Grenade Docs
Release 0.0.1.dev858

OpenStack Grenade Team

Mar 25, 2025

CONTENTS

Grenade 1
Modular Grenade Architecture 5
Grenade Plugin Registry 10
Grenade Coding Guide 11
Stable Branch Testing Policy 12
Code 13

For Contributors 14

CHAPTER
ONE

GRENADE

Grenade is an OpenStack test harness to exercise the upgrade process between releases. It uses DevStack
to perform an initial OpenStack install and as a reference for the final configuration. Currently Grenade
can upgrade Keystone, Glance, Nova, Neutron, Cinder, Swift, and Ceilometer in their default DevStack
configurations.

1.1 Goals

Grenade has the following goals:

* Block unintentional project changes that would break the Theory of Upgrade. Most Grenade fails
that people hit are of this nature.

* Ensure that upgrading a cloud doesnt do something dumb like delete and recreate all your
servers/volumes/networks.

* Be able to grow to support additional upgrade scenarios (like sideways migrations from one con-
figuration to another equivalent configuration)

1.2 Theory of Upgrade

Grenade works under the following theory of upgrade.
* New code should work with old configs

The upgrade process should not require a config change to run a new release. All config behavior
is supposed to be deprecated over a release cycle, so that upon release new code works with the
last releases configs. Those configs may create deprecation warnings which need to be addressed
before the next release, but they should still work and largely have the same behavior.

* New code should need nothing more than db migrations

Clearly the release of new code may include new database models. Standard upgrade procedure
is to turn off all services that touch the database, run the db migration script, and start with new
code.

* Resources created by services before upgrade, should still be there after the system is upgraded

When upgrading Nova you expect all your VMs to still function during the entire upgrade (whether
or not Nova services are up). Taking down the control plane should not take down your VMs.

* Any other required changes on upgrade are an exception and must be called out in the release
notes.

Grenade Docs, Release 0.0.1.dev858

1.3

Grenade supports per release specific upgrade scripts (from-juno, from-kilo). These are designed
to support upgrades where additional manual steps are needed for a specific upgrade (i.e. from
juno to kilo). These should be used sparingly.

The Grenade core team requires the following before landing these kinds of changes:

— The Release Notes for the release where this will be required clearly specify these manual
upgrade steps.

— The PTL for the project in question has signed off on this change.

Note

While we expect the various deployment projects within the OpenStack ecosystem, for example
TripleO, Kolla, etc, to read the release notes of each project, it is good practice to communicate
any exceptional upgrade changes made to Grenade to those teams directly or at least via the
openstack-discuss mailing list.

Status

Grenade is now running on every patch for projects that support upgrade. Gating Grenade configurations
exist for the following in OpenStacks CI system (this is not an exhaustive list):

1.4

A cloud with neutron upgraded between releases

A cloud with neutron that upgrades all services except nova-compute, thus testing RPC backwards
compatibility for rolling upgrades.

Basic Flow

The grenade.sh script attempts to be reasonably readable, so its worth looking there to see whats really
going on. This is the super high level version of what that does.

get 2 devstacks (base & target)

install base devstack

perform some sanity checking (currently tempest smoke) to ensure this is right

allow projects to create resources that should survive upgrade - see projects/*/resources.sh
shut down all services

verify resources are still working during shutdown

upgrade and restart all services

verify resources are still working after upgrade

perform some sanity checking (currently tempest smoke) to ensure everything seems good.

The script skips the first two steps (which take care of setting up the 2 devstack environments and installing
the base one) when the value of GRENADE_USE_EXTERNAL_DEVSTACK is set to True.

1.3.

Status 2

http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Grenade Docs, Release 0.0.1.dev858

1.4.1 Terminology
Grenade has two DevStack installs present and distinguished between then as base and target.
* Base: The initial install that will be upgraded.

» Target: The reference install of target OpenStack (maybe just DevStack)

1.5 Directory Structure

Grenade creates a set of directories for both the base and target OpenStack installation sources and De-
vStack:

$STACK_ROOT

|- logs # Grenade logs

|- save # Grenade state logs

| - <base>

| |- data # base data

| |- logs # base DevStack logs

| | - devstack

| | - images # cache of downloaded images
| | - cinder

I |-

| |- swift

|- <target>

| |- data # target data

| |- logs # target DevStack logs
| | - devstack

| | - cinder

| = ---

| |- swift

1.6 Dependencies

This is a non-exhaustive list of dependencies:
e git

* toXx

1.7 Install Grenade

Get Grenade from GitHub in the usual way:

[git clone https://opendev.org/openstack/grenade

1.7.1 Optional: running grenade against a remote target

There is an optional setup-grenade script that is useful if you are running Grenade against a remote VM
from a local laptop.

Grenade knows how to install the current master branch using the included setup-grenade script. The
arguments are the hostname of the target system that will run the upgrade testing and the user for the

1.5. Directory Structure 3

Grenade Docs, Release 0.0.1.dev858

target system:

[./setup—grenade [testbox [testuser]] }

If you are running Grenade on the same machine you cloned to, you do not need to do this.

1.7.2 Configuration

The Grenade repo and branch used can be changed by adding something like this to localrc:

GRENADE_BRANCH=dt-test

GRENADE_REPO=git@github.com:dtroyer/grenade.git }

If you need to configure your local devstacks for your specific environment you can do that by creating
devstack.localrc. This will get appended to the stub devstack configs for BASE and TARGET.

For instance, specifying interfaces for Nova is a common use of devstack.localrc:

VLAN_INTERFACE=ethl

FLAT_INTERFACE=ethl }

1.7.3 Run the Upgrade Testing

[./grenade.sh }

Read grenade. sh for more details of the steps that happen from here.

1.7. Install Grenade 4

CHAPTER
TWO

MODULAR GRENADE ARCHITECTURE

Grenade was originally created to demonstrate some level of upgrade capacity for OpenStack projects.
Originally this just included a small number of services.

Proposed new basic flow:

2.1

setup_grenade - all the magic setup involved around err traps and filehandle redirects - setup de-

vstack trees

setup_base - run stack.sh to build the correct base environment
verify_base - for project in projects; do verify_project; done
resources.sh create

resources.sh verify pre-upgrade

shutdown - for project in projects; do shutdown; done
snapshot.sh pre_upgrade (NOT YET IMPLEMENTED)
resources.sh verify_noapi pre-upgrade

upgrade

resources.sh verify post-upgrade

verify_target

resources.sh destroy

Modular Components

Assuming the following tree in target projects:

devstack/ - devstack plugin directory
upgrade/ - upgrade scripts

settings - adds settings for the upgrade path
upgrade.sh

snapshot.sh - snapshots the state of the service, typically a

database dump (NOT YET IMPLEMENTED)
from-juno/ - per release
within-juno/
from-kilo/
within-kilo/
resources.sh

Grenade Docs, Release 0.0.1.dev858

This same modular structure exists in the grenade tree with::

grenade/
projects/

10_ceilometer/
settings upgrade.sh

2.2 resources.sh

resources.sh is a per-service resource create / verify / destroy interface. What a service does inside a
script is up to them.

You can assume your resource script will only be called if your service is running in an upgrade environ-
ment. The script should return zero on success for actions, and nonzero on failure.

2.2.1 Calling Interface

The following is the supported calling interface

* resources.sh early_create

creates a set of sample resources that should survive very early in the upgrade process. This should
only be used for horizontal resources that impact other services, that have to be available before
they do any of their setup. For instance setup of neutron networks.

Do not use the phase unless you really know why create will not work for you.
resources.sh create

creates a set of sample resources that should survive upgrade. Script should exit with a nonzero
exit code if any resources could not be created.

Example: create an instance in nova or a volume in cinder
resources.sh verify (pre-upgrade|post-upgrade)

verify that the resources were created. Services are running at this point, and the APIs may be
expected to work. The second argument indicates whether we are pre-upgrade or post-upgrade.

Example: use the nova command to verify that the test instance is still ACTIVE, or the cinder
command to verify that the volume is still available.

resources.sh verify_noapi

verify that the resources are still present. This is called in the phase where services are stopped,
and APIs are expected to not be accessible. Resource verification at this phase my require probing
underlying components to make sure nothing has gone awry during service shutdown. The second
argument indicates whether we are pre-upgrade or post-upgrade.

Example: check with libvirt to make sure the instance is actually created and running. Bonus
points for being able to ping the instance, or otherwise check its live-ness. With cinder, checking
that the LVM volume exists and looks reasonable.

resources.sh destroy

Resource scripts should be responsible and cleanup all their resources when asked to destroy.

2.2.

resources.sh 6

Grenade Docs, Release 0.0.1.dev858

2.2.2 Calling Sequence
The calling sequence during a grenade run looks as follows:
* # start old side
* create (create will be called during the working old side)
* verify pre-upgrade
* # shutdown all services
* verify_noapi pre-upgrade
* # upgrade and start all services
* verify post-upgrade
* destroy

The important thing to remember is verify/verify_noapi will be called multiple times, with multiple
different versions of OpenStack. Those phases of the script must not be rerunnable multiple times.

While create / destroy are only going to be called once in the current interface, bonus points for also
making those idempotent for resiliancy in testing.

Per-release upgrade scripts

There are times when exceptional manual upgrade steps must be performed to get from one release to
the next, or even within the same release. Grenade supports this with per-release scripts found in each
project, e.g.:

projects/
60_nova/
from-ocata/
upgrade-nova

Regarding the sequence of when these per-release scripts are called, any within-$base script should be
run before installing new code, and any from-$base script should be run after installing new code but
before starting the services with the new code. This is because configuration or database changes may
be needed before the upgraded code is started.

2.2.3 Supporting Methods

In order to assist with the checks listed the following functions exist:

resource_save project key value
resource_get project key

This allow resource scripts to have memory, and keep track of things like the allocated IP addresses, IDs,
and other non deterministic data that is returned from OpenStack API calls.

2.2.4 Environment

Resource scripts get called in a specific environment already set:

* TOP_DIR - will be set to the root of the devstack directory for the BASE version of devstack incase
this is needed to find files like a working openrc

* GRENADE_DIR - the root directory of the grenade directory.

2.2. resources.sh 7

Grenade Docs, Release 0.0.1.dev858

The following snippet will give you access to both the grenade and TARGET devstack functions:

source $GRENADE_DIR/grenaderc
source $GRENADE_DIR/functions

2.2.5 Best Practices

Do as many actions as non admin as possible. As early as you can in your resource script its worth
allocating a user/project for the script to run as. This ensures isolation against other scripts, and ensures
that actions dont only work because admin gets to bypass safeties.

Test side effects, not just API actions. The point of these resource survival scripts is to test that things
created beyond the API / DB interaction still work later. Just testing that data can be stored / retrieved
from the database isnt very interesting, and should be covered other places. The value in the resource
scripts is these side effects. Actual VMs running, actual iscsi targets running, etc. And ensuring these
things are not disrupted when the control plane is shifted out from under them.

2.3 Out of Tree Plugins

A grenade plugin can be hosted out of tree in a project tree, similar to external devstack plugins. There
are a few subtle differences when this happens.

The plugin structure will live under $project/devstack/upgrade/ directory.

The plugin is enabled by adding:

enable_grenade_plugin <$project> <giturl> [branch]

To pluginrc in the GRENADE_DIR. An additional rc file was required due to sequencing of when plugin
functions become available.

Note: when running a job based on the grenade-base job, for each devstack plugin defined using the
devstack_plugins, the corresponding grenade plugin is enabled automatically.

2.3.1 Changing Devstack Localrc

There is also a mechanism that allows a settings file change the devstack localrc files with the
devstack_localrc function.

devstack_localrc <baseltarget> arbitrary stuff to add

Which will take all the rest of the stuff on that line and add it to the localrc for either the base or target
devstack.

Please note that devstack_localrc only works when grenade performs the config-
uration of the devstack settings and runs devstack against the base target. When
GRENADE_USE_EXTERNAL_DEVSTACK is set to True, as it happens on the Zuul grenade
jobs where devstack is configured and executed before grenade, the function has no effect.

2.3.2 Example settings

The following is a reasonable example settings for out of tree plugin:

2.3. Out of Tree Plugins 8

Grenade Docs, Release 0.0.1.dev858

register_project_for_upgrade heat

register_db_to_save heat

devstack_localrc base enable_service h-api h-api-cfn h-api-cw h-eng heat
devstack_localrc target enable_service h-api h-api-cfn h-api-cw h-eng heat

This registers the project for upgrade, symbolicly enables the heat database for dump during upgrade,
and adds the heat services into the service list for base and target.

Its expected that most settings files for out of tree plugins will need equivalent lines.

2.3. Out of Tree Plugins 9

CHAPTER
THREE

GRENADE PLUGIN REGISTRY

Since weve created the external plugin mechanism, its gotten used by a lot of projects. The following is
a list of plugins that currently exist. Any project that wishes to list their plugin here is welcomed to.

3.1 Detected Plugins

The following are plugins that a script has found in the openstack/ namespace, which includes but is not
limited to official OpenStack projects.

Plugin Name URL

barbican https://opendev.org/openstack/barbican
ceilometer https://opendev.org/openstack/ceilometer
cloudkitty https://opendev.org/openstack/cloudkitty
designate https://opendev.org/openstack/designate

heat https://opendev.org/openstack/heat

ironic https://opendev.org/openstack/ironic
ironic-inspector https://opendev.org/openstack/ironic-inspector
manila https://opendev.org/openstack/manila
networking-generic-switch https://opendev.org/openstack/networking-generic-switch
neutron-vpnaas https://opendev.org/openstack/neutron-vpnaas
octavia https://opendev.org/openstack/octavia

vitrage https://opendev.org/openstack/vitrage

watcher https://opendev.org/openstack/watcher

zaqar https://opendev.org/openstack/zaqar

10

https://opendev.org/openstack/barbican
https://opendev.org/openstack/ceilometer
https://opendev.org/openstack/cloudkitty
https://opendev.org/openstack/designate
https://opendev.org/openstack/heat
https://opendev.org/openstack/ironic
https://opendev.org/openstack/ironic-inspector
https://opendev.org/openstack/manila
https://opendev.org/openstack/networking-generic-switch
https://opendev.org/openstack/neutron-vpnaas
https://opendev.org/openstack/octavia
https://opendev.org/openstack/vitrage
https://opendev.org/openstack/watcher
https://opendev.org/openstack/zaqar

CHAPTER
FOUR

GRENADE CODING GUIDE

4.1 General

Grenade is written in POSIX shell script. It specifies BASH and is compatible with Bash 3.

Grenades official repository is located at https://opendev.org/openstack/grenade.

4.2 Scripts

Grenade scripts should generally begin by calling env (1) in the shebang line:

[#! D }

The script needs to know the location of the Grenade install directory. GRENADE_DIR should always point
there, even if the script itself is located in a subdirectory:

GRENADE_DIR=$(cd $(dirname "$0") && pwd)

Keep track of the current grenade directory. }

Many scripts will utilize shared functions from the functions file. This file is copied directly from
DevStack trunk periodically. There is also an rc file (grenaderc) that is sourced to set the default
configuration of the user environment:

Keep track of the current grenade directory.
GRENADE_DIR=$(cd $(dirname "$0") && pwd)

Import common functions
source $GRENADE_DIR/functions

Import configuration
source $GRENADE_DIR/grenaderc

4.3 Documentation

The GitHub repo includes a gh-pages branch that contains the web documentation for Grenade. This is
the primary Grenade documentation along with the Grenade scripts themselves.

All of the scripts are processed with shocco to render them with the comments as text describing the
script below. For this reason we tend to be a little verbose in the comments _ ABOVE_ the code they
pertain to. Shocco also supports Markdown formatting in the comments; use it sparingly. Specifically,
grenade. sh uses Markdown headers to divide the script into logical sections.

11

https://opendev.org/openstack/grenade
https://rtomayko.github.io/shocco/

CHAPTER
FIVE

STABLE BRANCH TESTING POLICY

Since the Extended Maintenance policy for stable branches was adopted, OpenStack projects are keep-
ing stable branches around after a stable or maintained period, for a phase of indeterminate length called
Extended Maintenance. Prior to this resolution, Grenade supported a running voting job down to the old-
est+1 stable branch which was supported upstream. Grenade testing on any branch requires prior branch
in a working state, DevStack-wise. Due to this requirement and teams resource constraints, Grenade will
only provide support for branches in the Maintained phase from the documented Support Phases. This
means Grenade testing on oldest Maintained and all Extended Maintenance branches will be made non-
voting if they start failing. All other Maintained branches, that is down to the oldest Maintained+1, will
be tested and maintained by the Grenade team.

Extended Maintenance team, if any, is always welcome to maintain the Grenade testing on Extended
Maintenance branches and the oldest Maintained branch, and make the jobs voting again.

12

https://governance.openstack.org/tc/resolutions/20180301-stable-branch-eol.html
https://docs.openstack.org/project-team-guide/stable-branches.html#maintenance-phases

CHAPTER
SIX

CODE

A look at the bits that make it all go

13

CHAPTER
SEVEN

FOR CONTRIBUTORS

* If you are a new contributor to Grenade please refer: So You Want to Contribute

7.1 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Grenade.

7.1.1 Communication
¢ JRC channel #openstack-qa at OFTC

* Mailing list (prefix subjects with [qa] for faster responses) http://lists.openstack.org/cgi-bin/
mailman/listinfo/openstack-discuss

7.1.2 Contacting the Core Team

Please refer to the Grenade Core Team contacts.

7.1.3 New Feature Planning

If you want to propose a new feature please read Feature Proposal Process Grenade features are tracked
on Launchpad BP.

7.1.4 Task Tracking

We track our tasks in Launchpad.

7.1.5 Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad. More info
about Launchpad usage can be found on OpenStack docs page

7.1.6 Getting Your Patch Merged

All changes proposed to the Grenade require two Code-Review +2 votes from Grenade core reviewers
before one of the core reviewers can approve the patch by giving Workflow +1 vote.

14

https://docs.openstack.org/contributors/
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://review.opendev.org/#/admin/groups/188,members
https://wiki.openstack.org/wiki/QA#Feature_Proposal_.26_Design_discussions
https://blueprints.launchpad.net/grenade
https://bugs.launchpad.net/grenade
https://bugs.launchpad.net/grenade/+filebug
https://docs.openstack.org/contributors/common/task-tracking.html#launchpad

Grenade Docs, Release 0.0.1.dev858

7.1.7 Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

The Release Process for QA is documented in QA Release Process.

7.2

Scripts

grenade.sh - The main script
functions - Grenade specific functions
run_resources.sh

inc/bootstrap

inc/plugin

inc/upgrade

clean.sh

cache_git.sh

7.2. Scripts

15

https://docs.openstack.org/project-team-guide/ptl.html
https://wiki.openstack.org/wiki/QA/releases
grenade.sh.html
functions.html
run_resource.sh.html
inc/bootstrap.html
inc/plugin.html
inc/upgrade.html
clean.sh.html
cache_git.sh.html

	Grenade
	Goals
	Theory of Upgrade
	Status
	Basic Flow
	Terminology

	Directory Structure
	Dependencies
	Install Grenade
	Optional: running grenade against a remote target
	Configuration
	Run the Upgrade Testing

	Modular Grenade Architecture
	Modular Components
	resources.sh
	Calling Interface
	Calling Sequence
	Supporting Methods
	Environment
	Best Practices

	Out of Tree Plugins
	Changing Devstack Localrc
	Example settings

	Grenade Plugin Registry
	Detected Plugins

	Grenade Coding Guide
	General
	Scripts
	Documentation

	Stable Branch Testing Policy
	Code
	For Contributors
	So You Want to Contribute…
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties

	Scripts

