3. Configuring Heat 47

Heat Documentation, Release 24.1.0.dev11

trusts_delegated_roles

Type
list

Default
[]

Subset of trustor roles to be delegated to heat. If left unset, all roles of a user will be delegated to
heat when creating a stack.

max_resources_per_stack

Type
integer

Default
1000

Maximum resources allowed per top-level stack. -1 stands for unlimited.

max_stacks_per_tenant

Type
integer

Default
512

Maximum number of stacks any one tenant may have active at one time. -1 stands for unlimited.

max_software_configs_per_tenant

Type
integer

Default
4096

Maximum number of software configs any one tenant may have active at one time. -1 stands for
unlimited.

max_software_deployments_per_tenant

Type

integer

Default
4096

Maximum number of software deployments any one tenant may have active at one time.-1 stands
for unlimited.

max_snapshots_per_stack

Type
integer

Default
32

Maximum number of snapshot any one stack may have active at one time. -1 stands for unlimited.

48 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

action_retry_limit

Type
integer

Default
5

Number of times to retry to bring a resource to a non-error state. Set to 0 to disable retries.

client_retry_limit

Type
integer

Default
2

Number of times to retry when a client encounters an expected intermittent error. Set to 0 to disable
retries.

max_server_name_length

Type
integer

Default
53

Maximum Value
53

Maximum length of a server name to be used in nova.

max_interface_check_attempts

Type
integer

Default
10

Minimum Value
1

Number of times to check whether an interface has been attached or detached.

max_nova_api_microversion

Type
string

Default
<None>

Maximum nova API version for client plugin. With this limitation, any nova feature supported
with microversion number above max_nova_api_microversion will not be available.

max_cinder_api_microversion

Type

string

2.3. Configuring Heat 49

Heat Documentation, Release 24.1.0.dev11

Default
<None>

Maximum cinder API version for client plugin. With this limitation, any cinder feature supported
with microversion number above max_cinder_api_microversion will not be available.

max_ironic_api_microversion
Type
string

Default
<None>

Maximum ironic API version for client plugin. With this limitation, any ironic feature supported
with microversion number above max_ironic_api_microversion will not be available.

event_purge_batch_size
Type
integer

Default
200

Minimum Value
1

Controls how many events will be pruned whenever a stacks events are purged. Set this lower to
keep more events at the expense of more frequent purges.

max_events_per_stack
Type
integer

Default
1000

Rough number of maximum events that will be available per stack. Actual number of events can
be a bit higher since purge checks take place randomly 200/event_purge_batch_size percent of the
time. Older events are deleted when events are purged. Set to O for unlimited events per stack.

stack_action_timeout

Type

integer

Default
3600

Timeout in seconds for stack action (ie. create or update).
error_wait_time
Type
integer

Default
240

50 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

The amount of time in seconds after an error has occurred that tasks may continue to run before
being cancelled.

engine_life_check_timeout

Type
integer

Default
2

RPC timeout for the engine liveness check that is used for stack locking.

enable_stack_abandon

Type
boolean

Default
False

Enable the preview Stack Abandon feature.

enable_stack_adopt

Type
boolean

Default
False

Enable the preview Stack Adopt feature.

convergence_engine

Type
boolean

Default
True

Enables engine with convergence architecture. All stacks with this option will be created using
convergence engine.

observe_on_update

Type
boolean

Default
False

On update, enables heat to collect existing resource properties from reality and converge to updated
template.

default_software_config_transport
Type
string

Default
POLL_SERVER_CFN

2.3. Configuring Heat 51

Heat Documentation, Release 24.1.0.dev11

Valid Values
POLL_SERVER_CFN, POLL_SERVER_HEAT, POLL_TEMP URL, ZA-
QAR_MESSAGE

Template default for how the server should receive the metadata required for software configura-
tion. POLL_SERVER_CFN will allow calls to the cfn API action DescribeStackResource authen-
ticated with the provided keypair (requires enabled heat-api-cfn). POLL_SERVER_HEAT will
allow calls to the Heat API resource-show using the provided keystone credentials (requires key-
stone v3 API, and configured stack_user_* config options). POLL_TEMP_URL will create and
populate a Swift TempURL with metadata for polling (requires object-store endpoint which sup-
ports TempURL).ZAQAR_MESSAGE will create a dedicated zaqar queue and post the metadata
for polling.

default_deployment_signal_transport

Type
string

Default
CFN_SIGNAL

Valid Values
CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, ZAQAR_SIGNAL

Template default for how the server should signal to heat with the deployment output values.
CFN_SIGNAL will allow an HTTP POST to a CFN keypair signed URL (requires enabled heat-
api-cfn). TEMP_URL_SIGNAL will create a Swift TempURL to be signaled via HTTP PUT (re-
quires object-store endpoint which supports TempURL). HEAT _SIGNAL will allow calls to the
Heat API resource-signal using the provided keystone credentials. ZAQAR_SIGNAL will create
a dedicated zaqar queue to be signaled using the provided keystone credentials.

default_user_data_format

Type
string

Default
HEAT_CFNTOOLS

Valid Values
HEAT CFNTOOLS, RAW, SOFTWARE_CONFIG

Template default for how the user_data should be formatted for the server. For
HEAT_CFNTOOLS, the user_data is bundled as part of the heat-cfntools cloud-init boot config-
uration data. For RAW the user_data is passed to Nova unmodified. For SOFTWARE_CONFIG
user_data is bundled as part of the software config data, and metadata is derived from any
associated SoftwareDeployment resources.

hidden_stack_tags
Type
list

Default
[]

Stacks containing these tag names will be hidden. Multiple tags should be given in a comma-
delimited list (eg. hidden_stack_tags=hide_me,me_to0).

52 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

stack_scheduler_hints

Type
boolean

Default
False

When this feature is enabled, scheduler hints identifying the heat stack context of a server
or volume resource are passed to the configured schedulers in nova and cinder, for creates
done using heat resource types OS::Cinder::Volume, OS::Nova::Server, and AWS::EC2::Instance.
heat_root_stack_id will be set to the id of the root stack of the resource, heat_stack_id will be set to
the id of the resources parent stack, heat_stack_name will be set to the name of the resources par-
ent stack, heat_path_in_stack will be set to a list of comma delimited strings of stackresourcename
and stackname with list[0] being rootstackname, heat_resource_name will be set to the resources
name, and heat_resource_uuid will be set to the resources orchestration id.

encrypt_parameters_and_properties

Type
boolean

Default
False

Encrypt template parameters that were marked as hidden and also all the resource properties before
storing them in database.

metadata_put_timeout

Type
floating point

Default
60

Minimum Value
0

Timeout in seconds for metadata update for software deployment

periodic_interval

Type
integer

Default
60

Seconds between running periodic tasks.

heat_metadata_server_url
Type
string

Default
<None>

2.3. Configuring Heat 53

Heat Documentation, Release 24.1.0.dev11

URL of the Heat metadata server. NOTE: Setting this is only needed if you
use a different endpoint than in the keystone catalog

heat_waitcondition_server_url

Type
string

Default
<None>

URL of the Heat waitcondition server.

instance_connection_is_secure

Type
string

Default
0

Instance connection to CFN/CW API via https.

instance_connection_https_validate_certificates

Type
string

Default
1

Instance connection to CEFN/CW API validate certs if SSL is used.

region_name_for_services

Type

string

Default
<None>

Default region name used to get services endpoints.

region_name_for_shared_services

Type

string

Default
<None>

Region name for shared services endpoints.

shared_services_types

Type

list

Default
['image', 'volumev3']

require instances to

54 Chapter 2

. Operating Heat

Heat Documentation, Release 24.1.0.dev11

The shared services located in the other region.Needs region_name_for_shared_services option to
be set for this to take effect.

heat_stack_user_role

Type
string

Default
heat_stack_user

Keystone role for heat template-defined users.

stack_user_domain_id

Type
string

Default
<None>

Keystone domain ID which contains heat template-defined users. If this option is set,
stack_user_domain_name option will be ignored.

Table 4: Deprecated Variations

Group Name
DEFAULT stack user_domain

stack_user_domain_name
Type
string

Default
<None>

Keystone domain name which contains heat template-defined users. If stack_user_domain_id op-
tion is set, this option is ignored.

stack_domain_admin
Type
string

Default
<None>

Keystone username, a user with roles sufficient to manage users and projects in the
stack_user_domain.

stack_domain_admin_password
Type
string

Default
<None>

2.3. Configuring Heat 55

Heat Documentation, Release 24.1.0.dev11

Keystone password for stack_domain_admin user.

max_template_size
Type
integer

Default
524288

Maximum raw byte size of any template.
max_nested_stack_depth
Type
integer

Default
5

Maximum depth allowed when using nested stacks.

template_fetch_timeout
Type
floating point

Default
60

Minimum Value
0

Timeout in seconds for template download.

num_engine_workers
Type
integer
Default

<None>

Number of heat-engine processes to fork and run. Will default to either to 4 or number of CPUs
on the host, whichever is greater.

server_keystone_endpoint_type
Type
string

Default

Valid Values
, public, internal, admin

If set, is used to control which authentication endpoint is used by user-controlled servers to make
calls back to Heat. If unset www_authenticate_uri is used.

56 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

auth_encryption_key

Type
string

Default
notgood but just long enough i t

Key used to encrypt authentication info in the database. Length of this key must be 32 characters.

max_json_body_size

Type
integer

Default
1048576

Maximum raw byte size of JSON request body. Should be larger than max_template_size.

cloud_backend

Type
string

Default
heat.engine.clients.OpenStackClients

Fully qualified class name to use as a client backend.

keystone_backend

Type
string

Default
heat.engine.clients.os.keystone.heat_keystoneclient.
KsClientWrapper

Fully qualified class name to use as a keystone backend.

default_notification_level

Type
string

Default
INFO

Default notification level for outgoing notifications.

default_publisher_id

Type
string

Default
<None>

Default publisher_id for outgoing notifications.

2.3. Configuring Heat 57

Heat Documentation, Release 24.1.0.dev11

loadbalancer_template

Type
string

Default
<None>

Custom template for the built-in loadbalancer nested stack.

executor_thread_pool_size

Type
integer

Default
64

Size of executor thread pool when executor is threading or eventlet.

Table 5: Deprecated Variations

Group Name

DEFAULT rpc_thread_pool_size

rpc_response_timeout
Type
integer

Default
60

Seconds to wait for a response from a call.

transport_url
Type
string

Default
rabbit://

The network address and optional user credentials for connecting to the messaging backend, in

URL format. The expected format is:

driver://[user:pass @ host:port[,[userN:passN @ JhostN:portN]/virtual_host?query

Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging. TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange
Type
string

Default
openstack

58 Chapter 2. Operating Heat

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Heat Documentation, Release 24.1.0.dev11

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type
boolean

Default
False
Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping
run_external_periodic_tasks

Type
boolean

Default
True

Some periodic tasks can be run in a separate process. Should we run them here?

backdoor_port

Type
string

Default
<None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0O results in
listening on a random tcp port number; <port> results in listening on the specified port number (and
not enabling backdoor if that port is in use); and <start>:<end> results in listening on the smallest
unused port number within the specified range of port numbers. The chosen port is displayed in
the services log file.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason

The backdoor_port option is deprecated and will be removed in a future re-
lease.

backdoor_socket

Type
string

Default
<None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both
are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

2.3. Configuring Heat 59

Heat Documentation, Release 24.1.0.dev11

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The backdoor_socket option is deprecated and will be removed in a future
release.

log_options

Type

boolean

Default
True

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful _shutdown_timeout

Type
integer

Default
60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

auth_password

multi_cloud
Type
boolean

Default
False

Allow orchestration of multiple clouds.

allowed_auth_uris
Type
list

Default
]

Allowed keystone endpoints for auth_uri when multi_cloud is enabled. At least one endpoint needs
to be specified.

60 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

cache

config_prefix

Type
string

Default
cache.oslo

Prefix for building the configuration dictionary for the cache region. This should not need to be
changed unless there is another dogpile.cache region with the same configuration name.

expiration_time

Type
integer

Default
600

Minimum Value
1

Default TTL, in seconds, for any cached item in the dogpile.cache region. This applies to any
cached method that doesnt have an explicit cache expiration time defined for it.

backend_expiration_time

Type
integer

Default
<None>

Minimum Value
1

Expiration time in cache backend to purge expired records automatically. This should be greater
than expiration_time and all cache_time options

backend

Type
string

Default
dogpile.cache.null

Valid Values
oslo_cache.memcache_pool, oslo_cache.dict, oslo_cache.mongo,
oslo_cache.etcd3gw, dogpile.cache.pymemcache, dogpile.cache.memcached,
dogpile.cache.pylibmc, dogpile.cache.bmemcached, dogpile.cache.dbm, dog-
pile.cache.redis, dogpile.cache.redis_sentinel, dogpile.cache.memory, dog-
pile.cache.memory_pickle, dogpile.cache.null

Cache backend module. For eventlet-based or environments with hundreds of threaded servers,
Memcache with pooling (oslo_cache.memcache_pool) is recommended. For environments

2.3. Configuring Heat 61

Heat Documentation, Release 24.1.0.dev11

with less than 100 threaded servers, Memcached (dogpile.cache.memcached) or Redis (dog-
pile.cache.redis) is recommended. Test environments with a single instance of the server can use
the dogpile.cache.memory backend.

backend_argument

Type

multi-valued

Default

Arguments supplied to the backend module. Specify this option once per argument to be passed
to the dogpile.cache backend. Example format: <argname>:<value>.

proxies
Type
list
Default
[]

Proxy classes to import that will affect the way the dogpile.cache backend functions. See the
dogpile.cache documentation on changing-backend-behavior.

enabled
Type

boolean

Default
False

Global toggle for caching.

debug_cache_backend

Type
boolean

Default
False

Extra debugging from the cache backend (cache keys, get/set/delete/etc calls). This is only re-

ally useful if you need to see the specific cache-backend get/set/delete calls with the keys/values.
Typically this should be left set to false.

memcache_servers

Type
list

Default
['localhost:11211"]

Memcache servers in the format of host:port. This is used by backends dependent on Mem-
cached.If dogpile.cache.memcached or oslo_cache.memcache_pool is used and a given
host refer to an IPv6 or a given domain refer to IPv6 then you should prefix the given address with
the address family (inet6) (e.ginet6[::1]:11211,inet6:[£fd12:3456:789a:1::1]:11211,

62 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

inet6: [controller-0.internalapi]:11211). If the address family is not given then these
backends will use the default inet address family which corresponds to IPv4

memcache_dead_retry
Type
integer

Default
300

Number of seconds memcached server is considered dead before it is tried again. (dog-
pile.cache.memcache and oslo_cache.memcache_pool backends only).

memcache_socket_timeout

Type

floating point

Default
1.0

Timeout in seconds for every call to a server. (dogpile.cache.memcache and
oslo_cache.memcache_pool backends only).

memcache_pool_maxsize

Type
integer

Default
10

Max total number of open connections to every memcached server. (oslo_cache.memcache_pool
backend only).

memcache_pool_unused_timeout

Type
integer

Default
60

Number of seconds a connection to memcached is held unused in the pool before it is closed.
(oslo_cache.memcache_pool backend only).

memcache_pool_connection_get_timeout

Type
integer

Default
10

Number of seconds that an operation will wait to get a memcache client connection.

memcache_pool_flush_on_reconnect

Type

boolean

2.3. Configuring Heat 63

Heat Documentation, Release 24.1.0.dev11

Default
False

Global toggle if memcache will be flushed on reconnect. (oslo_cache.memcache_pool backend
only).

memcache_sasl_enabled

Type
boolean

Default
False

Enable the SASL(Simple Authentication and SecurityLayer) if the SASL_enable is true, else dis-
able.

memcache_username

Type
string

Default
<None>

the user name for the memcached which SASL enabled

memcache_password

Type
string

Default
<None>

the password for the memcached which SASL enabled

redis_server

Type
string

Default
localhost:6379

Redis server in the format of host:port

redis_db

Type
integer

Default
0

Minimum Value
0

Database id in Redis server

64 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

redis_username

Type
string

Default
<None>

the user name for redis

redis_password

Type
string

Default
<None>

the password for redis

redis_sentinels

Type

list

Default
['localhost:26379']

Redis sentinel servers in the format of host:port

redis_socket_timeout

Type

floating point

Default
1.0

Timeout in seconds for every call to a server. (dogpile.cache.redis and dogpile.cache.redis_sentinel
backends only).
redis_sentinel_service_name
Type
string

Default
mymaster

Service name of the redis sentinel cluster.
tls_enabled

Type
boolean

Default
False
Global toggle for TLS usage when communicating with the caching servers. Currently
supported by dogpile.cache.bmemcache, dogpile.cache.pymemcache, oslo_cache.
memcache_pool, dogpile.cache.redis and dogpile.cache.redis_sentinel.

2.3. Configuring Heat 65

Heat Documentation, Release 24.1.0.dev11

tls_cafile
Type
string

Default
<None>

Path to a file of concatenated CA certificates in PEM format necessary to establish the caching
servers authenticity. If tls_enabled is False, this option is ignored.

tls_certfile
Type
string

Default
<None>

Path to a single file in PEM format containing the clients certificate as well as any number of CA
certificates needed to establish the certificates authenticity. This file is only required when client
side authentication is necessary. If tls_enabled is False, this option is ignored.

tls_keyfile
Type
string

Default
<None>

Path to a single file containing the clients private key in. Otherwise the private key will be taken
from the file specified in tls_certfile. If tls_enabled is False, this option is ignored.

tls_allowed_ciphers
Type
string

Default
<None>

Set the available ciphers for sockets created with the TLS context. It should be a string in
the OpenSSL cipher list format. If not specified, all OpenSSL enabled ciphers will be avail-
able. Currently supported by dogpile.cache.bmemcache, dogpile.cache.pymemcache and
oslo_cache.memcache_pool.

enable_socket_keepalive

Type

boolean

Default
False

Global toggle for the socket keepalive of dogpiles pymemcache backend

socket_keepalive_idle

Type

integer

66 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Default
1

Minimum Value
0

The time (in seconds) the connection needs to remain idle before TCP starts sending keepalive
probes. Should be a positive integer most greater than zero.

socket_keepalive_interval
Type
integer

Default
1

Minimum Value
0

The time (in seconds) between individual keepalive probes. Should be a positive integer greater
than zero.

socket_keepalive_count
Type
integer

Default
1

Minimum Value
0

The maximum number of keepalive probes TCP should send before dropping the connection.
Should be a positive integer greater than zero.

enable_retry_client
Type
boolean

Default
False

Enable retry client mechanisms to handle failure. Those mechanisms can be used to wrap all kind
of pymemcache clients. The wrapper allows you to define how many attempts to make and how
long to wait between attemots.

retry_attempts

Type
integer

Default
2

Minimum Value
1

Number of times to attempt an action before failing.

2.3. Configuring Heat 67

Heat Documentation, Release 24.1.0.dev11

retry_delay

Type
floating point

Default
0

Number of seconds to sleep between each attempt.

hashclient_retry_attempts
Type
integer

Default
2

Minimum Value
1

Amount of times a client should be tried before it is marked dead and removed from the pool in
the HashClients internal mechanisms.

hashclient_retry_delay

Type
floating point

Default
1

Time in seconds that should pass between retry attempts in the HashClients internal mechanisms.

dead_timeout

Type
floating point

Default
60

Time in seconds before attempting to add a node back in the pool in the HashClients internal
mechanisms.

enforce_fips_mode

Type

boolean

Default
False

Global toggle for enforcing the OpenSSL FIPS mode. This feature requires Python support. This is
available in Python 3.9 in all environments and may have been backported to older Python versions
on select environments. If the Python executable used does not support OpenSSL FIPS mode,
an exception will be raised. Currently supported by dogpile.cache.bmemcache, dogpile.
cache.pymemcache and oslo_cache.memcache_pool.

68 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

clients

endpoint_type
Type
string

Default
publicURL

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
False

If set, then the servers certificate will not be verified.

clients_aodh

endpoint_type
Type
string

Default
<None>

2.3. Configuring Heat

69

Heat Documentation, Release 24.1.0.dev11

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type

string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.

key_file

Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_barbican

endpoint_type

Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type
string

Default
<None>

70 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Optional CA cert file to use in SSL connections.

cert_file

Type

string

Default
<None>

Optional PEM-formatted certificate chain file.

key_file

Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_cinder

endpoint_type

Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file
Type
string

Default
<None>

2.3. Configuring Heat 71

Heat Documentation, Release 24.1.0.dev11

Optional PEM-formatted certificate chain file.

key_file
Type

string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

http_log_debug

Type
boolean

Default
False

Allow clients debug log output.

clients_designate

endpoint_type

Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file
Type
string

Default
<None>

72 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_glance
endpoint_type
Type

string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file
Type
string

Default
<None>

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

2.3. Configuring Heat

73

Heat Documentation, Release 24.1.0.dev11

Optional PEM-formatted file that contains the private key.

insecure

Type

boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_heat
endpoint_type
Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure
Type
boolean
Default
<None>
74 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

If set, then the servers certificate will not be verified.

url
Type
string

Default

Optional heat url in format like http://0.0.0.0:8004/v1/%(tenant_id)s.

clients_keystone
endpoint_type
Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure
Type
boolean

Default
<None>

2.3. Configuring Heat

75

http://0.0.0.0:8004/v1/%(tenant_id)s

Heat Documentation, Release 24.1.0.dev11

If set, then the servers certificate will not be verified.

auth_uri
Type
string

Default

Unversioned keystone url in format like http://0.0.0.0:5000.

clients_magnum
endpoint_type
Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure
Type
boolean
Default
<None>
76 Chapter 2. Operating Heat

http://0.0.0.0:5000

Heat Documentation, Release 24.1.0.dev11

If set, then the servers certificate will not be verified.

clients_manila
endpoint_type
Type

string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_mistral

endpoint_type

Type

string

2.3. Configuring Heat

77

Heat Documentation, Release 24.1.0.dev11

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.

key_file

Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_monasca

endpoint_type

Type

string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type

string

78 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.

key_file

Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_neutron

endpoint_type

Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type

string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type

string

2.3. Configuring Heat 79

Heat Documentation, Release 24.1.0.dev11

Default
<None>

Optional PEM-formatted certificate chain file.

key_file

Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_nova

endpoint_type

Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type

string

Default
<None>

Optional PEM-formatted certificate chain file.

key_file
Type

string

80 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

http_log_debug

Type
boolean

Default
False

Allow clients debug log output.

clients_octavia

endpoint_type

Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type

string

Default
<None>

Optional PEM-formatted certificate chain file.

key_file
Type

string

2.3. Configuring Heat 81

Heat Documentation, Release 24.1.0.dev11

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_swift
endpoint_type
Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file
Type
string

Default
<None>

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type

boolean

82

Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Default
<None>

If set, then the servers certificate will not be verified.

clients_trove
endpoint_type
Type
string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type

boolean

Default
<None>

If set, then the servers certificate will not be verified.

2.3. Configuring Heat

83

Heat Documentation, Release 24.1.0.dev11

clients_vitrage
endpoint_type
Type

string

Default
<None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type
string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type
string

Default
<None>

Optional PEM-formatted certificate chain file.

key_file

Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

clients_zaqar

endpoint_type
Type
string

Default
<None>

84 Chapter 2

. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type

string

Default
<None>

Optional CA cert file to use in SSL connections.

cert_file

Type

string

Default
<None>

Optional PEM-formatted certificate chain file.
key_file
Type
string

Default
<None>

Optional PEM-formatted file that contains the private key.

insecure

Type
boolean

Default
<None>

If set, then the servers certificate will not be verified.

constraint_validation_cache

expiration_time
Type
integer

Default
60

TTL, in seconds, for any cached item in the dogpile.cache region used for caching of validation

constraints.

caching
Type
boolean

Default
True

2.3. Configuring Heat

85

Heat Documentation, Release 24.1.0.dev11

Toggle to enable/disable caching when Orchestration Engine validates property constraints of
stack. During property validation with constraints Orchestration Engine caches requests to other
OpenStack services. Please note that the global toggle for oslo.cache(enabled=True in [cache]
group) must be enabled to use this feature.

cors
allowed_origin
Type
list

Default
<None>

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

allow_credentials
Type
boolean

Default
True

Indicate that the actual request can include user credentials
expose_headers
Type
list

Default
['X-Auth-Token', 'X-Subject-Token', 'X-Service-Token',
'X-OpenStack-Request-ID"']

Indicate which headers are safe to expose to the API. Defaults to HTTP Simple Headers.
max_age
Type
integer

Default
3600

Maximum cache age of CORS preflight requests.

allow_methods

Type
list

Default
['GET', 'PUT', 'POST', 'DELETE', 'PATCH']

Indicate which methods can be used during the actual request.

86 Chapter 2. Operating Heat

https://horizon.example.com
https://horizon.example.com

Heat Documentation, Release 24.1.0.dev11

allow_headers

Type
list

Default
['X-Auth-Token', 'X-Identity-Status', 'X-Roles',
'X-Service-Catalog', 'X-User-Id', 'X-Tenant-Id',
'X-OpenStack-Request-ID"']

Indicate which header field names may be used during the actual request.

database

sqlite_synchronous

Type
boolean

Default
True

If True, SQLite uses synchronous mode.
backend
Type
string

Default
sqlalchemy

The back end to use for the database.

connection

Type

string

Default
<None>

The SQLAIchemy connection string to use to connect to the database.

slave_connection
Type
string

Default
<None>

The SQLAIchemy connection string to use to connect to the slave database.

asyncio_connection
Type
string

Default
<None>

2.3. Configuring Heat

87

Heat Documentation, Release 24.1.0.dev11

The SQLAIchemy asyncio connection string to use to connect to the database.

asyncio_slave_connection

Type

string

Default
<None>

The SQLAIchemy asyncio connection string to use to connect to the slave database.
mysql_sql_mode
Type
string

Default
TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_wsrep_sync_wait

Type
integer

Default
<None>

For Galera only, configure wsrep_sync_wait causality checks on new connections. Default is None,
meaning dont configure any setting.

connection_recycle_time

Type
integer

Default
3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

max_pool_size

Type
integer

Default
5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

max_retries

Type

integer

88 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Default
10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite

retry count.

retry_interval

Type
integer

Default
10

Interval between retries of opening a SQL connection.

max_overflow

Type

integer

Default
50

If set, use this value for max_overflow with SQLAIchemy.

connection_debug

Type

integer

Default
0

Minimum Value
0

Maximum Value
100

Verbosity of SQL debugging information: 0=None, 100=Everything.

connection_trace

Type
boolean

Default
False

Add Python stack traces to SQL as comment strings.

pool_timeout

Type
integer

Default
<None>

If set, use this value for pool_timeout with SQLAIchemy.

2.3. Configuring Heat

89

Heat Documentation, Release 24.1.0.dev11

use_db_reconnect

Type
boolean

Default
False

Enable the experimental use of database reconnect on connection lost.

db_retry_interval

Type
integer

Default
1

Seconds between retries of a database transaction.

db_inc_retry_interval

Type
boolean

Default
True

If True, increases the interval between retries of a database operation up to db_max_retry_interval.

db_max_retry_interval

Type
integer

Default
10

If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries
Type
integer

Default
20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters
Type
string

Default

Optional URL parameters to append onto the connection URL at connect time; specify as
paraml=valuel ¶m2=value2&

920 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

ec2authtoken

auth_uri

Type
string

Default
<None>

Authentication Endpoint URL.

multi_cloud

Type
boolean

Default
False

Allow orchestration of multiple clouds.

allowed_auth_uris

Type
list

Default
]

Allowed keystone endpoints for auth_uri when multi_cloud is enabled. At least one endpoint needs
to be specified.

cert_file

Type

string

Default
<None>

Optional PEM-formatted certificate chain file.

key_file
Type

string

Default
<None>

Optional PEM-formatted file that contains the private key.

ca_file

Type

string

Default
<None>

Optional CA cert file to use in SSL connections.

2.3. Configuring Heat 91

Heat Documentation, Release 24.1.0.dev11

insecure

Type
boolean

Default
False

If set, then the servers certificate will not be verified.

timeout

Type
floating point

Default
60

Minimum Value
0

Timeout in seconds for HTTP requests.

eventlet_opts

wsgi_keep_alive

Type

boolean

Default
True

If False, closes the client socket connection explicitly.

client_socket_timeout
Type
integer

Default
900

Timeout for client connections socket operations. If an incoming connection is idle for this number
of seconds it will be closed. A value of 0 means wait forever.

healthcheck
path
Type
string
Default
/healthcheck

The path to respond to healtcheck requests on.

92 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

detailed
Type
boolean

Default
False

Show more detailed information as part of the response. Security note: Enabling this option may
expose sensitive details about the service being monitored. Be sure to verify that it will not violate
your security policies.

backends
Type
list

Default
]

Additional backends that can perform health checks and report that information back as part of a
request.

allowed_source_ranges
Type
list

Default
[]

A list of network addresses to limit source ip allowed to access healthcheck information. Any
request from ip outside of these network addresses are ignored.

ignore_proxied_requests
Type
boolean

Default
False

Ignore requests with proxy headers.
disable_by_file_path
Type
string

Default
<None>

Check the presence of a file to determine if an application is running on a port. Used by Disable-
ByFileHealthcheck plugin.

2.3. Configuring Heat 93

Heat Documentation, Release 24.1.0.dev11

disable_by_file_paths

Type

list

Default
[]

Check the presence of a file based on a port to determine if an application is running on a port.
Expects a port:path list of strings. Used by DisableByFilesPortsHealthcheck plugin.

enable_by_file_paths

Type

list

Default
[]

Check the presence of files. Used by EnableByFilesHealthcheck plugin.

heat_api
bind_host
Type
ip address

Default
0.0.0.0

Address to bind the server. Useful when selecting a particular network interface.

Table 6: Deprecated Variations

Group Name
DEFAULT bind_host

bind_port

Type

port number

Default
8004

Minimum Value
0

Maximum Value
65535

The port on which the server will listen.

Table 7: Deprecated Variations

Group Name
DEFAULT bind_port

94 Chapter 2

. Operating Heat

Heat Documentation, Release 24.1.0.dev11

backlog

Type
integer

Default
4096

Number of backlog requests to configure the socket with.

Table 8: Deprecated Variations

Group Name
DEFAULT backlog

cert_file

Type
string

Default
<None>

Location of the SSL certificate file to use for SSL mode.

Table 9: Deprecated Variations

Group Name
DEFAULT cert_file

key_file

Type
string

Default
<None>

Location of the SSL key file to use for enabling SSL. mode.

Table 10: Deprecated Variations

Group Name
DEFAULT key_file

workers
Type
integer

Default
0

Minimum Value
0

2.3. Configuring Heat

95

Heat Documentation, Release 24.1.0.dev11

Number of workers for Heat service. Default value 0 means, that service will start number of
workers equal number of cores on server.

Table 11: Deprecated Variations

Group Name
DEFAULT workers

max_header_line

Type
integer

Default
16384

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated by the Keystone v3 API with big service cata-
logs).

tcp_keepidle

Type
integer

Default
600

The value for the socket option TCP_KEEPIDLE. This is the time in seconds that the connection
must be idle before TCP starts sending keepalive probes.
heat_api_cfn

bind_host

Type
ip address

Default
0.0.0.0

Address to bind the server. Useful when selecting a particular network interface.

Table 12: Deprecated Variations

Group Name
DEFAULT bind_host

bind_port
Type
port number

Default
8000

96 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Minimum Value
0

Maximum Value
65535

The port on which the server will listen.

Table 13: Deprecated Variations

Group Name
DEFAULT bind_port

backlog

Type
integer

Default
4096

Number of backlog requests to configure the socket with.

Table 14: Deprecated Variations

Group Name
DEFAULT backlog

cert_file

Type

string

Default
<None>

Location of the SSL certificate file to use for SSL mode.

Table 15: Deprecated Variations

Group Name
DEFAULT cert_file

key_file
Type

string

Default
<None>

Location of the SSL key file to use for enabling SSL mode.

2.3. Configuring Heat

97

Heat Documentation, Release 24.1.0.dev11

Table 16: Deprecated Variations

Group Name
DEFAULT key_file

workers

Type
integer

Default
1

Minimum Value
0

Number of workers for Heat service.

Table 17: Deprecated Variations

Group Name
DEFAULT workers

max_header_line
Type
integer

Default
16384

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated by the Keystone v3 API with big service cata-
logs).

tcp_keepidle

Type
integer

Default
600

The value for the socket option TCP_KEEPIDLE. This is the time in seconds that the connection
must be idle before TCP starts sending keepalive probes.
keystone_authtoken

www_authenticate_uri
Type
string

Default
<None>

98 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should nor be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint.

Table 18: Deprecated Variations

Group Name

keystone_authtoken auth_uri

auth_uri

Type
string

Default
<None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should nor be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning

This option is deprecated for removal since Queens. Its value may be silently ignored in the
future.

Reason
The auth_uri option is deprecated in favor of www_authenticate_uri and will
be removed in the S release.

auth_version

Type

string

Default
<None>

API version of the Identity API endpoint.

interface

Type

string

Default
internal

2.3. Configuring Heat 99

Heat Documentation, Release 24.1.0.dev11

Interface to use for the Identity API endpoint. Valid values are public, internal (default) or admin.

delay_auth_decision

Type

boolean

Default
False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout

Type
integer

Default
<None>

Request timeout value for communicating with Identity API server.

http_request_max_retries
Type
integer

Default
3

How many times are we trying to reconnect when communicating with Identity API Server.

cache
Type
string

Default
<None>

Request environment key where the Swift cache object is stored. When auth_token middleware is
deployed with a Swift cache, use this option to have the middleware share a caching backend with
swift. Otherwise, use the memcached_servers option instead.

certfile
Type
string

Default
<None>

Required if identity server requires client certificate
keyfile
Type
string

Default
<None>

100 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Required if identity server requires client certificate

cafile

Type
string

Default
<None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

region_name

Type

string

Default
<None>

The region in which the identity server can be found.

memcached_servers

Type

list

Default
<None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 19: Deprecated Variations

Group Name

keystone_authtoken memcache_servers

token_cache_time
Type
integer

Default
300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

2.3. Configuring Heat 101

Heat Documentation, Release 24.1.0.dev11

memcache_security_strategy
Type
string

Default
None

Valid Values
None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key

Type

string

Default
<None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry

Type
integer

Default
300

(Optional) Number of seconds memcached server is considered dead before it is tried again.

memcache_pool_maxsize

Type
integer

Default
10

(Optional) Maximum total number of open connections to every memcached server.

memcache_pool_socket_timeout

Type
integer

Default
3

(Optional) Socket timeout in seconds for communicating with a memcached server.

memcache_pool_unused_timeout

Type

integer

102 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Default
60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout
Type
integer
Default
10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool

Type
boolean

Default
True

(Optional) Use the advanced (eventlet safe) memcached client pool.
include_service_catalog

Type
boolean

Default
True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind

Type

string

Default
permissive

Used to control the use and type of token binding. Can be set to: disabled to not check token
binding. permissive (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. strict like permissive but if the bind type is unknown the token
will be rejected. required any form of token binding is needed to be allowed. Finally the name of
a binding method that must be present in tokens.

service_token_roles

Type

list

Default
['service']

2.3. Configuring Heat 103

Heat Documentation, Release 24.1.0.dev11

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list
must be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required

Type

boolean

Default
False

For backwards compatibility reasons we must let valid service tokens pass that dont pass the ser-
vice_token_roles check as valid. Setting this true will become the default in a future release and
should be enabled if possible.

service_type

Type

string

Default
<None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

memcache_sasl_enabled

Type
boolean

Default
False

Enable the SASL(Simple Authentication and Security Layer) if the SASL_enable is true, else dis-
able.

memcache_username

Type

string

Default

the user name for the SASL

memcache_password

Type

string

Default

the username password for SASL

104 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 20: Deprecated Variations

Group Name

keystone_authtoken auth_plugin

auth_section

Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

noauth

token_response

Type
string

Default

JSON file containing the content returned by the noauth middleware.

oslo_messaging_kafka

kafka_max_fetch_bytes

Type

integer

Default
1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type

floating point

Default
1.0

Default timeout(s) for Kafka consumers

2.3. Configuring Heat

105

Heat Documentation, Release 24.1.0.dev11

consumer_group

Type
string

Default
oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

producer_batch_timeout

Type
floating point

Default
0.0

Upper bound on the delay for KafkaProducer batching in seconds

producer_batch_size

Type
integer

Default
16384

Size of batch for the producer async send

compression_codec
Type
string

Default
none

Valid Values
none, gzip, snappy, 1z4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit

Type
boolean

Default
False

Enable asynchronous consumer commits

max_poll_records
Type
integer

Default
500

106 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

The maximum number of records returned in a poll call

security_protocol

Type

string

Default
PLAINTEXT

Valid Values
PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

sasl_mechanism

Type
string

Default
PLAIN

Mechanism when security protocol is SASL

ssl_cafile

Type
string

Default

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type
string

Default

Client certificate PEM file used for authentication.

ssl_client_key_file

Type
string

Default

Client key PEM file used for authentication.

ssl_client_key_password
Type
string

Default

2.3. Configuring Heat

107

Heat Documentation, Release 24.1.0.dev11

Client key password file used for authentication.

oslo_messaging_notifications
driver
Type
multi-valued

Default

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv?2, rout-
ing, log, test, noop
transport_url
Type
string
Default

<None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

topics
Type
list
Default
['notifications']
AMAQP topic used for OpenStack notifications.
retry
Type
integer
Default
-1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. O - No retry, -1 - indefinite

oslo_messaging_rabbit
amgp_durable_queues
Type
boolean

Default
False

Use durable queues in AMQP. If rabbit_quorum_queue is enabled, queues will be durable and this
value will be ignored.

108 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

amgp_auto_delete

Type
boolean

Default
False

Auto-delete queues in AMQP.

rpc_conn_pool_size

Type
integer

Default
30

Minimum Value
1

Size of RPC connection pool.
conn_pool_min_size
Type
integer

Default
2

The pool size limit for connections expiration policy

conn_pool_ttl
Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

ssl

Type

boolean

Default
False

Connect over SSL.

ssl_version
Type
string

Default

2.3. Configuring Heat

109

Heat Documentation, Release 24.1.0.dev11

SSL version to use (valid only if SSL enabled). Valid values are TLSvl and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

ssl_key_file
Type
string

Default

SSL key file (valid only if SSL enabled).

ssl_cert_file
Type
string

Default

SSL cert file (valid only if SSL enabled).

ssl_ca_file

Type
string

Default

SSL certification authority file (valid only if SSL enabled).

ssl_enforce_fips_mode

Type

boolean

Default
False

Global toggle for enforcing the OpenSSL FIPS mode. This feature requires Python support. This is
available in Python 3.9 in all environments and may have been backported to older Python versions
on select environments. If the Python executable used does not support OpenSSL FIPS mode, an
exception will be raised.

heartbeat_in_pthread

Type
boolean

Default
False

(DEPRECATED) It is recommend not to use this option anymore. Run the health check heartbeat
thread through a native python thread by default. If this option is equal to False then the health
check heartbeat will inherit the execution model from the parent process. For example if the parent
process has monkey patched the stdlib by using eventlet/greenlet then the heartbeat will be run
through a green thread. This option should be set to True only for the wsgi services.

110 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The option is related to Eventlet which will be removed. In addition this
has never worked as expected with services using eventlet for core service
framework.

kombu_reconnect_delay
Type
floating point

Default
1.0

Minimum Value
0.0

Maximum Value
4.5

How long to wait (in seconds) before reconnecting in response to an AMQP consumer cancel
notification.

kombu_reconnect_splay
Type
floating point

Default
0.0

Minimum Value
0.0

Random time to wait for when reconnecting in response to an AMQP consumer cancel notification.

kombu_compression
Type
string

Default
<None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout
Type
integer

Default
60

2.3. Configuring Heat 111

Heat Documentation, Release 24.1.0.dev11

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 21: Deprecated Variations

Group Name

oslo_messaging_rabbit kombu_reconnect_timeout

kombu_failover_strategy
Type
string

Default
round-robin

Valid Values
round-robin, shuffle

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method

Type

string

Default
AMQPLAIN

Valid Values
PLAIN, AMQPLAIN, EXTERNAL, RABBIT-CR-DEMO

The RabbitMQ login method.

rabbit_retry_interval
Type
integer

Default
1

Minimum Value
1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff
Type
integer

Default
2

Minimum Value
0

112 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

How long to backoff for between retries when connecting to RabbitMQ.

rabbit_interval_max

Type

integer

Default
30

Minimum Value
1

Maximum interval of RabbitMQ connection retries.

rabbit_ha_queues

Type
boolean

Default
False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe the
RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-policy
argument when declaring a queue. If you just want to make sure that all queues (except those with
auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA ~(?!amq.).*
{ha-mode: all}

rabbit_quorum_queue

Type
boolean

Default
False

Use quorum queues in RabbitMQ (x-queue-type: quorum). The quorum queue is a modern queue
type for RabbitMQ implementing a durable, replicated FIFO queue based on the Raft consensus
algorithm. It is available as of RabbitMQ 3.8.0. If set this option will conflict with the HA queues
(rabbit_ha_queues) aka mirrored queues, in other words the HA queues should be disabled.
Quorum queues are also durable by default so the amqp_durable_queues option is ignored when
this option is enabled.

rabbit_transient_quorum_queue
Type
boolean

Default
False

Use quorum queues for transients queues in RabbitMQ. Enabling this option will then make sure
those queues are also using quorum kind of rabbit queues, which are HA by default.

rabbit_quorum_delivery_limit

Type
integer

2.3. Configuring Heat 113

Heat Documentation, Release 24.1.0.dev11

Default
0

Each time a message is redelivered to a consumer, a counter is incremented. Once the redelivery
count exceeds the delivery limit the message gets dropped or dead-lettered (if a DLX exchange has

been configured) Used only when rabbit_quorum_queue is enabled, Default O which means dont
set a limit.

rabbit_quorum_max_memory_length
Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of messages in the quorum queue.
Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set a limit.

Table 22: Deprecated Variations

Group Name

oslo_messaging_rabbit rabbit_quroum_max_memory_length

rabbit_quorum_max_memory_bytes

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of memory bytes used by the

quorum queue. Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set
a limit.

Table 23: Deprecated Variations

Group Name

oslo_messaging_rabbit rabbit_quroum_max_memory_bytes

rabbit_transient_queues_ttl
Type
integer

Default
1800

Minimum Value
0

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply

114 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

and fanout queues. Setting 0 as value will disable the x-expires. If doing so, make sure you have
a rabbitmgq policy to delete the queues or you deployment will create an infinite number of queue
over time.In case rabbit_stream_fanout is set to True, this option will control data retention policy
(x-max-age) for messages in the fanout queue rather then the queue duration itself. So the oldest
data in the stream queue will be discarded from it once reaching TTL Setting to O will disable
x-max-age for stream which make stream grow indefinitely filling up the diskspace

rabbit_gos_prefetch_count
Type
integer

Default
0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.
heartbeat_timeout_threshold
Type
integer

Default
60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate
Type
integer
Default
3

How often times during the heartbeat_timeout_threshold we check the heartbeat.

direct_mandatory_flag

Type

boolean

Default
True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does not
exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to sender
to recover.This flag is deprecated and it will not be possible to deactivate this functionality anymore

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Mandatory flag no longer deactivable.

2.3. Configuring Heat 115

Heat Documentation, Release 24.1.0.dev11

enable_cancel_on_failover
Type
boolean

Default
False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

use_queue_manager
Type
boolean

Default
False

Should we use consistant queue names or random ones

hostname
Type
string

Default
nodel.example.com

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Hostname used by queue manager. Defaults to the value returned by socket.gethostname().
processname
Type
string

Default
nova-api

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Process name used by queue manager
rabbit_stream_fanout
Type
boolean

Default
False

Use stream queues in RabbitMQ (x-queue-type: stream). Streams are a new persistent and
replicated data structure (queue type) in RabbitMQ which models an append-only log with non-
destructive consumer semantics. It is available as of RabbitMQ 3.9.0. If set this option will replace
all fanout queues with only one stream queue.

116 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

oslo_middleware

max_request_body_size

Type
integer

Default
114688

The maximum body size for each request, in bytes.

Table 24: Deprecated Variations

Group Name

DEFAULT osapi_max_request_body_size
DEFAULT max_request_body_size

enable_proxy_headers_parsing

Type
boolean

Default
False

Whether the application is behind a proxy or not. This determines if the middleware should parse
the headers or not.

http_basic_auth_user_file
Type
string

Default
/etc/htpasswd

HTTP basic auth password file.

oslo_policy

enforce_scope

Type
boolean

Default
True

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced. If
the scopes do not match, an InvalidScope exception will be raised. If False, a message will be
logged informing operators that policies are being invoked with mismatching scope.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

2.3. Configuring Heat 117

Heat Documentation, Release 24.1.0.dev11

Reason
This configuration was added temporarily to facilitate a smooth transition to
the new RBAC. OpenStack will always enforce scope checks. This configu-
ration option is deprecated and will be removed in the 2025.2 cycle.

enforce_new_defaults

Type
boolean

Default
True

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token is
allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged to
enable this flag along with the enforce_scope flag so that you can get the benefits of new defaults
and scope_type together. If False, the deprecated policy check string is logically ORd with the
new policy check string, allowing for a graceful upgrade experience between releases with new
policies, which is the default behavior.

policy_f£file
Type

string

Default
policy.yaml

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

policy_default_rule

Type
string

Default
default

Default rule. Enforced when a requested rule is not found.

policy_dirs
Type
multi-valued

Default
policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

remote_content_type

Type

string

118 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Default
application/x-www-form-urlencoded

Valid Values
application/x-www-form-urlencoded, application/json

Content Type to send and receive data for REST based policy check

remote_ssl_verify_server_crt

Type
boolean

Default
False

server identity verification for REST based policy check

remote_ssl_ca_crt_file

Type
string

Default
<None>

Absolute path to ca cert file for REST based policy check

remote_ssl_client_crt_file

Type
string

Default
<None>

Absolute path to client cert for REST based policy check

remote_ssl_client_key_file

Type
string

Default
<None>

Absolute path client key file REST based policy check

remote_timeout

Type
floating point

Default
60

Minimum Value
0

Timeout in seconds for REST based policy check

2.3. Configuring Heat

119

Heat Documentation, Release 24.1.0.dev11

oslo_reports

log_dir

Type
string

Default
<None>

Path to a log directory where to create a file

file_event_handler

Type
string

Default
<None>

The path to a file to watch for changes to trigger the reports, instead of signals. Setting this option
disables the signal trigger for the reports. If application is running as a WSGI application it is
recommended to use this instead of signals.

file_event_handler_interval

Type
integer

Default
1

How many seconds to wait between polls when file_event_handler is set

oslo_versionedobjects

fatal_exception_format_errors

Type
boolean

Default
False

Make exception message format errors fatal

paste_deploy

flavor

Type

string

Default
<None>

The flavor to use.

120 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

api_paste_config

Type
string

Default
api-paste.ini

The API paste config file to use.

profiler
enabled
Type
boolean
Default
False

Enable the profiling for all services on this node.
Default value is False (fully disable the profiling feature).
Possible values:

* True: Enables the feature

* False: Disables the feature. The profiling cannot be started via this project operations. If the
profiling is triggered by another project, this project part will be empty.

Table 25: Deprecated Variations

Group Name

profiler profiler_enabled

trace_sqlalchemy

Type

boolean

Default
False

Enable SQL requests profiling in services.
Default value is False (SQL requests wont be traced).
Possible values:

* True: Enables SQL requests profiling. Each SQL query will be part of the trace and can the
be analyzed by how much time was spent for that.

* False: Disables SQL requests profiling. The spent time is only shown on a higher level of
operations. Single SQL queries cannot be analyzed this way.

trace_requests

Type
boolean

2.3. Configuring Heat 121

Heat Documentation, Release 24.1.0.dev11

Default
False

Enable python requests package profiling.
Supported drivers: jaeger+otlp
Default value is False.
Possible values:
* True: Enables requests profiling.
* False: Disables requests profiling.

hmac_keys

Type
string

Default
SECRET_KEY

Secret key(s) to use for encrypting context data for performance profiling.

This string value should have the following format: <keyl>[,<key2>,<keyn>], where each key is
some random string. A user who triggers the profiling via the REST API has to set one of these
keys in the headers of the REST API call to include profiling results of this node for this particular
project.

Both enabled flag and hmac_keys config options should be set to enable profiling. Also, to generate
correct profiling information across all services at least one key needs to be consistent between
OpenStack projects. This ensures it can be used from client side to generate the trace, containing
information from all possible resources.

connection_string

Type

string

Default
messaging://

Connection string for a notifier backend.
Default value is messaging:// which sets the notifier to oslo_messaging.
Examples of possible values:
* messaging:// - use oslo_messaging driver for sending spans.
* redis://127.0.0.1:6379 - use redis driver for sending spans.
* mongodb://127.0.0.1:27017 - use mongodb driver for sending spans.
* elasticsearch://127.0.0.1:9200 - use elasticsearch driver for sending spans.
* jaeger://127.0.0.1:6831 - use jaeger tracing as driver for sending spans.

es_doc_type

Type
string

122 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Default
notification

Document type for notification indexing in elasticsearch.

es_scroll_time
Type
string

Default
2m

This parameter is a time value parameter (for example: es_scroll_time=2m), indicating for how
long the nodes that participate in the search will maintain relevant resources in order to continue
and support it.

es_scroll_size

Type
integer

Default
10000

Elasticsearch splits large requests in batches. This parameter defines maximum size of each batch
(for example: es_scroll_size=10000).

socket_timeout

Type

floating point

Default
0.1

Redissentinel provides a timeout option on the connections. This parameter defines that timeout
(for example: socket_timeout=0.1).

sentinel_service_name

Type
string

Default
mymaster

Redissentinel uses a service name to identify a master redis service. This parameter defines the
name (for example: sentinal_service_name=mymaster).

filter_error_trace

Type

boolean

Default
False

Enable filter traces that contain error/exception to a separated place.

Default value is set to False.

2.3. Configuring Heat 123

Heat Documentation, Release 24.1.0.dev11

Possible values:
* True: Enable filter traces that contain error/exception.

¢ False: Disable the filter.

profiler_jaeger

service_name_prefix

Type
string

Default
<None>

Set service name prefix to Jaeger service name.

process_tags

Type
dict

Default
{3}

Set process tracer tags.

profiler_otlp

service_name_prefix

Type

string

Default
<None>

Set service name prefix to OTLP exporters.

resource_finder _cache
expiration_time
Type
integer

Default
3600

TTL, in seconds, for any cached item in the dogpile.cache region used for caching of OpenStack
service finder functions.

caching
Type
boolean

Default
True

124 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Toggle to enable/disable caching when Orchestration Engine looks for other OpenStack service
resources using name or id. Please note that the global toggle for oslo.cache(enabled=True in
[cache] group) must be enabled to use this feature.

revision

heat_revision
Type
string

Default
unknown

Heat build revision. If you would prefer to manage your build revision separately, you can move
this section to a different file and add it as another config option.

service_extension_cache
expiration_time
Type
integer

Default
3600

TTL, in seconds, for any cached item in the dogpile.cache region used for caching of service ex-
tensions.

caching

Type
boolean

Default
True

Toggle to enable/disable caching when Orchestration Engine retrieves extensions from other Open-
Stack services. Please note that the global toggle for oslo.cache(enabled=True in [cache] group)
must be enabled to use this feature.

ssl
ca_file
Type
string
Default
<None>

CA certificate file to use to verify connecting clients.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

2.3. Configuring Heat 125

Heat Documentation, Release 24.1.0.dev11

Reason
The ca_file option is deprecated and will be removed in a future release.

cert_file

Type
string

Default
<None>

Certificate file to use when starting the server securely.

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The cert_file option is deprecated and will be removed in a future release.

key_file

Type
string

Default
<None>

Private key file to use when starting the server securely.

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The key_file option is deprecated and will be removed in a future release.

version
Type
string

Default
<None>

SSL version to use (valid only if SSL enabled). Valid values are TLSv1l and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

126 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Reason
The version option is deprecated and will be removed in a future release.

ciphers

Type
string

Default
<None>

Sets the list of available ciphers. value should be a string in the OpenSSL cipher list format.

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The ciphers option is deprecated and will be removed in a future release.

trustee
auth_type
Type
unknown type
Default
<None>

Authentication type to load

Table 26: Deprecated Variations

Group Name

trustee auth_plugin

auth_section

Type

unknown type

Default
<None>

Config Section from which to load plugin specific options

auth_url
Type
unknown type

Default
<None>

2.3. Configuring Heat 127

Heat Documentation, Release 24.1.0.dev11

Authentication URL
system_scope
Type
unknown type

Default
<None>

Scope for system operations

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

project_id

Type
unknown type

Default
<None>

Project ID to scope to

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 27: Deprecated Variations

Group Name
trustee tenant-id
trustee tenant_id

128

Chapter 2

. Operating Heat

Heat Documentation, Release 24.1.0.dev11

Table 28: Deprecated Variations

Group Name

trustee tenant-name
trustee tenant_name

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type

unknown type

Default
<None>

Domain name containing project

trust_id

Type

unknown type

Default
<None>

ID of the trust to use as a trustee use

default_domain_id
Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name
Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

2.3. Configuring Heat 129

Heat Documentation, Release 24.1.0.dev11

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

Username

Table 29: Deprecated Variations

Group Name
trustee user-name
trustee user_name

user_domain_id

Type

unknown type

Default
<None>

Users domain id

user_domain_name

Type

unknown type

Default
<None>

Users domain name

password

Type

unknown type

Default
<None>

Users password

130

Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

volumes
backups_enabled
Type
boolean

Default
True

Indicate if cinder-backup service is enabled. This is a temporary workaround until cinder-backup
service becomes discoverable, see LP#1334856.

yaql
limit_iterators
Type
integer
Default
200

The maximum number of elements in collection expression can take for its evaluation.

memory_quota

Type

integer

Default
10000

The maximum size of memory in bytes that expression can take for its evaluation.

2.3.2 Heat Configuration Sample

The following is a sample heat configuration for adaptation and use. It is auto-generated from heat when
this documentation is built, so if you are having issues with an option, please compare your version of
heat with the version of this documentation.

See the online version of this documentation for the full example config file.

2.3.3 Orchestration log files

The corresponding log file of each Orchestration service is stored in the /var/log/heat/ directory of
the host on which each service runs.

Table 30: Log files used by Orchestration services

Log filename Service that logs to the file
heat-api.log Orchestration service API Service
heat-engine.log Orchestration service Engine Service
heat-manage.log Orchestration service events

2.3. Configuring Heat 131

Heat Documentation, Release 24.1.0.dev11

2.3.4 Heat Sample Policy

Warning

JSON formatted policy file is deprecated since Heat 17.0.0 (Xena). This oslopolicy-convert-json-to-
yaml tool will migrate your existing JSON-formatted policy file to YAML in a backward-compatible
way.

The following is a sample heat policy file that has been auto-generated from default policy values in
code. If youre using the default policies, then the maintenance of this file is not necessary, and it should
not be copied into a deployment. Doing so will result in duplicate policy definitions. It is here to help
explain which policy operations protect specific heat APIs, but it is not suggested to copy and paste into a
deployment unless youre planning on providing a different policy for an operation that is not the default.

If you wish build a policy file, you can also use tox -e genpolicy to generate it.

The sample policy file can also be downloaded in file form.

(continues on next page)

132 Chapter 2. Operating Heat

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
../_static/heat.policy.yaml.sample

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

#"actions:snapshot": "role:member and project_id:%(project_id)s"

DEPRECATED

"actions:snapshot":'"rule:deny_stack_user" has been deprecated since
W in favor of "actions:snapshot":'"role:member and

project_id:%(project_id)s".

The actions API now supports system scope and default roles.

Suspend a stack.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): project

#"actions:suspend": "role:member and project_id:%(project_id)s"

DEPRECATED

"actions:suspend":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:suspend':'"role:member and

project_id:%(project_id)s".

The actions API now supports system scope and default roles.

Resume a suspended stack.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): project

#"actions:resume': "role:member and project_id:%(project_id)s"

DEPRECATED

"actions:resume":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:resume':'"role:member and

project_id:%(project_id)s".

The actions API now supports system scope and default roles.

Check stack resources.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): project

#"actions:check": "role:reader and project_id:%(project_id)s"

DEPRECATED

"actions:check'":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:check'":'"role:reader and

project_id:%(project_id)s".

The actions API now supports system scope and default roles.

Cancel stack operation and roll back.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): project

#"actions:cancel_update": "role:member and project_id:%(project_id)s"

DEPRECATED
"actions:cancel_update":"rule:deny_stack_user" has been deprecated

no,n

since W in favor of "actions:cancel_update":"role:member and

(continues on next page)

2.3. Configuring Heat 133

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)
project_id:%(project_id)s".
The actions API now supports system scope and default roles.

Cancel stack operation without rolling back.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/actions
Intended scope(s): project

#"actions:cancel_without_rollback": "role:member and project_id:%(project_id)s
o

DEPRECATED

"actions:cancel_without_rollback":"rule:deny_stack_user" has been

deprecated since W in favor of

"actions:cancel_without_rollback":"role:member and

project_id:%(project_id)s".

The actions API now supports system scope and default roles.

Show build information.

GET /v1/{tenant_id}/build_info

Intended scope(s): project

#"build_info:build_info": "role:reader and project_id:%(project_id)s"

DEPRECATED

"build_info:build_info":"rule:deny_stack user" has been deprecated
since W in favor of "build _info:build_info":'"role:reader and
project_id:%(project_id)s".

The build API now supports system scope and default roles.

FH W K R R

Intended scope(s): project

#"cloudformation:ListStacks": "role:reader and project_id:%(project_id)s"
DEPRECATED

"cloudformation:ListStacks":"rule:deny_stack_user'" has been

deprecated since W in favor of

"cloudformation:ListStacks":'"role:reader and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project

#"cloudformation:CreateStack": "role:member and project_id:%(project_id)s"
DEPRECATED

"cloudformation:CreateStack":"rule:deny_stack_user" has been

deprecated since W in favor of

"cloudformation:CreateStack":"role:member and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project
#"cloudformation:DescribeStacks": "role:reader and project_id:%(project_id)s"

(continues on next page)

134 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

DEPRECATED

"cloudformation:DescribeStacks":"rule:deny_stack_user" has been

deprecated since W in favor of

"cloudformation:DescribeStacks":"role:reader and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project
#"cloudformation:DeleteStack": "role:member and project_id:%(project_id)s"

DEPRECATED

"cloudformation:DeleteStack":"rule:deny_stack_user" has been

deprecated since W in favor of

"cloudformation:DeleteStack":"role:member and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project
#"cloudformation:UpdateStack": "role:member and project_id:%(project_id)s"

DEPRECATED

"cloudformation:UpdateStack":"rule:deny_stack_user" has been

deprecated since W in favor of

"cloudformation:UpdateStack":"role:member and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project
#"cloudformation:CancelUpdateStack": "role:member and project_id:%(project_
—id)s"

DEPRECATED

"cloudformation:CancelUpdateStack":"rule:deny_stack_user" has been
deprecated since W in favor of

"cloudformation:CancelUpdateStack": "role:member and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project

#"cloudformation:DescribeStackEvents": "role:reader and project_id:%(project_
—id)s"

DEPRECATED

"cloudformation:DescribeStackEvents":'"rule:deny_stack user" has been

deprecated since W in favor of

"cloudformation:DescribeStackEvents":"role:reader and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

(continues on next page)

2.3. Configuring Heat 135

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Intended scope(s): project
#"cloudformation:ValidateTemplate": "role:reader and project_id:%(project_id)s

n
—

DEPRECATED

"cloudformation:ValidateTemplate":"rule:deny_stack user" has been

deprecated since W in favor of

"cloudformation:ValidateTemplate'":"role:reader and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project
#"cloudformation:GetTemplate": "role:reader and project_id:%(project_id)s"

DEPRECATED

"cloudformation:GetTemplate":"rule:deny_stack_user" has been

deprecated since W in favor of

"cloudformation:GetTemplate'":"role:reader and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project

#"cloudformation:EstimateTemplateCost": "role:reader and project_id:%(project_
—id)s"

DEPRECATED

"cloudformation:EstimateTemplateCost'":"rule:deny_stack_user" has

been deprecated since W in favor of

"cloudformation:EstimateTemplateCost":"role:reader and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project
#"cloudformation:DescribeStackResource": "(role:reader and project_id:
~%(project_id)s) or (role:heat_stack user and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:DescribeStackResource":"rule:allow_everybody" has

been deprecated since W in favor of

"cloudformation:DescribeStackResource":"(role:reader and

project_id:%(project_id)s) or (role:heat_stack_user and

project_id:%(project_id)s)".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project

#"cloudformation:DescribeStackResources'": "role:reader and project_id:
~%(project_id)s"

(continues on next page)

136 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

DEPRECATED

"cloudformation:DescribeStackResources":"rule:deny_stack_user" has
been deprecated since W in favor of

"cloudformation:DescribeStackResources":"role:reader and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

Intended scope(s): project

#"cloudformation:ListStackResources": "role:reader and project_id:%(project_
—~id)s"

DEPRECATED

"cloudformation:ListStackResources":'"rule:deny_stack _user" has been

deprecated since W in favor of

"cloudformation:ListStackResources":"role:reader and

project_id:%(project_id)s".

The cloud formation API now supports system scope and default roles.

List events.

GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/events
Intended scope(s): project

#"events:index": "role:reader and project_id:%(project_id)s"

DEPRECATED
"events:index":"rule:deny_stack_user'" has been deprecated since W in

favor of "events:index":"role:reader and project_id:%(project_id)s".
The events API now supports system scope and default roles.

Show event.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
<name}/events/{event_id}

Intended scope(s): project

#"events:show": "role:reader and project_id:%(project_id)s"

DEPRECATED

"events:show":'"rule:deny_stack user" has been deprecated since W in
favor of "events:show":"role:reader and project_id:%(project_id)s".
The events API now supports system scope and default roles.

List resources.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources

Intended scope(s): project

#"resource:index": "role:reader and project_id:%(project_id)s"

DEPRECATED

"resource:index":"rule:deny_stack_user" has been deprecated since W
in favor of "resource:index'":'"role:reader and

project_id:%(project_id)s".

The resources API now supports system scope and default roles.

(continues on next page)

2.3. Configuring Heat 137

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Show resource metadata.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
—name}/metadata

Intended scope(s): project

#"resource:metadata': "(role:reader and project_id:%(project_id)s) or.

— (role:heat_stack_user and project_id:%(project_id)s)"

DEPRECATED

"resource:metadata":'"rule:allow_everybody'" has been deprecated since
W in favor of "resource:metadata":"(role:reader and

project_id:%(project_id)s) or (role:heat_stack_user and

project_id:%(project_id)s)".

The resources API now supports system scope and default roles.

Signal resource.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
—name}/signal

Intended scope(s): project

#"resource:signal": "(role:reader and project_id:%(project_id)s) or.

—(role:heat_stack_user and project_id:%(project_id)s)"

DEPRECATED

"resource:signal'":'"rule:allow_everybody" has been deprecated since W
in favor of "resource:signal':"(role:reader and

project_id:%(project_id)s) or (role:heat_stack_user and

project_id:%(project_id)s)".

The resources API now supports system scope and default roles.

Mark resource as unhealthy.

PATCH /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
—name_or_physical_id}

Intended scope(s): project

#"resource:mark_unhealthy'": "role:member and project_id:%(project_id)s"
DEPRECATED

"resource:mark_unhealthy":"rule:deny_stack_user" has been deprecated
since W in favor of "resource:mark_unhealthy":"role:member and

project_id:%(project_id)s".

The resources API now supports system scope and default roles.

Show resource.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
—name}

Intended scope(s): project

#"resource:show": "role:reader and project_id:%(project_id)s"

DEPRECATED
"resource:show'":"rule:deny_stack_user" has been deprecated since W

(continues on next page)

138 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

in favor of "resource:show":

(continued from previous page)

"wo,n

role:reader and

project_id:%(project_id)s".
The resources API now supports system scope and default roles.

Intended scope(s):
#"resource_types:0S:

Intended scope(s):
#"resource_types:0S:

Intended scope(s):
#"resource_types:0S:

Intended scope(s):
#"resource_types:0S:

Intended scope(s):
#"resource_types:0S:

Intended scope(s):
#"resource_types:0S:

Intended scope(s):
#"resource_types:0S:

Intended scope(s):

#'"resource_types:0S::

Intended scope(s):
#"resource_types:0S:

Intended scope(s):

#"resource_types:0S::

Intended scope(s):
#"resource_types:0S:

Intended scope(s):

#"resource_types:0S::

Intended scope(s):
#"resource_types:0S:

Intended scope(s):
#"resource_types:0S:

Intended scope(s):
#"resource_types:0S:

:Cinder: :Quota":

:Neutron::Quota":

:Nova: :Quota':

:Octavia: :Quota":

project

:Nova::Flavor": '"rule:project_admin"

project

:Cinder: :EncryptedVolumeType": "rule:project_admin"

project

:Cinder: :VolumeType": "rule:project_admin"

project
"rule:project_admin"

project
"rule:project_admin"

project
"rule:project_admin"

project
"rule:project_admin"

project

Manila: :ShareType": "rule:project_admin"

project

:Neutron: :ProviderNet": "rule:project_admin"

project

Neutron: :QoSPolicy": "rule:project_admin"

project

:Neutron: :QoSBandwidthLimitRule": "rule:project_admin"
project

Neutron: :QoSDscpMarkingRule": "rule:project_admin"
project

:Neutron: :QoSMinimumBandwidthRule": "rule:project_admin"
project

:Neutron: :QoSMinimumPacketRateRule": "rule:project_admin"
project

:Neutron: :Segment": "rule:project_admin"

(continues on next page)

2.3. Configuring Heat

139

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Intended scope(s): project
#"resource_types:0S: :Nova: :HostAggregate': "rule:project_admin"

Intended scope(s): project
#'"resource_types:0S::Cinder: :QoSSpecs": "rule:project_admin"

Intended scope(s): project
#"resource_types:0S: :Cinder: :QoSAssociation": "rule:project_admin"

Intended scope(s): project
#"resource_types:0S: :Keystone::*": "rule:project_admin"
Intended scope(s): project
#'"resource_types:0S::Blazar::Host": "rule:project_admin"

Intended scope(s): project
#"resource_types:0S::0Octavia: :Flavor": "rule:project_admin"

Intended scope(s): project
#"resource_types:0S::0ctavia: :FlavorProfile": "rule:project_admin"

Intended scope(s): project
#"resource_types:0S::Octavia: :AvailabilityZone": "rule:project_admin"

Intended scope(s): project
#"resource_types:0S::0ctavia::AvailabilityZoneProfile": "rule:project_admin"

Intended scope(s): project
#"service:index": "role:admin and project_id:%(project_id)s"

DEPRECATED

"service:index'":"rule:context_is_admin" has been deprecated since W
in favor of "service:index":'"role:admin and

project_id:%(project_id)s".

The service API now supports system scope and default roles.

List configs globally.
GET /vl/{tenant_id}/software_configs
#"software_configs:global_index": "rule:deny_everybody"

List configs.

GET /vl/{tenant_id}/software_configs

Intended scope(s): project

#"software_configs:index": "role:reader and project_id:%(project_id)s"

DEPRECATED
"software_configs:index":"rule:deny_stack_user" has been deprecated

since W in favor of "software_configs:index":"role:reader and
project_id:%(project_id)s".

(continues on next page)

140 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

The software configuration API now support system scope and default
roles.

Create config.

POST /vl/{tenant_id}/software_configs

Intended scope(s): project

#"software_configs:create": "role:member and project_id:%(project_id)s"

DEPRECATED

", n

#
"software_configs:create":'"rule:deny_stack _user" has been deprecated
since W in favor of "software_configs:create":"role:member and

project_id:%(project_id)s".

The software configuration API now support system scope and default
#

roles.

Show config details.

GET /vl/{tenant_id}/software_configs/{config_id}

Intended scope(s): project

#"software_configs:show": "role:reader and project_id:%(project_id)s"

DEPRECATED

nm,n

#

"software_configs:show":"rule:deny_stack user" has been deprecated
since W in favor of "software_configs:show":"role:reader and

project_id:%(project_id)s".

The software configuration API now support system scope and default
roles.

Delete config.

DELETE /vl/{tenant_id}/software_configs/{config_id}

Intended scope(s): project

#"software_configs:delete": "role:member and project_id:%(project_id)s"

DEPRECATED

", n

#
"software_configs:delete":"rule:deny_stack user" has been deprecated
since W in favor of "software_configs:delete":"role:member and

project_id:%(project_id)s".

The software configuration API now support system scope and default
#

roles.

List deployments.

GET /vl/{tenant_id}/software_deployments

Intended scope(s): project

#"software_deployments:index": "role:reader and project_id:%(project_id)s"

DEPRECATED
"software_deployments:index":"rule:deny_stack_user" has been
deprecated since W in favor of

"software_deployments:index'":"role:reader and
project_id:%(project_id)s".

(continues on next page)

2.3. Configuring Heat 141

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

H*

The software deployment API now supports system scope and default
roles.

H

Create deployment.

POST /vl/{tenant_id}/software_deployments

Intended scope(s): project

#"software_deployments:create": "role:member and project_id:%(project_id)s"
DEPRECATED

"software_deployments:create':"rule:deny_stack_user" has been

deprecated since W in favor of

"software_deployments:create':"role:member and

project_id:%(project_id)s".

The software deployment API now supports system scope and default
roles.

Show deployment details.

GET /vl/{tenant_id}/software_deployments/{deployment_id}

Intended scope(s): project

#"software_deployments:show": "role:reader and project_id:%(project_id)s"
DEPRECATED

"software_deployments:show":"rule:deny_stack_user" has been

deprecated since W in favor of

"software_deployments:show":"role:reader and

project_id:%(project_id)s".

The software deployment API now supports system scope and default
roles.

H*

Update deployment.

PUT /vl/{tenant_id}/software_deployments/{deployment_id}

Intended scope(s): project

#"software_deployments:update": "role:member and project_id:%(project_id)s"

R H

DEPRECATED

"software_deployments:update": "rule:deny_stack_user" has been
deprecated since W in favor of

"software_deployments:update": "role:member and
project_id:%(project_id)s".

The software deployment API now supports system scope and default
roles.

H o W B R W% R

Delete deployment.

DELETE /vl/{tenant_id}/software_deployments/{deployment_1id}

Intended scope(s): project

#"software_deployments:delete": "role:member and project_id:%(project_id)s"

DEPRECATED
"software_deployments:delete":"rule:deny_stack_user" has been

(continues on next page)

142 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)
deprecated since W in favor of
"software_deployments:delete": "role:member and
project_id:%(project_id)s".
The software deployment API now supports system scope and default
roles.

H R B R W

Show server configuration metadata.

GET /vl/{tenant_id}/software_deployments/metadata/{server_id}

Intended scope(s): project

#"software_deployments:metadata': "(role:reader and project_id:%(project_
—1d)s) or (role:heat_stack_user and project_id:%(project_id)s)"

Abandon stack.

DELETE /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/abandon
Intended scope(s): project

#"stacks:abandon": "role:member and project_id:%(project_id)s"

DEPRECATED

"stacks:abandon":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:abandon'":'"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Create stack.

POST /vl/{tenant_id}/stacks

Intended scope(s): project

#'"stacks:create": "role:member and project_id:%(project_id)s"

DEPRECATED

"stacks:create':"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:create'":'"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Delete stack.

DELETE /v1/{tenant_id}/stacks/{stack_name}/{stack_id}

Intended scope(s): project

#"stacks:delete": "role:member and project_id:%(project_id)s"

DEPRECATED

"stacks:delete'":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:delete'":'"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

List stacks in detail.

GET /vl/{tenant_id}/stacks

Intended scope(s): project

#"stacks:detail": "role:reader and project_id:%(project_id)s"

(continues on next page)

2.3. Configuring Heat 143

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

DEPRECATED

"stacks:detail'":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:detail":'"role:reader and
project_id:%(project_id)s".

The stack API now supports system scope and default roles.

H R W *R R

H*

Export stack.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/export

Intended scope(s): project

#"stacks:export": "role:member and project_id:%(project_id)s"

DEPRECATED

"stacks:export'":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:export":'role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Generate stack template.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/template

Intended scope(s): project

#"stacks:generate_template": "role:member and project_id:%(project_id)s"
DEPRECATED

"stacks:generate_template":"rule:deny_stack_user'" has been

deprecated since W in favor of

"stacks:generate_template":"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

H

List stacks globally.
GET /v1/{tenant_id}/stacks
#"stacks:global_index": "rule:deny_everybody"

H*

List stacks.

GET /vl/{tenant_id}/stacks

Intended scope(s): project

#"stacks:index": "role:reader and project_id:%(project_id)s"

DEPRECATED

"stacks:index":"rule:deny_stack_user'" has been deprecated since W in
favor of "stacks:index":"role:reader and project_id:%(project_id)s".
The stack API now supports system scope and default roles.

List resource types.

GET /vl/{tenant_id}/resource_types

Intended scope(s): project

#"stacks:1list_resource_types'": "role:reader and project_id:%(project_id)s"

(continues on next page)

144 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

DEPRECATED

"stacks:list_resource_types":"rule:deny_stack_user'" has been
deprecated since W in favor of

"stacks:list_resource_types':"role:reader and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

H*

List template versions.

GET /vl/{tenant_id}/template_versions

Intended scope(s): project

#"stacks:1ist_template_versions": "role:reader and project_id:%(project_id)s"
DEPRECATED

"stacks:list_template_versions":"rule:deny_stack_user" has been

deprecated since W in favor of

"stacks:list_template_versions":'"role:reader and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

List template functions.

GET /vl/{tenant_id}/template_versions/{template_version}/functions

Intended scope(s): project

#"stacks:1ist_template_functions": "role:reader and project_id:%(project_id)s"
DEPRECATED

"stacks:list_template_functions'":"rule:deny_stack_user" has been

deprecated since W in favor of

"stacks:list_template_functions":"role:reader and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Find stack.

GET /vl/{tenant_id}/stacks/{stack_identity}

Intended scope(s): project

#"stacks:lookup": "(role:reader and project_id:%(project_id)s) or (role:heat_
—Stack_user and project_id:%(project_id)s)"

DEPRECATED

"stacks:lookup'":"rule:allow_everybody" has been deprecated since W
in favor of "stacks:lookup":'"(role:reader and

project_id:%(project_id)s) or (role:heat_stack_user and

project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Preview stack.

POST /vl/{tenant_id}/stacks/preview

Intended scope(s): project

#"stacks:preview": "role:reader and project_id:%(project_id)s"

(continues on next page)

2.3. Configuring Heat 145

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

DEPRECATED

nm,n

#
"stacks:preview":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:preview':'"role:reader and

project_id:%(project_id)s".

#

The stack API now supports system scope and default roles.

Show resource type schema.

GET /vl/{tenant_id}/resource_types/{type_name}

Intended scope(s): project

#"stacks:resource_schema": "role:reader and project_id:%(project_id)s"

DEPRECATED

"stacks:resource_schema'":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:resource_schema":"role:reader and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Show stack.

GET /vl/{tenant_id}/stacks/{stack_identity}

Intended scope(s): project

#"stacks:show": "role:reader and project_id:%(project_id)s"

DEPRECATED

"stacks:show":'"rule:deny_stack user" has been deprecated since W in
favor of "stacks:show":'"role:reader and project_id:%(project_id)s".
The stack API now supports system scope and default roles.

Get stack template.

GET /vl/{tenant_id}/stacks/{stack _name}/{stack_id}/template

Intended scope(s): project

#"stacks:template": "role:reader and project_id:%(project_id)s"

DEPRECATED

nm,n

#
"stacks:template":"rule:deny_stack user" has been deprecated since W
in favor of "stacks:template'":"role:reader and

project_id:%(project_id)s".

#

The stack API now supports system scope and default roles.

Get stack environment.

GET /vl/{tenant_id}/stacks/{stack _name}/{stack_id}/environment
Intended scope(s): project

#"stacks:environment": "role:reader and project_id:%(project_id)s"

DEPRECATED

"stacks:environment':"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:environment':'role:reader and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

(continues on next page)

146 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Get stack files.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/files
Intended scope(s): project

#"stacks:files": "role:reader and project_id:%(project_id)s"

DEPRECATED

"stacks:files":"rule:deny_stack user" has been deprecated since W in
" n

#

favor of '"stacks:files":"role:reader and project_id:%(project_id)s".
The stack API now supports system scope and default roles.

Update stack.

PUT /vl/{tenant_id}/stacks/{stack _name}/{stack_id}

Intended scope(s): project

#"stacks:update": "role:member and project_id:%(project_id)s"

DEPRECATED

"stacks:update':"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:update'":'"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Update stack (PATCH).

PATCH /v1/{tenant_id}/stacks/{stack_name}/{stack_id}

Intended scope(s): project

#"stacks:update_patch": "role:member and project_id:%(project_id)s"

DEPRECATED

"stacks:update_patch":"rule:deny_stack _user" has been deprecated
since W in favor of "stacks:update_patch":'"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Update stack (PATCH) with no changes.

PATCH /vl/{tenant_id}/stacks/{stack_name}/{stack_id}
Intended scope(s): project
#"stacks:update_no_change'": "rule:stacks:update_patch"

Preview update stack.

PUT /vl/{tenant_id}/stacks/{stack _name}/{stack_id}/preview

Intended scope(s): project

#"stacks:preview_update": "role:member and project_id:%(project_id)s"

DEPRECATED

"stacks:preview_update":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:preview_update':"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Preview update stack (PATCH).

(continues on next page)

2.3. Configuring Heat 147

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

PATCH /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/preview
Intended scope(s): project

#"stacks:preview_update_patch": "role:member and project_id:%(project_id)s"
DEPRECATED

"stacks:preview_update_patch'":"rule:deny_stack_user" has been

deprecated since W in favor of

"stacks:preview_update_patch":"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Validate template.

POST /vl/{tenant_id}/validate

Intended scope(s): project

#"stacks:validate_template": "role:member and project_id:%(project_id)s"
DEPRECATED

"stacks:validate_template":"rule:deny_stack user" has been

deprecated since W in favor of

"stacks:validate_template":"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Snapshot Stack.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots

Intended scope(s): project

#"stacks:snapshot": "role:member and project_id:%(project_id)s"

DEPRECATED

"stacks:snapshot":"rule:deny_stack user" has been deprecated since W
in favor of "stacks:snapshot'":'"role:member and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Show snapshot.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots/{snapshot_id}
Intended scope(s): project

#"stacks:show_snapshot": "role:reader and project_id:%(project_id)s"

DEPRECATED

"stacks:show_snapshot":'"rule:deny_stack user" has been deprecated
since W in favor of "stacks:show_snapshot'":"role:reader and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Delete snapshot.

DELETE /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots/{snapshot_
—1id}

Intended scope(s): project

(continues on next page)

148 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

#"stacks:delete_snapshot": "role:member and project_id:%(project_id)s"

DEPRECATED

#
"stacks:delete_snapshot":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:delete_snapshot":"role:member and

project_id:%(project_id)s".

#

The stack API now supports system scope and default roles.

List snapshots.

GET /vl/{tenant_id}/stacks/{stack name}/{stack_id}/snapshots

Intended scope(s): project

#"stacks:1ist_snapshots": "role:reader and project_id:%(project_id)s"

DEPRECATED

"stacks:1list_snapshots":'"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:1ist_snapshots":"role:reader and

project_id:%(project_id)s".

The stack API now supports system scope and default roles.

Restore snapshot.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots/{snapshot_id}
—/restore

Intended scope(s): project

#"stacks:restore_snapshot": "role:member and project_id:%(project_id)s"

DEPRECATED

n,n

#
"stacks:restore_snapshot":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:restore_snapshot":'"role:member and

project_id:%(project_id)s".

#

The stack API now supports system scope and default roles.

List outputs.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/outputs

Intended scope(s): project

#"stacks:1ist_outputs": "role:reader and project_id:%(project_id)s"

DEPRECATED

nmo,n

#
"stacks:list_outputs":"rule:deny_stack _user" has been deprecated
since W in favor of "stacks:1list_outputs":'"role:reader and

project_id:%(project_id)s".

#

The stack API now supports system scope and default roles.

Show outputs.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/outputs/{output_key}
Intended scope(s): project

#"stacks:show_output": "role:reader and project_id:%(project_id)s"

DEPRECATED
"stacks:show_output':"rule:deny_stack_user" has been deprecated

(continues on next page)

2.3. Configuring Heat 149

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

2.4 Administering Heat

2.4.1 Introduction

The OpenStack Orchestration service, a tool for orchestrating clouds, automatically configures and de-
ploys resources in stacks. The deployments can be simple, such as deploying WordPress on Ubuntu with
an SQL back end, or complex, such as starting a server group that auto scales by starting and stopping
using real-time CPU loading information from the Telemetry service.

Orchestration stacks are defined with templates, which are non-procedural documents. Templates de-
scribe tasks in terms of resources, parameters, inputs, constraints, and dependencies. When the Orches-
tration service was originally introduced, it worked with AWS CloudFormation templates, which are in
the JSON format.

The Orchestration service also runs Heat Orchestration Template (HOT) templates that are written in
YAML. YAML is a terse notation that loosely follows structural conventions (colons, returns, indentation)
that are similar to Python or Ruby. Therefore, it is easier to write, parse, grep, generate with tools, and
maintain source-code management systems.

Orchestration can be accessed through a CLI and RESTful queries. The Orchestration service provides
both an OpenStack-native REST API and a CloudFormation-compatible Query API. The Orchestration
service is also integrated with the OpenStack dashboard to perform stack functions through a web inter-
face.

For more information about using the Orchestration service through the command line, see the Heat
Command-Line Interface reference.

2.4.2 Orchestration authorization model

The Orchestration authorization model defines the authorization process for requests during deferred
operations. A common example is an auto-scaling group update. During the auto-scaling update oper-
ation, the Orchestration service requests resources of other components (such as servers from Compute
or networks from Networking) to extend or reduce the capacity of an auto-scaling group.

The Orchestration service provides the following authorization models:
* Password authorization

* OpenStack Identity trusts authorization

Password authorization

The Orchestration service supports password authorization. Password authorization requires that a user
pass a username and password to the Orchestration service. Encrypted password are stored in the
database, and used for deferred operations.

Password authorization involves the following steps:

1. A user requests stack creation, by providing a token and username and password. The Dashboard
or python-heatclient requests the token on the users behalf.

150 Chapter 2. Operating Heat

https://docs.openstack.org/python-heatclient/latest/#openstackclient-command-line
https://docs.openstack.org/python-heatclient/latest/#openstackclient-command-line

Heat Documentation, Release 24.1.0.dev11

2. If the stack contains any resources that require deferred operations, then the orchestration engine
fails its validation checks if the user did not provide a valid username/password.

3. The username/password are encrypted and stored in the Orchestration database.
4. Orchestration creates a stack.

5. Later, the Orchestration service retrieves the credentials and requests another token on behalf of
the user. The token is not limited in scope and provides access to all the roles of the stack owner.

OpenStack Identity trusts authorization

A trust is an OpenStack Identity extension that enables delegation, and optionally impersonation through
the OpenStack Identity service. The key terminology is trustor (the user delegating) and trustee (the user
being delegated to).

To create a trust, the trustor (in this case, the user creating the stack in the Orchestration service) provides
the OpenStack Identity service with the following information:

* The ID of the trustee (who you want to delegate to, in this case, the Orchestration service user).

* The roles to be delegated. Configure roles through the heat.conf file. Ensure the configuration
contains whatever roles are required to perform the deferred operations on the users behalf. For
example, launching an OpenStack Compute instance in response to an auto-scaling event.

* Whether to enable impersonation.

The OpenStack Identity service provides a trust ID, which is consumed by only the trustee to obtain a
trust scoped token. This token is limited in scope, such that the trustee has limited access to those roles
delegated. In addition, the trustee has effective impersonation of the trustor user if it was selected when
creating the trust. For more information, see Identity management trusts.

Trusts authorization involves the following steps:
1. A user creates a stack through an API request (only the token is required).

2. The Orchestration service uses the token to create a trust between the stack owner (trustor) and the
Orchestration service user (trustee). The service delegates a special role (or roles) as defined in the
trusts_delegated_roles list in the Orchestration configuration file. By default, the Orchestration
service sets all the roles from trustor available for trustee. Deployers might modify this list to
reflect a local RBAC policy. For example, to ensure that the heat process can access only those
services that are expected while impersonating a stack owner.

3. Orchestration stores the encrypted trust ID in the Orchestration database.

4. When a deferred operation is required, the Orchestration service retrieves the trust ID and requests
a trust scoped token which enables the service user to impersonate the stack owner during the
deferred operation. Impersonation is helpful, for example, so the service user can launch Compute
instances on behalf of the stack owner in response to an auto-scaling event.

Authorization model configuration

Initially, the password authorization model was the default authorization model. Since the Kilo release,
the Identity trusts authorization model is enabled for the Orchestration service by default.

To enable the password authorization model, change the following parameter in the heat . conf file:

[1

2.4. Administering Heat 151

https://docs.openstack.org/keystone/latest/user/trusts.html

Heat Documentation, Release 24.1.0.dev11

To enable the trusts authorization model, change the following two parameters in the heat . conf file.

Specify the authentication method for the deferred Orchestration actions. This parameter triggers creating
trust ID and stores it in the Orchestration database:

[J

Allow reauthentication with the trust scoped token issued by using the stored trust ID for long running
tasks:

[J

To specify the trustor roles that it delegates to trustee during authorization, specify the
trusts_delegated_roles parameter in the heat.conf file. If trusts_delegated_roles is not
defined, then all the trustor roles are delegated to trustee.

Note

The trustor delegated roles must be pre-configured in the OpenStack Identity service before using
them in the Orchestration service.

2.4.3 Stack domain users

Stack domain users allow the Orchestration service to authorize and start the following operations within
booted virtual machines:

* Provide metadata to agents inside instances. Agents poll for changes and apply the configuration
that is expressed in the metadata to the instance.

* Detect when an action is complete. Typically, software configuration on a virtual machine after it is
booted. Compute moves the VM state to Active as soon as it creates it, not when the Orchestration
service has fully configured it.

* Provide application level status or meters from inside the instance. For example, allow auto-scaling
actions to be performed in response to some measure of performance or quality of service.

The Orchestration service provides APIs that enable all of these operations, but all of those APIs require
authentication. For example, credentials to access the instance that the agent is running upon. The heat-
cfntools agents use signed requests, which require an ec2 key pair created through Identity. The key pair
is then used to sign requests to the Orchestration CloudFormation and CloudWatch compatible APIs,
which are authenticated through signature validation. Signature validation uses the Identity ec2tokens
extension.

Stack domain users encapsulate all stack-defined users (users who are created as a result of data that is
contained in an Orchestration template) in a separate domain. The separate domain is created specifically
to contain data related to the Orchestration stacks only. A user is created, which is the domain admin,
and Orchestration uses the domain admin to manage the lifecycle of the users in the stack user domain.

Stack domain users configuration

To configure stack domain user, the Orchestration service completes the following tasks:

1. A special OpenStack Identity service domain is created. For example, a domain that is called heat
and the ID is set with the stack_user_domain option in the heat. conf file.

152 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

2. A user with sufficient permissions to create and delete projects and users in the heat domain is
created.

3. The username and password for the domain admin user is set in the heat.conf file
(stack_domain_admin and stack_domain_admin_password). This user administers stack do-
main users on behalf of stack owners, so they no longer need to be administrators themselves. The
risk of this escalation path is limited because the heat_domain_admin is only given administra-
tive permission for the heat domain.

To set up stack domain users, complete the following steps:
1. Create the domain:

$OS_TOKEN refers to a token. For example, the service admin token or some other valid token
for a user with sufficient roles to create users and domains. $KS_ENDPOINT_V3 refers to the v3
OpenStack Identity endpoint (for example, http://keystone_address:5000/v3 where key-
stone_address is the IP address or resolvable name for the Identity service).

openstack --os-token --os-url --0S-
identity-api-version 3 domain create heat --description

The domain ID is returned by this command, and is referred to as $HEAT_DOMAIN_ID below.

2. Create the user:

openstack --os-token --os-url --0S-
identity-api-version 3 user create --password --domain
HEAT_DOMAIN_ID heat_domain_admin --description

The user ID is returned by this command and is referred to as $DOMAIN_ADMIN_ID below.

3. Make the user a domain admin:

openstack --os-token --os-url --0S-
identity-api-version 3 role add --user --domain
HEAT_DOMAIN_ID admin

Then you must add the domain ID, username and password from these steps to the heat.conf
file:

Usage workflow
The following steps are run during stack creation:

1. Orchestration creates a new stack domain project in the heat domain if the stack contains any
resources that require creation of a stack domain user.

2. For any resources that require a user, the Orchestration service creates the user in the stack domain
project. The stack domain project is associated with the Orchestration stack in the Orchestration
database, but is separate and unrelated (from an authentication perspective) to the stack owners

2.4. Administering Heat 153

Heat Documentation, Release 24.1.0.dev11

project. The users who are created in the stack domain are still assigned the heat_stack_user
role, so the API surface they can access is limited through the policy.yaml file. For more infor-
mation, see OpenStack Identity documentation.

3. When API requests are processed, the Orchestration service performs an internal lookup, and al-
lows stack details for a given stack to be retrieved. Details are retrieved from the database for both
the stack owners project (the default API path to the stack) and the stack domain project, subject
to the policy.yaml restrictions.

This means there are now two paths that can result in the same data being retrieved through the Orches-
tration API. The following example is for resource-metadata:

GET vl/{stack_owner_project_id}/stacks/{stack_name}/\
{stack_id}/resources/{resource_name}/metadata

or:

GET vl/{stack_domain_project_id}/stacks/{stack_name}/\
{stack_id}/resources/{resource_name}/metadata

The stack owner uses the former (via openstack stack resource metadata STACK RESOURCE),
and any agents in the instance use the latter.

2.5 Scaling a Deployment

When deploying in an environment where a large number of incoming requests need to be handled, the
API and engine services can be overloaded. In those scenarios, in order to increase the system perfor-
mance, it can be helpful to run multiple load-balanced APIs and engines.

This guide details how to scale out the REST API, the CFN API, and the engine, also known as the
heat-api, heat-api-cfn, and heat-engine services, respectively.
2.5.1 Assumptions
This guide, using a devstack installation of OpenStack, assumes that:
1. You have configured devstack from Single Machine Installation Guide;
2. You have set up heat on devstack, as defined at heat and DevStack;

3. You have installed HAProxy on the devstack server.

2.5.2 Architecture

This section shows the basic heat architecture, the load balancing mechanism used and the target scaled
out architecture.

Basic Architecture

The heat architecture is as defined at heat architecture and shown in the diagram below, where we have
a CLI that sends HTTP requests to the REST and CFN APIs, which in turn make calls using AMQP to
the heat-engine:

154 Chapter 2. Operating Heat

https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/devstack/latest/guides/single-machine.html
https://www.haproxy.org/

Heat Documentation, Release 24.1.0.dev11

Load Balancing

As there is a need to use a load balancer mechanism between the multiple APIs and the CLI, a proxy has
to be deployed.

Because the heat CLI and APIs communicate by exchanging HTTP requests and responses, a HAProxy
HTTP load balancer server will be deployed between them.

This way, the proxy will take the CLIs requests to the APIs and act on their behalf. Once the proxy
receives a response, it will be redirected to the caller CLI.

A round-robin distribution of messages from the AMQP queue will act as the load balancer for multiple
engines. Check that your AMQP service is configured to distribute messages round-robin (RabbitMQ
does this by default).

Target Architecture

A scaled out heat architecture is represented in the diagram below:

Thus, a request sent from the CLI looks like:
1. CLI contacts the proxy;
2. The HAProxy server, acting as a load balancer, redirects the call to an API instance;

3. The API server sends messages to the AMQP queue, and the engines pick up messages in round-
robin fashion.

2.5.3 Deploying Multiple APls

In order to run a heat component separately, you have to execute one of the python scripts located at the
bin directory of your heat repository.

These scripts take as argument a configuration file. When using devstack, the configuration file is located
at /etc/heat/heat.conf. For instance, to start new REST and CFN API services, you must run:

Each API service must have a unique address to listen. This address have to be defined in the configuration
file. For REST and CFN APIs, modify the [heat_api] and [heat_api_cfn] blocks, respectively.

2.5. Scaling a Deployment 155

https://www.haproxy.org/

Heat Documentation, Release 24.1.0.dev11

If you wish to run multiple API processes on the same machine, you must create multiple copies of the
heat.conf file, each containing a unique port number.

In addition, if you want to run some API services in different machines than the devstack server, you have
to update the loopback addresses found at the sql_connection and rabbit_host properties to the devstack
servers IP, which must be reachable from the remote machine.

2.5.4 Deploying Multiple Engines

All engines must be configured to use the same AMQP service. Ensure that all of the rabbit_* and
kombu_* configuration options in the [DEFAULT] section of /etc/heat/heat.conf match across each ma-
chine that will be running an engine. By using the same AMQP configuration, each engine will subscribe
to the same AMQP engine queue and pick up work in round-robin fashion with the other engines.

One or more engines can be deployed per host. Depending on the hosts CPU architecture, it may be
beneficial to deploy several engines on a single machine.

To start multiple engines on the same machine, simply start multiple heat-engine processes:

2.5.5 Deploying the Proxy

In order to simplify the deployment of the HAProxy server, we will replace the REST and CFN APIs
deployed when installing devstack by the HAProxy server. This way, there is no need to update, on the
CLI, the addresses where it should look for the APIs. In this case, when it makes a call to any API, it
will find the proxy, acting on their behalf.

Note that the addresses that the HAProxy will be listening to are the pairs API_HOST:API-PORT and
API_CFN_HOST:API_CFN_PORT, found at the [heat_api] and [heat_api_cfn] blocks on the devstack
servers configuration file. In addition, the original heat-api and heat-api-cfn processes running in these
ports have to be killed, because these addresses must be free to be used by the proxy.

To deploy the HAProxy server on the devstack server, run haproxy -f apis-proxy.conf, where this config-
uration file looks like:

(continues on next page)

156 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

2.5.6 Sample

This section aims to clarify some aspects of the scaling out solution, as well as to show more details of
the configuration by describing a concrete sample.

Architecture

This section shows a basic OpenStack architecture and the target one that will be used for testing of the
scaled-out heat services.

2.5. Scaling a Deployment 157

Heat Documentation, Release 24.1.0.dev11

Basic Architecture

For this sample, consider that:

1. We have an architecture composed by 3 machines configured in a LAN, with the addresses A:
10.0.0.1; B: 10.0.0.2; and C: 10.0.0.3;

2. The OpenStack devstack installation, including the heat module, has been done in the machine A,

as shown in the Assumptions section.

Target Architecture

At this moment, everything is running in a single devstack server. The next subsections show how to
deploy a scaling out heat architecture by:

1. Running one REST and one CFN API on the machines B and C;

2. Setting up the HAProxy server on the machine A.

Running the API and Engine Services
For each machine, B and C, you must do the following steps:

1. Clone the heat repository https://opendev.org/openstack/heat, run:

git clone https://opendev.org/openstack/heat
2. Create a local copy of the configuration file /etc/heat/heat.conf from the machine A;
3. Make required changes on the configuration file;

4. Enter the heat local repository and run:

5. Start as many heat-engine processes as you want running on that machine:

Changes On Configuration

The original file from A looks like:

[DEFAULT]

sql_connection = mysql+pymysql://root:admin@127.0.0.1/heat?charset=utf8
rabbit_host = localhost

[heat_api]

bind_port = 8004
bind_host = 10.0.0.1

(continues on next page)

158 Chapter 2. Operating Heat

https://opendev.org/openstack/heat
https://opendev.org/openstack/heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)
[heat_api_cfn]
bind_port = 8000
bind_host = 10.0.0.1

After the changes for B, it looks like:

[DEFAULT]

sql_connection = mysql+pymysql://root:admin@10.0.0.1/heat?charset=utf8
rabbit_host = 10.0.0.1

[heat_api]

bind_port = 8004
bind_host = 10.0.0.2

[heat_api_cfn]
bind_port = 8000
bind_host = 10.0.0.2

Setting Up HAProxy

On the machine A, kill the heat-api and heat-api-cfn processes by running pkill heat-api and pkill heat-
api-cfn. After, run haproxy -f apis-proxy.conf with the following configuration:

(continues on next page)

2.5. Scaling a Deployment 159

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

2.6 Upgrades Guideline

This document outlines several steps and notes for operators to reference when upgrading their heat from
previous versions of OpenStack.

Note

This document is only tested in the case of upgrading between sequential releases.

2.6.1 Plan to upgrade
* Read and ensure you understand the release notes for the next release.
* Make a backup of your database.

» Upgrades are only supported one series at a time, or within a series.

2.6.2 Cold Upgrades

Heat already supports cold-upgrades, where the heat services have to be down during the upgrade. For
time-consuming upgrades, it may be unacceptable for the services to be unavailable for a long period of
time. This type of upgrade is quite simple, follow the below steps:

1. Stop all heat-api and heat-engine services.
. Uninstall old code.
. Install new code.

2

3

4. Update configurations.

5. Do Database sync (most time-consuming step)
6

. Start all heat-api and heat-engine services.

2.6.3 Rolling Upgrades

Note

Rolling Upgrade is supported since Pike, which means operators can rolling upgrade Heat services
from Ocata to Pike release with minimal downtime.

A rolling upgrade would provide a better experience for the users and operators of the cloud. A rolling
upgrade would allow individual heat-api and heat-engine services to be upgraded one at a time, with the
rest of the services still available. This upgrade would have minimal downtime. Please check spec about
rolling upgrades.

160 Chapter 2. Operating Heat

https://docs.openstack.org/releasenotes/heat/
https://governance.openstack.org/tc/reference/tags/assert_supports-upgrade.html
https://review.opendev.org/#/c/407989/
https://review.opendev.org/#/c/407989/

Heat Documentation, Release 24.1.0.dev11

Prerequisites
e Multiple Heat nodes.

* A load balancer or some other type of redirection device is being used in front of nodes that run
heat-api services in such a way that a node can be dropped out of rotation. That node continues
running the Heat services (heat-api or heat-engine) but is no longer having requests routed to it.

Procedure

These following steps are the process to upgrade Heat with minimal downtime:

1. Install the code for the next version of Heat either in a virtual environment or a separate control
plane node, including all the python dependencies.

2. Using the newly installed heat code, run the following command to sync the database up to the most
recent version. These schema change operations should have minimal or no effect on performance,
and should not cause any operations to fail.

[heat—manage db_sync }

3. At this point, new columns and tables may exist in the database. These DB schema changes are
done in a way that both the N and N+1 release can perform operations against the same schema.

4. Create a new rabbitmq vhost for the new release and change the transport_url configuration in
heat.conf file to be:

transport_url = rabbit://<user>:<password>@<host>:5672/<new_vhost>
for all upgrade services.

5. Stop heat-engine gracefully, Heat has supported graceful shutdown features (see the spec about
rolling upgrades). Then start new heat-engine with new code (and corresponding configuration).

Note

Remember to do Step 4, this would ensure that the existing engines would not communicate
with the new engine.

6. A heat-api service is then upgraded and started with the new rabbitmq vhost.

Note

The second way to do this step is switch heat-api service to use new vhost first (but remember
not to shut down heat-api) and upgrade it.

7. The above process can be followed till all heat-api and heat-engine services are upgraded.

Note

Make sure that all heat-api services has been upgraded before you start to upgrade the last
heat-engine service.

2.6. Upgrades Guideline 161

https://review.opendev.org/#/c/407989/
https://review.opendev.org/#/c/407989/

Heat Documentation, Release 24.1.0.dev11

Warning

With the convergence architecture, whenever a resource completes the engine will send RPC
messages to another (or the same) engine to start work on the next resource(s) to be processed.
If the last engine is going to be shut down gracefully, it will finish what it is working on, which
may post more messages to queues. It means the graceful shutdown does not wait for queues to
drain. The shutdown leaves some messages unprocessed and any IN_PROGRESS stacks would
get stuck without any forward progress. The operator must be careful when shutting down the
last engine, make sure queues have no unprocessed messages before doing it. The operator can
check the queues directly with RabbitMQs management plugin.

8. Once all services are upgraded, double check the DB and services

2.6.4 References

2.7 Man pages for services and utilities

2.7.1 Heat services
heat-engine
SYNOPSIS

heat-engine [options]

DESCRIPTION

heat-engine is the heat project server with an internal RPC api called by the heat-api server.

INVENTORY

The heat-engine does all the orchestration work and is the layer in which the resource integration is
implemented.

OPTIONS

--config-file
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence.

--config-dir
Path to a config directory to pull .conf files from. This file setis sorted, so as to provide a predictable
parse order if individual options are over-ridden. The set is parsed after the file(s), if any, specified
via config-file, hence over-ridden options in the directory take precedence.

--version

Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

162 Chapter 2. Operating Heat

http://www.rabbitmq.com/management.html

Heat Documentation, Release 24.1.0.dev11

FILES

* /etc/heat/heat.conf
heat-api
SYNOPSIS

heat-api [options]

DESCRIPTION

heat-api provides an external REST API to the heat project.

INVENTORY

heat-api is a service that exposes an external REST based api to the heat-engine service. The communi-
cation between the heat-api and heat-engine uses message queue based RPC.

OPTIONS

--config-file
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence.

--config-dir
Path to a config directory to pull .conf files from. This file set is sorted, so as to provide a predictable

parse order if individual options are over-ridden. The set is parsed after the file(s), if any, specified
via config-file, hence over-ridden options in the directory take precedence.

--version

Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

FILES

¢ /etc/heat/heat.conf

heat-api-cfn

SYNOPSIS
heat-api-cfn [options]
DESCRIPTION

heat-api-cfn is a CloudFormation compatible API service to the heat project.

INVENTORY

heat-api-cfn is a service that exposes an external REST based api to the heat-engine service. The com-
munication between the heat-api-cfn and heat-engine uses message queue based RPC.

2.7. Man pages for services and utilities 163

Heat Documentation, Release 24.1.0.dev11

OPTIONS

--config-file
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence.

--config-dir
Path to a config directory to pull .conf files from. This file set is sorted, so as to provide a predictable

parse order if individual options are over-ridden. The set is parsed after the file(s), if any, specified
via config-file, hence over-ridden options in the directory take precedence.

--version

Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

FILES

¢ /etc/heat/heat.conf

2.7.2 Heat utilities

heat-manage

SYNOPSIS

heat-manage <action> [options]

DESCRIPTION

heat-manage helps manage heat specific database operations.

OPTIONS

The standard pattern for executing a heat-manage command is: heat-manage <command> [<args>]
Run with -h to see a list of available commands: heat-manage -h

Commands are db_version, db_sync, purge_deleted, migrate_convergence_1,
migrate_properties_data, and service. Detailed descriptions are below.

heat-manage db_version
Print out the db schema version.
heat-manage db_sync
Sync the database up to the most recent version.

heat-manage purge_deleted [-g {days,hours,minutes,seconds}] [-p project_id]
[age]

Purge db entries marked as deleted and older than [age]. When project_id argument is pro-
vided, only entries belonging to this project will be purged.

heat-manage migrate_properties_data

Migrates properties data from the legacy locations in the db (resource.properties_data and
event.resource_properties) to the modern location, the resource_properties_data table.

164 Chapter 2. Operating Heat

Heat Documentation, Release 24.1.0.dev11

heat-manage migrate_convergence_1 [stack_id]

Migrates [stack_id] from non-convergence to convergence. This requires running conver-
gence enabled heat engine(s) and cant be done when they are offline.

heat-manage service list
Shows details for all currently running heat-engines.
heat-manage service clean
Clean dead engine records.
heat-manage --version
Shows programs version number and exit. The output could be empty if the distribution

didnt specify any version information.

FILES

The /etc/heat/heat.conf file contains global options which can be used to configure some aspects of heat-
manage, for example the DB connection and logging.

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-db-setup
SYNOPSIS

heat-db-setup [COMMANDS] [OPTIONS]

DESCRIPTION

heat-db-setup is a tool which configures the local MySQL database for heat. Typically distro-specific
tools would provide this functionality so please read the distro-specific documentation for configuring
heat.

COMMANDS

rpm
Indicate the distribution is a RPM packaging based distribution.
deb

Indicate the distribution is a DEB packaging based distribution.

OPTIONS

-h, --help
Print usage information.

-p, --password

Specify the password for the heat MySQL user that the script will use to connect to the heat MySQL
database. By default, the password heat will be used.

2.7. Man pages for services and utilities 165

https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 24.1.0.dev11

-r, --rootpw
Specify the root MySQL password. If the script installs the MySQL server, it will set the root pass-

word to this value instead of prompting for a password. If the MySQL server is already installed,
this password will be used to connect to the database instead of having to prompt for it.

-y, --yes
In cases where the script would normally ask for confirmation before doing something, such as in-
stalling mysql-server, just assume yes. This is useful if you want to run the script non-interactively.

EXAMPLES

heat-db-setup rpm -p heat_password -r mysql_pwd -y
heat-db-setup deb -p heat_password -r mysql_pwd -y

heat-db-setup rpm

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-keystone-setup-domain
SYNOPSIS

heat-keystone-setup-domain [OPTIONS]

DESCRIPTION

The heat-keystone-setup-domain tool configures keystone by creating a stack user domain and the user
credential used to manage this domain. A stack user domain can be treated as a namespace for projects,
groups and users created by heat. The domain will have an admin user that manages other users, groups
and projects in the domain.

This script requires admin keystone credentials to be available in the shell environment by setting
OS_USERNAME and OS_PASSWORD.

After running this script, a user needs to take actions to check or modify the heat configuration file (e.g.
/etc/heat/heat.conf). The tool is NOT performing these updates on behalf of the user.

Distributions may provide other tools to setup stack user domain for use with heat, so check the dis-
tro documentation first. Other tools are available to set up the stack user domain, for example python-
openstackclient, which is preferred to this tool where it is available.

OPTIONS

-h, --help

Print usage information.

--config-dir <DIR>

Path to a config directory from which to read the heat.conf file(s). This file set is sorted, so as
to provide a predictable parse order if individual options are over-ridden. The set is parsed after
the file(s) specified via previous config-file, arguments hence over-ridden options in the directory
take precedence.

166 Chapter 2. Operating Heat

https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 24.1.0.dev11

--config-file <PATH>

Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence. The default files used is /etc/heat/heat.conf.

--stack-domain-admin <USERNAME>

Name of a user for Keystone to create, which has roles sufficient to manage users (i.e. stack domain
users) and projects (i.e. stack domain projects) in the stack user domain.

Another way to specify the admin user name is by setting an environment variable
STACK_DOMAIN_ADMIN before running this tool. If both command line arguments and en-
vironment variable are specified, the command line arguments take precedence.

--stack-domain-admin-password <PASSWORD>

Password for the stack-domain-admin user.

The password can be instead specified wusing an environment variable
STACK_DOMAIN_ADMIN_PASSWORD before invoking this tool. If both command line
arguments and environment variable are specified, the command line arguments take precedence.

--stack-user-domain-name <DOMAIN>

Name of domain to create for stack users.

The domain name can be instead specified using an environment variable
STACK_USER_DOMAIN_NAME before invoking this tool. If both command line arguments and
environment variable are specified, the command line argument take precedence.

--version

Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

EXAMPLES

heat-keystone-setup-domain

heat-keystone-setup-domain stack-user-domain-name heat_user_domain
stack-domain-admin heat_domain_admin stack-domain-admin-password verysecrete

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-status

Synopsis

Description

heat-status is a tool that provides routines for checking the status of a Heat deployment.

2.7. Man pages for services and utilities 167

https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 24.1.0.dev11

Options

The standard pattern for executing a heat-status command is:

[)

Run without arguments to see a list of available command categories:

[J

Categories are:

e upgrade
Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that category:

These sections describe the available categories and arguments for heat-status.

Upgrade

heat-status upgrade check
Performs a release-specific readiness check before restarting services with new code. This com-

mand expects to have complete configuration and access to databases and services.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.
This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This
should be considered something that stops an upgrade.
255 An unexpected error occurred.
History of Checks
12.0.0 (Stein)

* Placeholder to be filled in with checks as they are added in Stein.

168 Chapter 2. Operating Heat

CHAPTER
THREE

USING HEAT

3.1 Creating your first stack

3.1.1 Confirming you can access a Heat endpoint

Before any Heat commands can be run, your cloud credentials need to be sourced:

[$ source openrc }

You can confirm that Heat is available with this command:

[$ openstack stack list }

This should return an empty line

3.1.2 Preparing to create a stack

Download and register the image:

N

$ wget https://download. fedoraproject.org/pub/fedora/linux/releases/37/Cloud/
—+x86_64/images/Fedora-Cloud-Base-37-1.7.x86_64.qcow2
$ openstack image create \
--disk-format=qcow2 \
--container-format=bare \
--file=Fedora-Cloud-Base-37-1.7.x86_64.qcow2 \
my-fedora-image

Your cloud will have different flavors and images available for launching instances, you can discover what
is available by running:

$ openstack flavor list
$ openstack image list

To allow you to SSH into instances launched by Heat, a keypair will be generated:

$ openstack keypair create heat_key > heat_key.priv
$ chmod 600 heat_key.priv

169

Heat Documentation, Release 24.1.0.dev11

3.1.3 Launching a stack

Now lets launch a stack, using an example template from the heat-templates repository:

$ openstack stack create -t https://opendev.org/openstack/heat-templates/src/
—branch/master/hot/F20/WordPress_Native.yaml --parameter key_name=heat_key --
—parameter image_id=my-fedora-image --parameter instance_type=ml.small.

—steststack

Which will respond:

Note

Link on Heat template presented in command above should reference on RAW template. In case if it

be a html page with template, Heat will return an error.

Note

You cannot rename a stack after it has been launched.

List stacks

List the stacks in your tenant:

$ openstack stack list

List stack events

List the events related to a particular stack:

{$ openstack stack event list teststack

Describe the wordpress stack

Show detailed state of a stack:

$ openstack stack show teststack

Note: After a few seconds, the stack_status should change from IN_PROGRESS to CREATE_COMPLETE.

170

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Verify instance creation

Because the software takes some time to install from the repository, it may be a few minutes before the
Wordpress instance is in a running state.

Point a web browser at the location given by the WebsiteURL output as shown by openstack stack
output show:

$ WebsiteURL=$(openstack stack output show teststack WebsiteURL -c output_
—value -f value)
$ curl $WebsiteURL

Delete the instance when done

Note: The list operation will show no running stack.:

$ openstack stack delete teststack
$ openstack stack list

You can explore other heat commands by referring to the Heat command reference for the OpenStack
Command-Line Interface; then read the Template Guide and start authoring your own templates.

3.2 Glossary

API server
HTTP REST API service for heat.

CFN
An abbreviated form of AWS CloudFormation.

constraint
Defines valid input parameters for a template.

dependency
When a resource must wait for another resource to finish creation before being created itself. Heat
adds an implicit dependency when a resource references another resource or one of its artributes.
An explicit dependency can also be created by the user in the template definition.

environment
Used to affect the run-time behavior of the template. Provides a way to override the default resource
implementation and parameters passed to Heat. See Environments.

Heat Orchestration Template
A particular remplate format that is native to Heat. Heat Orchestration Templates are expressed in
YAML and are not backwards-compatible with CloudFormation templates.

HOT
An acronym for Heat Orchestration Template.

input parameters
See parameters.

Metadata
May refer to Resource Metadata, Nova Instance metadata, or the Metadata service.

3.2. Glossary 171

https://docs.openstack.org/python-heatclient/latest/cli/
https://docs.openstack.org/python-openstackclient/latest/
https://docs.openstack.org/python-openstackclient/latest/

Heat Documentation, Release 24.1.0.dev11

Metadata service
A Compute service that enables virtual machine instances to retrieve instance-specific data. See
Nova Metadata service documentation.

multi-region
A feature of Heat that supports deployment to multiple regions.

nested resource
A resource instantiated as part of a nested stack.

nested stack
A template referenced by URL inside of another template. Used to reduce redundant resource
definitions and group complex architectures into logical groups.

Nova Instance metadata
User-provided key:value pairs associated with a Compute Instance. See Instance-specific data
(OpenStack Operations Guide).

OpenStack
Open source software for building private and public clouds.

orchestrate
Arrange or direct the elements of a situation to produce a desired effect.

outputs
A top-level block in a remplate that defines what data will be returned by a stack after instantiation.

parameters
A top-level block in a template that defines what data can be passed to customise a template when
it is used to create or update a srack.

provider resource
A resource implemented by a provider template. The parent resources properties become the
nested stacks parameters.

provider template
Allows user-definable resource providers to be specified via nested stacks. The nested stacks out-
puts become the parent stacks attributes.

resource
An element of OpenStack infrastructure instantiated from a particular resource provider. See also
nested resource.

resource attribute
Data that can be obtained from a resource, e.g. a servers public IP or name. Usually passed to
another resources properties or added to the stacks outputs.

resource group
A resource provider that creates one or more identically configured resources or nested resources.

Resource Metadata
A resource property that contains CFN-style template metadata. See AWS::CloudFormation::Init
(AWS CloudFormation User Guide)

resource plugin
Python code that understands how to instantiate and manage a resource. See Heat Resource Plugins
(OpenStack wiki).

172 Chapter 3. Using Heat

https://docs.openstack.org/nova/latest/user/metadata.html#metadata-service
https://wiki.openstack.org/wiki/OpsGuide/User-Facing_Operations#using-instance-specific-data
https://wiki.openstack.org/wiki/OpsGuide/User-Facing_Operations#using-instance-specific-data
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html
https://wiki.openstack.org/wiki/Heat/Plugins#Heat_Resource_Plugins
https://wiki.openstack.org/wiki/Heat/Plugins#Heat_Resource_Plugins

Heat Documentation, Release 24.1.0.dev11

resource property
Data utilized for the instantiation of a resource. Can be defined statically in a femplate or passed
in as input parameters.

resource provider
The implementation of a particular resource type. May be a resource plugin or a provider template.

stack
A collection of instantiated resources that are defined in a single template.

stack resource
A resource provider that allows the management of a nested stack as a resource in a parent stack.

template
An orchestration document that details everything needed to carry out an orchestration.

template resource
See provider resource.

user data
A resource property that contains a user-provided data blob. User data gets passed to cloud-init to
automatically configure instances at boot time. See also Nova User data documentation.

wait condition
A resource provider that provides a way to communicate data or events from servers back to the
orchestration engine. Most commonly used to pause the creation of the stack while the server is
being configured.

3.3 Working with Templates

3.3.1 Template Guide
Heat Orchestration Template (HOT) Guide

HOT is a template format supported by the heat, along with the other template format, i.e. the Heat
CloudFormation-compatible format (CFN). This guide is targeted towards template authors and explains
how to write HOT templates based on examples. A detailed specification of HOT can be found at Hear
Orchestration Template (HOT) specification.

Status

HOT is in the process of surpassing the functionality of the CFN. This guide will be updated periodically
whenever new features get implemented for HOT.

Writing a hello world HOT template

This section gives an introduction on how to write HOT templates, starting from very basic steps and
then going into more and more detail by means of examples.

A most basic template

The most basic template you can think of may contain only a single resource definition using only prede-
fined properties (along with the mandatory Heat template version tag). For example, the template below
could be used to simply deploy a single compute instance.

3.3. Working with Templates 173

https://cloudinit.readthedocs.io/
https://docs.openstack.org/nova/latest/user/metadata.html#user-provided-data

Heat Documentation, Release 24.1.0.dev11

Each HOT template has to include the heat_template_version key with a valid version of HOT, e.g. 2015-
10-15 (see Heat template version for a list of all versions). While the description is optional, it is good
practice to include some useful text that describes what users can do with the template. In case you want
to provide a longer description that does not fit on a single line, you can provide multi-line text in YAML,
for example:

The resources section is required and must contain at least one resource definition. In the example above,
a compute instance is defined with fixed values for the key_name, image and flavor parameters.

Note that all those elements, i.e. a key-pair with the given name, the image and the flavor have to exist
in the OpenStack environment where the template is used. Typically a template is made more easily
reusable, though, by defining a set of input parameters instead of hard-coding such values.

Template input parameters

Input parameters defined in the parameters section of a HOT template (see also Parameters section) allow
users to customize a template during deployment. For example, this allows for providing custom key-pair
names or image IDs to be used for a deployment. From a template authors perspective, this helps to make
a template more easily reusable by avoiding hardcoded assumptions.

Sticking to the example used above, it makes sense to allow users to provide their custom key-pairs,
provide their own image, and to select a flavor for the compute instance. This can be achieved by extending
the initial template as follows:

(continues on next page)

174 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

In the example above, three input parameters have been defined that have to be provided by the user upon
deployment. The fixed values for the respective resource properties have been replaced by references to
the corresponding input parameters by means of the get_param function (see also Intrinsic functions).

You can also define default values for input parameters which will be used in case the user does not provide
the respective parameter during deployment. For example, the following definition for the instance_type
parameter would select the m1.small flavor unless specified otherwise by the user.

Another option that can be specified for a parameter is to hide its value when users request information
about a stack deployed from a template. This is achieved by the hidden attribute and useful, for example
when requesting passwords as user input:

Restricting user input

In some cases you might want to restrict the values of input parameters that users can supply. For example,
you might know that the software running in a compute instance needs a certain amount of resources so
you might want to restrict the instance_type parameter introduced above. Parameters in HOT templates
can be restricted by adding a constraints section (see also Parameter Constraints). For example, the
following would allow only three values to be provided as input for the instance_type parameter:

(continues on next page)

3.3. Working with Templates 175

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

J

The constraints section allows for defining a list of constraints that must all be fulfilled by user input.
For example, the following list of constraints could be used to clearly specify format requirements on a
password to be provided by users:

Note that you can define multiple constraints of the same type. Especially in the case of allowed patterns
this not only allows for keeping regular expressions simple and maintainable, but also for keeping error
messages to be presented to users precise.

Providing template outputs

In addition to template customization through input parameters, you will typically want to provide outputs
to users, which can be done in the outputs section of a template (see also Outputs section). For example,
the IP address by which the instance defined in the example above can be accessed should be provided to
users. Otherwise, users would have to look it up themselves. The definition for providing the IP address
of the compute instance as an output is shown in the following snippet:

Output values are typically resolved using intrinsic function such as the get_attr function in the example
above (see also Intrinsic functions).

Writing a hello world HOT template

HOT is a new template format meant to replace the CloudFormation-compatible format (CFN) as the
native format supported by the Orchestration module over time. This guide is targeted towards template
authors and explains how to write HOT templates based on examples. A detailed specification of HOT
can be found at Heat Orchestration Template (HOT) specification.

176 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

This section gives an introduction on how to write HOT templates, starting from very basic steps and
then going into more and more detail by means of examples.

A most basic template

The most basic template you can think of contains only a single resource definition using only predefined
properties. For example, the template below could be used to deploy a single compute instance:

Each HOT template must include the heat_template_version key with the HOT version value, for
example, 2013-05-23. Consult the Heat template version list for allowed values and their features.

The description key is optional, however it is good practice to include some useful text that describes
what users can do with the template. In case you want to provide a longer description that does not fit on
a single line, you can provide multi-line text in YAML, for example:

The resources section is required and must contain at least one resource definition. In the above exam-
ple, a compute instance is defined with fixed values for the key_name, image and flavor properties.

Note

All the defined elements (key pair, image, flavor) have to exist in the OpenStack environment where
the template is used.

Input parameters

Input parameters defined in the parameters section of a template allow users to customize a template
during deployment. For example, this allows for providing custom key pair names or image IDs to be
used for a deployment. From a template authors perspective, this helps to make a template more easily
reusable by avoiding hardcoded assumptions.

The following example extends the previous template to provide parameters for the key pair, image and
flavor properties of the resource:

(continues on next page)

3.3. Working with Templates 177

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Values for the three parameters must be defined by the template user during the deployment of a stack.
The get_param intrinsic function retrieves a user-specified value for a given parameter and uses this
value for the associated resource property.

For more information about intrinsic functions, see Intrinsic functions.

Providing default values

You can provide default values for parameters. If a user doesnt define a value for a parameter, the default
value is used during the stack deployment. The following example defines a default value m1.small for
the flavor property:

Note

If a template doesnt define a default value for a parameter, then the user must define the value, other-
wise the stack creation will fail.

178 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Hiding parameters values

The values that a user provides when deploying a stack are available in the stack details and can be
accessed by any user in the same tenant. To hide the value of a parameter, use the hidden boolean
attribute of the parameter:

parameters
database_password
type
label
description
hidden

Restricting user input

You can restrict the values of an input parameter to make sure that the user defines valid data for this
parameter. The constraints property of an input parameter defines a list of constraints to apply for the
parameter. The following example restricts the flavor parameter to a list of three possible values:

parameters
flavor

type

label

description

constraints
allowed_values
description

The following example defines multiple constraints for a password definition:

parameters
database_password
type
label
description
hidden
constraints
length min max
description
allowed_pattern
description
allowed_pattern
description

The list of supported constraints is available in the Parameter Constraints section.

Note

You can define multiple constraints of the same type. Especially in the case of allowed patterns this
not only allows for keeping regular expressions simple and maintainable, but also for keeping error
messages to be presented to users precise.

3.3. Working with Templates 179

Heat Documentation, Release 24.1.0.dev11

Template outputs

In addition to template customization through input parameters, you can provide information about the
resources created during the stack deployment to the users in the outputs section of a template. In the
following example the output section provides the IP address of the my_instance resource:

Note

Output values are typically resolved using intrinsic function such as the get_attr. See Intrinsic
functions for more information about intrinsic functions..

See Outputs section for more information about the outputs section.

Guideline for features

Here are guideline for features:

Multi-Clouds support

Start from Stein release (version 12.0.0), Heat support multi-clouds orchestration. This document means
to provide guideline for how to use multi-clouds features, and whats the environment requirement.

Note

If you like to create a stack in multi-region environment, you dont need this feature at all. all you
need to do is provide region_name under context property for OS::Heat::Stack. If you like to see
information on how to provide SSL support for your multi-region environment, you can jump to Use
CA cert (Optional) .

Requirements

* Barbican service - For better security concerns, multi-cloud orchestration feature depends on

Barbican service. So you have to make sure Barbican service is ready in your environment before
you use this feature.

Access to remote Orchestration service - Before you run your multi-cloud template. Make sure
youre able to access to remote Orchestration service with correct endpoint information, legal access
right, and ability to access to the remote site KeyStone, and Orchestration service API endpoint
from local site. You need to make sure local Orchestration service is able to trigger and complete
necessary API calls from local site to remote site. So we can complete stack actions without facing
any access error.

Template complete resources/functions compatibility - In your Orchestration template, you
might want to use all kind of template functions or resource types as your template version and
your Orchestration service allows. But please aware that once you plan to use Orchestration ser-
vices across multiple OpenStack clouds, you have to also consider the compatibility. Make sure

180

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

the template version and resource types are ready to use before you ask remote site to run it. If
you accidentally provide wrong template version (which not provided in remote site), you will get
error message from remote site which prevent you from actually create remote resources. But its
even better if we can just find such an error earlier.

Prepare

First of all, you need to put your remote cloud credential in a Barbican secret. To build your own multi-
clouds stack, you need to build a Barbican secret first with most information for remote endpoint infor-
mation.

Gathering credential information

Before we start generating secret, lets talk about what credential format we need. credential is a JSON
format string contains two keys auth_type, and auth. auth_type, and auth following auth plugin
loader rules from Keystone. You can find plugin options and authentication plugins in keystoneauth
documents.

* auth_type - auth_type is a string for plugin name. Allows value like v3applicationcredential,
password, v3oidcclientcredentials, etc. You need to provide available plugins <plugin-
options.html#available-plugins>.

* auth - auth is a dictionary contains all parameters for plugins to perform authentication. You can
find all valid parameter references from available plugins or get to all class path from plugin names
for more detail allowed value or trace plugin class from there.

As you can tell, all allowed authentication plugins for credentials follows plugins keystoneauth rules.
So once new change in keystoneauth, it will also directly reflect credentials too. Actually we just call
keystoneauth to get plugin loader for remote authentication plugins. So keep an eye on keystoneauth if
youre using this feature.

Validate your credential

Now you have all your credential information ready, try to validate first if you can. You can either directly
test them via config, via CLI, or via keystoneauth sessions.

build credential secret

Once youre sure its valid, we can start building the secret out. To build a secret you just have to follow
the standard Barbican CLI or API to store your secret.

The local site will read this secret to perform stack actions in remote site. Lets give a quick example here:
Said you have two OpenStack cloud site A and site B. If you need to control site B from site A, make
sure you have a secret with site Bs access information in site A. If you also like to control site A from
site B, make sure you have a secret with site As access information in site B.

openstack secret store -n appcred --payload
—
—

—

3.3. Working with Templates 181

https://docs.openstack.org/keystoneauth/latest/plugin-options.html
https://docs.openstack.org/keystoneauth/latest/authentication-plugins.html#loading-plugins-by-name
https://docs.openstack.org/keystoneauth/latest/plugin-options.html#available-plugins
https://docs.openstack.org/keystoneauth/latest/authentication-plugins.html#loading-plugins-by-name
https://docs.openstack.org/keystoneauth/latest/plugin-options.html#using-plugins-via-config-file
https://docs.openstack.org/keystoneauth/latest/plugin-options.html#using-plugins-via-cli
https://docs.openstack.org/keystoneauth/latest/using-sessions.html
https://docs.openstack.org/python-barbicanclient/latest/cli/cli_usage.html#secret-create

Heat Documentation, Release 24.1.0.dev11

Note

One common error for JSON format is to use single quote() instead of double quote () inner your
JSON schema.

Create remote stacks

Now, you have a secret id generated for your Barbican secret. Use that id as input for template.
To create a remote stack, you can simply use an OS::Heat::Stack resource in your template.

In resource properties, provide credential_secret_id (Barbican secret ID from the secret we just built for
credential) under context property.

Here is an template example for you:

And thats all you need to do. The rest looks the same as usual.

Local Heat will read that secret, parse the credential information out, replace current authentication
plugin in context, and make remote calls.

Heat will not store your credential information anywhere. so your secret security will remains within
Barbican. That means if you wish to change your credential or make sure other people cant access to it.
All you need to do is to update your Barbican secret or strong the security for it. But aware of this. If
you plan to switch the credential content, make sure that wont affect resources/stacks in remote site. So
do such actions with super care.

Use CA cert (Optional)

For production clouds, its very important to have SSL support. Here we provide CA cert method for your
SSL access. If you wish to use that, use ca_cert under context property. Which ca_cert is the contents
of a CA Certificate file that can be used to verify a remote cloud or regions server certificate. Or you
can use insecure (a boolean option) under context property if you like to use insecure mode (For security
concerns, dont do it!) and you dont want to use CA cert.

Here is an example for you:

(continues on next page)

182 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Note

If insecure flag is on, ca_cert will be ignored.

Heat Orchestration Template (HOT) specification

HOT is a new template format meant to replace the Heat CloudFormation-compatible format (CFN) as
the native format supported by the Heat over time. This specification explains in detail all elements of
the HOT template format. An example driven guide to writing HOT templates can be found at Heat
Orchestration Template (HOT) Guide.

Status

HOT is considered reliable, supported, and standardized as of our Icehouse (April 2014) release. The
Heat core team may make improvements to the standard, which very likely would be backward compati-
ble. The template format is also versioned. Since Juno release, Heat supports multiple different versions
of the HOT specification.

Template structure

HOT templates are defined in YAML and follow the structure outlined below.

heat_template_version
This key with value 2013-05-23 (or a later date) indicates that the YAML document is a HOT
template of the specified version.

3.3. Working with Templates 183

Heat Documentation, Release 24.1.0.dev11

description
This optional key allows for giving a description of the template, or the workload that can be
deployed using the template.

parameter_groups
This section allows for specifying how the input parameters should be grouped and the order to
provide the parameters in. This section is optional and can be omitted when necessary.

parameters
This section allows for specifying input parameters that have to be provided when instantiating the
template. The section is optional and can be omitted when no input is required.

resources
This section contains the declaration of the single resources of the template. This section with at
least one resource should be defined in any HOT template, or the template would not really do
anything when being instantiated.

outputs
This section allows for specifying output parameters available to users once the template has been
instantiated. This section is optional and can be omitted when no output values are required.

conditions
This optional section includes statements which can be used to restrict when a resource is created
or when a property is defined. They can be associated with resources and resource properties in
the resources section, also can be associated with outputs in the outputs sections of a template.

Note: Support for this section is added in the Newton version.

Heat template version

The value of heat_template_version tells Heat not only the format of the template but also features
that will be validated and supported. Beginning with the Newton release, the version can be either the
date of the Heat release or the code name of the Heat release. Heat currently supports the following
values for the heat_template_version key:

2013-05-23

The key with value 2013-05-23 indicates that the YAML document is a HOT template and it may
contain features implemented until the Icehouse release. This version supports the following functions
(some are back ported to this version):

(continues on next page)

184 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

2014-10-16

The key with value 2014-10-16 indicates that the YAML document is a HOT template and it may contain
features added and/or removed up until the Juno release. This version removes most CFN functions that
were supported in the Icehouse release, i.e. the 2013-05-23 version. So the supported functions now
are:

2015-04-30

The key with value 2015-04-30 indicates that the YAML document is a HOT template and it may
contain features added and/or removed up until the Kilo release. This version adds the repeat function.
So the complete list of supported functions is:

2015-10-15

The key with value 2015-10-15 indicates that the YAML document is a HOT template and it may
contain features added and/or removed up until the Liberty release. This version removes the Fn.:Select
function, path based get_attr/get_param references should be used instead. Moreover get_attr
since this version returns dict of all attributes for the given resource excluding show attribute, if theres
no <attribute name> specified, e.g. { get_attr: [<resource name>]}. This version also adds the
str_split function and support for passing multiple lists to the existing list_join function. The complete
list of supported functions is:

(continues on next page)

3.3. Working with Templates 185

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

2016-04-08

The key with value 2016-04-08 indicates that the YAML document is a HOT template and it may
contain features added and/or removed up until the Mitaka release. This version also adds the map_merge
function which can be used to merge the contents of maps. The complete list of supported functions is:

2016-10-14 | newton

The key with value 2016-10-14 or newton indicates that the YAML document is a HOT template and
it may contain features added and/or removed up until the Newton release. This version adds the yaql
function which can be used for evaluation of complex expressions, the map_replace function that can
do key/value replacements on a mapping, and the if function which can be used to return corresponding
value based on condition evaluation. The complete list of supported functions is:

186 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

This version adds equals condition function which can be used to compare whether two values are equal,
the not condition function which acts as a NOT operator, the and condition function which acts as an
AND operator to evaluate all the specified conditions, the or condition function which acts as an OR
operator to evaluate all the specified conditions. The complete list of supported condition functions is:

2017-02-24 | ocata

The key with value 2017-02-24 or ocata indicates that the YAML document is a HOT template
and it may contain features added and/or removed up until the Ocata release. This version adds the
str_replace_strict function which raises errors for missing params and the filter function which
filters out values from lists. The complete list of supported functions is:

The complete list of supported condition functions is:

2017-09-01 | pike

The key with value 2017-09-01 or pike indicates that the YAML document is a HOT template
and it may contain features added and/or removed up until the Pike release. This version adds
the make_url function for assembling URLs, the 1list_concat function for combining multiple
lists, the 1ist_concat_unique function for combining multiple lists without repeating items, the
string_replace_vstrict function which raises errors for missing and empty params, and the
contains function which checks whether specific value is in a sequence. The complete list of supported

3.3. Working with Templates 187

Heat Documentation, Release 24.1.0.dev11

functions is:

J

We support yaql and contains as condition functions in this version. The complete list of supported
condition functions is:

2018-03-02 | queens

The key with value 2018-03-02 or queens indicates that the YAML document is a HOT template and it
may contain features added and/or removed up until the Queens release. The complete list of supported
functions is:

(continues on next page)

188 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

The complete list of supported condition functions is:

2018-08-31 | rocky

The key with value 2018-08-31 or rocky indicates that the YAML document is a HOT template and it
may contain features added and/or removed up until the Rocky release. The complete list of supported
functions is:

3.3. Working with Templates 189

Heat Documentation, Release 24.1.0.dev11

The complete list of supported condition functions is:

2021-04-16 | wallaby

The key with value 2021-04-16 or wallaby indicates that the YAML document is a HOT template and
it may contain features added and/or removed up until the Wallaby release.

This version adds a 2-argument variant of the if function. When the condition is false and no third
argument is supplied, the entire enclosing item (which may be e.g. a list item, a key-value pair in a dict,
or a property value) will be elided. This allows for e.g. conditional definition of properties while keeping
the default value when the condition is false.

The complete list of supported functions is:

The complete list of supported condition functions is:

(continues on next page)

190 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Parameter groups section

The parameter_groups section allows for specifying how the input parameters should be grouped and
the order to provide the parameters in. These groups are typically used to describe expected behavior for
downstream user interfaces.

These groups are specified in a list with each group containing a list of associated parameters. The lists
are used to denote the expected order of the parameters. Each parameter should be associated to a specific
group only once using the parameter name to bind it to a defined parameter in the parameters section.

N

label
A human-readable label that defines the associated group of parameters.

description
This attribute allows for giving a human-readable description of the parameter group.

parameters
A list of parameters associated with this parameter group.

param name
The name of the parameter that is defined in the associated parameters section.

Parameters section

The parameters section allows for specifying input parameters that have to be provided when instan-
tiating the template. Such parameters are typically used to customize each deployment (e.g. by setting
custom user names or passwords) or for binding to environment-specifics like certain images.

Each parameter is specified in a separated nested block with the name of the parameters defined in the
first line and additional attributes such as type or default value defined as nested elements.

3.3. Working with Templates 191

Heat Documentation, Release 24.1.0.dev11

param name
The name of the parameter.

type
The type of the parameter. Supported types are string, number, comma_delimited_list, json
and boolean. This attribute is required.

label
A human readable name for the parameter. This attribute is optional.

description
A human readable description for the parameter. This attribute is optional.

default
A default value for the parameter. This value is used if the user doesnt specify his own value during
deployment. This attribute is optional.

hidden
Defines whether the parameters should be hidden when a user requests information about a stack
created from the template. This attribute can be used to hide passwords specified as parameters.

This attribute is optional and defaults to false.

constraints
A list of constraints to apply. The constraints are validated by the Orchestration engine when a user
deploys a stack. The stack creation fails if the parameter value doesnt comply to the constraints.
This attribute is optional.

immutable
Defines whether the parameter is updatable. Stack update fails, if this is set to true and the pa-
rameter value is changed. This attribute is optional and defaults to false.

tags
A list of strings to specify the category of a parameter. This value is used to categorize a parameter
so that users can group the parameters. This attribute is optional.

The table below describes all currently supported types with examples:

Type Description Examples
string A literal string. String param
number An integer or float. 2;0.2

comma_de An array of literal strings that are separated by commas. The [one, two]; one, two;
total number of strings should be one more than the total num- Note: one, two returns
ber of commas. [one, two]

json A JSON-formatted map or list. {key: value}

boolean Boolean type value, which can be equal t, true, on, y, yes, or on; n
1 for true value and f, false, off, n, no, or O for false value.

The following example shows a minimalistic definition of two parameters

(continues on next page)

192 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Note

The description and the label are optional, but defining these attributes is good practice to provide
useful information about the role of the parameter to the user.

Parameter Constraints

The constraints block of a parameter definition defines additional validation constraints that apply to
the value of the parameter. The parameter values provided by a user are validated against the constraints
at instantiation time. The constraints are defined as a list with the following syntax

constraint type
Type of constraint to apply. The set of currently supported constraints is given below.

constraint definition
The actual constraint, depending on the constraint type. The concrete syntax for each constraint
type is given below.

description
A description of the constraint. The text is presented to the user when the value he defines violates
the constraint. If omitted, a default validation message is presented to the user. This attribute is
optional.

The following example shows the definition of a string parameter with two constraints. Note that while
the descriptions for each constraint are optional, it is good practice to provide concrete descriptions to
present useful messages to the user at deployment time.

Note

3.3. Working with Templates 193

Heat Documentation, Release 24.1.0.dev11

While the descriptions for each constraint are optional, it is good practice to provide concrete descrip-
tions so useful messages can be presented to the user at deployment time.

The following sections list the supported types of parameter constraints, along with the concrete syntax
for each type.

length

The length constraint applies to parameters of type string, comma_delimited_list and json.
It defines a lower and upper limit for the length of the string value or list/map collection.

The syntax of the length constraint is

[1

It is possible to define a length constraint with only a lower limit or an upper limit. However, at least one
of min or max must be specified.

range

The range constraint applies to parameters of type number. It defines a lower and upper limit for the
numeric value of the parameter.

The syntax of the range constraint is

It is possible to define a range constraint with only a lower limit or an upper limit. However, at least one
of min or max must be specified.

The minimum and maximum boundaries are included in the range. For example, the following range
constraint would allow for all numeric values between 0 and 10

modulo

The modulo constraint applies to parameters of type number. The value is valid if it is a multiple of
step, starting with offset.

The syntax of the modulo constraint is

[J

Both step and offset must be specified.

For example, the following modulo constraint would only allow for odd numbers

[J

194 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

allowed_values

The allowed_values constraint applies to parameters of type string or number. It specifies a set of
possible values for a parameter. At deployment time, the user-provided value for the respective parameter
must match one of the elements of the list.

The syntax of the allowed_values constraint is

[allowed_values }

Alternatively, the following YAML list notation can be used

allowed_values

For example

parameters
instance_type
type
label
description
constraints
allowed_values

allowed_pattern

The allowed_pattern constraint applies to parameters of type string. It specifies a regular expression
against which a user-provided parameter value must evaluate at deployment.

The syntax of the allowed_pattern constraint is

[allowed_pattern]

For example

parameters
user_name

type

label

description

constraints
allowed_pattern
description

3.3. Working with Templates 195

Heat Documentation, Release 24.1.0.dev11

custom_constraint

The custom_constraint constraint adds an extra step of validation, generally to check that the specified
resource exists in the backend. Custom constraints get implemented by plug-ins and can provide any kind
of advanced constraint validation logic.

The syntax of the custom_constraint constraint is

[1

The name attribute specifies the concrete type of custom constraint. It corresponds to the name under
which the respective validation plugin has been registered in the Orchestration engine.

For example

The following section lists the custom constraints and the plug-ins that support them.

Name Plug-in

barbican.container heat.engine.clients.os.barbican:ContainerConstraint

barbican.secret heat.engine.clients.os.barbican:SecretConstraint

blazar.reservation heat.engine.clients.os.blazar:ReservationConstraint

cinder.backup heat.engine.clients.os.cinder: VolumeBackupConstraint

cinder.qos_specs heat.engine.clients.os.cinder:QoSSpecsConstraint

cinder.snapshot heat.engine.clients.os.cinder: VolumeSnapshotConstraint

cinder.volume heat.engine.clients.os.cinder: VolumeConstraint

cinder.vtype heat.engine.clients.os.cinder: VolumeTypeConstraint

cron_expression heat.engine.constraint.common_constraints: CRONExpressionConstraint
designate.zone heat.engine.clients.os.designate:DesignateZoneConstraint

dns_domain heat.engine.constraint.common_constraints: DNSDomainConstraint

dns_name heat.engine.constraint.common_constraints: DNSNameConstraint

expiration heat.engine.constraint.common_constraints: ExpirationConstraint

glance.image heat.engine.clients.os.glance:ImageConstraint

ip_addr heat.engine.constraint.common_constraints:IPConstraint

ip_or_cidr heat.engine.constraint.common_constraints:IPCIDRConstraint

ironic.node heat.engine.clients.os.ironic:NodeConstraint

ironic.portgroup heat.engine.clients.os.ironic:PortGroupConstraint

iso_8601 heat.engine.constraint.common_constraints:ISO8601Constraint

json_string heat.engine.constraint.common_constraints:JsonStringConstraint
keystone.domain heat.engine.clients.os.keystone.keystone_constraints:KeystoneDomainConstraint
keystone.group heat.engine.clients.os.keystone.keystone_constraints: KeystoneGroupConstraint
keystone.project heat.engine.clients.os.keystone.keystone_constraints:KeystoneProjectConstraint
keystone.region heat.engine.clients.os.keystone.keystone_constraints: KeystoneRegionConstraint
keystone.role heat.engine.clients.os.keystone.keystone_constraints:KeystoneRoleConstraint
keystone.service heat.engine.clients.os.keystone.keystone_constraints:KeystoneServiceConstraint

continues on next page

196 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Table 1 — continued from previous page

Name

Plug-in

keystone.user

mac_addr
magnum.cluster_template
manila.share_network
manila.share_snapshot
manila.share_type
mistral.workflow
monasca.notification
net_cidr
neutron.address_scope
neutron.flow_classifier
neutron.lbaas.listener
neutron.lbaas.loadbalancer
neutron.lbaas.pool
neutron.lbaas.provider
neutron.network
neutron.port
neutron.port_pair
neutron.port_pair_group
neutron.qos_policy
neutron.router
neutron.security_group
neutron.segment
neutron.subnet
neutron.subnetpool
neutron.taas.tap_flow
neutron.taas.tap_service
nova.flavor

nova.host

nova.keypair
nova.network
nova.server
octavia.availabilityzone

octavia.availabilityzoneprofile

octavia.flavor
octavia.flavorprofile
octavia.l7policy
octavia.listener
octavia.loadbalancer
octavia.pool
rel_dns_name
test_constr
timezone
trove.flavor
zaqar.queue

heat.engine.clients.os.keystone.keystone_constraints:KeystoneUserConstraint
heat.engine.constraint.common_constraints:MACConstraint
heat.engine.clients.os.magnum:ClusterTemplateConstraint
heat.engine.clients.os.manila:ManilaShareNetworkConstraint
heat.engine.clients.os.manila:ManilaShareSnapshotConstraint
heat.engine.clients.os.manila:ManilaShareTypeConstraint
heat.engine.clients.os.mistral: WorkflowConstraint
heat.engine.clients.os.monasca:MonascaNotificationConstraint
heat.engine.constraint.common_constraints: CIDRConstraint
heat.engine.clients.os.neutron.neutron_constraints: AddressScopeConstraint
heat.engine.clients.os.neutron.neutron_constraints:FlowClassifierConstraint
heat.engine.clients.os.neutron.lbaas_constraints:ListenerConstraint
heat.engine.clients.os.neutron.lbaas_constraints:LoadbalancerConstraint
heat.engine.clients.os.neutron.lbaas_constraints:PoolConstraint
heat.engine.clients.os.neutron.lbaas_constraints:LBaasV2ProviderConstraint
heat.engine.clients.os.neutron.neutron_constraints:NetworkConstraint
heat.engine.clients.os.neutron.neutron_constraints:PortConstraint
heat.engine.clients.os.neutron.neutron_constraints: PortPairConstraint
heat.engine.clients.os.neutron.neutron_constraints:PortPairGroupConstraint
heat.engine.clients.os.neutron.neutron_constraints:QoSPolicyConstraint
heat.engine.clients.os.neutron.neutron_constraints:RouterConstraint
heat.engine.clients.os.neutron.neutron_constraints: SecurityGroupConstraint
heat.engine.clients.os.openstacksdk:SegmentConstraint
heat.engine.clients.os.neutron.neutron_constraints: SubnetConstraint
heat.engine.clients.os.neutron.neutron_constraints:SubnetPoolConstraint
heat.engine.clients.os.neutron.taas_constraints: TapFlowConstraint
heat.engine.clients.os.neutron.taas_constraints: TapServiceConstraint
heat.engine.clients.os.nova:FlavorConstraint
heat.engine.clients.os.nova:HostConstraint
heat.engine.clients.os.nova:KeypairConstraint
heat.engine.constraint.common_constraints: TestConstraintDelay
heat.engine.clients.os.nova:ServerConstraint

heat.engine.clients.os.octavia: AvailabilityZoneConstraint
heat.engine.clients.os.octavia: AvailabilityZoneProfileConstraint
heat.engine.clients.os.octavia:FlavorConstraint
heat.engine.clients.os.octavia:FlavorProfileConstraint
heat.engine.clients.os.octavia:L.7PolicyConstraint
heat.engine.clients.os.octavia:ListenerConstraint
heat.engine.clients.os.octavia:L.oadbalancerConstraint
heat.engine.clients.os.octavia:PoolConstraint
heat.engine.constraint.common_constraints:Relative DNSNameConstraint
heat.engine.constraint.common_constraints: TestConstraintDelay
heat.engine.constraint.common_constraints: TimezoneConstraint
heat.engine.clients.os.trove:FlavorConstraint
heat.engine.clients.os.zaqar:QueueConstraint

3.3. Working with Templates

197

Heat Documentation, Release 24.1.0.dev11

Pseudo parameters

In addition to parameters defined by a template author, Heat also creates three parameters for every
stack that allow referential access to the stacks name, stacks identifier and projects identifier. These
parameters are named OS: : stack_name for the stack name, 0S: : stack_id for the stack identifier and
0S: :project_id for the project identifier. These values are accessible via the ger_param intrinsic func-
tion, just like user-defined parameters.

Note

0S::project_id is available since 2015.1 (Kilo).

Resources section

The resources section defines actual resources that make up a stack deployed from the HOT template
(for instance compute instances, networks, storage volumes).

Each resource is defined as a separate block in the resources section with the following syntax

resource ID
A resource ID which must be unique within the resources section of the template.

type
The resource type, such as 0S: :Nova: :Server or 0S: :Neutron: :Port. This attribute is re-
quired.

properties
A list of resource-specific properties. The property value can be provided in place, or via a function
(see Intrinsic functions). This section is optional.

metadata
Resource-specific metadata. This section is optional.

depends_on

Dependencies of the resource on one or more resources of the template. See Resource dependen-
cies for details. This attribute is optional.

update_policy
Update policy for the resource, in the form of a nested dictionary. Whether update policies are
supported and what the exact semantics are depends on the type of the current resource. This
attribute is optional.

198 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

deletion_policy
Deletion policy for the resource. The allowed deletion policies are Delete, Retain, and
Snapshot. Beginning with heat_template_version 2016-10-14, the lowercase equivalents
delete, retain, and snapshot are also allowed. This attribute is optional; the default policy is
to delete the physical resource when deleting a resource from the stack.

external_id
Allows for specifying the resource_id for an existing external (to the stack) resource. External
resources can not depend on other resources, but we allow other resources depend on external
resource. This attribute is optional. Note: when this is specified, properties will not be used for
building the resource and the resource is not managed by Heat. This is not possible to update that
attribute. Also resource wont be deleted by heat when stack is deleted.

condition
Condition for the resource. Which decides whether to create the resource or not. This attribute is
optional.

Note: Support condition for resource is added in the Newton version.
Depending on the type of resource, the resource block might include more resource specific data.

All resource types that can be used in CFN templates can also be used in HOT templates, adapted to the
YAML structure as outlined above.

The following example demonstrates the definition of a simple compute resource with some fixed prop-
erty values

Resource dependencies

The depends_on attribute of a resource defines a dependency between this resource and one or more
other resources.

If a resource depends on just one other resource, the ID of the other resource is specified as string of the
depends_on attribute, as shown in the following example

If aresource depends on more than one other resources, the value of the depends_on attribute is specified
as a list of resource IDs, as shown in the following example

3.3. Working with Templates 199

Heat Documentation, Release 24.1.0.dev11

Outputs section

The outputs section defines output parameters that should be available to the user after a stack has been
created. This would be, for example, parameters such as IP addresses of deployed instances, or URLs of
web applications deployed as part of a stack.

Each output parameter is defined as a separate block within the outputs section according to the following
syntax

parameter name
The output parameter name, which must be unique within the outputs section of a template.

description
A short description of the output parameter. This attribute is optional.

parameter value
The value of the output parameter. This value is usually resolved by means of a function. See
Intrinsic functions for details about the functions. This attribute is required.

condition
To conditionally define an output value. None value will be shown if the condition is False. This
attribute is optional.

Note: Support condition for output is added in the Newton version.

The example below shows how the IP address of a compute resource can be defined as an output parameter

200 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Conditions section

The conditions section defines one or more conditions which are evaluated based on input parameter
values provided when a user creates or updates a stack. The condition can be associated with resources,
resource properties and outputs. For example, based on the result of a condition, user can conditionally
create resources, user can conditionally set different values of properties, and user can conditionally give

outputs of a stack.

The conditions section is defined with the following syntax

condition name

The condition name, which must be unique within the conditions section of a template.

expression

The expression which is expected to return True or False. Usually, the condition functions can be

used as expression to define conditions:

-

L

J

Note: In condition functions, you can reference a value from an input parameter, but you cannot
reference resource or its attribute. We support referencing other conditions (by condition name) in
condition functions. We support yaql as condition function in the Pike version.

An example of conditions section definition

(continues on next page)

3.3. Working with Templates

201

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)
not
equals
get_param

cd6
or
equals
get_param

equals
get_param

cd7
not

cd8
and

cd9
yaql
expression
data
services
get_param
cd10
contains

get_param

The example below shows how to associate condition with resources

parameters
env_type
default
type
conditions
create_prod_res equals get_param
resources
volume
type
condition
properties
size

The create_prod_res condition evaluates to true if the env_type parameter is equal to prod. In the above
sample template, the volume resource is associated with the create_prod_res condition. Therefore, the
volume resource is created only if the env_type is equal to prod.

The example below shows how to conditionally define an output

202 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

In the above sample template, the vol_size output is associated with the create_prod_res condition. There-
fore, the vol_size output is given corresponding value only if the env_type is equal to prod, otherwise the
value of the output is None.

Intrinsic functions

HOT provides a set of intrinsic functions that can be used inside templates to perform specific tasks,
such as getting the value of a resource attribute at runtime. The following section describes the role and
syntax of the intrinsic functions.

Note: these functions can only be used within the properties section of each resource or in the outputs

section.

get_attr

The get_attr function references an attribute of a resource. The attribute value is resolved at runtime
using the resource instance created from the respective resource definition.

Path based attribute referencing using keys or indexes requires heat_template_version 2014-10-16
or higher.

The syntax of the get_attr function is

resource name
The resource name for which the attribute needs to be resolved.

The resource name must exist in the resources section of the template.

attribute name
The attribute name to be resolved. If the attribute returns a complex data structure such as a list or
a map, then subsequent keys or indexes can be specified. These additional parameters are used to
navigate the data structure to return the desired value.

The following example demonstrates how to use the get_attr function:

(continues on next page)

3.3. Working with Templates 203

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

In this example, if the networks attribute contained the following data:

|

then the value of get_attr function would resolve to 10.0.0. 1 (first item of the private entry in the
networks map).

From heat_template_version: 2015-10-15 <attribute_name> is optional and if <attribute_name> is
not specified, get_attr returns dict of all attributes for the given resource excluding show attribute. In
this case syntax would be next:

get_file

The get_file function returns the content of a file into the template. It is generally used as a file
inclusion mechanism for files containing scripts or configuration files.

The syntax of get_£file function is

J

The content key is used to look up the files dictionary that is provided in the REST API call. The
Orchestration client command (heat) is get_file aware and populates the files dictionary with the
actual content of fetched paths and URLs. The Orchestration client command supports relative paths and
transforms these to the absolute URLSs required by the Orchestration API.

Note

The get_file argument must be a static path or URL and not rely on intrinsic functions like
get_param. the Orchestration client does not process intrinsic functions (they are only processed
by the Orchestration engine).

The example below demonstrates the get_file function usage with both relative and absolute URLSs

(continues on next page)

204 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

The files dictionary generated by the Orchestration client during instantiation of the stack would contain
the following keys:

e file:///path/to/my_instance_user_data.sh

* http://example.com/my_other_instance_user_data.sh

get_param

The get_param function references an input parameter of a template. It resolves to the value provided
for this input parameter at runtime.

The syntax of the get_param function is

parameter name
The parameter name to be resolved. If the parameters returns a complex data structure such as a
list or a map, then subsequent keys or indexes can be specified. These additional parameters are
used to navigate the data structure to return the desired value.

The following example demonstrates the use of the get_param function

In this example, if the instance_type and server_data parameters contained the following data:

3.3. Working with Templates 205

Heat Documentation, Release 24.1.0.dev11

then the value of the property flavor would resolve toml. tiny, metadata would resolve to {"foo":
"bar"} and key_name would resolve to a_key.

get_resource

The get_resource function references another resource within the same template. At runtime, it is
resolved to reference the ID of the referenced resource, which is resource type specific. For example,
a reference to a floating IP resource returns the respective IP address at runtime. The syntax of the
get_resource function is

[

]

The resource ID of the referenced resource is given as single parameter to the get_resource function.

For example

list_join
The 1ist_join function joins a list of strings with the given delimiter.

The syntax of the 1ist_join function is

For example

This resolve to the string one, two, and three.

From HOT version 2015-10-15 you may optionally pass additional lists, which will be appended to the
previous lists to join.

For example:

206 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

This resolve to the string one, two, three, four.
From HOT version 2015-10-15 you may optionally also pass non-string list items (e.g json/map/list

parameters or attributes) and they will be serialized as json before joining.

digest

The digest function allows for performing digest operations on a given value. This function has been
introduced in the Kilo release and is usable with HOT versions later than 2015-04-30.

The syntax of the digest function is

algorithm
The digest algorithm. Valid algorithms are the ones provided natively by hashlib (md5, shal,
sha224, sha256, sha384, and sha512) or any one provided by OpenSSL.

value
The value to digest. This function will resolve to the corresponding hash of the value.

For example

The value of the digest function would resolve to the corresponding hash of the value of raw_password.

repeat

The repeat function allows for dynamically transforming lists by iterating over the contents of one or
more source lists and replacing the list elements into a template. The result of this function is a new list,
where the elements are set to the template, rendered for each list item.

The syntax of the repeat function is

template
The template argument defines the content generated for each iteration, with placeholders for the
elements that need to be replaced at runtime. This argument can be of any supported type.

for_each
The for_each argument is a dictionary that defines how to generate the repetitions of the tem-
plate and perform substitutions. In this dictionary the keys are the placeholder names that will be
replaced in the template, and the values are the lists to iterate on. On each iteration, the function
will render the template by performing substitution with elements of the given lists. If a single

3.3. Working with Templates 207

Heat Documentation, Release 24.1.0.dev11

key/value pair is given in this argument, the template will be rendered once for each element in
the list. When more than one key/value pairs are given, the iterations will be performed on all
the permutations of values between the given lists. The values in this dictionary can be given as
functions such as get_attr or get_param.

The following example shows how a security group resource can be defined to include a list of ports
given as a parameter

parameters
ports
type
label
default

resources
security_group
type
properties
name
rules
repeat
for_each
<¥port¥%> get_param
template
protocol
port_range_min
port_range_max

J

The following example demonstrates how the use of multiple lists enables the security group to also
include parameterized protocols

parameters

ports
type
label
default

protocols
type
label
default

resources
security_group
type
properties
name
rules
repeat
for_each
<¥%port¥> get_param
<%protocol%> get_param

(continues on next page)

208 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Note how multiple entries in the for_each argument are equivalent to nested for-loops in most program-
ming languages.

From HOT version 2016-10-14 you may also pass a map as value for the for_each key, in which case
the list of map keys will be used as value.

From HOT version 2017-09-01 (or pike) you may specify a argument permutations to decide whether
to iterate nested the over all the permutations of the elements in the given lists. If permutations is not
specified, we set the default value to true to compatible with before behavior. The args have to be lists
instead of dicts if permutations is False because keys in a dict are unordered, and the list args all have to
be of the same length.

After resolved, we will get the networks of server like: [{subnet: subl, network: netl}, {subnet: sub2,
network: net2}]

resource facade

The resource_facade function retrieves data in a parent provider template.

A provider template provides a custom definition of a resource, called its facade. For more information
about custom templates, see Template composition. The syntax of the resource_facade function is

3.3. Working with Templates 209

Heat Documentation, Release 24.1.0.dev11

data type can be one of metadata, deletion_policy or update_policy.

str_replace

The str_replace function dynamically constructs strings by providing a template string with place-
holders and a list of mappings to assign values to those placeholders at runtime. The placeholders are
replaced with mapping values wherever a mapping key exactly matches a placeholder.

The syntax of the str_replace function is

template
Defines the template string that contains placeholders which will be substituted at runtime.

params
Provides parameter mappings in the form of dictionary. Each key refers to a placeholder used
in the template attribute. From HOT version 2015-10-15 you may optionally pass non-string
parameter values (e.g json/map/list parameters or attributes) and they will be serialized as json
before replacing, prior heat/HOT versions require string values.

The following example shows a simple use of the str_replace function in the outputs section of a
template to build a URL for logging into a deployed application

The following examples show the use of the str_replace function to build an instance initialization
script

(continues on next page)

210 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

In the example above, one can imagine that MySQL is being configured on a compute instance and the
root password is going to be set based on a user provided parameter. The script for doing this is provided
as userdata to the compute instance, leveraging the str_replace function.

str_replace_strict

str_replace_strict behaves identically to the str_replace function, only an error is raised if any
of the params are not present in the template. This may help catch typos or other issues sooner rather
than later when processing a template.

str_replace_vstrict

str_replace_vstrict behaves identically to the str_replace_strict function, only an error is
raised if any of the params are empty. This may help catch issues (i.e., prevent resources from being
created with bogus values) sooner rather than later if it is known that all the params should be non-empty.

str_split

The str_split function allows for splitting a string into a list by providing an arbitrary delimiter, the
opposite of 1ist_join.

The syntax of the str_split function is as follows:

The result of which is:

[l

Optionally, an index may be provided to select a specific entry from the resulting list, similar to
get_attr/get_param:

3.3. Working with Templates 211

Heat Documentation, Release 24.1.0.dev11

[J

The result of which is:

[)

Note: The index starts at zero, and any value outside the maximum (e.g the length of the list minus one)
will cause an error.

map_merge

The map_merge function merges maps together. Values in the latter maps override any values in earlier
ones. Can be very useful when composing maps that contain configuration data into a single consolidated
map.

The syntax of the map_merge function is

For example

[1

This resolves to a map containing { 'k1': 'v2', 'k2': 'v2'}

Maps containing no items resolve to {}.

map_replace

The map_replace function does key/value replacements on an existing mapping. An input mapping is
processed by iterating over all keys/values and performing a replacement if an exact match is found in
either of the optional keys/values mappings.

The syntax of the map_replace function is

For example

212 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

This resolves to a map containing { 'K1': 'vl1', 'k2': 'V2'}.
The keys/values mappings are optional, either or both may be specified.

Note that an error is raised if a replacement defined in keys results in a collision with an existing keys in
the input or output map.

Also note that while unhashable values (e.g lists) in the input map are valid, they will be ignored by the
values replacement, because no key can be defined in the values mapping to define their replacement.

yaql
The yaql evaluates yaql expression on a given data.

The syntax of the yaql function is

For example

max_elem output will be evaluated to 3

equals

The equals function compares whether two values are equal.

The syntax of the equals function is

[

The value can be any type that you want to compare. This function returns true if the two values are equal
or false if they arent.

For example

[

If param env_type equals to prod, this function returns true, otherwise returns false.

3.3. Working with Templates 213

Heat Documentation, Release 24.1.0.dev11

if
The if function returns the corresponding value based on the evaluation of a condition.

The syntax of the if function is

[

For example

The name property is set to s_prod if the condition create_prod_res evaluates to true (if parameter
env_type is prod), and is set to s_test if the condition create_prod_res evaluates to false (if parameter
env_type isnt prod).

Note: You define all conditions in the conditions section of a template except for if conditions. You
can use the if condition in the property values in the resources section and outputs sections of a
template.

Beginning with the wallaby template version, the third argument is optional. If only two arguments are
passed, the entire enclosing item is removed when the condition is false.

For example:

In this example, the default name for the server (which is generated by Heat when the property value is
not specified) would be used when the server_name parameter value is an empty string.

not

The not function acts as a NOT operator.

The syntax of the not function is

[1

Note: A condition can be an expression such as equals, or and and that evaluates to true or false, can
be a boolean, and can be other condition name defined in conditions section of template.

Returns true for a condition that evaluates to false or returns false for a condition that evaluates to true.

214 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

For example

If param env_type equals to prod, this function returns false, otherwise returns true.

Another example with boolean value definition

[)

This function returns false.

Another example reference other condition name

[)

This function returns false if my_other_condition evaluates to true, otherwise returns true.

and

The and function acts as an AND operator to evaluate all the specified conditions.

The syntax of the and function is

[1

Note: A condition can be an expression such as equals, or and not that evaluates to true or false, can
be a boolean, and can be other condition names defined in conditions section of template.

Returns true if all the specified conditions evaluate to true, or returns false if any one of the conditions
evaluates to false.

For example

J

If param env_type equals to prod, and param zone is not equal to beijing, this function returns true,
otherwise returns false.

Another example reference with other conditions

3.3. Working with Templates 215

Heat Documentation, Release 24.1.0.dev11

This function returns true if other_condition_1 and other_condition_2 evaluate to true both, otherwise
returns false.

or

The or function acts as an OR operator to evaluate all the specified conditions.

The syntax of the or function is

1

Note: A condition can be an expression such as equals, and and not that evaluates to true or false, can
be a boolean, and can be other condition names defined in conditions section of template.

Returns true if any one of the specified conditions evaluate to true, or returns false if all of the conditions
evaluates to false.

For example

If param env_type equals to prod, or the param zone is not equal to beijing, this function returns true,
otherwise returns false.

Another example reference other conditions

This function returns true if any one of other_condition_1 or other_condition_2 evaluate to true, other-
wise returns false.

filter

The filter function removes values from lists.

The syntax of the filter function is

For example

(continues on next page)

216 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

type
default

outputs
output_list
value
filter

get_param

output_list will be evaluated to [1, 2].

make_url

The make_url function builds URLSs.

The syntax of the make_url function is

make_url
scheme
username
password
host
port
path
query
<keyl>
<key2>
fragment

All parameters are optional.

For example

outputs
server_url
value
make_url
scheme
host: {get_attr
port
path
query
recipient

fragment

server_url will be evaluated to a URL in the form:

[http://[<server IP>]:8080/hello?recipient=world#greeting

3.3. Working with Templates 217

Heat Documentation, Release 24.1.0.dev11

list_concat

The 1ist_concat function concatenates lists together.

The syntax of the 1ist_concat function is

For example

[J

Will resolve to the list ['v1l', 'v2', 'v3', 'v4'].

Null values will be ignored.

list_concat_unique

The 1list_concat_unique function behaves identically to the function list_concat, only removes
the repeating items of lists.

For example

[

Will resolve to the list ['v1l', 'v2', 'v3'].

contains

The contains function checks whether the specific value is in a sequence.

The syntax of the contains function is

[

This function returns true if value is in sequence or false if it isnt.

For example

[

Will resolve to boolean true.
Instances

Manage instances
Create an instance

Use the OS::Nova::Server resource to create a Compute instance. The flavor property is the only
mandatory one, but you need to define a boot source using one of the image or block_device_mapping
properties.

218 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

You also need to define the networks property to indicate to which networks your instance must connect
if multiple networks are available in your tenant.

The following example creates a simple instance, booted from an image, and connecting to the private
network:

Connect an instance to a network

Use the networks property of an OS::Nova::Server resource to define which networks an instance should
connect to. Define each network as a YAML map, containing one of the following keys:

port
The ID of an existing Networking port. You usually create this port in the same template using an
OS::Neutron::Port resource. You will be able to associate a floating IP to this port, and the port
to your Compute instance.

network
The name or ID of an existing network. You dont need to create an OS::Neutron::Port resource
if you use this property. But you will not be able to use neutron floating IP association for this
instance because there will be no specified port for server.

The following example demonstrates the use of the port and network properties:

(continues on next page)

3.3. Working with Templates 219

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

networks
network

Create and associate security groups to an instance

Use the OS::Neutron::SecurityGroup resource to create security groups.

Define the security_groups property of the OS::Neutron::Port resource to associate security groups
to a port, then associate the port to an instance.

The following example creates a security group allowing inbound connections on ports 80 and 443 (web
server) and associates this security group to an instance port:

resources
web_secgroup
type
properties
rules
protocol
remote_ip_prefix
port_range_min
port_range_max
protocol
remote_ip_prefix
port_range_min
port_range_max

instance_port
type
properties
network
security_groups

get_resource
fixed_ips
subnet_id

instance
type
properties
flavor
image
networks
port get_resource

Create and associate a floating IP to an instance

Use the OS::Neutron::FloatinglP resource to create a floating IP, and the
OS::Neutron::Floatingl PAssociation resource to associate the floating IP to a port:

220 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

parameters
net
description
type
default

resources
instl
type
properties
flavor
image
networks
network: {get_param

floating_ip
type
properties
floating_network

association
type
properties
floatingip_id get_resource
port_id: {get_attr get_param

You can also create an OS::Neutron::Port and associate that with the server and the floating IP. However
the approach mentioned above will work better with stack updates.

resources
instance_port
type
properties
network
fixed_ips
subnet_id: "private-subnet"

floating_ip
type
properties
floating_network

association
type
properties
floatingip_id get_resource
port_id get_resource

3.3. Working with Templates 221

Heat Documentation, Release 24.1.0.dev11

Enable remote access to an instance

The key_name attribute of the OS::Nova::Server resource defines the key pair to use to enable SSH
remote access:

resources
my_instance
type
properties
flavor
image
key_name

Note

For more information about key pairs, see Configure access and security for instances.

Create a key pair

You can create new key pairs with the OS::Nova::KeyPair resource. Key pairs can be imported or created
during the stack creation.

If the public_key property is not specified, the Orchestration module creates a new key pair. If the
save_private_key property is set to true, the private_key attribute of the resource holds the private
key.

The following example creates a new key pair and uses it as authentication key for an instance:

resources
my_key
type
properties
save_private_key
name

my_instance
type
properties
flavor
image
key_name get_resource

outputs
private_key
description
value get_attr

222 Chapter 3. Using Heat

https://docs.openstack.org/ocata/user-guide/cli-nova-configure-access-security-for-instances.html

Heat Documentation, Release 24.1.0.dev11

Manage networks

Create a network and a subnet

Note

The Networking service (neutron) must be enabled on your OpenStack deployment to create and
manage networks and subnets. Networks and subnets cannot be created if your deployment uses
legacy networking (nova-network).

Use the OS::Neutron::Net resource to create a network, and the OS::Neutron::Subnet resource to provide
a subnet for this network:

resources
new_net

type

new_subnet
type
properties
network_id get_resource
cidr
dns_nameservers
ip_version

Create and manage a router

Use the OS::Neutron::Router resource to create a router. You can define its gateway with the
external_gateway_info property:

resources
routerl
type
properties
external_gateway_info network

You can connect subnets to routers with the OS::Neutron::RouterInterface resource:

resources
subnetl_interface
type
properties
router_id get_resource
subnet

Complete network example

The following example creates a network stack:

¢ A network and an associated subnet.

3.3. Working with Templates 223

Heat Documentation, Release 24.1.0.dev11

* A router with an external gateway.
¢ An interface to the new subnet for the new router.

In this example, the public network is an existing shared network:

resources
internal_net

type

internal_subnet

type
properties
network_id get_resource
cidr: "10.8.1.0/24"
dns_nameservers "8.8.8.8", "8.8.4.4"

ip_version

internal_router
type
properties
external_gateway_info network

internal_interface

type

properties
router_id get_resource
subnet get_resource

Manage volumes
Create a volume

Use the OS::Cinder::Volume resource to create a new Block Storage volume.

For example:

resources
my_new_volume
type
properties
size

The volumes that you create are empty by default. Use the image property to create a bootable volume
from an existing image:

resources
my_new_bootable_volume
type
properties
size
image

224 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

You can also create new volumes from another volume, a volume snapshot, or a volume backup. Use
the source_volid, snapshot_id or backup_id properties to create a new volume from an existing
source.

For example, to create a new volume from a backup:

resources
another_volume
type
properties
backup_id

In this example the size property is not defined because the Block Storage service uses the size of the
backup to define the size of the new volume.

Attach a volume to an instance

Use the OS::Cinder::VolumeAttachment resource to attach a volume to an instance.

The following example creates a volume and an instance, and attaches the volume to the instance:

resources
new_volume
type
properties
size

new_instance
type
properties
flavor
image

volume_attachment

type

properties
volume_id get_resource
instance_uuid get_resource

Boot an instance from a volume

Use the block_device_mapping property of the OS::Nova::Server resource to define a volume used
to boot the instance. This property is a list of volumes to attach to the instance before its boot.

The following example creates a bootable volume from an image, and uses it to boot an instance:

resources
bootable_volume
type
properties
size
image
(continues on next page)

3.3. Working with Templates 225

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Software configuration

There are a variety of options to configure the software which runs on the servers in your stack. These
can be broadly divided into the following:

* Custom image building
» User-data boot scripts and cloud-init
» Software deployment resources

This section will describe each of these options and provide examples for using them together in your
stacks.

Image building

The first opportunity to influence what software is configured on your servers is by booting them with a
custom-built image. There are a number of reasons you might want to do this, including:

* Boot speed - since the required software is already on the image there is no need to download and
install anything at boot time.

* Boot reliability - software downloads can fail for a number of reasons including transient network
failures and inconsistent software repositories.

* Test verification - custom built images can be verified in test environments before being promoted
to production.

* Configuration dependencies - post-boot configuration may depend on agents already being in-
stalled and enabled

A number of tools are available for building custom images, including:
¢ diskimage-builder image building tools for OpenStack
* imagefactory builds images for a variety of operating system/cloud combinations

Examples in this guide that require custom images will use diskimage-builder.

226 Chapter 3. Using Heat

https://docs.openstack.org/diskimage-builder/latest/
https://imgfac.org/
https://docs.openstack.org/diskimage-builder/latest/

Heat Documentation, Release 24.1.0.dev11

User-data boot scripts and cloud-init

When booting a server it is possible to specify the contents of the user-data to be passed to that server.
This user-data is made available either from configured config-drive or from the Metadata service

How this user-data is consumed depends on the image being booted, but the most commonly used tool
for default cloud images is cloud-init.

Whether the image is using cloud-init or not, it should be possible to specify a shell script in the
user_data property and have it be executed by the server during boot:

Note

Debugging these scripts it is often useful to view the boot log using nova console-log
<server-id> to view the progress of boot script execution.

Often there is a need to set variable values based on parameters or resources in the stack. This can be
done with the str_replace intrinsic function:

3.3. Working with Templates 227

https://docs.openstack.org/nova/latest/user/metadata.html#metadata-service
https://cloudinit.readthedocs.io/
https://cloudinit.readthedocs.io/

Heat Documentation, Release 24.1.0.dev11

Warning

If a stack-update is performed and there are any changes at all to the content of user_data then the
server will be replaced (deleted and recreated) so that the modified boot configuration can be run on
a new server.

When these scripts grow it can become difficult to maintain them inside the template, so the get_file
intrinsic function can be used to maintain the script in a separate file:

Note

str_replace can replace any strings, not just strings starting with $. However doing this for the
above example is useful because the script file can be executed for testing by passing in environment
variables.

Choosing the user_data_format

The OS::Nova::Server user_data_format property determines how the user_data should be for-
matted for the server. For the default value HEAT_CFNTOOLS, the user_data is bundled as part
of the heat-cfntools cloud-init boot configuration data. While HEAT_CFNTOOLS is the default for
user_data_format, it is considered legacy and RAW or SOFTWARE_CONFIG will generally be more ap-
propriate.

For RAW the user_data is passed to Nova unmodified. For a cloud-init enabled image, the following are
both valid RAW user-data:

(continues on next page)

228 Chapter 3. Using Heat

https://cloudinit.readthedocs.io/

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

For SOFTWARE_CONFIG user_data is bundled as part of the software config data, and metadata is de-
rived from any associated Software deployment resources.

Signals and wait conditions

Often it is necessary to pause further creation of stack resources until the boot configuration script
has notified that it has reached a certain state. This is usually either to notify that a service is now
active, or to pass out some generated data which is needed by another resource. The resources
OS::Heat::WaitCondition and OS::Heat::SwiftSignal both perform this function using different tech-
niques and tradeofTs.

OS::Heat::WaitCondition is implemented as a call to the Orchestration API resource signal. The token
is created using credentials for a user account which is scoped only to the wait condition handle resource.
This user is created when the handle is created, and is associated to a project which belongs to the stack,
in an identity domain which is dedicated to the orchestration service.

Sending the signal is a simple HTTP request, as with this example using curl:

curl -i -X POST -H
-H -H
--data-binary

The JSON containing the signal data is expected to be of the following format:

All of these values are optional, and if not specified will be set to the following defaults:

(continues on next page)

3.3. Working with Templates 229

https://docs.openstack.org/api-ref/orchestration/v1/
https://curl.haxx.se/

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

If status is set to FAILURE then the resource (and the stack) will go into a FAILED state using the
reason as failure reason.

The following template example uses the convenience attribute curl_cli which builds a curl command
with a valid token:

(continues on next page)

230 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

J

OS::Heat::SwiftSignal is implemented by creating an Object Storage API temporary URL which is pop-
ulated with signal data with an HTTP PUT. The orchestration service will poll this object until the signal
data is available. Object versioning is used to store multiple signals.

Sending the signal is a simple HTTP request, as with this example using curl:

[curl -i -X PUT --data-binary }

The above template example only needs to have the type changed to the swift signal resources:

The decision to use OS::Heat::WaitCondition or OS::Heat::SwiftSignal will depend on a few factors:
* OS::Heat::SwiftSignal depends on the availability of an Object Storage API

* OS::Heat::WaitCondition depends on whether the orchestration service has been configured with
a dedicated stack domain (which may depend on the availability of an Identity V3 API).

* The preference to protect signal URLs with token authentication or a secret webhook URL.

3.3. Working with Templates 231

https://curl.haxx.se/

Heat Documentation, Release 24.1.0.dev11

Software config resources

Boot configuration scripts can also be managed as their own resources. This allows configuration to
be defined once and run on multiple server resources. These software-config resources are stored and
retrieved via dedicated calls to the Orchestration API. It is not possible to modify the contents of an
existing software-config resource, so a stack-update which changes any existing software-config resource
will result in API calls to create a new config and delete the old one.

The resource OS::Heat::SoftwareConfig is used for storing configs represented by text scripts, for exam-
ple:

resources
boot_script
type
properties
group
config

server_with_boot_script

type
properties

user_data_format
user_data: {get_resource

J

The resource OS::Heat::CloudConfig allows cloud-init cloud-config to be represented as template YAML
rather than a block string. This allows intrinsic functions to be included when building the cloud-config.
This also ensures that the cloud-config is valid YAML, although no further checks for valid cloud-config
are done.

parameters
file_content
type
description

resources
boot_config
type
properties
cloud_config
write_files
path
content: {get_param

server_with_cloud_config

type
properties

user_data_format
(continues on next page)

232 Chapter 3. Using Heat

https://docs.openstack.org/api-ref/orchestration/v1/
https://cloudinit.readthedocs.io/

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

user_data get_resource

The resource OS::Heat::MultipartMime allows multiple OS::Heat::SoftwareConfig and
OS::Heat::CloudConfig resources to be combined into a single cloud-init multi-part message:

parameters
file_content
type
description

other_config

type
description

resources
boot_config
type
properties
cloud_config
write_files
path
content: {get_param

boot_script
type
properties
group
config

server_init
type
properties
parts
config: {get_resource
config: {get_resource
config: {get_param

server
type
properties
flavor, image etc
user_data_format
user_data: {get_resource

3.3. Working with Templates 233

https://cloudinit.readthedocs.io/

Heat Documentation, Release 24.1.0.dev11

Software deployment resources

There are many situations where it is not desirable to replace the server whenever there is a configuration
change. The OS::Heat::SoftwareDeployment resource allows any number of software configurations to
be added or removed from a server throughout its life-cycle.

Building custom image for software deployments

OS::Heat::SoftwareConfig resources are used to store software configuration, and a
OS::Heat::SoftwareDeployment resource is used to associate a config resource with one server.
The group attribute on OS::Heat::SoftwareConfig specifies what tool will consume the config content.

OS::Heat::SoftwareConfig has the ability to define a schema of inputs and which the configuration
script supports. Inputs are mapped to whatever concept the configuration tool has for assigning vari-
ables/parameters.

Likewise, outputs are mapped to the tools capability to export structured data after configuration exe-
cution. For tools which do not support this, outputs can always be written to a known file path for the
hook to read.

The OS::Heat::SoftwareDeployment resource allows values to be assigned to the config inputs, and the
resource remains in an IN_PROGRESS state until the server signals to heat what (if any) output values
were generated by the config script.

Custom image script

Each of the following examples requires that the servers be booted with a custom image. The following
script uses diskimage-builder to create an image required in later examples:

git clone https://opendev.org/openstack/tripleo-image-elements
git clone https://opendev.org/openstack/heat-agents

sudo pip install git+https://opendev.org/openstack/diskimage-builder

tripleo-image-elements/elements:heat-agents/

(continues on next page)

234 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

fedora-software-config

disk-image-create vm
-0 .qcow2

openstack image create --disk-format qcow2 --container-format bare
< .qcow2

Note

Above script uses diskimage-builder, make sure the environment already fulfill all requirements in
requirements.txt of diskimage-builder.

Configuring with scripts

The Custom image script already includes the heat-config-script element so the built image will
already have the ability to configure using shell scripts.

Config inputs are mapped to shell environment variables. The script can communicate outputs to heat by
writing to the $heat_outputs_path.output name file. See the following example for a script which
expects inputs foo, bar and generates an output result.

(continues on next page)

3.3. Working with Templates 235

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Note

A config resource can be associated with multiple deployment resources, and each deployment can
specify the same or different values for the server and input_values properties.

As can be seen in the outputs section of the above template, the result config output value is available
as an attribute on the deployment resource. Likewise the captured stdout, stderr and status_code are
also available as attributes.

Configuring with os-apply-config

The agent toolchain of os-collect-config, os-refresh-config and os-apply-config can actu-
ally be used on their own to inject heat stack configuration data into a server running a custom image.

The custom image needs to have the following to use this approach:

236 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

* All software dependencies installed

 os-refresh-config scripts to be executed on configuration changes

* os-apply-config templates to transform the heat-provided config data into service configuration

files

The projects tripleo-image-elements and tripleo-heat-templates demonstrate this approach.

Configuring with cfn-init

Likely the only reason to use the cfn-init hook is to migrate templates which contain
AWS::CloudFormation::Init metadata without needing a complete rewrite of the config metadata. It
is included here as it introduces a number of new concepts.

To use the cfn-init tool the heat-config-cfn-init element is required to be on the built image, so
Custom image script needs to be modified with the following:

[export

Configuration data which used to be included in the AWS: : CloudFormation: : Init section of resource
metadata is instead moved to the config property of the config resource, as in the following example:

resources

config
type
properties
group
inputs
name
config
config
files
/tmp/foo
content
get_input
mode

deployment
type
properties
name
signal_transport
config
get_resource
server
get_resource
input_values
bar

other_deployment
type

(continues on next page)

3.3. Working with Templates

237

https://opendev.org/openstack/os-refresh-config
https://opendev.org/openstack/os-apply-config
https://opendev.org/openstack/tripleo-image-elements
https://opendev.org/openstack/tripleo-heat-templates
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

There are a number of things to note about this template example:

* OS::Heat::StructuredConfig is like OS::Heat::SoftwareConfig except that the config property

contains structured YAML instead of text script. This is useful for a number of other configuration
tools including ansible, salt and os-apply-config.

cfn-init has no concept of inputs, so {get_input: bar} acts as a placeholder which gets
replaced with the OS::Heat::StructuredDeployment input_values value when the deployment
resource is created.

cfn-init hasno concept of outputs, so specifying signal_transport: NO_SIGNAL will mean
that the deployment resource will immediately go into the CREATED state instead of waiting for a
completed signal from the server.

The template has 2 deployment resources deploying the same config with different input_values.
The order these are deployed in on the server is determined by sorting the values of the name
property for each resource (10_deployment, 20_other_deployment)

Configuring with puppet

The puppet hook makes it possible to write configuration as puppet manifests which are deployed and
run in a masterless environment.

To specify configuration as puppet manifests the heat-config-puppet element is required to be on the
built image, so Custom image script needs to be modified with the following:

(continues on next page)

238

Chapter 3. Using Heat

https://puppet.com/

Heat Documentation, Release 24.1.0.dev11

inputs
name
name

outputs
name

config
get_file

deployment
type
properties
config
get_resource
server
get_resource
input_values
foo
bar

server
type
properties
image: {get_param
flavor: {get_param

key_name: {get_param

user_data_format

outputs
result
value
get_attr
stdout
value
get_attr

(continued from previous page)

This demonstrates the use of the get_file function, which will attach the contents of the file

example-puppet-manifest.pp, containing:

file 'barfile'
file
'0644"'

'/tmp/$: :bar’

'$::foo'

file 'output_result'
file

'$::heat_outputs_path.result'

'0644"

'The file /tmp/$::bar contains $::foo'

(continues on next page)

3.3. Working with Templates

239

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Environments

The environment affects the runtime behavior of a template. It provides a way to override the resource
implementations and a mechanism to place parameters that the service needs.

To fully understand the runtime behavior you have to consider what plug-ins are installed on the cloud
youre using.

Environment file format

The environment is a yaml text file that contains two main sections:

parameters
A list of key/value pairs.

resource_registry
Definition of custom resources.

It also can contain some other sections:

parameter_defaults
Default parameters passed to all template resources.

encrypted_parameters
List of encrypted parameters.

event_sinks
List of endpoints that would receive stack events.

parameter_merge_strategies
Merge strategies for merging parameters and parameter defaults from the environment file.

Use the -¢ option of the openstack stack create command to create a stack using the environment
defined in such a file.

You can also provide environment parameters as a list of key/value pairs using the parameter option of
the openstack stack create command.

In the following example the environment is read from the my_env.yaml file and an extra parameter is
provided using the parameter option:

$ openstack stack create my_stack -e my_env.yaml --parameter "paraml=vall;
—param2=val2" -t my_tmpl.yaml

Environment Merging

Parameters and their defaults (parameter_defaults) are merged based on merge strategies in an envi-
ronment file.

There are three merge strategy types:

overwrite
Overwrites a parameter, existing parameter values are replaced.

240 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

merge
Merges the existing parameter value and the new value. String values are concatenated, comma
delimited lists are extended and json values are updated.

deep_merge
Json values are deep merged. Not useful for other types like comma delimited lists and strings. If
specified for them, it falls back to merge.

You can provide a default merge strategy and/or parameter specific merge strategies per environ-
ment file. Parameter specific merge strategy is only used for that parameter. An example of
parameter_merge_strategies section in an environment file:

If no merge strategy is provided in an environment file, overwrite becomes the default merge strategy
for all parameters and parameter_defaults in that environment file.

Global and effective environments

The environment used for a stack is the combination of the environment you use with the template for the
stack, and a global environment that is determined by your cloud operator. An entry in the user environ-
ment takes precedence over the global environment. OpenStack includes a default global environment,
but your cloud operator can add additional environment entries.

The cloud operator can add to the global environment by putting environment files in a configurable di-
rectory wherever the Orchestration engine runs. The configuration variable is named environment_dir
and is found in the [DEFAULT] section of /etc/heat/heat.conf. The default for that directory is /
etc/heat/environment.d. Its contents are combined in whatever order the shell delivers them when
the service starts up, which is the time when these files are read. If the my_env.yaml file from the
example above had been put in the environment_dir then the users command line could be this:

Global templates

A global template directory allows files to be pre-loaded in the global environment. A global template
is determined by your cloud operator. An entry in the user template takes precedence over the global
environment. OpenStack includes a default global template, but your cloud operator can add additional
template entries.

The cloud operator can add new global templates by putting template files in a configurable directory
wherever the Orchestration engine runs. The configuration variable is named template_dir and is
found in the [DEFAULT] section of /etc/heat/heat.conf. The default for that directory is /etc/
heat/templates. Its contents are combined in whatever order the shell delivers them when the service
starts up, which is the time when these files are read. If the my_tmpl.yaml file from the example be-
low has been put in the template_dir, other templates which we used to create stacks could contain
following way to include my_tmpl.yaml in it:

3.3. Working with Templates 241

Heat Documentation, Release 24.1.0.dev11

Usage examples
Define values for template arguments

You can define values for the template arguments in the parameters section of an environment file:

Define defaults to parameters

You can define default values for all template arguments in the parameter_defaults section of an
environment file. These defaults are passed into all template resources:

Mapping resources

You can map one resource to another in the resource_registry section of an environment file. The
resource you provide in this manner must have an identifier, and must reference either another resources
ID or the URL of an existing template file.

The following example maps a new OS::Networking::FloatingIP resource to an existing
0S::Neutron: :FloatingIP resource:

You can use wildcards to map multiple resources, for example to map all 0S: :Neutron resources to
0S: :Network:

Override a resource with a custom resource

To create or override a resource with a custom resource, create a template file to define this resource, and
provide the URL to the template file in the environment file:

The supported URL schemes are file, http and https.

Note

The template file extension must be . yaml or . template, or it will not be treated as a custom template
resource.

242 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

You can limit the usage of a custom resource to a specific resource of the template:

Pause stack creation, update or deletion on a given resource

If you want to debug your stack as its being created, updated or deleted, or if you want to run it in phases,
you can set pre-create, pre-update, pre-delete, post-create, post-update and post-delete
hooks in the resources section of resource_registry.

To set a hook, add either hooks: $hook_name (for example hooks: pre-update) to the resources
dictionary. You can also use a list (hooks: [pre-create, pre-update]) to stop on several actions.

You can combine hooks with other resources properties such as provider templates or type mapping:

When heat encounters a resource that has a hook, it pauses the resource action until the hook clears. Any
resources that depend on the paused action wait as well. Non-dependent resources are created in parallel
unless they have their own hooks.

It is possible to perform a wild card match using an asterisk (*) in the resource name. For example,
the following entry pauses while creating app_server and database_server, but not server or
app_network:

Clear hooks by signaling the resource with {unset_hook: $hook name} (for example
{unset_hook: pre-update}).

Retrieving events

By default events are stored in the database and can be retrieved via the API. Using the environment, you
can register an endpoint which will receive events produced by your stack, so that you dont have to poll
Heat.

You can specify endpoints using the event_sinks property:

3.3. Working with Templates 243

Heat Documentation, Release 24.1.0.dev11

Restrict update or replace of a given resource

If you want to restrict update or replace of a resource when your stack is being updated, you can set
restricted_actions in the resources section of resource_registry.

To restrict update or replace, add restricted_actions: wupdate or restricted_actions:
replace to the resource dictionary. You can also use [update, replace] to restrict both actions.

You can combine restricted actions with other resources properties such as provider templates or type
mapping or hooks:

J

It is possible to perform a wild card match using an asterisk (*) in the resource name. For exam-
ple, the following entry restricts replace for app_server and database_server, but not server or
app_network:

Template composition

When writing complex templates you are encouraged to break up your template into separate smaller
templates. These can then be brought together using template resources. This is a mechanism to define
a resource using a template, thus composing one logical stack with multiple templates.

Template resources provide a feature similar to the AWS:: CloudFormation: : Stack resource, but also pro-
vide a way to:

* Define new resource types and build your own resource library.
* Override the default behavior of existing resource types.
To achieve this:

* The Orchestration client gets the associated template files and passes them along in the files
section of the POST stacks/ API request.

244 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

* The environment in the Orchestration engine manages the mapping of resource type to template
creation.

* The Orchestration engine translates template parameters into resource properties.

The following examples illustrate how you can use a custom template to define new types of resources.
These examples use a custom template stored in a my_nova.yaml file

Use the template filename as type

The following template defines the my_nova.yaml file as value for the type property of a resource

The key_name argument of the my_nova.yaml template gets its value from the key_name property of
the new template.

Note

The above reference to my_nova.yaml assumes it is in the same directory. You can use any of the
following forms:

* Relative path (my_nova.yaml)

* Absolute path (file:///home/user/templates/my_nova.yaml)
e Http URL (http://example.com/templates/my_nova.yaml)

e Https URL (https://example.com/templates/my_nova.yaml)

To create the stack run:

3.3. Working with Templates 245

Heat Documentation, Release 24.1.0.dev11

[$ openstack stack create -t main.yaml stackl }

Define a new resource type

You can associate a name to the my_nova.yaml template in an environment file. If the name is already
known by the Orchestration module then your new resource will override the default one.

In the following example a new 0S: :Nova: : Server resource overrides the default resource of the same
name.

An env.yaml environment file holds the definition of the new resource

Note

See Environments for more detail about environment files.

You can now use the new 0S: :Nova: : Server in your new template

To create the stack run:

$ openstack stack create -t main.yaml -e env.yaml example-two

Get access to nested attributes

There are implicit attributes of a template resource. Accessing nested attributes requires
heat_template_version 2014-10-16 or higher. These are accessible as follows

246 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Making your template resource more transparent

Note
Available since 2015.1 (Kilo).

If you wish to be able to return the ID of one of the inner resources instead of the nested stacks identifier,
you can add the special reserved output OS: : stack_id to your template resource

Now when you use get_resource from the outer template heat will use the nova server id and not the
template resource identifier.

OpenStack Resource Types

0S::Aodh::CompositeAlarm

Available since 8.0.0 (Ocata)

A resource that implements Aodh composite alarm.
Allows to specify multiple rules when creating a composite alarm, and the rules combined with logical

operators: and, or.

Required Properties

composite_rule
Composite threshold rules in JSON format.
Map value expected.
Can be updated without replacement.
Map properties:
operatort
Required.
The operator indicates how to combine the rules.
String value expected.
Can be updated without replacement.

Allowed values: or, and

3.3. Working with Templates 247

Heat Documentation, Release 24.1.0.dev11

rulesi

Rules list. Basic threshold/gnocchi rules and nested dict which combine threshold/gnocchi rules
by and or or are allowed. For example, the form is like: [RULE1, RULE2, {and: [RULE3,
RULEA4]}], the basic threshold/gnocchi rules must include a type field.

List value expected.
Can be updated without replacement.

The length must be at least 2.

Optional Properties

alarm_actions#/
A list of URLSs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata)

A list of Zaqgar queues to post to when state transitions to alarm.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
description#/
Description for the alarm.
String value expected.
Can be updated without replacement.
enabled
True if alarm evaluation/actioning is enabled.
Boolean value expected.
Can be updated without replacement.
Defaults to "true"

insufficient_data_actions#

248 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.

insufficient_data_queues#/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
ok_actions#/
A list of URLSs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuest/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
repeat_actionst

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

3.3. Working with Templates 249

Heat Documentation, Release 24.1.0.dev11

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
descriptions/
Optional.
Description for the time constraint.
String value expected.
Updates cause replacement.
duration#
Required.
Duration for the time constraint.
Integer value expected.
Updates cause replacement.

The value must be at least 0.

250 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

namez/
Required.
Name for the time constraint.
String value expected.
Updates cause replacement.
startd
Required.
Start time for the time constraint. A CRON expression property.
String value expected.
Updates cause replacement.
Value must be of type cron_expression
timezone?/
Optional.
Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).
String value expected.
Updates cause replacement.

Value must be of type timezone

Attributes

show#l
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 251

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

0OS::Aodh::EventAlarm

Available since 8.0.0 (Ocata)

A resource that implements event alarms.

Allows users to define alarms which can be evaluated based on events passed from other OpenStack ser-
vices. The events can be emitted when the resources from other OpenStack services have been updated,
created or deleted, such as compute.instance.reboot.end, scheduler.select_destinations.end.

Optional Properties

alarm_actions#/
A list of URLs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues?/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
descriptions/
Description for the alarm.
String value expected.
Can be updated without replacement.

enabledd

252 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

True if alarm evaluation/actioning is enabled.
Boolean value expected.

Can be updated without replacement.
Defaults to "true"

event_typetf

Event type to evaluate against. If not specified will match all events.

String value expected.
Can be updated without replacement.
Defaults to "*"

insufficient_data_actions#

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.

insufficient_data_queues#/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
ok_actionsi/
A list of URLs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuest/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.

List value expected.

3.3. Working with Templates

253

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

query#

A list for filtering events. Query conditions used to filter specific events when evaluating the alarm.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

field#

Optional.

Name of attribute to compare.

String value expected.

Can be updated without replacement.
opl

Optional.

Comparison operator.

String value expected.

Can be updated without replacement.

Allowed values: le, ge, eq, It, gt, ne
typetd

Optional.

The type of the attribute.

String value expected.

Can be updated without replacement.

Defaults to "string"

Allowed values: integer, float, string, boolean, datetime

valuer/

254

Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

Optional.

String value with which to compare.

String value expected.

Can be updated without replacement.
repeat_actions#/

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi#

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
description#
Optional.
Description for the time constraint.

String value expected.

3.3. Working with Templates 255

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.
duration#

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.
namez/

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.
startd

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression
timezone#/

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

Attributes

showii
Detailed information about resource.

HOT Syntax

(continues on next page)

256 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

alarm_actions
alarm_queues

description

enabled

event_type
insufficient_data_actions
insufficient_data_queues
ok_actions

ok_queues
query
.
repeat_actions
severity
time_constraints 2
o o
o
-

0S::Aodh::GnocchiAggregationByMetricsAlarm

(Available since 2015.1 (Kilo))

A resource that implements alarm with specified metrics.

A resource that implements alarm which allows to use specified by user metrics in metrics list.

Required Properties

metrics#
A list of metric ids.
List value expected.
Can be updated without replacement.
threshold#
Threshold to evaluate against.
Number value expected.

Can be updated without replacement.

Optional Properties

aggregation_method#
The aggregation method to compare to the threshold.
String value expected.
Can be updated without replacement.

alarm_actions#/

3.3. Working with Templates 257

Heat Documentation, Release 24.1.0.dev11

A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata)

A list of Zaqgar queues to post to when state transitions to alarm.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
comparison_operator#
Operator used to compare specified statistic with threshold.
String value expected.
Can be updated without replacement.
Allowed values: le, ge, eq, It, gt, ne
descriptions/
Description for the alarm.
String value expected.
Can be updated without replacement.
enabled#
True if alarm evaluation/actioning is enabled.
Boolean value expected.
Can be updated without replacement.
Defaults to "true"
evaluation_periods#
Number of periods to evaluate over.
Integer value expected.
Can be updated without replacement.

granularitys

258

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

The time range in seconds.
Integer value expected.
Can be updated without replacement.
insufficient_data_actionsi/
A list of URLs (webhooks) to invoke when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.

insufficient_data_queuest#/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
ok_actions#
A list of URLs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuest/

Available since 8.0.0 (Ocata)

A list of Zaqgar queues to post to when state transitions to ok.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.

Can be updated without replacement.

3.3. Working with Templates

259

Heat Documentation, Release 24.1.0.dev11

Value must be of type zaqar.queue
repeat_actions#/

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#/

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi#

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
description#/
Optional.
Description for the time constraint.
String value expected.
Updates cause replacement.
duration#

Required.

260 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

showii
Detai

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.
namer/

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.
starti

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression
timezone#/

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.
Updates cause replacement.

Value must be of type timezone

led information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

261

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

description

enabled
evaluation_periods
granularity
insufficient_data_actions
insufficient_data_queues
metrics

ok_actions

ok_queues

repeat_actions

severity

threshold
time_constraints -

0S::Aodh::GnocchiAggregationByResourcesAlarm

(Available since 2015.1 (Kilo))

A resource that implements alarm as an aggregation of resources alarms.

A resource that implements alarm which uses aggregation of resources alarms with some condition. If
state of a system is satisfied alarm condition, alarm is activated.

Required Properties

metrice

Metric name watched by the alarm.

String value expected.

Can be updated without replacement.
query#

The query to filter the metrics.

String value expected.

Can be updated without replacement.
resource_typetf

Resource type.

String value expected.

Can be updated without replacement.
threshold#

Threshold to evaluate against.

262 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Number value expected.

Can be updated without replacement.

Optional Properties

aggregation_method#
The aggregation method to compare to the threshold.
String value expected.
Can be updated without replacement.
alarm_actionsi/
A list of URLSs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
comparison_operatorz
Operator used to compare specified statistic with threshold.
String value expected.
Can be updated without replacement.
Allowed values: le, ge, eq, It, gt, ne
description#
Description for the alarm.
String value expected.
Can be updated without replacement.
enabled#

True if alarm evaluation/actioning is enabled.

3.3. Working with Templates

263

Heat Documentation, Release 24.1.0.dev11

Boolean value expected.

Can be updated without replacement.

Defaults to "true"
evaluation_periods#

Number of periods to evaluate over.

Integer value expected.

Can be updated without replacement.
granularity#

The time range in seconds.

Integer value expected.

Can be updated without replacement.
insufficient_data_actions#

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

insufficient_data_queuess#

Available since 8.0.0 (Ocata)

A list of Zaqgar queues to post to when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
ok_actions#
A list of URLSs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuesi

264 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
repeat_actions#

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi¥

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []

List contents:

Map value expected.

3.3. Working with Templates 265

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.

Map properties:

Attributes

showii
Detai

description#

Optional.

Description for the time constraint.

String value expected.

Updates cause replacement.
duration#

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.
namez/

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.
startd

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression
timezone#/

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.
Updates cause replacement.

Value must be of type timezone

led information about resource.

266

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

heat_template_version

resources

type

properties
aggregation_method
alarm_actions
alarm_queues
comparison_operator
description
enabled
evaluation_periods
granularity

insufficient_data_actions
insufficient_data_queues

metric
ok_actions
ok_queues
query
repeat_actions
resource_type

severity
threshold
time_constraints
. "duration"
o "description"
o

"name" "start
"timezone"
"duration"

"description":.

llnamell
"timezone"

"start":.

0S::Aodh::GnocchiResourcesAlarm

[Available since 2015.1 (Kilo)

A resource allowing for the watch of some specified resource.

An alarm that evaluates threshold based on some metric for the specified resource.

Required Properties

metrici

Metric name watched by the alarm.

String value expected.

Can be updated without replacement.

resource_id#

Id of a resource.

3.3. Working with Templates

267

Heat Documentation, Release 24.1.0.dev11

String value expected.

Can be updated without replacement.
resource_typer

Resource type.

String value expected.

Can be updated without replacement.
threshold#

Threshold to evaluate against.

Number value expected.

Can be updated without replacement.

Optional Properties

aggregation_method#
The aggregation method to compare to the threshold.
String value expected.
Can be updated without replacement.
alarm_actions#/
A list of URLSs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata)

A list of Zaqgar queues to post to when state transitions to alarm.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
comparison_operator#
Operator used to compare specified statistic with threshold.

String value expected.

268 Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.

Allowed values: le, ge, eq, It, gt, ne
description/

Description for the alarm.

String value expected.

Can be updated without replacement.

enabledd/

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"
evaluation_periods#

Number of periods to evaluate over.

Integer value expected.

Can be updated without replacement.
granularity#

The time range in seconds.

Integer value expected.

Can be updated without replacement.

insufficient_data_actions#

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.

insufficient_data_queuest#/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.

Can be updated without replacement.

3.3. Working with Templates

269

Heat Documentation, Release 24.1.0.dev11

Value must be of type zaqar.queue
ok_actions#
A list of URLSs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuesi

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
repeat_actions#/

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#/

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi#

270 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
descriptions
Optional.
Description for the time constraint.
String value expected.
Updates cause replacement.
duration#
Required.
Duration for the time constraint.
Integer value expected.
Updates cause replacement.
The value must be at least 0.
namez/
Required.
Name for the time constraint.
String value expected.
Updates cause replacement.
startd
Required.
Start time for the time constraint. A CRON expression property.
String value expected.
Updates cause replacement.
Value must be of type cron_expression

timezone#

3.3. Working with Templates 271

Heat Documentation, Release 24.1.0.dev11

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).
String value expected.

Updates cause replacement.

Value must be of type timezone

Attributes

showii
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
aggregation_method
alarm_actions
alarm_queues
comparison_operator
description
enabled
evaluation_periods
granularity
insufficient_data_actions
insufficient_data_queues
metric
ok_actions
ok_queues
repeat_actions
resource_id
resource_type

severity

threshold

time_constraints "name" "start" "description":.
o "duration" "timezone" "name" "start":.
o "description" "duration" "timezone"
o

0S::Aodh::LBMemberHealthAlarm

(Available since 13.0.0 (Train)]

A resource that implements a Loadbalancer Member Health Alarm.

272 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Allows setting alarms based on the health of load balancer pool members, where the health of a member
is determined by the member reporting an operating_status of ERROR beyond an initial grace period
after creation (120 seconds by default).

Required Properties

autoscaling_group_id#

ID of the Heat autoscaling group that contains the loadbalancer members. Unhealthy members will be
marked as such before an update is triggered on the root stack.

String value expected.
Can be updated without replacement.
pool#
Name or ID of the loadbalancer pool for which the health of each member will be evaluated.
String value expected.
Can be updated without replacement.
stackd/

Name or ID of the root / top level Heat stack containing the loadbalancer pool and members. An update
will be triggered on the root Stack if an unhealthy member is detected in the loadbalancer pool.

String value expected.

Updates cause replacement.

Optional Properties

alarm_actions#/
A list of URLSs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.

Can be updated without replacement.

3.3. Working with Templates 273

Heat Documentation, Release 24.1.0.dev11

Value must be of type zaqar.queue

descriptions/

Description for the alarm.

String value expected.

Can be updated without replacement.
enabled#

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

insufficient_data_actions#

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.

insufficient_data_queuest/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue

ok_actions#/

A list of URLs (webhooks) to invoke when state transitions to ok.

List value expected.
Can be updated without replacement.

ok_queuest/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.

274

Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
repeat_actions#/

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severityzf

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi#

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.

Map properties:

3.3. Working with Templates 275

Heat Documentation, Release 24.1.0.dev11

descriptions
Optional.
Description for the time constraint.
String value expected.
Updates cause replacement.
duration#
Required.
Duration for the time constraint.
Integer value expected.
Updates cause replacement.
The value must be at least 0.
namer/
Required.
Name for the time constraint.
String value expected.
Updates cause replacement.
startd
Required.
Start time for the time constraint. A CRON expression property.
String value expected.
Updates cause replacement.
Value must be of type cron_expression
timezone#/
Optional.
Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).
String value expected.
Updates cause replacement.

Value must be of type timezone

Attributes

show#
Detailed information about resource.

276 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

heat_template_version

resources

type

properties
alarm_actions
alarm_queues
autoscaling_group_id
description
enabled
insufficient_data_actions
insufficient_data_queues
ok_actions
ok_queues
pool
repeat_actions
severity
stack
time_constraints a

0S::Aodh::PrometheusAlarm

(Available since 22.0.0)

A resource that implements Aodh alarm of type prometheus.

An alarm that evaluates threshold based on metric data fetched from Prometheus.

Required Properties

querysd
The PromQL query string to fetch metrics data from Prometheus.
String value expected.
Can be updated without replacement.
threshold#
Threshold to evaluate against.
Number value expected.

Can be updated without replacement.

3.3. Working with Templates 277

Heat Documentation, Release 24.1.0.dev11

Optional Properties

alarm_actions#/
A list of URLSs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
comparison_operator#
Operator used to compare specified statistic with threshold.
String value expected.
Can be updated without replacement.
Allowed values: le, ge, eq, It, gt, ne
descriptions/
Description for the alarm.
String value expected.
Can be updated without replacement.
enabledd
True if alarm evaluation/actioning is enabled.
Boolean value expected.
Can be updated without replacement.
Defaults to "true"
insufficient_data_actions#
A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

278 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.

insufficient_data_queuest/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
ok_actions#
A list of URLs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuest/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
repeat_actions#

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.

Can be updated without replacement.

3.3. Working with Templates 279

Heat Documentation, Release 24.1.0.dev11

Defaults to "true"

severity#

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi¥

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
description#
Optional.
Description for the time constraint.
String value expected.
Updates cause replacement.
duration#
Required.
Duration for the time constraint.
Integer value expected.
Updates cause replacement.
The value must be at least 0.
name/

Required.

280 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Name for the time constraint.

String value expected.

Updates cause replacement.
starti

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression
timezone#/

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.
Updates cause replacement.

Value must be of type timezone

Attributes

showii
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
alarm_actions
alarm_queues
comparison_operator
description
enabled
insufficient_data_actions
insufficient_data_queues
ok_actions
ok_queues
query
repeat_actions
severity
threshold

(continues on next page)

3.3. Working with Templates

281

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

[}

OS::Barbican::CertificateContainer

Available since 6.0.0 (Mitaka)

A resource for creating barbican certificate container.

A certificate container is used for storing the secrets that are relevant to certificates.

Optional Properties

certificate_ref/

Reference to certificate.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret
intermediates_refi/

Reference to intermediates.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

nameii

Human-readable name for the container.

String value expected.

Updates cause replacement.
private_key_passphrase_ref#

Reference to private key passphrase.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret
private_key_refi/

Reference to private key.

String value expected.

Updates cause replacement.

282

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Value must be of type barbican.secret

Attributes

consumers#
The URIs to container consumers.

container_refi/
The URI to the container.

secret_refsif
The URIs to secrets stored in container.

show#
Detailed information about resource.

statusi/
The status of the container.

HOT Syntax

OS::Barbican::GenericContainer

Available since 6.0.0 (Mitaka)

A resource for creating Barbican generic container.

A generic container is used for any type of secret that a user may wish to aggregate. There are no
restrictions on the amount of secrets that can be held within this container.

Optional Properties

name#/
Human-readable name for the container.
String value expected.
Updates cause replacement.

secretsii

3.3. Working with Templates 283

Heat Documentation, Release 24.1.0.dev11

References to secrets that will be stored in container.

List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
namez/
Required.
Name of the secret.
String value expected.
Updates cause replacement.
refii
Required.
Reference to the secret.
String value expected.
Updates cause replacement.

Value must be of type barbican.secret

Attributes

consumersi
The URIs to container consumers.

container_refi/
The URI to the container.

secret_refsii
The URIs to secrets stored in container.

show#l
Detailed information about resource.

statusi
The status of the container.

HOT Syntax

(continues on next page)

284

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Barbican::Order

Available since 2014.2 (Juno)

A resource allowing for the generation secret material by Barbican.

The resource allows to generate some secret material. It can be, for example, some key or certificate. The
order encapsulates the workflow and history for the creation of a secret. The time to generate a secret
can vary depending on the type of secret.

Required Properties

typett

Available since 5.0.0 (Liberty)

The type of the order.
String value expected.
Updates cause replacement.

Allowed values: key, asymmetric, certificate

Optional Properties

algorithm#
The algorithm type used to generate the secret. Required for key and asymmetric types of order.
String value expected.
Updates cause replacement.
bit_length#/
The bit-length of the secret. Required for key and asymmetric types of order.
Integer value expected.
Updates cause replacement.

ca_idd

Available since 5.0.0 (Liberty)

The identifier of the CA to use.

String value expected.

3.3. Working with Templates 285

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.
expiration#/
The expiration date for the secret in ISO-8601 format.
String value expected.
Updates cause replacement.
Value must be of type expiration
moder/
The type/mode of the algorithm associated with the secret information.
String value expected.
Updates cause replacement.
name/
Human readable name for the secret.
String value expected.
Updates cause replacement.

pass_phraser/

Available since 5.0.0 (Liberty)

The passphrase of the created key. Can be set only for asymmetric type of order.
String value expected.
Updates cause replacement.
payload_content_type#/
The type/format the secret data is provided in.
String value expected.
Updates cause replacement.

profile/

Available since 5.0.0 (Liberty)

The profile of certificate to use.
String value expected.
Updates cause replacement.

request_dataz#

Available since 5.0.0 (Liberty)

The content of the CSR. Only for certificate orders.

286 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.
Updates cause replacement.

request_typesf

Awailable since 5.0.0 (Liberty)

The type of the certificate request.

String value expected.

Updates cause replacement.

Allowed values: stored-key, simple-cmc, custom

source_container_refi/

Available since 5.0.0 (Liberty)

The source of certificate request.

String value expected.

Updates cause replacement.

Value must be of type barbican.container

subject_dn#

Available since 5.0.0 (Liberty)

The subject of the certificate request.
String value expected.

Updates cause replacement.
Attributes
certificater/
Available since 5.0.0 (Liberty)

The payload of the created certificate, if available.

container_refii

Available since 5.0.0 (Liberty)

The URI to the created container.

intermediates#/

3.3. Working with Templates 287

Heat Documentation, Release 24.1.0.dev11

[Available since 5.0.0 (Liberty)

The payload of the created intermediates, if available.

order_refi{
The URI to the order.

private_key#/

(Auvailable since 5.0.0 (Liberty)

The payload of the created private key, if available.

public_key#

[Available since 5.0.0 (Liberty)

The payload of the created public key, if available.

secret_refii
The URI to the created secret.

show#
Detailed information about resource.

statusi
The status of the order.

HOT Syntax

heat_template_version

resources

type

properties
algorithm
bit_length
ca_id
expiration
mode
name
pass_phrase
payload_content_type
profile
request_data
request_type
source_container_ref
subject_dn
type

288

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

OS::Barbican::RSAContainer

Available since 6.0.0 (Mitaka)

A resource for creating barbican RSA container.

An RSA container is used for storing RSA public keys, private keys, and private key pass phrases.

Optional Properties

name/

Human-readable name for the container.

String value expected.

Updates cause replacement.
private_key_passphrase_ref#

Reference to private key passphrase.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret
private_key_ref#/

Reference to private key.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret
public_key_refi/

Reference to public key.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

Attributes

consumersii
The URIs to container consumers.

container_refi/
The URI to the container.

secret_refsii
The URIs to secrets stored in container.

show#
Detailed information about resource.

3.3. Working with Templates 289

Heat Documentation, Release 24.1.0.dev11

statusi
The status of the container.

HOT Syntax

OS::Barbican::Secret

Available since 2014.2 (Juno)

The resource provides access to the secret/keying stored material.

A secret is a singular item that stored within Barbican. A secret is anything you want it to be; however,
the formal use case is a key that you wish to store away from prying eyes. Secret may include private

keys, passwords and so on.

Optional Properties

algorithm#
The algorithm type used to generate the secret.
String value expected.
Updates cause replacement.
bit_length#/
The bit-length of the secret.
Integer value expected.
Updates cause replacement.
The value must be at least 0.

expiration/

The expiration date for the secret in ISO-8601 format.

String value expected.
Updates cause replacement.

Value must be of type expiration

290

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

mode#/
The type/mode of the algorithm associated with the secret information.
String value expected.
Updates cause replacement.
name#/
Human readable name for the secret.
String value expected.
Updates cause replacement.
payloadd
The unencrypted plain text of the secret.
String value expected.
Updates cause replacement.
payload_content_encoding#/
The encoding format used to provide the payload data.
String value expected.
Updates cause replacement.
Allowed values: base64
payload_content_type#/
The type/format the secret data is provided in.
String value expected.
Updates cause replacement.
Allowed values: text/plain, application/octet-stream

secret_typetl

Available since 5.0.0 (Liberty)

The type of the secret.
String value expected.
Updates cause replacement.
Defaults to "opaque"

Allowed values: symmetric, public, private, certificate, passphrase, opaque

Attributes

decrypted_payloadd
The decrypted secret payload.

3.3. Working with Templates 291

Heat Documentation, Release 24.1.0.dev11

show#
Detailed information about resource.

statusi
The status of the secret.

HOT Syntax

0OS::Blazar::Host

Available since 12.0.0 (Stein)

A resource to manage Blazar hosts.
Host resource manages the physical hosts for the lease/reservation within OpenStack.

#TODO(asmita): Based on an agreement with Blazar team, this resource class does not support updating
host resource as currently Blazar does not support to delete existing extra_capability keys while updating
host. Also, in near future, when Blazar team will come up with a new alternative API to resolve this
issue, we will need to modify this class.

Required Properties

name#/
The name of the host.
String value expected.

Updates cause replacement.

292 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Optional Properties

extra_capability#
The extra capability of the host.
Map value expected.

Updates cause replacement.

Attributes

cpu_inforf
Information of the CPU of the host.

created_ati/
The date and time when the host was created. The date and time format must be CCYY-MM-DD
hh:mm.

extra_capabilityd
The extra capability of the host.

hypervisor_hostnamer
The hypervisor name of the host.

hypervisor_type#/
The hypervisor type the host.

hypervisor_version#/
The hypervisor version of the host.

local_gb#
Gigabytes of the disk of the host.

memory_mb#
Megabytes of the memory of the host.

reservablei/
The flag which represents whether the host is reservable or not.

service_namer/
The compute service name of the host.

showi#
Detailed information about resource.

statusi/
The status of the host.

trust_idd
The UUID of the trust of the host operator.

updated_at#
The date and time when the host was updated. The date and time format must be CCY Y-MM-DD
hh:mm.

vepusi
The number of the VCPUs of the host.

3.3. Working with Templates 293

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

OS::Blazar::Lease

Available since 12.0.0 (Stein)

A resource to manage Blazar leases.
Lease resource manages the reservations of specific type/amount of cloud resources within OpenStack.

Note: Based on an agreement with Blazar team, this resource class does not support updating, because
current Blazar lease scheme is not suitable for Heat, if you want to update a lease, you need to specify
reservations id, which is one of attribute of lease.

Required Properties

end_dater/
The end date and time of the lease The date and time format must be CCYY-MM-DD hh:mm.
String value expected.
Updates cause replacement.
Value must match pattern: \d{4}-\d{2}-\d{2}\s\d{2}:\d{2}
name#/
The name of the lease.
String value expected.
Updates cause replacement.
reservationsi/
The list of reservations.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.

Map properties:

294 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

affinityd

Optional.

The affinity of instances to reserve.

Boolean value expected.

Updates cause replacement.

Defaults to false
amount#

Optional.

The amount of instances to reserve.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 2147483647.
before_endd

Optional.

The before-end-action of the reservation.

String value expected.

Updates cause replacement.

Defaults to "default"

Allowed values: default, snapshot
disk_gb#

Optional.

Gigabytes of the local disk per the instance.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 2147483647.
hypervisor_properties#

Optional.

Properties of the hypervisor to reserve.

String value expected.

Updates cause replacement.
max

Optional.

The maximum number of hosts to reserve.

Integer value expected.

3.3. Working with Templates 295

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.
The value must be at least 1.
memory_mbi
Optional.
Megabytes of memory per the instance.
Integer value expected.
Updates cause replacement.
The value must be in the range 0 to 2147483647.
mingd
Optional.
The minimum number of hosts to reserve.
Integer value expected.
Updates cause replacement.
The value must be at least 1.
resource_propertiess#/
Optional.
Properties of the resource to reserve.
String value expected.
Updates cause replacement.
resource_typet
Required.
The type of the resource to reserve.
String value expected.
Updates cause replacement.
Allowed values: virtual:instance, physical:host
vepusy
Optional.
The number of VCPUs per the instance.
Integer value expected.
Updates cause replacement.
The value must be in the range 0 to 2147483647.
start_datei/
The start date and time of the lease. The date and time format must be CCYY-MM-DD hh:mm.

String value expected.

296 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.

Value must match pattern: \d{4}-\d{2}-\d{2}\s\d{2}:\d{2}

Optional Properties

before_end_dater/

The date and time for the before-end-action of the lease. The date and time format must be CCY Y-MM-
DD hh:mm.

String value expected.
Updates cause replacement.
Value must match pattern: \d{4}-\d{2}-\d{2}\s\d{2}:\d{2}
eventst/
A list of event objects.
List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
event_type#
Required.
The type of the event (e.g. notification).
String value expected.
Updates cause replacement.
timer/
Required.
The date and time of the event. The date and time format must be CCY Y-MM-DD hh:mm.
String value expected.

Updates cause replacement.

Attributes

created_ati/
The date and time when the lease was created. The date and time format is CCYY-MM-DD hh:mm.

degraded#
The flag which represents condition of reserved resources of the lease. If it is true, the amount of
reserved resources is less than the request or reserved resources were changed.

3.3. Working with Templates 297

Heat Documentation, Release 24.1.0.dev11

end_dater/
The end date and time of the lease. The date and time format is CCYY-MM-DD hh:mm.

eventsii
Event information of the lease.

nameii
The name of the lease.

project_id#
The UUID the project which owns the lease.

reservationsi/
A list of reservation objects.

show#l
Detailed information about resource.

start_datei/
The start date and time of the lease. The date and time format is CCY Y-MM-DD hh:mm.

statusi
The status of the lease.

trust_idd
The UUID of the trust of the lease owner.

updated_atd
The date and time when the lease was updated. The date and time format is CCYY-MM-DD
hh:mm.

user_id#
The UUID of the lease owner.

HOT Syntax

N
L

(continues on next page)

298 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Cinder::EncryptedVolumeType

Available since 5.0.0 (Liberty)

A resource for encrypting a cinder volume type.

A Volume Encryption Type is a collection of settings used to conduct encryption for a specific volume
type.
Note that default cinder security policy usage of this resource is limited to being used by administrators

only.

Required Properties

provider#
The class that provides encryption support. For example, nova.volume.encryptors.luks.LuksEncryptor.
String value expected.
Can be updated without replacement.
volume_typer
Name or id of volume type (OS::Cinder::VolumeType).
String value expected.
Updates cause replacement.

Value must be of type cinder.vtype

Optional Properties

cipher#
The encryption algorithm or mode. For example, aes-xts-plain64.
String value expected.
Can be updated without replacement.
Allowed values: aes-xts-plain64, aes-cbc-essiv
control_location#
Notional service where encryption is performed For example, front-end. For Nova.
String value expected.
Can be updated without replacement.
Defaults to "front-end"

Allowed values: front-end, back-end

3.3. Working with Templates 299

Heat Documentation, Release 24.1.0.dev11

key_sizel/
Size of encryption key, in bits. For example, 128 or 256.
Integer value expected.

Can be updated without replacement.

Attributes

show#l
Detailed information about resource.

HOT Syntax

OS::Cinder::QoSAssociation

Available since 8.0.0 (Ocata)

A resource to associate cinder QoS specs with volume types.

Usage of this resource restricted to admins only by default policy.

Required Properties

qos_specsti
ID or Name of the QoS specs.
String value expected.
Updates cause replacement.
Value must be of type cinder.qos_specs
volume_types#
List of volume type IDs or Names to be attached to QoS specs.
List value expected.

Can be updated without replacement.

300 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

List contents:
Optional.
A volume type to attach specs.
String value expected.
Can be updated without replacement.

Value must be of type cinder.vtype

Attributes

show#
Detailed information about resource.

HOT Syntax

OS::Cinder::QoSSpecs

Available since 7.0.0 (Newton)

A resource for creating cinder QoS specs.

Users can ask for a specific volume type. Part of that volume type is a string that defines the QoS of
the volume IO (fast, normal, or slow). Backends that can handle all of the demands of the volume type
become candidates for scheduling. Usage of this resource restricted to admins only by default policy.

Required Properties

specsif
The specs key and value pairs of the QoS.
Map value expected.

Can be updated without replacement.

Optional Properties

nameii

Name of the QoS.

3.3. Working with Templates 301

Heat Documentation, Release 24.1.0.dev11

String value expected.

Updates cause replacement.

Attributes

show#
Detailed information about resource.

HOT Syntax

OS::Cinder::Quota

Available since 7.0.0 (Newton)

A resource for creating cinder quotas.

Cinder Quota is used to manage operational limits for projects. Currently, this resource can manage
Cinders gigabytes, snapshots, and volumes quotas.

Note that default cinder security policy usage of this resource is limited to being used by administrators
only. Administrators should be careful to create only one Cinder Quota resource per project, otherwise
it will be hard for them to manage the quota properly.

Required Properties

projecti
OpenStack Keystone Project.
String value expected.
Updates cause replacement.
Value must be of type keystone.project

Optional Properties

backup_gigabytesi#

Available since 16.0.0 (Wallaby)

Quota for the amount of backups disk space (in Gigabytes). Setting the value to -1 removes the limit.

302 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Integer value expected.
Can be updated without replacement.
The value must be at least -1.

backups#

Available since 16.0.0 (Wallaby)

Quota for the number of backups. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
gigabytes#/
Quota for the amount of disk space (in Gigabytes). Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
snapshots#/
Quota for the number of snapshots. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
volumes#/
Quota for the number of volumes. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.

The value must be at least -1.

Attributes

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 303

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Cinder::Volume

A resource that implements Cinder volumes.

Cinder volume is a storage in the form of block devices. It can be used, for example, for providing storage
to instance. Volume supports creation from snapshot, backup or image. Also volume can be created only

by size.

Optional Properties

availability_zone#/
The availability zone in which the volume will be created.
String value expected.
Updates cause replacement.
backup_id#
If specified, the backup to create the volume from.
String value expected.
Can be updated without replacement.
Value must be of type cinder.backup
descriptions/
A description of the volume.
String value expected.
Can be updated without replacement.

imager/

If specified, the name or ID of the image to create the volume from.

String value expected.

Updates cause replacement.

Value must be of type glance.image
metadatar/

Key/value pairs to associate with the volume.

Map value expected.

304

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Defaults to {}

name/
A name used to distinguish the volume.
String value expected.
Can be updated without replacement.

read_only#/

Available since 5.0.0 (Liberty)

Enables or disables read-only access mode of volume.
Boolean value expected.
Can be updated without replacement.

scheduler_hintsi

Available since 2015.1 (Kilo)

Arbitrary key-value pairs specified by the client to help the Cinder scheduler creating a volume.
Map value expected.
Updates cause replacement.

sizet/

The size of the volume in GB. On update only increase in size is supported. This property is required
unless property backup_id or source_volid or snapshot_id is specified.

Integer value expected.

Can be updated without replacement.

The value must be at least 1.
snapshot_id#

If specified, the snapshot to create the volume from.

String value expected.

Updates cause replacement.

Value must be of type cinder.snapshot
source_volid#

If specified, the volume to use as source.

String value expected.

Updates cause replacement.

Value must be of type cinder.volume

3.3. Working with Templates 305

Heat Documentation, Release 24.1.0.dev11

volume_typed
If specified, the type of volume to use, mapping to a specific backend.
String value expected.
Can be updated without replacement.

Value must be of type cinder.vtype

Attributes

attachmentsi¥

DEPRECATED since 9.0.0 (Pike) - Use property attachments_list.

Available since 2015.1 (Kilo)

A string representation of the list of attachments of the volume.

attachments_list/

Available since 9.0.0 (Pike)

The list of attachments of the volume.

availability_zone#/
The availability zone in which the volume is located.

bootable#
Boolean indicating if the volume can be booted or not.

created_at#/
The timestamp indicating volume creation.

display_description#
Description of the volume.

display_name#/
Name of the volume.

encrypted#
Boolean indicating if the volume is encrypted or not.

metadatar/
Key/value pairs associated with the volume.

metadata_values#/
Key/value pairs associated with the volume in raw dict form.

multiattachi/

Available since 6.0.0 (Mitaka)

Boolean indicating whether allow the volume to be attached more than once.

306 Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

show#
Detailed information about resource.

sizeil
The size of the volume in GB.

snapshot_id#
The snapshot the volume was created from, if any.

source_volid#
The volume used as source, if any.

statuss
The current status of the volume.

volume_typer

The type of the volume mapping to a backend, if any.

HOT Syntax

0OS::Cinder::VolumeAttachment

Resource for associating volume to instance.

Resource for associating existing volume to instance. Also, the location where the volume is exposed on

the instance can be specified.

Required Properties

instance_uuid#
The ID of the server to which the volume attaches.

String value expected.

3.3. Working with Templates

307

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
volume_id#

The ID of the volume to be attached.

String value expected.

Can be updated without replacement.

Value must be of type cinder.volume

Optional Properties

mountpoint#

The location where the volume is exposed on the instance. This assignment may not be honored and it
is advised that the path /dev/disk/by-id/virtio-<Volumeld> be used instead.

String value expected.

Can be updated without replacement.

Attributes

showii
Detailed information about resource.

HOT Syntax

0S::Cinder::VolumeType

Available since 2015.1 (Kilo)

A resource for creating cinder volume types.

Volume type resource allows to define, whether volume, which will be use this type, will public and
which projects are allowed to work with it. Also, there can be some user-defined metadata.

Note that default cinder security policy usage of this resource is limited to being used by administrators
only.

308 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Required Properties

namet/
Name of the volume type.
String value expected.

Can be updated without replacement.

Optional Properties

description#

Available since 5.0.0 (Liberty)

Description of the volume type.
String value expected.
Can be updated without replacement.

is_public#

Available since 5.0.0 (Liberty)

Whether the volume type is accessible to the public.
Boolean value expected.
Can be updated without replacement.
Defaults to true
metadatar/
The extra specs key and value pairs of the volume type.
Map value expected.
Can be updated without replacement.

projectsii

Available since 5.0.0 (Liberty)

Projects to add volume type access to. NOTE: This property is only supported since Cinder API V2.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.

String value expected.

3.3. Working with Templates

309

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.

Value must be of type keystone.project

Attributes

showii
Detailed information about resource.

HOT Syntax

OS::Designate::RecordSet

Available since 8.0.0 (Ocata)

Heat Template Resource for Designate RecordSet.

Designate provides DNS-as-a-Service services for OpenStack. RecordSet helps to add more than one
records.

Required Properties

recordsi

A list of data for this RecordSet. Each item will be a separate record in Designate These items should
conform to the DNS spec for the record type - e.g. A records must be IPv4 addresses, CNAME
records must be a hostname. DNS record data varies based on the type of record. For more details,
please refer rfc 1035.

List value expected.

Can be updated without replacement.
typed

DNS RecordSet type.

String value expected.

Updates cause replacement.

310 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Allowed values: A, AAAA, CNAME, MX, SRV, TXT, SPF, NS, PTR, SSHFP, SOA, CAA, CERT,

NAPTR
zonelf
DNS Zone id or name.
String value expected.
Updates cause replacement.

Value must be of type designate.zone

Optional Properties

description#/

Description of RecordSet.

String value expected.

Can be updated without replacement.

The length must be no greater than 160.
name/

RecordSet name.

String value expected.

Updates cause replacement.

The length must be no greater than 255.
ttld

Time To Live (Seconds).

Integer value expected.

Can be updated without replacement.

The value must be in the range 1 to 2147483647.

Attributes

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

311

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Designate::Zone

Available since 8.0.0 (Ocata)

Heat Template Resource for Designate Zone.

Designate provides DNS-as-a-Service services for OpenStack. So, zone, part of domain is a realm with
an identification string, unique in DNS.

Required Properties

name#/
DNS Name for the zone.
String value expected.
Updates cause replacement.

The length must be no greater than 255.

Optional Properties

attributesi/

Available since 24.0.0
Key:Value pairs of information about this zone, and the pool the user would like to place the zone in.
This information can be used by the scheduler to place zones on the correct pool.
Map value expected.
Updates cause replacement.
descriptions
Description of zone.
String value expected.
Can be updated without replacement.
The length must be no greater than 160.
emaild

E-mail for the zone. Used in SOA records for the zone. It is required for PRIMARY Type, otherwise
ignored.

String value expected.

312 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
primaries#/

The primary servers to transfer DNS zone information from. Mandatory for zone type SECONDARY,
otherwise ignored.

List value expected.

Can be updated without replacement.
ttld

Time To Live (Seconds) for the zone.

Integer value expected.

Can be updated without replacement.

The value must be in the range 1 to 2147483647.
typett

Type of zone. PRIMARY is controlled by Designate, SECONDARY zones are transferred from another
DNS Server.

String value expected.

Updates cause replacement.

Defaults to "PRIMARY"

Allowed values: PRIMARY, SECONDARY

mastersi/

DEPRECATED since 15.0.0 (Victoria) - Use “primaries‘ instead.
The primary servers to transfer DNS zone information from. Mandatory for zone type SECONDARY,
otherwise ignored.
List value expected.

Can be updated without replacement.

Attributes

seriald
DNS zone serial number.

showii
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 313

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

0S::Glance::Weblmage

Available since 12.0.0 (Stein)

A resource managing images in Glance using web-download import.

This provides image support for recent Glance installation.

Required Properties

container_format#

Container format of image.

String value expected.

Updates cause replacement.

Allowed values: ami, ari, aki, bare, ovf, ova, docker
disk_formats#

Disk format of image.

String value expected.

Updates cause replacement.

Allowed values: ami, ari, aki, vhd, vhdx, vimdk, raw, qcow2, vdi, iso, ploop

location#

URL where the data for this image already resides. For example, if the image data is stored in swift,

you could specify swift://example.com/container/ob;j.
String value expected.
Updates cause replacement.
Optional Properties

activerd

314

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 16.0.0 (Wallaby)

Activate or deactivate the image. Requires Admin Access.
Boolean value expected.
Can be updated without replacement.
Defaults to true
architectures/
Operating system architecture.
String value expected.
Can be updated without replacement.

extra_propertiesi#/

Available since 17.0.0 (Xena)

Arbitrary properties to associate with the image.
Map value expected.
Can be updated without replacement.
Defaults to {}
id#
The image ID. Glance will generate a UUID if not specified.
String value expected.
Updates cause replacement.
kernel _idd#
ID of image stored in Glance that should be used as the kernel when booting an AMI-style image.
String value expected.
Can be updated without replacement.

Value must match pattern: A([0-9a-fA-F]){8}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-
([0-9a-fA-F]){12}$

membersi

Available since 16.0.0 (Wallaby)

List of additional members that are permitted to read the image. This may be a Keystone Project IDs or
User IDs, depending on the Glance configuration in use.

List value expected.
Can be updated without replacement.

List contents:

3.3. Working with Templates 315

Heat Documentation, Release 24.1.0.dev11

Optional.

A member ID. This may be a Keystone Project ID or User ID, depending on the Glance configu-
ration in use.

String value expected.
Can be updated without replacement.
min_disk#

Amount of disk space (in GB) required to boot image. Default value is O if not specified and means no
limit on the disk size.

Integer value expected.

Updates cause replacement.

Defaults to 0

The value must be at least O.
min_rami#d

Amount of ram (in MB) required to boot image. Default value is 0 if not specified and means no limit
on the ram size.

Integer value expected.
Updates cause replacement.
Defaults to ®
The value must be at least 0.
name/
Name for the image. The name of an image is not unique to a Image Service node.
String value expected.
Updates cause replacement.
os_distro#
The common name of the operating system distribution in lowercase.
String value expected.
Can be updated without replacement.
os_version#
Operating system version as specified by the distributor.
String value expected.
Can be updated without replacement.
owner#
Owner of the image.
String value expected.

Can be updated without replacement.

316 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

protecteds/

Whether the image can be deleted. If the value is True, the image is protected and cannot be deleted.

Boolean value expected.
Can be updated without replacement.
Defaults to false

ramdisk_idd

ID of image stored in Glance that should be used as the ramdisk when booting an AMI-style image.

String value expected.

Can be updated without replacement.

Value must match pattern: ~([0-9a-fA-F]){8}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-

([0-9a-fA-F]){12}$

tagsii

List of image tags.

List value expected.

Can be updated without replacement.
visibility#

Scope of image accessibility.

String value expected.

Can be updated without replacement.

Defaults to "private"

Allowed values: public, private, community, shared

Attributes

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

317

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Heat::AccessPolicy

Resource for defining which resources can be accessed by users.

NOTE: Now this resource is actually associated with an AWS user resource, not any OS:: resource though
it is registered under the OS namespace below.

Resource for defining resources that users are allowed to access by the DescribeStackResource API.
Required Properties

AllowedResources#
Resources that users are allowed to access by the DescribeStackResource API.
List value expected.

Updates cause replacement.

Attributes

show#l
Detailed information about resource.

HOT Syntax

318 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

OS::Heat::AutoScalingGroup

Available since 2014.1 (Icehouse)

An autoscaling group that can scale arbitrary resources.

An autoscaling group allows the creation of a desired count of similar resources, which are defined with
the resource property in HOT format. If there is a need to create many of the same resources (e.g. one
hundred sets of Server, WaitCondition and WaitConditionHandle or even Neutron Nets), AutoScaling-
Group is a convenient and easy way to do that.

Required Properties

max_sized
Maximum number of resources in the group.
Integer value expected.
Can be updated without replacement.
The value must be at least 0.
min_sized
Minimum number of resources in the group.
Integer value expected.
Can be updated without replacement.
The value must be at least O.
resourcet/

Resource definition for the resources in the group, in HOT format. The value of this property is the
definition of a resource just as if it had been declared in the template itself.

Map value expected.

Can be updated without replacement.

Optional Properties

cooldown#/
Cooldown period, in seconds.
Integer value expected.
Can be updated without replacement.
desired_capacity#
Desired initial number of resources.
Integer value expected.
Can be updated without replacement.

rolling_updatest/

3.3. Working with Templates 319

Heat Documentation, Release 24.1.0.dev11

Policy for rolling updates for this scaling group.
Map value expected.
Can be updated without replacement.

Defaults to {"min_in_service": 0, "max_batch_size": 1, "pause_time": 0}
Map properties:

max_batch_size#/
Optional.
The maximum number of resources to replace at once.
Integer value expected.
Can be updated without replacement.
Defaults to 1
The value must be at least 1.

min_in_servicer/
Optional.
The minimum number of resources in service while rolling updates are being executed.
Integer value expected.
Can be updated without replacement.
Defaults to ®
The value must be at least 0.

pause_timer/
Optional.
The number of seconds to wait between batches of updates.
Number value expected.
Can be updated without replacement.
Defaults to ®

The value must be at least O.
Attributes
current_sizei

Available since 2015.1 (Kilo)

The current size of AutoscalingResourceGroup.

outputss/

320 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 2014.2 (Juno)

A map of resource names to the specified attribute of each individual resource that is part of the
AutoScalingGroup. This map specifies output parameters that are available once the AutoScaling-
Group has been instantiated.

outputs_listd

Available since 2014.2 (Juno)

A list of the specified attribute of each individual resource that is part of the AutoScalingGroup.
This list of attributes is available as an output once the AutoScalingGroup has been instantiated.

refsi

Available since 7.0.0 (Newton)
A list of resource IDs for the resources in the group.
refs_map#f

Available since 7.0.0 (Newton)

A map of resource names to IDs for the resources in the group.

show#
Detailed information about resource.

HOT Syntax

0OS::Heat::CloudConfig

Available since 2014.1 (Icehouse)

3.3. Working with Templates 321

Heat Documentation, Release 24.1.0.dev11

A configuration resource for representing cloud-init cloud-config.

This resource allows cloud-config YAML to be defined and stored by the config API. Any intrinsic func-
tions called in the config will be resolved before storing the result.

This resource will generally be referenced by OS::Nova::Server user_data, or OS::Heat::MultipartMime
parts config. Since cloud-config is boot-only configuration, any changes to the definition will result in
the replacement of all servers which reference it.

Optional Properties

cloud_config#
Map representing the cloud-config data structure which will be formatted as YAML.
Map value expected.

Updates cause replacement.

Attributes

configd
The config value of the software config.

showii
Detailed information about resource.

HOT Syntax

OS::Heat::Delay

Available since 11.0.0 (Rocky)

A resource that pauses for a configurable delay.

By manipulating the dependency relationships between resources in the template, a delay can be inserted
at an arbitrary point during e.g. stack creation or deletion. They delay will occur after any resource
that it depends on during CREATE or SUSPEND, and before any resource that it depends on during
DELETE or RESUME. Similarly, it will occur before any resource that depends on it during CREATE
or SUSPEND, and after any resource thet depends on it during DELETE or RESUME.

If a non-zero maximum jitter is specified, a random amount of jitter - chosen with uniform probability
in the range from O to the product of the maximum jitter value and the jitter multiplier (1s by default) -
is added to the minimum delay time. This can be used, for example, in the scaled unit of a large scaling
group to prevent thundering herd issues.

322 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Optional Properties

actions#/
Actions during which the delay will occur.
List value expected.
Can be updated without replacement.
Defaults to [""CREATE"]
Allowed values: CREATE, DELETE, SUSPEND, RESUME
jitter_multiplier#
Number of seconds to multiply the maximum jitter value by.
Number value expected.
Can be updated without replacement.
Defaultsto 1.0
The value must be at least O.
max_jitterd
Maximum jitter to add to the minimum wait time.
Number value expected.
Can be updated without replacement.
Defaults to 0
The value must be at least O.
min_waitd
Minimum time in seconds to wait during the specified actions.
Number value expected.
Can be updated without replacement.
Defaults to ®

The value must be at least O.

Attributes

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 323

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Heat::DeployedServer

A resource for managing servers that are already deployed.

A DeployedServer resource manages resources for servers that have been deployed externally from Open-
Stack. These servers can be associated with SoftwareDeployments for further orchestration via Heat.

Optional Properties

deployment_swift_data

Available since 9.0.0 (Pike)

Swift container and object to use for storing deployment data for the server resource. The parameter
is a map value with the keys container and object, and the values are the corresponding container
and object names. The software_config_transport parameter must be set to POLL_TEMP_URL
for swift to be used. If not specified, and software_config_transport is set to POLL_TEMP_URL,
a container will be automatically created from the resource name, and the object name will be a
generated uuid.

Map value expected.
Can be updated without replacement.
Defaults to {}
Map properties:
containerd
Optional.
Name of the container.
String value expected.
Can be updated without replacement.
The length must be at least 1.
objectri
Optional.
Name of the object.
String value expected.
Can be updated without replacement.

The length must be at least 1.

324 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

name#/

Server name.

String value expected.

Can be updated without replacement.
software_config_transporti

How the server should receive the metadata required for software configuration. POLL_SERVER_CFN
will allow calls to the cfn API action DescribeStackResource authenticated with the provided key-
pair. POLL_SERVER_HEAT will allow calls to the Heat API resource-show using the provided
keystone credentials. POLL_TEMP_URL will create and populate a Swift TempURL with meta-
data for polling. ZAQAR_MESSAGE will create a dedicated zagar queue and post the metadata
for polling.

String value expected.
Can be updated without replacement.
Defaults to "POLL_SERVER_CFN"

Allowed values: POLL_SERVER_CFN, POLL_SERVER_HEAT, POLL_TEMP_URL, ZA-
QAR_MESSAGE

metadataif

DEPRECATED since 9.0.0 (Pike) - This property will be ignored

Available since 8.0.0 (Ocata)

Arbitrary key/value metadata to store for this server. Both keys and values must be 255 characters or
less. Non-string values will be serialized to JSON (and the serialized string must be 255 characters
or less).

Map value expected.

Can be updated without replacement.

Attributes

nameri
Name of the server.

os_collect_configd

Available since 9.0.0 (Pike)
The os-collect-config configuration for the servers local agent to be configured to connect to Heat
to retrieve deployment data.

showii
Detailed information about resource.

3.3. Working with Templates 325

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

OS::Heat::InstanceGroup

An instance group that can scale arbitrary instances.

A resource allowing for the creating number of defined with AWS:: AutoScaling::LaunchConfiguration
instances. Allows to associate scaled resources with loadbalancer resources.

Required Properties

AvailabilityZones#

Not Implemented.

List value expected.

Updates cause replacement.
LaunchConfigurationName#/

The reference to a LaunchConfiguration resource.

String value expected.

Can be updated without replacement.
Sizedl

Desired number of instances.

Integer value expected.

Can be updated without replacement.

Optional Properties

LoadBalancerNamesi#/

List of LoadBalancer resources. Currently only the AWS::ElasticL.oadBalancing::L.oadBalancer re-
source type is supported.

List value expected.
Updates cause replacement.

Tagsii

326 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Tags to attach to this group.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
Key#
Required.
Tag key.
String value expected.
Updates cause replacement.
Valuei/
Required.
Tag value.
String value expected.

Updates cause replacement.

Attributes

InstanceList#
A comma-delimited list of server ip addresses. (Heat extension).

show#

Detailed information about resource.

update_policy

RollingUpdate#/
Map value expected.

Updates cause replacement.

Map properties:
MaxBatchSized
Optional.

Integer value expected.

Updates cause replacement.

Defaults to 1
MinInstancesInServiced

Optional.

3.3. Working with Templates 327

Heat Documentation, Release 24.1.0.dev11

Integer value expected.
Updates cause replacement.
Defaults to ®

PauseTime#
Optional.
String value expected.
Updates cause replacement.

Defaults to "PTOS"

HOT Syntax

0OS::Heat::MultipartMime

Available since 2014.1 (Icehouse)

Assembles a collection of software configurations as a multi-part mime.

Parts in the message can be populated with inline configuration or references to other config resources.
If the referenced resource is itself a valid multi-part mime message, that will be broken into parts and
those parts appended to this message.

The resulting multi-part mime message will be stored by the configs API and can be referenced in prop-
erties such as OS::Nova::Server user_data.

This resource is generally used to build a list of cloud-init configuration elements including scripts and
cloud-config. Since cloud-init is boot-only configuration, any changes to the definition will result in the
replacement of all servers which reference it.

Optional Properties

groupd

328 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 14.0.0 (Ussuri)

Namespace to group this multi-part configs by when delivered to a server. This may imply what con-
figuration tool is going to perform the configuration.

String value expected.
Updates cause replacement.
Defaults to "Heat : : Ungrouped"
parts#

Parts belonging to this message.
List value expected.
Updates cause replacement.
Defaults to []
List contents:

Map value expected.

Updates cause replacement.

Map properties:

configd
Required.

Content of part to attach, either inline or by referencing the ID of another software config
resource.

String value expected.
Updates cause replacement.
filename#/
Optional.
Optional filename to associate with part.
String value expected.
Updates cause replacement.
subtyper/
Optional.
Optional subtype to specify with the type.
String value expected.
Updates cause replacement.
typetd
Optional.

Whether the part content is text or multipart.

3.3. Working with Templates 329

Heat Documentation, Release 24.1.0.dev11

String value expected.
Updates cause replacement.
Defaults to "text"

Allowed values: text, multipart

Attributes

configi/
The config value of the software config.

show#
Detailed information about resource.

HOT Syntax

0OS::Heat::None

Available since 5.0.0 (Liberty)

Enables easily disabling certain resources via the resource_registry.

It does nothing, but can effectively stub out any other resource because it will accept any properties and
return any attribute (as None). Note this resource always does nothing on update (e.g it is not replaced
even if a change to the stubbed resource properties would cause replacement).

Attributes

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

330 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Heat::RandomString

Available since 2014.1 (Icehouse)

A resource which generates a random string.

This is useful for configuring passwords and secrets on services. Random string can be generated from
specified character sequences, which means that all characters will be randomly chosen from specified
sequences, or with some classes, e.g. letterdigits, which means that all character will be randomly chosen
from union of ascii letters and digits. Output string will be randomly generated string with specified
length (or with length of 32, if length property doesnt specified).

Optional Properties

character_classes#/
A list of character class and their constraints to generate the random string from.
List value expected.
Updates cause replacement.
Defaults to [{"class": "lettersdigits", "min": 1}]
List contents:
Map value expected.
Updates cause replacement.
Map properties:
classi
Optional.
A character class and its corresponding min constraint to generate the random string from.
String value expected.
Updates cause replacement.
Defaults to "lettersdigits"
Allowed values: lettersdigits, letters, lowercase, uppercase, digits, hexdigits, octdigits
min#
Optional.

The minimum number of characters from this character class that will be in the generated
string.

Integer value expected.

Updates cause replacement.

3.3. Working with Templates 331

Heat Documentation, Release 24.1.0.dev11

Defaults to 1

The value must be in the range 1 to 512.

character_sequencess/

A list of character sequences and their constraints to generate the random string from.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

length#/

min
Optional.
The minimum number of characters from this sequence that will be in the generated string.
Integer value expected.
Updates cause replacement.
Defaults to 1
The value must be in the range 1 to 512.
sequencer/
Required.

A character sequence and its corresponding min constraint to generate the random string
from.

String value expected.

Updates cause replacement.

Length of the string to generate.

Integer value expected.

Updates cause replacement.

Defaults to 32

The value must be in the range 1 to 512.

saltid

Value which can be set or changed on stack update to trigger the resource for replacement with a new
random string. The salt value itself is ignored by the random generator.

String value expected.

Updates cause replacement.

332

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l
Detailed information about resource.

valuei/
The random string generated by this resource. This value is also available by referencing the re-
source.

HOT Syntax

0OS::Heat::ResourceChain

Available since 6.0.0 (Mitaka)

Creates one or more resources with the same configuration.

The types of resources to be created are passed into the chain through the resources property.
One resource will be created for each type listed. Each is passed the configuration specified under
resource_properties.

The concurrent property controls if the resources will be created concurrently. If omitted or set to
false, each resource will be treated as having a dependency on the resource before it in the list.

Required Properties

resourcesiy

The list of resource types to create. This list may contain type names or aliases defined in the resource
registry. Specific template names are not supported.

List value expected.

Can be updated without replacement.

3.3. Working with Templates 333

Heat Documentation, Release 24.1.0.dev11

Optional Properties

concurrentsi

If true, the resources in the chain will be created concurrently. If false or omitted, each resource will be
treated as having a dependency on the previous resource in the list.

Boolean value expected.
Updates cause replacement.
Defaults to false
resource_propertiest/
Properties to pass to each resource being created in the chain.
Map value expected.

Updates cause replacement.

Attributes

attributes#/
A map of resource names to the specified attribute of each individual resource.

refsi
A list of resource IDs for the resources in the chain.

show#l
Detailed information about resource.

HOT Syntax

OS::Heat::ResourceGroup

Available since 2014.1 (Icehouse)

Creates one or more identically configured nested resources.

In addition to the refs attribute, this resource implements synthetic attributes that mirror those of the
resources in the group. When getting an attribute from this resource, however, a list of attribute values
for each resource in the group is returned. To get attribute values for a single resource in the group,
synthetic attributes of the form resource.{resource index}.{attribute name} can be used. The resource

334 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

ID of a particular resource in the group can be obtained via the synthetic attribute resource.{resource
index}. Note, that if you get attribute without {resource index}, e.g. [resource, {attribute_name}], youll
get a list of this attributes value for all resources in group.

While each resource in the group will be identically configured, this resource does allow for some index-
based customization of the properties of the resources in the group. For example:

would result in a group of three servers having the same image and flavor, but names of my_server_0,
my_server_I, and my_server_2. The variable used for substitution can be customized by using the in-
dex_var property.

Required Properties

resource_defi¥

Resource definition for the resources in the group. The value of this property is the definition of a
resource just as if it had been declared in the template itself.

Map value expected.
Can be updated without replacement.
Map properties:

metadataif

Available since 5.0.0 (Liberty)

Supplied metadata for the resources in the group.

Map value expected.

Can be updated without replacement.
properties#

Property values for the resources in the group.

Map value expected.

Can be updated without replacement.

typetd

3.3. Working with Templates 335

Heat Documentation, Release 24.1.0.dev11

Required.
The type of the resources in the group.
String value expected.

Can be updated without replacement.

Optional Properties

count#
The number of resources to create.
Integer value expected.
Can be updated without replacement.
Defaults to 1
The value must be at least 0.

index_var#

Available since 2014.2 (Juno)

A variable that this resource will use to replace with the current index of a given resource in the group.
Can be used, for example, to customize the name property of grouped servers in order to differen-
tiate them when listed with nova client.

String value expected.
Updates cause replacement.
Defaults to "%index%"

The length must be at least 3.

removal_policiesz

Available since 2015.1 (Kilo)

Policies for removal of resources on update.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Policy to be processed when doing an update which requires removal of specific resources.
Map value expected.
Can be updated without replacement.
Map properties:

resource_list/

336 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

List of resources to be removed when doing an update which requires removal of specific
resources. The resource may be specified several ways: (1) The resource name, as in
the nested stack, (2) The resource reference returned from get_resource in a template, as
available via the refs attribute. Note this is destructive on update when specified; even if
the count is not being reduced, and once a resource name is removed, its name is never
reused in subsequent updates.

List value expected.
Can be updated without replacement.
Defaults to []

removal_policies_mode#

Available since 10.0.0 (Queens)
How to handle changes to removal_policies on update. The default append mode appends to the internal
list, update replaces it on update.
String value expected.
Can be updated without replacement.
Defaults to "append"

Allowed values: append, update

Attributes

attributesi/

Available since 2014.2 (Juno)
A map of resource names to the specified attribute of each individual resource. Requires
heat_template_version: 2014-10-16.

refsi
A list of resource IDs for the resources in the group.

refs_map#

Available since 7.0.0 (Newton)

A map of resource names to IDs for the resources in the group.

removed_rsrc_listif

Available since 7.0.0 (Newton)

A list of removed resource names.

show#
Detailed information about resource.

3.3. Working with Templates 337

Heat Documentation, Release 24.1.0.dev11

update_policy

batch_creater/

Available since 5.0.0 (Liberty)

Map value expected.

Updates cause replacement.

Map properties:

max_batch_size#
Optional.
The maximum number of resources to create at once.
Integer value expected.
Updates cause replacement.
Defaults to 1
The value must be at least 1.
pause_timer#
Optional.
The number of seconds to wait between batches.
Number value expected.
Updates cause replacement.
Defaults to ®

The value must be at least 0.

rolling_updates/

Available since 5.0.0 (Liberty)

Map value expected.

Updates cause replacement.

Map properties:

max_batch_sizei#l

Optional.

The maximum number of resources to replace at once.

Integer value expected.
Updates cause replacement.
Defaults to 1

The value must be at least 1.

338

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

min_in_serviced
Optional.
The minimum number of resources in service while rolling updates are being executed.
Integer value expected.
Updates cause replacement.
Defaults to ®
The value must be at least 0.
pause_time#/
Optional.
The number of seconds to wait between batches of updates.
Number value expected.
Updates cause replacement.
Defaults to ®

The value must be at least O.

HOT Syntax

OS::Heat::ScalingPolicy

A resource to manage scaling of OS::Heat::AutoScalingGroup.

Note while it may incidentally support AWS::AutoScaling::AutoScalingGroup for now, please dont use
it for that purpose and use AWS::AutoScaling::ScalingPolicy instead.

Resource to manage scaling for OS::Heat::AutoScalingGroup, i.e. define which metric should be scaled
and scaling adjustment, set cooldown etc.

3.3. Working with Templates 339

Heat Documentation, Release 24.1.0.dev11

Required Properties

adjustment_type#/

Type of adjustment (absolute or percentage).

String value expected.

Can be updated without replacement.

Allowed values: change_in_capacity, exact_capacity, percent_change_in_capacity
auto_scaling_group_idd#

AutoScaling group ID to apply policy to.

String value expected.

Updates cause replacement.
scaling_adjustmenti/

Size of adjustment.

Number value expected.

Can be updated without replacement.

Optional Properties

cooldown#/
Cooldown period, in seconds.
Number value expected.
Can be updated without replacement.
min_adjustment_step#

Minimum number of resources that are added or removed when the AutoScaling group scales up or
down. This can be used only when specifying percent_change_in_capacity for the adjustment_type

property.
Integer value expected.

Can be updated without replacement.

The value must be at least O.

Attributes

alarm_url#
A signed url to handle the alarm.

show#l
Detailed information about resource.

signal_url#

340 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 5.0.0 (Liberty)
A url to handle the alarm using native APL.

HOT Syntax

OS::Heat::SoftwareComponent

Available since 2014.2 (Juno)

A resource for describing and storing a software component.

This resource is similar to OS::Heat::SoftwareConfig. In contrast to SoftwareConfig which allows for
storing only one configuration (e.g. one script), SoftwareComponent allows for storing multiple configu-
rations to address handling of all lifecycle hooks (CREATE, UPDATE, SUSPEND, RESUME, DELETE)
for a software component in one place.

This resource is backed by the persistence layer and the API of the SoftwareConfig resource, and only
adds handling for the additional configs property and attribute.

Required Properties

configsii
The list of configurations for the different lifecycle actions of the represented software component.
List value expected.
Updates cause replacement.
The length must be at least 1.
List contents:
Map value expected.
Updates cause replacement.
Map properties:

actionsi/

3.3. Working with Templates 341

Heat Documentation, Release 24.1.0.dev11

Lifecycle actions to which the configuration applies. The string values provided for this
property can include the standard resource actions CREATE, DELETE, UPDATE, SUS-
PEND and RESUME supported by Heat.

List value expected.
Updates cause replacement.
Defaults to ["CREATE", "UPDATE"]
The length must be at least 1.
List contents:
Optional.
String value expected.
Updates cause replacement.
configd
Optional.
Configuration script or manifest which specifies what actual configuration is performed.
String value expected.
Updates cause replacement.
tooldd
Required.

The configuration tool used to actually apply the configuration on a server. This string
property has to be understood by in-instance tools running inside deployed servers.

String value expected.

Updates cause replacement.

Optional Properties

inputsif
Schema representing the inputs that this software config is expecting.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
default#
Optional.
Default value for the input if none is specified.

Any value expected.

342 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.
descriptions/
Optional.
Description of the input.
String value expected.
Updates cause replacement.
name/
Required.
Name of the input.
String value expected.
Updates cause replacement.
replace_on_change#/
Optional.
Replace the deployment instead of updating it when the input value changes.
Boolean value expected.
Updates cause replacement.
Defaults to false
typeti
Optional.
Type of the value of the input.
String value expected.
Updates cause replacement.
Defaults to "String"
Allowed values: String, Number, CommaDelimitedList, Json, Boolean
options#
Map containing options specific to the configuration management tool used by this resource.
Map value expected.
Updates cause replacement.
outputsi
Schema representing the outputs that this software config will produce.
List value expected.
Updates cause replacement.
List contents:

Map value expected.

3.3. Working with Templates 343

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.
Map properties:

description#
Optional.
Description of the output.
String value expected.
Updates cause replacement.

error_outpute
Optional.
Denotes that the deployment is in an error state if this output has a value.
Boolean value expected.
Updates cause replacement.
Defaults to false

name/
Required.
Name of the output.
String value expected.
Updates cause replacement.

typeil
Optional.
Type of the value of the output.
String value expected.
Updates cause replacement.
Defaults to "String"

Allowed values: String, Number, CommaDelimitedList, Json, Boolean

Attributes

configd/
The config value of the software config.

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

344 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

0OS::Heat::SoftwareConfig

Available since 2014.1 (Icehouse)

A resource for describing and storing software configuration.

The software_configs API which backs this resource creates immutable configs, so any change to the
template resource definition will result in a new config being created, and the old one being deleted.

Configs can be defined in the same template which uses them, or they can be created in one stack, and
passed to another stack via a parameter.

A config resource can be referenced in other resource properties which are config-aware. This
includes the properties OS::Nova::Server user_data, OS::Heat::SoftwareDeployment config and
OS::Heat::MultipartMime parts config.

Along with the config script itself, this resource can define schemas for inputs and outputs which the
config script is expected to consume and produce. Inputs and outputs are optional and will map to
concepts which are specific to the configuration tool being used.

Optional Properties

configi
Configuration script or manifest which specifies what actual configuration is performed.
String value expected.
Updates cause replacement.

groupd

Namespace to group this software config by when delivered to a server. This may imply what configu-
ration tool is going to perform the configuration.

String value expected.

Updates cause replacement.

3.3. Working with Templates 345

Heat Documentation, Release 24.1.0.dev11

Defaults to "Heat : : Ungrouped"

inputsif

Schema representing the inputs that this software config is expecting.

List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
default#

Optional.

Default value for the input if none is specified.

Any value expected.

Updates cause replacement.
descriptions/

Optional.

Description of the input.

String value expected.

Updates cause replacement.
name/

Required.

Name of the input.

String value expected.

Updates cause replacement.
replace_on_changer/

Optional.

Replace the deployment instead of updating it when the input value changes.

Boolean value expected.
Updates cause replacement.
Defaults to false

typedi
Optional.
Type of the value of the input.

String value expected.

346

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.
Defaults to "String"
Allowed values: String, Number, CommaDelimitedList, Json, Boolean
options#
Map containing options specific to the configuration management tool used by this resource.
Map value expected.
Updates cause replacement.
outputss/
Schema representing the outputs that this software config will produce.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
description#/
Optional.
Description of the output.
String value expected.
Updates cause replacement.
error_outpute
Optional.
Denotes that the deployment is in an error state if this output has a value.
Boolean value expected.
Updates cause replacement.
Defaults to false
namez/
Required.
Name of the output.
String value expected.
Updates cause replacement.
typedd
Optional.

Type of the value of the output.

3.3. Working with Templates 347

Heat Documentation, Release 24.1.0.dev11

String value expected.
Updates cause replacement.
Defaults to "String"

Allowed values: String, Number, CommaDelimitedList, Json, Boolean

Attributes

configi/
The config value of the software config.

show#
Detailed information about resource.

HOT Syntax

0OS::Heat::SoftwareDeployment

Available since 2014.1 (Icehouse)

This resource associates a server with some configuration.
The configuration is to be deployed to that server.

A deployment allows input values to be specified which map to the inputs schema defined in the config
resource. These input values are interpreted by the configuration tool in a tool-specific manner.

Whenever this resource goes to an IN_PROGRESS state, it creates an ephemeral config that includes the
inputs values plus a number of extra inputs which have names prefixed with deploy_. The extra inputs
relate to the current state of the stack, along with the information and credentials required to signal back
the deployment results.

348 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Unless signal_transport=NO_SIGNAL, this resource will remain in an IN_PROGRESS state until the
server signals it with the output values for that deployment. Those output values are then available as re-
source attributes, along with the default attributes deploy_stdout, deploy_stderr and deploy_status_code.

Specifying actions other than the default CREATE and UPDATE will result in the deployment being
triggered in those actions. For example this would allow cleanup configuration to be performed during
actions SUSPEND and DELETE. A config could be designed to only work with some specific actions,
or a config can read the value of the deploy_action input to allow conditional logic to perform different
configuration for different actions.

Required Properties

serveri
ID of resource to apply configuration to. Normally this should be a Nova server ID.
String value expected.

Updates cause replacement.

Optional Properties

actions#/
Which lifecycle actions of the deployment resource will result in this deployment being triggered.
List value expected.
Can be updated without replacement.
Defaults to ["CREATE", "UPDATE"]
Allowed values: CREATE, UPDATE, DELETE, SUSPEND, RESUME
configd/
ID of software configuration resource to execute when applying to the server.
String value expected.
Can be updated without replacement.
input_valuesi#
Input values to apply to the software configuration on this server.
Map value expected.
Can be updated without replacement.
name#/

Name of the derived config associated with this deployment. This is used to apply a sort order to the
list of configurations currently deployed to a server.

String value expected.
Can be updated without replacement.

signal_transport#

3.3. Working with Templates 349

Heat Documentation, Release 24.1.0.dev11

How the server should signal to heat with the deployment output values. CFN_SIGNAL will allow an
HTTP POST to a CEN keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL
to be signaled via HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal
using the provided keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue
to be signaled using the provided keystone credentials. NO_SIGNAL will result in the resource
going to the COMPLETE state without waiting for any signal.

String value expected.
Updates cause replacement.
Defaults to "CFN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL

Attributes

deploy_status_code#
Returned status code from the configuration execution.

deploy_stderr#
Captured stderr from the configuration execution.

deploy_stdout
Captured stdout from the configuration execution.

show#l
Detailed information about resource.

HOT Syntax

OS::Heat::SoftwareDeploymentGroup

Available since 5.0.0 (Liberty)

This resource associates a group of servers with some configuration.

The configuration is to be deployed to all servers in the group.

350 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

The properties work in a similar way to OS::Heat::SoftwareDeployment, and in addition to the attributes
documented, you may pass any attribute supported by OS::Heat::SoftwareDeployment, including those
exposing arbitrary outputs, and return a map of deployment names to the specified attribute.

Required Properties

serversii

A map of names and server IDs to apply configuration to. The name is arbitrary and is used as the Heat
resource name for the corresponding deployment.

Map value expected.

Can be updated without replacement.

Optional Properties

actions#/
Which lifecycle actions of the deployment resource will result in this deployment being triggered.
List value expected.
Can be updated without replacement.
Defaults to ["CREATE", "UPDATE"]
Allowed values: CREATE, UPDATE, DELETE, SUSPEND, RESUME
configd
ID of software configuration resource to execute when applying to the server.
String value expected.
Can be updated without replacement.
input_valuesi/
Input values to apply to the software configuration on this server.
Map value expected.
Can be updated without replacement.
name/

Name of the derived config associated with this deployment. This is used to apply a sort order to the
list of configurations currently deployed to a server.

String value expected.
Can be updated without replacement.
signal_transport#

How the server should signal to heat with the deployment output values. CFN_SIGNAL will allow an
HTTP POST to a CEN keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL
to be signaled via HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal
using the provided keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue
to be signaled using the provided keystone credentials. NO_SIGNAL will result in the resource
going to the COMPLETE state without waiting for any signal.

3.3. Working with Templates 351

Heat Documentation, Release 24.1.0.dev11

String value expected.
Updates cause replacement.
Defaults to "CFN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL

Attributes

deploy_status_codes#
A map of Nova names and returned status code from the configuration execution.

deploy_stderrsi
A map of Nova names and captured stderrs from the configuration execution to each server.

deploy_stdoutsi
A map of Nova names and captured stdouts from the configuration execution to each server.

show#l

Detailed information about resource.

update_policy

batch_creater/

Available since 7.0.0 (Newton)

Map value expected.
Updates cause replacement.
Map properties:
max_batch_sizerdd
Optional.
The maximum number of resources to create at once.
Integer value expected.
Updates cause replacement.
Defaults to 1
The value must be at least 1.
pause_timer#/
Optional.
The number of seconds to wait between batches.
Number value expected.
Updates cause replacement.
Defaults to 0

The value must be at least 0.

352 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

rolling_updates/

Available since 7.0.0 (Newton)

Map value expected.
Updates cause replacement.
Map properties:
max_batch_sizei#
Optional.
The maximum number of deployments to replace at once.
Integer value expected.
Updates cause replacement.
Defaults to 1
The value must be at least 1.
pause_time#/
Optional.
The number of seconds to wait between batches of updates.
Number value expected.
Updates cause replacement.
Defaults to ®

The value must be at least O.

HOT Syntax

3.3. Working with Templates 353

Heat Documentation, Release 24.1.0.dev11

OS::Heat::Stack

A Resource representing a stack.

A resource that allowing for the creating stack, where should be defined stack template in HOT format,
parameters (if template has any parameters with no default value), and timeout of creating. After creating
current stack will have remote stack.

Required Properties

templater/
Template that specifies the stack to be created as a resource.
String value expected.

Can be updated without replacement.

Optional Properties

contexti/
Context for this stack.
Map value expected.
Can be updated without replacement.
Map properties:

ca_certii

Available since 12.0.0 (Stein)

Optional.

CA Cert for SSL.

String value expected.

Can be updated without replacement.

credential_secret_idi#

Available since 12.0.0 (Stein)

Optional.

A Barbican secret ID. The Barbican secret should contain an OpenStack credential that can be
used to access a remote cloud.

String value expected.
Can be updated without replacement.

insecure#

354 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 12.0.0 (Stein)

Optional.
If set, then the servers certificate will not be verified.
Boolean value expected.
Can be updated without replacement.
Defaults to false
region_name#
Optional.
Region name in which this stack will be created.
String value expected.
Can be updated without replacement.
parameterst/
Set of parameters passed to this stack.
Map value expected.
Can be updated without replacement.
Defaults to {}
timeout#
Number of minutes to wait for this stack creation.
Integer value expected.

Can be updated without replacement.

Attributes

outputss/
A dict of key-value pairs output from the stack.

show#
Detailed information about resource.

stack_namerd
Name of the stack.

HOT Syntax

(continues on next page)

3.3. Working with Templates

355

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Heat::StructuredConfig

Available since 2014.1 (Icehouse)

A resource which has same logic with OS::Heat::SoftwareConfig.

This resource is like OS::Heat::SoftwareConfig except that the config property is represented by a Map
rather than a String.

This is useful for configuration tools which use YAML or JSON as their configuration syntax. The
resulting configuration is transferred, stored and returned by the software_configs API as parsed JSON.

Optional Properties

configi/
Map representing the configuration data structure which will be serialized to JSON format.
Map value expected.
Updates cause replacement.

group#/

Namespace to group this software config by when delivered to a server. This may imply what configu-
ration tool is going to perform the configuration.

String value expected.
Updates cause replacement.
Defaults to "Heat: : Ungrouped"
inputsi/
Schema representing the inputs that this software config is expecting.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
defaults#

Optional.

356 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Default value for the input if none is specified.
Any value expected.
Updates cause replacement.
descriptions
Optional.
Description of the input.
String value expected.
Updates cause replacement.
namez/
Required.
Name of the input.
String value expected.
Updates cause replacement.
replace_on_changer/
Optional.
Replace the deployment instead of updating it when the input value changes.
Boolean value expected.
Updates cause replacement.
Defaults to false
typedd
Optional.
Type of the value of the input.
String value expected.
Updates cause replacement.
Defaults to "String"
Allowed values: String, Number, CommaDelimitedList, Json, Boolean
options#/
Map containing options specific to the configuration management tool used by this resource.
Map value expected.
Updates cause replacement.
outputsi
Schema representing the outputs that this software config will produce.
List value expected.

Updates cause replacement.

3.3. Working with Templates 357

Heat Documentation, Release 24.1.0.dev11

List contents:
Map value expected.
Updates cause replacement.
Map properties:
description
Optional.
Description of the output.
String value expected.
Updates cause replacement.
error_outpute
Optional.
Denotes that the deployment is in an error state if this output has a value.
Boolean value expected.
Updates cause replacement.
Defaults to false
namez/
Required.
Name of the output.
String value expected.
Updates cause replacement.
typeti
Optional.
Type of the value of the output.
String value expected.
Updates cause replacement.
Defaults to "String"

Allowed values: String, Number, CommaDelimitedList, Json, Boolean

Attributes

configi
The config value of the software config.

show#l
Detailed information about resource.

358 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

OS::Heat::StructuredDeployment

Available since 2014.1 (Icehouse)

A resource which has same logic with OS::Heat::SoftwareDeployment.

A deployment resource like OS::Heat::SoftwareDeployment, but which performs input value substitution
on the config defined by a OS::Heat::StructuredConfig resource.

Some configuration tools have no concept of inputs, so the input value substitution needs to occur in the
deployment resource. An example of this is the JSON metadata consumed by the cfn-init tool.

Where the config contains {get_input: input_name} this will be substituted with the value of input_name
in this resources input_values. If get_input needs to be passed through to the substituted configuration
then a different input_key property value can be specified.

Required Properties

serveri
ID of resource to apply configuration to. Normally this should be a Nova server ID.
String value expected.

Updates cause replacement.

Optional Properties

actions#/
Which lifecycle actions of the deployment resource will result in this deployment being triggered.

List value expected.

3.3. Working with Templates 359

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Defaults to ["CREATE", "UPDATE"]
Allowed values: CREATE, UPDATE, DELETE, SUSPEND, RESUME
configd
ID of software configuration resource to execute when applying to the server.
String value expected.
Can be updated without replacement.
input_key#
Name of key to use for substituting inputs during deployment.
String value expected.
Updates cause replacement.
Defaults to "get_input"
input_values#
Input values to apply to the software configuration on this server.
Map value expected.
Can be updated without replacement.
input_values_validater/

Perform a check on the input values passed to verify that each required input has a corresponding value.
When the property is set to STRICT and no value is passed, an exception is raised.

String value expected.

Updates cause replacement.

Defaults to "LAX"

Allowed values: LAX, STRICT
name/

Name of the derived config associated with this deployment. This is used to apply a sort order to the
list of configurations currently deployed to a server.

String value expected.
Can be updated without replacement.
signal_transport#

How the server should signal to heat with the deployment output values. CFN_SIGNAL will allow an
HTTP POST to a CFN keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL
to be signaled via HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal
using the provided keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue
to be signaled using the provided keystone credentials. NO_SIGNAL will result in the resource
going to the COMPLETE state without waiting for any signal.

String value expected.

Updates cause replacement.

360 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Defaults to "CFN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL

Attributes

deploy_status_code#
Returned status code from the configuration execution.

deploy_stderr#
Captured stderr from the configuration execution.

deploy_stdoutd
Captured stdout from the configuration execution.

show#
Detailed information about resource.

HOT Syntax

0OS::Heat::StructuredDeploymentGroup

Available since 5.0.0 (Liberty)

This resource associates a group of servers with some configuration.

This resource works similar as OS::Heat::SoftwareDeploymentGroup, but for structured resources.

Required Properties

serversii

A map of names and server IDs to apply configuration to. The name is arbitrary and is used as the Heat
resource name for the corresponding deployment.

Map value expected.

3.3. Working with Templates 361

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.

Optional Properties

actions#/
Which lifecycle actions of the deployment resource will result in this deployment being triggered.
List value expected.
Can be updated without replacement.
Defaults to ["CREATE", "UPDATE"]
Allowed values: CREATE, UPDATE, DELETE, SUSPEND, RESUME
configi/
ID of software configuration resource to execute when applying to the server.
String value expected.
Can be updated without replacement.
input_key#
Name of key to use for substituting inputs during deployment.
String value expected.
Updates cause replacement.
Defaults to "get_input"
input_values#
Input values to apply to the software configuration on this server.
Map value expected.
Can be updated without replacement.
input_values_validated

Perform a check on the input values passed to verify that each required input has a corresponding value.
When the property is set to STRICT and no value is passed, an exception is raised.

String value expected.

Updates cause replacement.

Defaults to "LAX"

Allowed values: LAX, STRICT
name/

Name of the derived config associated with this deployment. This is used to apply a sort order to the
list of configurations currently deployed to a server.

String value expected.
Can be updated without replacement.

signal_transport#

362 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

How the server should signal to heat with the deployment output values. CFN_SIGNAL will allow an
HTTP POST to a CEN keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL
to be signaled via HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal
using the provided keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue
to be signaled using the provided keystone credentials. NO_SIGNAL will result in the resource
going to the COMPLETE state without waiting for any signal.

String value expected.

Updates cause replacement.

Defaults to "CFN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL

Attributes

deploy_status_codes#
A map of Nova names and returned status code from the configuration execution.

deploy_stderrsi
A map of Nova names and captured stderrs from the configuration execution to each server.

deploy_stdoutsi#
A map of Nova names and captured stdouts from the configuration execution to each server.

show#l

Detailed information about resource.

update_policy

batch_creater/

Available since 7.0.0 (Newton)

Map value expected.
Updates cause replacement.
Map properties:
max_batch_sizerdd
Optional.
The maximum number of resources to create at once.
Integer value expected.
Updates cause replacement.
Defaults to 1
The value must be at least 1.
pause_timer#/

Optional.

3.3. Working with Templates 363

Heat Documentation, Release 24.1.0.dev11

The number of seconds to wait between batches.
Number value expected.

Updates cause replacement.

Defaults to 0

The value must be at least O.

rolling_updater/

Available since 7.0.0 (Newton)

Map value expected.

Updates cause replacement.

Map properties:

max_batch_size#/
Optional.
The maximum number of deployments to replace at once.
Integer value expected.
Updates cause replacement.
Defaults to 1
The value must be at least 1.
pause_time#

Optional.

The number of seconds to wait between batches of updates.

Number value expected.
Updates cause replacement.
Defaults to ®

The value must be at least 0.

HOT Syntax

(continues on next page)

364

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Heat::SwiftSignal

Available since 2014.2 (Juno)

Resource for handling signals received by SwiftSignalHandle.

This resource handles signals received by SwiftSignalHandle and is same as WaitCondition resource.

Required Properties

handle#
URL of TempURL where resource will signal completion and optionally upload data.
String value expected.
Updates cause replacement.

timeout#

The maximum number of seconds to wait for the resource to signal completion. Once the timeout is
reached, creation of the signal resource will fail.

Number value expected.
Updates cause replacement.

The value must be in the range 1 to 43200.

Optional Properties

counts
The number of success signals that must be received before the stack creation process continues.
Integer value expected.
Updates cause replacement.
Defaults to 1

The value must be in the range 1 to 1000.

Attributes

datai
JSON data that was uploaded via the SwiftSignalHandle.

show#
Detailed information about resource.

3.3. Working with Templates 365

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

0OS::Heat::SwiftSignalHandle

Available since 2014.2 (Juno)

Resource for managing signals from Swift resources.

This resource is same as WaitConditionHandle, but designed for using by Swift resources.

Attributes

curl_cli#
Convenience attribute, provides curl CLI command prefix, which can be used for signalling handle
completion or failure. You can signal success by adding data-binary {status: SUCCESS} , or signal
failure by adding data-binary {status: FAILURE}.

endpointi
Endpoint/url which can be used for signalling handle.

showii
Detailed information about resource.

token#/
Tokens are not needed for Swift TempURLs. This attribute is being kept for compatibility with the
OS::Heat::WaitConditionHandle resource.

HOT Syntax

366 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

OS::Heat::TestResource

Available since 5.0.0 (Liberty)

A resource which stores the string value that was provided.

This resource is to be used only for testing. It has control knobs such as update_replace, fail, wait_secs.

Optional Properties

action_wait_secs#/
Options for simulating waiting.
Map value expected.
Can be updated without replacement.
Map properties:
creater/
Optional.
Seconds to wait after a create. Defaults to the global wait_secs.
Number value expected.
Can be updated without replacement.
deletes/
Optional.
Seconds to wait after a delete. Defaults to the global wait_secs.
Number value expected.
Can be updated without replacement.
updater/
Optional.
Seconds to wait after an update. Defaults to the global wait_secs.
Number value expected.
Can be updated without replacement.

attr_wait_secsif

Available since 6.0.0 (Mitaka)

Number value for timeout during resolving output value.
Number value expected.
Can be updated without replacement.

Defaults to ®

3.3. Working with Templates 367

Heat Documentation, Release 24.1.0.dev11

client_name#
Client to poll.
String value expected.
Can be updated without replacement.
Defaults to ""

constraint_prop_secs#

Available since 6.0.0 (Mitaka)

Number value for delay during resolve constraint.
Number value expected.
Can be updated without replacement.
Defaults to 0
Value must be of type test_constr
entity_name#/
Client entity to poll.
String value expected.
Can be updated without replacement.
Defaults to ""
faild
Value which can be set to fail the resource operation to test failure scenarios.
Boolean value expected.
Can be updated without replacement.
Defaults to false
update_replaces/
Value which can be set to trigger update replace for the particular resource.
Boolean value expected.
Can be updated without replacement.
Defaults to false

update_replace_value#

Available since 7.0.0 (Newton)

Some value that can be stored but can not be updated.
String value expected.

Updates cause replacement.

368 Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

value#/
The input string to be stored.
String value expected.
Can be updated without replacement.
Defaults to "test_string"
wait_secsi/
Seconds to wait after an action (-1 is infinite).
Number value expected.
Can be updated without replacement.

Defaults to ®

Attributes

output#
The string that was stored. This value is also available by referencing the resource.

show#
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
action_wait_secs
attr_wait_secs
client_name
constraint_prop_secs
entity_name
fail
update_replace
update_replace_value
value
wait_secs

OS::Heat::UpdateWaitConditionHandle

[Available since 2014.1 (Icehouse))

WaitConditionHandle that clears signals and changes handle on update.

3.3. Working with Templates 369

Heat Documentation, Release 24.1.0.dev11

This works similarly to an AWS::CloudFormation::WaitConditionHandle, except that on update it clears
all signals received and changes the handle. Using this handle means that you must setup the signal
senders to send their signals again any time the update handle changes. This allows us to roll out new
configurations and be confident that they are rolled out once UPDATE COMPLETE is reached.

Attributes

show#
Detailed information about resource.

HOT Syntax

OS::Heat::Value

Available since 7.0.0 (Newton)

A resource which exposes its value property as an attribute.

This is useful for exposing a value that is a simple manipulation of other template parameters and/or other
resources.

Required Properties

valued/
The expression to generate the value attribute.
Any value expected.

Can be updated without replacement.

Optional Properties

typeif
The type of the value property.
String value expected.
Can be updated without replacement.

Allowed values: string, number, comma_delimited_list, json, boolean

370 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l
Detailed information about resource.

valuei/
The value generated by this resources properties value expression, with type determined from the
properties type.

HOT Syntax

0OS::Heat::WaitCondition

Available since 2014.2 (Juno)

Resource for handling signals received by WaitConditionHandle.

Resource takes WaitConditionHandle and starts to create. Resource is in CREATE_IN_PROGRESS
status until WaitConditionHandle doesnt receive sufficient number of successful signals (this number
can be specified with count property) and successfully creates after that, or fails due to timeout.

Required Properties

handle#/
A reference to the wait condition handle used to signal this wait condition.
String value expected.
Updates cause replacement.

timeout#
The number of seconds to wait for the correct number of signals to arrive.
Number value expected.
Updates cause replacement.

The value must be in the range 1 to 43200.

3.3. Working with Templates 371

Heat Documentation, Release 24.1.0.dev11

Optional Properties

counts
The number of success signals that must be received before the stack creation process continues.
Integer value expected.
Can be updated without replacement.
Defaults to 1

The value must be at least 1.

Attributes

datai
JSON string containing data associated with wait condition signals sent to the handle.

showi#
Detailed information about resource.

HOT Syntax

0OS::Heat::WaitConditionHandle

Available since 2014.2 (Juno)

Resource for managing instance signals.
The main points of this resource are:
* have no dependencies (so the instance can reference it).
* create credentials to allow for signalling from the instance.

* handle signals from the instance, validate and store result.

Optional Properties

signal_transport#

372 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 6.0.0 (Mitaka)

How the client will signal the wait condition. CFN_SIGNAL will allow an HTTP POST to a CFN
keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL to be signalled via
HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal using the provided
keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue to be signalled using
the provided keystone credentials. TOKEN_SIGNAL will allow and HTTP POST to a Heat API
endpoint with the provided keystone token. NO_SIGNAL will result in the resource going to a
signalled state without waiting for any signal.

String value expected.
Updates cause replacement.
Defaults to "TOKEN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL, TOKEN_SIGNAL

Attributes

curl_cliz
Convenience attribute, provides curl CLI command prefix, which can be used for signalling handle
completion or failure when signal_transport is set to TOKEN_SIGNAL. You can signal success
by adding data-binary {status: SUCCESS} , or signal failure by adding data-binary {status: FAIL-
URE}. This attribute is set to None for all other signal transports.

endpointi
Endpoint/url which can be used for signalling handle when signal_transport is set to TO-
KEN_SIGNAL. None for all other signal transports.

showii
Detailed information about resource.

signald/
JSON serialized map that includes the endpoint, token and/or other attributes the client must use
for signalling this handle. The contents of this map depend on the type of signal selected in the
signal_transport property.

token#/
Token for stack-user which can be used for signalling handle when signal_transport is set to TO-
KEN_SIGNAL. None for all other signal transports.

HOT Syntax

3.3. Working with Templates 373

Heat Documentation, Release 24.1.0.dev11

OS::lronic::Port

Available since 13.0.0 (Train)

A resource that creates a ironic port.

Node UUID and physical hardware address for the Port (MAC address in most cases) are needed (all
Ports must be associated to a Node when created).

Required Properties

addressi
Physical hardware address of this network Port, typically the hardware MAC address.
String value expected.
Can be updated without replacement.
noder/
UUID or name of the Node this resource belongs to.
String value expected.
Can be updated without replacement.

Value must be of type ironic.node

Optional Properties

extrarf
A set of one or more arbitrary metadata key and value pairs.
Map value expected.
Can be updated without replacement.
is_smartnici/
Indicates whether the Port is a Smart NIC port.
Boolean value expected.
Can be updated without replacement.
local_link_connection#

The Port binding profile. If specified, must contain switch_id (only a MAC address or an OpenFlow
based datapath_id of the switch are accepted in this field) and port_id (identifier of the physical
port on the switch to which nodes port is connected to) fields. switch_info is an optional string
field to be used to store any vendor-specific information.

Map value expected.
Can be updated without replacement.
physical_network#

The name of the physical network to which a port is connected. May be empty.

374 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.
Can be updated without replacement.
portgroup#
UUID or name of the Portgroup this resource belongs to.
String value expected.
Can be updated without replacement.
Value must be of type ironic.portgroup
pxe_enabled#
Indicates whether PXE is enabled or disabled on the Port.
Boolean value expected.

Can be updated without replacement.

Attributes

addressi/
Physical hardware address of this network Port, typically the hardware MAC address.

extra/
A set of one or more arbitrary metadata key and value pairs.

internal_info#/
Internal metadata set and stored by the Port. This field is read-only.

is_smartnici/
Indicates whether the Port is a Smart NIC port.

local_link_connection#
The Port binding profile. If specified, must contain switch_id (only a MAC address or an OpenFlow
based datapath_id of the switch are accepted in this field) and port_id (identifier of the physical
port on the switch to which nodes port is connected to) fields. switch_info is an optional string
field to be used to store any vendor-specific information.

node_uuid#
UUID of the Node this resource belongs to.

physical_network#
The name of the physical network to which a port is connected. May be empty.

portgroup_uuid#
UUID of the Portgroup this resource belongs to.

pxe_enabled#
Indicates whether PXE is enabled or disabled on the Port.

show#
Detailed information about resource.

3.3. Working with Templates 375

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

0OS::Keystone::Domain

Available since 8.0.0 (Ocata) - Supported versions: keystone v3

Heat Template Resource for Keystone Domain.

This plug-in helps to create, update and delete a keystone domain. Also it can be used for enable or
disable a given keystone domain.

Optional Properties

descriptions/
Description of keystone domain.
String value expected.
Can be updated without replacement.
enabledd
This domain is enabled or disabled.
Boolean value expected.
Can be updated without replacement.
Defaults to true
name#/
The name of the domain.
String value expected.

Can be updated without replacement.

376 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l
Detailed information about resource.

HOT Syntax

0S::Keystone::Endpoint

Available since 5.0.0 (Liberty) - Supported versions: keystone v3

Heat Template Resource for Keystone Service Endpoint.

Keystone endpoint is just the URL that can be used for accessing a service within OpenStack. Endpoint
can be accessed by admin, by services or public, i.e. everyone can use this endpoint.

Required Properties

interfacer/
Interface type of keystone service endpoint.
String value expected.
Can be updated without replacement.
Allowed values: public, internal, admin
servicer/
Name or Id of keystone service.
String value expected.
Can be updated without replacement.
Value must be of type keystone.service
urld
URL of keystone service endpoint.
String value expected.

Can be updated without replacement.

3.3. Working with Templates 377

Heat Documentation, Release 24.1.0.dev11

Optional Properties

enabledd

Available since 6.0.0 (Mitaka)

This endpoint is enabled or disabled.
Boolean value expected.
Can be updated without replacement.
Defaults to true
name/
Name of keystone endpoint.
String value expected.
Can be updated without replacement.
regions
Name or 1d of keystone region.
String value expected.
Can be updated without replacement.

Value must be of type keystone.region

Attributes

show#l
Detailed information about resource.

HOT Syntax

378 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

0OS::Keystone::Group

Available since 2015.1 (Kilo) - Supported versions: keystone v3

Heat Template Resource for Keystone Group.

Groups are a container representing a collection of users. A group itself must be owned by a specific
domain, and hence all group names are not globally unique, but only unique to their domain.

Optional Properties

descriptions/
Description of keystone group.
String value expected.
Can be updated without replacement.
Defaults to "'
domain#/
Name or id of keystone domain.
String value expected.
Can be updated without replacement.
Defaults to "default"
Value must be of type keystone.domain
name/
Name of keystone group.
String value expected.
Can be updated without replacement.
roles#/
List of role assignments.
List value expected.
Can be updated without replacement.
List contents:
Map between role with either project or domain.
Map value expected.
Can be updated without replacement.
Map properties:
domain#
Optional.

Keystone domain.

3.3. Working with Templates 379

Heat Documentation, Release 24.1.0.dev11

String value expected.

Can be updated without replacement.

Value must be of type keystone.domain
projecti

Optional.

Keystone project.

String value expected.

Can be updated without replacement.

Value must be of type keystone.project
roles/

Required.

Keystone role.

String value expected.

Can be updated without replacement.

Value must be of type keystone.role

Attributes

showii
Detailed information about resource.

HOT Syntax

0OS::Keystone::GroupRoleAssignment

Available since 5.0.0 (Liberty) - Supported versions: keystone v3

Resource for granting roles to a group.

Resource for specifying groups and theirs roles.

380 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Required Properties

group?
Name or id of keystone group.
String value expected.
Can be updated without replacement.

Value must be of type keystone.group

Optional Properties

rolest/
List of role assignments.
List value expected.
Can be updated without replacement.
List contents:
Map between role with either project or domain.
Map value expected.
Can be updated without replacement.
Map properties:
domain#
Optional.
Keystone domain.
String value expected.
Can be updated without replacement.
Value must be of type keystone.domain
projecti
Optional.
Keystone project.
String value expected.
Can be updated without replacement.
Value must be of type keystone.project
roled/
Required.
Keystone role.
String value expected.

Can be updated without replacement.

3.3. Working with Templates

381

Heat Documentation, Release 24.1.0.dev11

Value must be of type keystone.role

Attributes

show#l

Detailed information about resource.

HOT Syntax

0OS::Keystone::Project

Available since 2015.1 (Kilo) - Supported versions: keystone v3

Heat Template Resource for Keystone Project.

Projects represent the base unit of ownership in OpenStack, in that all resources in OpenStack should be
owned by a specific project. A project itself must be owned by a specific domain, and hence all project
names are not globally unique, but unique to their domain. If the domain for a project is not specified,

then it is added to the default domain.

Optional Properties

descriptions/
Description of keystone project.

String value expected.

Can be updated without replacement.

Defaults to ""
domain#
Name or id of keystone domain.

String value expected.

Can be updated without replacement.

Defaults to "default"

Value must be of type keystone.domain

enabledd

382

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

This project is enabled or disabled.
Boolean value expected.
Can be updated without replacement.
Defaults to true
name#/
Name of keystone project.
String value expected.
Can be updated without replacement.

parent

Available since 6.0.0 (Mitaka)

The name or ID of parent of this keystone project in hierarchy.

String value expected.
Updates cause replacement.
Value must be of type keystone.project

tagsii

Available since 10.0.0 (Queens)

A list of tags for labeling and sorting projects.
List value expected.
Can be updated without replacement.

Defaults to []
Attributes
domain_id#
Available since 10.0.0 (Queens)

Domain id for project.

enabledd/

Available since 10.0.0 (Queens)

Flag of enable project.

is_domain#

3.3. Working with Templates

383

Heat Documentation, Release 24.1.0.dev11

(Available since 10.0.0 (Queens)]

Indicates whether the project also acts as a domain.

namei

(Available since 10.0.0 (Queens)]

Project name.

parent_idd#

[Available since 10.0.0 (Queens)]

Parent project id.

show#
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type
properties
description
domain
enabled
name
parent
tags

0OS::Keystone::Region

(Available since 6.0.0 (Mitaka) - Supported versions: keystone v3)

Heat Template Resource for Keystone Region.
This plug-in helps to create, update and delete a keystone region. Also it can be used for enable or disable

a given keystone region.

Optional Properties

descriptions
Description of keystone region.

String value expected.

384 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
enabledd
This region is enabled or disabled.
Boolean value expected.
Can be updated without replacement.
Defaults to true
id#

The user-defined region ID and should unique to the OpenStack deployment. While creating the region,
heat will url encode this ID.

String value expected.
Updates cause replacement.
parent_regions
If the region is hierarchically a child of another region, set this parameter to the ID of the parent region.
String value expected.
Can be updated without replacement.

Value must be of type keystone.region

Attributes

show#l
Detailed information about resource.

HOT Syntax

0OS::Keystone::Role

Available since 2015.1 (Kilo) - Supported versions: keystone v3

Heat Template Resource for Keystone Role.

3.3. Working with Templates 385

Heat Documentation, Release 24.1.0.dev11

Roles dictate the level of authorization the end user can obtain. Roles can be granted at either the domain
or project level. Role can be assigned to the individual user or at the group level. Role name is unique
within the owning domain.

Optional Properties

domain#

Available since 16.0.0 (Wallaby)

Name or id of keystone domain.

String value expected.

Updates cause replacement.

Value must be of type keystone.domain
name/

Name of keystone role.

String value expected.

Can be updated without replacement.

Attributes

show#
Detailed information about resource.

HOT Syntax

0OS::Keystone::Service

Available since 5.0.0 (Liberty) - Supported versions: keystone v3

Heat Template Resource for Keystone Service.

A resource that allows to create new service and manage it by Keystone.

386 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Required Properties

typed
Type of keystone Service.

String value expected.

Can be updated without replacement.

Optional Properties

description#
Description of keystone service.

String value expected.

Can be updated without replacement.

enabledi/

Available since 6.0.0 (Mitaka)

This service is enabled or disabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true
namer/
Name of keystone service.

String value expected.

Can be updated without replacement.

Attributes

show#l

Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

387

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Keystone::User

Available since 2015.1 (Kilo) - Supported versions: keystone v3

Heat Template Resource for Keystone User.

Users represent an individual API consumer. A user itself must be owned by a specific domain, and
hence all user names are not globally unique, but only unique to their domain.

Optional Properties

default_project#

Name or ID of default project of keystone user.

String value expected.

Can be updated without replacement.

Value must be of type keystone.project
descriptions/

Description of keystone user.

String value expected.

Can be updated without replacement.

Defaults to ""
domain#/

Name or ID of keystone domain.

String value expected.

Can be updated without replacement.

Defaults to "default"

Value must be of type keystone.domain
email#

Email address of keystone user.

String value expected.

Can be updated without replacement.
enabled#

Keystone user is enabled or disabled.

Boolean value expected.

Can be updated without replacement.

388

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Defaults to true
groups?
Keystone user groups.
List value expected.
Can be updated without replacement.
List contents:
Optional.
Keystone user group.
String value expected.
Can be updated without replacement.
Value must be of type keystone.group
name#/
Name of keystone user.
String value expected.
Can be updated without replacement.
password#
Password of keystone user.
String value expected.
Can be updated without replacement.
rolesi
List of role assignments.
List value expected.
Can be updated without replacement.
List contents:
Map between role with either project or domain.
Map value expected.
Can be updated without replacement.
Map properties:
domain#
Optional.
Keystone domain.
String value expected.
Can be updated without replacement.

Value must be of type keystone.domain

3.3. Working with Templates 389

Heat Documentation, Release 24.1.0.dev11

projecti

Optional.

Keystone project.

String value expected.

Can be updated without replacement.

Value must be of type keystone.project
roles/

Required.

Keystone role.

String value expected.

Can be updated without replacement.

Value must be of type keystone.role

Attributes

default_project_id#

Available since 9.0.0 (Pike)

Default project id for user.

domain_id#

Available since 9.0.0 (Pike)

Domain id for user.

enabledd/

Available since 9.0.0 (Pike)

Flag of enable user.

namew

Available since 9.0.0 (Pike)

User name.

password_expires_at#

Available since 9.0.0 (Pike)

Show user password expiration time.

390

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

show#
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
default_project
description
domain
email
enabled
groups
name
password
roles e

OS::Keystone::UserRoleAssignment

[Available since 5.0.0 (Liberty) - Supported versions: keystone v3)

Resource for granting roles to a user.

Resource for specifying users and theirs roles.

Required Properties

user#
Name or id of keystone user.
String value expected.
Can be updated without replacement.

Value must be of type keystone.user

Optional Properties

rolest/
List of role assignments.
List value expected.
Can be updated without replacement.

List contents:

3.3. Working with Templates 391

Heat Documentation, Release 24.1.0.dev11

Map between role with either project or domain.
Map value expected.
Can be updated without replacement.
Map properties:
domain#
Optional.
Keystone domain.
String value expected.
Can be updated without replacement.
Value must be of type keystone.domain
projecti/
Optional.
Keystone project.
String value expected.
Can be updated without replacement.
Value must be of type keystone.project
roled/
Required.
Keystone role.
String value expected.
Can be updated without replacement.

Value must be of type keystone.role

Attributes

show#
Detailed information about resource.

HOT Syntax

392 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

0S::Magnum::Cluster

Available since 9.0.0 (Pike)

A resource that creates a magnum cluster.

This resource creates a magnum cluster, which is a collection of node objects where work is scheduled.

Required Properties

cluster_templateri
The name or ID of the cluster template.
String value expected.
Updates cause replacement.

Value must be of type magnum.cluster_template

Optional Properties

create_timeout/
Timeout for creating the cluster in minutes. Set to 0 for no timeout.
Integer value expected.
Can be updated without replacement.
Defaults to 60
The value must be at least O.
discovery_url#
Specifies a custom discovery url for node discovery.
String value expected.
Can be updated without replacement.
keypair#
The name of the keypair. If not presented, use keypair in cluster template.
String value expected.
Updates cause replacement.
Value must be of type nova.keypair
master_counti/
The number of master nodes for this cluster.
Integer value expected.
Can be updated without replacement.
Defaults to 1

The value must be at least 1.

3.3. Working with Templates 393

Heat Documentation, Release 24.1.0.dev11

name#/
The cluster name.
String value expected.
Updates cause replacement.
node_counti/
The node count for this cluster.
Integer value expected.
Can be updated without replacement.
Defaults to 1

The value must be at least 1.

Attributes

api_addressi/
The endpoint URL of COE API exposed to end-users.

cluster_template_id#
The UUID of the cluster template.

coe_version#

Version info of chosen COE in cluster for helping client in picking the right version of client.

container_versioni

Version info of constainer engine in the chosen COE in cluster for helping client in picking the

right version of client.

create_timeouts/
The timeout for cluster creation in minutes.

discovery_url#
The custom discovery url for node discovery.

keypaird
The name of the keypair.

master_addressesi¥
List of floating IP of all master nodes.

master_counti/
The number of servers that will serve as master for the cluster.

namer
Name of the resource.

node_addressesi#/
List of floating IP of all servers that serve as node.

node_count#
The number of servers that will serve as node in the cluster.

show#
Detailed information about resource.

394 Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

stack_id#
The reference UUID of orchestration stack for this COE cluster.

statusi
The status for this COE cluster.

status_reasoni/
The reason of cluster current status.

HOT Syntax

0OS::Magnum::ClusterTemplate

Available since 9.0.0 (Pike)

A resource for the ClusterTemplate in Magnum.

ClusterTemplate is an object that stores template information about the cluster which is used to create
new clusters consistently.

Required Properties

coeri
The Container Orchestration Engine for cluster.
String value expected.
Updates cause replacement.
Allowed values: kubernetes, swarm, mesos
external_network#
The external neutron network name or UUID to attach the Cluster.
String value expected.
Updates cause replacement.

Value must be of type neutron.network

3.3. Working with Templates 395

Heat Documentation, Release 24.1.0.dev11

imager/
The image name or UUID to use as a base image for cluster.
String value expected.
Updates cause replacement.

Value must be of type glance.image

Optional Properties

dns_nameserver#

The DNS nameserver address.

String value expected.

Updates cause replacement.

Value must be of type ip_addr
docker_storage_driver#

Select a docker storage driver.

String value expected.

Updates cause replacement.

Defaults to "devicemapper"

Allowed values: devicemapper, overlay
docker_volume_size#

The size in GB of the docker volume.

Integer value expected.

Updates cause replacement.

The value must be at least 1.
fixed_networkd

The fixed neutron network name or UUID to attach the Cluster.

String value expected.

Updates cause replacement.

Value must be of type neutron.network
fixed_subnetd#

The fixed neutron subnet name or UUID to attach the Cluster.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet
flavor#

The nova flavor name or UUID to use when launching the cluster.

396

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.
Updates cause replacement.
Value must be of type nova.flavor
floating_ip_enabled#
Indicates whether created clusters should have a floating ip or not.
Boolean value expected.
Updates cause replacement.
Defaults to true
http_proxy#
The http_proxy address to use for nodes in cluster.
String value expected.
Updates cause replacement.
https_proxy#
The https_proxy address to use for nodes in cluster.
String value expected.
Updates cause replacement.
keypair#
The name of the SSH keypair to load into the cluster nodes.
String value expected.
Updates cause replacement.
Value must be of type nova.keypair
labels
Arbitrary labels in the form of key=value pairs to associate with cluster.
Map value expected.
Updates cause replacement.
master_flavor#
The nova flavor name or UUID to use when launching the master node of the cluster.
String value expected.
Updates cause replacement.
Value must be of type nova.flavor
master_lb_enabled#
Indicates whether created clusters should have a load balancer for master nodes or not.
Boolean value expected.

Updates cause replacement.

3.3. Working with Templates 397

Heat Documentation, Release 24.1.0.dev11

Defaults to true
name/
The cluster template name.
String value expected.
Updates cause replacement.
network_driver#

The name of the driver used for instantiating container networks. By default, Magnum will choose the
pre-configured network driver based on COE type.

String value expected.
Updates cause replacement.
no_proxy#
A comma separated list of addresses for which proxies should not be used in the cluster.
String value expected.
Updates cause replacement.
publicd

Make the cluster template public. To enable this option, you must own the right to publish in magnum.
Which default set to admin only.

Boolean value expected.

Can be updated without replacement.

Defaults to false
registry_enabled#

Enable the docker registry in the cluster.

Boolean value expected.

Updates cause replacement.

Defaults to false
server_typer

Specify the server type to be used.

String value expected.

Updates cause replacement.

Defaults to "vm"

Allowed values: vm, bm
tls_disabled#

Disable TLS in the cluster.

Boolean value expected.

Updates cause replacement.

398 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Defaults to false
volume_driver#
The volume driver name for instantiating container volume.
String value expected.
Updates cause replacement.

Allowed values: cinder, rexray

Attributes

showii
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
coe
dns_nameserver
docker_storage_driver
docker_volume_size
external_network
fixed_network
fixed_subnet
flavor
floating_ip_enabled
http_proxy
https_proxy
image
keypair
labels
master_flavor
master_lb_enabled
name
network_driver
No_proxy
public
registry_enabled
server_type
tls_disabled
volume_driver

3.3. Working with Templates

399

Heat Documentation, Release 24.1.0.dev11

OS::Manila::SecurityService

Available since 5.0.0 (Liberty)

A resource that implements security service of Manila.

A security_service is a set of options that defines a security domain for a particular shared filesystem

protocol, such as an Active Directory domain or a Kerberos domain.

Required Properties

typed
Security service type.
String value expected.

Updates cause replacement.

Allowed values: 1dap, kerberos, active_directory

Optional Properties

description#/
Security service description.
String value expected.
Can be updated without replacement.

dns_ip#

DNS IP address used inside tenants network.

String value expected.

Can be updated without replacement.
domain#

Security service domain.

String value expected.

Can be updated without replacement.
name/

Security service name.

String value expected.

Can be updated without replacement.
password#

Password used by user.

String value expected.

Can be updated without replacement.

400

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

serveri
Security service IP address or hostname.
String value expected.
Can be updated without replacement.

users
Security service user or group used by tenant.
String value expected.

Can be updated without replacement.

Attributes

showii
Detailed information about resource.

HOT Syntax

0OS::Manila::Share

Available since 5.0.0 (Liberty)

A resource that creates shared mountable file system.

The resource creates a manila share - shared mountable filesystem that can be attached to any client(or
clients) that has a network access and permission to mount filesystem. Share is a unit of storage with
specific size that supports pre-defined share protocol and advanced security model (access lists, share
networks and security services).

3.3. Working with Templates 401

Heat Documentation, Release 24.1.0.dev11

Required Properties

share_protocol#

Share protocol supported by shared filesystem.

String value expected.

Updates cause replacement.

Allowed values: NFS, CIFS, GlusterFS, HDFS, CEPHFS
sizeli

Share storage size in GB.

Integer value expected.

Updates cause replacement.

Optional Properties

access_rulesi/
A list of access rules that define access from IP to Share.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
access_leveld
Optional.
Level of access that need to be provided for guest.
String value expected.
Can be updated without replacement.
Allowed values: ro, rw
access_tor/
Required.
IP or other address information about guest that allowed to access to Share.
String value expected.
Can be updated without replacement.
access_typeri

Required.

402 Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

Type of access that should be provided to guest.
String value expected.
Can be updated without replacement.
Allowed values: ip, user, cert, cephx
descriptions/
Share description.
String value expected.
Can be updated without replacement.
is_public#
Defines if shared filesystem is public or private.
Boolean value expected.
Can be updated without replacement.
Defaults to false
metadatar/
Metadata key-values defined for share.
Map value expected.
Can be updated without replacement.
name#/
Share name.
String value expected.
Can be updated without replacement.
share_networkd
Name or ID of shared network defined for shared filesystem.
String value expected.
Updates cause replacement.
Value must be of type manila.share_network

share_type#/

Name or ID of shared filesystem type. Types defines some share filesystem profiles that will be used

for share creation.
String value expected.
Updates cause replacement.
Value must be of type manila.share_type

snapshot

Name or ID of shared file system snapshot that will be restored and created as a new share.

String value expected.

3.3. Working with Templates

403

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.

Value must be of type manila.share_snapshot

Attributes

availability_zone#/
The availability zone of shared filesystem.

created_ati/
Datetime when a share was created.

export_locations#
Export locations of share.

hosti/
Share host.

project_id#
Share project ID.

share_server_id#
ID of server (VM, etc) on host that is used for exporting network file-system.

show#
Detailed information about resource.

statusi/
Current share status.

HOT Syntax

404 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

0OS::Manila::ShareNetwork

Available since 5.0.0 (Liberty)

A resource that stores network information for share servers.

Stores network information that will be used by share servers, where shares are hosted.

Optional Properties

description#/

Share network description.

String value expected.

Can be updated without replacement.
name/

Name of the share network.

String value expected.

Can be updated without replacement.
neutron_network#

Neutron network id.

String value expected.

Can be updated without replacement.

Value must be of type neutron.network
neutron_subnet/

Neutron subnet id.

String value expected.

Can be updated without replacement.

Value must be of type neutron.subnet
security_servicest/

A list of security services IDs or names.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.
String value expected.

Can be updated without replacement.

3.3. Working with Templates 405

Heat Documentation, Release 24.1.0.dev11

Attributes

cidrid
CIDR of subnet.

ip_version#
Version of IP address.

network_type#/
The physical mechanism by which the virtual network is implemented.

segmentation_id#
VLAN ID for VLAN networks or tunnel-id for GRE/VXLAN networks.

show#
Detailed information about resource.

HOT Syntax

OS::Manila::ShareType

Available since 5.0.0 (Liberty)

A resource for creating manila share type.

A share_type is an administrator-defined type of service, comprised of a tenant visible description, and a
list of non-tenant-visible key/value pairs (extra_specs) which the Manila scheduler uses to make schedul-
ing decisions for shared filesystem tasks.

Please note that share type is intended to use mostly by administrators. So it is very likely that Manila

will prohibit creation of the resource without administration grants.

Required Properties

driver_handles_share_serversi/
Required extra specification. Defines if share drivers handles share servers.
Boolean value expected.

Updates cause replacement.

406 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

name#/
Name of the share type.
String value expected.

Updates cause replacement.

Optional Properties

extra_specst/

Extra specs key-value pairs defined for share type.

Map value expected.

Can be updated without replacement.
is_public#

Defines if share type is accessible to the public.

Boolean value expected.

Updates cause replacement.

Defaults to true

snapshot_support#

Available since 6.0.0 (Mitaka)

Boolean extra spec that used for filtering of backends by their capability to create share snapshots.

Boolean value expected.
Updates cause replacement.

Defaults to true

Attributes

show#l
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

407

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Mistral::CronTrigger

Available since 5.0.0 (Liberty)

A resource implements Mistral cron trigger.

Cron trigger is an object allowing to run workflow on a schedule. User specifies what workflow with
what input needs to be run and also specifies how often it should be run. Pattern property is used to
describe the frequency of workflow execution.

Required Properties

workflow#
Workflow to execute.
Map value expected.
Updates cause replacement.
Map properties:
input#
Input values for the workflow.
Map value expected.
Updates cause replacement.
nameu/
Required.
Name or ID of the workflow.
String value expected.
Updates cause replacement.

Value must be of type mistral.workflow

Optional Properties

counti/
Remaining executions.
Integer value expected.
Updates cause replacement.
first_timerd

Time of the first execution in format YYYY-MM-DD HH:MM.

408 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.

Updates cause replacement.
name/

Name of the cron trigger.

String value expected.

Updates cause replacement.
patternd

Cron expression.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

Attributes

next_execution_time#
Time of the next execution in format YYYY-MM-DD HH:MM:SS.

remaining_executions#/
Number of remaining executions.

show#
Detailed information about resource.

HOT Syntax

OS::Mistral::ExternalResource

Available since 9.0.0 (Pike)

A plugin for managing user-defined resources via Mistral workflows.

This resource allows users to manage resources that are not known to Heat. The user may specify a
Mistral workflow to handle each resource action, such as CREATE, UPDATE, or DELETE.

3.3. Working with Templates 409

Heat Documentation, Release 24.1.0.dev11

The workflows may return an output named resource_id, which will be treated as the physical ID of the
resource by Heat.

Once the resource is created, subsequent workflow runs will receive the output of the last work-
flow execution in the heat_extresource_data key in the workflow environment (accessible as env().
heat_extresource_data in the workflow).

The template author may specify a subset of inputs as causing replacement of the resource when they
change, as an alternative to running the UPDATE workflow.

Required Properties

actionsi/
Resource action which triggers a workflow execution.
Map value expected.
Updates cause replacement.
Map properties:
CREATE#
Dictionary which defines the workflow to run and its params.
Map value expected.
Updates cause replacement.
Map properties:
params#/

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.

Updates cause replacement.

Defaults to {}

workflow#/

Required.

Workflow to execute.

String value expected.

Updates cause replacement.

Value must be of type mistral.workflow

DELETE#

Dictionary which defines the workflow to run and its params.
Map value expected.
Updates cause replacement.

Map properties:

410 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

params#

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.
Updates cause replacement.
Defaults to {}
workflow#/
Required.
Workflow to execute.
String value expected.
Updates cause replacement.
Value must be of type mistral.workflow
RESUME#
Dictionary which defines the workflow to run and its params.
Map value expected.
Updates cause replacement.
Map properties:
paramsz

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.

Updates cause replacement.

Defaults to {}

workflow#

Required.

Workflow to execute.

String value expected.

Updates cause replacement.

Value must be of type mistral.workflow

SUSPEND#

Dictionary which defines the workflow to run and its params.
Map value expected.
Updates cause replacement.
Map properties:

params/

3.3. Working with Templates 411

Heat Documentation, Release 24.1.0.dev11

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.
Updates cause replacement.
Defaults to {}
workflowi/
Required.
Workflow to execute.
String value expected.
Updates cause replacement.
Value must be of type mistral.workflow
UPDATE#
Dictionary which defines the workflow to run and its params.
Map value expected.
Updates cause replacement.
Map properties:
paramsi/

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.
Updates cause replacement.
Defaults to {}

workflow#/
Required.
Workflow to execute.
String value expected.
Updates cause replacement.

Value must be of type mistral.workflow

Optional Properties

always_update#/
Triggers UPDATE action execution even if input is unchanged.
Boolean value expected.
Updates cause replacement.

Defaults to false

412 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

descriptions/
Workflow execution description.
String value expected.
Updates cause replacement.
Defaults to "Heat managed"
input#
Dictionary which contains input for the workflows.
Map value expected.
Can be updated without replacement.
Defaults to {}
replace_on_change_inputs#
A list of inputs that should cause the resource to be replaced when their values change.
List value expected.
Updates cause replacement.

Defaults to []

Attributes

output#
Output from the execution.

showii
Detailed information about resource.

HOT Syntax

3.3. Working with Templates 413

Heat Documentation, Release 24.1.0.dev11

OS::Mistral::Workflow

Available since 2015.1 (Kilo)

A resource that implements Mistral workflow.

Workflow represents a process that can be described in a various number of ways and that can do some
job interesting to the end user. Each workflow consists of tasks (at least one) describing what exact steps
should be made during workflow execution.

For detailed description how to use Workflow, read Mistral documentation.

Required Properties

tasks#

Dictionary containing workflow tasks.
List value expected.
Can be updated without replacement.
The length must be at least 1.
List contents:

Map value expected.

Can be updated without replacement.

Map properties:

action#/
Optional.

Name of the action associated with the task. Either action or workflow may be defined in
the task.

String value expected.
Can be updated without replacement.

concurrency#

Available since 8.0.0 (Ocata)

Optional.

Defines a max number of actions running simultaneously in a task. Applicable only for
tasks that have with-items.

Integer value expected.

Can be updated without replacement.
description#/

Optional.

Task description.

414 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.

Can be updated without replacement.
inputd

Actual input parameter values of the task.

Map value expected.

Can be updated without replacement.

join#
Available since 6.0.0 (Mitaka)

Optional.

Allows to synchronize multiple parallel workflow branches and aggregate their data. Valid
inputs: all - the task will run only if all upstream tasks are completed. Any numeric
value - then the task will run once at least this number of upstream tasks are completed
and corresponding conditions have triggered.

String value expected.
Can be updated without replacement.

keep_result#

Available since 5.0.0 (Liberty)

Optional.
Allowing not to store action results after task completion.
Boolean value expected.
Can be updated without replacement.
name/
Required.
Task name.
String value expected.
Can be updated without replacement.
on_completer/

List of tasks which will run after the task has completed regardless of whether it is successful
or not.

List value expected.
Can be updated without replacement.
on_errord

List of tasks which will run after the task has completed with an error.

3.3.

Working with Templates 415

Heat Documentation, Release 24.1.0.dev11

List value expected.
Can be updated without replacement.
on_success#
List of tasks which will run after the task has completed successfully.
List value expected.
Can be updated without replacement.

pause_befores/

Available since 5.0.0 (Liberty)

Optional.

Defines whether Mistral Engine should put the workflow on hold or not before starting a
task.

Boolean value expected.
Can be updated without replacement.
publish#
Dictionary of variables to publish to the workflow context.
Map value expected.
Can be updated without replacement.
requirest
List of tasks which should be executed before this task. Used only in reverse workflows.
List value expected.
Can be updated without replacement.

retry/

Available since 5.0.0 (Liberty)

Defines a pattern how task should be repeated in case of an error.
Map value expected.
Can be updated without replacement.

targetd

Available since 5.0.0 (Liberty)

Optional.
It defines an executor to which task action should be sent to.

String value expected.

416 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.

timeouts/

Available since 5.0.0 (Liberty)

Optional.

Defines a period of time in seconds after which a task will be failed automatically by engine
if hasnt completed.

Integer value expected.
Can be updated without replacement.

wait_aftersd

Available since 5.0.0 (Liberty)

Optional.

Defines a delay in seconds that Mistral Engine should wait after a task has completed before
starting next tasks defined in on-success, on-error or on-complete.

Integer value expected.
Can be updated without replacement.

wait_beforerd

Available since 5.0.0 (Liberty)

Optional.

Defines a delay in seconds that Mistral Engine should wait before starting a task.
Integer value expected.

Can be updated without replacement.

with_items#

Available since 5.0.0 (Liberty)

Optional.

If configured, it allows to run action or workflow associated with a task multiple times on a
provided list of items.

String value expected.
Can be updated without replacement.
workflow#/

Optional.

3.3.

Working with Templates 417

Heat Documentation, Release 24.1.0.dev11

Name of the workflow associated with the task. Can be defined by intrinsic function
get_resource or by name of the referenced workflow, i.e. { workflow: wf_name } or
{ workflow: { get_resource: wf_name }}. Either action or workflow may be defined in
the task.

String value expected.
Can be updated without replacement.
Value must be of type mistral.workflow
typett
Workflow type.
String value expected.
Can be updated without replacement.

Allowed values: direct, reverse

Optional Properties

descriptions/

Workflow description.

String value expected.

Can be updated without replacement.
input#

Dictionary which contains input for workflow.

Map value expected.

Can be updated without replacement.
name/

Workflow name.

String value expected.

Updates cause replacement.
output

Any data structure arbitrarily containing YAQL expressions that defines workflow output. May be
nested.

Map value expected.
Can be updated without replacement.
params#

Workflow additional parameters. If Workflow is reverse typed, params requires task_name, which de-
fines initial task.

Map value expected.

Can be updated without replacement.

418 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

tagsii

Available since 10.0.0 (Queens)

List of tags to set on the workflow.
List value expected.
Can be updated without replacement.

task_defaultsif

Available since 5.0.0 (Liberty)

Default settings for some of task attributes defined at workflow level.
Map value expected.

Can be updated without replacement.

Map properties:

concurrency#

Available since 8.0.0 (Ocata)

Optional.

Defines a max number of actions running simultaneously in a task. Applicable only for tasks that
have with-items.

Integer value expected.
Can be updated without replacement.
on_completes/

List of tasks which will run after the task has completed regardless of whether it is successful or
not.

List value expected.
Can be updated without replacement.
on_errord
List of tasks which will run after the task has completed with an error.
List value expected.
Can be updated without replacement.
on_success
List of tasks which will run after the task has completed successfully.
List value expected.
Can be updated without replacement.

pause_befores

3.3. Working with Templates 419

Heat Documentation, Release 24.1.0.dev11

Optional.
Defines whether Mistral Engine should put the workflow on hold or not before starting a task.
Boolean value expected.
Can be updated without replacement.
requiresz/
List of tasks which should be executed before this task. Used only in reverse workflows.
List value expected.
Can be updated without replacement.
retryii
Defines a pattern how task should be repeated in case of an error.
Map value expected.
Can be updated without replacement.
timeouts
Optional.

Defines a period of time in seconds after which a task will be failed automatically by engine if
hasnt completed.

Integer value expected.

Can be updated without replacement.
wait_afterd

Optional.

Defines a delay in seconds that Mistral Engine should wait after a task has completed before
starting next tasks defined in on-success, on-error or on-complete.

Integer value expected.
Can be updated without replacement.
wait_befored
Optional.
Defines a delay in seconds that Mistral Engine should wait before starting a task.
Integer value expected.
Can be updated without replacement.

use_request_body_as_inputd

Available since 6.0.0 (Mitaka)

Defines the method in which the request body for signaling a workflow would be parsed. In case this
property is set to True, the body would be parsed as a simple json where each key is a workflow
input, in other cases body would be parsed expecting a specific json format with two keys: input
and params.

420 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Boolean value expected.

Can be updated without replacement.

Attributes

alarm_urld
A signed url to create executions for workflows specified in Workflow resource.

datai
A dictionary which contains name and input of the workflow.

executionsi/
List of workflows executions, each of them is a dictionary with information about execution. Each
dictionary returns values for next keys: id, workflow_name, created_at, updated_at, state for cur-
rent execution state, input, output.

show#l
Detailed information about resource.

HOT Syntax

I

L {

— (]

(continues on next page)

3.3. Working with Templates 421

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Neutron::AddressScope

Available since 6.0.0 (Mitaka)

A resource for Neutron address scope.
This resource can be associated with multiple subnet pools in a one-to-many relationship. The subnet

pools under an address scope must not overlap.

Optional Properties

ip_version#/
Address family of the address scope, which is 4 or 6.
Integer value expected.
Updates cause replacement.
Defaults to 4
Allowed values: 4, 6
name#/
The name for the address scope.
String value expected.
Can be updated without replacement.
sharedd

Whether the address scope should be shared to other tenants. Note that the default policy setting restricts
usage of this attribute to administrative users only, and restricts changing of shared address scope
to unshared with update.

Boolean value expected.
Can be updated without replacement.
Defaults to false

tenant_idd

The owner tenant ID of the address scope. Only administrative users can specify a tenant ID other than
their own.

String value expected.
Updates cause replacement.

Value must be of type keystone.project

422 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l
Detailed information about resource.

HOT Syntax

0OS::Neutron::ExtraRouteSet

Available since 14.0.0 (Ussuri)

Resource for specifying extra routes for a Neutron router.

Requires Neutron extraroute-atomic extension to be enabled:

[$ openstack extension show extraroute-atomic J

An extra route is a static routing table entry that is added beyond the routes managed implicitly by router
interfaces and router gateways.

The destination of an extra route is any IP network in /CIDR notation. The nexthop of an extra route
is an IP in a subnet that is directly connected to the router.

In a single OS::Neutron::ExtraRouteSet resource you can specify a set of extra routes (repre-
sented as a list) on the same virtual router. As an improvement over the (never formally
supported) OS::Neutron::ExtraRoute resource this resource plugin uses a Neutron API extension
(extraroute-atomic) that is not prone to race conditions when used to manage multiple extra routes
of the same router. It is safe to manage multiple extra routes of the same router from multiple stacks.

On the other hand use of the same route on the same router is not safe from multiple stacks (or between

Heat and non-Heat managed Neutron extra routes).

Required Properties

routerd
The router id.
String value expected.

Updates cause replacement.

3.3. Working with Templates 423

Heat Documentation, Release 24.1.0.dev11

Value must be of type neutron.router

Optional Properties

routesi/
A set of route dictionaries for the router.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
destination#/

Required.

The destination network in CIDR notation.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr
nexthop#

Required.

The next hop for the destination.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

Attributes

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

424

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

0OS::Neutron::Firewall

A resource for the Firewall resource in Neutron FWaaS.

Resource for using the Neutron firewall implementation. Firewall is a network security system that mon-
itors and controls the incoming and outgoing network traffic based on predetermined security rules.

Required Properties

firewall_policy_id#
The ID of the firewall policy that this firewall is associated with.
String value expected.

Can be updated without replacement.

Optional Properties

admin_state_up#

Administrative state of the firewall. If false (down), firewall does not forward packets and will drop all
traffic to/from VMs behind the firewall.

Boolean value expected.

Can be updated without replacement.

Defaults to true
descriptions/

Description for the firewall.

String value expected.

Can be updated without replacement.
name/

Name for the firewall.

String value expected.

Can be updated without replacement.

value_specs#/

Available since 5.0.0 (Liberty)

Extra parameters to include in the request. Parameters are often specific to installed hardware or exten-
sions.

Map value expected.

3.3. Working with Templates 425

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Defaults to {}

sharedd

UNSUPPORTED since 6.0.0 (Mitaka) - There is no such option during 5.0.0, so need to make
this property unsupported while it not used.

Available since 2015.1 (Kilo)
Whether this firewall should be shared across all tenants. NOTE: The default policy setting in Neutron
restricts usage of this property to administrative users only.
Boolean value expected.

Can be updated without replacement.

Attributes

admin_state_up#/
The administrative state of the firewall.

descriptions/
Description of the firewall.

firewall_policy_id#
Unique identifier of the firewall policy used to create the firewall.

nameii
Name for the firewall.

sharedd

UNSUPPORTED since 6.0.0 (Mitaka) - There is no such option during 5.0.0, so need to make
this attribute unsupported, otherwise error will raised.

Shared status of this firewall.

showii
Detailed information about resource.

statuss
The status of the firewall.

tenant_idd
Id of the tenant owning the firewall.

HOT Syntax

(continues on next page)

426 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Neutron::FirewallPolicy

A resource for the FirewallPolicy resource in Neutron FWaaS.

FirewallPolicy resource is an ordered collection of firewall rules. A firewall policy can be shared across
tenants.

Optional Properties

auditedd#

Whether this policy should be audited. When set to True, each time the firewall policy or the associated
firewall rules are changed, this attribute will be set to False and will have to be explicitly set to
True through an update operation.

Boolean value expected.
Can be updated without replacement.
Defaults to false
descriptions
Description for the firewall policy.
String value expected.
Can be updated without replacement.
firewall_rules#

An ordered list of firewall rules to apply to the firewall. (Prior to version 14.0.0 this was a required
property).

List value expected.

Can be updated without replacement.
name#/

Name for the firewall policy.

String value expected.

Can be updated without replacement.
sharedd

Whether this policy should be shared across all tenants.

3.3. Working with Templates 427

Heat Documentation, Release 24.1.0.dev11

Boolean value expected.
Can be updated without replacement.

Defaults to false

Attributes

auditedd
Audit status of this firewall policy.

description#/
Description of the firewall policy.

firewall_rulesi
List of firewall rules in this firewall policy.

namer/
Name for the firewall policy.

shared#
Shared status of this firewall policy.

show#
Detailed information about resource.

tenant_idd
1d of the tenant owning the firewall policy.

HOT Syntax

OS::Neutron::FirewallRule

A resource for the FirewallRule resource in Neutron FWaaS.

FirewallRule represents a collection of attributes like ports, ip addresses etc. which define match criteria
and action (allow, or deny) that needs to be taken on the matched data traffic.

428 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Optional Properties

action#/

Action to be performed on the traffic matching the rule.

String value expected.

Can be updated without replacement.

Defaults to "deny"

Allowed values: allow, deny
descriptions/

Description for the firewall rule.

String value expected.

Can be updated without replacement.
destination_ip_addressi#

Destination IP address or CIDR.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr
destination_port#

Destination port number or a range.

String value expected.

Can be updated without replacement.
enabledd

Whether this rule should be enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true
ip_version#

Internet protocol version.

String value expected.

Can be updated without replacement.

Defaults to "4"

Allowed values: 4, 6
name/

Name for the firewall rule.

String value expected.

3.3. Working with Templates

429

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
protocol#

Protocol for the firewall rule.

String value expected.

Can be updated without replacement.

Defaults to "any"

Allowed values: tcp, udp, icmp, any
sharedd

Whether this rule should be shared across all tenants.

Boolean value expected.

Can be updated without replacement.

Defaults to false
source_ip_address#

Source IP address or CIDR.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr
source_port#

Source port number or a range.

String value expected.

Can be updated without replacement.

Attributes

action#/
Allow or deny action for this firewall rule.

description#
Description of the firewall rule.

destination_ip_address#
Destination ip_address for this firewall rule.

destination_port#
Destination port range for this firewall rule.

enabledd/
Indicates whether this firewall rule is enabled or not.

firewall_policy_id#
Unique identifier of the firewall policy to which this firewall rule belongs.

ip_versiond
Ip_version for this firewall rule.

430 Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

nameii
Name for the firewall rule.

position#
Position of the rule within the firewall policy.

protocol#
Protocol value for this firewall rule.

sharedi/
Shared status of this firewall rule.

show#l
Detailed information about resource.

source_ip_address#
Source ip_address for this firewall rule.

source_porti#
Source port range for this firewall rule.

tenant_idd
1d of the tenant owning the firewall.

HOT Syntax

OS::Neutron::FloatingIP

A resource for managing Neutron floating ips.

Floating IP addresses can change their association between routers by action of the user. One of the most
common use cases for floating IPs is to provide public IP addresses to a private cloud, where there are a
limited number of IP addresses available. Another is for a public cloud user to have a static IP address
that can be reassigned when an instance is upgraded or moved.

3.3. Working with Templates

431

Heat Documentation, Release 24.1.0.dev11

Required Properties

floating_networkd/

Available since 2014.2 (Juno)

Network to allocate floating IP from.
String value expected.

Updates cause replacement.

Value must be of type neutron.network

Optional Properties

dns_domaind

Available since 7.0.0 (Newton)

DNS domain associated with floating ip.

String value expected.
Can be updated without replacement.
Value must be of type dns_domain

dns_namei#

Available since 7.0.0 (Newton)

DNS name associated with floating ip.
String value expected.

Can be updated without replacement.
Value must be of type rel_dns_name

fixed_ip_addressi#

IP address to use if the port has multiple addresses.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr
floating_ip_address#/

Available since 5.0.0 (Liberty)

IP address of the floating IP. NOTE: The default policy setting in Neutron restricts usage of this property

to administrative users only.

432

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.
Updates cause replacement.
Value must be of type ip_addr

floating_subnet#

Available since 9.0.0 (Pike)

Subnet to allocate floating IP from.
String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

port_idd

ID of an existing port with at least one IP address to associate with this floating IP.

String value expected.
Can be updated without replacement.
Value must be of type neutron.port

value_specst/

Extra parameters to include in the floatingip object in the creation request. Parameters are often specific

to installed hardware or extensions.
Map value expected.
Updates cause replacement.

Defaults to {3}

Attributes

fixed_ip_address#
IP address of the associated port, if specified.

floating_ip_addressi#
The allocated address of this IP.

floating_network_id#
ID of the network in which this IP is allocated.

port_idd
ID of the port associated with this IP.

router_idd#

ID of the router used as gateway, set when associated with a port.

show#
Detailed information about resource.

tenant_idd
The tenant owning this floating IP.

3.3. Working with Templates

433

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

OS::Neutron::FloatinglPAssociation

A resource for associating floating ips and ports.
This resource allows associating a floating IP to a port with at least one IP address to associate with this

floating IP.

Required Properties
floatingip_id#
ID of the floating IP to associate.
String value expected.
Can be updated without replacement.
port_idd
ID of an existing port with at least one IP address to associate with this floating IP.
String value expected.
Can be updated without replacement.

Value must be of type neutron.port

Optional Properties

fixed_ip_addressi#
IP address to use if the port has multiple addresses.
String value expected.
Can be updated without replacement.

Value must be of type ip_addr

434 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l
Detailed information about resource.

HOT Syntax

0S::Neutron::FloatinglPPortForward

Available since 19.0.0 (Zed)

A resource for creating port forwarding for floating IPs.

This resource creates port forwarding for floating IPs. These are sub-resource of exsisting Floating ips,
which requires the service_plugin and extension port_forwarding enabled and that the floating ip is not

associated with a neutron port.

Required Properties

external_portd
External port address to port forward from.
Integer value expected.
Can be updated without replacement.
The value must be in the range 1 to 65535.

floating_ip#

Name or ID of the floating IP create port forwarding on.

String value expected.

Updates cause replacement.
internal_ip_address#

Internal IP address to port forwarded to.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

3.3. Working with Templates

435

Heat Documentation, Release 24.1.0.dev11

internal_port#

Name or ID of the internal_ip_address port.

String value expected.

Can be updated without replacement.

Value must be of type neutron.port
protocol#

Port protocol to forward.

String value expected.

Can be updated without replacement.

Allowed values: tcp, udp, icmp, icmp6, sctp, decp

Optional Properties

internal_port_number#
Internal port number to port forward to.
Integer value expected.
Can be updated without replacement.

The value must be in the range 1 to 65535.

Attributes

show#
Detailed information about resource.

HOT Syntax

436 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

OS::Neutron::IKEPolicy

A resource for IKE policy in Neutron.

The Internet Key Exchange policy identifies the authentication and encryption algorithm used during
phase one and phase two negotiation of a VPN connection.

Optional Properties

auth_algorithm#

Authentication hash algorithm for the ike policy.

String value expected.

Can be updated without replacement.

Defaults to "shal”

Allowed values: shal, sha256, sha384, sha512
descriptions/

Description for the ike policy.

String value expected.

Can be updated without replacement.
encryption_algorithm#

Encryption algorithm for the ike policy.

String value expected.

Can be updated without replacement.

Defaults to "aes-128"

Allowed values: 3des, aes-128, aes-192, aes-256
ike_version#

Version for the ike policy.

String value expected.

Can be updated without replacement.

Defaults to "v1"

Allowed values: v1, v2
lifetimes/

Safety assessment lifetime configuration for the ike policy.

Map value expected.

Can be updated without replacement.

Map properties:

units

Optional.

3.3. Working with Templates 437

Heat Documentation, Release 24.1.0.dev11

Safety assessment lifetime units.
String value expected.
Can be updated without replacement.
Defaults to "seconds™
Allowed values: seconds, kilobytes
value/
Optional.
Safety assessment lifetime value in specified units.
Integer value expected.
Can be updated without replacement.
Defaults to 3600
name#/
Name for the ike policy.
String value expected.
Can be updated without replacement.
pfsii
Perfect forward secrecy in lowercase for the ike policy.
String value expected.
Can be updated without replacement.
Defaults to "group5"
Allowed values: group2, group5, groupl4
phasel_negotiation_mode#
Negotiation mode for the ike policy.
String value expected.
Updates cause replacement.
Defaults to "main"

Allowed values: main

Attributes

auth_algorithm#

The authentication hash algorithm used by the ike policy.

descriptions/
The description of the ike policy.

encryption_algorithm#
The encryption algorithm used by the ike policy.

438

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

ike_version#
The version of the ike policy.

lifetimer/
The safety assessment lifetime configuration for the ike policy.

name/
The name of the ike policy.

pfsii
The perfect forward secrecy of the ike policy.

phasel_negotiation_mode#
The negotiation mode of the ike policy.

show#l
Detailed information about resource.

tenant_idd
The unique identifier of the tenant owning the ike policy.

HOT Syntax

OS::Neutron::IPsecPolicy

A resource for IPsec policy in Neutron.
The IP security policy specifying the authentication and encryption algorithm, and encapsulation mode

used for the established VPN connection.

Optional Properties

auth_algorithm#
Authentication hash algorithm for the ipsec policy.
String value expected.

Updates cause replacement.

3.3. Working with Templates 439

Heat Documentation, Release 24.1.0.dev11

Defaults to "shal”
Allowed values: shal
description/
Description for the ipsec policy.
String value expected.
Can be updated without replacement.
encapsulation_moder/
Encapsulation mode for the ipsec policy.
String value expected.
Updates cause replacement.
Defaults to "tunnel”
Allowed values: tunnel, transport
encryption_algorithm#
Encryption algorithm for the ipsec policy.
String value expected.
Updates cause replacement.
Defaults to "aes-128"
Allowed values: 3des, aes-128, aes-192, aes-256
lifetimes/
Safety assessment lifetime configuration for the ipsec policy.
Map value expected.
Updates cause replacement.
Map properties:
unitsiy
Optional.
Safety assessment lifetime units.
String value expected.
Updates cause replacement.
Defaults to "seconds™
Allowed values: seconds, kilobytes
values
Optional.
Safety assessment lifetime value in specified units.

Integer value expected.

440 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.
Defaults to 3600
name/
Name for the ipsec policy.
String value expected.
Can be updated without replacement.
pfsti
Perfect forward secrecy for the ipsec policy.
String value expected.
Updates cause replacement.
Defaults to "group5"”
Allowed values: group2, group5, groupl4
transform_protocol#
Transform protocol for the ipsec policy.
String value expected.
Updates cause replacement.
Defaults to "esp"

Allowed values: esp, ah, ah-esp

Attributes

auth_algorithm#
The authentication hash algorithm of the ipsec policy.

description
The description of the ipsec policy.

encapsulation_mode#/
The encapsulation mode of the ipsec policy.

encryption_algorithm#
The encryption algorithm of the ipsec policy.

lifetimer/
The safety assessment lifetime configuration of the ipsec policy.

name#/
The name of the ipsec policy.

pfsti
The perfect forward secrecy of the ipsec policy.

show#
Detailed information about resource.

tenant_idd
The unique identifier of the tenant owning the ipsec policy.

3.3. Working with Templates 441

Heat Documentation, Release 24.1.0.dev11

transform_protocol#
The transform protocol of the ipsec policy.

HOT Syntax

0OS::Neutron::IPsecSiteConnection

A resource for IPsec site connection in Neutron.

This resource has details for the site-to-site IPsec connection, including the peer CIDRs, MTU, peer
address, DPD settings and status.

Required Properties

ikepolicy_idd#
Unique identifier for the ike policy associated with the ipsec site connection.
String value expected.
Updates cause replacement.
ipsecpolicy_id#
Unique identifier for the ipsec policy associated with the ipsec site connection.
String value expected.
Updates cause replacement.
peer_addressi/
Remote branch router public IPv4 address or IPv6 address or FQDN.
String value expected.
Updates cause replacement.
peer_cidrsi

Remote subnet(s) in CIDR format.

442 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

List value expected.
Updates cause replacement.
List contents:
Optional.
String value expected.
Updates cause replacement.
Value must be of type net_cidr
peer_id#
Remote branch router identity.
String value expected.
Updates cause replacement.
psk#
Pre-shared key string for the ipsec site connection.
String value expected.
Updates cause replacement.

vpnservice_id#

Unique identifier for the vpn service associated with the ipsec site connection.

String value expected.

Updates cause replacement.

Optional Properties

admin_state_up#/
Administrative state for the ipsec site connection.
Boolean value expected.
Can be updated without replacement.
Defaults to true
description/
Description for the ipsec site connection.
String value expected.
Can be updated without replacement.

dpd#

Dead Peer Detection protocol configuration for the ipsec site connection.

Map value expected.
Updates cause replacement.

Map properties:

3.3. Working with Templates

443

Heat Documentation, Release 24.1.0.dev11

actions#
Optional.
Controls DPD protocol mode.
String value expected.
Updates cause replacement.
Defaults to "hold"
Allowed values: clear, disabled, hold, restart, restart-by-peer
intervald
Optional.
Number of seconds for the DPD delay.
Integer value expected.
Updates cause replacement.
Defaults to 30
timeouts#
Optional.
Number of seconds for the DPD timeout.
Integer value expected.
Updates cause replacement.
Defaults to 120
initiatord
Initiator state in lowercase for the ipsec site connection.
String value expected.
Updates cause replacement.
Defaults to "bi-directional™
Allowed values: bi-directional, response-only
mtuf
Maximum transmission unit size (in bytes) for the ipsec site connection.
Integer value expected.
Updates cause replacement.
Defaults to 1500
name/
Name for the ipsec site connection.
String value expected.

Can be updated without replacement.

444 Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes
admin_state_up#/
The administrative state of the ipsec site connection.

auth_mode#
The authentication mode of the ipsec site connection.

descriptions/
The description of the ipsec site connection.

dpd#
The dead peer detection protocol configuration of the ipsec site connection.

ikepolicy_id#

The unique identifier of ike policy associated with the ipsec site connection.
initiator#

The initiator of the ipsec site connection.

ipsecpolicy_id#
The unique identifier of ipsec policy associated with the ipsec site connection.

mtud
The maximum transmission unit size (in bytes) of the ipsec site connection.

name/
The name of the ipsec site connection.

peer_addressi/
The remote branch router public IPv4 address or IPv6 address or FQDN.

peer_cidrsd
The remote subnet(s) in CIDR format of the ipsec site connection.

peer_id#
The remote branch router identity of the ipsec site connection.

pski
The pre-shared key string of the ipsec site connection.

route_mode#/
The route mode of the ipsec site connection.

show#/
Detailed information about resource.

statusi/
The status of the ipsec site connection.

tenant_idd
The unique identifier of the tenant owning the ipsec site connection.

vpnservice_id#
The unique identifier of vpn service associated with the ipsec site connection.

3.3. Working with Templates 445

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

OS::Neutron::L2Gateway

Available since 12.0.0 (Stein)

A resource for managing Neutron L2 Gateways.

The are a number of use cases that can be addressed by an L2 Gateway API. Most notably in cloud
computing environments, a typical use case is bridging the virtual with the physical. Translate this to
Neutron and the OpenStack world, and this means relying on L2 Gateway capabilities to extend Neutron
logical (overlay) networks into physical (provider) networks that are outside the OpenStack realm.

Required Properties

devicesi
List of gateway devices.
List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
device_name#/

Required.

446 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

The name of the gateway device.
String value expected.
Can be updated without replacement.
interfacesi/
List of gateway device interfaces.
List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
namet/
Required.
The name of the interface on the gateway device.
String value expected.
Can be updated without replacement.
segmentation_idd
A list of segmentation ids of the interface.
List value expected.
Can be updated without replacement.
namet/
A symbolic name for the 12-gateway, which is not required to be unique.
String value expected.

Can be updated without replacement.

Attributes

showii
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 447

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

L

OS::Neutron::L2GatewayConnection

Available since 12.0.0 (Stein)

A resource for managing Neutron L2 Gateway Connections.
The L2 Gateway Connection provides a mapping to connect a Neutron network to a L2 Gateway on a

particular segmentation ID.

Required Properties

12_gateway_id#
A string specifying a id of the 12gateway resource.
String value expected.
Updates cause replacement.
network_id#
A string specifying a id of the network resource to connect to the 12gateway.
String value expected.
Updates cause replacement.

Value must be of type neutron.network

Optional Properties

segmentation_id#
A string specifying a segmentation id for the interface on the 12gateway.
String value expected.

Updates cause replacement.

Attributes

show#
Detailed information about resource.

448 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

0OS::Neutron::MeteringLabel

Available since 2014.1 (Icehouse)

A resource for creating neutron metering label.

The idea is to meter this at the L3 routers levels. The point is to allow operators to configure IP ranges
and to assign a label to them. For example we will be able to set two labels; one for the internal traffic,
and the other one for the external traffic. Each label will measure the traffic for a specific set of IP range.
Then, bandwidth measurement will be sent for each label to the Oslo notification system and could be

collected by Ceilometer.

Optional Properties

descriptions
Description of the metering label.
String value expected.
Updates cause replacement.
namez/
Name of the metering label.
String value expected.
Updates cause replacement.

sharedd

Available since 2015.1 (Kilo)

Whether the metering label should be shared across all tenants.

Boolean value expected.
Updates cause replacement.

Defaults to false

3.3. Working with Templates

449

Heat Documentation, Release 24.1.0.dev11

Attributes

descriptions/
Description of the metering label.

name/
Name of the metering label.

shared#
Shared status of the metering label.

show#
Detailed information about resource.

HOT Syntax

OS::Neutron::MeteringRule

Available since 2014.1 (Icehouse)

A resource to create rule for some label.

Resource for allowing specified label to measure the traffic for a specific set of ip range.

Required Properties

metering_label_id#

The metering label ID to associate with this metering rule.

String value expected.
Updates cause replacement.

remote_ip_prefixi/

Indicates remote IP prefix to be associated with this metering rule.

String value expected.

Updates cause replacement.

450

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Optional Properties

direction#/
The direction in which metering rule is applied, either ingress or egress.
String value expected.
Updates cause replacement.
Defaults to "ingress"
Allowed values: ingress, egress
excluded#

Specify whether the remote_ip_prefix will be excluded or not from traffic counters of the metering label.
For example to not count the traffic of a specific IP address of a range.

Boolean value expected.
Updates cause replacement.

Defaults to "False"

Attributes

direction#/
The direction in which metering rule is applied.

excluded#
Exclude state for cidr.

metering_label_id#
The metering label ID to associate with this metering rule.

remote_ip_prefixd
CIDR to be associated with this metering rule.

show#
Detailed information about resource.

HOT Syntax

3.3. Working with Templates 451

Heat Documentation, Release 24.1.0.dev11

0OS::Neutron::Net

A resource for managing Neutron net.

A network is a virtual isolated layer-2 broadcast domain which is typically reserved to the tenant who
created it, unless the network has been explicitly configured to be shared.

Optional Properties

admin_state_up#/
A boolean value specifying the administrative status of the network.
Boolean value expected.
Can be updated without replacement.
Defaults to true

availability_zone_hints#

Available since 19.0.0 (Zed)

Availability zone candidates for the network. It requires the availability_zone extension to be available.
List value expected.
Updates cause replacement.

dhcp_agent_idsid

The IDs of the DHCP agent to schedule the network. Note that the default policy setting in Neutron
restricts usage of this property to administrative users only.

List value expected.
Can be updated without replacement.

dns_domaind

Available since 7.0.0 (Newton)

DNS domain associated with this network.
String value expected.
Can be updated without replacement.
Value must be of type dns_domain
name/
A string specifying a symbolic name for the network, which is not required to be unique.
String value expected.
Can be updated without replacement.

port_security_enabled#

452 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 5.0.0 (Liberty)

Flag to enable/disable port security on the network. It provides the default value for the attribute of the
ports created on this network.

Boolean value expected.
Can be updated without replacement.

qos_policy#

Available since 6.0.0 (Mitaka)

The name or ID of QoS policy to attach to this network.
String value expected.
Can be updated without replacement.
Value must be of type neutron.qos_policy
shared#

Whether this network should be shared across all tenants. Note that the default policy setting restricts
usage of this attribute to administrative users only.

Boolean value expected.
Can be updated without replacement.
Defaults to false

tagsii

Available since 9.0.0 (Pike)

The tags to be added to the network.
List value expected.
Can be updated without replacement.
List contents:
Optional.
String value expected.
Can be updated without replacement.
tenant_idd#

The ID of the tenant which will own the network. Only administrative users can set the tenant identifier;
this cannot be changed using authorization policies.

String value expected.
Updates cause replacement.

value_specst/

3.3. Working with Templates 453

Heat Documentation, Release 24.1.0.dev11

Extra parameters to include in the request. Parameters are often specific to installed hardware or exten-

sions.
Map value expected.
Can be updated without replacement.

Defaults to {3}

Attributes

admin_state_up#
The administrative status of the network.

12_adjacency#

Available since 9.0.0 (Pike)

A boolean value for L2 adjacency, True means that you can expect L2 connectivity throughout the

Network.

mtui

Available since 5.0.0 (Liberty)

The maximum transmission unit size(in bytes) for the network.

nameii
The name of the network.

port_security_enabled#

Awailable since 5.0.0 (Liberty)

Port security enabled of the network.

qos_policy_id#

Available since 6.0.0 (Mitaka)

The QoS policy ID attached to this network.

segmentst/

Available since 11.0.0 (Rocky)

The segments of this network.

showii
Detailed information about resource.

statuss
The status of the network.

454

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

subnets#/
Subnets of this network.

tenant_idd
The tenant owning this network.

HOT Syntax

heat_template_version

resources

type

properties
admin_state_up
availability_zone_hints
dhcp_agent_ids
dns_domain
name
port_security_enabled
gos_policy
shared
tags
tenant_id
value_specs

OS::Neutron::NetworkGateway

(Available since 2014.1 (Icehouse))

Network Gateway resource in Neutron Network Gateway.

Resource for connecting internal networks with specified devices.

Required Properties

devices#/
Device info for this network gateway.
List value expected.
Can be updated without replacement.
The length must be at least 1.
List contents:
Map value expected.
Can be updated without replacement.

Map properties:

3.3. Working with Templates 455

Heat Documentation, Release 24.1.0.dev11

idd
Required.
The device id for the network gateway.
String value expected.
Can be updated without replacement.
interface_name#
Required.
The interface name for the network gateway.
String value expected.

Can be updated without replacement.

Optional Properties

connections#/
Connection info for this network gateway.
List value expected.
Can be updated without replacement.
Defaults to {}
List contents:
Map value expected.
Can be updated without replacement.
Map properties:

networkd

Available since 2014.2 (Juno)

Required.

The internal network to connect on the network gateway.

String value expected.

Can be updated without replacement.

Value must be of type neutron.network
segmentation_id#

Optional.

The id for L2 segment on the external side of the network gateway. Must be specified when
using vlan.

Integer value expected.

Can be updated without replacement.

456 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

The value must be in the range 0 to 4094.

segmentation_typer

Optional.

L2 segmentation strategy on the external side of the network gateway.

String value expected.

Can be updated without replacement.

Defaults to "flat"
Allowed values: flat, vlan
name/
The name of the network gateway.
String value expected.

Can be updated without replacement.

Attributes

defaults#
A boolean value of default flag.

show#

Detailed information about resource.

HOT Syntax

OS::Neutron::Port

A resource for managing Neutron ports.

A portrepresents a virtual switch port on a logical network switch. Virtual instances attach their interfaces
into ports. The logical port also defines the MAC address and the IP address(es) to be assigned to the
interfaces plugged into them. When IP addresses are associated to a port, this also implies the port is
associated with a subnet, as the IP address was taken from the allocation pool for a specific subnet.

3.3. Working with Templates

457

Heat Documentation, Release 24.1.0.dev11

Required Properties

networki/

Available since 2014.2 (Juno)

Network this port belongs to. If you plan to use current port to assign Floating IP, you should specify
fixed_ips with subnet. Note if this changes to a different network update, the port will be replaced.

String value expected.
Updates cause replacement.

Value must be of type neutron.network

Optional Properties

admin_state_up#/
The administrative state of this port.
Boolean value expected.
Can be updated without replacement.
Defaults to true
allowed_address_pairs#
Additional MAC/IP address pairs allowed to pass through the port.
List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
ip_addressi
Required.
IP address to allow through this port.
String value expected.
Can be updated without replacement.
Value must be of type ip_or_cidr
mac_address#
Optional.
MAC address to allow through this port.
String value expected.

Can be updated without replacement.

458 Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

Value must be of type mac_addr

binding:vnic_type#/

Available since 2015.1 (Kilo)

The vnic type to be bound on the neutron port. To support SR-IOV PCI passthrough networking, you
can request that the neutron port to be realized as normal (virtual nic), direct (pci passthrough), or
macvtap (virtual interface with a tap-like software interface). Note that this only works for Neutron
deployments that support the bindings extension.

String value expected.
Can be updated without replacement.

Defaults to "normal"

Allowed values: normal, direct, macvtap, direct-physical, baremetal, virtio-forwarder, smart-nic

device_idd
Device ID of this port.
String value expected.
Can be updated without replacement.
Defaults to ""

device_owner#

Name of the network owning the port.
work:router_interface or network:dhcp.

String value expected.
Can be updated without replacement.
Defaults to ""

dns_name#/

Available since 7.0.0 (Newton)

DNS name associated with the port.

String value expected.

Can be updated without replacement.

Value must be of type dns_name
fixed_ips#

Desired IPs for this port.

List value expected.

Can be updated without replacement.

List contents:

The value is typically network:floatingip or net-

3.3. Working with Templates

459

Heat Documentation, Release 24.1.0.dev11

Map value expected.
Can be updated without replacement.
Map properties:
ip_address#
Optional.
IP address desired in the subnet for this port.
String value expected.
Can be updated without replacement.
Value must be of type ip_addr

subneti#

Available since 2014.2 (Juno)

Optional.

Subnet in which to allocate the IP address for this port.
String value expected.

Can be updated without replacement.

Value must be of type neutron.subnet

mac_addressii

MAC address to give to this port. The default update policy of this property in neutron is that allow

admin role only.

String value expected.

Updates cause replacement.

Value must be of type mac_addr
name#/

A symbolic name for this port.

String value expected.

Can be updated without replacement.

no_fixed_ips#

Available since 16.0.0 (Wallaby)

Flag to disable all fixed ips on the port.
Boolean value expected.
Can be updated without replacement.

Defaults to false

460

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

port_security_enabled#

Available since 5.0.0 (Liberty)

Flag to enable/disable port security on the port. When disable this feature(set it to False), there will be
no packages filtering, like security-group and address-pairs.

Boolean value expected.
Can be updated without replacement.

propagate_uplink_status#/

Available since 15.0.0 (Victoria)

Flag to enable/disable propagate uplink status on the port.
Boolean value expected.
Can be updated without replacement.

qos_policy#

Available since 6.0.0 (Mitaka)

The name or ID of QoS policy to attach to this port.

String value expected.

Can be updated without replacement.

Value must be of type neutron.qos_policy
security_groups#

Security group IDs to associate with this port.

List value expected.

Can be updated without replacement.

tagsii

Available since 9.0.0 (Pike)

The tags to be added to the port.
List value expected.
Can be updated without replacement.
List contents:
Optional.
String value expected.

Can be updated without replacement.

3.3. Working with Templates 461

Heat Documentation, Release 24.1.0.dev11

value_specst/
Extra parameters to include in the request.
Map value expected.
Can be updated without replacement.

Defaults to {}

Attributes

admin_state_up#/
The administrative state of this port.

allowed_address_pairsi/

Additional MAC/IP address pairs allowed to pass through a port.

device_idd#
Unique identifier for the device.

device_owner#
Name of the network owning the port.

dns_assignment#

Available since 7.0.0 (Newton)

The DNS assigned to this port.

fixed_ips#
Fixed IP addresses.

mac_address#
MAC address of the port.

name/
Friendly name of the port.

networkd

Available since 11.0.0 (Rocky)

The attributes of the network owning the port. (The full list of response parameters can
be found in the ‘Openstack Networking service API reference <https://docs.openstack.org/api-
ref/network/>‘_.) The following examples demonstrate some (not all) possible expressions. (Ob-
tains the network, the MTU (Maximum transmission unit), the network tags and the 12_adjacency

T3

T3

property): “{get_attr: [<port>, network]}®, “{get_attr: [<port>, network, mtu]}*, “{get_attr:

13

[<port>, network, tags]}; ‘, “{get_attr: [<port>, network, 12_adjacency]}“.

network_id#
Unique identifier for the network owning the port.

port_security_enabled#

462

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 5.0.0 (Liberty)

Port security enabled of the port.

propagate_uplink_statusi#

Available since 15.0.0 (Victoria)

Enable/Disable propagate uplink status for the port.

qos_policy_id#

Available since 6.0.0 (Mitaka)

The QoS policy ID attached to this port.

security_groupsi/
A list of security groups for the port.

show#
Detailed information about resource.

status#/
The status of the port.

subnetsi
A list of all subnet attributes for the port.

tenant_idd
Tenant owning the port.

HOT Syntax

(continues on next page)

3.3. Working with Templates 463

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Neutron::ProviderNet

Available since 2014.1 (Icehouse)

A resource for managing Neutron provider networks.
Provider networks specify details of physical realisation of the existing network.

The default policy usage of this resource is limited to administrators only.

Required Properties

network_type#/
A string specifying the provider network type for the network.
String value expected.
Can be updated without replacement.

Allowed values: local, vlan, vxlan, gre, geneve, flat

Optional Properties

admin_state_up#/
A boolean value specifying the administrative status of the network.
Boolean value expected.
Can be updated without replacement.
Defaults to true

availability_zone_hints#

Available since 19.0.0 (Zed)

Availability zone candidates for the network. It requires the availability_zone extension to be available.
List value expected.
Can be updated without replacement.

dns_domain#

464 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 15.0.0 (Victoria)

DNS domain associated with this network.
String value expected.
Can be updated without replacement.
Value must be of type dns_domain
name#/
A string specifying a symbolic name for the network, which is not required to be unique.
String value expected.
Can be updated without replacement.
physical_networkd#
A string specifying physical network mapping for the network.
String value expected.
Can be updated without replacement.

port_security_enabled#

Available since 8.0.0 (Ocata)

Flag to enable/disable port security on the network. It provides the default value for the attribute of the
ports created on this network.

Boolean value expected.
Can be updated without replacement.

router_external#

Available since 6.0.0 (Mitaka)

Whether the network contains an external router.
Boolean value expected.
Can be updated without replacement.
Defaults to false
segmentation_idd#
A string specifying the segmentation id for the network.
String value expected.
Can be updated without replacement.
sharedd
Whether this network should be shared across all tenants.

Boolean value expected.

3.3. Working with Templates 465

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Defaults to true

tagsii

Available since 12.0.0 (Stein)

The tags to be added to the provider network.

List value expected.
Can be updated without replacement.
List contents:
Optional.
String value expected.
Can be updated without replacement.

tenant_idd

Available since 24.0.0

The ID of the tenant which will own the provider network. Only administrative users can set the tenant

identifier; this cannot be changed using authorization policies.

String value expected.

Updates cause replacement.

Attributes

segmentsti

Available since 16.0.0 (Wallaby)

The segments of this network.

showii
Detailed information about resource.

statuss
The status of the network.

subnets#
Subnets of this network.

HOT Syntax

(continues on next page)

466

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

type
properties
admin_state_up

availability_zone_hints

dns_domain

name
network_type
physical_network

port_security_enabled

router_external
segmentation_id
shared

tags

tenant_id

(continued from previous page)

0S::Neutron::QoSBandwidthLimitRule

(Available since 6.0.0 (Mitaka)

A resource for Neutron QoS bandwidth limit rule.

This rule can be associated with QoS policy, and then the policy can be used by neutron port and network,

to provide bandwidth limit QoS capabilities.

The default policy usage of this resource is limited to administrators only.

Required Properties

max_kbps#
Max bandwidth in kbps.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.
policy#

ID or name of the QoS policy.

String value expected.

Updates cause replacement.

Value must be of type neutron.qos_policy

3.3. Working with Templates

467

Heat Documentation, Release 24.1.0.dev11

Optional Properties

direction#

Available since 13.0.0 (Train)

Traffic direction from the point of view of the port.

String value expected.

Can be updated without replacement.

Defaults to "egress"

Allowed values: egress, ingress
max_burst_kbpsi#

Max burst bandwidth in kbps.

Integer value expected.

Can be updated without replacement.

Defaults to ®

The value must be at least 0.
tenant_idd

The owner tenant ID of this rule.

String value expected.

Updates cause replacement.

Attributes

show#
Detailed information about resource.

HOT Syntax

468 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

OS::Neutron::QoSDscpMarkingRule

Available since 7.0.0 (Newton)

A resource for Neutron QoS DSCP marking rule.

This rule can be associated with QoS policy, and then the policy can be used by neutron port and network,
to provide DSCP marking QoS capabilities.

The default policy usage of this resource is limited to administrators only.

Required Properties

dscp_markd

DSCP mark between 0 and 56, except 2-6, 42, 44, and 50-54.

Integer value expected.

Can be updated without replacement.

Allowed values: 0, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 46, 48, 56
policy#

ID or name of the QoS policy.

String value expected.

Updates cause replacement.

Value must be of type neutron.qos_policy

Optional Properties

tenant_idd
The owner tenant ID of this rule.
String value expected.

Updates cause replacement.

Attributes

show#l
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 469

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

0S::Neutron::QoSMinimumBandwidthRule

Available since 14.0.0 (Ussuri)

A resource for guaranteeing bandwidth.

This rule can be associated with a QoS policy, and then the policy can be used by a neutron port to provide
guaranteed bandwidth QoS capabilities.

Depending on drivers the guarantee may be enforced on two levels. First when a server is placed (sched-
uled) on physical infrastructure and/or second in the data plane of the physical hypervisor. For details
please see Neutron documentation:

https://docs.openstack.org/neutron/latest/admin/config-qos-min-bw.html

The default policy usage of this resource is limited to administrators only.

Required Properties

min_Kkbps#
Min bandwidth in kbps.
Integer value expected.
Can be updated without replacement.
The value must be at least O.
policy#
ID or name of the QoS policy.
String value expected.
Updates cause replacement.

Value must be of type neutron.qos_policy

Optional Properties

direction#
Traffic direction from the point of view of the port.
String value expected.
Can be updated without replacement.
Defaults to "egress"
Allowed values: egress, ingress

tenant_idd

470 Chapter 3. Using Heat

https://docs.openstack.org/neutron/latest/admin/config-qos-min-bw.html

Heat Documentation, Release 24.1.0.dev11

The owner tenant ID of this rule.
String value expected.

Updates cause replacement.

Attributes

show#
Detailed information about resource.

HOT Syntax

0OS::Neutron::QoSMinimumPacketRateRule

Available since 19.0.0 (Zed)

A resource for guaranteeing packet rate.

This rule can be associated with a QoS policy, and then the policy can be used by a neutron port to provide
guaranteed packet rate QoS capabilities.

Depending on drivers the guarantee may be enforced on two levels. First when a server is placed (sched-
uled) on physical infrastructure and/or second in the data plane of the physical hypervisor. For details
please see Neutron documentation:

https://docs.openstack.org/neutron/latest/admin/config-qos-min-pps.html

The default policy usage of this resource is limited to administrators only.

Required Properties

min_kppst/
Min packet rate in kpps.
Integer value expected.
Can be updated without replacement.
The value must be at least 0.

policy#

3.3. Working with Templates 471

https://docs.openstack.org/neutron/latest/admin/config-qos-min-pps.html

Heat Documentation, Release 24.1.0.dev11

ID or name of the QoS policy.
String value expected.
Updates cause replacement.

Value must be of type neutron.qos_policy

Optional Properties

direction#/
Traffic direction from the point of view of the port.
String value expected.
Can be updated without replacement.
Defaults to "egress"”
Allowed values: any, egress, ingress
tenant_idd
The owner tenant ID of this rule.
String value expected.

Updates cause replacement.

Attributes

show#l
Detailed information about resource.

HOT Syntax

OS::Neutron::QoSPolicy

Available since 6.0.0 (Mitaka)

A resource for Neutron QoS Policy.

472 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

This QoS policy can be associated with neutron resources, such as port and network, to provide QoS
capabilities.

The default policy usage of this resource is limited to administrators only.

Optional Properties

descriptions/
The description for the QoS policy.
String value expected.
Can be updated without replacement.
name#/
The name for the QoS policy.
String value expected.
Can be updated without replacement.
sharedd
Whether this QoS policy should be shared to other tenants.
Boolean value expected.
Can be updated without replacement.
Defaults to false
tenant_idd
The owner tenant ID of this QoS policy.
String value expected.

Updates cause replacement.

Attributes

rules#
A list of all rules for the QoS policy.

show#l
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 473

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Neutron::Quota

Available since 8.0.0 (Ocata)

A resource for managing neutron quotas.

Neutron Quota is used to manage operational limits for projects. Currently, this resource can manage
Neutrons quotas for:

* subnet

* network

* floatingip

* security_group_rule
* security_group

* router

* port

* subnetpool

* rbac_policy

Note that default neutron security policy usage of this resource is limited to being used by administrators
only. Administrators should be careful to create only one Neutron Quota resource per project, otherwise
it will be hard for them to manage the quota properly.

Required Properties

projecti
Name or id of the project to set the quota for.
String value expected.
Updates cause replacement.

Value must be of type keystone.project

Optional Properties

floatingips/
Quota for the number of floating IPs. Setting -1 means unlimited.
Integer value expected.
Can be updated without replacement.

The value must be at least -1.

474 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

network#/
Quota for the number of networks. Setting -1 means unlimited.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
porti
Quota for the number of ports. Setting -1 means unlimited.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.

rbac_policy#

Available since 12.0.0 (Stein)

Quota for the number of rbac policies. Setting -1 means unlimited.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
router
Quota for the number of routers. Setting -1 means unlimited.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
security_group#
Quota for the number of security groups. Setting -1 means unlimited.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.

security_group_ruler

Quota for the number of security group rules. Setting -1 means unlimited.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.
subnet#

Quota for the number of subnets. Setting -1 means unlimited.

3.3. Working with Templates

475

Heat Documentation, Release 24.1.0.dev11

Integer value expected.
Can be updated without replacement.

The value must be at least -1.

subnetpool#
(Available since 12.0.0 (Stein))

Quota for the number of subnet pools. Setting -1 means unlimited.
Integer value expected.
Can be updated without replacement.

The value must be at least -1.

Attributes

show#
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
floatingip
network
port
project
rbac_policy
router
security_group
security_group_rule
subnet
subnetpool

OS::Neutron::RBACPolicy

[Available since 6.0.0 (Mitaka)]

A Resource for managing RBAC policy in Neutron.

This resource creates and manages Neutron RBAC policy, which allows to share Neutron networks and
gos-policies to subsets of tenants.

476 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Required Properties

action#/

Action for the RBAC policy. The allowed actions differ for different object types - only network objects

can have an access_as_external action.

String value expected.

Updates cause replacement.

Allowed values: access_as_shared, access_as_external
object_id#

ID or name of the RBAC object.

String value expected.

Updates cause replacement.
object_typed

Type of the object that RBAC policy affects.

String value expected.

Updates cause replacement.

Allowed values: network, qos_policy

target_tenanti

ID of the tenant to which the RBAC policy will be enforced.

String value expected.

Can be updated without replacement.

Optional Properties

tenant_idd#

The owner tenant ID. Only required if the caller has an administrative role and wants to create a RBAC

for another tenant.
String value expected.

Updates cause replacement.

Attributes

showii
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

477

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Neutron::Router

A resource that implements Neutron router.

Router is a physical or virtual network device that passes network traffic between different networks.

Optional Properties

admin_state_up#/
The administrative state of the router.
Boolean value expected.
Can be updated without replacement.
Defaults to true

availability_zone_hints#

Available since 19.0.0 (Zed)

Availability zone candidates for the router. It requires the availability_zone extension to be available.

List value expected.
Can be updated without replacement.

distributedsd

Available since 2015.1 (Kilo)

Indicates whether or not to create a distributed router. NOTE: The default policy setting in Neutron
restricts usage of this property to administrative users only. This property can not be used in

conjunction with the L3 agent ID.
Boolean value expected.
Updates cause replacement.

external_gateway_infoi/

External network gateway configuration for a router.

Map value expected.

Can be updated without replacement.

478

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Map properties:
enable_snati/
Optional.

Enables Source NAT on the router gateway. NOTE: The default policy setting in Neutron restricts
usage of this property to administrative users only.

Boolean value expected.
Can be updated without replacement.

external_fixed_ipsi#/

Available since 6.0.0 (Mitaka)

External fixed IP addresses for the gateway.
List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
ip_address#
Optional.
External fixed IP address.
String value expected.
Can be updated without replacement.
Value must be of type ip_addr
subnet?
Optional.
Subnet of external fixed IP address.
String value expected.
Can be updated without replacement.
Value must be of type neutron.subnet
networkd
Required.
ID or name of the external network for the gateway.
String value expected.
Can be updated without replacement.

haif

3.3. Working with Templates 479

Heat Documentation, Release 24.1.0.dev11

Available since 2015.1 (Kilo)

Indicates whether or not to create a highly available router. NOTE: The default policy setting in Neutron
restricts usage of this property to administrative users only. And now neutron do not support

distributed and ha at the same time.
Boolean value expected.
Updates cause replacement.

13_agent_ids#

Available since 2015.1 (Kilo)

ID list of the L3 agent. User can specify multi-agents for highly available router. NOTE: The default
policy setting in Neutron restricts usage of this property to administrative users only.

List value expected.
Can be updated without replacement.
List contents:

Optional.

String value expected.

Can be updated without replacement.

name#/
The name of the router.
String value expected.
Can be updated without replacement.

tagsii

Available since 9.0.0 (Pike)

The tags to be added to the router.
List value expected.
Can be updated without replacement.
List contents:

Optional.

String value expected.

Can be updated without replacement.

tenant_idd#

480

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 24.0.0
The ID of the tenant which will own the router. Only administrative users can set the tenant identifier;
this cannot be changed using authorization policies.
String value expected.
Updates cause replacement.
value_specst/
Extra parameters to include in the creation request.
Map value expected.
Can be updated without replacement.

Defaults to {}

Attributes

admin_state_up#/
Administrative state of the router.

external_gateway_info/
Gateway network for the router.

name/
Friendly name of the router.

show#
Detailed information about resource.

statusi/
The status of the router.

tenant_idd
Tenant owning the router.

HOT Syntax

(continues on next page)

3.3. Working with Templates 481

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Neutron::Routerinterface

A resource for managing Neutron router interfaces.

Router interfaces associate routers with existing subnets or ports.

Required Properties

router#
The router.
String value expected.
Updates cause replacement.

Value must be of type neutron.router

Optional Properties

portd

Available since 2015.1 (Kilo)

The port, either subnet or port should be specified.
String value expected.
Updates cause replacement.
Value must be of type neutron.port
subnetd
The subnet, either subnet or port should be specified.
String value expected.
Updates cause replacement.

Value must be of type neutron.subnet

Attributes

show#
Detailed information about resource.

482

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

OS::Neutron::SecurityGroup

Available since 2014.1 (Icehouse)

A resource for managing Neutron security groups.

Security groups are sets of IP filter rules that are applied to an instances networking. They are project
specific, and project members can edit the default rules for their group and add new rules sets. All projects
have a default security group, which is applied to instances that have no other security group defined.

Optional Properties

descriptions
Description of the security group.
String value expected.
Can be updated without replacement.
name/
A string specifying a symbolic name for the security group, which is not required to be unique.
String value expected.
Can be updated without replacement.
rulesi/
List of security group rules.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Map value expected.
Can be updated without replacement.

Map properties:

3.3. Working with Templates 483

Heat Documentation, Release 24.1.0.dev11

direction#
Optional.

The direction in which the security group rule is applied. For a compute instance, an ingress
security group rule matches traffic that is incoming (ingress) for that instance. An egress
rule is applied to traffic leaving the instance.

String value expected.

Can be updated without replacement.

Defaults to "ingress"

Allowed values: ingress, egress
ethertypes/

Optional.

Ethertype of the traffic.

String value expected.

Can be updated without replacement.

Defaults to "IPv4"

Allowed values: IPv4, IPv6
port_range_max#

Optional.

The maximum port number in the range that is matched by the security group rule. The
port_range_min attribute constrains the port_range_max attribute. If the protocol is
ICMP, this value must be an ICMP type.

Integer value expected.

Can be updated without replacement.

The value must be in the range 0 to 65535.
port_range_min#

Optional.

The minimum port number in the range that is matched by the security group rule. If
the protocol is TCP or UDP, this value must be less than or equal to the value of the
port_range_max attribute. If the protocol is ICMP, this value must be an ICMP type.

Integer value expected.

Can be updated without replacement.

The value must be in the range 0 to 65535.
protocol#

Optional.

The protocol that is matched by the security group rule. Valid values include tcp, udp, and
icmp.

String value expected.

484 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
remote_group_id#
Optional.

The remote group ID to be associated with this security group rule. If no value is specified
then this rule will use this security group for the remote_group_id. The remote mode
parameter must be set to remote_group_id.

String value expected.

Can be updated without replacement.

Value must be of type neutron.security_group
remote_ip_prefixid

Optional.

The remote IP prefix (CIDR) to be associated with this security group rule.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr
remote_mode#/

Optional.

Whether to specify a remote group or a remote IP prefix.

String value expected.

Can be updated without replacement.

Defaults to "remote_ip_prefix"

Allowed values: remote_ip_prefix, remote_group_id

Attributes

show#l
Detailed information about resource.

HOT Syntax

= —

(continues on next page)

3.3. Working with Templates 485

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

0

OS::Neutron::SecurityGroupRule

Available since 7.0.0 (Newton)

A resource for managing Neutron security group rules.

Rules to use in security group resource.

Required Properties

security_group#
Security group name or ID to add rule.
String value expected.
Updates cause replacement.

Value must be of type neutron.security_group

Optional Properties

descriptions/
Description of the security group rule.
String value expected.
Updates cause replacement.
direction#/

The direction in which the security group rule is applied. For a compute instance, an ingress security
group rule matches traffic that is incoming (ingress) for that instance. An egress rule is applied to
traffic leaving the instance.

String value expected.

Updates cause replacement.

Defaults to "ingress"

Allowed values: ingress, egress
ethertyper/

Ethertype of the traffic.

String value expected.

Updates cause replacement.

Defaults to "IPv4"

486 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Allowed values: 1Pv4, IPv6
port_range_maxiz/

The maximum port number in the range that is matched by the security group rule. The port_range_min
attribute constrains the port_range_max attribute. If the protocol is ICMP, this value must be an
ICMP code.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 65535.
port_range_min#

The minimum port number in the range that is matched by the security group rule. If the protocol is
TCP or UDP, this value must be less than or equal to the value of the port_range_max attribute. If
the protocol is ICMP, this value must be an ICMP type.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 65535.
protocol#

The protocol that is matched by the security group rule. Allowed values are ah, dccp, egp, esp, gre,
icmp, icmpv6, igmp, ipv6-encap, ipv6-frag, ipv6-icmp, ipv6-nonxt, ipv6-opts, ipvo-route, ospf,
pgm, rsvp, sctp, tcp, udp, udplite, vrrp and integer representations [0-255].

String value expected.
Updates cause replacement.
Defaults to "tcp"

Allowed values: 0, 1,2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,73, 74,75, 76, 77,
78,79, 80, 81, 82, 83, 84, 85, 86, 87, 88, §9, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197,
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216,
217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235,
236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,
255, ah, dccp, egp, esp, gre, icmp, icmpv6, igmp, ipvb-encap, ipv6-frag, ipvb-icmp, ipv6-nonxt,
ipv6-opts, ipv6-route, ospf, pgm, rsvp, sctp, tcp, udp, udplite, vrrp

remote_group#
The remote group name or ID to be associated with this security group rule.
String value expected.
Updates cause replacement.

Value must be of type neutron.security_group

3.3. Working with Templates 487

Heat Documentation, Release 24.1.0.dev11

remote_ip_prefixd
The remote IP prefix (CIDR) to be associated with this security group rule.
String value expected.
Updates cause replacement.

Value must be of type net_cidr

Attributes

showii
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
description
direction
ethertype
port_range_max
port_range_min
protocol
remote_group
remote_ip_prefix
security_group

OS::Neutron::Segment

[Available since 9.0.0 (Pike))

A resource for Neutron Segment.

This requires enabling the segments service plug-in by appending segments to the list of service_plugins
in the neutron.conf.

The default policy usage of this resource is limited to administrators only.

Required Properties

network#
The name/id of network to associate with this segment.
String value expected.

Updates cause replacement.

488 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Value must be of type neutron.network
network_type#/

Type of network to associate with this segment.

String value expected.

Updates cause replacement.

Allowed values: local, vlan, vxlan, gre, geneve, flat

Optional Properties

descriptions

Description of the segment.

String value expected.

Can be updated without replacement.
name#/

Name of the segment.

String value expected.

Can be updated without replacement.

physical_network#

Name of physical network to associate with this segment.

String value expected.

Updates cause replacement.
segmentation_id#

Segmentation ID for this segment.

Integer value expected.

Updates cause replacement.

The value must be at least 1.

Attributes

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

489

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

0OS::Neutron::Subnet

A resource for managing Neutron subnets.

A subnet represents an IP address block that can be used for assigning IP addresses to virtual instances.
Each subnet must have a CIDR and must be associated with a network. IPs can be either selected from
the whole subnet CIDR, or from allocation pools that can be specified by the user.

Required Properties

networkd

Available since 2014.2 (Juno)

The ID of the attached network.
String value expected.
Updates cause replacement.

Value must be of type neutron.network

Optional Properties

allocation_pools#
The start and end addresses for the allocation pools.
List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
end#
Required.
End address for the allocation pool.
String value expected.

Can be updated without replacement.

490 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Value must be of type ip_addr
starti
Required.
Start address for the allocation pool.
String value expected.
Can be updated without replacement.
Value must be of type ip_addr
cidr#
The CIDR.
String value expected.
Updates cause replacement.
Value must be of type net_cidr
dns_nameservers#/
A specified set of DNS name servers to be used.
List value expected.
Can be updated without replacement.
Defaults to []
enable_dhcp#/
Set to true if DHCP is enabled and false if DHCP is disabled.
Boolean value expected.
Can be updated without replacement.
Defaults to true
gateway_ip#

The gateway IP address. Set to any of [null | ~ |] to create/update a subnet without a gateway. If
omitted when creation, neutron will assign the first free IP address within the subnet to the gate-
way automatically. If remove this from template when update, the old gateway IP address will be
detached.

String value expected.

Can be updated without replacement.
host_routes#/

A list of host route dictionaries for the subnet.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

3.3. Working with Templates 491

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Map properties:
destination#/
Required.
The destination for static route.
String value expected.
Can be updated without replacement.
Value must be of type net_cidr
nexthop#d
Required.
The next hop for the destination.
String value expected.
Can be updated without replacement.
Value must be of type ip_addr
ip_version#/
The IP version, which is 4 or 6.
Integer value expected.
Updates cause replacement.
Defaults to 4
Allowed values: 4, 6

ipv6_address_moder#/

Available since 2015.1 (Kilo)

IPv6 address mode.

String value expected.

Updates cause replacement.

Allowed values: dhcpv6-stateful, dhcpv6-stateless, slaac

ipv6_ra_mode#

Available since 2015.1 (Kilo)

IPv6 RA (Router Advertisement) mode.
String value expected.
Updates cause replacement.

Allowed values: dhcpv6-stateful, dhcpv6-stateless, slaac

492 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

name/
The name of the subnet.
String value expected.
Can be updated without replacement.

prefixlend

Available since 6.0.0 (Mitaka)

Prefix length for subnet allocation from subnet pool.
Integer value expected.

Updates cause replacement.

The value must be at least O.

segment/

Available since 11.0.0 (Rocky) - Update allowed since version 11.0.0.

Available since 9.0.0 (Pike)

The name/ID of the segment to associate.
String value expected.

Can be updated without replacement.
Value must be of type neutron.segment

subnetpool#

Available since 6.0.0 (Mitaka)

The name or ID of the subnet pool.
String value expected.

Updates cause replacement.

Value must be of type neutron.subnetpool

tagsii

Available since 9.0.0 (Pike)

The tags to be added to the subnet.
List value expected.
Can be updated without replacement.

List contents:

3.3. Working with Templates

493

Heat Documentation, Release 24.1.0.dev11

Optional.
String value expected.
Can be updated without replacement.

tenant_idd#

The ID of the tenant who owns the network. Only administrative users can specify a tenant ID other

than their own.
String value expected.
Updates cause replacement.
value_specst/
Extra parameters to include in the request.
Map value expected.
Can be updated without replacement.

Defaults to {}

Attributes

allocation_pools#
Ip allocation pools and their ranges.

cidri#
CIDR block notation for this subnet.

dns_nameserversi
List of dns nameservers.

enable_dhcp#

true if DHCP is enabled for this subnet; false otherwise.

gateway_ip#
Ip of the subnets gateway.

host_routesi/
Additional routes for this subnet.

ip_version#
Ip version for the subnet.

name/
Friendly name of the subnet.

network_id#
Parent network of the subnet.

show#
Detailed information about resource.

tenant_idd
Tenant owning the subnet.

494

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

heat_template_version

resources

type
properties

allocation_pools "start" "end"
—"end"

cidr

dns_nameservers

enable_dhcp

gateway_ip

host_routes "destination'
o "nexthop"

ip_version

ipv6_address_mode

ipv6_ra_mode

name

network

prefixlen

segment

subnetpool

tags

tenant_id

value_specs

"nexthop'

"start"

"destination

0OS::Neutron::SubnetPool

(Available since 6.0.0 (Mitaka)

A resource that implements neutron subnet pool.

This resource can be used to create a subnet pool with a large block of addresses and create subnets from

it.
Required Properties

prefixes#
List of subnet prefixes to assign.
List value expected.
Can be updated without replacement.
The length must be at least 1.
List contents:

Optional.

3.3. Working with Templates

495

Heat Documentation, Release 24.1.0.dev11

String value expected.
Can be updated without replacement.

Value must be of type net_cidr

Optional Properties

address_scope/
An address scope ID to assign to the subnet pool.
String value expected.
Can be updated without replacement.
Value must be of type neutron.address_scope
default_prefixlen#

The size of the prefix to allocate when the cidr or prefixlen attributes are not specified while creating a
subnet.

Integer value expected.
Can be updated without replacement.
The value must be at least 0.
default_quotard
A per-tenant quota on the prefix space that can be allocated from the subnet pool for tenant subnets.
Integer value expected.
Can be updated without replacement.
The value must be at least O.
is_defaultd

Whether this is default IPv4/IPv6 subnet pool. There can only be one default subnet pool for each IP
family. Note that the default policy setting restricts administrative users to set this to True.

Boolean value expected.
Can be updated without replacement.
Defaults to false
max_prefixlen#
Maximum prefix size that can be allocated from the subnet pool.
Integer value expected.
Can be updated without replacement.
The value must be at least 0.
min_prefixlend
Smallest prefix size that can be allocated from the subnet pool.

Integer value expected.

496 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
The value must be at least 0.
name/
Name of the subnet pool.
String value expected.
Can be updated without replacement.
shared#

Whether the subnet pool will be shared across all tenants. Note that the default policy setting restricts
usage of this attribute to administrative users only.

Boolean value expected.
Updates cause replacement.
Defaults to false

tagsii

Available since 9.0.0 (Pike)

The tags to be added to the subnetpool.
List value expected.
Can be updated without replacement.
List contents:
Optional.
String value expected.
Can be updated without replacement.
tenant_idd

The ID of the tenant who owns the subnet pool. Only administrative users can specify a tenant ID other
than their own.

String value expected.

Updates cause replacement.

Attributes

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 497

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Neutron::TaaS::TapFlow

Available since 12.0.0 (Stein)

A resource for neutron tap-as-a-service tap-flow.

This plug-in requires neutron-taas. So to enable this plug-in, install this library and restart the heat-
engine.

A Tap-Flow represents the port from which the traffic needs to be mirrored.

Required Properties

portd
ID or name of the tap-flow neutron port.
String value expected.
Updates cause replacement.
Value must be of type neutron.port
tap_servicer/
ID or name of the neutron tap-service.
String value expected.
Updates cause replacement.

Value must be of type neutron.taas.tap_service

498 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Optional Properties

descriptions/
Description for the Tap-Flow.
String value expected.
Can be updated without replacement.
Defaults to "'

direction#

The Direction to capture the traffic on.

String value expected.

Updates cause replacement.

Defaults to "BOTH"

Allowed values: IN, OUT, BOTH
name/

Name for the Tap-Flow.

String value expected.

Can be updated without replacement.

Defaults to ""

vlan_filter#

Comma separated list of VLANS, data for which needs to be captured on probe VM.

String value expected.

Updates cause replacement.

Value must match pattern: M([0-9]+(-[0-9]+)D)(,([0-9]+(-[0-9]+)?))*$

Attributes

show#

Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

499

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Neutron::TaaS::TapService

Available since 12.0.0 (Stein)

A resource for neutron tap-as-a-service tap-service.

This plug-in requires neutron-taas. So to enable this plug-in, install this library and restart the heat-
engine.

A Tap-Service represents the port on which the mirrored traffic is delivered. Any VM that uses the
mirrored data is attached to this port.

Required Properties

portd
ID or name of the tap-service neutron port.
String value expected.
Updates cause replacement.

Value must be of type neutron.port

Optional Properties

descriptions
Description for the Tap-Service.
String value expected.
Can be updated without replacement.
Defaults to ""
name#/
Name for the Tap-Service.
String value expected.
Can be updated without replacement.

Defaults to """

Attributes

show#
Detailed information about resource.

500 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

OS::Neutron::Trunk

Available since 9.0.0 (Pike)

A resource for managing Neutron trunks.

Requires Neutron Trunk Extension to be enabled:

$ openstack extension show trunk

The network trunk service allows multiple networks to be connected to an instance using a single virtual
NIC (vNIC). Multiple networks can be presented to an instance by connecting the instance to a single
port.

Users can create a port, associate it with a trunk (as the trunks parent) and launch an instance on that
port. Users can dynamically attach and detach additional networks without disrupting operation of the
instance.

Every trunk has a parent port and can have any number (0, 1,) of subports. The parent port is the port
that the instance is directly associated with and its traffic is always untagged inside the instance. Users
must specify the parent port of the trunk when launching an instance attached to a trunk.

A network presented by a subport is the network of the associated port. When creating a subport, a
segmentation_type and segmentation_id may be required by the driver so the user can distinguish
the networks inside the instance. As of release Pike only segmentation_type vlan is supported.
segmentation_id defines the segmentation ID on which the subport network is presented to the in-
stance.

Note that some Neutron backends (primarily Open vSwitch) only allow trunk creation before an instance
is booted on the parent port. To avoid a possible race condition when booting an instance with a trunk it
is strongly recommended to refer to the trunks parent port indirectly in the template via get_attr. For
example:

(continues on next page)

3.3. Working with Templates 501

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Though other Neutron backends may tolerate the direct port reference (and the possible reverse ordering
of API requests implied) its a good idea to avoid writing Neutron backend specific templates.

Required Properties

portd
ID or name of a port to be used as a parent port.
String value expected.
Updates are not supported. Resource update will fail on any attempt to update this property.

Value must be of type neutron.port

Optional Properties

admin_state_up#/
Enable/disable subport addition, removal and trunk delete.
Boolean value expected.
Can be updated without replacement.
description#/
Description for the trunk.
String value expected.
Can be updated without replacement.
name/
A string specifying a symbolic name for the trunk, which is not required to be unige.
String value expected.
Can be updated without replacement.
sub_portsi
List with O or more map elements containing subport details.
List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:

portid

502 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Required.

ID or name of a port to be used as a subport.

String value expected.

Can be updated without replacement.

Value must be of type neutron.port
segmentation_id#

Required.

The segmentation ID on which the subport network is presented to the instance.

Integer value expected.

Can be updated without replacement.

The value must be in the range 1 to 4094.
segmentation_typer

Required.

Segmentation type to be used on the subport.

String value expected.

Can be updated without replacement.

Allowed values: vlan

Attributes

port_idd
ID or name of a port used as a parent port.

show#
Detailed information about resource.

HOT Syntax

3.3. Working with Templates 503

Heat Documentation, Release 24.1.0.dev11

0OS::Neutron::VPNService

A resource for VPN service in Neutron.

VPN service is a high level object that associates VPN with a specific subnet and router.

Required Properties

router#

Available since 2015.1 (Kilo)

The router to which the vpn service will be inserted.

String value expected.
Updates cause replacement.
Value must be of type neutron.router

subneti/

Available since 2014.2 (Juno)

Subnet in which the vpn service will be created.
String value expected.
Updates cause replacement.

Value must be of type neutron.subnet

Optional Properties

admin_state_up#/
Administrative state for the vpn service.
Boolean value expected.
Can be updated without replacement.
Defaults to true
descriptions/
Description for the vpn service.
String value expected.
Can be updated without replacement.
name#/
Name for the vpn service.
String value expected.

Can be updated without replacement.

504

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes
admin_state_up#/
The administrative state of the vpn service.

descriptions
The description of the vpn service.

name#/
The name of the vpn service.

router_id#
The unique identifier of the router to which the vpn service was inserted.

show#
Detailed information about resource.

statusi/
The status of the vpn service.

subnet_id#
The unique identifier of the subnet in which the vpn service was created.

tenant_idd
The unique identifier of the tenant owning the vpn service.

HOT Syntax

OS::Nova::Flavor

Available since 2014.2 (Juno)

A resource for creating OpenStack virtual hardware templates.

Due to default nova security policy usage of this resource is limited to being used by administrators only.
The rights may also be delegated to other users by redefining the access controls on the nova-api server.

Note that the current implementation of the Nova Flavor resource does not allow specifying the name and
flavorid properties for the resource. This is done to avoid potential naming collision upon flavor creation
as all flavor have a global scope.

3.3. Working with Templates 505

Heat Documentation, Release 24.1.0.dev11

Required Properties

ram#
Memory in MB for the flavor.
Integer value expected.
Updates cause replacement.
vepusl
Number of VCPUs for the flavor.
Integer value expected.

Updates cause replacement.

Optional Properties

disk#

Size of local disk in GB. The 0 size is a special case that uses the native base image size as the size of
the ephemeral root volume.

Integer value expected.
Updates cause replacement.
Defaults to ®
ephemerald
Size of a secondary ephemeral data disk in GB.
Integer value expected.
Updates cause replacement.
Defaults to 0
extra_specsi
Key/Value pairs to extend the capabilities of the flavor.
Map value expected.
Can be updated without replacement.

flavoridd

Available since 7.0.0 (Newton)

Unique ID of the flavor. If not specified, an UUID will be auto generated and used.
String value expected.
Updates cause replacement.

is_public#

506 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 6.0.0 (Mitaka)

Scope of flavor accessibility. Public or private. Default value is True, means public, shared across all
projects.

Boolean value expected.
Updates cause replacement.
Defaults to true

nameii

Available since 7.0.0 (Newton)

Name of the flavor.
String value expected.
Updates cause replacement.
rxtx_factord
RX/TX factor.
Number value expected.
Updates cause replacement.
Defaults to 1.0
swapi
Swap space in MB.
Integer value expected.
Updates cause replacement.
Defaults to ®

tenantsi

Available since 8.0.0 (Ocata)

List of tenants.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.

Value must be of type keystone.project

3.3. Working with Templates 507

Heat Documentation, Release 24.1.0.dev11

Attributes
extra_specst/
Available since 7.0.0 (Newton)
Extra specs of the flavor in key-value pairs.
is_public#
Available since 6.0.0 (Mitaka)

Whether the flavor is shared across all projects.

show#
Detailed information about resource.

HOT Syntax

OS::Nova::HostAggregate

Available since 6.0.0 (Mitaka)

A resource for further partition an availability zone with hosts.

While availability zones are visible to users, host aggregates are only visible to administrators. Host
aggregates started out as a way to use Xen hypervisor resource pools, but has been generalized to provide
a mechanism to allow administrators to assign key-value pairs to groups of machines. Each node can
have multiple aggregates, each aggregate can have multiple key-value pairs, and the same key-value pair
can be assigned to multiple aggregate. This information can be used in the scheduler to enable advanced
scheduling, to set up xen hypervisor resources pools or to define logical groups for migration.

508 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Required Properties

namet/
Name for the aggregate.
String value expected.

Can be updated without replacement.

Optional Properties

availability_zone#/
Name for the availability zone.
String value expected.
Can be updated without replacement.
hostsi/
List of hosts to join aggregate.
List value expected.
Can be updated without replacement.
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type nova.host
metadatar/
Arbitrary key/value metadata to store information for aggregate.
Map value expected.
Can be updated without replacement.

Defaults to {}

Attributes

showii
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 509

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Nova::KeyPair

Available since 2014.1 (Icehouse)

A resource for creating Nova key pairs.
A keypair is a ssh key that can be injected into a server on launch.

Note that if a new key is generated setting save_private_key to True results in the system saving the
private key which can then be retrieved via the private_key attribute of this resource.

Setting the public_key property means that the private_key attribute of this resource will always return
an empty string regardless of the save_private_key setting since there will be no private key data to save.

Required Properties

name/
The name of the key pair.
String value expected.
Updates cause replacement.

The length must be in the range 1 to 255.

Optional Properties

public_key#/

The public key. This allows users to supply the public key from a pre-existing key pair. In Nova api
version < 2.92, if not supplied, a new key pair will be generated. This property is required since
Nova api version 2.92.

String value expected.
Updates cause replacement.
save_private_key#/
True if the system should remember a generated private key; False otherwise.
Boolean value expected.
Updates cause replacement.
Defaults to false

typett

510 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 8.0.0 (Ocata)

Keypair type. Supported since Nova api version 2.2.
String value expected.

Updates cause replacement.

Allowed values: ssh, x509

useri

Available since 9.0.0 (Pike)
ID or name of user to whom to add key-pair. The usage of this property is limited to being used by
administrators only. Supported since Nova api version 2.10.
String value expected.
Updates cause replacement.

Value must be of type keystone.user

Attributes

private_key#
The private key if it has been saved.

public_key#/
The public key.

show#l
Detailed information about resource.

HOT Syntax

3.3. Working with Templates 511

Heat Documentation, Release 24.1.0.dev11

0S::Nova::Quota

Available since 8.0.0 (Ocata)

A resource for creating nova quotas.

Nova Quota is used to manage operational limits for projects. Currently, this resource can manage Novas
quotas for:

cores
fixed_ips

floating_ips

instances

injected_files
injected_file_content_bytes
injected_file_path_bytes
key_pairs

metadata_items

ram

security_groups
security_group_rules
server_groups

server_group_members

Note that default nova security policy usage of this resource is limited to being used by administrators
only. Administrators should be careful to create only one Nova Quota resource per project, otherwise it

will be hard for them to manage the quota properly.

Required Properties

projecti

Name or id of the project to set the quota for.

String value expected.

Updates cause replacement.

Value must be of type keystone.project

Optional Properties

coresii

Quota for the number of cores. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

512

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

The value must be at least -1.
fixed_ips#
Quota for the number of fixed IPs. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
floating_ipsi#
Quota for the number of floating IPs. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
instances#/
Quota for the number of instances. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
key_pairsi#
Quota for the number of key pairs. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
metadata_items#
Quota for the number of metadata items. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
ram#
Quota for the amount of ram (in megabytes). Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
security_group_rules#
Quota for the number of security group rules. Setting the value to -1 removes the limit.

Integer value expected.

3.3. Working with Templates

513

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
The value must be at least -1.
security_groupsi
Quota for the number of security groups. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
server_group_members#
Quota for the number of server group members. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
server_groups#
Quota for the number of server groups. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.

injected_file_content_bytes#

DEPRECATED since 14.0.0 (Ussuri) - File injection is deprecated from compute REST API
0OS::Nova::Quota resource will not support it in the future.

Quota for the number of injected file content bytes. Setting the value to -1 removes the limit.
Integer value expected.

Can be updated without replacement.

The value must be at least -1.

injected_file_path_bytes#

DEPRECATED since 14.0.0 (Ussuri) - File injection is deprecated from compute REST API
0OS::Nova::Quota resource will not support it in the future.

Quota for the number of injected file path bytes. Setting the value to -1 removes the limit.
Integer value expected.

Can be updated without replacement.

The value must be at least -1.

injected_files#/

514 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

DEPRECATED since 14.0.0 (Ussuri) - File injection is deprecated from compute REST API
OS::Nova::Quota resource will not support it in the future.

Quota for the number of injected files. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.

The value must be at least -1.

Attributes

showii
Detailed information about resource.

HOT Syntax

0OS::Nova::Server

A resource for managing Nova instances.

A Server resource manages the running virtual machine instance within an OpenStack cloud.

Required Properties

flavori
The ID or name of the flavor to boot onto.
String value expected.

Can be updated without replacement.

3.3. Working with Templates 515

Heat Documentation, Release 24.1.0.dev11

Value must be of type nova.flavor

Optional Properties

admin_passi/
The administrator password for the server.
String value expected.
Can be updated without replacement.
availability_zone#/
Name of the availability zone for server placement.
String value expected.
Updates cause replacement.
block_device_mapping/
Block device mappings for this server.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
delete_on_termination#
Optional.
Indicate whether the volume should be deleted when the server is terminated.
Boolean value expected.
Updates cause replacement.
device_name#/
Required.

A device name where the volume will be attached in the system at /dev/device_name. This
value is typically vda.

String value expected.
Updates cause replacement.
snapshot_id#
Optional.
The ID of the snapshot to create a volume from.
String value expected.

Updates cause replacement.

516 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Value must be of type cinder.snapshot
volume_id#

Optional.

The ID of the volume to boot from. Only one of volume_id or snapshot_id should be pro-
vided.

String value expected.

Updates cause replacement.

Value must be of type cinder.volume
volume_size#/

Optional.

The size of the volume, in GB. It is safe to leave this blank and have the Compute service
infer the size.

Integer value expected.
Updates cause replacement.

block_device_mapping_v2#

Available since 2015.1 (Kilo)

Block device mappings v2 for this server.
List value expected.
Updates cause replacement.
List contents:

Map value expected.

Updates cause replacement.

Map properties:

boot_index#

Optional.

Integer used for ordering the boot disks. If it is not specified, value O will be set for bootable
sources (volume, snapshot, image); value -1 will be set for non-bootable sources.

Integer value expected.
Updates cause replacement.
delete_on_termination#

Optional.

Indicate whether the volume should be deleted when the server is terminated. Defaults to
False in case of a volume, snapshot or image and to True in case of swap or ephemeral.

Boolean value expected.

Updates cause replacement.

3.3. Working with Templates 517

Heat Documentation, Release 24.1.0.dev11

device_nameii
Optional.

A device name where the volume will be attached in the system at /dev/device_name. This
value is typically vda.

String value expected.
Updates cause replacement.
device_typed
Optional.
Device type: at the moment we can make distinction only between disk and cdrom.
String value expected.
Updates cause replacement.
Allowed values: cdrom, disk
disk_bus#
Optional.
Bus of the device: hypervisor driver chooses a suitable default if omitted.
String value expected.
Updates cause replacement.
Allowed values: ide, lame_bus, scsi, usb, virtio

ephemeral_formats

Available since 8.0.0 (Ocata)

Optional.

The format of the local ephemeral block device. If no format is specified, uses default value,
defined in nova configuration file.

String value expected.
Updates cause replacement.
Allowed values: ext2, ext3, ext4, xfs, ntfs

ephemeral_sizel/

Available since 8.0.0 (Ocata)

Optional.

The size of the local ephemeral block device, in GB.
Integer value expected.

Updates cause replacement.

The value must be at least 1.

518

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

imager/

Available since 7.0.0 (Newton)

Optional.
The ID or name of the image to create a volume from.
String value expected.
Updates cause replacement.
Value must be of type glance.image

snapshot_id#
Optional.
The ID of the snapshot to create a volume from.
String value expected.
Updates cause replacement.
Value must be of type cinder.snapshot

swap_sizel/
Optional.
The size of the swap, in MB.
Integer value expected.
Updates cause replacement.

volume_id#
Optional.
The volume_id can be boot or non-boot device to the server.
String value expected.
Updates cause replacement.
Value must be of type cinder.volume

volume_sizei/
Optional.
Size of the block device in GB. If it is omitted, hypervisor driver calculates size.
Integer value expected.
Updates cause replacement.

config_drive#
If True, enable config drive on the server.
Boolean value expected.

Updates cause replacement.

3.3. Working with Templates 519

Heat Documentation, Release 24.1.0.dev11

deployment_swift_data#

Available since 9.0.0 (Pike)

Swift container and object to use for storing deployment data for the server resource. The parameter
is a map value with the keys container and object, and the values are the corresponding container
and object names. The software_config_transport parameter must be set to POLL_TEMP_URL
for swift to be used. If not specified, and software_config_transport is set to POLL_TEMP_URL,
a container will be automatically created from the resource name, and the object name will be a
generated uuid.

Map value expected.
Can be updated without replacement.
Defaults to {}
Map properties:
container#
Optional.
Name of the container.
String value expected.
Can be updated without replacement.
The length must be at least 1.
objecti/
Optional.
Name of the object.
String value expected.
Can be updated without replacement.
The length must be at least 1.
diskConfigd
Control how the disk is partitioned when the server is created.
String value expected.
Updates cause replacement.
Allowed values: AUTO, MANUAL
flavor_update_policy#

Policy on how to apply a flavor update; either by requesting a server resize or by replacing the entire
Server.

String value expected.
Can be updated without replacement.

Defaults to "RESIZE"

520 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Allowed values: RESIZE, REPLACE
imager/

The ID or name of the image to boot with.

String value expected.

Can be updated without replacement.

Value must be of type glance.image
image_update_policy#

Policy on how to apply an image-id update; either by requesting a server rebuild or by replacing the
entire server.

String value expected.

Can be updated without replacement.

Defaults to "REBUILD"

Allowed values: REBUILD, REPLACE, REBUILD_PRESERVE_EPHEMERAL
key_name#/

Name of keypair to inject into the server.

String value expected.

Updates cause replacement.

Value must be of type nova.keypair
metadatar/

Arbitrary key/value metadata to store for this server. Both keys and values must be 255 characters or
less. Non-string values will be serialized to JSON (and the serialized string must be 255 characters
or less).

Map value expected.

Can be updated without replacement.

Defaults to {}
name/

Server name.

String value expected.

Can be updated without replacement.
networks#

An ordered list of nics to be added to this server, with information about connected networks, fixed ips,
port etc.

List value expected.
Can be updated without replacement.
List contents:

Map value expected.

3.3. Working with Templates 521

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Map properties:

allocate_networkd

Available since 9.0.0 (Pike)

Optional.

The special string values of network, auto: means either a network that is already available
to the project will be used, or if one does not exist, will be automatically created for the
project; none: means no networking will be allocated for the created server. Supported
by Nova API since version 2.37. This property can not be used with other network keys.

String value expected.
Can be updated without replacement.
Allowed values: none, auto
fixed_ip#
Optional.
Fixed IP address to specify for the port created on the requested network.
String value expected.
Can be updated without replacement.
Value must be of type ip_addr

floating_ip#

Available since 6.0.0 (Mitaka)

Optional.

ID of the floating IP to associate.

String value expected.

Can be updated without replacement.
networks#

Optional.

Name or ID of network to create a port on.

String value expected.

Can be updated without replacement.

Value must be of type neutron.network
porti

Optional.

ID of an existing port to associate with this server.

522 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.
Can be updated without replacement.
Value must be of type neutron.port

port_extra_properties#

Available since 6.0.0 (Mitaka)

Dict, which has expand properties for port. Used only if port property is not specified for

creating port.
Map value expected.
Can be updated without replacement.
Map properties:
admin_state_up#
Optional.
The administrative state of this port.
Boolean value expected.
Can be updated without replacement.
Defaults to true
allowed_address_pairsi#
Additional MAC/IP address pairs allowed to pass through the port.
List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
ip_address#
Required.
IP address to allow through this port.
String value expected.
Can be updated without replacement.
Value must be of type ip_or_cidr
mac_addressi#
Optional.
MAC address to allow through this port.

String value expected.

3.3.

Working with Templates

523

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Value must be of type mac_addr

binding:vnic_type#

Available since 2015.1 (Kilo)

Optional.

The vnic type to be bound on the neutron port. To support SR-IOV PCI passthrough
networking, you can request that the neutron port to be realized as normal (virtual
nic), direct (pci passthrough), or macvtap (virtual interface with a tap-like software
interface). Note that this only works for Neutron deployments that support the bind-
ings extension.

String value expected.
Can be updated without replacement.
Defaults to "normal”

Allowed values: normal, direct, macvtap, direct-physical, baremetal, virtio-forwarder,
smart-nic

mac_addressii
Optional.

MAC address to give to this port. The default update policy of this property in neutron
is that allow admin role only.

String value expected.
Can be updated without replacement.
Value must be of type mac_addr

no_fixed_ipsi#

Available since 16.0.0 (Wallaby)

Optional.

Flag to disable all fixed ips on the port.
Boolean value expected.

Can be updated without replacement.
Defaults to false

port_security_enabled#

Available since 5.0.0 (Liberty)

Optional.

524 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Flag to enable/disable port security on the port. When disable this feature(set it to
False), there will be no packages filtering, like security-group and address-pairs.

Boolean value expected.
Can be updated without replacement.

propagate_uplink_status#

Available since 15.0.0 (Victoria)

Optional.

Flag to enable/disable propagate uplink status on the port.
Boolean value expected.

Can be updated without replacement.

qos_policyd

Available since 6.0.0 (Mitaka)

Optional.

The name or ID of QoS policy to attach to this port.

String value expected.

Can be updated without replacement.

Value must be of type neutron.qos_policy
value_specsi/

Extra parameters to include in the request.

Map value expected.

Can be updated without replacement.

Defaults to {}

subnet#

Available since 5.0.0 (Liberty)

Optional.

Subnet in which to allocate the IP address for port. Used for creating port, based on derived
properties. If subnet is specified, network property becomes optional.

String value expected.
Can be updated without replacement.

tagii

3.3. Working with Templates 525

Heat Documentation, Release 24.1.0.dev11

Available since 9.0.0 (Pike)

Optional.
Port tag. Heat ignores any update on this property as nova does not support it.
String value expected.
Can be updated without replacement.
reservation_id#
A UUID for the set of servers being requested.
String value expected.
Updates cause replacement.
scheduler_hints#
Arbitrary key-value pairs specified by the client to help boot a server.
Map value expected.
Updates cause replacement.
security_groupsi/

List of security group names or IDs. Cannot be used if neutron ports are associated with this server;
assign security groups to the ports instead.

List value expected.

Updates cause replacement.

Defaults to []
software_config_transporti

How the server should receive the metadata required for software configuration. POLL_SERVER_CFN
will allow calls to the cfn API action DescribeStackResource authenticated with the provided key-
pair. POLL_SERVER_HEAT will allow calls to the Heat API resource-show using the provided
keystone credentials. POLL_TEMP_URL will create and populate a Swift TempURL with meta-
data for polling. ZAQAR_MESSAGE will create a dedicated zaqar queue and post the metadata
for polling.

String value expected.
Can be updated without replacement.
Defaults to "POLL_SERVER_CFN"

Allowed values: POLL_SERVER_CFN, POLL_SERVER_HEAT, POLL_TEMP_URL, ZA-
QAR_MESSAGE

tagsii

Available since 8.0.0 (Ocata)

Server tags. Supported since client version 2.26.

List value expected.

526 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
List contents:
Optional.
String value expected.
Can be updated without replacement.
user_datarf

User data script to be executed by cloud-init or CoreOS ignition. Changes cause replacement of the re-
source by default, but can be ignored altogether by setting the ‘user_data_update_policy* property.

String value expected.
Can be updated without replacement.
Defaults to ""

user_data_formati/

How the user_data should be formatted for the server. For HEAT CFNTOOLS, the user_data is bundled
as part of the heat-cfntools cloud-init boot configuration data. For RAW the user_data is passed
to Nova unmodified. For SOFTWARE_CONFIG user_data is bundled as part of the software
config data, and metadata is derived from any associated SoftwareDeployment resources. And if
the user_data is in CoreOS ignition(json) format, the metadata will be injected into the user_data
automatically by Heat.

String value expected.

Updates cause replacement.

Defaults to "HEAT_CFNTOOLS"

Allowed values: HEAT_CFNTOOLS, RAW, SOFTWARE_CONFIG

user_data_update_policy#

Available since 6.0.0 (Mitaka)

Policy on how to apply a user_data update; by ignoring it, by replacing the entire server, or rebuild the
server.

String value expected.

Can be updated without replacement.

Defaults to "REPLACE"

Allowed values: REPLACE, IGNORE, REBUILD

personality?/

DEPRECATED since 12.0.0 (Stein) - This is not supported with nova api microversion 2.57
and above. OS::Nova::Server resource will not support it in the future. Please use user_data or
metadata instead. However, you can set heat config option max_nova_api_microversion < 2.57
to use this property in the meantime.

3.3. Working with Templates 527

Heat Documentation, Release 24.1.0.dev11

A map of files to create/overwrite on the server upon boot. Keys are file names and values are the file
contents.

Map value expected.
Updates cause replacement.

Defaults to {3}

Attributes

accessIPv4ii

DEPRECATED since 14.0.0 (Ussuri)

Available since 2015.1 (Kilo)

The manually assigned alternative public IPv4 address of the server.

accessIPvé6i

DEPRECATED since 14.0.0 (Ussuri)

Available since 2015.1 (Kilo)

The manually assigned alternative public IPv6 address of the server.

addressesii

Available since 11.0.0 (Rocky) - The attribute was extended to include subnets and network
with version 11.0.0.

A dict of all network addresses with corresponding port_id and subnets. Each network will have
two keys in dict, they are network name and network id. The port ID may be obtained through the
following expression: “{get_attr: [<server>, addresses, <network name_or_id>, O, port]}“. The
subnets may be obtained trough the following expression: “{get_attr: [<server>, addresses, <net-
work name_or_id>, 0, subnets] }“. The network may be obtained through the following expression:
“{get_attr: [<server>, addresses, <network name_or_id>, 0, network] }“.

console_urlsi#

Available since 2015.1 (Kilo)

URLSs of servers consoles. To get a specific console type, the requested type can be specified
as parameter to the get_attr function, e.g. get_attr: [<server>, console_urls, novnc]. Currently
supported types are novnc, xvpvnc, spice-html5, rdp-html5, serial and webmks.

instance_name#/
AWS compatible instance name.

528 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

nameii
Name of the server.

networks#
A dict of assigned network addresses of the form: {public: [ipl, ip2], private: [ip3, ip4], pub-
lic_uuid: [ipl, ip2], private_uuid: [ip3, ip4]}. Each network will have two keys in dict, they are
network name and network id.

os_collect_configii

Available since 9.0.0 (Pike)

The os-collect-config configuration for the servers local agent to be configured to connect to Heat
to retrieve deployment data.

showii
Detailed information about resource.

tagsii

Available since 8.0.0 (Ocata)
Tags from the server. Supported since client version 2.26.

HOT Syntax

1}
¥

i

N

(continues on next page)

3.3. Working with Templates 529

Heat Documentation, Release 24.1.0.dev11

flavor

flavor_update_policy

image

image_update_policy

key_name

metadata

name

networks "uuid"
. "fixed_ip"
—"value_specs"

"network
"port"
"admin_state_up"
—"allowed_address_pairs" "mac_address"
—"mac_address" "ip_address"
"port_security_enabled"
"no_fixed_ips"

"tag"

o

—uplink_status"

~"floating_ip"

—~"allocate_network"

—properties" "value_specs"

" "allowed_address_pairs"
"mac_address"

"fixed_ip"

—type" "port_security_enabled"
—"propagate_uplink_status" "no._

"floating_ip" "tag
reservation_id

scheduler_hints

security_groups
software_config_transport

tags

user_data

user_data_format

user_data_update_policy

—

"admin_state_up"
"mac_address"
"ip_address"

(continued from previous page)

"allocate_network": .
"port_extra_properties"
"mac_address"
"ip_address"
"binding:vnic_type":.

"gos_policy" "propagate_
"subnet"
"uuid" "network"
"port" "port_extra_

"mac_address
"ip_address":.
"binding:vnic_
"gos_policy"

fixed_ips" "subnet": .

OS::Nova::ServerGroup

[Available since 2014.2 (Juno)

A resource for managing a Nova server group.

Server groups allow you to make sure instances (VM/VPS) are on the same hypervisor host or on a

different one.

Optional Properties

namez/
Server Group name.
String value expected.
Updates cause replacement.

policies#

530

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

A list of exactly one policy to apply. Defaults to anti-affinity.
List value expected.
Updates cause replacement.
Defaults to ["anti-affinity"]
Allowed values: anti-affinity, affinity, soft-anti-affinity, soft-affinity
List contents:
Optional.
String value expected.
Updates cause replacement.

rulesi

Available since 17.0.0 (Xena)

Rules for a policy.
Map value expected.
Updates cause replacement.
Map properties:
max_server_per_hosti
Optional.
Maximum servers in a group on a given host. Rule for anti-affinity policy.
Number value expected.

Updates cause replacement.

Attributes

showii
Detailed information about resource.

HOT Syntax

3.3. Working with Templates 531

Heat Documentation, Release 24.1.0.dev11

OS::Octavia::AvailabilityZone

Available since 24.0.0

A resource for creating octavia Availability Zones.
This resource creates and manages octavia Availability Zones, which allows to tune Load Balancers

capabilities.

Required Properties

availability_zone_profile#
The ID or the name of the Availability Zone Profile.
String value expected.
Updates cause replacement.

Value must be of type octavia.availabilityzoneprofile

Optional Properties

description#/
Description of this Availability Zone.
String value expected.
Can be updated without replacement.
Defaults to ""

enabledd
If the resource if available for use.
Boolean value expected.
Can be updated without replacement.
Defaults to true

name/
Name of this Availability Zone.
String value expected.

Can be updated without replacement.

Attributes

availability_zone_profile_id#
The ID of the availability zone profile.

show#
Detailed information about resource.

532 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

0OS::Octavia::AvailabilityZoneProfile

Available since 24.0.0

A resource for creating octavia Availability Zone Profiles.
This resource creates and manages octavia Availability Zone Profiles, which allows to tune Load Bal-

ancers capabilities.

Required Properties

availability_zone_data#
JSON string containing the availability zone metadata.
String value expected.
Can be updated without replacement.

Value must be of type json_string

Optional Properties

name#/
Name of this Availability Zone Profile.
String value expected.
Can be updated without replacement.
provider_name#
Provider name of this Availability Zone.
String value expected.

Can be updated without replacement.

3.3. Working with Templates 533

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l
Detailed information about resource.

HOT Syntax

OS::Octavia::Flavor

Available since 14.0.0 (Ussuri)

A resource for creating octavia Flavors.

This resource creates and manages octavia Flavors, which allows to tune Load Balancers capabilities.

Required Properties

flavor_profiles
The ID or the name of the Flavor Profile.
String value expected.
Updates cause replacement.

Value must be of type octavia.flavorprofile

Optional Properties

descriptions
Description of this Flavor.
String value expected.
Can be updated without replacement.
Defaults to "'
enabled#
If the resource if available for use.

Boolean value expected.

534 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Defaults to true
name/
Name of this Flavor.
String value expected.

Can be updated without replacement.

Attributes

flavor_profile_idd#
The ID of the flavor profile.

showii
Detailed information about resource.

HOT Syntax

0S::Octavia::FlavorProfile

Available since 14.0.0 (Ussuri)

A resource for creating octavia Flavor Profiles.

This resource creates and manages octavia Flavor Profiles, which allows to tune Load Balancers capabil-
ities.

Required Properties

flavor_datas/
JSON string containing the flavor metadata.
String value expected.
Can be updated without replacement.

Value must be of type json_string

3.3. Working with Templates 535

Heat Documentation, Release 24.1.0.dev11

Optional Properties

name#/
Name of this Flavor Profile.
String value expected.
Can be updated without replacement.
provider_name#
Provider name of this Flavor Profile.
String value expected.

Can be updated without replacement.

Attributes

show#
Detailed information about resource.

HOT Syntax

0S::Octavia::HealthMonitor

Available since 10.0.0 (Queens)

A resource to handle load balancer health monitors.
This resource creates and manages octavia healthmonitors, which watches status of the load balanced

SCrvers.

Required Properties

delayd
The minimum time in seconds between regular connections of the member.
Integer value expected.
Can be updated without replacement.

The value must be at least O.

536 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

max_retries#/
Number of permissible connection failures before changing the member status to INACTIVE.
Integer value expected.
Can be updated without replacement.
The value must be in the range 1 to 10.
poold
ID or name of the load balancing pool.
String value expected.
Updates cause replacement.
Value must be of type octavia.pool
timeout#

Maximum number of seconds for a monitor to wait for a connection to be established before it times
out.

Integer value expected.
Can be updated without replacement.
The value must be at least O.

typed
One of predefined health monitor types.
String value expected.
Updates cause replacement.

Allowed values: PING, TCP, HTTP, HTTPS, UDP-CONNECT

Optional Properties

admin_state_up#/
The administrative state of the health monitor.
Boolean value expected.
Can be updated without replacement.
Defaults to true

expected_codes?

The HTTP status codes expected in response from the member to declare it healthy. Specify one of the
following values: a single value, such as 200. a list, such as 200, 202. a range, such as 200-204.

String value expected.
Can be updated without replacement.
http_method#
The HTTP method used for requests by the monitor of type HTTP.

3.3. Working with Templates 537

Heat Documentation, Release 24.1.0.dev11

String value expected.

Can be updated without replacement.

Allowed values: GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH
tenant_idd

ID of the tenant who owns the health monitor.

String value expected.

Updates cause replacement.
url_pathd

The HTTP path used in the HTTP request used by the monitor to test a member health. A valid value
is a string the begins with a forward slash (/).

String value expected.

Can be updated without replacement.

Attributes

pools#
The list of Pools related to this monitor.

show#
Detailed information about resource.

HOT Syntax

0OS::Octavia::L7Policy

538 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Available since 10.0.0 (Queens)

A resource for managing octavia L7Policies.

This resource manages L7Policies, which represent a collection of L7Rules. L7Policy holds the ac-
tion that should be performed when the rules are matched (Redirect to Pool, Redirect to URL, Reject).
L7Policy holds a Listener id, so a Listener can evaluate a collection of L7Policies. L7Policy will return
True when all of the L7Rules that belong to this L7Policy are matched. L7Policies under a specific Lis-
tener are ordered and the first 17Policy that returns a match will be executed. When none of the policies
match the request gets forwarded to listener.default_pool_id.

Required Properties

action#/

Action type of the policy.

String value expected.

Can be updated without replacement.

Allowed values: REJECT, REDIRECT_TO_POOL, REDIRECT_TO_URL
listenerd

ID or name of the listener this policy belongs to.

String value expected.

Updates cause replacement.

Value must be of type octavia.listener

Optional Properties

admin_state_up#/
The administrative state of the policy.
Boolean value expected.
Can be updated without replacement.
Defaults to true
descriptions/
Description of the policy.
String value expected.
Can be updated without replacement.
name/
Name of the policy.
String value expected.
Can be updated without replacement.

position/

3.3. Working with Templates 539

Heat Documentation, Release 24.1.0.dev11

L7 policy position in ordered policies list. This must be an integer starting from 1. If not specified,
policy will be placed at the tail of existing policies list.

Number value expected.
Can be updated without replacement.
The value must be at least 1.
redirect_pool#
ID or name of the pool for REDIRECT_TO_POOL action type.
String value expected.
Can be updated without replacement.
Value must be of type octavia.pool
redirect_urld
URL for REDIRECT_TO_URL action type. This should be a valid URL string.
String value expected.

Can be updated without replacement.

Attributes

rules
L7Rules associated with this policy.

showii
Detailed information about resource.

HOT Syntax

540 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

0OS::Octavia::L7Rule

Available since 10.0.0 (Queens)

A resource for managing octavia L7Rules.

This resource manages L.7Rules, which represent a set of attributes that defines which part of the request
should be matched and how it should be matched.

Required Properties

compare_typet

Rule compare type.

String value expected.

Can be updated without replacement.

Allowed values: REGEX, STARTS_WITH, ENDS_WITH, CONTAINS, EQUAL_TO
17policyd

ID or name of L7 policy this rule belongs to.

String value expected.

Updates cause replacement.

Value must be of type octavia.l7policy
typed

Rule type.

String value expected.

Can be updated without replacement.

Allowed values: HOST_NAME, PATH, FILE_TYPE, HEADER, COOKIE
valuer/

Value to compare.

String value expected.

Can be updated without replacement.

Optional Properties

admin_state_up#/
The administrative state of the rule.
Boolean value expected.
Can be updated without replacement.
Defaults to true

inverti#

3.3. Working with Templates 541

Heat Documentation, Release 24.1.0.dev11

Invert the compare type.

Boolean value expected.

Can be updated without replacement.
Defaults to false

key#i

Key to compare. Relevant for HEADER and COOKIE types only.

String value expected.

Can be updated without replacement.

Attributes

showii
Detailed information about resource.

HOT Syntax

0OS::Octavia::Listener

Available since 10.0.0 (Queens)

A resource for managing octavia Listeners.

This resource creates and manages Neutron octavia Listeners, which represent a listening endpoint for

the vip.

Required Properties

loadbalancer#
ID or name of the load balancer with which listener is associated.

String value expected.

542

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.

Value must be of type octavia.loadbalancer
protocol#

Protocol on which to listen for the client traffic.

String value expected.

Updates cause replacement.

Allowed values: TCP, HTTP, HTTPS, TERMINATED_HTTPS, PROXY, UDP
protocol_portd

TCP or UDP port on which to listen for client traffic.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

Optional Properties

admin_state_up#
The administrative state of this listener.
Boolean value expected.
Can be updated without replacement.
Defaults to true

allowed_cidrsi

Available since 14.0.0 (Ussuri)

A list of IPv4, IPv6 or mix of both CIDRs. The default is all allowed. When a list of CIDRs is provided,
the default switches to deny all.

List value expected.
Can be updated without replacement.
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type net_cidr
connection_limit#
The maximum number of connections permitted for this load balancer. Defaults to -1, which is infinite.
Integer value expected.

Can be updated without replacement.

3.3. Working with Templates 543

Heat Documentation, Release 24.1.0.dev11

Defaults to -1
The value must be at least -1.
default_pool#
ID or name of the default pool for the listener.
String value expected.
Can be updated without replacement.
Value must be of type octavia.pool

default_tls_container_refi/

Default TLS container reference to retrieve TLS information.

String value expected.

Can be updated without replacement.
descriptions/

Description of this listener.

String value expected.

Can be updated without replacement.

Defaults to ""
name#/

Name of this listener.

String value expected.

Can be updated without replacement.
sni_container_refsi/

List of TLS container references for SNI.

List value expected.

Can be updated without replacement.
tenant_idd

The ID of the tenant who owns the listener.

String value expected.

Updates cause replacement.

Attributes

default_pool_idd#
ID of the default pool this listener is associated to.

loadbalancersi

ID of the load balancer this listener is associated to.

showii
Detailed information about resource.

544

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

heat_template_version

resources

type

properties
admin_state_up
allowed_cidrs
connection_limit
default_pool
default_tls_container_ref
description
loadbalancer
name
protocol
protocol_port
sni_container_refs
tenant_id

0S::Octavia::LoadBalancer

(Available since 10.0.0 (Queens)

A resource for creating octavia Load Balancers.

This resource creates and manages octavia Load Balancers, which allows traffic to be directed between

SErvers.

Required Properties

vip_subnet#

The name or ID of the subnet on which to allocate the VIP address.

String value expected.
Updates cause replacement.

Value must be of type neutron.subnet

Optional Properties

admin_state_up#/
The administrative state of this Load Balancer.
Boolean value expected.
Can be updated without replacement.

Defaults to true

3.3. Working with Templates

545

Heat Documentation, Release 24.1.0.dev11

availability_zone#/

Available since 17.0.0 (Xena)

The availability zone of the Load Balancer.

String value expected.

Updates cause replacement.

Value must be of type octavia.availabilityzone
descriptions/

Description of this Load Balancer.

String value expected.

Can be updated without replacement.

Defaults to ""

flavori

Available since 14.0.0 (Ussuri)

The name or ID of the flavor of the Load Balancer.

String value expected.

Updates cause replacement.

Value must be of type octavia.flavor
name#/

Name of this Load Balancer.

String value expected.

Can be updated without replacement.
provider#

Provider for this Load Balancer.

String value expected.

Updates cause replacement.
tenant_idd

The ID of the tenant who owns the Load Balancer. Only administrative users can specify a tenant ID
other than their own.

String value expected.
Updates cause replacement.
Value must be of type keystone.project

vip_addressi/

546 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

IP address for the VIP.
String value expected.
Updates cause replacement.

Value must be of type ip_addr

Attributes

flavor_idd
The flavor ID of the LoadBalancer.

pools#

Pools this LoadBalancer is associated with.

show#
Detailed information about resource.

vip_addressi/
The VIP address of the LoadBalancer.

vip_port_id#
The VIP port of the LoadBalancer.

vip_subnet_id#
The VIP subnet of the LoadBalancer.

HOT Syntax

0S::Octavia::Pool

Available since 10.0.0 (Queens)

A resource for managing Octavia Pools.

3.3. Working with Templates

547

Heat Documentation, Release 24.1.0.dev11

This resources manages octavia LBaaS Pools, which represent a group of nodes. Pools define the subnet
where nodes reside, balancing algorithm, and the nodes themselves.

Required Properties

1b_algorithm#

The algorithm used to distribute load between the members of the pool.

String value expected.

Can be updated without replacement.

Allowed values: ROUND_ROBIN, LEAST_CONNECTIONS, SOURCE_IP, SOURCE_IP_PORT
protocol#

Protocol of the pool.

String value expected.

Updates cause replacement.

Allowed values: TCP, HTTP, HTTPS, TERMINATED_HTTPS, PROXY, UDP

Optional Properties

admin_state_up#/
The administrative state of this pool.
Boolean value expected.
Can be updated without replacement.
Defaults to true
description#
Description of this pool.
String value expected.
Can be updated without replacement.
Defaults to ""
listenerd
Listener name or ID to be associated with this pool.
String value expected.
Updates cause replacement.
Value must be of type octavia.listener
loadbalancer#
Loadbalancer name or ID to be associated with this pool.
String value expected.

Updates cause replacement.

548 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Value must be of type octavia.loadbalancer
name/
Name of this pool.
String value expected.
Can be updated without replacement.
session_persistencer/
Configuration of session persistence.
Map value expected.
Can be updated without replacement.
Map properties:
cookie_name#/
Optional.
Name of the cookie, required if type is APP_COOKIE.
String value expected.
Can be updated without replacement.
typeri
Required.
Method of implementation of session persistence feature.
String value expected.
Can be updated without replacement.
Allowed values: SOURCE_IP, HTTP_COOKIE, APP_COOKIE

tls_enabledd

Available since 14.0.0 (Ussuri)

Enable backend member re-encryption.
Boolean value expected.
Can be updated without replacement.

Defaults to false

Attributes

healthmonitor_id#
ID of the health monitor associated with this pool.

listeners#
Listener associated with this pool.

members#
Members associated with this pool.

3.3. Working with Templates

549

Heat Documentation, Release 24.1.0.dev11

show#
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
admin_state_up
description
1b_algorithm
listener
loadbalancer
name
protocol
session_persistence
tls_enabled

0S::Octavia::PoolMember

(Available since 10.0.0 (Queens)

A resource for managing Octavia Pool Members.

A pool member represents a single backend node.

Required Properties

addressii

IP address of the pool member on the pool network.

String value expected.
Updates cause replacement.
Value must be of type ip_addr
pool#
Name or ID of the load balancing pool.
String value expected.
Updates cause replacement.
Value must be of type octavia.pool

protocol_portd

Port on which the pool member listens for requests or connections.

550

Chapter 3.

Using Heat

Heat Documentation, Release 24.1.0.dev11

Integer value expected.
Updates cause replacement.

The value must be in the range 1 to 65535.

Optional Properties

admin_state_up#/
The administrative state of the pool member.
Boolean value expected.
Can be updated without replacement.
Defaults to true
monitor_address#
Alternate IP address which health monitor can use for health check.
String value expected.
Updates cause replacement.
Value must be of type ip_addr
monitor_portd
Alternate Port which health monitor can use for health check.
Integer value expected.
Updates cause replacement.
The value must be in the range 1 to 65535.
subnetd
Subnet name or ID of this member.
String value expected.
Updates cause replacement.
Value must be of type neutron.subnet

tagsii

Available since 13.0.0 (Train)

A list of simple strings assigned to the member. The property is supported with Stein Octavia or newer
version.

List value expected.
Can be updated without replacement.
weightd/
Weight of pool member in the pool (default to 1).

Integer value expected.

3.3. Working with Templates 551

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Defaults to 1

The value must be in the range 0 to 256.

Attributes

show#
Detailed information about resource.

HOT Syntax

0S::Octavia::Quota

Available since 14.0.0 (Ussuri)

A resource for creating Octavia quotas.

Ocatavia Quota is used to manage operational limits for Octavia. Currently, this resource can manage
Octavias quotas for:

* healthmonitor
* listener

* loadbalancer
* pool

* member

Note that default octavia security policy usage of this resource is limited to being used by administrators
only. Administrators should be careful to create only one Octavia Quota resource per project, otherwise
it will be hard for them to manage the quota properly.

552 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Required Properties

projectii
Name or id of the project to set the quota for.
String value expected.
Updates cause replacement.

Value must be of type keystone.project

Optional Properties

healthmonitor#
Quota for the number of healthmonitors. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
listener#
Quota for the number of listeners. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
loadbalancer#
Quota for the number of load balancers. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
member#
Quota for the number of m. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.
The value must be at least -1.
pool#
Quota for the number of pools. Setting the value to -1 removes the limit.
Integer value expected.
Can be updated without replacement.

The value must be at least -1.

3.3. Working with Templates 553

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l
Detailed information about resource.

HOT Syntax

OS::Swift::Container

A resource for managing Swift containers.

A container defines a namespace for objects. An object with the same name in two different containers
represents two different objects.

Optional Properties

PurgeOnDeleter/

Available since 2015.1 (Kilo)

If True, delete any objects in the container when the container is deleted. Otherwise, deleting a non-
empty container will result in an error.

Boolean value expected.

Updates cause replacement.

Defaults to false
X-Account-Metai/

A map of user-defined meta data to associate with the account. Each key in the map will set the header
X-Account-Meta-{key} with the corresponding value.

Map value expected.
Updates cause replacement.
Defaults to {}

X-Container-Metaii

554 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

A map of user-defined meta data to associate with the container. Each key in the map will set the header
X-Container-Meta-{key} with the corresponding value.

Map value expected.
Updates cause replacement.
Defaults to {}
X-Container-Read#
Specify the ACL permissions on who can read objects in the container.
String value expected.
Updates cause replacement.
X-Container-Write#/
Specify the ACL permissions on who can write objects to the container.
String value expected.
Updates cause replacement.
name#/
Name for the container. If not specified, a unique name will be generated.
String value expected.

Updates cause replacement.

Attributes

BytesUsed#
The number of bytes stored in the container.

DomainNamer/
The host from the container URL.

HeadContainer#
A map containing all headers for the container.

ObjectCount#
The number of objects stored in the container.

RootURL#
The parent URL of the container.

WebsiteURL#
The URL of the container.

show#
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 555

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

OS::Trove::Cluster

Available since 2015.1 (Kilo)

A resource for managing Trove clusters.

A Cluster is an opaque cluster used to store Database clusters.

Required Properties

datastore_type#/
Name of registered datastore type.
String value expected.
Updates cause replacement.
The length must be no greater than 255.

datastore_version#

Name of the registered datastore version. It must exist for provided datastore type. Defaults to using
single active version. If several active versions exist for provided datastore type, explicit value for

this parameter must be specified.
String value expected.
Updates cause replacement.
The length must be no greater than 255.
instances?/

List of database instances.
List value expected.
Updates cause replacement.
List contents:

Map value expected.

Updates cause replacement.

Map properties:

556

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

availability_zone#

Available since 14.0.0 (Ussuri)

Optional.
Name of the availability zone for DB instance.
String value expected.
Updates cause replacement.
flavorii
Required.
Flavor of the instance.
String value expected.
Updates cause replacement.
Value must be of type trove.flavor

networks#

Available since 10.0.0 (Queens)

List of network interfaces to create on instance.
List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
fixed_ip#
Optional.
Fixed IPv4 address for this NIC.
String value expected.
Updates cause replacement.
Value must be of type ip_addr
network#
Optional.

Name or UUID of the network to attach this NIC to. Either port or network must
be specified.

3.3. Working with Templates 557

Heat Documentation, Release 24.1.0.dev11

String value expected.

Updates cause replacement.

Value must be of type neutron.network
portd

Optional.

Name or UUID of Neutron port to attach this NIC to. Either port or network must
be specified.

String value expected.
Updates cause replacement.
Value must be of type neutron.port
volume_size/
Required.
Size of the instance disk volume in GB.
Integer value expected.
Updates cause replacement.

The value must be in the range 1 to 150.

Optional Properties

namer/
Name of the cluster to create.
String value expected.
Updates cause replacement.

The length must be no greater than 255.

Attributes

instances#
A list of instances ids.

ipd
A list of cluster instance IPs.

showii
Detailed information about resource.

HOT Syntax

(continues on next page)

558 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

A

(continued from previous page)

OS::Trove::Instance

Available since 2014.1 (Icehouse)

OpenStack cloud database instance resource.

Trove is Database as a Service for OpenStack. Its designed to run entirely on OpenStack, with the goal of
allowing users to quickly and easily utilize the features of a relational or non-relational database without

the burden of handling complex administrative tasks.

Required Properties

flavorii

Reference to a flavor for creating DB instance.

String value expected.

Can be updated without replacement.

Value must be of type trove.flavor
sizedl

Database volume size in GB.

Integer value expected.

Can be updated without replacement.

The value must be in the range 1 to 150.

Optional Properties

availability_zone#/

Name of the availability zone for DB instance.

String value expected.
Updates cause replacement.

databasesii

3.3. Working with Templates

559

Heat Documentation, Release 24.1.0.dev11

List of databases to be created on DB instance creation.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
character_setd/
Optional.
Set of symbols and encodings.
String value expected.
Can be updated without replacement.
Defaults to "ut£8"
collated/
Optional.
Set of rules for comparing characters in a character set.
String value expected.
Can be updated without replacement.
Defaults to "ut£8_general_ci"
nameu/
Required.
Specifies database names for creating databases on instance creation.
String value expected.
Can be updated without replacement.
The length must be no greater than 64.
Value must match pattern: [a-zA-Z0-9_-]+[a-zA-Z0-9_@ 7#\s-]*[a-zA-Z0-9_-]+
datastore_typesd
Name of registered datastore type.
String value expected.
Updates cause replacement.
The length must be no greater than 255.

datastore_versionsd

560 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Name of the registered datastore version. It must exist for provided datastore type. Defaults to using
single active version. If several active versions exist for provided datastore type, explicit value for
this parameter must be specified.

String value expected.
Updates cause replacement.
The length must be no greater than 255.
name#/
Name of the DB instance to create.
String value expected.
Can be updated without replacement.
The length must be no greater than 255.
networks#
List of network interfaces to create on instance.
List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
fixed_ip#
Optional.
Fixed IPv4 address for this NIC.
String value expected.
Updates cause replacement.
Value must be of type ip_addr
networkd
Optional.
Name or UUID of the network to attach this NIC to. Either port or network must be specified.
String value expected.
Updates cause replacement.
Value must be of type neutron.network
portii

Optional.

3.3. Working with Templates 561

Heat Documentation, Release 24.1.0.dev11

Name or UUID of Neutron port to attach this NIC to. Either port or network must be spec-
ified.

String value expected.
Updates cause replacement.
Value must be of type neutron.port

replica_count#

Available since 5.0.0 (Liberty)

The number of replicas to be created.
Integer value expected.
Updates cause replacement.

replica_of#

Available since 5.0.0 (Liberty)

Identifier of the source instance to replicate.
String value expected.
Updates cause replacement.
restore_point#
DB instance restore point.
String value expected.
Updates cause replacement.
userst
List of users to be created on DB instance creation.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
databases#/
Names of databases that those users can access on instance creation.
List value expected.

Can be updated without replacement.

562 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

The length must be at least 1.
List contents:
Optional.
String value expected.
Can be updated without replacement.
hostif
Optional.
The host from which a user is allowed to connect to the database.
String value expected.
Can be updated without replacement.
Defaults to "%"
namer/
Required.
User name to create a user on instance creation.
String value expected.
Can be updated without replacement.
The length must be no greater than 16.
Value must match pattern: [a-zA-Z0-9_]+[a-zA-Z0-9_@ 7#\s]*[a-zA-Z0-9_]+
password#
Required.
Password for those users on instance creation.
String value expected.
Can be updated without replacement.

Value must match pattern: [a-zA-Z0-9_]+[a-zA-Z0-9_@ 7#\s]*[a-zA-Z0-9_]+

Attributes
hostnamer?
Hostname of the instance.

hrefii
Api endpoint reference of the instance.

show#l
Detailed information about resource.

3.3. Working with Templates 563

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

OS::Vitrage::Template

Available since 16.0.0 (Wallaby)

A resource for managing Vitrage templates.

A Vitrage template defines conditions and actions, based on the Vitrage topology graph. For example, if
there is an instance down alarm on an instance, then execute a Mistral healing workflow.

The VitrageTemplate resource generates and adds to Vitrage a template based on the input parameters.

Required Properties

template_filed
Path of the Vitrage template to use.
String value expected.
Updates cause replacement.
template_params#/
Input parameters for the Vitrage template.
Map value expected.

Updates cause replacement.

564 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l

Detailed information about resource.

HOT Syntax

0OS::Zaqar::MistralTrigger

Available since 8.0.0 (Ocata)

A Zaqar subscription for triggering Mistral workflows.

This Zaqar subscription type listens for messages in a queue and triggers a Mistral workflow execution

each time one is received.

The content of the Zaqar message is passed to the workflow in the environment with the name notification,

and thus is accessible from within the workflow as:

<% env().notification %>

Other environment variables can be set using the env key in the params property.

Required Properties

queue_namez/
Name of the queue to subscribe to.
String value expected.
Updates cause replacement.
Value must be of type zaqar.queue

workflow_id#

UUID of the Mistral workflow to trigger.

String value expected.
Can be updated without replacement.

Value must be of type mistral.workflow

3.3. Working with Templates

565

Heat Documentation, Release 24.1.0.dev11

Optional Properties

input#
Input values to pass to the Mistral workflow.
Map value expected.
Can be updated without replacement.
Defaults to {}

params#
Parameters to pass to the Mistral workflow execution. The parameters depend on the workflow type.
Map value expected.
Can be updated without replacement.
Defaults to {}

ttld
Time to live of the subscription in seconds.
Integer value expected.
Can be updated without replacement.
Defaults to 220367260800

The value must be at least 60.

Attributes

show#l
Detailed information about resource.

HOT Syntax

566 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

0S::Zaqar::Queue

Available since 2014.2 (Juno)

A resource for managing Zaqar queues.

Queue is a logical entity that groups messages. Ideally a queue is created per work type. For example, if
you want to compress files, you would create a queue dedicated for this job. Any application that reads
from this queue would only compress files.

Optional Properties

metadatai/
Arbitrary key/value metadata to store contextual information about this queue.
Map value expected.
Can be updated without replacement.
name/
Name of the queue instance to create.
String value expected.
Updates cause replacement.

The length must be no greater than 64.

Attributes

hrefii
The resource href of the queue.

show#l
Detailed information about resource.

HOT Syntax

3.3. Working with Templates 567

Heat Documentation, Release 24.1.0.dev11

0S::Zaqar::SignedQueueURL

Available since 8.0.0 (Ocata)

A resource for managing signed URLs of Zagar queues.

Signed URLs allow to give specific access to queues, for example to be used as alarm notifications. To
supply a signed queue URL to Aodh as an action URL, pass zaqar://? followed by the query_str attribute
of the signed queue URL resource.

Required Properties

queuerf
Name of the queue instance to create a URL for.
String value expected.

Updates cause replacement.

Optional Properties

methods#
List of allowed HTTP methods to be used. Default to allow GET.
List value expected.
Updates cause replacement.
List contents:
Optional.
String value expected.
Updates cause replacement.
Allowed values: GET, DELETE, PATCH, POST, PUT
paths#/
List of allowed paths to be accessed. Default to allow queue messages URL.
List value expected.
Updates cause replacement.
13174
Time validity of the URL, in seconds. Default to one day.
Integer value expected.

Updates cause replacement.

568 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

expirest/
Expiration date of the URL.

methods#
Comma-delimited list of methods for convenience.

pathsi/
Comma-delimited list of paths for convenience.

projecti
The ID of the Keystone project containing the queue.

query_stri
An HTTP URI query fragment.

showii
Detailed information about resource.

signaturerf
Signature of the URL built by Zagqar.

HOT Syntax

0S::Zaqar::Subscription

Available since 8.0.0 (Ocata)

A resource for managing Zaqar subscriptions.

A Zaqar subscription listens for messages in a queue and sends a notification over email or webhook.

Required Properties

queue_namer/
Name of the queue to subscribe to.
String value expected.

Updates cause replacement.

3.3. Working with Templates 569

Heat Documentation, Release 24.1.0.dev11

Value must be of type zaqar.queue

subscriber#
URI of the subscriber which will be notified. Must be in the format: <TYPE>:<VALUE>.
String value expected.

Can be updated without replacement.

Optional Properties

options#
Options used to configure this subscription.
Map value expected.
Can be updated without replacement.

ttld
Time to live of the subscription in seconds.
Integer value expected.
Can be updated without replacement.
Defaults to 220367260800

The value must be at least 60.

Attributes

showii
Detailed information about resource.

HOT Syntax

0S::Zun::Container

Available since 9.0.0 (Pike)

570 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

A resource that creates a Zun Container.

This resource creates a Zun container.

Required Properties

imager/
Name or ID of the image.
String value expected.

Updates cause replacement.

Optional Properties

command#

Send command to the container.

String value expected.

Updates cause replacement.
cpudi

The number of virtual cpus.

Number value expected.

Can be updated without replacement.
environment#

The environment variables.

Map value expected.

Updates cause replacement.

hints#

Available since 10.0.0 (Queens)

Arbitrary key-value pairs for scheduler to select host.

Map value expected.
Updates cause replacement.

hostnamer/

Available since 10.0.0 (Queens)

The hostname of the container.
String value expected.
Updates cause replacement.

image_driver#

3.3. Working with Templates

571

Heat Documentation, Release 24.1.0.dev11

The image driver to use to pull container image.
String value expected.

Updates cause replacement.

Allowed values: docker, glance

image_pull_policy#

The policy which determines if the image should be pulled prior to starting the container.

String value expected.

Updates cause replacement.

Allowed values: ifnotpresent, always, never
interactiver

Keep STDIN open even if not attached.

Boolean value expected.

Updates cause replacement.

labels#

Adds a map of labels to a container. May be used multiple times.

Map value expected.
Updates cause replacement.
memory#
The container memory size in MiB.
Integer value expected.
Can be updated without replacement.
mounts
A list of volumes mounted inside the container.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
mount_path#

Required.

The filesystem path inside the container.

String value expected.

Updates cause replacement.

572

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

volume_id#
Optional.
The ID or name of the cinder volume mount to the container.
String value expected.
Updates cause replacement.
Value must be of type cinder.volume
volume_sizeil
Optional.
The size of the cinder volume to create.
Integer value expected.
Updates cause replacement.
namer/
Name of the container.
String value expected.
Can be updated without replacement.

networksi

Available since 11.0.0 (Rocky)

An ordered list of nics to be added to this server, with information about connected networks, fixed ips,
port etc.

List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
fixed_ip#
Optional.
Fixed IP address to specify for the port created on the requested network.
String value expected.
Can be updated without replacement.
Value must be of type ip_addr
network#/
Optional.

Name or ID of network to create a port on.

3.3. Working with Templates 573

Heat Documentation, Release 24.1.0.dev11

String value expected.
Can be updated without replacement.
Value must be of type neutron.network
port#
Optional.
ID of an existing port to associate with this container.
String value expected.
Can be updated without replacement.
Value must be of type neutron.port
restart_policy#

Restart policy to apply when a container exits. Possible values are no, on-failure[:max-retry], always,
and unless-stopped.

String value expected.
Updates cause replacement.

security_groupsi

Available since 10.0.0 (Queens)

List of security group names or IDs.
List value expected.

Updates cause replacement.
Defaults to []

ttydd

Available since 14.0.0 (Ussuri)

Whether the container allocates a TTY for itself.
Boolean value expected.
Updates cause replacement.

workdir#
The working directory for commands to run in.
String value expected.

Updates cause replacement.

574 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

addressesii

A dict of all network addresses with corresponding port_id. Each network will have two keys in
dict, they are network name and network id. The port ID may be obtained through the following

expression: {get_attr: [<container>, addresses, <network name_or_id>, O, port]}.

nameri
Name of the container.

show#
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type
properties
command
cpu
environment
hints
hostname
image
image_driver
image_pull_policy

interactive
labels
memory
mounts

ar

.
name
networks

.

restart_policy
security_groups
tty

workdir

CloudFormation Compatible Resource Types

AWS::AutoScaling::AutoScalingGroup

(Available since 2014.1 (Icehouse)

3.3. Working with Templates

575

Heat Documentation, Release 24.1.0.dev11

Required Properties

AvailabilityZones#
Not Implemented.
List value expected.
Updates cause replacement.
MaxSized/
Maximum number of instances in the group.
Integer value expected.
Can be updated without replacement.
MinSize#
Minimum number of instances in the group.
Integer value expected.

Can be updated without replacement.

Optional Properties

Cooldown#/
Cooldown period, in seconds.
Integer value expected.
Can be updated without replacement.
DesiredCapacity?
Desired initial number of instances.
Integer value expected.
Can be updated without replacement.

HealthCheckGracePeriodi#

Note

Not implemented.

HealthCheckTyper

Note

Not implemented.

Instanceld#

The ID of an existing instance to use to create the Auto Scaling group. If specify this property, will
create the group use an existing instance instead of a launch configuration.

576 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.
Updates cause replacement.
Value must be of type nova.server
LaunchConfigurationName#/
The reference to a LaunchConfiguration resource.
String value expected.
Can be updated without replacement.
LoadBalancerNames#/
List of LoadBalancer resources.
List value expected.
Updates cause replacement.
Tagsii
Tags to attach to this group.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
Key#
Required.
String value expected.
Updates cause replacement.
Value#/
Required.
String value expected.
Updates cause replacement.
VPCZoneldentifier#

Use only with Neutron, to list the internal subnet to which the instance will be attached; needed only if
multiple exist; list length must be exactly 1.

List value expected.
Updates cause replacement.
List contents:

Optional.

UUID of the internal subnet to which the instance will be attached.

3.3. Working with Templates 577

Heat Documentation, Release 24.1.0.dev11

String value expected.

Updates cause replacement.

Attributes

InstanceList#
A comma-delimited list of server ip addresses. (Heat extension).

showii
Detailed information about resource.
update_policy
AutoScalingRollingUpdates/
Map value expected.

Updates cause replacement.

Map properties:
MaxBatchSized
Optional.

Integer value expected.
Updates cause replacement.
Defaults to 1
MinInstancesInService#
Optional.
Integer value expected.
Updates cause replacement.
Defaults to ®
PauseTime#
Optional.
String value expected.
Updates cause replacement.

Defaults to "PTOS"

HOT Syntax

(continues on next page)

578 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

AWS::AutoScaling::LaunchConfiguration
Optional Properties

BlockDeviceMappings#/
Block device mappings to attach to instance.
List value expected.
Updates cause replacement.
List contents:
Map value expected.

Updates cause replacement.

Map properties:
DeviceName#/
Required.

A device name where the volume will be attached in the system at /dev/device_name.e.g.
vdb

String value expected.
Updates cause replacement.
Ebs#i
The ebs volume to attach to the instance.
Map value expected.
Updates cause replacement.
Map properties:
DeleteOnTermination#/
Optional.

Indicate whether the volume should be deleted when the instance is terminated.

3.3. Working with Templates 579

Heat Documentation, Release 24.1.0.dev11

Boolean value expected.
Updates cause replacement.
Defaults to true
Topsti
Not implemented.
Snapshotldd
Optional.
The ID of the snapshot to create a volume from.
String value expected.
Updates cause replacement.
Value must be of type cinder.snapshot
VolumeSize#/
Optional.

The size of the volume, in GB. Must be equal or greater than the size of the snapshot.
It is safe to leave this blank and have the Compute service infer the size.

String value expected.
Updates cause replacement.
VolumeType#
Not implemented.
NoDevicer/
Not implemented.
VirtualName#/
Not implemented.
Imageldd
Glance image ID or name.
String value expected.
Updates cause replacement.
Value must be of type glance.image
Instanceld#

The ID of an existing instance you want to use to create the launch configuration. All properties are
derived from the instance with the exception of BlockDeviceMapping.

String value expected.
Updates cause replacement.
Value must be of type nova.server

InstanceType#

580 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Nova instance type (flavor).
String value expected.

Updates cause replacement.
Value must be of type nova.flavor

Kernelldd

Note

Not implemented.

KeyNamei/
Optional Nova keypair name.
String value expected.
Updates cause replacement.
Value must be of type nova.keypair

NovaSchedulerHints#

Scheduler hints to pass to Nova (Heat extension).

List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
Key#
Required.

String value expected.

Updates cause replacement.

Value#/
Required.

String value expected.

Updates cause replacement.

RamDiskId#

Note

Not implemented.

3.3. Working with Templates

581

Heat Documentation, Release 24.1.0.dev11

SecurityGroups#
Security group names to assign.
List value expected.
Updates cause replacement.
UserDatar/
User data to pass to instance.
String value expected.

Updates cause replacement.

Attributes

showii
Detailed information about resource.

HOT Syntax

AWS::AutoScaling::ScalingPolicy
Required Properties
AdjustmentTyped/

Type of adjustment (absolute or percentage).

String value expected.

Can be updated without replacement.

Allowed values: ChangeInCapacity, ExactCapacity, PercentChangelnCapacity

582

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

AutoScalingGroupName#/
AutoScaling group name to apply policy to.
String value expected.
Updates cause replacement.
ScalingAdjustments
Size of adjustment.
Integer value expected.

Can be updated without replacement.

Optional Properties

Cooldown#/
Cooldown period, in seconds.
Integer value expected.
Can be updated without replacement.
MinAdjustmentStep#

Minimum number of resources that are added or removed when the AutoScaling group scales up or
down. This can be used only when specifying PercentChangeInCapacity for the AdjustmentType

property.
Integer value expected.

Can be updated without replacement.

The value must be at least O.

Attributes

AlarmUrld
A signed url to handle the alarm. (Heat extension).

show#l
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates 583

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

AWS::CloudFormation::Stack

Represents a child stack to allow composition of templates.

Required Properties

TemplateURL#
The URL of a template that specifies the stack to be created as a resource.
String value expected.

Can be updated without replacement.

Optional Properties

Parametersi#/
The set of parameters passed to this nested stack.
Map value expected.
Can be updated without replacement.
TimeoutInMinutesi#/
The length of time, in minutes, to wait for the nested stack creation.
Integer value expected.

Can be updated without replacement.

Attributes

show#l
Detailed information about resource.

HOT Syntax

584

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

AWS::CloudFormation::WaitCondition

Available since 2014.1 (Icehouse)

Required Properties

Handle#
A reference to the wait condition handle used to signal this wait condition.
String value expected.
Updates cause replacement.

Timeout
The number of seconds to wait for the correct number of signals to arrive.
Integer value expected.
Updates cause replacement.

The value must be in the range 1 to 43200.

Optional Properties

Counti/

The number of success signals that must be received before the stack creation process continues.

Integer value expected.
Can be updated without replacement.
Defaults to 1

The value must be at least 1.

Attributes

Datail

JSON string containing data associated with wait condition signals sent to the handle.

showii
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

585

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

AWS::CloudFormation::WaitConditionHandle

Available since 2014.1 (Icehouse)

AWS WaitConditionHandle resource.

the main point of this class is to : have no dependencies (so the instance can reference it) generate a unique
url (to be returned in the reference) then the cfn-signal will use this url to post to and WaitCondition will
poll it to see if has been written to.

Attributes

show#/
Detailed information about resource.

HOT Syntax

AWS::EC2::EIP
Optional Properties

Instanceld#
Instance ID to associate with EIP.
String value expected.
Can be updated without replacement.
Value must be of type nova.server

Domain#

DEPRECATED since 9.0.0 (Pike) - Now we only allow vpc here, so no need to set up this tag
anymore.

Set to vpc to have IP address allocation associated to your VPC.

String value expected.

Updates cause replacement.

586 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Allowed values: vpc

Attributes

Allocationld#

ID that AWS assigns to represent the allocation of the address for use with Amazon VPC. Returned

only for VPC elastic IP addresses.

showii
Detailed information about resource.

HOT Syntax

AWS::EC2::EIPAssociation
Optional Properties

Allocationld#
Allocation ID for VPC EIP address.
String value expected.
Can be updated without replacement.
EIP#%
EIP address to associate with instance.
String value expected.
Can be updated without replacement.
Value must be of type ip_addr

Instanceld#

Instance ID to associate with EIP specified by EIP property.

String value expected.

Can be updated without replacement.

Value must be of type nova.server
NetworkInterfaceld#

Network interface ID to associate with EIP.

String value expected.

3.3. Working with Templates

587

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.

Attributes

show#l
Detailed information about resource.

HOT Syntax

AWS::EC2::Instance
Required Properties

Imageldd

Glance image ID or name.

String value expected.

Updates cause replacement.

Value must be of type glance.image
InstanceType#

Nova instance type (flavor).

String value expected.

Can be updated without replacement.

Value must be of type nova.flavor

Optional Properties

AvailabilityZone#/
Availability zone to launch the instance in.
String value expected.
Updates cause replacement.
BlockDeviceMappingsi#

Block device mappings to attach to instance.

588

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

List value expected.
Updates cause replacement.
List contents:

Map value expected.

Updates cause replacement.

Map properties:
DeviceNamer#/
Required.

A device name where the volume will be attached in the system at /dev/device_name.e.g.
vdb

String value expected.
Updates cause replacement.
Ebsii
The ebs volume to attach to the instance.
Map value expected.
Updates cause replacement.
Map properties:
DeleteOnTermination#
Optional.
Indicate whether the volume should be deleted when the instance is terminated.
Boolean value expected.
Updates cause replacement.
Defaults to true
Topsii
Not implemented.
Snapshotldd
Optional.
The ID of the snapshot to create a volume from.
String value expected.
Updates cause replacement.
Value must be of type cinder.snapshot
VolumeSizer/
Optional.

The size of the volume, in GB. Must be equal or greater than the size of the snapshot.
It is safe to leave this blank and have the Compute service infer the size.

3.3. Working with Templates 589

Heat Documentation, Release 24.1.0.dev11

String value expected.
Updates cause replacement.
VolumeType#/
Not implemented.
NoDevicer/
Not implemented.
VirtualName#/
Not implemented.

DisableApiTermination#

Note

Not implemented.

Kernelldd

Note

Not implemented.

KeyNamei#/
Optional Nova keypair name.
String value expected.
Updates cause replacement.
Value must be of type nova.keypair

Monitoringt/

Note

Not implemented.

NetworkInterfacest/
Network interfaces to associate with instance.
List value expected.
Can be updated without replacement.
NovaSchedulerHints#/
Scheduler hints to pass to Nova (Heat extension).
List value expected.

Updates cause replacement.

590

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

List contents:
Map value expected.
Updates cause replacement.
Map properties:
Key#
Required.
String value expected.
Updates cause replacement.
Value#/
Required.
String value expected.
Updates cause replacement.

PlacementGroupName#/

Note

Not implemented.

PrivateIpAddress#

Note

Not implemented.

RamDiskId#

Note

Not implemented.

SecurityGrouplds#
Security group IDs to assign.
List value expected.
Updates cause replacement.
SecurityGroups#
Security group names to assign.
List value expected.

Updates cause replacement.

3.3. Working with Templates 591

Heat Documentation, Release 24.1.0.dev11

SourceDestChecki

Note

Not implemented.

Subnetld#
Subnet ID to launch instance in.
String value expected.
Can be updated without replacement.
Tagsti
Tags to attach to instance.
List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
Key#
Required.

String value expected.

Can be updated without replacement.

Valued/
Required.

String value expected.

Can be updated without replacement.

Tenancy#

Note

Not implemented.

UserData#/
User data to pass to instance.
String value expected.
Updates cause replacement.

Volumes#

592

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Volumes to attach to instance.
List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
Devicerl

Required.

The device where the volume is exposed on the instance. This assignment may not be hon-
ored and it is advised that the path /dev/disk/by-id/virtio-<Volumeld> be used instead.

String value expected.

Updates cause replacement.
Volumeld#

Required.

The ID of the volume to be attached.

String value expected.

Updates cause replacement.

Value must be of type cinder.volume

Attributes

AvailabilityZone#/

The Availability Zone where the specified instance is launched.

PrivateDnsName#/
Private DNS name of the specified instance.

Privatelpi/
Private IP address of the specified instance.

PublicDnsNamez/
Public DNS name of the specified instance.

Publiclp#
Public IP address of the specified instance.

show#
Detailed information about resource.

3.3. Working with Templates

593

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

heat_template_version

resources

type

properties
AvailabilityZone
BlockDeviceMappings

«'"DeleteOnTermination"

. "DeviceName"

" "VolumeSize"
ImageId
InstanceType
KeyName
NetworkInterfaces
NovaSchedulerHints

—"Value"
SecurityGrouplds
SecurityGroups
SubnetId
Tags "Key"
UserData
Volumes

—"VolumeId"

"Device"

"DeviceName" "Ebs"
"SnapshotId"
"Ebs" "DeleteOnTermination"

"Key" "Value"

"Value" "Key'

"VolumeId"

"VolumeSize"
"SnapshotId
llI{eyll
"Value":.,
"Device"

AWS::EC2::InternetGateway
Optional Properties

Tagsif
List value expected.
Updates cause replacement.
List contents:

Not implemented.

Attributes

show#

Detailed information about resource.

HOT Syntax

heat_template_version

(continues on next page)

594

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

AWS::EC2::Networkinterface
Required Properties

SubnetId#
Subnet ID to associate with this interface.
String value expected.
Updates cause replacement.

Value must be of type neutron.subnet

Optional Properties

Description#/
Description for this interface.
String value expected.
Updates cause replacement.

GroupSetid

List of security group IDs associated with this interface.

List value expected.

Can be updated without replacement.
PrivateIpAddress#

String value expected.

Updates cause replacement.

SourceDestCheckd

Note

Not implemented.

Tagsti
List value expected.

Updates cause replacement.

3.3. Working with Templates

595

Heat Documentation, Release 24.1.0.dev11

List contents:

Not implemented.

Attributes

PrivateIpAddress#
Private IP address of the network interface.

showii
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
Description
GroupSet
PrivatelIpAddress
SubnetId
Tags

AWS::EC2::RouteTable

(Available since 2014.1 (Icehouse)

Required Properties

Vpcld#
VPC ID for where the route table is created.
String value expected.

Updates cause replacement.

Optional Properties

Tagsti
List value expected.
Updates cause replacement.
List contents:

Not implemented.

596

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l
Detailed information about resource.

HOT Syntax

AWS::EC2::SecurityGroup
Required Properties

GroupDescription
Description of the security group.
String value expected.

Updates cause replacement.

Optional Properties

SecurityGroupEgressi/

List value expected.

Can be updated without replacement.

List contents:
List of security group egress rules.
Map value expected.
Can be updated without replacement.
Map properties:

CidrIpd
Optional.

String value expected.

Can be updated without replacement.

FromPorti#

Optional.

3.3. Working with Templates

597

Heat Documentation, Release 24.1.0.dev11

String value expected.

Can be updated without replacement.
IpProtocold

Optional.

String value expected.

Can be updated without replacement.
SourceSecurityGroupld#

Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupNamer/
Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupOwnerld#
Not implemented.

ToPortii
Optional.

String value expected.

Can be updated without replacement.

SecurityGroupIngressi/

List value expected.

Can be updated without replacement.

List contents:
List of security group ingress rules.
Map value expected.
Can be updated without replacement.
Map properties:

CidrIpd
Optional.

String value expected.

Can be updated without replacement.

FromPorti#

Optional.

598

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.

Can be updated without replacement.

IpProtocold
Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupld#
Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupNamer/
Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupOwnerld#
Not implemented.

ToPortii
Optional.

String value expected.

Can be updated without replacement.

Vpcld#
Physical ID of the VPC. Not implemented.
String value expected.

Updates cause replacement.

Attributes

showii
Detailed information about resource.

HOT Syntax

(continues on next page)

3.3. Working with Templates

599

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

i d

I

AWS::EC2::Subnet
Required Properties

CidrBlock#
CIDR block to apply to subnet.
String value expected.
Updates cause replacement.
Vpcld#
Ref structure that contains the ID of the VPC on which you want to create the subnet.
String value expected.

Updates cause replacement.

Optional Properties

AvailabilityZone#d
Availability zone in which you want the subnet.
String value expected.
Updates cause replacement.
Tagsif
List value expected.
Updates cause replacement.
List contents:

Not implemented.

600 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Attributes

AvailabilityZone#/
Availability Zone of the subnet.

show#
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
AvailabilityZone
CidrBlock
Tags

VpcId

AWS::EC2::SubnetRouteTableAssociation
Required Properties

RouteTableld#
Route table ID.
String value expected.
Updates cause replacement.
Subnetld#
Subnet ID.
String value expected.
Updates cause replacement.

Value must be of type neutron.subnet

Attributes

show#
Detailed information about resource.

HOT Syntax

heat_template_version

resources

(continues on next page)

3.3. Working with Templates

601

Heat Documentation, Release 24.1.0.dev11

type

properties
RouteTableId
SubnetId

(continued from previous page)

AWS::EC2::VPC
Optional Properties

CidrBlock#
CIDR block to apply to the VPC.
String value expected.
Updates cause replacement.

InstanceTenancy#

Note

Not implemented.

Tagsif
List value expected.
Updates cause replacement.
List contents:

Not implemented.

Attributes

show#l
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
CidrBlock
Tags

602

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

AWS::EC2::VPCGatewayAttachment
Required Properties

Vpcld#
VPC ID for this gateway association.
String value expected.

Updates cause replacement.

Optional Properties

InternetGatewayldd
ID of the InternetGateway.
String value expected.
Updates cause replacement.

VpnGatewayld#

Note

Not implemented.

Attributes

show#
Detailed information about resource.

HOT Syntax

AWS::EC2::Volume
Required Properties

AvailabilityZoned
The availability zone in which the volume will be created.
String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

3.3. Working with Templates 603

Heat Documentation, Release 24.1.0.dev11

Optional Properties

Sizedl
The size of the volume in GB.
Integer value expected.
Updates are not supported. Resource update will fail on any attempt to update this property.
The value must be at least 1.
Snapshotld#
If specified, the backup used as the source to create the volume.
String value expected.
Updates are not supported. Resource update will fail on any attempt to update this property.
Value must be of type cinder.backup
Tagsif
The list of tags to associate with the volume.
List value expected.
Updates are not supported. Resource update will fail on any attempt to update this property.
List contents:
Map value expected.
Updates are not supported. Resource update will fail on any attempt to update this property.
Map properties:
Key#
Required.
String value expected.
Updates are not supported. Resource update will fail on any attempt to update this property.
Value#/
Required.
String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Attributes

showii
Detailed information about resource.

604 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

AWS::EC2::VolumeAttachment
Required Properties

Deviceil

The device where the volume is exposed on the instance. This assignment may not be honored and it is
advised that the path /dev/disk/by-id/virtio-<Volumeld> be used instead.

String value expected.
Updates are not supported. Resource update will fail on any attempt to update this property.
Value must match pattern: /dev/vd[b-z]
Instanceld#
The ID of the instance to which the volume attaches.
String value expected.
Updates are not supported. Resource update will fail on any attempt to update this property.
Value must be of type nova.server
Volumeld#
The ID of the volume to be attached.
String value expected.
Updates are not supported. Resource update will fail on any attempt to update this property.

Value must be of type cinder.volume

Attributes

show#l
Detailed information about resource.

3.3. Working with Templates 605

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

AWS::ElasticLoadBalancing::LoadBalancer

Implements a HAProxy-bearing instance as a nested stack.
The template for the nested stack can be redefined with 1oadbalancer_template optioninheat.conf.

Generally the image used for the instance must have the following packages installed or available for
installation at runtime:

Current default builtin template uses Fedora 21 x86_64 base cloud image (https://getfedora.org/cloud/
download/) and apart from installing packages goes through some hoops around SELinux due to pecu-
larities of heat-cfntools.

Required Properties

AvailabilityZonesi#/
The Availability Zones in which to create the load balancer.
List value expected.
Updates cause replacement.
Listenersi/
One or more listeners for this load balancer.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:

InstancePortii

606 Chapter 3. Using Heat

https://getfedora.org/cloud/download/
https://getfedora.org/cloud/download/

Heat Documentation, Release 24.1.0.dev11

Required.
TCP port on which the instance server is listening.
Integer value expected.
Updates cause replacement.
LoadBalancerPort#
Required.
The external load balancer port number.
Integer value expected.
Updates cause replacement.
PolicyNames#/
Not implemented.
Protocold
Required.
The load balancer transport protocol to use.
String value expected.
Updates cause replacement.
Allowed values: TCP, HTTP
SSLCertificateld#

Not implemented.

Optional Properties

AppCookieStickinessPolicy#

Note

Not implemented.

HealthCheck#
An application health check for the instances.
Map value expected.

Updates cause replacement.

Map properties:
HealthyThreshold#
Required.

The number of consecutive health probe successes required before moving the instance to the
healthy state.

Integer value expected.

3.3. Working with Templates 607

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.
Intervald#

Required.

The approximate interval, in seconds, between health checks of an individual instance.

Integer value expected.

Updates cause replacement.
Targetd

Required.

The port being checked.

String value expected.

Updates cause replacement.
Timeout#

Required.

Health probe timeout, in seconds.

Integer value expected.

Updates cause replacement.
UnhealthyThreshold#

Required.

The number of consecutive health probe failures required before moving the instance to the un-

healthy state
Integer value expected.
Updates cause replacement.
Instancesi/
The list of instance IDs load balanced.
List value expected.
Can be updated without replacement.

LBCookieStickinessPolicy#

Note

Not implemented.

SecurityGroups#
List of Security Groups assigned on current LB.
List value expected.

Can be updated without replacement.

608

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Subnetsi

Note

Not implemented.

Attributes
CanonicalHostedZoneNamer/

The name of the hosted zone that is associated with the LoadBalancer.

CanonicalHostedZoneNamelD#
The ID of the hosted zone name that is associated with the LoadBalancer.

DNSNamer/
The DNS name for the LoadBalancer.

SourceSecurityGroup.GroupName#/
The security group that you can use as part of your inbound rules for your LoadBalancers back-end
instances.

SourceSecurityGroup.OwnerAlias#
Owner of the source security group.

show#
Detailed information about resource.

HOT Syntax

AWS::IAM::AccessKey
Required Properties

UserNamet/
The name of the user that the new key will belong to.

String value expected.

3.3. Working with Templates 609

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.

Optional Properties

Seriali

Note

Not implemented.

Statusi

Note

Not implemented.

Attributes

SecretAccessKey#/
Keypair secret key.

UserNamer#/
Username associated with the AccessKey.

show#
Detailed information about resource.

HOT Syntax

AWS::IAM::User
Optional Properties

Groups#
Not Implemented.
List value expected.
Updates cause replacement.
LoginProfile#

A login profile for the user.

610

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Map value expected.
Updates cause replacement.
Map properties:
Passwordd
Optional.

String value expected.

Updates cause replacement.

Path#
Not Implemented.
String value expected.
Updates cause replacement.

Policiesii

Access policies to apply to the user.

List value expected.

Updates cause replacement.

Attributes

show#

Detailed information about resource.

HOT Syntax

AWS::S3::Bucket
Optional Properties

AccessControli#

A predefined access control list (ACL) that grants permissions on the bucket.

String value expected.

3.3. Working with Templates

611

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.

Allowed values: Private, PublicRead, PublicReadWrite, AuthenticatedRead, BucketOwnerRead, Buck-
etOwnerFullControl

Tagsti
Tags to attach to the bucket.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
Key#
Required.
The tag key name.
String value expected.
Updates cause replacement.
Value#/
Required.
The tag value.
String value expected.
Updates cause replacement.
WebsiteConfiguration
Information used to configure the bucket as a static website.
Map value expected.

Updates cause replacement.

Map properties:
ErrorDocuments/
Optional.

The name of the error document.

String value expected.

Updates cause replacement.
IndexDocuments/

Optional.

The name of the index document.

String value expected.

612 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.

Attributes

DomainName#
The DNS name of the specified bucket.

WebsiteURL#
The website endpoint for the specified bucket.

show#
Detailed information about resource.

HOT Syntax

Unsupported Heat Resource Types
These resources are enabled, but are not officially supported.

0S::Aodh::Alarm

DEPRECATED since 10.0.0 (Queens) - Theshold alarm relies on ceilometer-api and has been dep-
recated in aodh since Ocata. Use OS::Aodh::GnocchiAggregationByResourcesAlarm instead.

Available since 2014.1 (Icehouse)

A resource that implements alarming service of Aodh.

A resource that allows for the setting alarms based on threshold evaluation for a collection of samples.
Also, you can define actions to take if state of watched resource will be satisfied specified conditions.
For example, it can watch for the memory consumption and when it reaches 70% on a given instance if
the instance has been up for more than 10 min, some action will be called.

Required Properties

meter_name/
Meter name watched by the alarm.

String value expected.

3.3. Working with Templates 613

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.
threshold#

Threshold to evaluate against.

Number value expected.

Can be updated without replacement.

Optional Properties

alarm_actionsi/

A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata)

A list of Zaqgar queues to post to when state transitions to alarm.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
comparison_operators
Operator used to compare specified statistic with threshold.
String value expected.
Can be updated without replacement.
Allowed values: le, ge, eq, It, gt, ne
descriptions/
Description for the alarm.
String value expected.
Can be updated without replacement.
enabledd
True if alarm evaluation/actioning is enabled.

Boolean value expected.

614

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Defaults to "true"
evaluation_periods#
Number of periods to evaluate over.
Integer value expected.
Can be updated without replacement.
insufficient_data_actions#
A list of URLs (webhooks) to invoke when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.

insufficient_data_queuest#/

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
matching_metadata#
Meter should match this resource metadata (key=value) additionally to the meter_name.
Map value expected.
Can be updated without replacement.
Defaults to {}
ok_actions#
A list of URLSs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuesi

3.3. Working with Templates 615

Heat Documentation, Release 24.1.0.dev11

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
period#
Period (seconds) to evaluate over.
Integer value expected.
Can be updated without replacement.

query#

Available since 2015.1 (Kilo)

A list of query factors, each comparing a Sample attribute with a value. Implicitly combined with
matching_metadata, if any.

List value expected.
Can be updated without replacement.
List contents:

Map value expected.

Can be updated without replacement.

Map properties:

fieldd
Optional.

Name of attribute to compare. Names of the form metadata.user_metadata.X or meta-
data.metering.X are equivalent to what you can address through matching_metadata; the
former for Nova meters, the latter for all others. To see the attributes of your Samples,
use ‘ceilometer debug sample-list°.

String value expected.
Can be updated without replacement.

op

Optional.

616 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Comparison operator.

String value expected.

Can be updated without replacement.
Allowed values: le, ge, eq, It, gt, ne

typetd

Available since 8.0.0 (Ocata)

Optional.

The type of the attribute.

String value expected.

Can be updated without replacement.

Defaults to "string"

Allowed values: integer, float, string, boolean, datetime
valued/

Optional.

String value with which to compare.

String value expected.

Can be updated without replacement.

repeat_actionst/

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,

actions are called each time the threshold is reached.
Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severityz/

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.

Defaults to "low"

Allowed values: low, moderate, critical
statistici/

Meter statistic to evaluate.

3.3. Working with Templates

617

Heat Documentation, Release 24.1.0.dev11

String value expected.
Can be updated without replacement.
Allowed values: count, avg, sum, min, max

time_constraintsi¥

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
description#
Optional.
Description for the time constraint.
String value expected.
Updates cause replacement.
duration#
Required.
Duration for the time constraint.
Integer value expected.
Updates cause replacement.
The value must be at least 0.
namez/
Required.
Name for the time constraint.
String value expected.
Updates cause replacement.
startif
Required.

Start time for the time constraint. A CRON expression property.

618 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezoner/

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

Attributes

showi#

Detailed information about resource.

HOT Syntax

heat_template_version

resources

type
properties

alarm_actions
alarm_queues
comparison_operator
description

enabled
evaluation_periods
insufficient_data_actions
insufficient_data_queues
matching_metadata
meter_name

ok_actions
ok_queues
period
query "field" "type" "op" "value"
o "field" "type" "op" 'value"
repeat_actions
severity
statistic
threshold
time_constraints "name" "start" "description":.
o "duration" "timezone" "name" "start":.
o "description" "duration" "timezone"
an
3.3. Working with Templates 619

Heat Documentation, Release 24.1.0.dev11

0OS::Monasca::AlarmDefinition

DEPRECATED since 22.0.0 - Monasca project was marked inactive

Available since 7.0.0 (Newton)

UNSUPPORTED since 5.0.0 (Liberty)

Heat Template Resource for Monasca Alarm definition.

Monasca Alarm definition helps to define the required expression for a given alarm situation. This plugin
helps to create, update and delete the alarm definition.

Alarm definitions is necessary to describe and manage alarms in a one-to-many relationship in order to
avoid having to manually declare each alarm even though they may share many common attributes and
differ in only one, such as hostname.

Required Properties

expression
Expression of the alarm to evaluate.
String value expected.

Updates cause replacement.

Optional Properties

actions_enabledd
Whether to enable the actions or not.
Boolean value expected.
Can be updated without replacement.
Defaults to true
alarm_actions#/
The notification methods to use when an alarm state is ALARM.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
Monasca notification.
String value expected.

Can be updated without replacement.

620 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Value must be of type monasca.notification
descriptions/
Description of the alarm.
String value expected.
Can be updated without replacement.
match_by#

The metric dimensions to match to the alarm dimensions. One or more dimension key names separated
by a comma.

List value expected.
Updates cause replacement.
Defaults to []
name/
Name of the alarm. By default, physical resource name is used.
String value expected.
Can be updated without replacement.
ok_actions#/
The notification methods to use when an alarm state is OK.
List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
Monasca notification.
String value expected.
Can be updated without replacement.
Value must be of type monasca.notification
severity#/
Severity of the alarm.
String value expected.
Can be updated without replacement.
Defaults to "low"
Allowed values: low, medium, high, critical
undetermined_actions#
The notification methods to use when an alarm state is UNDETERMINED.

List value expected.

3.3. Working with Templates 621

Heat Documentation, Release 24.1.0.dev11

Can be updated without replacement.
Defaults to []
List contents:

Optional.

Monasca notification.

String value expected.

Can be updated without replacement.

Value must be of type monasca.notification

Attributes

showii
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
actions_enabled
alarm_actions
description
expression
match_by
name
ok_actions
severity
undetermined_actions

0OS::Monasca::Notification

[DEPRECATED since 22.0.0 - Monasca project was marked inactive

(Available since 7.0.0 (Newton)

(Available since 5.0.0 (Liberty)

Heat Template Resource for Monasca Notification.

622

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

A resource which is used to notificate if there is some alarm. Monasca Notification helps to declare the
hook points, which will be invoked once alarm is generated. This plugin helps to create, update and
delete the notification.

Required Properties

addressi/

Address of the notification. It could be a valid email address, url or service key based on notification
type.

String value expected.

Can be updated without replacement.

The length must be no greater than 512.
typeid

Type of the notification.

String value expected.

Can be updated without replacement.

Allowed values: email, webhook, pagerduty

Optional Properties

name#/
Name of the notification. By default, physical resource name is used.
String value expected.
Can be updated without replacement.

periodd

Available since 7.0.0 (Newton)

Interval in seconds to invoke webhooks if the alarm state does not transition away from the defined
trigger state. A value of 0 will disable continuous notifications. This property is only applicable
for the webhook notification type and has default period interval of 60 seconds.

Integer value expected.
Can be updated without replacement.

Allowed values: 0, 60

Attributes

showii
Detailed information about resource.

3.3. Working with Templates 623

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

OS::Neutron::ExtraRoute

UNSUPPORTED - Use this resource at your own risk.

Resource for specifying extra routes for Neutron router.

Resource allows to specify nexthop IP and destination network for router.

Required Properties

destination#/
Network in CIDR notation.
String value expected.
Updates cause replacement.
nexthop#
Nexthop IP address.
String value expected.
Updates cause replacement.
router_id#
The router id.
String value expected.
Updates cause replacement.

Value must be of type neutron.router

Attributes

showii
Detailed information about resource.

624 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

HOT Syntax

0OS::Neutron::FlowClassifier

UNSUPPORTED since 8.0.0 (Ocata)

Heat Template Resource for networking-sfc flow-classifier.

This resource used to select the traffic that can access the service chain. Traffic that matches any flow
classifier will be directed to the first port in the chain.

Optional Properties

descriptions/
Description for the Flow Classifier.
String value expected.
Can be updated without replacement.
destination_ip_prefix#
Destination IP prefix or subnet.
String value expected.
Updates cause replacement.
Value must be of type net_cidr
destination_port_range_max#
Destination protocol port maximum.
Integer value expected.
Updates cause replacement.
The value must be in the range 1 to 65535.
destination_port_range_min#
Destination protocol port minimum.
Integer value expected.

Updates cause replacement.

3.3. Working with Templates 625

Heat Documentation, Release 24.1.0.dev11

The value must be in the range 1 to 65535.
ethertyper/

L2 ethertype.

String value expected.

Updates cause replacement.

Defaults to "IPv4"

Allowed values: IPv4, IPv6
logical_destination_port#

ID or name of the neutron destination port.

String value expected.

Updates cause replacement.

Value must be of type neutron.port
logical_source_portd

ID or name of the neutron source port.

String value expected.

Updates cause replacement.

Value must be of type neutron.port
name#/

Name of the Flow Classifier.

String value expected.

Can be updated without replacement.
protocol#

IP Protocol for the Flow Classifier.

String value expected.

Updates cause replacement.

Allowed values: tcp, udp, icmp
source_ip_prefixi#/

Source IP prefix or subnet.

String value expected.

Updates cause replacement.

Value must be of type net_cidr
source_port_range_maxu

Source protocol port Maximum.

Integer value expected.

626

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Updates cause replacement.

The value must be in the range 1 to 65535.
source_port_range_min#

Source protocol port Minimum.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

17_parameters#

(UNSUPPORTED - Currently, no value is supported for this option.

Dictionary of L7-parameters.
Map value expected.

Updates cause replacement.

Attributes

show#
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
description
destination_ip_prefix
destination_port_range_max
destination_port_range_min
ethertype
logical_destination_port
logical_source_port
name
protocol
source_ip_prefix
source_port_range_max
source_port_range_min

3.3. Working with Templates

627

Heat Documentation, Release 24.1.0.dev11

0OS::Neutron::PortChain

UNSUPPORTED since 8.0.0 (Ocata)

A resource for neutron networking-sfc.

This resource used to define the service function path by arranging networking-sfc port-pair-groups and
set of flow classifiers, to specify the classified traffic flows to enter the chain.

Required Properties

port_pair_groupsi/
A list of port pair groups to apply to the Port Chain.
List value expected.
Can be updated without replacement.
List contents:
Optional.
Port Pair Group ID or Name .
String value expected.
Can be updated without replacement.

Value must be of type neutron.port_pair_group

Optional Properties

chain_parametersi/

Dictionary of chain parameters. Currently, only correlation=mpls is supported by default.

Map value expected.

Updates cause replacement.

Defaults to {"correlation": "mpls"}
descriptions

Description for the Port Chain.

String value expected.

Can be updated without replacement.
flow_classifiers#

A list of flow classifiers to apply to the Port Chain.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

628 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Optional.
Flow Classifier ID or Name .
String value expected.
Can be updated without replacement.
Value must be of type neutron.flow_classifier
name#/
Name of the Port Chain.
String value expected.

Can be updated without replacement.

Attributes

showi#
Detailed information about resource.

HOT Syntax

OS::Neutron::PortPair

UNSUPPORTED since 7.0.0 (Newton)

A resource for neutron networking-sfc port-pair.

This plug-in requires networking-sfc>=1.0.0. So to enable this plug-in, install this library and restart the
heat-engine.

A Port Pair represents a service function instance. The ingress port and the egress port of the service
function may be specified. If a service function has one bidirectional port, the ingress port has the same
value as the egress port.

3.3. Working with Templates 629

Heat Documentation, Release 24.1.0.dev11

Required Properties

egressi/
ID or name of the egress neutron port.
String value expected.
Updates cause replacement.
Value must be of type neutron.port
ingressi/
ID or name of the ingress neutron port.
String value expected.
Updates cause replacement.

Value must be of type neutron.port

Optional Properties

description#

Description for the Port Pair.

String value expected.

Can be updated without replacement.
name/

Name for the Port Pair.

String value expected.

Can be updated without replacement.
service_function_parameters#

Dictionary of service function parameter. Currently only correlation=None is supported.

Map value expected.

Updates cause replacement.

Defaults to {"correlation": null}

Attributes

showii
Detailed information about resource.

HOT Syntax

(continues on next page)

630 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

0OS::Neutron::PortPairGroup

UNSUPPORTED since 8.0.0 (Ocata)

Heat Template Resource for networking-sfc port-pair-group.

Multiple port-pairs may be included in a port-pair-group to allow the specification of a set of functionally
equivalent Service Functions that can be used for load distribution.

Required Properties

port_pairsd
A list of Port Pair IDs or names to apply.
List value expected.
Can be updated without replacement.
List contents:
Optional.
Port Pair ID or name .
String value expected.
Can be updated without replacement.

Value must be of type neutron.port_pair

Optional Properties

descriptions/
Description for the Port Pair Group.
String value expected.
Can be updated without replacement.
name/
Name for the Port Pair Group.
String value expected.

Can be updated without replacement.

3.3. Working with Templates 631

Heat Documentation, Release 24.1.0.dev11

Attributes

show#l
Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
description
name
port_pairs

Contributed Heat Resource Types

These resources are not enabled by default.

Dockerlnc Resource

This resource is not enabled by default.

This plugin enables the use of Docker containers in a Heat template and requires the docker-py package.

You can find more information in the DOCKER_README.

CloudFormation Compatible Functions

There are a number of functions that you can use to help you write CloudFormation compatible templates.
While most CloudFormation functions are supported in HOT version 2013-05-23, Fn::Select is the only
CloudFormation function supported in HOT templates since version 2014-10-16 which is introduced in

Juno.

All of these functions (except Ref) start with Fn.:.

Ref

Returns the value of the named parameter or resource.

Parameters

name

[String] The name of the resource or parameter.

Usage

[Ref

Returns the nova instance ID. For example, d8093de®-850f-4513-b202-7979de6c0d55.

632

Chapter 3. Using Heat

https://pypi.org/project/docker-py
https://opendev.org/openstack/heat/src/branch/master/contrib/heat_docker/README.md

Heat Documentation, Release 24.1.0.dev11

Fn::Baseb64

This is a placeholder for a function to convert an input string to Base64. This function in Heat actually
performs no conversion. It is included for the benefit of CFN templates that convert UserData to Base64.
Heat only accepts UserData in plain text.

Parameters

value
[String] The string to convert.

Usage

[1

Returns the original input string.

Fn::FindinMap

Returns the value corresponding to keys into a two-level map declared in the Mappings section.

Parameters

map_name
[String] The logical name of a mapping declared in the Mappings section that contains the keys
and values.

top_level_key
[String] The top-level key name. Its value is a list of key-value pairs.

second_level_key
[String] The second-level key name, which is set to one of the keys from the list assigned to

top_level_key.

Usage

Returns 908.

Fn::GetAtt

Returns an attribute of a resource within the template.

3.3. Working with Templates 633

Heat Documentation, Release 24.1.0.dev11

Parameters

resource
[String] The name of the resource.

attribute
[String] The name of the attribute.

Usage

[

Returns an IP address such as 10.0.0. 2.

Fn::GetAZs

Returns the Availability Zones within the given region.

Note: AZs and regions are not fully implemented in Heat.

Parameters

region
[String] The name of the region.

Usage

[

Returns the list provided by nova availability-zone-list.

Fn::Join

Like python join, it joins a list of strings with the given delimiter.

Parameters

delimiter

[String] The string to join the list with.
list

[list] The list to join.

Usage

Returns beer, wine, more beer.

634

Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Fn::Select

Select an item from a list.

Heat extension: Select an item from a map
Parameters

selector
[string or integer] The number of item in the list or the name of the item in the map.

collection
[map or list] The collection to select the item from.

Usage

For a list lookup:

[1

Returns mangoes.

For a map lookup:

[)

Returns a.

Fn::Split
This is the reverse of Join. Convert a string into a list based on the delimiter.

Parameters

delimiter
[string] Matching string to split on.

string
[String] The string to split.

Usage

[

Returns {["strl", "str2", "str3", "str4"]}.

Fn::Replace

Find and replace one string with another.

3.3. Working with Templates 635

Heat Documentation, Release 24.1.0.dev11

Parameters

substitutions
[map] A map of substitutions.

string: String
The string to do the substitutions in.

Usage

Returns "foo is bar".

Fn::ResourceFacade

When writing a Template Resource:
* user writes a template that will fill in for a resource (the resource is the facade).
* when they are writing their template they need to access the metadata from the facade.

Parameters

attribute_name
[String] One of Metadata, DeletionPolicy or UpdatePolicy.

Usage

Example

Here is a top level template top.yaml

Here is a resource template my_actual_server.yaml

636 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

The environment file env.yaml

To use it

[$ openstack stack create -t top.yaml -e env.yaml mystack

1

What happened is the metadata in top.yaml (key: value, some: more stuff) gets passed into the resource

template via the Fn::ResourceFacade function.

Fn::MemberListToMap

Convert an AWS style member list into a map.

Parameters

key name: string

The name of the key (normally Name or Key).

value name: string
The name of the value (normally Value).

list: A list of strings
The string to convert.

Usage

Returns {'key': 'door', 'colour':

Fn::Equals

'green'}.

Compares whether two values are equal. And returns true if the two values are equal or false if they arent.

Parameters

valuel:
A value of any type that you want to compare.

value2:
A value of any type that you want to compare.

3.3. Working with Templates

637

Heat Documentation, Release 24.1.0.dev11

Usage

[J

Returns true if the param env_type equals to prod, otherwise returns false.

Fn::If
Returns one value if the specified condition evaluates to true and another value if the specified condition

evaluates to false.

Parameters

condition_name:
A reference to a condition in the Conditions section.

value_if true:
A value to be returned if the specified condition evaluates to true.

value_if_false:
A value to be returned if the specified condition evaluates to false.

Usage

[]

Returns value_true if the condition create_prod evaluates to true, otherwise returns value_false.

Fn::Not

Acts as a NOT operator.

The syntax of the Fn: :Not function is

[

Returns true for a condition that evaluates to false or returns false for a condition that evaluates to true.

Parameters

condition:
A condition such as Fn: : Equals that evaluates to true or false can be defined in this function, also
we can set a boolean value as a condition.

Usage

[

Returns false if the param env_type equals to prod, otherwise returns true.

638 Chapter 3. Using Heat

Heat Documentation, Release 24.1.0.dev11

Fn::And

Acts as an AND operator to evaluate all the specified conditions. Returns true if all the specified condi-
tions evaluate to true, or returns false if any one of the conditions evaluates to false.

Parameters

condition:
A condition such as Fn::Equals that evaluates to true or false.

Usage

Returns true if the param env_type equals to prod and the param zone is not equal to beijing, otherwise
returns false.

Fn::Or

Acts as an OR operator to evaluate all the specified conditions. Returns true if any one of the specified
conditions evaluate to true, or returns false if all of the conditions evaluates to false.

Parameters

condition:
A condition such as Fn::Equals that evaluates to true or false.

Usage

Returns true if the param zone equals to shanghai or beijing, otherwise returns false.

3.3.2 Example Templates

This page documents the templates at https://opendev.org/openstack/heat-templates/

Example HOT Templates
Hello World HOT Template

https://opendev.org/openstack/heat-templates/src/branch/master/hot/hello_world.yaml

Description

Hello world HOT template that just defines a single compute instance. Contains just base features to
verify base HOT support.

3.3. Working with Templates 639

https://opendev.org/openstack/heat-templates/
https://opendev.org/openstack/heat-templates/src/branch/master/hot/hello_world.yaml

Heat Documentation, Release 24.1.0.dev11

Parameters

key_name (required)

lype
string

description
Name of an existing key pair to use for the instance

flavor (optional)

lype
string

description
Flavor for the instance to be created

image (required)

lype
string

description
Image ID or image name to use for the instance

admin_pass (required)

lype
string

description
The admin password for the instance

db_port (optional)

type
number

description
The database port number
Example CFN Templates
AWS Wordpress Single Instance Template

https://opendev.org/openstack/heat-templates/src/branch/master/cfn/F18/WordPress_Single_Instance.
template

Description

AWS CloudFormation Sample Template WordPress_Single_Instance: WordPress is web software you
can use to create a beautiful website or blog. This template installs a single-instance WordPress deploy-
ment using a local MySQL database to store the data.

640 Chapter 3. Using Heat

https://opendev.org/openstack/heat-templates/src/branch/master/cfn/F18/WordPress_Single_Instance.template
https://opendev.org/openstack/heat-templates/src/branch/master/cfn/F18/WordPress_Single_Instance.template

Heat Documentation, Release 24.1.0.dev11

Parameters

KeyName (required)

type
string

description
Name of an existing EC2 KeyPair to enable SSH access to the instance

InstanceType (optional)

lype
string

description
The EC2 instance type

DBName (optional)

lype
string

description
The WordPress database name

DBUsernameName (optional)

lype
string

description
The WordPress database admin account username

DBPassword (optional)

lype
string

description
The WordPress database admin account password

DBRootPassword (optional)

lype
string

description
Root password for MySQL

LinuxDistribution (optional)

lype
string

description
Linux distribution of choice

3.3. Working with Templates 641

Heat Documentation, Release 24.1.0.dev11

3.4 Using the Heat Service

* OpenStack Orchestration API v1 Reference

* Python and CLI client

642 Chapter 3. Using Heat

https://developer.openstack.org/api-ref/orchestration/v1/
https://docs.openstack.org/python-heatclient/latest/

CHAPTER
FOUR

DEVELOPING HEAT

4.1 Heat Developer Guidelines

In the developer guide, you will find documented policies for developing heat. This includes the processes
we use for stories (for bugs and features), contributor onboarding, core reviewer memberships, and other
procedural items.

Note

This guideline also includes documentation for developers.

4.1.1 Heat and DevStack

Heat is fully integrated into DevStack. This is a convenient way to try out or develop heat alongside the
current development state of all the other OpenStack projects. Heat on DevStack works on both Ubuntu
and Fedora.

These instructions assume you already have a working DevStack installation which can launch basic
instances.

Configure DevStack to enable heat

Heat is configured by default on devstack for Icehouse and Juno releases.

Newer versions of OpenStack require enabling heat services in devstack local.conf. Add the following to
[[locall|localrc]] section of local.conf:

Since Newton release, heat is available as a devstack plugin. To enable the plugin add the following to
the [[localllocalrc]] section of local.conf:

To use stable branches, make sure devstack is on that branch, and specify the branch name to en-
able_plugin, for example:

643

Heat Documentation, Release 24.1.0.dev11

[

It would also be useful to automatically download and register a VM image that heat can launch. To do
that add the following to [[local|localrc]] section of local.conf:

IMAGE_URL_SITE="https://download. fedoraproject.org"
IMAGE_URL_PATH="/pub/fedora/linux/releases/37/Cloud/x86_64/images/"
IMAGE_URL_FILE="Fedora-Cloud-Base-37-1.7.x86_64.qcow2"
IMAGE_URLS+=","$IMAGE_URL_SITE$IMAGE_URL_PATH$IMAGE_URL_FILE

URLS for any cloud image may be specified, but fedora images from F20 contain the heat-cfntools pack-
age which is required for some heat functionality.

That is all the configuration that is required. When you run ./stack.sh the heat processes will be launched
in screen with the labels prefixed with A-.
Configure DevStack to enable ceilometer and aodh (if using alarms)

To use aodh alarms you need to enable ceilometer and aodh in devstack. Adding the following lines to
[[locall|localrc]] section of local.conf will enable the services:

Configure DevStack to enable OSprofiler

Adding the following line to [[localllocalrc]] section of local.conf will add the profiler notifier to your
ceilometer:

Enable the profiler in /etc/heat/heat.conf:

$ echo -e "[profiler]\nenabled = True\n"\
"trace_sqlalchemy = True\n"\

"hmac_keys = SECRET_KEY\n'"\

>> /etc/heat/heat.conf

Run any command with profile SECRET_KEY:

$ heat --profile SECRET_KEY stack-list
it will print <Trace ID>

Get pretty HTML with traces:

[$ osprofiler trace show --html <Trace ID>

Note that osprofiler should be run with the admin user name & tenant.

644 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

Create a stack

Now that you have a working heat environment you can go to Creating your first stack.

4.1.2 Blueprints and Specs

You have to create a Story in StoryBoard heat storyboard. And create tasks that fit with the plan to
implement this spec (A task to link to a patch in gerrit).

Note

heat-spacs is no longer active, theres no requirement for any feature to summit spac on it.

Spec from existing stories

If theres an already existing story that describes feature suitable to the story. There is no need to create
a new story. The comments and history of the existing story are important for its review.

4.1.3 Heat architecture

Heat is a service to orchestrate multiple composite cloud applications using the AWS CloudFormation
template format, through both an OpenStack-native REST API and a CloudFormation-compatible Query
APL

Detailed description
What is the purpose of the project and vision for it?

Heat provides an AWS CloudFormation implementation for OpenStack that orchestrates an AWS Cloud-
Formation template describing a cloud application by executing appropriate OpenStack API calls to
generate running cloud applications.

Describe the relevance of the project to other OpenStack projects and the OpenStack mission to provide
a ubiquitous cloud computing platform:

The software integrates other core components of OpenStack into a one-file template system. The tem-
plates allow creation of most OpenStack resource types (such as instances, floating IPs, volumes, security
groups and users), as well as some more advanced functionality such as instance high availability, in-
stance autoscaling, and nested stacks. By providing very tight integration with other OpenStack core
projects, all OpenStack core projects could receive a larger user base.

Currently no other CloudFormation implementation exists for OpenStack. The developers believe cloud
developers have a strong desire to move workloads from AWS to OpenStack deployments. Given the
missing gap of a well-implemented and integrated CloudFormation API in OpenStack, we provide a high
quality implementation of this gap improving the ubiquity of OpenStack.

Heat services

The developers are focused on creating an OpenStack style project using OpenStack design tenets, imple-
mented in Python. We have started with full integration with keystone. We have a number of components.

As the developers have only started development in March 2012, the architecture is evolving rapidly.

4.1. Heat Developer Guidelines 645

https://storyboard.openstack.org/#!/project/989
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html?r=7078

Heat Documentation, Release 24.1.0.dev11

heat

The heat tool is a CLI which communicates with the heat-api to execute AWS CloudFormation APIs.
End developers could also use the heat REST API directly.

heat-api

The heat-api component provides an OpenStack-native REST API that processes API requests by sending
them to the heat-engine over RPC.

heat-api-cfn

The heat-api-cfn component provides an AWS Query API that is compatible with AWS CloudFormation
and processes API requests by sending them to the heat-engine over RPC.

heat-engine

The heat-engines main responsibility is to orchestrate the launching of templates and provide events back
to the API consumer.

The templates integrate well with Puppet and Chef.

4.1.4 Heat Resource Plug-in Development Guide

Heat allows service providers to extend the capabilities of the orchestration service by writing their own
resource plug-ins. These plug-ins are written in Python and included in a directory configured by the ser-
vice provider. This guide describes a resource plug-in structure and life cycle in order to assist developers
in writing their own resource plug-ins.

Resource Plug-in Life Cycle

A resource plug-in is relatively simple in that it needs to extend a base Resource class and implement
some relevant life cycle handler methods. The basic life cycle methods of a resource are:

create
The plug-in should create a new physical resource.

update
The plug-in should update an existing resource with new configuration or tell the engine that the
resource must be destroyed and re-created. This method is optional; the default behavior is to
create a replacement resource and then delete the old resource.

suspend
The plug-in should suspend operation of the physical resource; this is an optional operation.

resume
The plug-in should resume operation of the physical resource; this is an optional operation.

delete
The plug-in should delete the physical resource.

The base class Resource implements each of these life cycle methods and defines one or more han-
dler methods that plug-ins can implement in order to manifest and manage the actual physical resource
abstracted by the plug-in. These handler methods will be described in detail in the following sections.

646 Chapter 4. Developing Heat

https://s3.amazonaws.com/cloudformation-examples/IntegratingAWSCloudFormationWithPuppet.pdf
https://www.full360.com/2011/02/27/integrating-aws-cloudformation-and-chef.html

Heat Documentation, Release 24.1.0.dev11

Heat Resource Base Class

Plug-ins must extend the class heat.engine.resource.Resource.

This class is responsible for managing the overall life cycle of the plug-in. It defines methods correspond-
ing to the life cycle as well as the basic hooks for plug-ins to handle the work of communicating with
specific down-stream services. For example, when the engine determines it is time to create a resource,
it calls the create method of the applicable plug-in. This method is implemented in the Resource
base class and handles most of the bookkeeping and interaction with the engine. This method then calls
a handle_create method defined in the plug-in class (if implemented) which is responsible for us-
ing specific service calls or other methods needed to instantiate the desired physical resource (server,
network, volume, etc).

Resource Status and Action

The base class handles reporting state of the resource back to the engine. A resources state is the com-
bination of the life cycle action and the status of that action. For example, if a resource is created suc-
cessfully, the state of that resource will be CREATE_COMPLETE. Alternatively, if the plug-in encounters
an error when attempting to create the physical resource, the state would be CREATE_FATILED. The base
class handles the reporting and persisting of resource state, so a plug-ins handler methods only need to
return data or raise exceptions as appropriate.

Resource Support Status

New resource should be marked from which OpenStack release it will be available with support_status
option. For more details, see Heat Support Status usage Guide.

Resource description

An important part of future resources is a concisely written description. It should be in class docstring
and contain information about the resource and how it could be useful to the end-user. The docstring
description is used in documentation generation and should be always defined, if resource is designed for
public use. Docstring should follows PEP 257.

Properties and Attributes

A resources properties define the settings the template author can manipulate when including that re-
source in a template. Some examples would be:

* Which flavor and image to use for a Nova server
* The port to listen to on Neutron LBaaS nodes

* The size of a Cinder volume

4.1. Heat Developer Guidelines 647

https://www.python.org/dev/peps/pep-0257/

Heat Documentation, Release 24.1.0.dev11

Note

Properties should normally be accessed through self.properties. This resolves intrinsic functions,
provides default values when required and performs property translation for backward compatible
schema changes. The self.properties.data dict provides access to the raw data supplied by the user in
the template without any of those transformations.

Attributes describe runtime state data of the physical resource that the plug-in can expose to other re-
sources in a Stack. Generally, these arent available until the physical resource has been created and is in
a usable state. Some examples would be:

e The host id of a Nova server
¢ The status of a Neutron network

¢ The creation time of a Cinder volume

Defining Resource Properties

Each property that a resource supports must be defined in a schema that informs the engine and validation
logic what the properties are, what type each is, and validation constraints. The schema is a dictionary
whose keys define property names and whose values describe the constraints on that property. This
dictionary must be assigned to the properties_schema attribute of the plug-in.

As shown above, some properties may themselves be complex and reference nested schema definitions.
Following are the parameters to the Schema constructor; all but the first have defaults.

data_type:

648 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

Defines the type of the propertys value. The valid types are the members of the list
properties.Schema.TYPES, currently INTEGER, STRING, NUMBER, BOOLEAN, MAP, LIST
and ANY; please use those symbolic names rather than the literals to which they are equated.
For LIST and MAP type properties, the schema referenced constrains the format of complex
items in the list or map.

description:
A description of the property and its function; also used in documentation generation. Default is
None but you should always provide a description.

default:
The default value to assign to this property if none was supplied in the template. Default is None.

schema:
This propertys value is complex and its members must conform to this referenced schema in order
to be valid. The referenced schema dictionary has the same format as the properties_schema.
Default is None.

required:
True if the property must have a value for the template to be valid; False otherwise. The default
is False

constraints:
A list of constraints that apply to the propertys value. See Property Constraints.

update_allowed:
True if an existing resource can be updated, False means update is accomplished by delete and
re-create. Default is False.

immutable:
True means updates are not supported, resource update will fail on every change of this property.
False otherwise. Default is False.

support_status:
Defines current status of the property. Read Hear Support Status usage Guide for details.

Accessing property values of the plug-in at runtime is then a simple call to:

[

Based on the property type, properties without a set value will return the default empty value for that
type:

Type Empty Value

String
Number 0
Integer O
List []
Map ()

Boolean False

4.1. Heat Developer Guidelines 649

Heat Documentation, Release 24.1.0.dev11

Property Constraints

Following are the available kinds of constraints. The description is optional and, if given, states the
constraint in plain language for the end user.

AllowedPattern(regex, description):
Constrains the value to match the given regular expression; applicable to STRING.

AllowedValues(allowed, description):
Lists the allowed values. allowed must be a collections.abc.Sequence or string. Appli-
cable to all types of value except MAP.

Length(min, max, description):
Constrains the length of the value. Applicable to STRING, LIST, MAP. Both min and max default
to None.

Range(min, max, description):
Constrains a numerical value. Applicable to INTEGER and NUMBER. Both min and max default
to None.

Modulo(step, offset, description):
Starting with the specified offset, every multiple of step is a valid value. Applicable to INTE-
GER and NUMBER.

Available from template version 2017-02-24.

CustomConstraint(name, description, environment):
This constructor brings in a named constraint class from an environment. If the given environment
is None (its default) then the environment used is the global one.

Defining Resource Attributes

Attributes communicate runtime state of the physical resource. Note that some plug-ins do not de-
fine any attributes and doing so is optional. If the plug-in needs to expose attributes, it will define
an attributes_schema similar to the properties schema described above. Each item in the schema
dictionary consists of an attribute name and an attribute Schema object.

Following are the parameters to the Schema.

description
A description of the attribute; also used in documentation generation. Default is None but you

650 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

should always provide a description.

type
Defines the type of attribute value. The valid types are the members of the list attributes.
Schema. TYPES, currently STRING, NUMBER, BOOLEAN, MAP, and LIST; please use those symbolic
names rather than the literals to which they are equated.

support_status
Defines current status of the attribute. Read Heat Support Status usage Guide for details.

If attributes are defined, their values must also be resolved by the plug-in. The simplest way to do this is
to override the _resolve_attribute method from the Resource class:

If the plug-in needs to be more sophisticated in its attribute resolution, the plug-in may instead choose
to override FnGetAtt. However, if this method is chosen, validation and accessibility of the attribute
would be the plug-ins responsibility.

Also, each resource has show attribute by default. The attribute uses default implementation from heat.
engine.resource.Resource class, but if resource has different way of resolving show attribute, the
_show_resource method from the Resource class will need to be overridden:

4.1. Heat Developer Guidelines 651

Heat Documentation, Release 24.1.0.dev11

Property and Attribute Example

Assume the following simple property and attribute definition:

Also assume the plug-in defining the above has been registered under the template reference name Re-
source::Foo (see Registering Resource Plug-ins). A template author could then use this plug-in in a stack
by simply making following declarations in a template:

(continues on next page)

652 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Life Cycle Handler Methods

To do the work of managing the physical resource the plug-in supports, the following life cycle handler
methods should be implemented. Note that the plug-in need not implement all of these methods; optional
handlers will be documented as such.

Generally, the handler methods follow a basic pattern. The basic handler method for any life cycle step
follows the format handle_<life cycle step>. So for the create step, the handler method would be
handle_create. Once a handler is called, an optional check_<life cycle step>_complete may
also be implemented so that the plug-in may return immediately from the basic handler and then take
advantage of cooperative multi-threading built in to the base class and periodically poll a down-stream
service for completion; the check method is polled until it returns True. Again, for the create step, this
method would be check_create_complete.

Create

handle_create(self)

Create a new physical resource. This function should make the required calls to create the physical
resource and return as soon as there is enough information to identify the resource. The function
should return this identifying information and implement check_create_complete which will
take this information in as a parameter and then periodically be polled. This allows for cooperative
multi-threading between multiple resources that have had their dependencies satisfied.

Note once the native identifier of the physical resource is known, this function should call self.
resource_id_set passing the native identifier of the physical resource. This will persist the
identifier and make it available to the plug-in by accessing self.resource_id.

Returns
A representation of the created physical resource

Raise
any Exception if the create failed
check_create_complete(self, token)
If defined, will be called with the return value of handle_create
Parameters

token the return value of handle_create; used to poll the physical resources
status.

Returns
True if the physical resource is active and ready for use; False otherwise.

Raise
any Exception if the create failed.

4.1. Heat Developer Guidelines 653

Heat Documentation, Release 24.1.0.dev11

Update (Optional)

Note that there is a default implementation of handle_update in heat.engine.resource.Resource
that simply raises an exception indicating that updates require the engine to delete and re-create the
resource (this is the default behavior) so implementing this is optional.

handle_update(self, json_snippet, tmpl_diff , prop_diff)

Update the physical resources using updated information.
Parameters

e json_snippet (collections.abc.Mapping) the resource definition from
the updated template

e tmpl_diff (collections.abc.Mapping) values in the updated definition
that have changed with respect to the original template definition.

e prop_diff (collections.abc.Mapping) property values that are different
between the original definition and the updated definition; keys are property
names and values are the new values. Deleted or properties that were originally
present but now absent have values of None

Note Before calling handle_update we check whether need to replace the resource, especially
for resource in *_FATILED state, there is a default implementation of needs_replace_failed in
heat.engine.resource.Resource that simply returns True indicating that updates require re-
placement. And we override the implementation for 0S: :Nova: : Server, 0S: :Cinder: : Volume
and all of neutron resources. The base principle is that to check whether the resource exists under-
lying and whether the real status is available. So override the method needs_replace_failed
for your resource plug-ins if needed.

check_update_complete(self, token)

If defined, will be called with the return value of handle_update

Parameters
token the return value of handle_update; used to poll the physical resources
status.

Returns
True if the update has finished; False otherwise.

Raise
any Exception if the update failed.

Suspend (Optional)

These handler functions are optional and only need to be implemented if the physical resource supports
suspending

handle_suspend (self)

If the physical resource supports it, this function should call the native API and sus-
pend the resources operation. This function should return information sufficient for
check_suspend_complete to poll the native API to verify the operations status.

Returns
a token containing enough information for check_suspend_complete to verify
operation status.

654

Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

Raise
any Exception if the suspend operation fails.

check_suspend_complete(self, token)
Verify the suspend operation completed successfully.

Parameters
token the return value of handle_suspend

Returns
True if the suspend operation completed and the physical resource is now sus-

pended; False otherwise.

Raise
any Exception if the suspend operation failed.

Resume (Optional)

These handler functions are optional and only need to be implemented if the physical resource supports

resuming from a suspended state

handle_resume (self)
If the physical resource supports it, this function should call the native API and resume
a suspended resources operation. This function should return information sufficient for
check_resume_complete to poll the native API to verify the operations status.

Returns
a token containing enough information for check_resume_complete to verify

operation status.

Raise
any Exception if the resume operation fails.

check_resume_complete (self, token)

Verify the resume operation completed successfully.

Parameters
token the return value of handle_resume

Returns
True if the resume operation completed and the physical resource is now active;

False otherwise.
Raise

any Exception if the resume operation failed.

Delete
handle_delete(self)
Delete the physical resource.

Returns
a token containing sufficient data to verify the operations status

Raise
any Exception if the delete operation failed

4.1. Heat Developer Guidelines 655

Heat Documentation, Release 24.1.0.dev11

Note

As of the Liberty release, implementing handle_delete is optional. The parent resource class
can handle the most common pattern for deleting resources:

For this to work for a particular resource, the entity and default_client_name attributes must be
overridden in the resource implementation. For example, entity of Aodh Alarm should equals
to alarm and default_client_name to aodh.

handle_delete_snapshot (self, snapshot)
Delete resource snapshot.

Parameters
snapshot dictionary describing current snapshot.

Returns
a token containing sufficient data to verify the operations status

Raise
any Exception if the delete operation failed

handle_snapshot_delete (self, state)

Called instead of handle_delete when the deletion policy is SNAPSHOT. Create backup of
resource and then delete resource.

Parameters
state the (action, status) tuple of the resource to make sure that backup may be
created for the current resource

Returns
a token containing sufficient data to verify the operations status

Raise
any Exception if the delete operation failed

check_delete_complete(self, token)
Verify the delete operation completed successfully.
Parameters

token the return value of handle_delete or handle_snapshot_delete (for
deletion policy - Snapshot) used to verify the status of the operation

Returns
True if the delete operation completed and the physical resource is deleted; False
otherwise.

656 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

Raise
any Exception if the delete operation failed.

check_delete_snapshot_complete(self, token)

Verify the delete snapshot operation completed successfully.

Parameters
token the return value of handle_delete_snapshot used to verify the status
of the operation

Returns
True if the delete operation completed and the snapshot is deleted; False other-
wise.

Raise
any Exception if the delete operation failed.

Resource Dependencies

Ideally, your resource should not have any hidden dependencies, i.e. Heat should be able to infer any
inbound or outbound dependencies of your resource instances from resource properties and the other
resources/resource attributes they reference. This is handled by heat.engine.resource.Resource.
add_dependencies().

If this is not possible, please do not simply override add_dependencies() in your resource plugin! This
has previously caused problems for multiple operations, usually due to uncaught exceptions, If you feel
you need to override add_dependencies(), please reach out to Heat developers on the #heat IRC channel
on OFTC or on the openstack-discuss mailing list to discuss the possibility of a better solution.

Registering Resource Plug-ins

To make your plug-in available for use in stack templates, the plug-in must register a reference name with
the engine. This is done by defining a resource_mapping function in your plug-in module that returns
a map of template resource type names and their corresponding implementation classes:

This would allow a template author to define a resource as:

Note that you can define multiple plug-ins per module by simply returning a map containing a unique
template type name for each. You may also use this to register a single resource plug-in under multiple
template type names (which you would only want to do when constrained by backwards compatibility).

4.1. Heat Developer Guidelines 657

https://bugs.launchpad.net/heat/+bug/1554625
mailto:openstack-discuss@lists.openstack.org

Heat Documentation, Release 24.1.0.dev11

Configuring the Engine

In order to use your plug-in, Heat must be configured to read your resources from a particular directory.
The plugin_dirs configuration option lists the directories on the local file system where the engine
will search for plug-ins. Simply place the file containing your resource in one of these directories and
the engine will make them available next time the service starts.

See Configuring Heat for more information on configuring the orchestration service.

Testing

Tests can live inside the plug-in under the tests namespace/directory. The Heat plug-in loader will
implicitly not load anything under that directory. This is useful when your plug-in tests have dependencies
you dont want installed in production.

Putting It All Together

You can find the plugin classes in heat/engine/resources. An exceptionally simple one to start with
is random_string.py; it is unusual in that it does not manipulate anything in the cloud!

Resource Contributions

The Heat team is interested in adding new resources that give Heat access to additional OpenStack or
StackForge projects. The following checklist defines the requirements for a candidate resource to be
considered for inclusion:

* Must wrap an OpenStack or StackForge project, or a third party project that is relevant to OpenStack
users.

* Must have its dependencies listed in OpenStacks global-requirements.txt file, or else it
should be able to conditionally disable itself when there are missing dependencies, without crash-
ing or otherwise affecting the normal operation of the heat-engine service.

* The resources support status flag must be set to UNSUPPORTED, to indicate that the Heat team is
not responsible for supporting this resource.

* The code must be of comparable quality to official resources. The Heat team can help with this
during the review phase.

If you have a resource that is a good fit, you are welcome to contact the Heat team. If for any reason your
resource does not meet the above requirements, but you still think it can be useful to other users, you are
encouraged to host it on your own repository and share it as a regular Python installable package. You
can find example resource plug-ins that have all the required packaging files in the contrib directory of
the official Heat git repository.

4.1.5 Heat Stack Lifecycle Scheduler Hints

This is a mechanism whereby when heat processes a stack with Server or Volume resources, the stack id,
root stack id, stack resource uuid, stack resource name and the path in the stack can be passed by heat to
nova and cinder as scheduler hints.

Enabling the scheduler hints

By default, passing the lifecycle scheduler hints is disabled. To enable it, set stack_scheduler_hints to
True in heat.conf.

658 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

The hints

When heat processes a stack, and the feature is enabled, the stack id, root stack id, stack resource uuid,
stack resource name, and the path in the stack (as a list of comma delimited strings of stackresourcename
and stackname) will be passed by heat to nova and cinder as scheduler hints.

Purpose

A heat provider may have a need for custom code to examine stack requests prior to performing the
operations to create or update a stack. After the custom code completes, the provider may want to provide
hints to the nova or cinder schedulers with stack related identifiers, for processing by any custom scheduler
plug-ins configured for nova or cinder.

4.1.6 Guru Meditation Reports

Heat contains a mechanism whereby developers and system administrators can generate a report about
the state of a running Heat executable. This report is called a Guru Meditation Report (GMR for short).

Generating a GMR

A GMR can be generated by sending the USR2 signal to any Heat process with support (see below). The
GMR will then be outputted standard error for that particular process.

For example, suppose that heat-api has process id 10172, and was run with 2>/var/log/heat/
heat-api-err.log. Then, kill -USR2 10172 will trigger the Guru Meditation report to be printed
to /var/log/heat/heat-api-err.log.

Structure of a GMR

The GMR is designed to be extensible; any particular executable may add its own sections. However, the
base GMR consists of several sections:

Package
Shows information about the package to which this process belongs, including version information

Threads
Shows stack traces and thread ids for each of the threads within this process

Green Threads
Shows stack traces for each of the green threads within this process (green threads dont have thread
ids)

Configuration

Lists all the configuration options currently accessible via the CONF object for the current process
Adding support for GMRs to new executable
Adding support for a GMR to a given executable is fairly easy.

First import the module (currently residing in oslo-incubator), as well as the Heat version module:

Then, register any additional sections (optional):

4.1. Heat Developer Guidelines 659

Heat Documentation, Release 24.1.0.dev11

\ |

Finally (under main), before running the main loop of the executable (usually server.start () or some-
thing similar), register the GMR hook:

[)

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the documentation about oslo.reports.

4.1.7 Heat Support Status usage Guide

Heat allows to use for each resource, property, attribute special option named support_status, which
describes current state of object: current status, since what time this status is actual, any additional
information about objects state. This guide describes a detailed state life cycle of resources, properties
and attributes.

Support Status option and its parameters
Support status of object may be specified by using class SupportStatus, which has follow options:
Status:

Current status of object. Allowed values:

* SUPPORTED. Default value of status parameter. All objects with this status are avail-
able and can be used.

* DEPRECATED. Object with this status is available, but using it in code or templates is
undesirable. As usual, can be reference in message to new object, which can be used
instead of deprecated resource.

* HIDDEN. The last step in the deprecation process. Old stacks containing resources
in this status will continue functioning. Certain functionality is disabled for resources
in this status (resource-type-list, resource-type-show, and resource-type-template). Re-
sources in HIDDEN status are not included in the documentation. A known limitation
is that new stacks can be created with HIDDEN resources. See below for more details
about the removal and deprecation process.

* UNSUPPORTED. Resources with UNSUPPORTED status are not supported by Heat
team, i.e. user can use it, but it may be broken.

substitute_class:
Assign substitute class for object. If replacing the object with new object which inherited (or
extended) from the substitute class will transfer the object to new class type gracefully (without
calling update replace).

version:
Release name, since which current status is active. Parameter is optional, but should be defined
or changed any time SupportStatus is specified or status changed. It used for better understanding
from which release object in current status. .. note:

660 Chapter 4. Developing Heat

https://docs.openstack.org/oslo.reports/latest/

Heat Documentation, Release 24.1.0.dev11

[J

message:
Any additional information about objects state, e.g. 'Use property new_property instead.

previous_status:
Option, which allows to display objects previous status, if any. This is helpful for displaying full
life cycle of object. Type of previous_status is SupportStatus.

Life cycle of resource, property, attribute

This section describes life cycle of such objects as resource, property and attribute. All these objects
have same life cycle:

where UNSUPPORTED is optional.

Creating process of object

During creating object there is a reason to add support status. So new object should contains sup-
port_status parameter equals to SupportStatus class with defined version of object and, maybe, sub-
stitute_class or some message. This parameter allows user to understand, from which OpenStack release
this object is available and can be used.

Deprecating process of object

When some object becomes obsolete, user should know about that, so there is need to add information
about deprecation in support_status of object. Status of SupportStatus must equals to DEPRECATED.
If there is no version parameter, need to add one with current release otherwise move current status to
previous_status and add to version current release as value. If some new object replaces old object, it
will be good decision to add some information about new object to support_status message of old object,
e.g. Use property new_property instead.. If old object is directly replaceable by new object, we should
add substitute_class to support_status in old object.

Removing process of object

After at least one full release cycle deprecated object should be hidden and support_status status
should equals to HIDDEN. HIDDEN status means hiding object from documentation and from result
of resource-type-1list CLI command, if object is resource. Also, resource-type-show command
with such resource will raise NotSupported exception.

The purpose of hiding, rather than removing, obsolete resources or properties is to ensure that users
can continue to operate existing stacks - replacing or removing the offending resources, or deleting the
entire stack. Steps should be taken to ensure that these operations can succeed, e.g. by replacing a hidden
resource types implementation with one that is equivalent to OS: :Heat : : None when the underlying API
no longer exists, supplying a substitute_class for a resource type, or adding a property translation rule.

4.1. Heat Developer Guidelines 661

Heat Documentation, Release 24.1.0.dev11

Using Support Status during code writing

When adding new objects or adding objects instead of some old (e.g. property subnet instead of sub-
net_id in OS::Neutron::RouterInterface), there is some information about time of adding objects (since
which release it will be available or unavailable). This section described SupportStatus during cre-
ating/deprecating/removing resources and properties and attributes. Note, that SupportStatus locates
in support.py, so you need to import support. For specifying status, use support constant names, e.g.
support. SUPPORTED. All constant names described in section above.

Using Support Status during creation

Option support_status may be used for whole resource:

To define support_status for property or attribute, follow next steps:

Same support_status definition for attribute schema.
Note, that in this situation status parameter of SupportStatus uses default value, equals to SUP-
PORTED.

Using Support Status during deprecation and hiding

When time of deprecation or hiding resource/property/attribute comes, follow next steps:

1. If there is some support_status in object, add previous_status parameter with current
SupportStatus value and change all other parameters for current status, version and, maybe,
substitute_class or message.

2. If there is no support_status option, add new one with parameters status equals to current status,
version equals to current release note and, optionally, some message.

Using Support Status during resource deprecating looks like:

(continues on next page)

662 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

(continued from previous page)

Using Support Status during attribute (or property) deprecating looks like:

Same support_status defining for property schema.

Note, that during hiding object status should be equal support. HIDDEN instead of sup-
port. DEPRECATED. Besides that, SupportStatus with DEPRECATED status should be moved to previ-
ous_status, e.g.:

During hiding properties, if some hidden property has alternative, use translation mechanism for trans-
lating properties from old to new one. See below, how to use this mechanism.

Translating mechanism for hidden properties

Sometimes properties become deprecated and replaced by another. There is translation mechanism for
that. Mechanism used for such cases:

1. If there are two properties in properties_schema, which have STRING, INTEGER, NUMBER or
BOOLEAN type.

2. If there are two properties: one in LIST or MAP property sub-schema and another on the top
schema.

3. If there are two properties in LIST property.

4. If there are non-LIST property and LIST property, which is designed to replace non-LIST property.

4.1. Heat Developer Guidelines 663

Heat Documentation, Release 24.1.0.dev11

5. If there is STRING property, which contains name or ID of some entity, e.g. subnet, and should
be resolved to entitys ID.

Mechanism has rules and executes them. To define rule, TranslationRule class called and specifies
translation_path - list with path in properties_schema for property which will be affected; value - value,
which will be added to property, specified by previous parameter; value_name - name of old property,
used for case 4; value_path - list with path in properties_schema for property which will be used for
getting value. TranslationRule supports next rules:

* ADD. This rule allows to add some value to LIST-type properties. Only LIST-type values can be
added to such properties. Using for other cases is prohibited and will be returned with error.

* REPLACE. This rule allows to replace some property value to another. Used for all types of proper-
ties. Note, that if property has list type, then value will be replaced for all elements of list, where it
needed. If element in such property must be replaced by value of another element of this property,
value_name must be defined.

e DELETE. This rule allows to delete some property. If property has list type, then deleting affects
value in all list elements.

* RESOLVE - This rule allows to resolve some property using client and the finder function. Finders
may require an additional entity key.

Each resource, which has some hidden properties, which can be replaced by new, must overload transla-
tion_rules method, which should return a list of TranslationRules, for example:

4.1.8 Using Rally on Heat gates

Heat gate allows to use Rally for performance testing for each particular patch. This functionality can be
used for checking patch on performance regressions and also for detecting any floating bugs for common
scenarios.

How to run Rally for particular patch

As was mentioned above Heat allows to execute Rally scenarios as a gate job for particular patch. It can
be done by posting comment with text check experimental for patch on review. It will run bunch of
jobs, one of which has name gate-rally-dsvm-fakevirt-heat.

List of scenarios, which will be executed, is presented in file heat-fakevirt.yaml. Default version of
this file is available here: https://github.com/openstack/heat/blob/master/rally-scenarios/heat-fakevirt.

664 Chapter 4. Developing Heat

https://github.com/openstack/heat/blob/master/rally-scenarios/heat-fakevirt.yaml
https://github.com/openstack/heat/blob/master/rally-scenarios/heat-fakevirt.yaml

Heat Documentation, Release 24.1.0.dev11

yaml

Obviously performance analysis make sense, when it can be compared with some another performance
data. So two different approaches can be used for it:

* Comparison of one part of code with some custom changes (see Check performance or how to
detect regression)

* Comparison of two different code parts (see Compare output API performance)

Examples of using Rally

Previously two main approaches of using Rally job for Heat were highlighted. Corresponding examples
will be described in this part of documentation.

However need to note, that there are a lot of other ways how to use Rally job for Heat performance. For
example, this job can be launched periodically (twice in week) for random patches and these results will
be compared between each other. It allows to see, that Heat has not any performance regressions.

Check performance or how to detect regression

The easiest way of using Rally is to execute already existing scenarios. One of the examples is presented
in patch https://review.opendev.org/#/c/279450/ . In this patch was executed scenario already existing
in Rally HeatStacks.create_and_delete_stack. During executing this scenario Rally creates and
then, when stack is created, delete Heat stack. All existing scenarios can be found here: https://github.
com/openstack/rally-openstack/blob/master/rally_openstack/scenarios/heat/stacks.py

Mentioned scenario uses Heat template as a parameter for task. The template path should be mentioned
for argument template_path. It can be one of Heat templates presented in Rally repository (https://
github.com/openstack/rally-openstack/tree/master/samples/tasks/scenarios/heat/templates) or new one,
like it was done for mentioned patch. New added template should be placed in rally-scenarios/
extra/ directory.

Also its possible to specify other fields for each Rally task, like sla or context. More
information about other configuration setting is available by link https://rally.readthedocs.io/en/
latest/plugins/#rally-plugins Mentioned patch was proposed for confirmation caching mechanism of
Heat template validation process (see https://specs.openstack.org/openstack/heat-specs/specs/liberty/
constraint-validation-cache.html). So it contains some changes in OS::Heat::TestResource resource,
which allows to demonstrate mentioned caching feature improvements.

Initially test was run against current devstack installation, where caching is disabled (e.g. Patch Set 7).
The follow results were gotten:

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 38.223 48.085 42.971 100.0% 10
heat.delete_stack 11.755 18.155 14.085 100.0% 10
total 50.188 65.361 57.057 100.0% 10

In the next patch set (Patch Set 8) was updated by adding Depends-On reference to commit message. It
let to execute the same test with patch for devstack, which turns on caching (https://review.opendev.org/
#/¢/279400/). The results for this case were:

4.1. Heat Developer Guidelines 665

https://github.com/openstack/heat/blob/master/rally-scenarios/heat-fakevirt.yaml
https://github.com/openstack/heat/blob/master/rally-scenarios/heat-fakevirt.yaml
https://review.opendev.org/#/c/279450/
https://github.com/openstack/rally-openstack/blob/master/rally_openstack/scenarios/heat/stacks.py
https://github.com/openstack/rally-openstack/blob/master/rally_openstack/scenarios/heat/stacks.py
https://github.com/openstack/rally-openstack/tree/master/samples/tasks/scenarios/heat/templates
https://github.com/openstack/rally-openstack/tree/master/samples/tasks/scenarios/heat/templates
https://rally.readthedocs.io/en/latest/plugins/#rally-plugins
https://rally.readthedocs.io/en/latest/plugins/#rally-plugins
https://specs.openstack.org/openstack/heat-specs/specs/liberty/constraint-validation-cache.html
https://specs.openstack.org/openstack/heat-specs/specs/liberty/constraint-validation-cache.html
https://review.opendev.org/#/c/279400/
https://review.opendev.org/#/c/279400/

Heat Documentation, Release 24.1.0.dev11

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 11.863 16.074 14.174 100.0% 10
heat.delete_stack 9.144 11.663 10.595 100.0% 10
total 21.557 27.18 24.77 100.0% 10

Comparison average values for create_stack action in the first and the second executions shows, that
with enabled caching create_stack works faster in 3 times. It is a tangible improvement for create_stack
operation. Need to note, that in described test delay for each constraint validation request takes 0.3 sec.
as specified in constraint_prop_secs property of TestResource. It may be more, than real time delay,
but it allows to confirm, that caching works correct.

Also this approach may be used for detecting regressions. In this case workflow may be presented as
follow list of steps:

* add to task list (heat-fakevirt.yaml) existing or new tasks.
* wait a result of this execution.
* upload patchset with changes (new feature) and launch the same test again.

* compare performance results.

Compare output API performance

Another example of using Rally job is writing custom Rally scenarios in Heat repository. There is an
example of this is presented on review: https://review.opendev.org/#/c/270225/

Its similar on the first example, but requires more Rally specific coding. New tasks in heat-fakevirt.
yaml use undefined in Rally repository scenarios:

* CustomHeatBenchmark.create_stack_and_show_output_new
» CustomHeatBenchmark.create_stack_and_show_output_old
* CustomHeatBenchmark.create_stack_and_list_output_new
* CustomHeatBenchmark.create_stack_and_list_output_old
All these scenarios are defined in the same patch and placed in rally-scenarios/plugins/ directory.

The aim of these scenarios and tasks is to demonstrate differences between new and old API calls. Heat
client has a two commands for operating stack outputs: heat output-list and heat output-show
<output-id>. Previously there are no special API calls for getting this information from server and this
data was obtained from whole Heat Stack object. This was changed after implementation new API for
outputs: https://specs.openstack.org/openstack/heat-specs/specs/mitaka/api-calls-for-output.html

As described in the mentioned specification outputs can be obtained via special requests to Heat API.
According to this changes code in Heat client was updated to use new API, if its available.

The initial problem for this change was performance issue, which can be formulated as: execution
command heat output-show <output-id> with old approach required resolving all outputs in Heat
Stack, before getting only one output specified by user.

The same issue was and with heat output-1list, which required to resolve all outputs only for provid-
ing list of output keys without resolved values.

Two scenarios with suffix *_new use new output API. These scenarios are not presented in Rally yet,
because its new APL. Another two scenarios with suffix *_old are based on the old approach of getting

666 Chapter 4. Developing Heat

https://review.opendev.org/#/c/270225/
https://specs.openstack.org/openstack/heat-specs/specs/mitaka/api-calls-for-output.html

Heat Documentation, Release 24.1.0.dev11

outputs. This code was partially replaced by new API, so its not possible to use it on fresh devstack. As
result this custom code was written as two custom scenarios.

All these scenarios were added to task list and executed in the same time. Results of execution are shown
below:

create_stack_and_show_output_old

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 13.559 14.298 13.899 100.0% 5
heat.show_output_old 5.214 5.297 5.252 100.0% 5
heat.delete_stack 5.445 6.962 6.008 100.0% 5
total 24.243 26.146 25.159 100.0% 5

create_stack_and_show_output_new

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 13.719 14.286 13.935 100.0% 5
heat.show_output_new 0.699 0.835 0.762 100.0% 5
heat.delete_stack 5.398 6.457 5.636 100.0% 5
total 19.873 21.21 20.334 100.0% 5

Average value for execution output-show for old approach obviously more, then for new API. It hap-
pens, because new API resolve only one specified output.

Same results are for output-1list:

create_stack_and_list_output_old

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 13.861 14.573 14.141 100.0% 5
heat.list_output_old 5.247 5.339 5.281 100.0% 5
heat.delete_stack 6.727 6.845 6.776 100.0% 5
total 25.886 26.696 26.199 100.0% 5

create_stack_and_list_output_new

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 13.902 21.117 16.729 100.0% 5
heat.list_output_new 0.147 0.363 0.213 100.0% 5
heat.delete_stack 6.616 8.202 7.022 100.0% 5
total 20.838 27.908 23.964 100.0% 5

Its also expected, because for getting list of output names is not necessary resolved values, how it is done
in new APIL.

All mentioned results clearly show performance changes and allow to confirm, that new approach works
correctly.

4.1. Heat Developer Guidelines 667

Heat Documentation, Release 24.1.0.dev11

4.2 Source Code Index

4.2.1 heat

heat package

Subpackages

heat.api package

Subpackages

heat.api.aws package

Submodules

heat.api.aws.ec2token module

class heat.api.aws.ec2token.EC2Token(app, conf)

Bases: Middleware
Authenticate an EC2 request with keystone and convert to token.

property ssl_options

heat.api.aws.ec2token.EC2Token_filter_factory(global_conf, **local_conf)

Factory method for paste.deploy.

heat.api.aws.ec2token.list_opts()

heat.api.aws.exception module

Heat API exception subclasses - maps API response errors to AWS Errors.

exception heat.api.aws.exception.AlreadyExistsError (detail=None)

Bases: HeatAPIException
Resource with the name requested already exists.

code = 400
explanation = 'Resource with the name requested already exists'

title = 'AlreadyExists'

exception heat.api.aws.exception.HeatAPIException(detail=None)

Bases: HTTPError
webob HTTPError subclass that creates a serialized body.

Subclass webob HTTPError so we can correctly serialize the wsgi response into the http response
body, using the format specified by the request. Note this should not be used directly, instead use
the subclasses defined below which map to AWS API errors.

code = 400

err_type = 'Sender’

668

Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

explanation = 'Generic HeatAPIException, please use specific subclasses!'

get_unserialized_body ()

Return a dict suitable for serialization in the wsgi controller.

This wraps the exception details in a format which maps to the expected format for the AWS
APL.

title = 'HeatAPIException'

exception heat.api.aws.exception.HeatAPINotImplementedError (detail=None)
Bases: HeatAPIException

API action is not yet implemented.

code = 500

err_type = 'Server'

explanation = 'The requested action is not yet implemented'’

title = "APINotImplemented'

exception heat.api.aws.exception.HeatAccessDeniedError (detail=None)
Bases: HeatAPIException

Authentication fails due to user [JAM group memberships.

This is the response given when authentication fails due to user [AM group memberships meaning
we deny access.

code = 403
explanation = 'User is not authorized to perform action'

title = "AccessDenied'

exception heat.api.aws.exception.HeatActionInProgressError (detail=None)
Bases: HeatAPIException

Cannot perform action on stack in its current state.

code = 400

explanation = 'Cannot perform action on stack while other actions are in
progress'

title = "InvalidAction'

exception heat.api.aws.exception.HeatIncompleteSignatureError (detail=None)
Bases: HeatAPIException

The request signature does not conform to AWS standards.

code = 400

explanation = 'The request signature does not conform to AWS standards'

title = "IncompleteSignature'’

4.2. Source Code Index 669

Heat Documentation, Release 24.1.0.dev11

exception heat.api.aws.exception.HeatInternalFailureError (detail=None)
Bases: HeatAPIException

The request processing has failed due to some unknown error.

code = 500

err_type = 'Server'

explanation = 'The request processing has failed due to an internal error'
title = 'InternalFailure’

exception heat.api.aws.exception.HeatInvalidActionError (detail=None)
Bases: HeatAPIException

The action or operation requested is invalid.
code = 400
explanation = 'The action or operation requested is invalid'

title = '"InvalidAction’

exception heat.api.aws.exception.HeatInvalidClientTokenIdError (detail=None)
Bases: HeatAPIException

The X.509 certificate or AWS Access Key ID provided does not exist.
code = 403

explanation = 'The certificate or AWS Key ID provided does not exist'
title = '"InvalidClientTokenId'

exception heat.api.aws.exception.HeatInvalidParameterCombinationError (detail=None)
Bases: HeatAPIException

Parameters that must not be used together were used together.

code = 400
explanation = 'Incompatible parameters were used together’
title = 'InvalidParameterCombination'

exception heat.api.aws.exception.HeatInvalidParameterValueError (detail=None)
Bases: HeatAPIException

A bad or out-of-range value was supplied for the input parameter.

code = 400
explanation = 'A bad or out-of-range value was supplied'’

title = 'InvalidParameterValue'

670 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

exception heat.api.aws.exception.HeatInvalidQueryParameterError (detail=None)
Bases: HeatAPIException

AWS query string is malformed, does not adhere to AWS standards.
code = 400
explanation = 'AWS query string is malformed, does not adhere to AWS spec'

title = 'InvalidQueryParameter'’

exception heat.api.aws.exception.HeatMalformedQueryStringError (detail=None)
Bases: HeatAPIException

The query string is malformed.
code = 404
explanation = 'The query string is malformed'’

title = 'MalformedQueryString'

exception heat.api.aws.exception.HeatMissingActionError (detail=None)
Bases: HeatAPIException

The request is missing an action or operation parameter.

code = 400
explanation = 'The request is missing an action or operation parameter'
title = "MissingAction'

exception heat.api.aws.exception.HeatMissingAuthenticationTokenError (detail=None)
Bases: HeatAPIException

Does not contain a valid AWS Access Key or certificate.
Request must contain either a valid (registered) AWS Access Key ID or X.509 certificate.
code = 403

explanation = 'Does not contain a valid AWS Access Key or certificate'
title = 'MissingAuthenticationToken'

exception heat.api.aws.exception.HeatMissingParameterError (detail=None)
Bases: HeatAPIException

A mandatory input parameter is missing.

An input parameter that is mandatory for processing the request is missing.
code = 400

explanation = 'A mandatory input parameter is missing'

title = 'MissingParameter’

4.2. Source Code Index 671

Heat Documentation, Release 24.1.0.dev11

exception heat.api.aws.exception.HeatOptInRequiredError (detail=None)

Bases: HeatAPIException

The AWS Access Key ID needs a subscription for the service.

code = 403

explanation = 'The AWS Access Key ID needs a subscription for the service'

title = 'OptInRequired'’

exception heat.api.aws.exception.HeatRequestExpiredError (detail=None)

Bases: HeatAPIException
Request expired or more than 15 minutes in the future.

Request is past expires date or the request date (either with 15 minute padding), or the request date
occurs more than 15 minutes in the future.

code = 400
explanation = 'Request expired or more than 15mins in the future'

title = 'RequestExpired’'

exception heat.api.aws.exception.HeatRequestLimitExceeded (detail=None)

Bases: HeatAPIException
Payload size of the request exceeds maximum allowed size.

code = 400
explanation = 'Payload exceeds maximum allowed size'

title = 'RequestLimitExceeded’

exception heat.api.aws.exception.HeatServiceUnavailableError (detail=None)

Bases: HeatAPIException

The request has failed due to a temporary failure of the server.

code = 503
err_type = 'Server'
explanation = 'Service temporarily unavailable'

title = 'ServiceUnavailable'

exception heat.api.aws.exception.HeatSignatureError (detail=None)

Bases: HeatAPIException
Authentication fails due to a bad signature.

code = 403

explanation = 'The request signature we calculated does not match the
signature you provided'

672

Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

title = 'SignatureDoesNotMatch'

exception heat.api.aws.exception.HeatThrottlingError (detail=None)

heat.

Bases: HeatAPIException
Request was denied due to request throttling.

code = 400
explanation = 'Request was denied due to request throttling'
title = 'Throttling'

api.aws.exception.map_remote_error (ex)

Map rpc_common.RemoteError exceptions to HeatAPIException subclasses.

Map rpc_common.RemoteError exceptions returned by the engine to HeatAPIException sub-
classes which can be used to return properly formatted AWS error responses.

heat.api.aws.utils module

Helper utilities related to the AWS API implementations.

heat.

heat.

heat.

heat.

heat.

api.aws.utils.extract_param_list(params, prefix="")

Extract a list-of-dicts based on parameters containing AWS style list.

MetricData.member.1.MetricName=buffers MetricData.member.1.Unit=Bytes Metric-
Data.member.1.Value=231434333 MetricData.member.2.MetricName=buffers2 Metric-
Data.member.2.Unit=Bytes MetricData.member.2.Value=12345

This can be extracted by passing prefix=MetricData, resulting in a list containing two dicts.

api.aws.utils.extract_param_pairs(params, prefix=", keyname=", valuename="")

Extract user input params from AWS style parameter-pair encoded list.

In the AWS API list items appear as two key-value pairs (passed as query parameters) with keys of
the form below:

Prefix.member. 1.keyname=somekey Prefix.member. 1.keyvalue=somevalue Pre-
fix.member.2.keyname=anotherkey Prefix.member.2.keyvalue=somevalue

We reformat this into a dict here to match the heat engine API expected format.

api.aws.utils.format_response (action, response)

Format response from engine into API format.

api.aws.utils.get_param_value(params, key)

Looks up an expected parameter in a parsed params dict.

Helper function, looks up an expected parameter in a parsed params dict and returns the result. If
params does not contain the requested key we raise an exception of the appropriate type.

api.aws.utils.reformat_dict_keys (keymap=None, inputdict=None)

Utility function for mapping one dict format to another.

4.2. Source Code Index 673

Heat Documentation, Release 24.1.0.dev11

Module contents

heat.api.cfn package
Subpackages

heat.api.cfn.v1 package
Submodules
heat.api.cfn.v1.signal module

class heat.api.cfn.vl.signal.SignalController (options)
Bases: object
signal (req, arn, body=None)

update_waitcondition(req, body, arn)

heat.api.cfn.vl.signal.create_resource (options)

Signal resource factory method.

heat.api.cfn.v1.stacks module

Stack endpoint for Heat CloudFormation vl APL

class heat.api.cfn.vl.stacks.StackController (options)
Bases: object

WSGI controller for stacks resource in Heat CloudFormation v1 API.
Implements the API actions.

CREATE_OR_UPDATE_ACTION = ('CreateStack', 'UpdateStack')

CREATE_STACK 'CreateStack’

UPDATE_STACK

'UpdateStack’
cancel_update(req)
create(req)

create_or_update (req, action=None)
Implements CreateStack and UpdateStack API actions.

Create or update stack as defined in template file.

default (req, **args)

delete(req)
Implements the DeleteStack API action.

Deletes the specified stack.

describe(req)

Implements DescribeStacks API action.

Gets detailed information for a stack (or all stacks).

674 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

describe_stack_resource(req)

Implements the DescribeStackResource API action.
Return the details of the given resource belonging to the given stack.

describe_stack_resources(req)

Implements the DescribeStackResources API action.
Return details of resources specified by the parameters.
StackName: returns all resources belonging to the stack.

PhysicalResourceld: returns all resources belonging to the stack this resource is associated
with.

Only one of the parameters may be specified.
Optional parameter:
LogicalResourceld: filter the resources list by the logical resource id.

estimate_template_cost(req)

Implements the EstimateTemplateCost API action.
Get the estimated monthly cost of a template.

events_list(req)

Implements the DescribeStackEvents API action.
Returns events related to a specified stack (or all stacks).

get_template(req)
Implements the GetTemplate API action.

Get the template body for an existing stack.

list(req)
Implements ListStacks API action.

Lists summary information for all stacks.

list_stack_resources(req)

Implements the ListStackResources API action.

Return summary of the resources belonging to the specified stack.
update(req)
validate_template(req)

Implements the ValidateTemplate API action.

Validates the specified template.

heat.api.cfn.vl.stacks.create_resource(options)

Stacks resource factory method.

4.2. Source Code Index 675

Heat Documentation, Release 24.1.0.dev11

Module contents

class heat.api.cfn.v1.API(conf, **local_conf)

Bases: Router
WSGI router for Heat CloudFormation v1 API requests.
Submodules
heat.api.cfn.versions module
Controller that returns information on the heat API versions.
Now its a subclass of module versions, because of identity with OpenStack module versions.
heat.api.cfn.wsgi module

WSGI script for heat-api-cfn.
Script for running heat-api-cfn under Apache2.

heat.api.cfn.wsgi.init_application()

Module contents

heat.api.cfn.version_negotiation_filter (app, conf, **local_conf)

heat.api.middleware package
Submodules
heat.api.middleware.fault module

A middleware that turns exceptions into parsable string.
Inspired by Cinders faultwrapper.

class heat.api.middleware.fault.Fault(error)

Bases: object

class heat.api.middleware. fault.FaultWrapper (application)

Bases: Middleware

Replace error body with something the client can parse.

676 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

error_map = {'ActionInProgress':
<class 'webob.exc.HTTPBadRequest'>,

'AttributeError':

'CircularDependencyException’:
<class 'webob.exc.HTTPBadRequest'>,

'DownloadLimitExceeded’:
'"EntityNotFound':

<class 'webob.exc.HTTPInternalServerError'>,

<class 'webob.exc.HTTPNotFound'>,

<class 'webob.exc.HTTPConflict'>,
<class 'webob.exc.HTTPBadRequest'>,

'EventSendFailed':
'Forbidden': <class

'webob.exc.HTTPForbidden'>, 'ImmutableParameterModified': <class
'webob.exc.HTTPBadRequest'>, 'IncompatibleObjectVersion': <class
'webob.exc.HTTPBadRequest'>, 'Invalid': <class
'webob.exc.HTTPBadRequest'>, 'InvalidBreakPointHook': <class
'webob.exc.HTTPBadRequest'>, 'InvalidEncryptionKey': <class
'webob.exc.HTTPInternalServerError'>, 'InvalidGlobalResource': <class
'webob.exc.HTTPInternalServerError'>, 'InvalidSchemaError': <class
'webob.exc.HTTPBadRequest'>, 'InvalidTemplateReference': <class
'webob.exc.HTTPBadRequest'>, 'InvalidTemplateSection': <class
'webob.exc.HTTPBadRequest'>, 'InvalidTemplateVersion': <class
'webob.exc.HTTPBadRequest'>, 'InvalidTenant': <class
'webob.exc.HTTPForbidden'>, 'MissingCredentialError': <class
'webob.exc.HTTPBadRequest'>, 'NotFound': <class
'webob.exc.HTTPNotFound'>, 'NotSupported': <class
'webob.exc.HTTPBadRequest'>, 'ObjectActionError': <class
'webob.exc.HTTPBadRequest'>, 'ObjectFieldInvalid': <class

'webob. exc.HTTPBadRequest'>, 'OrphanedObjectError': <class

'webob. exc.HTTPBadRequest'>, 'PhysicalResourceIDAmbiguity': <class
'webob. exc.HTTPBadRequest'>, 'PhysicalResourceNameAmbiguity': <class
'webob. exc.HTTPBadRequest'>, 'PropertyUnspecifiedError': <class
'webob.exc.HTTPBadRequest'>, 'ReadOnlyFieldError': <class
'webob.exc.HTTPBadRequest'>, 'RequestLimitExceeded': <class
'webob.exc.HTTPBadRequest'>, 'ResourceActionNotSupported': <class
'webob.exc.HTTPBadRequest'>, 'ResourceNotAvailable': <class
'webob.exc.HTTPNotFound'>, 'ResourcePropertyConflict': <class
'webob.exc.HTTPBadRequest'>, 'ResourceTypeUnavailable': <class
'webob.exc.HTTPBadRequest'>, 'RevertFailed': <class
'webob.exc.HTTPInternalServerError'>, 'ServerBuildFailed': <class
'webob.exc.HTTPInternalServerError'>, 'StackExists': <class
'webob.exc.HTTPConflict'>, 'StackValidationFailed': <class
'webob.exc.HTTPBadRequest'>, 'StopActionFailed': <class
'webob.exc.HTTPInternalServerError'>, 'UnknownUserParameter': <class
'webob. exc.HTTPBadRequest'>, 'UnsupportedObjectError': <class
'webob.exc.HTTPBadRequest'>, 'UserParameterMissing': <class
'webob.exc.HTTPBadRequest'>, 'ValueError': <class
'webob.exc.HTTPBadRequest '>}

process_request (req)

Called on each request.

If this returns None, the next application down the stack will be executed. If it returns a
response then that response will be returned and execution will stop here.

4.2. Source Code Index

677

Heat Documentation, Release 24.1.0.dev11

heat.api.middleware.version_negotiation module

Inspects the requested URI for a version string and/or Accept headers.
Also attempts to negotiate an API controller to return.

class heat.api.middleware.version_negotiation.VersionNegotiationFilter (version_controller,

app.
conf,
**[o-

cal_conf)

Bases: Middleware

process_request (req)
Process Accept header or simply return correct API controller.

If there is a version identifier in the URI, return the correct API controller, otherwise, if we
find an Accept: header, process it

Module contents

heat.api.openstack package

Subpackages

heat.api.openstack.v1 package

Subpackages

heat.api.openstack.v1.views package
Submodules
heat.api.openstack.v1.views.stacks_view module

heat.api.openstack.vl.views.stacks_view.collection(req, stacks, count=None,
include_project=False)

heat.api.openstack.vl.views.stacks_view.format_stack(req, stack, keys=None,
include_project=False)

heat.api.openstack.v1.views.views_common module

heat.api.openstack.vl.views.views_common.get_collection_links (request, items)

Retrieve next link, if applicable.

Module contents
Submodules
heat.api.openstack.v1.actions module

class heat.api.openstack.vl.actions.ActionController (options)

Bases: object

678 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

WSGI controller for Actions in Heat vl API.
Implements the API for stack actions

ACTIONS = ('suspend', 'resume', 'check', 'cancel_update’,
'cancel_without_rollback')

CANCEL_UPDATE = 'cancel_update'
CANCEL_WITHOUT_ROLLBACK = 'cancel_without_rollback'
CHECK = 'check'

REQUEST_SCOPE = 'actions'

RESUME = 'resume'

SUSPEND = 'suspend'

action(req, tenant_id, stack_name, stack_id, body=None)

Performs a specified action on a stack.
The body is expecting to contain exactly one item whose key specifies the action.

cancel_update (req, identity, body=None)
cancel_without_rollback(req, identity, body=None)
check (req, identity, body=None)

resume (req, identity, body=None)

suspend (req, identity, body=None)

heat.api.openstack.vl.actions.create_resource (options)

Actions action factory method.

heat.api.openstack.v1.build_info module

class heat.api.openstack.vl.build_info.BuildInfoController (options)
Bases: object
WSGI controller for BuildInfo in Heat vl APL

Returns build information for current app.

REQUEST_SCOPE = 'build_info'
build_info(req)

heat.api.openstack.vl.build_info.create_resource (options)
BuildInfo factory method.

4.2. Source Code Index 679

Heat Documentation, Release 24.1.0.dev11

heat.api.openstack.v1.events module
class heat.api.openstack.vl.events.EventController (options)
Bases: object
WSGI controller for Events in Heat vl APIL.
Implements the API actions.
REQUEST_SCOPE = 'events'
index (req, identity, resource_name=None)
Lists summary information for all events.

show (req, identity, resource_name, event_id)

Gets detailed information for an event.

heat.api.openstack.vl.events.create_resource (options)

Events resource factory method.

heat.api.openstack.vl.events. format_event (req, event, keys=None)

heat.api.openstack.v1.resources module
class heat.api.openstack.vl.resources.ResourceController (options)
Bases: object
WSGI controller for Resources in Heat vl APIL.
Implements the API actions.
REQUEST_SCOPE = 'resource'
index (req, identity)
Lists information for all resources.

mark_unhealthy (req, identity, resource_name, body)

Mark a resource as healthy or unhealthy.

metadata(req, identity, resource_name)

Gets metadata information for a resource.

show (req, identity, resource_name)

Gets detailed information for a resource.

signal (req, identity, resource_name, body=None)

heat.api.openstack.vl.resources.create_resource (options)

Resources resource factory method.

heat.api.openstack.vl.resources.format_resource(req, res, keys=None)

heat.api.openstack.v1.services module

680 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

class heat.api.openstack.vl.services.ServiceController (options)

Bases: object
WSGI controller for reporting the heat engine status in Heat vl APIL.
REQUEST_SCOPE = 'service'

index(req)

heat.api.openstack.vl.services.create_resource (options)

heat.api.openstack.v1.software_configs module
class heat.api.openstack.vl.software_configs.SoftwareConfigController (options)
Bases: object
WSGI controller for Software config in Heat vl APIL
Implements the API actions.
REQUEST_SCOPE = 'software_configs'
create(req, body)
Create a new software config.
default (req, **args)
delete(req, config_id)
Delete an existing software config.
global_index(req)
index (req)
Lists summary information for all software configs.

show (req, config_id)
Gets detailed information for a software config.

heat.api.openstack.vl.software_configs.create_resource (options)

Software configs resource factory method.

heat.api.openstack.v1.software_deployments module
class heat.api.openstack.vl.software_deployments.SoftwareDeploymentController (options)
Bases: object
WSGI controller for Software deployments in Heat vl APL
Implements the API actions.
REQUEST_SCOPE = 'software_deployments'
create(req, body)
Create a new software deployment.

default (req, **args)

4.2. Source Code Index 681

Heat Documentation, Release 24.1.0.dev11

delete(req, deployment_id)

Delete an existing software deployment.

index (req)

List software deployments.

metadata(req, server_id)

List software deployments grouped by the group name.
This is done for the requested server.

show (req, deployment_id)

Gets detailed information for a software deployment.

update (req, deployment_id, body)

Update an existing software deployment.

heat.api.openstack.vl.software_deployments.create_resource (options)
Software deployments resource factory method.

heat.api.openstack.v1.stacks module

Stack endpoint for Heat vl REST API.

class heat.api.openstack.vl.stacks.InstantiationData(data, patch=False)

Bases: object
The data to create or update a stack.
The data accompanying a PUT or POST request.

PARAMS = ('stack_name', 'template', 'template_url', 'parameters',
'environment', 'files', 'environment_files', 'files_container')

PARAM_ENVIRONMENT = 'environment'
PARAM_ENVIRONMENT_FILES = 'environment_files'
PARAM_FTLES = 'files'

PARAM_FILES_CONTAINER = 'files_container'
PARAM_STACK_NAME = 'stack_name'
PARAM_TEMPLATE = 'template'
PARAM_TEMPLATE_URL = 'template_url’
PARAM_USER_PARAMS = 'parameters'

args(Q)
Get any additional arguments supplied by the user.

environment ()

Get the user-supplied environment for the stack in YAML format.

If the user supplied Parameters then merge these into the environment global options.

682 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

environment_files()

files(O

files_container()

no_change()

static parse_error_check(dara_type)
stack_name()

Return the stack name.

template()

Get template file contents.

Get template file contents, either inline, from stack adopt data or from a URL, in JSON or
YAML format.

class heat.api.openstack.vl.stacks.StackController (options)

Bases: object
WSGI controller for stacks resource in Heat vl APIL.
Implements the API actions.
REQUEST_SCOPE = 'stacks'
abandon (req, identity)
Abandons specified stack.

Abandons specified stack by deleting the stack and its resources from the database, but un-
derlying resources will not be deleted.

create(req, body)

Create a new stack.
default (req, **args)
delete(req, identity)

Delete the specified stack.
delete_snapshot (req, identity, snapshot_id)
detail (req)

Lists detailed information for all stacks.

environment (req, identity)

Get the environment for an existing stack.

export (req, identity)
Export specified stack.

Return stack data in JSON format.

files(req, identity)

Get the files for an existing stack.

4.2. Source Code Index 683

Heat Documentation, Release 24.1.0.dev11

generate_template(req, type_name)

Generates a template based on the specified type.
global_index(req)
index(req)

Lists summary information for all stacks.
list_outputs (req, identity)
list_resource_types(req)

Returns a resource types list which may be used in template.
list_snapshots(req, identity)
list_template_functions(req, template_version)

Returns a list of available functions in a given template.

list_template_versions(req)

Returns a list of available template versions.

lookup (req, stack_name, path="", body=None)

Redirect to the canonical URL for a stack.
prepare_args (data, is_update=False)
preview(req, body)

Preview the outcome of a template and its params.

preview_update(req, identity, body)
Preview update for existing stack with a new template/parameters.

preview_update_patch(req, identity, body)
Preview PATCH update for existing stack.

resource_schema (req, type_name, with_description=False)

Returns the schema of the given resource type.
restore_snapshot (req, identity, snapshot_id)
show (req, identity)

Gets detailed information for a stack.

show_output (req, identity, output_key)
show_snapshot (req, identity, snapshot_id)
snapshot (req, identity, body)

template (req, identity)
Get the template body for an existing stack.
update (req, identity, body)

Update an existing stack with a new template and/or parameters.

684 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

update_patch(req, identity, body)
Update an existing stack with a new template.

Update an existing stack with a new template by patching the parameters Add the flag patch
to the args so the engine code can distinguish

validate_template (req, body)
Implements the ValidateTemplate API action.

Validates the specified template.

class heat.api.openstack.vl.stacks.StackSerializer

Bases: JSONResponseSerializer
Handles serialization of specific controller method responses.
create(response, result)

heat.api.openstack.vl.stacks.create_resource (options)

Stacks resource factory method.

heat.api.openstack.v1.util module
heat.api.openstack.vl.util.get_allowed_params (params, param_types)
Extract from params all entries listed in param_types.

The returning dict will contain an entry for a key if, and only if, theres an entry in param_types
for that key and at least one entry in params. If params contains multiple entries for the same key,
it will yield an array of values: {key: [v1, v2,...]}

Parameters
e params a NestedMultiDict from webob.Request.params
* param_types an dict of allowed parameters and their types

Returns
a dict with {key: value} pairs

heat.api.openstack.vl.util.make_link(req, identity, relationship="self”)

Return a link structure for the supplied identity dictionary.

heat.api.openstack.vl.util.make_url (req, identity)
Return the URL for the supplied identity dictionary.

heat.api.openstack.vl.util.no_policy_enforce(handler)

Decorator that does not enforce policies.
Checks the path matches the request context.
This is a handler method decorator.

heat.api.openstack.vl.util.registered_identified_stack(handler)

Decorator that passes a stack identifier instead of path components.

This is a handler method decorator. Policy is enforced using a registered policy name.

4.2. Source Code Index 685

Heat Documentation, Release 24.1.0.dev11

heat.api.openstack.vl.util.registered_policy_enforce(handler)

Decorator that enforces policies.
Checks the path matches the request context and enforce policy defined in policies.

This is a handler method decorator.

Module contents

class heat.api.openstack.vl.API(conf, **local_conf)
Bases: Router

WSGI router for Heat vl REST API requests.
Submodules
heat.api.openstack.versions module

Controller that returns information on the heat API versions.

Now its a subclass of module versions, because of identity with cfn module versions. It can be changed,
if there will be another API version.

heat.api.openstack.wsgi module

WSGI script for heat-api.
Script for running heat-api under Apache?.

heat.api.openstack.wsgi.init_application()

Module contents
heat.api.openstack.faultwrap_filter (app, conf, **local_conf)

heat.api.openstack.version_negotiation_filter (app, conf, **local_conf)

Submodules
heat.api.versions module

Controller that returns information on the heat API versions.

class heat.api.versions.Controller (conf)
Bases: object

A controller that produces information on the heat API versions.

get_href (req)

Module contents

heat.api.pipeline_factory(loader, global_conf, **local_conf)
A paste pipeline replica that keys off of deployment flavor.

heat.api.root_app_factory(loader, global_conf, **local_conf)

686 Chapter 4. Developing Heat

Heat Documentation, Release 24.1.0.dev11

heat.common package

Submodules

heat.common.auth_password module

class heat.common.auth_password.KeystonePasswordAuthProtocol (app, conf)
Bases: object

Middleware uses username and password to authenticate against Keystone.

Alternative authentication middleware that uses username and password to authenticate against
Keystone instead of validating existing auth token. The benefit being that you no longer require
admin/service token to authenticate users.

heat.common.auth_password. filter_factory(global_conf, **local_conf)
Returns a WSGI filter app for use with paste.deploy.

heat.common.auth_plugin module
heat.common.auth_plugin.get_keystone_plugin_loader (auth, keystone_session)
heat.common.auth_plugin.parse_auth_credential_to_dict(cred)

Parse credential to dict

heat.common.auth_plugin.validate_auth_plugin(auth_plugin, keystone_session)
Validate if this auth_plugin is valid to use.

heat.common.auth_url module
class heat.common.auth_url.AuthUrlFilter (app, conf)
Bases: Middleware
property auth_url
process_request (req)
Called on each request.

If this returns None, the next application down the stack will be executed. If it returns a
response then that response will be returned and execution will stop here.

heat.common.auth_url. filter_factory(global_conf, **local_conf)

heat.common.cache module

The code related to integration between oslo.cache module and heat.

heat.common.cache.get_cache_region()
heat.common.cache.list_opts()

heat.common.cache.register_cache_configurations(conf)

Register all configurations required for oslo.cache.

The procedure registers all configurations required for oslo.cache. It should be called before con-
figuring of cache region

4.2. Source Code Index 687

Heat Documentation,