
Cinder Library Documentation
Release 3.1.1.dev3

Cinder Contributors

Jul 21, 2022

CONTENTS

1 Features 3

2 Example 5

3 Table of Contents 7
3.1 Installation . 7

3.1.1 Stable release . 7
Drivers . 7
Library . 8

3.1.2 Latest code . 8
Drivers . 8
Library . 8

3.1.3 Dependencies . 8
3.2 Usage . 10

3.2.1 Initialization . 10
file_locks_path . 11
root_helper . 11
suppress_requests_ssl_warnings . 11
non_uuid_ids . 12
output_all_backend_info . 12
disable_logs . 12
project_id . 12
user_id . 12
persistence_config . 12
fail_on_missing_backend . 13
host . 13
Other keyword arguments . 13

3.2.2 Backends . 14
Initialization . 14
LVM . 15
XtremIO . 15
Kaminario . 15
Available Backends . 16
Installed Drivers . 16
Stats . 18
Available volumes . 19
Attributes . 19
Other methods . 19

3.2.3 Volumes . 20

i

Create . 20
Delete . 22
Extend . 23
Other methods . 23

3.2.4 Snapshots . 23
Create . 24
Delete . 24
Other methods . 24

3.2.5 Connections . 25
Local attach . 25
Remote connection . 26
Multipath . 28
Extend . 29
Multi attach . 29
Other methods . 30

3.2.6 Serialization . 30
To JSON . 30
From JSON . 31
To dict . 32
Backend configuration . 33

3.2.7 Resource tracking . 33
3.2.8 Metadata Persistence . 34

Memory plugin . 35
Database plugin . 36
Custom plugins . 36
Migrating storage . 38

3.2.9 cinderlib package . 38
Subpackages . 38
Submodules . 41
Module contents . 46

3.3 Validated drivers . 46
3.3.1 LVM . 47
3.3.2 Ceph . 47
3.3.3 XtremIO . 48
3.3.4 Kaminario . 48
3.3.5 SolidFire . 49
3.3.6 VMAX . 49
3.3.7 3PAR . 50
3.3.8 Synology . 50
3.3.9 QNAP . 51

3.4 Validating a driver . 51
3.4.1 With DevStack . 52
3.4.2 Cinder 3rd party CI . 55

Configuration . 55
Use independent job . 56
Use existing job . 57

3.4.3 Notes . 57
Additional features . 57
Configuration options . 58

3.4.4 Reporting results . 58
3.5 Limitations . 59

ii

3.6 So You Want to Contribute . 59

iii

iv

Cinder Library Documentation, Release 3.1.1.dev3

pythonpython 3.6 | 3.7 | 3.8 | 3.93.6 | 3.7 | 3.8 | 3.9

pythonpython 3.6 | 3.7 | 3.8 | 3.93.6 | 3.7 | 3.8 | 3.9

licenselicense apacheapache

The Cinder Library, also known as cinderlib, is a Python library that leverages the Cinder project to pro-
vide an object oriented abstraction around Cinders storage drivers to allow their usage directly without
running any of the Cinder services or surrounding services, such as KeyStone, MySQL or RabbitMQ.

The library is intended for developers who only need the basic CRUD functionality of the drivers and
dont care for all the additional features Cinder provides such as quotas, replication, multi-tenancy, mi-
grations, retyping, scheduling, backups, authorization, authentication, REST API, etc.

The library was originally created as an external project, so it didnt have the broad range of backend
testing Cinder does, and only a limited number of drivers were validated at the time. Drivers should
work out of the box, and well keep a list of drivers that have added the cinderlib functional tests to the
driver gates confirming they work and ensuring they will keep working.

CONTENTS 1

https://pypi.python.org/pypi/cinderlib
https://pypi.python.org/pypi/cinderlib
http://www.apache.org/licenses/LICENSE-2.0

Cinder Library Documentation, Release 3.1.1.dev3

2 CONTENTS

CHAPTER

ONE

FEATURES

• Use a Cinder driver without running a DBMS, Message broker, or Cinder service.

• Using multiple simultaneous drivers on the same application.

• Basic operations support:

– Create volume

– Delete volume

– Extend volume

– Clone volume

– Create snapshot

– Delete snapshot

– Create volume from snapshot

– Connect volume

– Disconnect volume

– Local attach

– Local detach

– Validate connector

– Extra Specs for specific backend functionality.

– Backend QoS

– Multi-pool support

• Metadata persistence plugins:

– Stateless: Caller stores JSON serialization.

– Database: Metadata is stored in a database: MySQL, PostgreSQL, SQLite

– Custom plugin: Caller provides module to store Metadata and cinderlib calls it when neces-
sary.

3

Cinder Library Documentation, Release 3.1.1.dev3

4 Chapter 1. Features

CHAPTER

TWO

EXAMPLE

The following code extract is a simple example to illustrate how cinderlib works. The code will use the
LVM backend to create a volume, attach it to the local host via iSCSI, and finally snapshot it:

import cinderlib as cl

Initialize the LVM driver
lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',

volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

Create a 1GB volume
vol = lvm.create_volume(1, name='lvm-vol')

Export, initialize, and do a local attach of the volume
attach = vol.attach()

print('Volume %s attached to %s' % (vol.id, attach.path))

Snapshot it
snap = vol.create_snapshot('lvm-snap')

5

Cinder Library Documentation, Release 3.1.1.dev3

6 Chapter 2. Example

CHAPTER

THREE

TABLE OF CONTENTS

3.1 Installation

The Cinder Library is an interfacing library that doesnt have any storage driver code, so it expects Cinder
drivers to be installed in the system to run properly.

We can use the latest stable release or the latest code from master branch.

3.1.1 Stable release

Drivers

For Red Hat distributions the recommendation is to use RPMs to install the Cinder drivers instead of
using pip. If we dont have access to the Red Hat OpenStack Platform packages we can use the RDO
community packages.

On CentOS, the Extras repository provides the RPM that enables the OpenStack repository. Extras is
enabled by default on CentOS 7, so you can simply install the RPM to set up the OpenStack repository:

yum install -y centos-release-openstack-rocky
yum install -y openstack-cinder

On RHEL and Fedora, youll need to download and install the RDO repository RPM to set up the Open-
Stack repository:

yum install -y https://www.rdoproject.org/repos/rdo-release.rpm
yum install -y openstack-cinder

We can also install directly from source on the system or a virtual environment:

$ virtualenv venv
$ source venv/bin/activate
(venv) $ pip install git+git://github.com/openstack/cinder.git@stable/rocky

7

https://www.redhat.com/en/technologies/linux-platforms/openstack-platform
https://www.rdoproject.org/
https://www.rdoproject.org/

Cinder Library Documentation, Release 3.1.1.dev3

Library

To install Cinder Library well use PyPI, so well make sure to have the pip command available:

yum install -y python-pip
pip install cinderlib

This is the preferred method to install Cinder Library, as it will always install the most recent stable
release.

If you dont have pip installed, this Python installation guide can guide you through the process.

3.1.2 Latest code

Drivers

If we dont have a packaged version or if we want to use a virtual environment we can install the drivers
from source:

$ virtualenv cinder
$ source cinder/bin/activate
$ pip install git+git://github.com/openstack/cinder.git

Library

The sources for Cinder Library can be downloaded from the Github repo to use the latest version of the
library.

You can either clone the public repository:

$ git clone git://github.com/akrog/cinderlib

Or download the tarball:

$ curl -OL https://github.com/akrog/cinderlib/tarball/master

Once you have a copy of the source, you can install it with:

$ virtualenv cinder
$ python setup.py install

3.1.3 Dependencies

Cinderlib has less functionality than Cinder, which results in fewer required libraries.

When installing from PyPi or source, well get all the dependencies regardless of whether they are needed
by cinderlib or not, since the Cinder Python package specifies all the dependencies. Installing from
packages may result in fewer dependencies, but this will depend on the distribution package itself.

To increase loading speed, and reduce memory footprint and dependencies, cinderlib fakes all unneces-
sary packages at runtime if they have not already been loaded.

8 Chapter 3. Table of Contents

https://pip.pypa.io
https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/openstack/cinderlib
https://github.com/openstack/cinderlib/tarball/master

Cinder Library Documentation, Release 3.1.1.dev3

This can be convenient when creating containers, as one can remove unnecessary packages on the same
layer cinderlib gets installed to get a smaller containers.

If our application uses any of the packages cinderlib fakes, we just have to import them before importing
cinderlib. This way cinderlib will not fake them.

The list of top level packages unnecessary for cinderlib are:

• castellan

• cursive

• googleapiclient

• jsonschema

• keystoneauth1

• keystonemiddleware

• oauth2client

• os-win

• oslo.messaging

• oslo.middleware

• oslo.policy

• oslo.reports

• oslo.upgradecheck

• osprofiler

• paste

• pastedeploy

• pyparsing

• python-barbicanclient

• python-glanceclient

• python-novaclient

• python-swiftclient

• python-keystoneclient

• routes

• webob

3.1. Installation 9

Cinder Library Documentation, Release 3.1.1.dev3

3.2 Usage

Thanks to the fully Object Oriented abstraction, instead of a classic method invocation passing the re-
sources to work on, cinderlib makes it easy to hit the ground running when managing storage resources.

Once the Cinder and cinderlib packages are installed we just have to import the library to start using it:

import cinderlib

Note: Installing the Cinder package does not require to start any of its services (volume, scheduler, api)
or auxiliary services (KeyStone, MySQL, RabbitMQ, etc.).

Usage documentation is not too long, and it is recommended to read it all before using the library to
be sure we have at least a high level view of the different aspects related to managing our storage with
cinderlib.

Before going into too much detail there are some aspects we need to clarify to make sure our terminology
is in sync and we understand where each piece fits.

In cinderlib we have Backends, that refer to a storage arrays specific connection configuration so it
usually doesnt refer to the whole storage. With a backend well usually have access to the configured
pool.

Resources managed by cinderlib are Volumes and Snapshots, and a Volume can be created from a Back-
end, another Volume, or from a Snapshot, and a Snapshot can only be created from a Volume.

Once we have a volume we can create Connections so it can be accessible from other hosts or we can do
a local Attachment of the volume which will retrieve required local connection information of this host,
create a Connection on the storage to this host, and then do the local Attachment.

Given that Cinder drivers are not stateless, cinderlib cannot be either. Thats why there is a metadata
persistence plugin mechanism to provide different ways to store resource states. Currently we have
memory and database plugins. Users can store the data wherever they want using the JSON serialization
mechanism or with a custom metadata plugin.

Each of the different topics are treated in detail on their specific sections:

3.2.1 Initialization

The cinderlib itself doesnt require an initialization, as it tries to provide sensible settings, but in some
cases we may want to modify these defaults to fit a specific desired behavior and the library provides a
mechanism to support this.

Library initialization should be done before making any other library call, including Backend initializa-
tion and loading serialized data, if we try to do it after other calls the library will raise an Exception.

Provided setup method is cinderlib.Backend.global_setup, but for convenience the library provides a
reference to this class method in cinderlib.setup

The method definition is as follows:

@classmethod
def global_setup(cls, file_locks_path=None, root_helper='sudo',

suppress_requests_ssl_warnings=True, disable_logs=True,
(continues on next page)

10 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

(continued from previous page)

non_uuid_ids=False, output_all_backend_info=False,
project_id=None, user_id=None, persistence_config=None,
fail_on_missing_backend=True, host=None,
**cinder_config_params):

The meaning of the librarys configuration options are:

file_locks_path

Cinder is a complex system that can support Active-Active deployments, and each driver and storage
backend has different restrictions, so in order to facilitate mutual exclusion it provides 3 different types
of locks depending on the scope the driver requires:

• Between threads of the same process.

• Between different processes on the same host.

• In all the OpenStack deployment.

Cinderlib doesnt currently support the third type of locks, but that should not be an inconvenience for
most cinderlib usage.

Cinder uses file locks for the between process locking and cinderlib uses that same kind of locking for
the third type of locks, which is also what Cinder uses when not deployed in an Active-Active fashion.

Parameter defaults to None, which will use the path indicated by the state_path configuration option. It
defaults to the current directory.

root_helper

There are some operations in Cinder drivers that require sudo privileges, this could be because they are
running Python code that requires it or because they are running a command with sudo.

Attaching and detaching operations with cinderlib will also require sudo privileges.

This configuration option allows us to define a custom root helper or disabling all sudo operations
passing an empty string when we know we dont require them and we are running the process with a
non passwordless sudo user.

Defaults to sudo.

suppress_requests_ssl_warnings

Controls the suppression of the requests library SSL certificate warnings.

Defaults to True.

3.2. Usage 11

Cinder Library Documentation, Release 3.1.1.dev3

non_uuid_ids

As mentioned in the Volumes section we can provide resource IDs manually at creation time, and some
drivers even support non UUID identificators, but since thats not a given validation will reject any non
UUID value.

This configuration option allows us to disable the validation on the IDs, at the users risk.

Defaults to False.

output_all_backend_info

Whether to include the Backend configuration when serializing objects. Detailed information can be
found in the Serialization section.

Defaults to False.

disable_logs

Cinder drivers are meant to be run within a full blown service, so they can be quite verbose in terms of
logging, thats why cinderlib disables it by default.

Defaults to True.

project_id

Cinder is a multi-tenant service, and when resources are created they belong to a specific tenant/project.
With this parameter we can define, using a string, an identifier for our project that will be assigned to
the resources we create.

Defaults to cinderlib.

user_id

Within each project/tenant the Cinder project supports multiple users, so when it creates a resource a
reference to the user that created it is stored in the resource. Using this this parameter we can define,
using a string, an identifier for the user of cinderlib to be recorded in the resources.

Defaults to cinderlib.

persistence_config

Cinderlib operation requires data persistence, which is achieved with a metadata persistence plugin
mechanism.

The project includes 2 types of plugins providing 3 different persistence solutions and more can be used
via Python modules and passing custom plugins in this parameter.

Users of the cinderlib library must decide which plugin best fits their needs and pass the appropriate
configuration in a dictionary as the persistence_config parameter.

12 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

The parameter is optional, and defaults to the memory plugin, but if its passed it must always include the
storage key specifying the plugin to be used. All other key-value pairs must be valid parameters for the
specific plugin.

Value for the storage key can be a string identifying a plugin registered using Python entrypoints, an
instance of a class inheriting from PersistenceDriverBase, or a PersistenceDriverBase class.

Information regarding available plugins, their description and parameters, and different ways to initialize
the persistence can be found in the Metadata Persistence section.

fail_on_missing_backend

To facilitate operations on resources, Cinderlib stores a reference to the instance of the backend in most
of the in-memory objects.

When deserializing or retrieving objects from the metadata persistence storage cinderlib tries to properly
set this backend instance based on the backends currently in memory.

Trying to load an object without having instantiated the backend will result in an error, unless we define
fail_on_missing_backend to False on initialization.

This is useful if we are sharing the metadata persistence storage and we want to load a volume that is
already connected to do just the attachment.

host

Host configuration option used for all volumes created by this cinderlib execution.

On cinderlib volumes are selected based on the backend name, not on the host@backend combination
like cinder does. Therefore backend names must be unique across all cinderlib applications that are
using the same persistence storage backend.

A second application running cinderlib with a different host value will have access to the same resources
if it uses the same backend name.

Defaults to the hosts hostname.

Other keyword arguments

Any other keyword argument passed to the initialization method will be considered a Cinder configura-
tion option in the [DEFAULT] section.

This can be useful to set additional logging configuration like debug log level, the state_path used by
default in many option, or other options like the ssh_hosts_key_file required by drivers that use SSH.

For a list of the possible configuration options one should look into the Cinder projects documentation.

3.2. Usage 13

mailto:host@backend

Cinder Library Documentation, Release 3.1.1.dev3

3.2.2 Backends

The Backend class provides the abstraction to access a storage array with an specific configuration,
which usually constraint our ability to operate on the backend to a single pool.

Note: While some drivers have been manually validated most drivers have not, so theres a good chance
that using any non tested driver will show unexpected behavior.

If you are testing cinderlib with a non verified backend you should use an exclusive pool for the valida-
tion so you dont have to be so careful when creating resources as you know that everything within that
pool is related to cinderlib and can be deleted using the vendors management tool.

If you try the library with another storage array I would love to hear about your results, the library
version, and configuration used (masked IPs, passwords, and users).

Initialization

Before we can have access to an storage array we have to initialize the Backend, which only has one
defined parameter and all other parameters are not defined in the method prototype:

class Backend(object):
def __init__(self, volume_backend_name, **driver_cfg):

There are two arguments that well always have to pass on the initialization, one is the vol-
ume_backend_name that is the unique identifier that cinderlib will use to identify this specific driver
initialization, so well need to make sure not to repeat the name, and the other one is the volume_driver
which refers to the Python namespace that points to the Cinder driver.

All other Backend configuration options are free-form keyword arguments. Each driver and storage
array requires different information to operate, some require credentials to be passed as parameters,
while others use a file, and some require the control address as well as the data addresses. This behavior
is inherited from the Cinder project.

To find what configuration options are available and which ones are compulsory the best is going to the
Vendors documentation or to the OpenStacks Cinder volume driver configuration documentation.

Cinderlib supports references in the configuration values using the forms:

• $[<config_group>.]<config_option>

• ${[<config_group>.]<config_option>}

Where config_group is backend_defaults for the driver configuration options.

Attention: The rbd_keyring_file configuration parameter does not accept templating.

Examples:

• target_ip_address='$my_ip'

• volume_group='my-${backend_defaults.volume_backend_name}-vg'

14 Chapter 3. Table of Contents

https://docs.openstack.org/cinder/latest/configuration/block-storage/volume-drivers.html

Cinder Library Documentation, Release 3.1.1.dev3

Attention: Some drivers have external dependencies which we must satisfy before initializing the
driver or it may fail either on the initialization or when running specific operations. For example
Kaminario requires the krest Python library, and Pure requires purestorage Python library.

Python library dependencies are usually documented in the driver-requirements.txt file, as for the
CLI required tools, well have to check in the Vendors documentation.

Cinder only supports using one driver at a time, as each process only handles one backend, but cinderlib
has overcome this limitation and supports having multiple Backends simultaneously.

Lets see now initialization examples of some storage backends:

LVM

import cinderlib

lvm = cinderlib.Backend(
volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi',

)

XtremIO

import cinderlib

xtremio = cinderlib.Backend(
volume_driver='cinder.volume.drivers.dell_emc.xtremio.

↪→XtremIOISCSIDriver',
san_ip='10.10.10.1',
xtremio_cluster_name='xtremio_cluster',
san_login='xtremio_user',
san_password='xtremio_password',
volume_backend_name='xtremio',

)

Kaminario

import cinderlib

kaminario = cl.Backend(
volume_driver='cinder.volume.drivers.kaminario.kaminario_iscsi.

↪→KaminarioISCSIDriver',
san_ip='10.10.10.2',
san_login='kaminario_user',
san_password='kaminario_password',
volume_backend_name='kaminario_iscsi',

)

3.2. Usage 15

https://opendev.org/openstack/cinder/src/branch/master/driver-requirements.txt

Cinder Library Documentation, Release 3.1.1.dev3

For other backend configuration examples please refer to the Validated drivers page.

Available Backends

Usual procedure is to initialize a Backend and store it in a variable at the same time so we can use it to
manage our storage backend, but there are cases where we may have lost the reference or we are in a
place in our code where we dont have access to the original variable.

For these situations we can use cinderlibs tracking of Backends through the backends class dictionary
where all created Backends are stored using the volume_backend_name as the key.

for backend in cinderlib.Backend.backends.values():
initialized_msg = '' if backend.initialized else 'not '
print('Backend %s is %sinitialized with configuration: %s' %

(backend.id, initialized_msg, backend.config))

Installed Drivers

Available drivers for cinderlib depend on the Cinder version installed, so we have a method, called
list_supported_drivers to list information about the drivers that are included with the Cinder release
installed in the system.

The method accepts parameter output_version where we can specify the desired output format:

• 1 for human usage (default value).

• 2 for automation tools.

The main difference are the values of the driver options and how the expected type of these options is
described.

import cinderlib

drivers = cinderlib.list_supported_drivers()

And what well get is a dictionary with the class name of the driver, a description, the version of the
driver, etc.

Heres the entry for the LVM driver:

{'LVMVolumeDriver':
{'ci_wiki_name': 'Cinder_Jenkins',
'class_fqn': 'cinder.volume.drivers.lvm.LVMVolumeDriver',
'class_name': 'LVMVolumeDriver',
'desc': 'Executes commands relating to Volumes.',
'supported': True,
'version': '3.0.0',
'driver_options': [

{'advanced': 'False',
'default': '64',
'deprecated_for_removal': 'False',
'deprecated_opts': '[]',
'deprecated_reason': 'None',
'deprecated_since': 'None',
'dest': 'spdk_max_queue_depth',

(continues on next page)

16 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

(continued from previous page)

'help': 'Queue depth for rdma transport.',
'metavar': 'None',
'mutable': 'False',
'name': 'spdk_max_queue_depth',
'positional': 'False',
'required': 'False',
'sample_default': 'None',
'secret': 'False',
'short': 'None',
'type': 'Integer(min=1, max=128)'},

],
}

},

The equivalent for the LVM driver for automation would be:

import cinderlib

drivers = cinderlib.list_supported_drivers(2)

{'LVMVolumeDriver':
{'ci_wiki_name': 'Cinder_Jenkins',
'class_fqn': 'cinder.volume.drivers.lvm.LVMVolumeDriver',
'class_name': 'LVMVolumeDriver',
'desc': 'Executes commands relating to Volumes.',
'supported': True,
'version': '3.0.0',
'driver_options': [

{'advanced': False,
'default': 64,
'deprecated_for_removal': False,
'deprecated_opts': [],
'deprecated_reason': None,
'deprecated_since': None,
'dest': 'spdk_max_queue_depth',
'help': 'Queue depth for rdma transport.',
'metavar': None,
'mutable': False,
'name': 'spdk_max_queue_depth',
'positional': False,
'required': False,
'sample_default': None,
'secret': False,
'short': None,
'type': {'choices': None,

'max': 128,
'min': 1,
'num_type': <class 'int'>,
'type_class': Integer(min=1, max=128),
'type_name': 'integer value'}}

],
}

},

3.2. Usage 17

Cinder Library Documentation, Release 3.1.1.dev3

Stats

In Cinder all cinder-volume services periodically report the stats of their backend to the cinder-scheduler
services so they can do informed placing decisions on operations such as volume creation and volume
migration.

Some of the keys provided in the stats dictionary include:

• driver_version

• free_capacity_gb

• storage_protocol

• total_capacity_gb

• vendor_name volume_backend_name

Additional information can be found in the Volume Stats section within the Developers Documentation.

Gathering stats is a costly operation for many storage backends, so by default the stats method will return
cached values instead of collecting them again. If latest data is required parameter refresh=True should
be passed in the stats method call.

Heres an example of the output from the LVM Backend with refresh:

>>> from pprint import pprint
>>> pprint(lvm.stats(refresh=True))
{'driver_version': '3.0.0',
'pools': [{'QoS_support': False,

'filter_function': None,
'free_capacity_gb': 20.9,
'goodness_function': None,
'location_info': 'LVMVolumeDriver:router:cinder-volumes:thin:0

↪→',
'max_over_subscription_ratio': 20.0,
'multiattach': False,
'pool_name': 'LVM',
'provisioned_capacity_gb': 0.0,
'reserved_percentage': 0,
'thick_provisioning_support': False,
'thin_provisioning_support': True,
'total_capacity_gb': '20.90',
'total_volumes': 1}],

'sparse_copy_volume': True,
'storage_protocol': 'iSCSI',
'vendor_name': 'Open Source',
'volume_backend_name': 'LVM'}

18 Chapter 3. Table of Contents

https://docs.openstack.org/cinder/queens/contributor/drivers.html#volume-stats

Cinder Library Documentation, Release 3.1.1.dev3

Available volumes

The Backend class keeps track of all the Backend instances in the backends class attribute, and each
Backend instance has a volumes property that will return a list all the existing volumes in the specific
backend. Deleted volumes will no longer be present.

So assuming that we have an lvm variable holding an initialized Backend instance where we have created
volumes we could list them with:

for vol in lvm.volumes:
print('Volume %s has %s GB' % (vol.id, vol.size))

Attribute volumes is a lazy loadable property that will only update its value on the first access. More
information about lazy loadable properties can be found in the Resource tracking section. For more
information on data loading please refer to the Metadata Persistence section.

Note: The volumes property does not query the storage array for a list of existing volumes. It queries
the metadata storage to see what volumes have been created using cinderlib and return this list. This
means that we wont be able to manage pre-existing resources from the backend, and we wont notice
when a resource is removed directly on the backend.

Attributes

The Backend class has no attributes of interest besides the backends mentioned above and the id, config,
and JSON related properties well see later in the Serialization section.

The id property refers to the volume_backend_name, which is also the key used in the backends class
attribute.

The config property will return a dictionary with only the volume backends name by default to limit
unintended exposure of backend credentials on serialization. If we want it to return all the configuration
options we need to pass output_all_backend_info=True on cinderlib initialization.

If we try to access any non-existent attribute in the Backend, cinderlib will understand we are trying to
access a Cinder driver attribute and will try to retrieve it from the drivers instance. This is the case with
the initialized property we accessed in the backends listing example.

Other methods

All other methods available in the Backend class will be explained in their relevant sections:

• load and load_backend will be explained together with json, jsons, dump, dumps properties and
to_dict method in the Serialization section.

• create_volume method will be covered in the Volumes section.

• validate_connector will be explained in the Connections section.

• global_setup has been covered in the Initialization section.

• pool_names tuple with all the pools available in the driver. Non pool aware drivers will have only
1 pool and use the name of the backend as its name. Pool aware drivers may report multiple
values, which can be passed to the create_volume method in the pool_name parameter.

3.2. Usage 19

Cinder Library Documentation, Release 3.1.1.dev3

3.2.3 Volumes

The Volume class provides the abstraction layer required to perform all operations on an existing volume.
Volume creation operations are carried out at the Backend level.

Create

The base resource in storage is the volume, and to create one the cinderlib provides three different
mechanisms, each one with a different method that will be called on the source of the new volume.

So we have:

• Empty volumes that have no resource source and will have to be created directly on the Backend
via the create_volume method.

• Cloned volumes that will be created from a source Volume using its clone method.

• Volumes from a snapshot, where the creation is initiated by the create_volume method from the
Snapshot instance.

Note: Cinder NFS backends will create an image and not a directory to store files, which falls in line
with Cinder being a Block Storage provider and not filesystem provider like Manila is.

So assuming that we have an lvm variable holding an initialized Backend instance we could create a new
1GB volume quite easily:

print('Stats before creating the volume are:')
pprint(lvm.stats())
vol = lvm.create_volume(1)
print('Stats after creating the volume are:')
pprint(lvm.stats())

Now, if we have a volume that already contains data and we want to create a new volume that starts with
the same contents we can use the source volume as the cloning source:

cloned_vol = vol.clone()

Some drivers support cloning to a bigger volume, so we could define the new size in the call and the
driver would take care of extending the volume after cloning it, this is usually tightly linked to the extend
operation support by the driver.

Cloning to a greater size would look like this:

new_size = vol.size + 1
cloned_bigger_volume = vol.clone(size=new_size)

Note: Cloning efficiency is directly linked to the storage backend in use, so it will not have the same
performance in all backends. While some backends like the Ceph/RBD will be extremely efficient others
may range from slow to being actually implemented as a dd operation performed by the driver attaching
source and destination volumes.

20 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

vol = snap.create_volume()

Note: Just like with the cloning functionality, not all storage backends can efficiently handle creating a
volume from a snapshot.

On volume creation we can pass additional parameters like a name or a description, but these will be
irrelevant for the actual volume creation and will only be useful to us to easily identify our volumes or
to store additional information.

Available fields with their types can be found in Cinders Volume OVO definition, but most of them are
only relevant within the full Cinder service.

We can access these fields as if they were part of the cinderlib Volume instance, since the class will try
to retrieve any non cinderlib Volume from Cinders internal OVO representation.

Some of the fields we could be interested in are:

• id: UUID-4 unique identifier for the volume.

• user_id: String identifier, in Cinder its a UUID, but we can choose here.

• project_id: String identifier, in Cinder its a UUID, but we can choose here.

• snapshot_id: ID of the source snapshot used to create the volume. This will be filled by cinderlib.

• host: Used to store the backend name information together with the host name where cinderlib
is running. This information is stored as a string in the form of host@backend#pool. This is an
optional parameter, and passing it to create_volume will override default value, allowing our caller
to request a specific pool for multi-pool backends, though we recommend using the pool_name
parameter instead. Issues will arise if parameter doesnt contain correct information.

• pool_name: Pool name to use when creating the volume. Default is to use the first or only pool.
To know possible values for a backend use the pool_names property on the Backend instance.

• size: Volume size in GBi.

• availability_zone: In case we want to define AZs.

• status: This represents the status of the volume, and the most important statuses are available,
error, deleted, in-use, creating.

• attach_status: This can be attached or detached.

• scheduled_at: Date-time when the volume was scheduled to be created. Currently not being used
by cinderlib.

• launched_at: Date-time when the volume creation was completed. Currently not being used by
cinderlib.

• deleted: Boolean value indicating whether the volume has already been deleted. It will be filled
by cinderlib.

• terminated_at: When the volume delete was sent to the backend.

• deleted_at: When the volume delete was completed.

• display_name: Name identifier, this is passed as name to all cinderlib volume creation methods.

3.2. Usage 21

https://github.com/openstack/cinder/blob/stable/queens/cinder/objects/volume.py#L71-L131

Cinder Library Documentation, Release 3.1.1.dev3

• display_description: Long description of the volume, this is passed as description to all cinderlib
volume creation methods.

• source_volid: ID of the source volume used to create this volume. This will be filled by cinderlib.

• bootable: Not relevant for cinderlib, but maybe useful for the cinderlib user.

• extra_specs: Extra volume configuration used by some drivers to specify additional information,
such as compression, deduplication, etc. Key-Value pairs are driver specific.

• qos_specs: Backend QoS configuration. Dictionary with driver specific key-value pares that en-
forced by the backend.

Note: Cinderlib automatically generates a UUID for the id if one is not provided at volume creation
time, but the caller can actually provide a specific id.

By default the id is limited to valid UUID and this is the only kind of ID that is guaranteed to work on
all drivers. For drivers that support non UUID IDs we can instruct cinderlib to modify Cinders behavior
and allow them. This is done on cinderlib initialization time passing non_uuid_ids=True.

Note: Cinderlib does not do scheduling on driver pools, so setting the extra_specs for a volume on
drivers that expect the scheduler to select a specific pool using them will have the same behavior as in
Cinder.

In that case the caller of Cinderlib is expected to go through the stats and check the pool that matches
the criteria and pass it to the Backends create_volume method on the pool_name parameter.

Delete

Once we have created a Volume we can use its delete method to permanently remove it from the storage
backend.

In Cinder there are safeguards to prevent a delete operation from completing if it has snapshots (unless
the delete request comes with the cascade option set to true), but here in cinderlib we dont, so its the
callers responsibility to delete the snapshots.

Deleting a volume with snapshots doesnt have a defined behavior for Cinder drivers, since its never
meant to happen, so some storage backends delete the snapshots, other leave them as they were, and
others will fail the request.

Example of creating and deleting a volume:

vol = lvm.create_volume(size=1)
vol.delete()

Attention: When deleting a volume that was the source of a cloning operation some backends
cannot delete them (since they have copy-on-write clones) and they just keep them as a silent volume
that will be deleted when its snapshot and clones are deleted.

22 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

Extend

Many storage backends and Cinder drivers support extending a volume to have more space and you can
do this via the extend method present in your Volume instance.

If the Cinder driver doesnt implement the extend operation it will raise a NotImplementedError.

The only parameter received by the extend method is the new size, and this must always be greater than
the current value because cinderlib is not validating this at the moment.

The call will return the new size of the volume in bytes.

Example of creating, extending, and deleting a volume:

vol = lvm.create_volume(size=1)
print('Vol %s has %s GBi' % (vol.id, vol.size))
new_size = vol.extend(2)
print('Extended vol %s has %s GBi' % (vol.id, vol.size))
print('Detected new size is %s bytes' % new_size)
vol.delete()

A call to extend on a locally attached volume will automatically update the hosts view of the volume to
reflect the new size. For non locally attached volumes please refer to the extend section in the connec-
tions section.

Other methods

All other methods available in the Volume class will be explained in their relevant sections:

• load will be explained together with json, jsons, dump, and dumps properties, and the to_dict
method in the Serialization section.

• refresh will reload the volume from the metadata storage and reload any lazy loadable property
that has already been loaded. Covered in the Serialization and Resource tracking sections.

• create_snapshot method will be covered in the Snapshots section together with the snapshots
attribute.

• attach, detach, connect, and disconnect methods will be explained in the Connections section.

3.2.4 Snapshots

The Snapshot class provides the abstraction layer required to perform all operations on an existing
snapshot, which means that the snapshot creation operation must be invoked from other class instance,
since the new snapshot we want to create doesnt exist yet and we cannot use the Snapshot class to
manage it.

3.2. Usage 23

connections.html#extend
connections.html#extend

Cinder Library Documentation, Release 3.1.1.dev3

Create

Once we have a Volume instance we are ready to create snapshots from it, and we can do it for attached
as well as detached volumes.

Note: Some drivers, like the NFS, require assistance from the Compute service for attached volumes,
so there is currently no way of doing this with cinderlib

Creating a snapshot can only be performed by the create_snapshot method from our Volume instance,
and once we have created a snapshot it will be tracked in the Volume instances snapshots set.

Here is a simple code to create a snapshot and use the snapshots set to verify that both, the returned
value by the call as well as the entry added to the snapshots attribute, reference the same object and that
the volume attribute in the Snapshot is referencing the source volume.

vol = lvm.create_volume(size=1)
snap = vol.create_snapshot()
assert snap is list(vol.snapshots)[0]
assert vol is snap.volume

Delete

Once we have created a Snapshot we can use its delete method to permanently remove it from the storage
backend.

Deleting a snapshot will remove its reference from the source Volumes snapshots set.

vol = lvm.create_volume(size=1)
snap = vol.create_snapshot()
assert 1 == len(vol.snapshots)
snap.delete()
assert 0 == len(vol.snapshots)

Other methods

All other methods available in the Snapshot class will be explained in their relevant sections:

• load will be explained together with json, jsons, dump, and dumps properties, and the to_dict
method in the Serialization section.

• refresh will reload the volume from the metadata storage and reload any lazy loadable property
that has already been loaded. Covered in the Serialization and Resource tracking sections.

• create_volume method has been covered in the Volumes section.

24 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

3.2.5 Connections

When talking about attaching a Cinder volume there are three steps that must happen before the volume
is available in the host:

1. Retrieve connection information from the host where the volume is going to be attached. Here we
would be getting iSCSI initiator name, IP, and similar information.

2. Use the connection information from step 1 and make the volume accessible to it in the storage
backend returning the volume connection information. This step entails exporting the volume and
initializing the connection.

3. Attaching the volume to the host using the data retrieved on step 2.

If we are running cinderlib and doing the attach in the same host, then all steps will be done in the same
host. But in many cases you may want to manage the storage backend in one host and attach a volume
in another. In such cases, steps 1 and 3 will happen in the host that needs the attach and step 2 on the
node running cinderlib.

Projects in OpenStack use the OS-Brick library to manage the attaching and detaching processes. Same
thing happens in cinderlib. The only difference is that there are some connection types that are handled
by the hypervisors in OpenStack, so we need some alternative code in cinderlib to manage them.

Connection objects most interesting attributes are:

• connected: Boolean that reflects if the connection is complete.

• volume: The Volume to which this instance holds the connection information.

• protocol: String with the connection protocol for this volume, ie: iscsi, rbd.

• connector_info: Dictionary with the connection information from the host that is attaching. Such
as its hostname, IP address, initiator name, etc.

• conn_info: Dictionary with the connection information the host requires to do the attachment,
such as IP address, target name, credentials, etc.

• device: If we have done a local attachment this will hold a dictionary with all the attachment
information, such as the path, the type, the scsi_wwn, etc.

• path: String with the path of the system device that has been created when the volume was at-
tached.

Local attach

Once we have created a volume with cinderlib doing a local attachment is really simple, we just have
to call the attach method from the Volume and well get the Connection information from the attached
volume, and once we are done we call the detach method on the Volume.

vol = lvm.create_volume(size=1)
attach = vol.attach()
with open(attach.path, 'w') as f:

f.write('*' * 100)
vol.detach()

This attach method will take care of everything, from gathering our local connection information, to
exporting the volume, initializing the connection, and finally doing the local attachment of the volume
to our host.

3.2. Usage 25

Cinder Library Documentation, Release 3.1.1.dev3

The detach operation works in a similar way, but performing the exact opposite steps and in reverse. It
will detach the volume from our host, terminate the connection, and if there are no more connections to
the volume it will also remove the export of the volume.

Attention: The Connection instance returned by the Volume attach method also has a detach
method, but this one behaves differently than the one weve seen in the Volume, as it will just perform
the local detach step and not the termiante connection or the remove export method.

Remote connection

For a remote connection, where you dont have the driver configuration or access to the management
storage network, attaching and detaching volumes is a little more inconvenient, and how you do it will
depend on whether you have access to the metadata persistence storage or not.

In any case the general attach flow looks something like this:

• Consumer gets connector information from its host.

• Controller receives the connector information from the consumer. - Controller exports and maps
the volume using the connector information and gets the connection information needed to attach
the volume on the consumer.

• The consumer gets the connection information. - The consumer attaches the volume using the
connection information.

With access to the metadata persistence storage

In this case things are easier, as you can use the persistence storage to pass information between the
consumer and the controller node.

Assuming you have the following variables:

• persistence_config configuration of your metadata persistence storage.

• node_id unique string identifier for your consumer nodes that doesnt change between reboots.

• cinderlib_driver_configuration is a dictionary with the Cinder backend configuration needed by
cinderlib to connect to the storage.

• volume_id ID of the volume we want to attach.

The consumer node must store its connector properties on start using the key-value storage provided by
the persistence plugin:

import socket
import cinderlib as cl

cl.setup(persistence_config=persistence_config)

kv = cl.Backend.persistence.get_key_values(node_id)
if not kv:

storage_nw_ip = socket.gethostbyname(socket.gethostname())
connector_dict = cl.get_connector_properties('sudo', storage_nw_ip,

True, False)
(continues on next page)

26 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

(continued from previous page)

value = json.dumps(connector_dict, separators=(',', ':'))
kv = cl.KeyValue(node_id, value)
cl.Backend.persistence.set_key_value(kv)

Then when we want to attach a volume to node_id the controller can retrieve this information using the
persistence plugin and export and map the volume for the specific host.

import cinderlib as cl

cl.setup(persistence_config=persistence_config)
storage = cl.Backend(**cinderlib_driver_configuration)

kv = cl.Backend.persistence.get_key_values(node_id)
if not kv:

raise Exception('Unknown node')
connector_info = json.loads(kv[0].value)
vol = storage.Volume.get_by_id(volume_id)
vol.connect(connector_info, attached_host=node_id)

Once the volume has been exported and mapped, the connection information is automatically stored by
the persistence plugin and the consumer host can attach the volume:

vol = storage.Volume.get_by_id(volume_id)
connection = vol.connections[0]
connection.attach()
print('Volume %s attached to %s' % (vol.id, connection.path))

When attaching the volume the metadata plugin will store changes to the Connection instance that are
needed for the detaching.

No access to the metadata persistence storage

This is more inconvenient, as youll have to handle the data exchange manually as well as the OS-Brick
library calls to do the attach/detach.

First we need to get the connector information on the host that is going to do the attach:

from os_brick.initiator import connector

connector_dict = connector.get_connector_properties('sudo', storage_nw_ip,
True, False)

Now we need to pass this connector information dictionary to the controller node. This part will depend
on your specific application/system.

In the controller node, once we have the contents of the connector_dict variable we can export and map
the volume and get the info needed by the consumer:

import cinderlib as cl

cl.setup(persistence_config=persistence_config)
storage = cl.Backend(**cinderlib_driver_configuration)

vol = storage.Volume.get_by_id(volume_id)
(continues on next page)

3.2. Usage 27

Cinder Library Documentation, Release 3.1.1.dev3

(continued from previous page)

conn = vol.connect(connector_info, attached_host=node_id)
connection_info = conn.connection_info

We have to pass the contents of connection_info information to the consumer node, and that node will
use it to attach the volume:

import os_brick
from os_brick.initiator import connector

connector_dict = connection_info['connector']
conn_info = connection_info['conn']
protocol = conn_info['driver_volume_type']

conn = connector.InitiatorConnector.factory(
protocol, 'sudo', user_multipath=True,
device_scan_attempts=3, conn=connector_dict)

device = conn.connect_volume(conn_info['data'])
print('Volume attached to %s' % device.get('path'))

At this point we have the device variable that needs to be stored for the disconnection, so we have to
either store it on the consumer node, or pass it to the controller node so we can save it with the connector
info.

Heres an example on how to save it on the controller node:

conn = vol.connections[0]
conn.device = device
conn.save()

Warning: At the time of this writing this mechanism doesnt support RBD connections, as this
support is added by cinderlib itself.

Multipath

If we want to use multipathing for local attachments we must let the Backend know when instantiating
the driver by passing the use_multipath_for_image_xfer=True:

import cinderlib

lvm = cinderlib.Backend(
volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi',
use_multipath_for_image_xfer=True,

)

28 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

Extend

The Connection object has an extend method that will refresh the hosts view of an attached volume to
reflect the latest size of the volume and return the new size in bytes.

There is no need to manually call this method for volumes that are locally attached to the node that calls
the Volumes extend method, since that call takes care of it.

When extending volumes that are attached to nodes other than the one calling the Volumes extend method
we will need to either detach and re-attach the volume on the host following the mechanisms explained
above, or refresh the current view of the volume.

How we refresh the hosts view of an attached volume will depend on how we are attaching the volumes.

With access to the metadata persistence storage

In this case things are easier, just like it was on the Remote connection.

Assuming we have a volume_id variable with the volume, and storage has the Backend instance, all we
need to do is:

vol = storage.Volume.get_by_id(volume_id)
vol.connections[0].extend()

No access to the metadata persistence storage

This is more inconvenient, as youll have to handle the data exchange manually as well as the OS-Brick
library calls to do the extend.

Well need to get the connector information on the host that is going to do the attach. Asuuming the
dictionary is available in connection_info the code would look like this:

from os_brick.initiator import connector

connector_dict = connection_info['connector']
protocol = connection_info['conn']['driver_volume_type']

conn = connector.InitiatorConnector.factory(
protocol, 'sudo', user_multipath=True,
device_scan_attempts=3, conn=connector_dict)

conn.extend()

Multi attach

Multi attach support has been added to Cinder in the Queens cycle, and its not currently supported by
cinderlib.

3.2. Usage 29

Cinder Library Documentation, Release 3.1.1.dev3

Other methods

All other methods available in the Snapshot class will be explained in their relevant sections:

• load will be explained together with json, jsons, dump, and dumps properties, and the to_dict
method in the Serialization section.

• refresh will reload the volume from the metadata storage and reload any lazy loadable property
that has already been loaded. Covered in the Serialization and Resource tracking sections.

3.2.6 Serialization

A Cinder driver is stateless on itself, but it still requires the right data to work, and thats why the cinder-
volume service takes care of storing the state in the DB. This means that cinderlib will have to simulate
the DB for the drivers, as some operations actually return additional data that needs to be kept and
provided in any future operation.

Originally cinderlib stored all the required metadata in RAM, and passed the responsibility of persisting
this information to the user of the library.

Library users would create or modify resources using cinderlib, and then would have to serialize the
resources and manage the storage of this information. This allowed referencing those resources after
exiting the application and in case of a crash.

Now we support Metadata Persistence plugins, but there are still cases were well want to serialize the
data:

• When logging or debugging resources.

• When using a metadata plugin that stores the data in memory.

• Over the wire transmission of the connection information to attach a volume on a remote nodattach
a volume on a remote node.

We have multiple methods to satisfy these needs, to serialize the data (json, jsons, dump, dumps), to
deserialize it (load), and to convert to a user friendly object (to_dict).

To JSON

We can get a JSON representation of any cinderlib object - Backend, Volume, Snapshot, and Connection
- using their following properties:

• json: Returns a JSON representation of the current object information as a Python dictionary.
Lazy loadable objects that have not been loaded will not be present in the resulting dictionary.

• jsons: Returns a string with the JSON representation. Its the equivalent of converting to a string
the dictionary from the json property.

• dump: Identical to the json property with the exception that it ensures all lazy loadable attributes
have been loaded. If an attribute had already been loaded its contents will not be refreshed.

• dumps: Returns a string with the JSON representation of the fully loaded object. Its the equivalent
of converting to a string the dictionary from the dump property.

Besides these resource specific properties, we also have their equivalent methods at the library level that
will operate on all the Backends present in the application.

30 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

Attention: On the objects, these are properties (volume.dumps), but on the library, these are meth-
ods (cinderlib.dumps()).

Note: We dont have to worry about circular references, such as a Volume with a Snapshot that has a
reference to its source Volume, since cinderlib is prepared to handle them.

To demonstrate the serialization in cinderlib we can look at an easy way to save all the Backends re-
sources information from an application that uses cinderlib with the metadata stored in memory:

with open('cinderlib.txt', 'w') as f:
f.write(cinderlib.dumps())

In a similar way we can also store a single Backend or a single Volume:

vol = lvm.create_volume(size=1)

with open('lvm.txt', 'w') as f:
f.write(lvm.dumps)

with open('vol.txt', 'w') as f:
f.write(vol.dumps)

We must remember that dump and dumps triggers loading of properties that are not already loaded. Any
lazy loadable property that was already loaded will not be updated. A good way to ensure we are using
the latest data is to trigger a refresh on the backends before doing the dump or dumps.

for backend in cinderlib.Backend.backends:
backend.refresh()

with open('cinderlib.txt', 'w') as f:
f.write(cinderlib.dumps())

When serializing cinderlib resources well get all the data currently present. This means that when
serializing a volume that is attached and has snapshots well get them all serialized.

There are some cases where we dont want this, such as when implementing a persistence metadata
plugin. We should use the to_json and to_jsons methods for such cases, as they will return a simplified
serialization of the resource containing only the data from the resource itself.

From JSON

Just like we had the json, jsons, dump, and dumps methods in all the cinderlib objects to serialize data,
we also have the load method to deserialize this data back and recreate a cinderlib internal representation
from JSON, be it stored in a Python string or a Python dictionary.

The load method is present in Backend, Volume, Snapshot, and Connection classes as well as in the li-
brary itself. The resource specific load class method is the exact counterpart of the serialization methods,
and it will deserialize the specific resource from the class its being called from.

The librarys load method is capable of loading anything we have serialized. Not only can it load the
full list of Backends with their resources, but it can also load individual resources. This makes it the
recommended way to deserialize any data in cinderlib. By default, serialization and the metadata storage

3.2. Usage 31

Cinder Library Documentation, Release 3.1.1.dev3

are disconnected, so loading serialized data will not ensure that the data is present in the persistence
storage. We can ensure that deserialized data is present in the persistence storage passing save=True to
the loading method.

Considering the files we created in the earlier examples we can easily load our whole configuration with:

We must have initialized the Backends before reaching this point

with open('cinderlib.txt', 'r') as f:
data = f.read()

backends = cinderlib.load(data, save=True)

And for a specific backend or an individual volume:

We must have initialized the Backends before reaching this point

with open('lvm.txt', 'r') as f:
data = f.read()

lvm = cinderlib.load(data, save=True)

with open('vol.txt', 'r') as f:
data = f.read()

vol = cinderlib.load(data)

This is the preferred way to deserialize objects, but we could also use the specific objects load method.

We must have initialized the Backends before reaching this point

with open('lvm.txt', 'r') as f:
data = f.read()

lvm = cinderlib.Backend.load(data)

with open('vol.txt', 'r') as f:
data = f.read()

vol = cinderlib.Volume.load(data)

To dict

Serialization properties and methos presented earlier are meant to store all the data and allow reuse
of that data when using drivers of different releases. So it will include all required information to be
backward compatible when moving from release N Cinder drivers to release N+1 drivers.

There will be times when well just want to have a nice dictionary representation of a resource, be it to
log it, to display it while debugging, or to send it from our controller application to the node where we
are going to be doing the attachment. For these specific cases all resources, except the Backend have a
to_dict method (not property this time) that will only return the relevant data from the resources.

32 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

Backend configuration

When cinderlib serializes any object it also stores the Backend this object belongs to. For security
reasons it only stores the identifier of the backend by default, which is the volume_backend_name.
Since we are only storing a reference to the Backend, this means that when we are going through the
deserialization process the Backend the object belonged to must already be present in cinderlib.

This should be OK for most cinderlib usages, since its common practice to store the storage backend
connection information (credentials, addresses, etc.) in a different location than the data; but there may
be situations (for example while testing) where well want to store everything in the same file, not only
the cinderlib representation of all the storage resources but also the Backend configuration required to
access the storage array.

To enable the serialization of the whole driver configuration we have to specify out-
put_all_backend_info=True on the cinderlib initialization resulting in a self contained file with all the
information required to manage the resources.

This means that with this configuration option we wont need to configure the Backends prior to loading
the serialized JSON data, we can just load the data and cinderlib will automatically setup the Backends.

3.2.7 Resource tracking

Cinderlib users will surely have their own variables to keep track of the Backends, Volumes, Snapshots,
and Connections, but there may be cases where this is not enough, be it because we are in a place in our
code where we dont have access to the original variables, because we want to iterate all instances, or
maybe we are running some manual tests and we have lost the reference to a resource.

For these cases we can use cinderlibs various tracking systems to access the resources. These tracking
systems are also used by cinderlib in the serialization process. They all used to be in memory, but some
will now reside in the metadata persistence storage.

Cinderlib keeps track of all:

• Initialized Backends.

• Existing volumes in a Backend.

• Connections to a volume.

• Local attachment to a volume.

• Snapshots for a given volume.

Initialized Backends are stored in a dictionary in Backends.backends using the volume_backend_name
as key.

Existing volumes in a Backend are stored in the persistence storage, and can be lazy loaded using the
Backend instances volumes property.

Existing Snapshots for a Volume are stored in the persistence storage, and can be lazy loaded using the
Volume instances snapshots property.

Connections to a Volume are stored in the persistence storage, and can be lazy loaded using the Volume
instances connections property.

Note: Lazy loadable properties will only load the value the first time we access them. Successive
accesses will just return the cached value. To retrieve latest values for them as well as for the instance

3.2. Usage 33

Cinder Library Documentation, Release 3.1.1.dev3

we can use the refresh method.

The local attachment Connection of a volume is stored in the Volume instances local_attach attribute
and is stored in memory, so unloading the library will lose this information.

We can easily use all these properties to display the status of all the resources weve created:

If volumes lazy loadable property was already loaded, refresh it
lvm_backend.refresh()

for vol in lvm_backend.volumes:
print('Volume %s is currently %s' % (vol.id, vol.status)

Refresh volume's snapshots and connections if previously lazy loaded
vol.refresh()

for snap in vol.snapshots:
print('Snapshot %s for volume %s is currently %s' %

(snap.id, snap.volume.id, snap.status))

for conn in vol.connections:
print('Connection from %s with ip %s to volume %s is %s' %

(conn.connector_info['host'], conn.connector_info['ip'],
conn.volume.id, conn.status))

3.2.8 Metadata Persistence

Cinder drivers are not stateless, and the interface between the Cinder core code and the drivers allows
them to return data that can be stored in the database. Some drivers, that have not been updated, are even
accessing the database directly.

Because cinderlib uses the Cinder drivers as they are, it cannot be stateless either.

Originally cinderlib stored all the required metadata in RAM, and passed the responsibility of persisting
this information to the user of the library.

Library users would create or modify resources using cinderlib, and then serialize the resources and
manage the storage of this information themselves. This allowed referencing those resources after exit-
ing the application and in case of a crash.

This solution would result in code duplication across projects, as many library users would end up
using the same storage types for the serialized data. Thats when the metadata persistence plugin was
introduced in the code.

With the metadata plugin mechanism we can have plugins for different storages and they can be shared
between different projects.

Cinderlib includes 2 types of plugins providing 3 different persistence solutions:

• Memory (the default)

• Database

• Database in memory

Using the memory mechanisms users can still use the JSON serialization mechanism to store the me-
datada.

34 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

Currently we have memory and database plugins. Users can store the data wherever they want using the
JSON serialization mechanism or with a custom metadata plugin.

Persistence mechanism must be configured before initializing any Backend using the persistence_config
parameter in the setup or global_setup methods.

Note: When deserializing data using the load method on memory based storage we will not be making
this data available using the Backend unless we pass save=True on the load call.

Memory plugin

The memory plugin is the fastest one, but its has its drawbacks. It doesnt provide persistence across
application restarts and its more likely to have issues than the database plugin.

Even though its more likely to present issues with some untested drivers, it is still the default plugin,
because its the plugin that exposes the raw plugin mechanism and will expose any incompatibility issues
with external plugins in Cinder drivers.

This plugin is identified with the name memory, and here we can see a simple example of how to save
everything to the database:

import cinderlib as cl

cl.setup(persistence_config={'storage': 'memory'})

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

vol = lvm.create_volume(1)

with open('lvm.txt', 'w') as f:
f.write(lvm.dumps)

And how to load it back:

import cinderlib as cl

cl.setup(persistence_config={'storage': 'memory'})

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

with open('cinderlib.txt', 'r') as f:
data = f.read()

backends = cl.load(data, save=True)
print backends[0].volumes

3.2. Usage 35

Cinder Library Documentation, Release 3.1.1.dev3

Database plugin

This metadata plugin is the most likely to be compatible with any Cinder driver, as its built on top of
Cinders actual database layer.

This plugin includes 2 storage options: memory and real database. They are identified with the storage
identifiers memory_db and db respectively.

The memory option will store the data as an in memory SQLite database. This option helps debugging
issues on untested drivers. If a driver works with the memory database plugin, but doesnt with the
memory one, then the issue is most likely caused by the driver accessing the database. Accessing the
database could be happening directly importing the database layer, or indirectly using versioned objects.

The memory database doesnt require any additional configuration, but when using a real database we
must pass the connection information using SQLAlchemy database URLs format as the value of the
connection key.

import cinderlib as cl

persistence_config = {'storage': 'db', 'connection': 'sqlite:///cl.sqlite'}
cl.setup(persistence_config=persistence_config)

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

vol = lvm.create_volume(1)

Using it later is exactly the same:

import cinderlib as cl

persistence_config = {'storage': 'db', 'connection': 'sqlite:///cl.sqlite'}
cl.setup(persistence_config=persistence_config)

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

print lvm.volumes

Custom plugins

The plugin mechanism uses Python entrypoints to identify plugins present in the system. So any module
exposing the cinderlib.persistence.storage entrypoint will be recognized as a cinderlib metadata persis-
tence plugin.

As an example, the definition in setup.py of the entrypoints for the plugins included in cinderlib is:

entry_points={
'cinderlib.persistence.storage': [

'memory = cinderlib.persistence.memory:MemoryPersistence',

(continues on next page)

36 Chapter 3. Table of Contents

http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Cinder Library Documentation, Release 3.1.1.dev3

(continued from previous page)

'db = cinderlib.persistence.dbms:DBPersistence',
'memory_db = cinderlib.persistence.dbms:MemoryDBPersistence',

],
},

But there may be cases were we dont want to create entry points available system wide, and we want
an application only plugin mechanism. For this purpose cinderlib supports passing a plugin instance or
class as the value of the storage key in the persistence_config parameters.

The instance and class must inherit from the PersistenceDriverBase in cinderlib/persistence/base.py and
implement all the following methods:

• db

• get_volumes

• get_snapshots

• get_connections

• get_key_values

• set_volume

• set_snapshot

• set_connection

• set_key_value

• delete_volume

• delete_snapshot

• delete_connection

• delete_key_value

And the __init__ method is usually needed as well, and it will receive as keyword arguments the pa-
rameters provided in the persistence_config. The storage key-value pair is not included as part of the
keyword parameters.

The invocation with a class plugin would look something like this:

import cinderlib as cl
from cinderlib.persistence import base

class MyPlugin(base.PersistenceDriverBase):
def __init__(self, location, user, password):

...

persistence_config = {'storage': MyPlugin, 'location': '127.0.0.1',
'user': 'admin', 'password': 'nomoresecrets'}

cl.setup(persistence_config=persistence_config)

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

3.2. Usage 37

Cinder Library Documentation, Release 3.1.1.dev3

Migrating storage

Metadata is crucial for the proper operation of cinderlib, as the Cinder drivers cannot retrieve this infor-
mation from the storage backend.

There may be cases where we want to stop using a metadata plugin and start using another one, but we
have metadata on the old plugin, so we need to migrate this information from one backend to another.

To achieve a metadata migration we can use methods refresh, dump, load, and set_persistence.

An example code of how to migrate from SQLite to MySQL could look like this:

import cinderlib as cl

Setup the source persistence plugin
persistence_config = {'storage': 'db',

'connection': 'sqlite:///cinderlib.sqlite'}
cl.setup(persistence_config=persistence_config)

Setup backends we want to migrate
lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',

volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

Get all the data into memory
data = cl.dump()

Setup new persistence plugin
new_config = {

'storage': 'db',
'connection': 'mysql+pymysql://user:password@IP/cinder?charset=utf8'

}
cl.Backend.set_persistence(new_config)

Load and save the data into the new plugin
backends = cl.load(data, save=True)

Auto-generated documentation is also available:

3.2.9 cinderlib package

Subpackages

cinderlib.cmd package

Submodules

cinderlib.cmd.cinder_cfg_to_python module

Generate Python code to initialize cinderlib based on Cinder config file

This tool generates Python code to instantiate backends using a cinder.conf file.

38 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

It supports multiple backends as defined in enabled_backends.

This program uses the oslo.config module to load configuration options instead of using configparser
directly because drivers will need variables to have the right type (string, list, integer), and the types are
defined in the code using oslo.config.

cinder-cfg-to_python cinder.conf cinderlib-conf.py

If no output is provided it will use stdout, and if we also dont provide an input file, it will default to
/etc/cinder/cinder.conf.

convert(source, dest)

main()

cinderlib.cmd.cinder_to_yaml module

convert(cinder_source, yaml_dest=None)

Module contents

cinderlib.persistence package

Submodules

cinderlib.persistence.base module

class DB(persistence_driver)
Bases: object

Replacement for DB access methods.

This will serve as replacement for methods used by:

• Drivers

• OVOs get_by_id and save methods

• DB implementation

Data will be retrieved using the persistence driver we setup.

GET_METHODS_PER_DB_MODEL = {cinder.objects.Volume.model: 'volume_get', cinder.objects.VolumeType.model: 'volume_type_get', cinder.objects.Snapshot.model: 'snapshot_get', cinder.objects.QualityOfServiceSpecs.model: 'qos_specs_get'}

get_by_id(context, model, id, *args, **kwargs)

classmethod image_volume_cache_get_by_volume_id(context, vol-
ume_id)

qos_specs_get(context, qos_specs_id, inactive=False)

snapshot_get(context, snapshot_id, *args, **kwargs)

volume_admin_metadata_delete(context, volume_id, key)

volume_get(context, volume_id, *args, **kwargs)

volume_get_all_by_host(context, host, filters=None)

3.2. Usage 39

Cinder Library Documentation, Release 3.1.1.dev3

volume_type_get(context, id, inactive=False, expected_fields=None)

class PersistenceDriverBase(**kwargs)
Bases: object

Provide Metadata Persistency for our resources.

This class will be used to store new resources as they are created, updated, and removed, as well
as provide a mechanism for users to retrieve volumes, snapshots, and connections.

property db

delete_connection(connection)

delete_key_value(key)

delete_snapshot(snapshot)

delete_volume(volume)

get_changed_fields(resource)

get_connections(connection_id=None, volume_id=None)

get_fields(resource)

get_key_values(key)

get_snapshots(snapshot_id=None, snapshot_name=None, volume_id=None)

get_volumes(volume_id=None, volume_name=None, backend_name=None)

reset_change_tracker(resource, fields=None)

set_connection(connection)

set_key_value(key_value)

set_snapshot(snapshot)

set_volume(volume)

vol_type_to_dict(volume_type)

Module contents

setup(config)
Setup persistence to be used in cinderlib.

By default memory persistance will be used, but there are other mechanisms available and other
ways to use custom mechanisms:

• Persistence plugins: Plugin mechanism uses Python entrypoints under namespace cinder-
lib.persistence.storage, and cinderlib comes with 3 different mechanisms, memory, dbms,
and memory_dbms. To use any of these one must pass the string name in the storage param-
eter and any other configuration as keyword arguments.

• Passing a class that inherits from PersistenceDriverBase as storage parameter and initializa-
tion parameters as keyword arguments.

• Passing an instance that inherits from PersistenceDriverBase as storage parameter.

40 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

Submodules

cinderlib.cinderlib module

class Backend(volume_backend_name, **driver_cfg)
Bases: object

Representation of a Cinder Driver.

User facing attributes are:

• __init__

• json

• jsons

• load

• stats

• create_volume

• global_setup

• validate_connector

backends = {}

property config

create_volume(size, name=”, description=”, bootable=False, **kwargs)

property dump

property dumps

global_initialization = False

classmethod global_setup(file_locks_path=None, root_helper=’sudo’,
suppress_requests_ssl_warnings=True, dis-
able_logs=True, non_uuid_ids=False, out-
put_all_backend_info=False, project_id=None,
user_id=None, persistence_config=None,
fail_on_missing_backend=True, host=None, **cin-
der_config_params)

property id

property json

property jsons

static list_supported_drivers(output_version=1)
Returns dictionary with driver classes names as keys.

The output of the method changes from version to version, so we can pass the output_version
parameter to specify which version we are expecting.

Version 1: Original output intended for human consumption, where all dictionary val-
ues are strings.

Version 2: Improved version intended for automated consumption.

3.2. Usage 41

Cinder Library Documentation, Release 3.1.1.dev3

• type is now a dictionary with detailed information

• Values retain their types, so well no longer get None or False.

classmethod load(json_src, save=False)

classmethod load_backend(backend_data)

property pool_names

refresh()

classmethod set_persistence(persistence_config)

stats(refresh=False)

validate_connector(connector_dict)
Raise exception if missing info for volumes connect call.

property volumes

volumes_filtered(volume_id=None, volume_name=None)

setup(file_locks_path=None, root_helper=’sudo’, suppress_requests_ssl_warnings=True,
disable_logs=True, non_uuid_ids=False, output_all_backend_info=False,
project_id=None, user_id=None, persistence_config=None,
fail_on_missing_backend=True, host=None, **cinder_config_params)

cinderlib.exception module

exception InvalidPersistence(name)
Bases: Exception

exception NotLocal(name)
Bases: Exception

cinderlib.nos_brick module

Helper code to attach/detach out of OpenStack

OS-Brick is meant to be used within OpenStack, which means that there are some issues when using it
on non OpenStack systems.

Here we take care of:

• Making sure we can work without privsep and using sudo directly

• Replacing an unlink privsep method that would run python code privileged

• Local attachment of RBD volumes using librados

Some of these changes may be later moved to OS-Brick. For now we just copied it from the nos-brick
repository.

init(root_helper=’sudo’)

unlink_root(*links, **kwargs)

42 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

cinderlib.objects module

class Connection(*args, **kwargs)
Bases: cinderlib.objects.Object, cinderlib.objects.LazyVolumeAttr

Cinderlib Connection info that maps to VolumeAttachment.

On Pike we dont have the connector field on the VolumeAttachment ORM instance so we use the
connection_info to store everything.

Well have a dictionary:

{conn: connection info connector: connector dictionary device: result of connect_volume}

SIMPLE_JSON_IGNORE = ('volume',)

attach()

property attached

property backend

property conn_info

classmethod connect(volume, connector, **kwargs)

property connected

property connector

property connector_info

detach(force=False, ignore_errors=False, exc=None)

property device

device_attached(device)

disconnect(force=False)

extend()

classmethod get_by_id(connection_id)

property path

property protocol

save()

class KeyValue(key=None, value=None)
Bases: object

class LazyVolumeAttr(volume)
Bases: object

LAZY_PROPERTIES = ('volume',)

refresh()

property volume

class NamedObject(backend, **fields_data)
Bases: cinderlib.objects.Object

3.2. Usage 43

Cinder Library Documentation, Release 3.1.1.dev3

property description

property name

property name_in_storage

class Object(backend, **fields_data)
Bases: object

Base class for our resource representation objects.

DEFAULT_FIELDS_VALUES = {}

LAZY_PROPERTIES = ()

SIMPLE_JSON_IGNORE = ()

backend_class
alias of cinderlib.cinderlib.Backend

property dump

property dumps

property json

property jsons

classmethod load(json_src, save=False)

static new_uuid()

classmethod setup(persistence_driver, backend_class, project_id, user_id,
non_uuid_ids)

to_dict()

to_json(simplified=True)

to_jsons(simplified=True)

class Snapshot(volume, **kwargs)
Bases: cinderlib.objects.NamedObject, cinderlib.objects.
LazyVolumeAttr

DEFAULT_FIELDS_VALUES = {'metadata': {}, 'status': 'creating'}

SIMPLE_JSON_IGNORE = ('volume',)

create()

create_volume(**new_vol_params)

delete()

classmethod get_by_id(snapshot_id)

classmethod get_by_name(snapshot_name)

save()

class Volume(backend_or_vol, pool_name=None, **kwargs)
Bases: cinderlib.objects.NamedObject

DEFAULT_FIELDS_VALUES = {'admin_metadata': {}, 'attach_status': 'detached', 'glance_metadata': {}, 'metadata': {}, 'project_id': cinder.context.RequestContext.project_id, 'size': 1, 'status': 'creating', 'user_id': cinder.context.RequestContext.user_id}

44 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

LAZY_PROPERTIES = ('snapshots', 'connections')

SIMPLE_JSON_IGNORE = ('snapshots', 'volume_attachment')

attach()

cleanup()

clone(**new_vol_attrs)

connect(connector_dict, **ovo_fields)

property connections

create()

create_snapshot(name=”, description=”, **kwargs)

delete()

detach(force=False, ignore_errors=False)

disconnect(connection, force=False)

extend(size)

classmethod get_by_id(volume_id)

classmethod get_by_name(volume_name)

refresh()

save()

property snapshots

setup(persistence_driver, backend_class, project_id, user_id, non_uuid_ids)

cinderlib.serialization module

Oslo Versioned Objects helper file.

These methods help with the serialization of Cinderlib objects that uses the OVO serialization mecha-
nism, so we remove circular references when doing the JSON serialization of objects (for example in a
Volume OVO it has a snapshot field which is a Snapshot OVO that has a volume back reference), piggy
back on the OVOs serialization mechanism to add/get additional data we want.

dict_to_primitive(self, obj, attr, value, visited=None)

dump()
Convert to Json everything we have in this system.

dumps()
Convert to a Json string everything we have in this system.

field_ovo_to_primitive(obj, attr, value, visited=None)

field_to_primitive(self, obj, attr, value, visited=None)

iterable_to_primitive(self, obj, attr, value, visited=None)

json()
Convert to Json everything we have in this system.

3.2. Usage 45

Cinder Library Documentation, Release 3.1.1.dev3

jsons()
Convert to a Json string everything we have in this system.

load(json_src, save=False)
Load any json serialized cinderlib object.

obj_from_primitive(cls, primitive, context=None, origi-
nal_method=cinder.objects.base.CinderObject.obj_from_primitive)

obj_to_primitive(self, target_version=None, version_manifest=None, visited=None)

setup(backend_class)

wrap_to_primitive(cls)

cinderlib.utils module

add_by_id(resource, elements)

find_by_id(resource_id, elements)

cinderlib.workarounds module

Module contents

3.3 Validated drivers

We are in the process of validating the cinderlib support of more Cinder drivers and adding more auto-
mated testing of drivers on Cinders gate.

For now we have 2 backends, LVM and Ceph, that are tested on every Cinder and cinderlib patch that
is submitted and merged.

We have also been able to manually test multiple backends ourselves and received reports of other
backends that have been successfully tested.

In this document we present the list of all these drivers, and for each one we include the storage array
that was used, the configuration (with masked sensitive data), any necessary external requirements -such
as packages or libraries-, whether it is being automatically tested on the OpenStack gates or not, and any
additional notes.

Currently the following backends have been verified:

• LVM with LIO

• Ceph

• Dell EMC XtremIO

• Dell EMC VMAX

• Kaminario K2

• NetApp SolidFire

• HPE 3PAR

• Synology

46 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

• QNAP

3.3.1 LVM

• Storage: LVM with LIO

• Connection type: iSCSI

• Requirements: None

• Automated testing: On cinderlib and Cinder jobs.

Configuration:

backends:
- volume_backend_name: lvm

volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group: cinder-volumes
target_protocol: iscsi
target_helper: lioadm

3.3.2 Ceph

• Storage: Ceph/RBD

• Versions: Luminous v12.2.5

• Connection type: RBD

• Requirements:

– ceph-common package

– ceph.conf file

– Ceph keyring file

• Automated testing: On cinderlib and Cinder jobs.

• Notes:

– If we dont define the keyring configuration parameter (must use an absolute path)
in our rbd_ceph_conf to point to our rbd_keyring_conf file, well need the
rbd_keyring_conf to be in /etc/ceph/.

– rbd_keyring_confg must always be present and must follow the naming
convention of $cluster.client.$rbd_user.conf.

– Current driver cannot delete a snapshot if theres a dependent volume (a volume created from
it exists).

Configuration:

backends:
- volume_backend_name: ceph

volume_driver: cinder.volume.drivers.rbd.RBDDriver
rbd_user: cinder
rbd_pool: volumes

(continues on next page)

3.3. Validated drivers 47

Cinder Library Documentation, Release 3.1.1.dev3

(continued from previous page)

rbd_ceph_conf: tmp/ceph.conf
rbd_keyring_conf: /etc/ceph/ceph.client.cinder.keyring

3.3.3 XtremIO

• Storage: Dell EMC XtremIO

• Versions: v4.0.15-20_hotfix_3

• Connection type: iSCSI, FC

• Requirements: None

• Automated testing: No

Configuration for iSCSI:

backends:
- volume_backend_name: xtremio

volume_driver: cinder.volume.drivers.dell_emc.xtremio.
↪→XtremIOISCSIDriver

xtremio_cluster_name: CLUSTER_NAME
use_multipath_for_image_xfer: true
san_ip: w.x.y.z
san_login: user
san_password: toomanysecrets

Configuration for FC:

backends:
- volume_backend_name: xtremio

volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOFCDriver
xtremio_cluster_name: CLUSTER_NAME
use_multipath_for_image_xfer: true
san_ip: w.x.y.z
san_login: user
san_password: toomanysecrets

3.3.4 Kaminario

• Storage: Kaminario K2

• Versions: VisionOS v6.0.72.10

• Connection type: iSCSI

• Requirements:

– krest Python package from PyPi

• Automated testing: No

Configuration:

48 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

backends:
- volume_backend_name: kaminario

volume_driver: cinder.volume.drivers.kaminario.kaminario_iscsi.
↪→KaminarioISCSIDriver

san_ip: w.x.y.z
san_login: user
san_password: toomanysecrets
use_multipath_for_image_xfer: true

3.3.5 SolidFire

• Storage: NetApp SolidFire

• Versions: Unknown

• Connection type: iSCSI

• Requirements: None

• Automated testing: No

Configuration:

backends:
- volume_backend_name: solidfire

volume_driver: cinder.volume.drivers.solidfire.SolidFireDriver
san_ip: w.x.y.z
san_login: admin
san_password: toomanysecrets
sf_allow_template_caching = false
image_volume_cache_enabled = True
volume_clear = zero

3.3.6 VMAX

• Storage: Dell EMC VMAX

• Versions: Unknown

• Connection type: iSCSI

• Automated testing: No

size_precision: 2
backends:

- image_volume_cache_enabled: True
volume_clear: zero
volume_backend_name: VMAX_ISCSI_DIAMOND
volume_driver: cinder.volume.drivers.dell_emc.vmax.iscsi.

↪→VMAXISCSIDriver
san_ip: w.x.y.z
san_rest_port: 8443
san_login: user
san_password: toomanysecrets
vmax_srp: SRP_1

(continues on next page)

3.3. Validated drivers 49

Cinder Library Documentation, Release 3.1.1.dev3

(continued from previous page)

vmax_array: 000197800128
vmax_port_groups: [os-iscsi-pg]

3.3.7 3PAR

• Storage: HPE 3PAR 8200

• Versions: 3.3.1.410 (MU2)+P32,P34,P37,P40,P41,P45

• Connection type: iSCSI

• Requirements:

– python-3parclient>=4.1.0 Python package from PyPi

• Automated testing: No

• Notes:

– Features work as expected, but due to a bug in the 3PAR driver the stats test
(test_stats_with_creation_on_3par) fails.

Configuration:

backends:
- volume_backend_name: 3par

hpe3par_api_url: https://w.x.y.z:8080/api/v1
hpe3par_username: user
hpe3par_password: toomanysecrets
hpe3par_cpg: [CPG_name]
san_ip: w.x.y.z
san_login: user
san_password: toomanysecrets
volume_driver: cinder.volume.drivers.hpe.hpe_3par_iscsi.

↪→HPE3PARISCSIDriver
hpe3par_iscsi_ips: [w.x.y2.z2,w.x.y2.z3,w.x.y2.z4,w.x.y2.z4]
hpe3par_debug: false
hpe3par_iscsi_chap_enabled: false
hpe3par_snapshot_retention: 0
hpe3par_snapshot_expiration: 1
use_multipath_for_image_xfer: true

3.3.8 Synology

• Storage: Synology DS916+

• Versions: DSM 6.2.1-23824 Update 6

• Connection type: iSCSI

• Requirements: None

• Automated testing: No

Configuration:

50 Chapter 3. Table of Contents

https://bugs.launchpad.net/cinder/+bug/1824371

Cinder Library Documentation, Release 3.1.1.dev3

backends:
- volume_backend_name: synology

volume_driver: cinder.volume.drivers.synology.synology_iscsi.
↪→SynoISCSIDriver

iscs_protocol: iscsi
target_ip_address: synology.example.com
synology_admin_port: 5001
synology_username: admin
synology_password: toomanysecrets
synology_pool_name: volume1
driver_use_ssl: true

3.3.9 QNAP

• Storage: QNAP TS-831X

• Versions: 4.3.5.0728

• Connection type: iSCSI

• Requirements: None

• Automated testing: No

Configuration:

backends:
- volume_backend_name: qnap

volume_driver: cinder.volume.drivers.qnap.QnapISCSIDriver
use_multipath_for_image_xfer: true
qnap_management_url: https://w.x.y.z:443
iscsi_ip_address: w.x.y.z
qnap_storage_protocol: iscsi
qnap_poolname: Storage Pool 1
san_login: admin
san_password: toomanysecrets

3.4 Validating a driver

This is a guide for Cinder driver maintainers to validate that their drivers are fully supported by cinderlib
and therefore by projects like Ember-CSI and oVirt that rely on it for storage backend management.

Validation steps include initial manual validation as well as automatic testing at the gate as part of
Cinders 3rd party CI jobs.

3.4. Validating a driver 51

https://ember-csi.io
https://ovirt.org

Cinder Library Documentation, Release 3.1.1.dev3

3.4.1 With DevStack

There are many ways we can install cinderlib for the initial validation phase, such as using pip from
master repositories or PyPi or using packaged versions of the project, but the official recommendation is
to use DevStack.

We believe that, as a Cinder driver maintainer, you will be already familiar with DevStack and know
how to configure and use it to work with your storage backend, so this will most likely be the easiest
way for you to do an initial validation of the driver.

Cinderlib has a DevStack plugin that automatically installs the library as during the stacking process
when running the ./stach.sh script, so we will be adding this plugin to our local.conf file.

To use cinderlibs master code we will add the line enable_plugin cinderlib https://git.
openstack.org/openstack/cinderlib after the [[local|localrc]] header the in our
normal local.conf file that already configures our backend. The result will look like this:

[[local|localrc]]
enable_plugin cinderlib https://opendev.org/openstack/cinderlib

After adding this we can proceed to run the stack.sh script.

Once the script has finished executing we will have cinderlib installed from Git in our system and we will
also have sample Python code of how to use our backend in cinderlib using the same backend configu-
ration that exists in our cinder.conf. The sample Python code is generated in file cinderlib.py
in the same directory as our cinder.conf file.

The tool generating the cinderlib.py file supports cinder.conf files with multiple backends, so
theres no need to make any additional changes to your local.conf if you usually deploy DevStack
with multiple backends.

The generation of the sample code runs at the very end of the stacking process (the extra stage), so
we can use other DevStack storage plugins, such as the Ceph plugin, and the sample code will still be
properly generated.

For the LVM default backend the contents of the cinderlib.py file are:

$ cat /etc/cinder/cinderlib.py
import cinderlib as cl

lvmdriver_1 = cl.Backend(volume_clear="zero", lvm_type="auto",
volume_backend_name="lvmdriver-1",
target_helper="lioadm",
volume_driver="cinder.volume.drivers.lvm.

↪→LVMVolumeDriver",
image_volume_cache_enabled=True,
volume_group="stack-volumes-lvmdriver-1")

To confirm that this automatically generated configuration is correct we can do:

$ cd /etc/cinder
$ mv cinderlib.py example.py
$ python
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from pprint import pprint as pp
>>> import cinderlib

(continues on next page)

52 Chapter 3. Table of Contents

https://docs.openstack.org/devstack
https://docs.openstack.org/devstack
http://git.openstack.org/cgit/openstack/cinderlib/tree/devstack
https://docs.openstack.org/devstack

Cinder Library Documentation, Release 3.1.1.dev3

(continued from previous page)

>>> pp(example.lvmdriver_1.stats())
{'driver_version': '3.0.0',
'pools': [{'QoS_support': False,

'backend_state': 'up',
'filter_function': None,
'free_capacity_gb': 4.75,
'goodness_function': None,
'location_info': 'LVMVolumeDriver:localhost.localdomain:stack-

↪→volumes-lvmdriver-1:thin:0',
'max_over_subscription_ratio': '20.0',
'multiattach': True,
'pool_name': 'lvmdriver-1',
'provisioned_capacity_gb': 0.0,
'reserved_percentage': 0,
'thick_provisioning_support': False,
'thin_provisioning_support': True,
'total_capacity_gb': 4.75,
'total_volumes': 1}],

'shared_targets': False,
'sparse_copy_volume': True,
'storage_protocol': 'iSCSI',
'vendor_name': 'Open Source',
'volume_backend_name': 'lvmdriver-1'}

>>>

Here the name of the variable is lvmdriver_1, but in your case the name will be different, as it uses the
volume_backend_name from the different driver section in the cinder.conf file. One way to
see the backends that have been initialized by importing the example code is looking into the exam-
ple.cl.Backend.backends dictionary.

Some people deploy DevStack with the default backend and then manually modify the cinder.conf
file afterwards and restart the Cinder services to use their configuration. This is fine as well, as you can
easily recreate the Python code to include you backend using the cinder-cfg-to-cinderlib-code tool thats
installed with cinderlib.

Generating the example code manually can be done like this:

$ cinder-cfg-to-cinderlib-code /etc/cinder/cinder.conf example.py

Now that we know that cinderlib can access our backend we will proceed to run cinderlibs functional
tests to confirm that all the operations work as expected.

The functional tests use the contents of the existing /etc/cinder/cinder.conf file to get
the backend configuration. The functional test runner also supports cinder.conf files with mul-
tiple backends. Test methods have meaningful names ending in the backend name as per the
volume_backend_name values in the configuration file.

The functional tests are quite fast, as they usually take about 1 minute to run:

$ python -m unittest discover -v cinderlib.tests.functional

test_attach_detach_volume_on_lvmdriver-1 (cinderlib.tests.functional.test_
↪→basic.BackendFunctBasic) ... ok
test_attach_detach_volume_via_attachment_on_lvmdriver-1 (cinderlib.tests.
↪→functional.test_basic.BackendFunctBasic) ... ok

(continues on next page)

3.4. Validating a driver 53

https://docs.openstack.org/devstack

Cinder Library Documentation, Release 3.1.1.dev3

(continued from previous page)

test_attach_volume_on_lvmdriver-1 (cinderlib.tests.functional.test_basic.
↪→BackendFunctBasic) ... ok
test_clone_on_lvmdriver-1 (cinderlib.tests.functional.test_basic.
↪→BackendFunctBasic) ... ok
test_create_delete_snapshot_on_lvmdriver-1 (cinderlib.tests.functional.
↪→test_basic.BackendFunctBasic) ... ok
test_create_delete_volume_on_lvmdriver-1 (cinderlib.tests.functional.test_
↪→basic.BackendFunctBasic) ... ok
test_create_snapshot_on_lvmdriver-1 (cinderlib.tests.functional.test_basic.
↪→BackendFunctBasic) ... ok
test_create_volume_from_snapshot_on_lvmdriver-1 (cinderlib.tests.
↪→functional.test_basic.BackendFunctBasic) ... ok
test_create_volume_on_lvmdriver-1 (cinderlib.tests.functional.test_basic.
↪→BackendFunctBasic) ... ok
test_disk_io_on_lvmdriver-1 (cinderlib.tests.functional.test_basic.
↪→BackendFunctBasic) ... ok
test_extend_on_lvmdriver-1 (cinderlib.tests.functional.test_basic.
↪→BackendFunctBasic) ... ok
test_stats_on_lvmdriver-1 (cinderlib.tests.functional.test_basic.
↪→BackendFunctBasic) ... ok
test_stats_with_creation_on_lvmdriver-1 (cinderlib.tests.functional.test_
↪→basic.BackendFunctBasic) ... ok

--
Ran 13 tests in 54.179s

OK

There are a couple of interesting options we can use when the running functional tests using environ-
mental variables:

• CL_FTEST_LOGGING: If set it will enable the Cinder code to log to stdout during the testing.
Undefined by default, which means no output.

• CL_FTEST_PRECISION: Integer value describing how much precision we must use when com-
paring volume sizes. Due to cylinder sizes some storage arrays dont abide 100% to the requested
size of the volume. With this option we can define how many decimals will be correct when test-
ing sizes. A value of 2 means that the backend could create a 1.0015869140625GB volume when
we request a 1GB volume and the tests wouldnt fail. Default is zero, which means that it must be
perfect or it will fail.

• CL_FTEST_CFG`: Location of the configuration file. Defaults to /etc/cinder/cinder.
conf.

• CL_FTEST_POOL_NAME: If our backend has multi-pool support and we have configured mul-
tiple pools we can use this parameter to define which pool to use for the functional tests. If not
defined it will use the first reported pool.

If we encounter problems while running the functional tests, but the Cinder service is running just fine,
we can go to the #openstack-cinder IRC channel in Freenode, or send an email to the discuss-openstack
mailing list starting the subject with [cinderlib].

54 Chapter 3. Table of Contents

http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Cinder Library Documentation, Release 3.1.1.dev3

3.4.2 Cinder 3rd party CI

Once we have been able to successfully run the functional tests its time to make the CI jobs run them on
every patch submitted to Cinder to ensure the driver keeps being compatible.

There are multiples ways we can accomplish this:

1. Create a 3rd party CI job listening to cinderlib patches

2. Create an additional 3rd party CI job in Cinder, similar to the one we already have.

3. Reusing our existing 3rd party CI job making it also run the cinderlib functional tests.

Options #1 and #2 require more work, as we have to create new jobs, but they make it easier to know
that our driver is compatible with cinderlib. Option #3 is the opposite, it is easy to setup, but it doesnt
make it so obvious that our driver is supported by cinderlib.

Configuration

When reusing existing 3rd party CI jobs, the normal setup will generate a valid configuration file on
/etc/cinder/cinder.conf and cinderlib functional tests will use it by default, so we dont have
to do anything, but when running a custom CI job we will have to write the configuration ourselves.
Though we dont have to do this dynamically. We can write it once and use it in all the cinderlib jobs.

To get our backend configuration file for the functional tests we can:

• Use the cinder.conf file from one of your DevStack deployments.

• Manually create a minimal cinder.conf file.

• Create a custom YAML file.

We can create the minimal cinder.conf file using one generated by DevStack. Having a minimal
configuration has the advantage of being easy to read.

For an LVM backend could look like this:

[DEFAULT]
enabled_backends = lvm

[lvm]
volume_clear = none
target_helper = lioadm
volume_group = cinder-volumes
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name = lvm

Besides the INI style configuration files, we can also use YAML configuration files for the functional
tests.

The YAML file has 3 key-value pairs that are of interest to us. Only one of them is mandatory, the other
2 are optional.

• logs: Boolean value defining whether we want the Cinder code to log to stdout during the testing.
Defaults to false. Takes precedence over environmental variable CL_TESTING_LOGGING.

• size_precision: Integer value describing how much precision we must use when comparing vol-
ume sizes. Due to cylinder sizes some storage arrays dont abide 100% to the requested size of the
volume. With this option we can define how many decimals will be correct when testing sizes. A

3.4. Validating a driver 55

https://docs.openstack.org/devstack
https://docs.openstack.org/devstack

Cinder Library Documentation, Release 3.1.1.dev3

value of 2 means that the backend could create a 1.0015869140625GB volume when we request a
1GB volume and the tests wouldnt fail. Default is zero, which for us means that it must be perfect
or it will fail. Takes precedence over environmental variable CL_FTEST_PRECISION.

• backends: This is a list of dictionaries, each with the configuration parameters that are set in the
backend section of the cinder.conf file in Cinder. This is a mandatory field.

The same configuration we presented for the LVM backend as a minimal cinder.conf file would
look like this in the YAML format:

logs: false
venv_sudo: false
backends:

- volume_backend_name: lvm
volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group: cinder-volumes
target_helper: lioadm
volume_clear: none

To pass the location of the configuration file to the functional test runner we must use the
CL_FTEST_CFG environmental variable to point to the location of our file. If we are using a cinder.
conf file and we save it in etc/cinder then we dont need to pass it to the tests runner, since thats
the default location.

Use independent job

Creating new jobs is mostly identical to what you already did for the Cinder job with the difference
that here we dont need to do a full DevStack installation, as it would take too long. We only need the
cinderlib, Cinder, and OS-Brick projects from master and then run cinderlibs functional tests.

As an example heres the Ceph job in the cinderlib project that takes approximately 8 minutes to run at
the gate. In the pre-run phase it starts a Ceph demo container to run a Ceph toy cluster as the backend.
Then provides a custom configuration YAML file with the backend configuration:

- job:
name: cinderlib-ceph-functional
parent: openstack-tox-functional-with-sudo
required-projects:

- openstack/os-brick
- openstack/cinder

pre-run: playbooks/setup-ceph.yaml
nodeset: ubuntu-bionic
vars:

tox_environment:
CL_FTEST_CFG: "cinderlib/tests/functional/ceph.yaml"
CL_FTEST_ROOT_HELPER: sudo
These come from great-great-grandparent tox job
NOSE_WITH_HTML_OUTPUT: 1
NOSE_HTML_OUT_FILE: nose_results.html
NOSE_WITH_XUNIT: 1

For jobs in the cinderlib project you can use the openstack-tox-functional-with-sudo par-
ent, but for jobs in the Cinder project youll have to call this yourself by calling tox or using the same com-
mand we used during our manual testing: python -m unittest discover -v cinderlib.
tests.functional.

56 Chapter 3. Table of Contents

https://docs.openstack.org/infra/system-config/third_party.html
https://docs.openstack.org/devstack

Cinder Library Documentation, Release 3.1.1.dev3

Use existing job

The easiest way to run the cinderlib functional tests is to reuse an existing Cinder CI job, since we dont
need to setup anything. We just need to modify our job to run an additional command at the end.

Running the cinderlib functional tests after tempest will only add about 1 minute to the jobs current
runtime.

You will need to add openstack/cinderlib to the required-projects configuration of the
Zuul job. This will ensure not only that cinderlib is installed, but also that is using the right patch when
a patch has cross-repository dependencies.

For example, the LVM lio job called cinder-tempest-dsvm-lvm-lio-barbican has the fol-
lowing required projects:

required-projects:
- openstack-infra/devstack-gate
- openstack/barbican
- openstack/cinderlib
- openstack/python-barbicanclient
- openstack/tempest
- openstack/os-brick

To facilitate running the cinderlib functional tests in existing CI jobs the Cinder project includes 2
playbooks:

• playbooks/tempest-and-cinderlib-run.yaml

• playbooks/cinderlib-run.yaml

These 2 playbooks support the cinderlib_ignore_errors boolean variable to allow CI jobs to
run the functional tests and ignore the results so that cinderlib failures wont block patches. You can
think of it as running the cinderlib tests as non voting. We dont recommend setting it, as it would defeat
the purpose of running the jobs at the gate and the cinderlib tests are very consistent and reliable and
dont raise false failures.

Which one of these 2 playbook to use depends on how we are defining our CI job. For example
the LVM job uses the cinderlib-run.yaml job in its run.yaml file, and the Ceph job uses the
tempest-and-cinderlib-run.yaml as its run job command.

If you are running tempest tests using a custom script you can also add the running of the cinderlib tests
at the end.

3.4.3 Notes

Additional features

The validation process weve discussed tests the basic functionality, but some Cinder drivers have ad-
ditional functionality such as backend QoS, multi-pool support, and support for extra specs parame-
ters that modify advanced volume characteristics -such as compression, deduplication, and thin/thick
provisioning- on a per volume basis.

Cinderlib supports these features, but since they are driver specific, there is no automated testing
in cinderlibs functional tests; but we can test them manually ourselves using the extra_specs,
qos_specs and pool_name parameters in the create_volume and clone methods.

3.4. Validating a driver 57

http://git.openstack.org/cgit/openstack/cinder/tree/playbooks/legacy/cinder-tempest-dsvm-lvm-lio-barbican/run.yaml
http://git.openstack.org/cgit/openstack/cinder/tree/.zuul.yaml

Cinder Library Documentation, Release 3.1.1.dev3

We can see the list of available pools in multi-pool drivers on the pool_names property in the Backend
instance.

Configuration options

One of the difficulties in the Cinder project is determining which options are valid for a specific driver
on a specific release. This is usually handled by users checking the OpenStack or vendor documentation,
which makes it impossible to automate.

There was a recent addition to the Cinder driver interface that allowed drivers to report exactly which
configuration options were relevant for them via the get_driver_options method.

On the initial patch some basic values were added to the drivers, but we urge all driver maintainers to
have a careful look at the values currently being returned and make sure they are returning all relevant
options, because this will not only be useful for some Cinder installers, but also for projects using
cinderlib, as they will be able to automatically build GUIs to configure backends and to validate provided
parameters. Having incorrect or missing values there will result in undesired behavior in those systems.

3.4.4 Reporting results

Once you have completed the process described in this guide you will have a Cinder driver that is
supported not only in OpenStack, but also by cinderlib and its related projects, and it is time to make it
visible.

For this you just need to submit a patch to the cinderlib project modifying the doc/source/
validated.rst file with the information from your backend.

The information that must be added to the documentation is:

• Storage: The make and model of the hardware used.

• Versions: Firmware versions used for the manual testing.

• Connection type: iSCSI, FC, RBD, etc. Can add multiple types on the same line.

• Requirements: Required packages, Python libraries, configuration files, etc. for the driver to work.

• Automated testing: Accepted values are:

– No

– On cinderlib jobs.

– On cinder jobs.

– On cinderlib and Cinder jobs.

• Notes: Any additional information relevant for cinderlib usage.

• Configuration: The contents of the YAML file or the driver section in the cinder.conf, with
masked sensitive data.

58 Chapter 3. Table of Contents

Cinder Library Documentation, Release 3.1.1.dev3

3.5 Limitations

Cinderlib works around a number of issues that were preventing the usage of the drivers by other Python
applications, some of these are:

• Oslo config configuration loading.

• Cinder-volume dynamic configuration loading.

• Privileged helper service.

• DLM configuration.

• Disabling of cinder logging.

• Direct DB access within drivers.

• Oslo Versioned Objects DB access methods such as refresh and save.

• Circular references in Oslo Versioned Objects for serialization.

• Using multiple drivers in the same process.

Being in its early development stages, the library is in no way close to the robustness or feature richness
that the Cinder project provides. Some of the more noticeable limitations one should be aware of are:

• Most methods dont perform argument validation so its a classic GIGO library.

• The logic has been kept to a minimum and higher functioning logic is expected to be handled by
the caller: Quotas, tenant control, migration, etc.

• Limited test coverage.

• Only a subset of Cinder available operations are supported by the library.

Besides cinderlibs own limitations the library also inherits some from Cinders code and will be bound
by the same restrictions and behaviors of the drivers as if they were running under the standard Cinder
services. The most notorious ones are:

• Dependency on the eventlet library.

• Behavior inconsistency on some operations across drivers. For example you can find drivers where
cloning is a cheap operation performed by the storage array whereas other will actually create a
new volume, attach the source and new volume and perform a full copy of the data.

• External dependencies must be handled manually. So users will have to take care of any library,
package, or CLI tool that is required by the driver.

• Relies on command execution via sudo for attach/detach operations as well as some CLI tools.

3.6 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

The cinderlib library is maintained by the OpenStack Cinder project. To understand our development
process and how you can contribute to it, please look at the Cinder projects general contributors page:
http://docs.openstack.org/cinder/latest/contributor/contributing.html

3.5. Limitations 59

https://en.wikipedia.org/wiki/Garbage_in,_garbage_out
https://docs.openstack.org/contributors/
http://docs.openstack.org/cinder/latest/contributor/contributing.html

	Features
	Example
	Table of Contents
	Installation
	Stable release
	Drivers
	Library

	Latest code
	Drivers
	Library

	Dependencies

	Usage
	Initialization
	file_locks_path
	root_helper
	suppress_requests_ssl_warnings
	non_uuid_ids
	output_all_backend_info
	disable_logs
	project_id
	user_id
	persistence_config
	fail_on_missing_backend
	host
	Other keyword arguments

	Backends
	Initialization
	LVM
	XtremIO
	Kaminario
	Available Backends
	Installed Drivers
	Stats
	Available volumes
	Attributes
	Other methods

	Volumes
	Create
	Delete
	Extend
	Other methods

	Snapshots
	Create
	Delete
	Other methods

	Connections
	Local attach
	Remote connection
	Multipath
	Extend
	Multi attach
	Other methods

	Serialization
	To JSON
	From JSON
	To dict
	Backend configuration

	Resource tracking
	Metadata Persistence
	Memory plugin
	Database plugin
	Custom plugins
	Migrating storage

	cinderlib package
	Subpackages
	Submodules
	Module contents

	Validated drivers
	LVM
	Ceph
	XtremIO
	Kaminario
	SolidFire
	VMAX
	3PAR
	Synology
	QNAP

	Validating a driver
	With DevStack
	Cinder 3rd party CI
	Configuration
	Use independent job
	Use existing job

	Notes
	Additional features
	Configuration options

	Reporting results

	Limitations
	So You Want to Contribute…

