
Cinder Documentation
Release 20.3.2.dev3

Cinder Contributors

Nov 15, 2023

CONTENTS

1 What is Cinder? 3

2 For end users 5
2.1 Tools for using Cinder . 5
2.2 Using the Cinder API . 5

3 For operators 7
3.1 Installing Cinder . 7

3.1.1 Cinder Installation Guide . 7
Prerequisites . 7
Adding Cinder to your OpenStack Environment 8

3.2 Administrating Cinder . 39
3.2.1 Cinder Administration . 39

Security . 39
Accelerate image compression . 40
Increase Block Storage API service throughput 41
Manage volumes . 42
Troubleshoot your installation . 96
Availability-zone types . 104
Generalized filters . 105
Basic volume quality of service . 106
Volume multi-attach: Enable attaching a volume to multiple servers 108
Default Volume Types . 110
API Configuration . 111
Upgrades . 113

3.3 Reference . 117
3.3.1 Cinder Service Configuration . 117

Introduction to the Block Storage service . 117
Using service tokens . 118
Volume drivers . 120
Backup drivers . 419
Block Storage schedulers . 427
Log files used by Block Storage . 429
Policy Personas and Permissions . 430
Policy configuration . 451
Policy configuration HowTo . 477
Fibre Channel Zone Manager . 485
Volume encryption supported by the key manager 488
Additional options . 492

i

Block Storage service sample configuration files 504
3.3.2 All About Cinder Drivers . 507

Cinder Driver Support Matrix . 507
Available Drivers . 531
General Considerations . 663
Current Cinder Drivers . 666

3.3.3 Command-Line Interface Reference . 666
Cinder Management Commands . 666
Additional Tools and Information . 673

3.4 Additional resources . 694

4 For contributors 695
4.1 Contributing to Cinder . 695

4.1.1 Contributor Guide . 695
Getting Started . 695
Writing Release Notes . 701
Programming HowTos and Tutorials . 703
Managing the Development Cycle . 810
Documentation Contribution . 816
Background Concepts for Cinder . 820
Other Resources . 836

5 For reviewers 1183

6 Additional reference 1185
6.1 Glossary . 1185

ii

Cinder Documentation, Release 20.3.2.dev3

CONTENTS 1

Cinder Documentation, Release 20.3.2.dev3

2 CONTENTS

CHAPTER

ONE

WHAT IS CINDER?

Cinder is the OpenStack Block Storage service for providing volumes to Nova virtual machines, Ironic
bare metal hosts, containers and more. Some of the goals of Cinder are to be/have:

• Component based architecture: Quickly add new behaviors

• Highly available: Scale to very serious workloads

• Fault-Tolerant: Isolated processes avoid cascading failures

• Recoverable: Failures should be easy to diagnose, debug, and rectify

• Open Standards: Be a reference implementation for a community-driven api

3

Cinder Documentation, Release 20.3.2.dev3

4 Chapter 1. What is Cinder?

CHAPTER

TWO

FOR END USERS

As an end user of Cinder, youll use Cinder to create and manage volumes using the Horizon user interface,
command line tools such as the python-cinderclient, or by directly using the REST API.

2.1 Tools for using Cinder

• Horizon: The official web UI for the OpenStack Project.

• OpenStack Client: The official CLI for OpenStack Projects. You should use this as your CLI for
most things, it includes not just nova commands but also commands for most of the projects in
OpenStack.

• Cinder Client: The openstack CLI is recommended, but there are some advanced features and
administrative commands that are not yet available there. For CLI access to these commands, the
cinder CLI can be used instead.

2.2 Using the Cinder API

All features of Cinder are exposed via a REST API that can be used to build more complicated logic or
automation with Cinder. This can be consumed directly or via various SDKs. The following resources
can help you get started consuming the API directly.

• Cinder API

• Cinder microversion history

5

https://docs.openstack.org/python-cinderclient/latest/
https://docs.openstack.org/api-ref/block-storage/
https://docs.openstack.org/horizon/latest/user/manage-volumes.html
https://docs.openstack.org/python-openstackclient/latest/
https://docs.openstack.org/python-cinderclient/latest/user/shell.html
https://docs.openstack.org/api-ref/block-storage/

Cinder Documentation, Release 20.3.2.dev3

6 Chapter 2. For end users

CHAPTER

THREE

FOR OPERATORS

This section has details for deploying and maintaining Cinder services.

3.1 Installing Cinder

Cinder can be configured standalone using the configuration setting auth_strategy = noauth, but
in most cases you will want to at least have the Keystone Identity service and other OpenStack services
installed.

3.1.1 Cinder Installation Guide

The Block Storage service (cinder) provides block storage devices to guest instances. The method in
which the storage is provisioned and consumed is determined by the Block Storage driver, or drivers in
the case of a multi-backend configuration. There are a variety of drivers that are available: NAS/SAN,
NFS, iSCSI, Ceph, and more.

The Block Storage API and scheduler services typically run on the controller nodes. Depending upon
the drivers used, the volume service can run on controller nodes, compute nodes, or standalone storage
nodes.

For more information, see the Configuration Reference.

Prerequisites

This documentation specifically covers the installation of the Cinder Block Storage service. Before fol-
lowing this guide you will need to prepare your OpenStack environment using the instructions in the
OpenStack Installation Guide.

Once able to Launch an instance in your OpenStack environment follow the instructions below to add
Cinder to the base environment.

7

https://docs.openstack.org/keystone/latest/install/
https://docs.openstack.org/latest/install/
https://docs.openstack.org/install-guide/

Cinder Documentation, Release 20.3.2.dev3

Adding Cinder to your OpenStack Environment

The following links describe how to install the Cinder Block Storage Service:

Warning: For security reasons Service Tokens must to be configured in OpenStack for Cinder to
operate securely. Pay close attention to the specific section describing it:. See https://bugs.launchpad.
net/nova/+bug/2004555 for details.

Cinder Block Storage service overview

The OpenStack Block Storage service (Cinder) adds persistent storage to a virtual machine. Block Storage
provides an infrastructure for managing volumes, and interacts with OpenStack Compute to provide
volumes for instances. The service also enables management of volume snapshots, and volume types.

The Block Storage service consists of the following components:

cinder-api Accepts API requests, and routes them to the cinder-volume for action.

cinder-volume Interacts directly with the Block Storage service, and processes such as the
cinder-scheduler. It also interacts with these processes through a message queue. The
cinder-volume service responds to read and write requests sent to the Block Storage service
to maintain state. It can interact with a variety of storage providers through a driver architecture.

cinder-scheduler daemon Selects the optimal storage provider node on which to create the volume. A
similar component to the nova-scheduler.

cinder-backup daemon The cinder-backup service provides backing up volumes of any type to a
backup storage provider. Like the cinder-volume service, it can interact with a variety of storage
providers through a driver architecture.

Messaging queue Routes information between the Block Storage processes.

The default volume type

Since the Train release, it is required that each volume must have a volume type, and thus the re-
quired configuration option default_volume_type must have a value. A system-defined volume
type named __DEFAULT__ is created in the database during installation and is the default value of the
default_volume_type configuration option.

You (or your deployment tool) may wish to have a different volume type that is more suitable for your
particular installation as the default type. This can be accomplished by creating the volume type you
want using the Block Storage API, and then setting that volume type as the value for the configuration
option. (The latter operation, of course, cannot be done via the Block Storage API.)

The system defined __DEFAULT__ volume type is a regular volume type that may be updated or deleted.
There is nothing special about it. It only exists because there must always be at least one volume type
in a cinder deployment, and before the Block Storage API comes up, there is no way for there to be a
volume type unless the system creates it.

Given that since the Victoria release it is possible to set a default volume type for any project, having a
volume type named __DEFAULT__ in your deployment may be confusing to your users, leading them to
think this is the type that will be assigned while creating volumes (if the user doesnt specify one) or them

8 Chapter 3. For operators

https://bugs.launchpad.net/nova/+bug/2004555
https://bugs.launchpad.net/nova/+bug/2004555

Cinder Documentation, Release 20.3.2.dev3

specifically requesting __DEFAULT__ when creating a volume instead of the actual configured default
type for the system or their project.

If you dont wish to use the __DEFAULT__ type, you may delete it. The Block Storage API will prevent
deletion under these circumstances:

• If __DEFAULT__ is the value of the default_volume_type configuration option then it cannot
be deleted. The solution is to make a different volume type the value of that configuration option.

• If there are volumes in the deployment of the __DEFAULT__ type, then it cannot be deleted. The
solution is to retype those volumes to some other appropriate volume type.

Cinder Installation Guide for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure storage nodes for the Block Storage service. For
simplicity, this configuration references one storage node with an empty local block storage device. The
instructions use /dev/sdb, but you can substitute a different value for your particular node.

The service provisions logical volumes on this device using the LVM driver and provides them to in-
stances via iSCSI transport. You can follow these instructions with minor modifications to horizontally
scale your environment with additional storage nodes.

Install and configure controller node

This section describes how to install and configure the Block Storage service, code-named cinder, on
the controller node. This service requires at least one additional storage node that provides volumes to
instances.

Prerequisites

Before you install and configure the Block Storage service, you must create a database, service creden-
tials, and API endpoints.

1. To create the database, complete these steps:

1. Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

2. Create the cinder database:

MariaDB [(none)]> CREATE DATABASE cinder;

3. Grant proper access to the cinder database:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@
↪→'localhost' \
IDENTIFIED BY 'CINDER_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' \
IDENTIFIED BY 'CINDER_DBPASS';

Replace CINDER_DBPASS with a suitable password.

3.1. Installing Cinder 9

Cinder Documentation, Release 20.3.2.dev3

4. Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

1. Create a cinder user:

$ openstack user create --domain default --password-prompt cinder

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	9d7e33de3e1a498390353819bc7d245d
name	cinder
options	{}
password_expires_at	None
+---------------------+----------------------------------+

2. Add the admin role to the cinder user:

$ openstack role add --project service --user cinder admin

Note: This command provides no output.

3. Create the cinderv3 service entity:

$ openstack service create --name cinderv3 \
--description "OpenStack Block Storage" volumev3

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Block Storage
enabled	True
id	ab3bbbef780845a1a283490d281e7fda
name	cinderv3
type	volumev3
+-------------+----------------------------------+

Note: Beginning with the Xena release, the Block Storage services require only one service
entity. For prior releases, please consult the documentation for that specific release.

4. Create the Block Storage service API endpoints:

10 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

$ openstack endpoint create --region RegionOne \
volumev3 public http://controller:8776/v3/%\(project_id\)s

+--------------+--+
| Field | Value |
+--------------+--+
enabled	True
id	03fa2c90153546c295bf30ca86b1344b
interface	public
region	RegionOne
region_id	RegionOne
service_id	ab3bbbef780845a1a283490d281e7fda
service_name	cinderv3
service_type	volumev3
url	http://controller:8776/v3/%(project_id)s
+--------------+--+

$ openstack endpoint create --region RegionOne \
volumev3 internal http://controller:8776/v3/%\(project_id\)s

+--------------+--+
| Field | Value |
+--------------+--+
enabled	True
id	94f684395d1b41068c70e4ecb11364b2
interface	internal
region	RegionOne
region_id	RegionOne
service_id	ab3bbbef780845a1a283490d281e7fda
service_name	cinderv3
service_type	volumev3
url	http://controller:8776/v3/%(project_id)s
+--------------+--+

$ openstack endpoint create --region RegionOne \
volumev3 admin http://controller:8776/v3/%\(project_id\)s

+--------------+--+
| Field | Value |
+--------------+--+
enabled	True
id	4511c28a0f9840c78bacb25f10f62c98
interface	admin
region	RegionOne
region_id	RegionOne
service_id	ab3bbbef780845a1a283490d281e7fda
service_name	cinderv3
service_type	volumev3
url	http://controller:8776/v3/%(project_id)s
+--------------+--+

3.1. Installing Cinder 11

Cinder Documentation, Release 20.3.2.dev3

Install and configure components

1. Install the packages:

zypper install openstack-cinder-api openstack-cinder-scheduler

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

1. In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://cinder:CINDER_DBPASS@controller/cinder

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

2. In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

3. In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

[DEFAULT]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = cinder
password = CINDER_PASS

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

4. In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

12 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

[DEFAULT]
...
my_ip = 10.0.0.11

3. In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/cinder/tmp

Configure Compute to use Block Storage

1. Edit the /etc/nova/nova.conf file and add the following to it:

[cinder]
os_region_name = RegionOne

Finalize installation

1. Restart the Compute API service:

systemctl restart openstack-nova-api.service

2. Start the Block Storage services and configure them to start when the system boots:

systemctl enable openstack-cinder-api.service openstack-cinder-
↪→scheduler.service
systemctl start openstack-cinder-api.service openstack-cinder-scheduler.
↪→service

Install and configure a storage node

Prerequisites

Before you install and configure the Block Storage service on the storage node, you must prepare the
storage device.

Note: Perform these steps on the storage node.

1. Install the supporting utility packages.

2. Install the LVM packages:

zypper install lvm2

3. (Optional) If you intend to use non-raw image types such as QCOW2 and VMDK, install the
QEMU package:

3.1. Installing Cinder 13

Cinder Documentation, Release 20.3.2.dev3

zypper install qemu

Note: Some distributions include LVM by default.

4. Create the LVM physical volume /dev/sdb:

pvcreate /dev/sdb

Physical volume "/dev/sdb" successfully created

5. Create the LVM volume group cinder-volumes:

vgcreate cinder-volumes /dev/sdb

Volume group "cinder-volumes" successfully created

The Block Storage service creates logical volumes in this volume group.

6. Only instances can access Block Storage volumes. However, the underlying operating system man-
ages the devices associated with the volumes. By default, the LVM volume scanning tool scans
the /dev directory for block storage devices that contain volumes. If projects use LVM on their
volumes, the scanning tool detects these volumes and attempts to cache them which can cause a
variety of problems with both the underlying operating system and project volumes. You must
reconfigure LVM to scan only the devices that contain the cinder-volumes volume group. Edit
the /etc/lvm/lvm.conf file and complete the following actions:

• In the devices section, add a filter that accepts the /dev/sdb device and rejects all other
devices:

devices {
...
filter = ["a/sdb/", "r/.*/"]

Each item in the filter array begins with a for accept or r for reject and includes a regular
expression for the device name. The array must end with r/.*/ to reject any remaining
devices. You can use the vgs -vvvv command to test filters.

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

filter = ["a/sda/", "a/sdb/", "r/.*/"]

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/lvm/lvm.conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

filter = ["a/sda/", "r/.*/"]

14 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Install and configure components

1. Install the packages:

zypper install openstack-cinder-volume tgt

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://cinder:CINDER_DBPASS@controller/cinder

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

[DEFAULT]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = cinder
password = CINDER_PASS

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

• In the [DEFAULT] section, configure the my_ip option:

3.1. Installing Cinder 15

Cinder Documentation, Release 20.3.2.dev3

[DEFAULT]
...
my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

Replace MANAGEMENT_INTERFACE_IP_ADDRESSwith the IP address of the management net-
work interface on your storage node, typically 10.0.0.41 for the first node in the example
architecture.

• In the [lvm] section, configure the LVM back end with the LVM driver, cinder-volumes
volume group, iSCSI protocol, and appropriate iSCSI service:

[lvm]
...
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group = cinder-volumes
target_protocol = iscsi
target_helper = tgtadm

• In the [DEFAULT] section, enable the LVM back end:

[DEFAULT]
...
enabled_backends = lvm

Note: Back-end names are arbitrary. As an example, this guide uses the name of the driver
as the name of the back end.

• In the [DEFAULT] section, configure the location of the Image service API:

[DEFAULT]
...
glance_api_servers = http://controller:9292

• In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/cinder/tmp

3. Create the /etc/tgt/conf.d/cinder.conf file with the following data:

include /var/lib/cinder/volumes/*

16 Chapter 3. For operators

https://docs.openstack.org/install-guide/overview.html#example-architecture
https://docs.openstack.org/install-guide/overview.html#example-architecture

Cinder Documentation, Release 20.3.2.dev3

Finalize installation

1. Start the Block Storage volume service including its dependencies and configure them to start when
the system boots:

systemctl enable openstack-cinder-volume.service tgtd.service
systemctl start openstack-cinder-volume.service tgtd.service

Install and configure the backup service

Optionally, install and configure the backup service. For simplicity, this configuration uses the Block
Storage node and the Object Storage (swift) driver, thus depending on the Object Storage service.

Note: You must install and configure a storage node prior to installing and configuring the backup
service.

Install and configure components

Note: Perform these steps on the Block Storage node.

1. Install the packages:

zypper install openstack-cinder-backup

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

1. In the [DEFAULT] section, configure backup options:

[DEFAULT]
...
backup_driver = cinder.backup.drivers.swift.SwiftBackupDriver
backup_swift_url = SWIFT_URL

Replace SWIFT_URL with the URL of the Object Storage service. The URL can be found by
showing the object-store API endpoints:

$ openstack catalog show object-store

3.1. Installing Cinder 17

https://docs.openstack.org/swift/latest/install/

Cinder Documentation, Release 20.3.2.dev3

Finalize installation

Start the Block Storage backup service and configure it to start when the system boots:

systemctl enable openstack-cinder-backup.service
systemctl start openstack-cinder-backup.service

Verify Cinder operation

Verify operation of the Block Storage service.

Note: Perform these commands on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

2. List service components to verify successful launch of each process:

$ openstack volume service list

+------------------+------------+------+---------+-------+----------------
↪→------------+
| Binary | Host | Zone | Status | State | Updated_at ␣
↪→ |
+------------------+------------+------+---------+-------+----------------
↪→------------+
| cinder-scheduler | controller | nova | enabled | up | 2016-09-
↪→30T02:27:41.000000 |
| cinder-volume | block@lvm | nova | enabled | up | 2016-09-
↪→30T02:27:46.000000 |
| cinder-backup | controller | nova | enabled | up | 2016-09-
↪→30T02:27:41.000000 |
+------------------+------------+------+---------+-------+----------------
↪→------------+

Cinder Installation Guide for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure storage nodes for the Block Storage service. For
simplicity, this configuration references one storage node with an empty local block storage device. The
instructions use /dev/sdb, but you can substitute a different value for your particular node.

The service provisions logical volumes on this device using the LVM driver and provides them to in-
stances via iSCSI transport. You can follow these instructions with minor modifications to horizontally
scale your environment with additional storage nodes.

18 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Install and configure controller node

This section describes how to install and configure the Block Storage service, code-named cinder, on
the controller node. This service requires at least one additional storage node that provides volumes to
instances.

Prerequisites

Before you install and configure the Block Storage service, you must create a database, service creden-
tials, and API endpoints.

1. To create the database, complete these steps:

1. Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

2. Create the cinder database:

MariaDB [(none)]> CREATE DATABASE cinder;

3. Grant proper access to the cinder database:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@
↪→'localhost' \
IDENTIFIED BY 'CINDER_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' \
IDENTIFIED BY 'CINDER_DBPASS';

Replace CINDER_DBPASS with a suitable password.

4. Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

1. Create a cinder user:

$ openstack user create --domain default --password-prompt cinder

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	9d7e33de3e1a498390353819bc7d245d
name	cinder
options	{}

(continues on next page)

3.1. Installing Cinder 19

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| password_expires_at | None |
+---------------------+----------------------------------+

2. Add the admin role to the cinder user:

$ openstack role add --project service --user cinder admin

Note: This command provides no output.

3. Create the cinderv3 service entity:

$ openstack service create --name cinderv3 \
--description "OpenStack Block Storage" volumev3

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Block Storage
enabled	True
id	ab3bbbef780845a1a283490d281e7fda
name	cinderv3
type	volumev3
+-------------+----------------------------------+

Note: Beginning with the Xena release, the Block Storage services require only one service
entity. For prior releases, please consult the documentation for that specific release.

4. Create the Block Storage service API endpoints:

$ openstack endpoint create --region RegionOne \
volumev3 public http://controller:8776/v3/%\(project_id\)s

+--------------+--+
| Field | Value |
+--------------+--+
enabled	True
id	03fa2c90153546c295bf30ca86b1344b
interface	public
region	RegionOne
region_id	RegionOne
service_id	ab3bbbef780845a1a283490d281e7fda
service_name	cinderv3
service_type	volumev3
url	http://controller:8776/v3/%(project_id)s
+--------------+--+

$ openstack endpoint create --region RegionOne \
(continues on next page)

20 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

volumev3 internal http://controller:8776/v3/%\(project_id\)s

+--------------+--+
| Field | Value |
+--------------+--+
enabled	True
id	94f684395d1b41068c70e4ecb11364b2
interface	internal
region	RegionOne
region_id	RegionOne
service_id	ab3bbbef780845a1a283490d281e7fda
service_name	cinderv3
service_type	volumev3
url	http://controller:8776/v3/%(project_id)s
+--------------+--+

$ openstack endpoint create --region RegionOne \
volumev3 admin http://controller:8776/v3/%\(project_id\)s

+--------------+--+
| Field | Value |
+--------------+--+
enabled	True
id	4511c28a0f9840c78bacb25f10f62c98
interface	admin
region	RegionOne
region_id	RegionOne
service_id	ab3bbbef780845a1a283490d281e7fda
service_name	cinderv3
service_type	volumev3
url	http://controller:8776/v3/%(project_id)s
+--------------+--+

Install and configure components

1. Install the packages:

yum install openstack-cinder

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

1. In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://cinder:CINDER_DBPASS@controller/cinder

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

2. In the [DEFAULT] section, configure RabbitMQ message queue access:

3.1. Installing Cinder 21

Cinder Documentation, Release 20.3.2.dev3

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

3. In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

[DEFAULT]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = cinder
password = CINDER_PASS

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

4. In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

[DEFAULT]
...
my_ip = 10.0.0.11

3. In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/cinder/tmp

4. Populate the Block Storage database:

su -s /bin/sh -c "cinder-manage db sync" cinder

Note: Ignore any deprecation messages in this output.

22 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Configure Compute to use Block Storage

1. Edit the /etc/nova/nova.conf file and add the following to it:

[cinder]
os_region_name = RegionOne

Finalize installation

1. Restart the Compute API service:

systemctl restart openstack-nova-api.service

2. Start the Block Storage services and configure them to start when the system boots:

systemctl enable openstack-cinder-api.service openstack-cinder-
↪→scheduler.service
systemctl start openstack-cinder-api.service openstack-cinder-scheduler.
↪→service

Install and configure a storage node

Prerequisites

Before you install and configure the Block Storage service on the storage node, you must prepare the
storage device.

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:

• Install the LVM packages:

yum install lvm2 device-mapper-persistent-data

• Start the LVM metadata service and configure it to start when the system boots:

systemctl enable lvm2-lvmetad.service
systemctl start lvm2-lvmetad.service

Note: Some distributions include LVM by default.

2. Create the LVM physical volume /dev/sdb:

pvcreate /dev/sdb

Physical volume "/dev/sdb" successfully created

3.1. Installing Cinder 23

Cinder Documentation, Release 20.3.2.dev3

3. Create the LVM volume group cinder-volumes:

vgcreate cinder-volumes /dev/sdb

Volume group "cinder-volumes" successfully created

The Block Storage service creates logical volumes in this volume group.

4. Only instances can access Block Storage volumes. However, the underlying operating system man-
ages the devices associated with the volumes. By default, the LVM volume scanning tool scans
the /dev directory for block storage devices that contain volumes. If projects use LVM on their
volumes, the scanning tool detects these volumes and attempts to cache them which can cause a
variety of problems with both the underlying operating system and project volumes. You must
reconfigure LVM to scan only the devices that contain the cinder-volumes volume group. Edit
the /etc/lvm/lvm.conf file and complete the following actions:

• In the devices section, add a filter that accepts the /dev/sdb device and rejects all other
devices:

devices {
...
filter = ["a/sdb/", "r/.*/"]

Each item in the filter array begins with a for accept or r for reject and includes a regular
expression for the device name. The array must end with r/.*/ to reject any remaining
devices. You can use the vgs -vvvv command to test filters.

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

filter = ["a/sda/", "a/sdb/", "r/.*/"]

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/lvm/lvm.conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

filter = ["a/sda/", "r/.*/"]

Install and configure components

1. Install the packages:

yum install openstack-cinder targetcli

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://cinder:CINDER_DBPASS@controller/cinder

24 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

[DEFAULT]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = cinder
password = CINDER_PASS

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

• In the [DEFAULT] section, configure the my_ip option:

[DEFAULT]
...
my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

Replace MANAGEMENT_INTERFACE_IP_ADDRESSwith the IP address of the management net-
work interface on your storage node, typically 10.0.0.41 for the first node in the example
architecture.

• In the [lvm] section, configure the LVM back end with the LVM driver, cinder-volumes
volume group, iSCSI protocol, and appropriate iSCSI service. If the [lvm] section does not
exist, create it:

[lvm]
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group = cinder-volumes

(continues on next page)

3.1. Installing Cinder 25

https://docs.openstack.org/install-guide/overview.html#example-architecture
https://docs.openstack.org/install-guide/overview.html#example-architecture

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

target_protocol = iscsi
target_helper = lioadm

• In the [DEFAULT] section, enable the LVM back end:

[DEFAULT]
...
enabled_backends = lvm

Note: Back-end names are arbitrary. As an example, this guide uses the name of the driver
as the name of the back end.

• In the [DEFAULT] section, configure the location of the Image service API:

[DEFAULT]
...
glance_api_servers = http://controller:9292

• In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/cinder/tmp

Finalize installation

• Start the Block Storage volume service including its dependencies and configure them to start when
the system boots:

systemctl enable openstack-cinder-volume.service target.service
systemctl start openstack-cinder-volume.service target.service

Install and configure the backup service

Optionally, install and configure the backup service. For simplicity, this configuration uses the Block
Storage node and the Object Storage (swift) driver, thus depending on the Object Storage service.

Note: You must install and configure a storage node prior to installing and configuring the backup
service.

26 Chapter 3. For operators

https://docs.openstack.org/swift/latest/install/

Cinder Documentation, Release 20.3.2.dev3

Install and configure components

Note: Perform these steps on the Block Storage node.

1. Install the packages:

yum install openstack-cinder

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

1. In the [DEFAULT] section, configure backup options:

[DEFAULT]
...
backup_driver = cinder.backup.drivers.swift.SwiftBackupDriver
backup_swift_url = SWIFT_URL

Replace SWIFT_URL with the URL of the Object Storage service. The URL can be found by
showing the object-store API endpoints:

$ openstack catalog show object-store

Finalize installation

Start the Block Storage backup service and configure it to start when the system boots:

systemctl enable openstack-cinder-backup.service
systemctl start openstack-cinder-backup.service

Cinder Installation Guide for Ubuntu

This section describes how to install and configure storage nodes for the Block Storage service. For
simplicity, this configuration references one storage node with an empty local block storage device. The
instructions use /dev/sdb, but you can substitute a different value for your particular node.

The service provisions logical volumes on this device using the LVM driver and provides them to in-
stances via iSCSI transport. You can follow these instructions with minor modifications to horizontally
scale your environment with additional storage nodes.

3.1. Installing Cinder 27

Cinder Documentation, Release 20.3.2.dev3

Install and configure controller node

This section describes how to install and configure the Block Storage service, code-named cinder, on
the controller node. This service requires at least one additional storage node that provides volumes to
instances.

Prerequisites

Before you install and configure the Block Storage service, you must create a database, service creden-
tials, and API endpoints.

1. To create the database, complete these steps:

1. Use the database access client to connect to the database server as the root user:

mysql

2. Create the cinder database:

MariaDB [(none)]> CREATE DATABASE cinder;

3. Grant proper access to the cinder database:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@
↪→'localhost' \
IDENTIFIED BY 'CINDER_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' \
IDENTIFIED BY 'CINDER_DBPASS';

Replace CINDER_DBPASS with a suitable password.

4. Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

1. Create a cinder user:

$ openstack user create --domain default --password-prompt cinder

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	9d7e33de3e1a498390353819bc7d245d
name	cinder
options	{}

(continues on next page)

28 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| password_expires_at | None |
+---------------------+----------------------------------+

2. Add the admin role to the cinder user:

$ openstack role add --project service --user cinder admin

Note: This command provides no output.

3. Create the cinderv3 service entity:

$ openstack service create --name cinderv3 \
--description "OpenStack Block Storage" volumev3

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Block Storage
enabled	True
id	ab3bbbef780845a1a283490d281e7fda
name	cinderv3
type	volumev3
+-------------+----------------------------------+

Note: Beginning with the Xena release, the Block Storage services require only one service
entity. For prior releases, please consult the documentation for that specific release.

4. Create the Block Storage service API endpoints:

$ openstack endpoint create --region RegionOne \
volumev3 public http://controller:8776/v3/%\(project_id\)s

+--------------+--+
| Field | Value |
+--------------+--+
enabled	True
id	03fa2c90153546c295bf30ca86b1344b
interface	public
region	RegionOne
region_id	RegionOne
service_id	ab3bbbef780845a1a283490d281e7fda
service_name	cinderv3
service_type	volumev3
url	http://controller:8776/v3/%(project_id)s
+--------------+--+

$ openstack endpoint create --region RegionOne \
(continues on next page)

3.1. Installing Cinder 29

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

volumev3 internal http://controller:8776/v3/%\(project_id\)s

+--------------+--+
| Field | Value |
+--------------+--+
enabled	True
id	94f684395d1b41068c70e4ecb11364b2
interface	internal
region	RegionOne
region_id	RegionOne
service_id	ab3bbbef780845a1a283490d281e7fda
service_name	cinderv3
service_type	volumev3
url	http://controller:8776/v3/%(project_id)s
+--------------+--+

$ openstack endpoint create --region RegionOne \
volumev3 admin http://controller:8776/v3/%\(project_id\)s

+--------------+--+
| Field | Value |
+--------------+--+
enabled	True
id	4511c28a0f9840c78bacb25f10f62c98
interface	admin
region	RegionOne
region_id	RegionOne
service_id	ab3bbbef780845a1a283490d281e7fda
service_name	cinderv3
service_type	volumev3
url	http://controller:8776/v3/%(project_id)s
+--------------+--+

Install and configure components

1. Install the packages:

apt install cinder-api cinder-scheduler

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

1. In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://cinder:CINDER_DBPASS@controller/cinder

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

2. In the [DEFAULT] section, configure RabbitMQ message queue access:

30 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

3. In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

[DEFAULT]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = cinder
password = CINDER_PASS

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

4. In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

[DEFAULT]
...
my_ip = 10.0.0.11

3. In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/cinder/tmp

4. Populate the Block Storage database:

su -s /bin/sh -c "cinder-manage db sync" cinder

Note: Ignore any deprecation messages in this output.

3.1. Installing Cinder 31

Cinder Documentation, Release 20.3.2.dev3

Configure Compute to use Block Storage

1. Edit the /etc/nova/nova.conf file and add the following to it:

[cinder]
os_region_name = RegionOne

Finalize installation

1. Restart the Compute API service:

service nova-api restart

2. Restart the Block Storage services:

service cinder-scheduler restart
service apache2 restart

Install and configure a storage node

Prerequisites

Before you install and configure the Block Storage service on the storage node, you must prepare the
storage device.

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:

apt install lvm2 thin-provisioning-tools

Note: Some distributions include LVM by default.

2. Create the LVM physical volume /dev/sdb:

pvcreate /dev/sdb

Physical volume "/dev/sdb" successfully created

3. Create the LVM volume group cinder-volumes:

vgcreate cinder-volumes /dev/sdb

Volume group "cinder-volumes" successfully created

The Block Storage service creates logical volumes in this volume group.

32 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

4. Only instances can access Block Storage volumes. However, the underlying operating system man-
ages the devices associated with the volumes. By default, the LVM volume scanning tool scans
the /dev directory for block storage devices that contain volumes. If projects use LVM on their
volumes, the scanning tool detects these volumes and attempts to cache them which can cause a
variety of problems with both the underlying operating system and project volumes. You must
reconfigure LVM to scan only the devices that contain the cinder-volumes volume group. Edit
the /etc/lvm/lvm.conf file and complete the following actions:

• In the devices section, add a filter that accepts the /dev/sdb device and rejects all other
devices:

devices {
...
filter = ["a/sdb/", "r/.*/"]

Each item in the filter array begins with a for accept or r for reject and includes a regular
expression for the device name. The array must end with r/.*/ to reject any remaining
devices. You can use the vgs -vvvv command to test filters.

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

filter = ["a/sda/", "a/sdb/", "r/.*/"]

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/lvm/lvm.conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

filter = ["a/sda/", "r/.*/"]

Install and configure components

1. Install the packages:

apt install cinder-volume tgt

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://cinder:CINDER_DBPASS@controller/cinder

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

3.1. Installing Cinder 33

Cinder Documentation, Release 20.3.2.dev3

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

[DEFAULT]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = cinder
password = CINDER_PASS

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

• In the [DEFAULT] section, configure the my_ip option:

[DEFAULT]
...
my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

Replace MANAGEMENT_INTERFACE_IP_ADDRESSwith the IP address of the management net-
work interface on your storage node, typically 10.0.0.41 for the first node in the example
architecture.

• In the [lvm] section, configure the LVM back end with the LVM driver, cinder-volumes
volume group, iSCSI protocol, and appropriate iSCSI service:

[lvm]
...
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group = cinder-volumes
target_protocol = iscsi
target_helper = tgtadm

• In the [DEFAULT] section, enable the LVM back end:

[DEFAULT]
...
enabled_backends = lvm

34 Chapter 3. For operators

https://docs.openstack.org/install-guide/overview.html#example-architecture
https://docs.openstack.org/install-guide/overview.html#example-architecture

Cinder Documentation, Release 20.3.2.dev3

Note: Back-end names are arbitrary. As an example, this guide uses the name of the driver
as the name of the back end.

• In the [DEFAULT] section, configure the location of the Image service API:

[DEFAULT]
...
glance_api_servers = http://controller:9292

• In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/cinder/tmp

Finalize installation

1. Restart the Block Storage volume service including its dependencies:

service tgt restart
service cinder-volume restart

Install and configure the backup service

Optionally, install and configure the backup service. For simplicity, this configuration uses the Block
Storage node and the Object Storage (swift) driver, thus depending on the Object Storage service.

Note: You must install and configure a storage node prior to installing and configuring the backup
service.

Install and configure components

Note: Perform these steps on the Block Storage node.

1. Install the packages:

apt install cinder-backup

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

• In the [DEFAULT] section, configure backup options:

3.1. Installing Cinder 35

https://docs.openstack.org/swift/latest/install/

Cinder Documentation, Release 20.3.2.dev3

[DEFAULT]
...
backup_driver = cinder.backup.drivers.swift.SwiftBackupDriver
backup_swift_url = SWIFT_URL

Replace SWIFT_URL with the URL of the Object Storage service. The URL can be found by
showing the object-store API endpoints:

$ openstack catalog show object-store

Finalize installation

Restart the Block Storage backup service:

service cinder-backup restart

Cinder Installation Guide for Windows

This section describes how to install and configure storage nodes for the Block Storage service.

For the moment, Cinder Volume is the only Cinder service supported on Windows.

Install and configure a storage node

Prerequisites

The following Windows versions are officially supported by Cinder:

• Windows Server 2012

• Windows Server 2012 R2

• Windows Server 2016

The OpenStack Cinder Volume MSI installer is the recommended deployment tool for Cinder on Win-
dows. You can find it at https://cloudbase.it/openstack-windows-storage/#download.

It installs an independent Python environment, in order to avoid conflicts with existing applications. It
can dynamically generate a cinder.conf file based on the parameters you provide.

The OpenStack Cinder Volume MSI installer can be deployed in a fully automated way using Puppet,
Chef, SaltStack, Ansible, Juju, DSC, Windows Group Policies or any other automated configuration
framework.

36 Chapter 3. For operators

https://cloudbase.it/openstack-windows-storage/#download

Cinder Documentation, Release 20.3.2.dev3

Configure NTP

Network time services must be configured to ensure proper operation of the OpenStack nodes. To set
network time on your Windows host you must run the following commands:

net stop w32time
w32tm /config /manualpeerlist:pool.ntp.org,0x8 /syncfromflags:MANUAL
net start w32time

Keep in mind that the node will have to be time synchronized with the other nodes of your OpenStack
environment, so it is important to use the same NTP server.

Note: In case of an Active Directory environment, you may do this only for the AD Domain Controller.

Install and configure components

The MSI may be run in the following modes:

Graphical mode

The installer will walk you through the commonly used cinder options, automatically generating a config
file based on your input.

You may run the following in order to run the installer in graphical mode, also specifying a log file.
Please use the installer full path.

msiexec /i CinderVolumeSetup.msi /l*v msi_log.txt

Unattended mode

The installer will deploy Cinder, taking care of required Windows services and features. A minimal
sample config file will be generated and need to be updated accordingly.

Run the following in order to install Cinder in unattended mode, enabling the iSCSI and SMB volume
drivers.

msiexec /i CinderVolumeSetup.msi /qn /l*v msi_log.txt `
ADDLOCAL="iscsiDriver,smbDriver"

By default, Cinder will be installed at %ProgramFiles%\Cloudbase Solutions\OpenStack. You
may choose a different install directory by using the INSTALLDIR argument, as following:

msiexec /i CinderVolumeSetup.msi /qn /l*v msi_log.txt `
ADDLOCAL="iscsiDriver,smbDriver" `
INSTALLDIR="C:\cinder"

The installer will generate a Windows service, called cinder-volume.

3.1. Installing Cinder 37

Cinder Documentation, Release 20.3.2.dev3

Note: Previous MSI releases may use a separate service per volume backend (e.g. cinder-volume-smb).
You may double check the cinder services along with their executable paths by running the following:

get-service cinder-volume*
sc.exe qc cinder-volume-smb

Note that sc is also an alias for Set-Content. To use the service control utility, you have to explicitly
call sc.exe.

Configuring Cinder

If youve run the installer in graphical mode, you may skip this part as the MSI already took care of
generating the configuration files.

The Cinder Volume Windows service configured by the MSI expects the cinder config file to reside at:

%INSTALLDIR%\etc\cinder.conf

You may use the following config sample, updating fields appropriately.

[DEFAULT]
my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
auth_strategy = keystone
transport_url = rabbit://RABBIT_USER:RABBIT_PASS@controller:5672
glance_api_servers = http://controller/image
sql_connection = mysql+pymysql://cinder:CINDER_DBPASS@controller/cinder
image_conversion_dir = C:\OpenStack\ImageConversionDir\
lock_path = C:\OpenStack\Lock\
log_dir = C:\OpenStack\Log\
log_file = cinder-volume.log

[coordination]
backend_url = file:///C:/OpenStack/Lock/

[key_manager]
api_class = cinder.keymgr.conf_key_mgr.ConfKeyManager

Note: The above sample doesnt configure any Cinder Volume driver. To do so, follow the configuration
guide for the driver of choice, appending driver specific config options.

Currently supported drivers on Windows:

• Windows SMB volume driver

• Windows iSCSI volume driver

38 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Finalize installation

1. Restart the Cinder Volume service:

Restart-Service cinder-volume

2. Ensure that the Cinder Volume service is running:

Get-Service cinder-volume

3.2 Administrating Cinder

Contents:

3.2.1 Cinder Administration

The OpenStack Block Storage service works through the interaction of a series of daemon processes
named cinder-* that reside persistently on the host machine or machines. You can run all the binaries
from a single node, or spread across multiple nodes. You can also run them on the same node as other
OpenStack services.

To administer the OpenStack Block Storage service, it is helpful to understand a number of concepts. You
must make certain choices when you configure the Block Storage service in OpenStack. The bulk of the
options come down to two choices - single node or multi-node install. You can read a longer discussion
about Storage Decisions in the OpenStack Operations Guide.

OpenStack Block Storage enables you to add extra block-level storage to your OpenStack Compute in-
stances. This service is similar to the Amazon EC2 Elastic Block Storage (EBS) offering.

Security

Network traffic

Depending on your deployments security requirements, you might be required to encrypt network traffic.
This can be accomplished with TLS.

There are multiple deployment options, with the most common and recommended ones being:

• Only encrypt traffic between clients and public endpoints. This approach results in fewer certifi-
cates to manage, and we refer to it as public TLS. Public endpoints, in this sense, are endpoints
only exposed to end-users. Traffic between internal endpoints is not encrypted.

• Leverages TLS for all endpoints in the entire deployment, including internal endpoints of the Open-
Stack services and with auxiliary services such as the database and the message broker.

You can look at TripleOs documentation on TLS for examples on how to do this.

Cinder drivers should support secure TLS/SSL communication between the cinder volume service and
the backend, as configured by the driver_ssl_cert_verify and driver_ssl_cert_path options
in cinder.conf.

3.2. Administrating Cinder 39

https://docs.openstack.org/arch-design/design-storage/design-storage-arch.html
https://wiki.openstack.org/wiki/OpsGuide
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/tls-introduction.html

Cinder Documentation, Release 20.3.2.dev3

If unsure whether your driver supports TLS/SSL, please check the drivers specific page in the Volume
drivers page or contact the vendor.

Data at rest

Volumes data can be secured at rest using Cinders volume encryption feature.

For encryption keys Cinder uses a Key management service, with Barbican being the recommended
service.

More information on encryption can be found on the Volume encryption supported by the key manager
section.

Data leakage

Some users and admins worry about data leakage between OpenStack projects or users caused by a new
volume containing partial or full data from a previously deleted volume.

These concerns are sometimes instigated by the volume_clear and volume_clear_size configuration
options, but these options are only relevant to the LVM driver, and only when using thick volumes (which
are not the default, thin volumes are).

Writing data on a Cinder volume as a generic mechanism to prevent data leakage is not implemented for
other drivers because it does not ensure that the data will be actually erased on the physical disks, as the
storage solution could be doing copy-on-write or other optimizations.

Thin provisioned volumes return zeros for unallocated blocks, so we dont have to worry about data
leakage. As for thick volumes, each of the individual Cinder drivers must ensure that data from a deleted
volume can never leak to a newly created volume.

This prevents other OpenStack projects and users from being able to get data from deleted volumes, but
since the data may still be present on the physical disks, somebody with physical access to the disks may
still be able to retrieve that data.

For those concerned with this, we recommend using encrypted volumes or read your storage solutions
documentation or contact your vendor to see if they have some kind of clear policy option available on
their storage solution.

Accelerate image compression

A general framework to accommodate hardware compression accelerators for compression of volumes
uploaded to the Image service (Glance) as images and decompression of compressed images used to
create volumes is introduced in Train release.

The only accelerator supported in this release is Intel QuickAssist Technology (QAT), which produces a
compressed file in gzip format. Additionally, the framework provides software-based compression using
GUNzip tool if a suitable hardware accelerator is not available. Because this software fallback could
cause performance problems if the Cinder services are not deployed on sufficiently powerful nodes, the
default setting is not to enable compression on image upload or download.

The compressed image of a volume will be stored in the Image service (Glance) with the
container_format image property of compressed. See the Image service documentation for more
information about this image container format.

40 Chapter 3. For operators

https://docs.openstack.org/glance/latest

Cinder Documentation, Release 20.3.2.dev3

Configure image compression

To enable the image compression feature, set the following configuration option in the cinder.conf
file:

allow_compression_on_image_upload = True

By default it will be set to False, which means image compression is disabled.

compression_format = gzip

This is to specify image compression format. The only supported format is gzip in Train release.

System requirement

In order to use this feature, there should be a hardware accelerator existing in system, otherwise no benefit
will get from this feature. Regarding the two accelerators that supported, system should be configured as
below:

• Intel QuickAssist Technology (QAT) - This is the hardware accelerator from Intel. The
driver of QAT should be installed, refer to https://01.org/intel-quickassist-technology. Also the
compression library QATzip should be installed, refer to https://github.com/intel/QATzip.

• GUNzip - The related package of GUNzip should be installed and the command gzip should be
available. This is used as fallback when hardware accelerator is not available.

Increase Block Storage API service throughput

By default, the Block Storage API service runs in one process. This limits the number of API requests
that the Block Storage service can process at any given time. In a production environment, you should
increase the Block Storage API throughput by allowing the Block Storage API service to run in as many
processes as the machine capacity allows.

Note: The Block Storage API service is named openstack-cinder-api on the following distributions:
CentOS, Fedora, openSUSE, Red Hat Enterprise Linux, and SUSE Linux Enterprise. In Ubuntu and
Debian distributions, the Block Storage API service is named cinder-api.

To do so, use the Block Storage API service option osapi_volume_workers. This option allows you
to specify the number of API service workers (or OS processes) to launch for the Block Storage API
service.

To configure this option, open the /etc/cinder/cinder.conf configuration file and set the
osapi_volume_workers configuration key to the number of CPU cores/threads on a machine.

On distributions that include openstack-config, you can configure this by running the following com-
mand instead:

openstack-config --set /etc/cinder/cinder.conf \
DEFAULT osapi_volume_workers CORES

Replace CORES with the number of CPU cores/threads on a machine.

3.2. Administrating Cinder 41

https://01.org/intel-quickassist-technology
https://github.com/intel/QATzip

Cinder Documentation, Release 20.3.2.dev3

Manage volumes

The default OpenStack Block Storage service implementation is an iSCSI solution that uses Logical
Volume Manager (LVM) for Linux.

Note: The OpenStack Block Storage service also provides drivers that enable you to use several vendors
back-end storage devices in addition to the base LVM implementation. These storage devices can also
be used instead of the base LVM installation.

This high-level procedure shows you how to create and attach a volume to a server instance.

To create and attach a volume to an instance

1. Configure the OpenStack Compute and the OpenStack Block Storage services through the /etc/
cinder/cinder.conf file.

2. Use the openstack volume create command to create a volume. This command creates an LV
into the volume group (VG) cinder-volumes.

3. Use the openstack server add volume command to attach the volume to an instance. This
command creates a unique IQN that is exposed to the compute node.

• The compute node, which runs the instance, now has an active iSCSI session and new local
storage (usually a /dev/sdX disk).

• Libvirt uses that local storage as storage for the instance. The instance gets a new disk (usually
a /dev/vdX disk).

For this particular walkthrough, one cloud controller runs nova-api, nova-scheduler,
nova-conductor and cinder-* services. Two additional compute nodes run nova-compute.
The walkthrough uses a custom partitioning scheme that carves out 60 GB of space and labels it as
LVM. The network uses the FlatManager and NetworkManager settings for OpenStack Compute.

The network mode does not interfere with OpenStack Block Storage operations, but you must set up
networking for Block Storage to work. For details, see networking.

To set up Compute to use volumes, ensure that Block Storage is installed along with lvm2. This guide
describes how to troubleshoot your installation and back up your Compute volumes.

42 Chapter 3. For operators

https://docs.openstack.org/neutron/latest/

Cinder Documentation, Release 20.3.2.dev3

Boot from volume

In some cases, you can store and run instances from inside volumes. For information, see Launch an
instance from a volume.

Configure an NFS storage back end

This section explains how to configure OpenStack Block Storage to use NFS storage. You must be able
to access the NFS shares from the server that hosts the cinder volume service.

Note: The cinder volume service is named openstack-cinder-volume on the following distribu-
tions:

• CentOS

• Fedora

• openSUSE

• Red Hat Enterprise Linux

• SUSE Linux Enterprise

In Ubuntu and Debian distributions, the cinder volume service is named cinder-volume.

Configure Block Storage to use an NFS storage back end

1. Log in as root to the system hosting the cinder volume service.

2. Create a text file named nfs_shares in the /etc/cinder/ directory.

3. Add an entry to /etc/cinder/nfs_shares for each NFS share that the cinder volume service
should use for back end storage. Each entry should be a separate line, and should use the following
format:

HOST:SHARE

Where:

• HOST is the IP address or host name of the NFS server.

• SHARE is the absolute path to an existing and accessible NFS share.

4. Set /etc/cinder/nfs_shares to be owned by the root user and the cinder group:

chown root:cinder /etc/cinder/nfs_shares

5. Set /etc/cinder/nfs_shares to be readable by members of the cinder group:

chmod 0640 /etc/cinder/nfs_shares

3.2. Administrating Cinder 43

https://docs.openstack.org/nova/latest/user/launch-instance-from-volume.html
https://docs.openstack.org/nova/latest/user/launch-instance-from-volume.html

Cinder Documentation, Release 20.3.2.dev3

6. Configure the cinder volume service to use the /etc/cinder/nfs_shares file created
earlier. To do so, open the /etc/cinder/cinder.conf configuration file and set the
nfs_shares_config configuration key to /etc/cinder/nfs_shares.

On distributions that include openstack-config, you can configure this by running the following
command instead:

openstack-config --set /etc/cinder/cinder.conf \
DEFAULT nfs_shares_config /etc/cinder/nfs_shares

The following distributions include openstack-config:

• CentOS

• Fedora

• openSUSE

• Red Hat Enterprise Linux

• SUSE Linux Enterprise

7. Optionally, provide any additional NFS mount options required in your environment in the
nfs_mount_options configuration key of /etc/cinder/cinder.conf. If your NFS shares
do not require any additional mount options (or if you are unsure), skip this step.

On distributions that include openstack-config, you can configure this by running the following
command instead:

openstack-config --set /etc/cinder/cinder.conf \
DEFAULT nfs_mount_options OPTIONS

Replace OPTIONS with the mount options to be used when accessing NFS shares. See the manual
page for NFS for more information on available mount options (man nfs).

8. Configure the cinder volume service to use the correct volume driver, namely cinder.volume.
drivers.nfs.NfsDriver. To do so, open the /etc/cinder/cinder.conf configuration file
and set the volume_driver configuration key to cinder.volume.drivers.nfs.NfsDriver.

On distributions that include openstack-config, you can configure this by running the following
command instead:

openstack-config --set /etc/cinder/cinder.conf \
DEFAULT volume_driver cinder.volume.drivers.nfs.NfsDriver

9. You can now restart the service to apply the configuration.

Note: The nfs_sparsed_volumes configuration key determines whether volumes are created as
sparse files and grown as needed or fully allocated up front. The default and recommended value
is true, which ensures volumes are initially created as sparse files.

Setting nfs_sparsed_volumes to false will result in volumes being fully allocated at the time
of creation. This leads to increased delays in volume creation.

However, should you choose to set nfs_sparsed_volumes to false, you can do so directly in
/etc/cinder/cinder.conf.

44 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

On distributions that include openstack-config, you can configure this by running the following
command instead:

openstack-config --set /etc/cinder/cinder.conf \
DEFAULT nfs_sparsed_volumes false

Warning: If a client host has SELinux enabled, the virt_use_nfs boolean should also be
enabled if the host requires access to NFS volumes on an instance. To enable this boolean, run
the following command as the root user:

setsebool -P virt_use_nfs on

This command also makes the boolean persistent across reboots. Run this command on all
client hosts that require access to NFS volumes on an instance. This includes all compute
nodes.

Configure multiple-storage back ends

When you configure multiple-storage back ends, you can create several back-end storage solutions that
serve the same OpenStack Compute configuration and one cinder-volume is launched for each back-
end storage or back-end storage pool.

In a multiple-storage back-end configuration, each back end has a name (volume_backend_name). Sev-
eral back ends can have the same name. In that case, the scheduler properly decides which back end the
volume has to be created in.

The name of the back end is declared as an extra-specification of a volume type (such as,
volume_backend_name=LVM). When a volume is created, the scheduler chooses an appropriate back
end to handle the request, according to the volume type specified by the user.

Enable multiple-storage back ends

To enable a multiple-storage back ends, you must set the enabled_backends flag in the cinder.conf
file. This flag defines the names (separated by a comma) of the configuration groups for the different
back ends: one name is associated to one configuration group for a back end (such as, [lvmdriver-1]).

Note: The configuration group name is not related to the volume_backend_name.

Note: After setting the enabled_backends flag on an existing cinder service, and restarting the Block
Storage services, the original host service is replaced with a new host service. The new service appears
with a name like host@backend. Use:

$ cinder-manage volume update_host --currenthost CURRENTHOST --newhost␣
↪→CURRENTHOST@BACKEND

to convert current block devices to the new host name.

3.2. Administrating Cinder 45

Cinder Documentation, Release 20.3.2.dev3

The options for a configuration group must be defined in the group (or default options are used). All the
standard Block Storage configuration options (volume_group, volume_driver, and so on) might be
used in a configuration group. Configuration values in the [DEFAULT] configuration group are not used.

These examples show three back ends:

enabled_backends=lvmdriver-1,lvmdriver-2,lvmdriver-3
[lvmdriver-1]
volume_group=cinder-volumes-1
volume_driver=cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name=LVM
[lvmdriver-2]
volume_group=cinder-volumes-2
volume_driver=cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name=LVM
[lvmdriver-3]
volume_group=cinder-volumes-3
volume_driver=cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name=LVM_b

In this configuration, lvmdriver-1 and lvmdriver-2 have the same volume_backend_name. If a
volume creation requests the LVM back end name, the scheduler uses the capacity filter scheduler to
choose the most suitable driver, which is either lvmdriver-1 or lvmdriver-2. The capacity filter
scheduler is enabled by default. The next section provides more information. In addition, this example
presents a lvmdriver-3 back end.

Note: For Fiber Channel drivers that support multipath, the configuration group requires the
use_multipath_for_image_xfer=true option. In the example below, you can see details for HPE
3PAR and EMC Fiber Channel drivers.

[3par]
use_multipath_for_image_xfer = true
volume_driver = cinder.volume.drivers.hpe.hpe_3par_fc.HPE3PARFCDriver
volume_backend_name = 3parfc

[emc]
use_multipath_for_image_xfer = true
volume_driver = cinder.volume.drivers.emc.emc_smis_fc.EMCSMISFCDriver
volume_backend_name = emcfc

Configure shared volume driver backends

When configuring multiple volume backends, common configuration parameters can be shared using the
[backend_defaults] section. As an example:

[DEFAULT]
enabled_backends=backend1,backend2,backend3

[backend_defaults]
(continues on next page)

46 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

image_volume_cache_enabled = True
volume_clear = none
target_helper = tgtadm
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver

[backend1]
volume_group = cinder-volume-1
image_volume_cache_enabled = False

[backend2]
volume_group = cinder-volume-2

[backend3]
volume_group = cinder-volume-3

In this configuration, backend2 and backend3 have the same image_volume_cache_enabled as it is
defined in the backend_defaults section. In other words, backend2 and backend3 have enabled the
image cache features. image_volume_cache_enabled in backend1 is False, that means any overwrit-
ten configuration in a volume backend will ignore the original value in backend_defaults.

Note: The backend_defaults section should be configured according to your cloud environment or
your backend driver information.

Configure Block Storage scheduler multi back end

You must enable the filter_scheduler option to use multiple-storage back ends. The filter scheduler:

1. Filters the available back ends. By default, AvailabilityZoneFilter, CapacityFilter and
CapabilitiesFilter are enabled.

2. Weights the previously filtered back ends. By default, the CapacityWeigher option is enabled.
When this option is enabled, the filter scheduler assigns the highest weight to back ends with the
most available capacity.

The scheduler uses filters and weights to pick the best back end to handle the request. The scheduler uses
volume types to explicitly create volumes on specific back ends. For more information about filter and
weighing, see Configure and use driver filter and weighing for scheduler.

Volume type

Before using it, a volume type has to be declared to Block Storage. This can be done by the following
command:

$ openstack --os-username admin --os-tenant-name admin volume type create lvm

Then, an extra-specification has to be created to link the volume type to a back end name. Run this
command:

3.2. Administrating Cinder 47

Cinder Documentation, Release 20.3.2.dev3

$ openstack --os-username admin --os-tenant-name admin volume type set lvm \
--property volume_backend_name=LVM_iSCSI

This example creates a lvm volume type with volume_backend_name=LVM_iSCSI as extra-
specifications.

Create another volume type:

$ openstack --os-username admin --os-tenant-name admin volume type create lvm_
↪→gold

$ openstack --os-username admin --os-tenant-name admin volume type set lvm_
↪→gold \
--property volume_backend_name=LVM_iSCSI_b

This second volume type is named lvm_gold and has LVM_iSCSI_b as back end name.

Note: To list the extra-specifications, use this command:

$ openstack --os-username admin --os-tenant-name admin volume type list --long

Note: If a volume type points to a volume_backend_name that does not exist in the Block Storage
configuration, the filter_scheduler returns an error that it cannot find a valid host with the suitable
back end.

Usage

When you create a volume, you must specify the volume type. The extra-specifications of the volume
type are used to determine which back end has to be used.

$ openstack volume create --size 1 --type lvm test_multi_backend

Considering the cinder.conf described previously, the scheduler creates this volume on lvmdriver-1
or lvmdriver-2.

$ openstack volume create --size 1 --type lvm_gold test_multi_backend

This second volume is created on lvmdriver-3.

48 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Back up Block Storage service disks

While you can use the LVM snapshot to create snapshots, you can also use it to back up your volumes.
By using LVM snapshot, you reduce the size of the backup; only existing data is backed up instead of the
entire volume.

To back up a volume, you must create a snapshot of it. An LVM snapshot is the exact copy of a log-
ical volume, which contains data in a frozen state. This prevents data corruption because data cannot
be manipulated during the volume creation process. Remember that the volumes created through an
openstack volume create command exist in an LVM logical volume.

You must also make sure that the operating system is not using the volume and that all data has been
flushed on the guest file systems. This usually means that those file systems have to be unmounted
during the snapshot creation. They can be mounted again as soon as the logical volume snapshot has
been created.

Before you create the snapshot you must have enough space to save it. As a precaution, you should have
at least twice as much space as the potential snapshot size. If insufficient space is available, the snapshot
might become corrupted.

For this example assume that a 100 GB volume named volume-00000001 was created for an instance
while only 4 GB are used. This example uses these commands to back up only those 4 GB:

• lvm2 command. Directly manipulates the volumes.

• kpartx command. Discovers the partition table created inside the instance.

• tar command. Creates a minimum-sized backup.

• sha1sum command. Calculates the backup checksum to check its consistency.

You can apply this process to volumes of any size.

To back up Block Storage service disks

1. Create a snapshot of a used volume

• Use this command to list all volumes

lvdisplay

• Create the snapshot; you can do this while the volume is attached to an instance:

lvcreate --size 10G --snapshot --name volume-00000001-snapshot \
/dev/cinder-volumes/volume-00000001

Use the --snapshot configuration option to tell LVM that you want a snapshot of an already
existing volume. The command includes the size of the space reserved for the snapshot vol-
ume, the name of the snapshot, and the path of an already existing volume. Generally, this
path is /dev/cinder-volumes/VOLUME_NAME.

The size does not have to be the same as the volume of the snapshot. The --size parameter
defines the space that LVM reserves for the snapshot volume. As a precaution, the size should
be the same as that of the original volume, even if the whole space is not currently used by
the snapshot.

• Run the lvdisplay command again to verify the snapshot:

3.2. Administrating Cinder 49

Cinder Documentation, Release 20.3.2.dev3

--- Logical volume ---
LV Name /dev/cinder-volumes/volume-00000001
VG Name cinder-volumes
LV UUID gI8hta-p21U-IW2q-hRN1-nTzN-UC2G-dKbdKr
LV Write Access read/write
LV snapshot status source of

/dev/cinder-volumes/volume-00000026-snap␣
↪→[active]
LV Status available
open 1
LV Size 15,00 GiB
Current LE 3840
Segments 1
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 251:13

--- Logical volume ---
LV Name /dev/cinder-volumes/volume-00000001-snap
VG Name cinder-volumes
LV UUID HlW3Ep-g5I8-KGQb-IRvi-IRYU-lIKe-wE9zYr
LV Write Access read/write
LV snapshot status active destination for /dev/cinder-volumes/
↪→volume-00000026
LV Status available
open 0
LV Size 15,00 GiB
Current LE 3840
COW-table size 10,00 GiB
COW-table LE 2560
Allocated to snapshot 0,00%
Snapshot chunk size 4,00 KiB
Segments 1
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 251:14

2. Partition table discovery

• To exploit the snapshot with the tar command, mount your partition on the Block Storage
service server.

The kpartx utility discovers and maps table partitions. You can use it to view partitions
that are created inside the instance. Without using the partitions created inside instances, you
cannot see its content and create efficient backups.

kpartx -av /dev/cinder-volumes/volume-00000001-snapshot

Note: On a Debian-based distribution, you can use the apt-get install kpartx com-

50 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

mand to install kpartx.

If the tools successfully find and map the partition table, no errors are returned.

• To check the partition table map, run this command:

$ ls /dev/mapper/nova*

You can see the cinder--volumes-volume--00000001--snapshot1 partition.

If you created more than one partition on that volume, you see several par-
titions; for example: cinder--volumes-volume--00000001--snapshot2,
cinder--volumes-volume--00000001--snapshot3, and so on.

• Mount your partition

mount /dev/mapper/cinder--volumes-volume--volume--00000001--
↪→snapshot1 /mnt

If the partition mounts successfully, no errors are returned.

You can directly access the data inside the instance. If a message prompts you for a partition
or you cannot mount it, determine whether enough space was allocated for the snapshot or
the kpartx command failed to discover the partition table.

Allocate more space to the snapshot and try the process again.

3. Use the tar command to create archives

Create a backup of the volume:

$ tar --exclude="lost+found" --exclude="some/data/to/exclude" -czf \
volume-00000001.tar.gz -C /mnt/ /backup/destination

This command creates a tar.gz file that contains the data, and data only. This ensures that you
do not waste space by backing up empty sectors.

4. Checksum calculation

You should always have the checksum for your backup files. When you transfer the same file over
the network, you can run a checksum calculation to ensure that your file was not corrupted during
its transfer. The checksum is a unique ID for a file. If the checksums are different, the file is
corrupted.

Run this command to run a checksum for your file and save the result to a file:

$ sha1sum volume-00000001.tar.gz > volume-00000001.checksum

Note: Use the sha1sum command carefully because the time it takes to complete the calculation
is directly proportional to the size of the file.

Depending on your CPU, the process might take a long time for files larger than around 4 to 6 GB.

5. After work cleaning

Now that you have an efficient and consistent backup, use this command to clean up the file system:

3.2. Administrating Cinder 51

Cinder Documentation, Release 20.3.2.dev3

• Unmount the volume.

$ umount /mnt

• Delete the partition table.

$ kpartx -dv /dev/cinder-volumes/volume-00000001-snapshot

• Remove the snapshot.

$ lvremove -f /dev/cinder-volumes/volume-00000001-snapshot

Repeat these steps for all your volumes.

6. Automate your backups

Because more and more volumes might be allocated to your Block Storage service, you might want
to automate your backups. The SCR_5005_V01_NUAC-OPENSTACK-EBS-volumes-backup.sh
script assists you with this task. The script performs the operations from the previous example, but
also provides a mail report and runs the backup based on the backups_retention_days setting.

Launch this script from the server that runs the Block Storage service.

This example shows a mail report:

Backup Start Time - 07/10 at 01:00:01
Current retention - 7 days

The backup volume is mounted. Proceed...
Removing old backups... : /BACKUPS/EBS-VOL/volume-00000019/volume-
↪→00000019_28_09_2011.tar.gz

/BACKUPS/EBS-VOL/volume-00000019 - 0 h 1 m and 21 seconds. Size - 3,
↪→5G

The backup volume is mounted. Proceed...
Removing old backups... : /BACKUPS/EBS-VOL/volume-0000001a/volume-
↪→0000001a_28_09_2011.tar.gz

/BACKUPS/EBS-VOL/volume-0000001a - 0 h 4 m and 15 seconds. Size - 6,
↪→9G

Total backups size - 267G - Used space : 35%
Total execution time - 1 h 75 m and 35 seconds

The script also enables you to SSH to your instances and run a mysqldump command into them.
To make this work, enable the connection to the Compute project keys. If you do not want to
run the mysqldump command, you can add enable_mysql_dump=0 to the script to turn off this
functionality.

52 Chapter 3. For operators

https://github.com/Razique/BashStuff/blob/master/SYSTEMS/OpenStack/SCR_5005_V01_NUAC-OPENSTACK-EBS-volumes-backup.sh

Cinder Documentation, Release 20.3.2.dev3

Migrate volumes

OpenStack has the ability to migrate volumes between back ends which support its volume-type. Migrat-
ing a volume transparently moves its data from the current back end for the volume to a new one. This is
an administrator function, and can be used for functions including storage evacuation (for maintenance
or decommissioning), or manual optimizations (for example, performance, reliability, or cost).

These workflows are possible for a migration:

1. If the storage can migrate the volume on its own, it is given the opportunity to do so. This allows
the Block Storage driver to enable optimizations that the storage might be able to perform. If the
back end is not able to perform the migration, the Block Storage uses one of two generic flows, as
follows.

2. If the volume is not attached, the Block Storage service creates a volume and copies the data from
the original to the new volume.

Note: While most back ends support this function, not all do. See the driver documentation for
more details.

3. If the volume is attached to a VM instance, the Block Storage creates a volume, and calls Compute
to copy the data from the original to the new volume. Currently this is supported only by the
Compute libvirt driver.

As an example, this scenario shows two LVM back ends and migrates an attached volume from one to
the other. This scenario uses the third migration flow.

First, list the available back ends:

cinder get-pools
+----------+--+
| Property | Value |
+----------+--+
| name | server1@lvmstorage-1#lvmstorage-1 |
+----------+--+
+----------+--+
| Property | Value |
+----------+--+
| name | server2@lvmstorage-2#lvmstorage-2 |
+----------+--+

Note: Block Storage API supports cinder get-pools since V2 version.

You can also get available back ends like following:

cinder-manage host list
server1@lvmstorage-1 zone1
server2@lvmstorage-2 zone1

But it needs to add pool name in the end. For example, server1@lvmstorage-1#zone1.

3.2. Administrating Cinder 53

Cinder Documentation, Release 20.3.2.dev3

Next, as the admin user, you can see the current status of the volume (replace the example ID with your
own):

$ openstack volume show 6088f80a-f116-4331-ad48-9afb0dfb196c

+--------------------------------+--------------------------------------+
| Field | Value |
+--------------------------------+--------------------------------------+
attachments	[]
availability_zone	zone1
bootable	false
consistencygroup_id	None
created_at	2013-09-01T14:53:22.000000
description	test
encrypted	False
id	6088f80a-f116-4331-ad48-9afb0dfb196c
migration_status	None
multiattach	False
name	test
os-vol-host-attr:host	server1@lvmstorage-1#lvmstorage-1
os-vol-mig-status-attr:migstat	None
os-vol-mig-status-attr:name_id	None
os-vol-tenant-attr:tenant_id	d88310717a8e4ebcae84ed075f82c51e
properties	readonly='False'
replication_status	disabled
size	1
snapshot_id	None
source_volid	None
status	in-use
type	None
updated_at	2016-07-31T07:22:19.000000
user_id	d8e5e5727f3a4ce1886ac8ecec058e83
+--------------------------------+--------------------------------------+

Note these attributes:

• os-vol-host-attr:host - the volumes current back end.

• os-vol-mig-status-attr:migstat - the status of this volumes migration (None means that a
migration is not currently in progress).

• os-vol-mig-status-attr:name_id - the volume ID that this volumes name on the back end
is based on. Before a volume is ever migrated, its name on the back end storage may be based
on the volumes ID (see the volume_name_template configuration parameter). For example,
if volume_name_template is kept as the default value (volume-%s), your first LVM back end
has a logical volume named volume-6088f80a-f116-4331-ad48-9afb0dfb196c. During the
course of a migration, if you create a volume and copy over the data, the volume get the new name
but keeps its original ID. This is exposed by the name_id attribute.

Note: If you plan to decommission a block storage node, you must stop the cinder volume
service on the node after performing the migration.

On nodes that run CentOS, Fedora, openSUSE, Red Hat Enterprise Linux, or SUSE Linux Enter-

54 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

prise, run:

service openstack-cinder-volume stop
chkconfig openstack-cinder-volume off

On nodes that run Ubuntu or Debian, run:

service cinder-volume stop
chkconfig cinder-volume off

Stopping the cinder volume service will prevent volumes from being allocated to the node.

Migrate this volume to the second LVM back end:

$ openstack volume migrate 6088f80a-f116-4331-ad48-9afb0dfb196c \
--host server2@lvmstorage-2#lvmstorage-2

You can use the openstack volume show command to see the status of the migration. While migrating,
the migstat attribute shows states such as migrating or completing. On error, migstat is set to None
and the host attribute shows the original host. On success, in this example, the output looks like:

$ openstack volume show 6088f80a-f116-4331-ad48-9afb0dfb196c

+--------------------------------+--------------------------------------+
| Field | Value |
+--------------------------------+--------------------------------------+
attachments	[]
availability_zone	zone1
bootable	false
consistencygroup_id	None
created_at	2013-09-01T14:53:22.000000
description	test
encrypted	False
id	6088f80a-f116-4331-ad48-9afb0dfb196c
migration_status	None
multiattach	False
name	test
os-vol-host-attr:host	server2@lvmstorage-2#lvmstorage-2
os-vol-mig-status-attr:migstat	completing
os-vol-mig-status-attr:name_id	None
os-vol-tenant-attr:tenant_id	d88310717a8e4ebcae84ed075f82c51e
properties	readonly='False'
replication_status	disabled
size	1
snapshot_id	None
source_volid	None
status	in-use
type	None
updated_at	2017-02-22T02:35:03.000000
user_id	d8e5e5727f3a4ce1886ac8ecec058e83
+--------------------------------+--------------------------------------+

3.2. Administrating Cinder 55

Cinder Documentation, Release 20.3.2.dev3

Note that migstat is None, host is the new host, and name_id holds the ID of the volume cre-
ated by the migration. If you look at the second LVM back end, you find the logical volume
volume-133d1f56-9ffc-4f57-8798-d5217d851862.

Note: The migration is not visible to non-admin users (for example, through the volume status).
However, some operations are not allowed while a migration is taking place, such as attaching/detaching
a volume and deleting a volume. If a user performs such an action during a migration, an error is returned.

Note: Migrating volumes that have snapshots are currently not allowed.

Back up and restore volumes and snapshots

The openstack command-line interface provides the tools for creating a volume backup. You can restore
a volume from a backup as long as the backups associated database information (or backup metadata) is
intact in the Block Storage database.

Run this command to create a backup of a volume:

$ openstack volume backup create [--incremental] [--force] VOLUME

Where VOLUME is the name or ID of the volume, incremental is a flag that indicates whether an incre-
mental backup should be performed, and force is a flag that allows or disallows backup of a volume
when the volume is attached to an instance.

Without the incremental flag, a full backup is created by default. With the incremental flag, an
incremental backup is created.

Without the force flag, the volume will be backed up only if its status is available. With the force
flag, the volume will be backed up whether its status is available or in-use. A volume is in-use
when it is attached to an instance. The backup of an in-use volume means your data is crash consistent.
The force flag is False by default.

Note: The force flag is new in OpenStack Liberty.

The incremental backup is based on a parent backup which is an existing backup with the latest timestamp.
The parent backup can be a full backup or an incremental backup depending on the timestamp.

Note: The first backup of a volume has to be a full backup. Attempting to do an incremental backup
without any existing backups will fail. There is an is_incremental flag that indicates whether a backup
is incremental when showing details on the backup. Another flag, has_dependent_backups, returned
when showing backup details, will indicate whether the backup has dependent backups. If it is true,
attempting to delete this backup will fail.

A new configure option backup_swift_block_size is introduced into cinder.conf for the default
Swift backup driver. This is the size in bytes that changes are tracked for incremental backups. The
existing backup_swift_object_size option, the size in bytes of Swift backup objects, has to be a

56 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

multiple of backup_swift_block_size. The default is 32768 for backup_swift_block_size, and
the default is 52428800 for backup_swift_object_size.

The configuration option backup_swift_enable_progress_timer in cinder.conf is used when
backing up the volume to Object Storage back end. This option enables or disables the timer. It is
enabled by default to send the periodic progress notifications to the Telemetry service.

This command also returns a backup ID. Use this backup ID when restoring the volume:

$ openstack volume backup restore BACKUP_ID VOLUME_ID

When restoring from a full backup, it is a full restore.

When restoring from an incremental backup, a list of backups is built based on the IDs of the parent
backups. A full restore is performed based on the full backup first, then restore is done based on the
incremental backup, laying on top of it in order.

You can view a backup list with the openstack volume backup list command. Optional arguments
to clarify the status of your backups include: running --name, --status, and --volume to filter through
backups by the specified name, status, or volume-id. Search with --all-projects for details of the
projects associated with the listed backups.

Because volume backups are dependent on the Block Storage database, you must also back up your Block
Storage database regularly to ensure data recovery.

Note: Alternatively, you can export and save the metadata of selected volume backups. Doing so
precludes the need to back up the entire Block Storage database. This is useful if you need only a small
subset of volumes to survive a catastrophic database failure.

If you specify a UUID encryption key when setting up the volume specifications, the backup metadata
ensures that the key will remain valid when you back up and restore the volume.

For more information about how to export and import volume backup metadata, see the section called
Export and import backup metadata.

By default, the swift object store is used for the backup repository.

If instead you want to use an NFS export as the backup repository, add the following configuration options
to the [DEFAULT] section of the cinder.conf file and restart the Block Storage services:

backup_driver = cinder.backup.drivers.nfs
backup_share = HOST:EXPORT_PATH

For the backup_share option, replace HOST with the DNS resolvable host name or the IP address of
the storage server for the NFS share, and EXPORT_PATH with the path to that share. If your environment
requires that non-default mount options be specified for the share, set these as follows:

backup_mount_options = MOUNT_OPTIONS

MOUNT_OPTIONS is a comma-separated string of NFS mount options as detailed in the NFS man page.

There are several other options whose default values may be overridden as appropriate for your environ-
ment:

3.2. Administrating Cinder 57

Cinder Documentation, Release 20.3.2.dev3

backup_compression_algorithm = zlib
backup_sha_block_size_bytes = 32768
backup_file_size = 1999994880

The option backup_compression_algorithm can be set to zlib, bz2, zstd or none. The value none
can be a useful setting when the server providing the share for the backup repository itself performs
deduplication or compression on the backup data.

The option backup_file_size must be a multiple of backup_sha_block_size_bytes. It is effec-
tively the maximum file size to be used, given your environment, to hold backup data. Volumes larger
than this will be stored in multiple files in the backup repository. The backup_sha_block_size_bytes
option determines the size of blocks from the cinder volume being backed up on which digital signatures
are calculated in order to enable incremental backup capability.

You also have the option of resetting the state of a backup. When creating or restoring a backup, some-
times it may get stuck in the creating or restoring states due to problems like the database or rabbitmq
being down. In situations like these resetting the state of the backup can restore it to a functional status.

Run this command to restore the state of a backup:

$ cinder backup-reset-state [--state STATE] BACKUP_ID-1 BACKUP_ID-2 ...

Run this command to create a backup of a snapshot:

$ openstack volume backup create [--incremental] [--force] \
[--snapshot SNAPSHOT_ID] VOLUME

Where VOLUME is the name or ID of the volume, SNAPSHOT_ID is the ID of the volumes snapshot.

Cancelling

Since Liberty it is possible to cancel an ongoing backup operation on any of the Chunked Backup type
of drivers such as Swift, NFS, Google, GlusterFS, and Posix.

To issue a backup cancellation on a backup we must request a force delete on the backup.

$ openstack volume backup delete --force BACKUP_ID

Note: The policy on force delete defaults to admin only.

Even if the backup is immediately deleted, and therefore no longer appears in the listings, the cancellation
may take a little bit longer, so please check the status of the source resource to see when it stops being
backing-up.

Note: Before Pike the backing-up status would always be stored in the volume, even when backing up a
snapshot, so when backing up a snapshot any delete operation on the snapshot that followed a cancellation
could result in an error if the snapshot was still mapped. Polling on the volume to stop being backing-up
prior to the deletion is required to ensure success.

58 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Since Rocky it is also possible to cancel an ongoing restoring operation on any of the Chunked Backup
type of drivers.

To issue a backup restoration cancellation we need to alter its status to anything other than restoring. We
strongly recommend using the error state to avoid any confusion on whether the restore was successful
or not.

$ openstack volume backup set --state error BACKUP_ID

Warning: After a restore operation has started, if it is then cancelled, the destination volume is
useless, as there is no way of knowing how much data, or if any, was actually restored, hence our
recommendation of using the error state.

backup_max_operations

With this configuration option will let us select the maximum number of operations, backup and restore,
that can be performed concurrently.

This option has a default value of 15, which means that we can have 15 concurrent backups, or 15
concurrent restores, or any combination of backups and restores as long as the sum of the 2 operations
dont exceed 15.

The concurrency limitation of this configuration option is also enforced when we run multiple processes
for the same backup service using the backup_workers configuration option. It is not a per process
restriction, but global to the service, so we wont be able to run backup_max_operations on each one
of the processes, but on all the running processes from the same backup service.

Backups and restore operations are both CPU and memory intensive, but thanks to this option we can
limit the concurrency and prevent DoS attacks or just service disruptions caused by many concurrent
requests that lead to Out of Memory (OOM) kills.

The amount of memory (RAM) used during the operation depends on the configured chunk size as well
as the compression ratio achieved on the data during the operation.

Example:

Lets have a look at how much memory would be needed if we use the default backup chunk
size (~1.86 GB) while doing a restore to an RBD volume from a non Ceph backend (Swift,
NFS etc).

In a restore operation the worst case scenario, from the memory point of view, is when the
compression ratio is close to 0% (the compressed data chunk is almost the same size as the
uncompressed data).

In this case the memory usage would be ~5.58 GB of data for each chunk: ~5.58 GB = read
buffer + decompressed buffer + write buffer used by the librbd library = ~1.86 GB + 1.86
GB + 1.86 GB

For 15 concurrent restore operations, the cinder-backup service will require ~83.7 GB of
memory.

Similar calculations can be done for environment specific scenarios and this config option can be set
accordingly.

3.2. Administrating Cinder 59

Cinder Documentation, Release 20.3.2.dev3

Export and import backup metadata

A volume backup can only be restored on the same Block Storage service. This is because restoring a
volume from a backup requires metadata available on the database used by the Block Storage service.

Note: For information about how to back up and restore a volume, see the section called Back up and
restore volumes and snapshots.

You can, however, export the metadata of a volume backup. To do so, run this command as an OpenStack
admin user (presumably, after creating a volume backup):

$ cinder backup-export BACKUP_ID

Where BACKUP_ID is the volume backups ID. This command should return the backups corresponding
database information as encoded string metadata.

Exporting and storing this encoded string metadata allows you to completely restore the backup, even
in the event of a catastrophic database failure. This will preclude the need to back up the entire Block
Storage database, particularly if you only need to keep complete backups of a small subset of volumes.

If you have placed encryption on your volumes, the encryption will still be in place when you restore the
volume if a UUID encryption key is specified when creating volumes. Using backup metadata support,
UUID keys set up for a volume (or volumes) will remain valid when you restore a backed-up volume.
The restored volume will remain encrypted, and will be accessible with your credentials.

In addition, having a volume backup and its backup metadata also provides volume portability. Specifi-
cally, backing up a volume and exporting its metadata will allow you to restore the volume on a completely
different Block Storage database, or even on a different cloud service. To do so, first import the backup
metadata to the Block Storage database and then restore the backup.

To import backup metadata, run the following command as an OpenStack admin:

$ cinder backup-import METADATA

Where METADATA is the backup metadata exported earlier.

Once you have imported the backup metadata into a Block Storage database, restore the volume (see the
section called Back up and restore volumes and snapshots).

Use LIO iSCSI support

The default mode for the target_helper tool is tgtadm. To use LIO iSCSI, install the python-rtslib
package, and set target_helper=lioadm in the cinder.conf file.

Once configured, you can use the cinder-rtstool command to manage the volumes. This command
enables you to create, delete, and verify volumes and determine targets and add iSCSI initiators to the
system.

60 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Configure and use volume number weigher

OpenStack Block Storage enables you to choose a volume back end according to free_capacity and
allocated_capacity. The volume number weigher feature lets the scheduler choose a volume back
end based on its volume number in the volume back end. This can provide another means to improve the
volume back ends I/O balance and the volumes I/O performance.

Enable volume number weigher

To enable a volume number weigher, set the scheduler_default_weighers to
VolumeNumberWeigher flag in the cinder.conf file to define VolumeNumberWeigher as the
selected weigher.

Configure multiple-storage back ends

To configure VolumeNumberWeigher, use LVMVolumeDriver as the volume driver.

This configuration defines two LVM volume groups: stack-volumes with 10 GB capacity and
stack-volumes-1 with 60 GB capacity. This example configuration defines two back ends:

scheduler_default_weighers=VolumeNumberWeigher
enabled_backends=lvmdriver-1,lvmdriver-2
[lvmdriver-1]
volume_group=stack-volumes
volume_driver=cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name=LVM

[lvmdriver-2]
volume_group=stack-volumes-1
volume_driver=cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name=LVM

Volume type

Define a volume type in Block Storage:

$ openstack volume type create lvm

Create an extra specification that links the volume type to a back-end name:

$ openstack volume type set lvm --property volume_backend_name=LVM

This example creates a lvm volume type with volume_backend_name=LVM as extra specifications.

3.2. Administrating Cinder 61

Cinder Documentation, Release 20.3.2.dev3

Usage

To create six 1-GB volumes, run the openstack volume create --size 1 --type lvm volume1
command six times:

$ openstack volume create --size 1 --type lvm volume1

This command creates three volumes in stack-volumes and three volumes in stack-volumes-1.

List the available volumes:

lvs
LV VG Attr LSize ␣
↪→Pool Origin Data% Move Log Copy% Convert
volume-3814f055-5294-4796-b5e6-1b7816806e5d stack-volumes -wi-a---- 1.00g
volume-72cf5e79-99d2-4d23-b84e-1c35d3a293be stack-volumes -wi-a---- 1.00g
volume-96832554-0273-4e9d-902b-ad421dfb39d1 stack-volumes -wi-a---- 1.00g
volume-169386ef-3d3e-4a90-8439-58ceb46889d9 stack-volumes-1 -wi-a---- 1.00g
volume-460b0bbb-d8a0-4bc3-9882-a129a5fe8652 stack-volumes-1 -wi-a---- 1.00g
volume-9a08413b-0dbc-47c9-afb8-41032ab05a41 stack-volumes-1 -wi-a---- 1.00g

Capacity based quality of service

In many environments, the performance of the storage system which Cinder manages scales with the
storage space in the cluster. For example, a Ceph RBD cluster could have a capacity of 10,000 IOPs and
1000 GB storage. However, as the RBD cluster scales to 2000 GB, the IOPs scale to 20,000 IOPs.

Basic QoS allows you to define hard limits for volumes, however, if you have a limit of 1000 IOPs for a
volume and you have a user which creates 10x 1GB volumes with 1000 IOPs (in a cluster with 1000GB
storage and 10,000 IOPs), youre not able to guarantee the quality of service without having to add extra
capacity (which will go un-used). The inverse can be problematic, if a user creates a 1000GB volume
with 1000 IOPs, leaving 9000 un-used IOPs.

Capacity based quality of service allows you to multiply the quality of service values by the size of the
volume, which will allow you to efficiently use the storage managed by Cinder. In some cases, it will
force the user to provision a larger volume than they need to get the IOPs they need, but that extra space
would have gone un-used if they didnt use it in order to deliver the quality of service.

There are currently 6 options to control capacity based quality of service which values should be fairly
self explanatory:

For dynamic IOPS per volume.

• read_iops_sec_per_gb

• write_iops_sec_per_gb

• total_iops_sec_per_gb

For dynamic bandwidth per volume.

• read_bytes_sec_per_gb

• write_bytes_sec_per_gb

• total_bytes_sec_per_gb

62 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

In addition, there are 6 more options which allow you to control the minimum possible value. This can
be useful in cases where a user creates a volume that is very small and ends up with an unusable volume
because of performance.

For minimum IOPS per volume.

• read_iops_sec_per_gb_min

• write_iops_sec_per_gb_min

• total_iops_sec_per_gb_min

For minimum bandwidth per volume.

• read_bytes_sec_per_gb_min

• write_bytes_sec_per_gb_min

• total_bytes_sec_per_gb_min

Capacity based options might be used in conjunction with basic options, like *_sec_max, in order to
set upper limits for volumes. This may be useful for large volumes, which may consume all storage
performance.

For example, in order to create a QoS with 30 IOPs total writes per GB and a throughput of 1MB per
GB, you might use the Cinder client in the following way:

$ cinder qos-create high-iops consumer="front-end" \
total_iops_sec_per_gb=30 total_bytes_sec_per_gb=1048576

+----------+--------------------------------------+
| Property | Value |
+----------+--------------------------------------+
consumer	front-end
id	f448f61c-4238-4eef-a93a-2024253b8f75
name	high-iops
specs	total_iops_sec_per_gb : 30
	total_bytes_sec_per_gb : 1048576
+----------+--------------------------------------+

Once this is done, you can associate this QoS with a volume type by using the qos-associate Cinder client
command.

$ cinder qos-associate <qos-id> <volume-type-id>

You can now create a new volume and attempt to attach it to a consumer such as Nova. If you login to a
Nova compute host, youll be able to see the new calculated limits when checking the XML definition of
the virtual machine with virsh dumpxml.

3.2. Administrating Cinder 63

Cinder Documentation, Release 20.3.2.dev3

Consistency groups

Consistency group support is available in OpenStack Block Storage. The support is added for creating
snapshots of consistency groups. This feature leverages the storage level consistency technology. It
allows snapshots of multiple volumes in the same consistency group to be taken at the same point-in-
time to ensure data consistency. The consistency group operations can be performed using the Block
Storage command line.

Note: The Consistency Group APIs have been deprecated since the Queens release. Use the Generic
Volume Group APIs instead.

The Consistency Group APIs are governed by the same policies as the Generic Volume Group APIs. For
information about configuring cinder policies, see Policy configuration.

Before using consistency groups, make sure the Block Storage driver that you are running has consistency
group support by reading the Block Storage manual or consulting the driver maintainer. There are a
small number of drivers that have implemented this feature. The default LVM driver does not support
consistency groups yet because the consistency technology is not available at the storage level.

The following consistency group operations are supported:

• Create a consistency group, given volume types.

Note: A consistency group can support more than one volume type. The scheduler is responsible
for finding a back end that can support all given volume types.

A consistency group can only contain volumes hosted by the same back end.

A consistency group is empty upon its creation. Volumes need to be created and added to it later.

• Show a consistency group.

• List consistency groups.

• Create a volume and add it to a consistency group, given volume type and consistency group id.

• Create a snapshot for a consistency group.

• Show a snapshot of a consistency group.

• List consistency group snapshots.

• Delete a snapshot of a consistency group.

• Delete a consistency group.

• Modify a consistency group.

• Create a consistency group from the snapshot of another consistency group.

• Create a consistency group from a source consistency group.

The following operations are not allowed if a volume is in a consistency group:

• Volume migration.

• Volume retype.

64 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Volume deletion.

Note: A consistency group has to be deleted as a whole with all the volumes.

The following operations are not allowed if a volume snapshot is in a consistency group snapshot:

• Volume snapshot deletion.

Note: A consistency group snapshot has to be deleted as a whole with all the volume snapshots.

The details of consistency group operations are shown in the following.

Note: Currently, no OpenStack client command is available to run in place of the cinder consistency
group creation commands. Use the cinder commands detailed in the following examples.

Create a consistency group:

cinder consisgroup-create
[--name name]
[--description description]
[--availability-zone availability-zone]
volume-types

Note: The parameter volume-types is required. It can be a list of names or UUIDs of volume
types separated by commas without spaces in between. For example, volumetype1,volumetype2,
volumetype3..

$ cinder consisgroup-create --name bronzeCG2 volume_type_1

+-------------------+--------------------------------------+
| Property | Value |
+-------------------+--------------------------------------+
availability_zone	nova
created_at	2014-12-29T12:59:08.000000
description	None
id	1de80c27-3b2f-47a6-91a7-e867cbe36462
name	bronzeCG2
status	creating
+-------------------+--------------------------------------+

Show a consistency group:

$ cinder consisgroup-show 1de80c27-3b2f-47a6-91a7-e867cbe36462

+-------------------+--------------------------------------+
| Property | Value |
+-------------------+--------------------------------------+

(continues on next page)

3.2. Administrating Cinder 65

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

availability_zone	nova
created_at	2014-12-29T12:59:08.000000
description	None
id	2a6b2bda-1f43-42ce-9de8-249fa5cbae9a
name	bronzeCG2
status	available
volume_types	volume_type_1
+-------------------+--------------------------------------+

List consistency groups:

$ cinder consisgroup-list

+--------------------------------------+-----------+-----------+
| ID | Status | Name |
+--------------------------------------+-----------+-----------+
| 1de80c27-3b2f-47a6-91a7-e867cbe36462 | available | bronzeCG2 |
| 3a2b3c42-b612-479a-91eb-1ed45b7f2ad5 | error | bronzeCG |
+--------------------------------------+-----------+-----------+

Create a volume and add it to a consistency group:

Note: When creating a volume and adding it to a consistency group, a volume type and a consistency
group id must be provided. This is because a consistency group can support more than one volume type.

$ openstack volume create --type volume_type_1 --consistency-group \
1de80c27-3b2f-47a6-91a7-e867cbe36462 --size 1 cgBronzeVol

+---------------------------------------+-------------------------------------
↪→-+
| Field | Value ␣
↪→ |
+---------------------------------------+-------------------------------------
↪→-+
| attachments | [] ␣
↪→ |
| availability_zone | nova ␣
↪→ |
| bootable | false ␣
↪→ |
| consistencygroup_id | 1de80c27-3b2f-47a6-91a7-
↪→e867cbe36462 |
| created_at | 2014-12-29T13:16:47.000000 ␣
↪→ |
| description | None ␣
↪→ |
| encrypted | False ␣
↪→ |

(continues on next page)

66 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| id | 5e6d1386-4592-489f-a56b-
↪→9394a81145fe |
| metadata | {} ␣
↪→ |
| name | cgBronzeVol ␣
↪→ |
| os-vol-host-attr:host | server-1@backend-1#pool-1 ␣
↪→ |
| os-vol-mig-status-attr:migstat | None ␣
↪→ |
| os-vol-mig-status-attr:name_id | None ␣
↪→ |
| os-vol-tenant-attr:tenant_id | 1349b21da2a046d8aa5379f0ed447bed ␣
↪→ |
| os-volume-replication:driver_data | None ␣
↪→ |
| os-volume-replication:extended_status | None ␣
↪→ |
| replication_status | disabled ␣
↪→ |
| size | 1 ␣
↪→ |
| snapshot_id | None ␣
↪→ |
| source_volid | None ␣
↪→ |
| status | creating ␣
↪→ |
| user_id | 93bdea12d3e04c4b86f9a9f172359859 ␣
↪→ |
| volume_type | volume_type_1 ␣
↪→ |
+---------------------------------------+-------------------------------------
↪→-+

Create a snapshot for a consistency group:

$ cinder cgsnapshot-create 1de80c27-3b2f-47a6-91a7-e867cbe36462

+---------------------+--------------------------------------+
| Property | Value |
+---------------------+--------------------------------------+
consistencygroup_id	1de80c27-3b2f-47a6-91a7-e867cbe36462
created_at	2014-12-29T13:19:44.000000
description	None
id	d4aff465-f50c-40b3-b088-83feb9b349e9
name	None
status	creating
+---------------------+-------------------------------------+

3.2. Administrating Cinder 67

Cinder Documentation, Release 20.3.2.dev3

Show a snapshot of a consistency group:

$ cinder cgsnapshot-show d4aff465-f50c-40b3-b088-83feb9b349e9

List consistency group snapshots:

$ cinder cgsnapshot-list

+--------------------------------------+--------+----------+
| ID | Status | Name |
+--------------------------------------+--------+----------+
6d9dfb7d-079a-471e-b75a-6e9185ba0c38	available	None
aa129f4d-d37c-4b97-9e2d-7efffda29de0	available	None
bb5b5d82-f380-4a32-b469-3ba2e299712c	available	None
d4aff465-f50c-40b3-b088-83feb9b349e9	available	None
+--------------------------------------+--------+----------+

Delete a snapshot of a consistency group:

$ cinder cgsnapshot-delete d4aff465-f50c-40b3-b088-83feb9b349e9

Delete a consistency group:

Note: The force flag is needed when there are volumes in the consistency group:

$ cinder consisgroup-delete --force 1de80c27-3b2f-47a6-91a7-e867cbe36462

Modify a consistency group:

cinder consisgroup-update
[--name NAME]
[--description DESCRIPTION]
[--add-volumes UUID1,UUID2,......]
[--remove-volumes UUID3,UUID4,......]
CG

The parameter CG is required. It can be a name or UUID of a consistency group. UUID1,UUID2, are
UUIDs of one or more volumes to be added to the consistency group, separated by commas. Default is
None. UUID3,UUID4, are UUIDs of one or more volumes to be removed from the consistency group,
separated by commas. Default is None.

$ cinder consisgroup-update --name 'new name' \
--description 'new description' \
--add-volumes 0b3923f5-95a4-4596-a536-914c2c84e2db,1c02528b-3781-4e32-929c-

↪→618d81f52cf3 \
--remove-volumes 8c0f6ae4-efb1-458f-a8fc-9da2afcc5fb1,a245423f-bb99-4f94-

↪→8c8c-02806f9246d8 \
1de80c27-3b2f-47a6-91a7-e867cbe36462

Create a consistency group from the snapshot of another consistency group:

68 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

$ cinder consisgroup-create-from-src
[--cgsnapshot CGSNAPSHOT]
[--name NAME]
[--description DESCRIPTION]

The parameter CGSNAPSHOT is a name or UUID of a snapshot of a consistency group:

$ cinder consisgroup-create-from-src \
--cgsnapshot 6d9dfb7d-079a-471e-b75a-6e9185ba0c38 \
--name 'new cg' --description 'new cg from cgsnapshot'

Create a consistency group from a source consistency group:

$ cinder consisgroup-create-from-src
[--source-cg SOURCECG]
[--name NAME]
[--description DESCRIPTION]

The parameter SOURCECG is a name or UUID of a source consistency group:

$ cinder consisgroup-create-from-src \
--source-cg 6d9dfb7d-079a-471e-b75a-6e9185ba0c38 \
--name 'new cg' --description 'new cloned cg'

Configure and use driver filter and weighing for scheduler

OpenStack Block Storage enables you to choose a volume back end based on back-end specific properties
by using the DriverFilter and GoodnessWeigher for the scheduler. The driver filter and weigher schedul-
ing can help ensure that the scheduler chooses the best back end based on requested volume properties
as well as various back-end specific properties.

What is driver filter and weigher and when to use it

The driver filter and weigher gives you the ability to more finely control how the OpenStack Block Storage
scheduler chooses the best back end to use when handling a volume request. One example scenario where
using the driver filter and weigher can be if a back end that utilizes thin-provisioning is used. The default
filters use the free capacity property to determine the best back end, but that is not always perfect. If
a back end has the ability to provide a more accurate back-end specific value you can use that as part of
the weighing. Another example of when the driver filter and weigher can prove useful is if a back end
exists where there is a hard limit of 1000 volumes. The maximum volume size is 500ăGB. Once 75% of
the total space is occupied the performance of the back end degrades. The driver filter and weigher can
provide a way for these limits to be checked for.

3.2. Administrating Cinder 69

Cinder Documentation, Release 20.3.2.dev3

Enable driver filter and weighing

To enable the driver filter, set the scheduler_default_filters option in the cinder.conf file to
DriverFilter. The DriverFilter can also be used along with other filters by adding it to the list if other
filters are already present.

To enable the goodness filter as a weigher, set the scheduler_default_weighers option in the
cinder.conf file to GoodnessWeigher or add it to the list if other weighers are already present.

You can choose to use the DriverFilter without the GoodnessWeigher or vice-versa. The filter and
weigher working together, however, create the most benefits when helping the scheduler choose an ideal
back end.

Important: The GoodnessWeigher can be used along with CapacityWeigher and others, but must be
used with caution as it might obfuscate the CapacityWeigher.

Example cinder.conf configuration file:

scheduler_default_filters = DriverFilter
scheduler_default_weighers = GoodnessWeigher

Note: It is useful to use the other filters and weighers available in OpenStack in combination with these
custom ones. For example, the CapacityFilter and CapacityWeigher can be combined with these.
Using them together should be done with caution as depending on the defined logic, one might obfuscate
the other.

Defining your own filter and goodness functions

You can define your own filter and goodness functions through the use of various properties that Open-
Stack Block Storage has exposed. Properties exposed include information about the volume request being
made, volume_type settings, and back-end specific information about drivers. All of these allow for a
lot of control over how the ideal back end for a volume request will be decided.

The filter_function option is a string defining an equation that will determine whether a back end
should be considered as a potential candidate in the scheduler.

The goodness_function option is a string defining an equation that will rate the quality of the potential
host (0 to 100, 0 lowest, 100 highest).

Important: The drive filter and weigher will use default values for filter and goodness functions for
each back end if you do not define them yourself. If complete control is desired then a filter and goodness
function should be defined for each of the back ends in the cinder.conf file.

70 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Supported operations in filter and goodness functions

Below is a table of all the operations currently usable in custom filter and goodness functions created by
you:

Operations Type
+, -, *, /, ^ standard math
not, and, or, &, |, ! logic
>, >=, <, <=, ==, <>, != equality
+, - sign
x ? a : b ternary
abs(x), max(x, y), min(x, y) math helper functions

Caution: Syntax errors you define in filter or goodness strings are thrown at a volume request time.

Available properties when creating custom functions

There are various properties that can be used in either the filter_function or the
goodness_function strings. The properties allow access to volume info, qos settings, extra
specs, and so on.

The following properties and their sub-properties are currently available for use:

Host stats for a back end

In order to access these properties, use the following format: stats.<property>

host The hosts name

volume_backend_name The volume back end name

vendor_name The vendor name

driver_version The driver version

storage_protocol The storage protocol

QoS_support Boolean signifying whether QoS is supported

total_capacity_gb The total capacity in GB

allocated_capacity_gb The allocated capacity in GB

free_capacity_gb The free capacity in GB

reserved_percentage The reserved storage percentage

3.2. Administrating Cinder 71

Cinder Documentation, Release 20.3.2.dev3

Capabilities specific to a back end

These properties are determined by the specific back end you are creating filter and goodness functions
for. Some back ends may not have any properties available here. Once the capabilities vary too much
according to the backend, it is better to check its properties reported on the scheduler log. The sched-
uler reports these capabilities constantly. In order to access these properties, use the following format:
capabilities.<property>

Requested volume properties

In order to access the volume properties, use the following format: volume.<property>

status Status for the requested volume

volume_type_id The volume type ID

display_name The display name of the volume

volume_metadata Any metadata the volume has

reservations Any reservations the volume has

user_id The volumes user ID

attach_status The attach status for the volume

display_description The volumes display description

id The volumes ID

replication_status The volumes replication status

snapshot_id The volumes snapshot ID

encryption_key_id The volumes encryption key ID

source_volid The source volume ID

volume_admin_metadata Any admin metadata for this volume

source_replicaid The source replication ID

consistencygroup_id The consistency group ID

size The size of the volume in GB

metadata General metadata

The property most used from here will most likely be the size sub-property.

72 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Extra specs for the requested volume type

View the available properties for volume types by running:

$ cinder extra-specs-list

Current QoS specs for the requested volume type

View the available properties for volume types by running:

$ openstack volume qos list

In order to access these properties in a custom string use the following format:

<property>.<sub_property>

Driver filter and weigher usage examples

Below are examples for using the filter and weigher separately, together, and using driver-specific prop-
erties.

Example cinder.conf file configuration for customizing the filter function:

[default]
scheduler_default_filters = DriverFilter
enabled_backends = lvm-1, lvm-2

[lvm-1]
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name = sample_LVM01
filter_function = "volume.size < 10"

[lvm-2]
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name = sample_LVM02
filter_function = "volume.size >= 10"

The above example will filter volumes to different back ends depending on the size of the requested
volume. Default OpenStack Block Storage scheduler weighing is done. Volumes with a size less than
10ăGB are sent to lvm-1 and volumes with a size greater than or equal to 10ăGB are sent to lvm-2.

Example cinder.conf file configuration for customizing the goodness function:

[default]
scheduler_default_weighers = GoodnessWeigher
enabled_backends = lvm-1, lvm-2

[lvm-1]
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name = sample_LVM01

(continues on next page)

3.2. Administrating Cinder 73

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

goodness_function = "(volume.size < 5) ? 100 : 50"

[lvm-2]
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name = sample_LVM02
goodness_function = "(volume.size >= 5) ? 100 : 25"

The above example will determine the goodness rating of a back end based off of the requested volumes
size. Default OpenStack Block Storage scheduler filtering is done. The example shows how the ternary
if statement can be used in a filter or goodness function. If a requested volume is of size 10ăGB then
lvm-1 is rated as 50 and lvm-2 is rated as 100. In this case lvm-2 wins. If a requested volume is of size
3ăGB then lvm-1 is rated 100 and lvm-2 is rated 25. In this case lvm-1 would win.

Example cinder.conf file configuration for customizing both the filter and goodness functions:

[default]
scheduler_default_filters = DriverFilter
scheduler_default_weighers = GoodnessWeigher
enabled_backends = lvm-1, lvm-2

[lvm-1]
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name = sample_LVM01
filter_function = "stats.total_capacity_gb < 500"
goodness_function = "(volume.size < 25) ? 100 : 50"

[lvm-2]
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name = sample_LVM02
filter_function = "stats.total_capacity_gb >= 500"
goodness_function = "(volume.size >= 25) ? 100 : 75"

The above example combines the techniques from the first two examples. The best back end is now
decided based off of the total capacity of the back end and the requested volumes size.

Example cinder.conf file configuration for accessing driver specific properties:

[default]
scheduler_default_filters = DriverFilter
scheduler_default_weighers = GoodnessWeigher
enabled_backends = lvm-1,lvm-2,lvm-3

[lvm-1]
volume_group = stack-volumes-lvmdriver-1
volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name = lvmdriver-1
filter_function = "volume.size < 5"
goodness_function = "(capabilities.total_volumes < 3) ? 100 : 50"

[lvm-2]
volume_group = stack-volumes-lvmdriver-2

(continues on next page)

74 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name = lvmdriver-2
filter_function = "volume.size < 5"
goodness_function = "(capabilities.total_volumes < 8) ? 100 : 50"

[lvm-3]
volume_group = stack-volumes-lvmdriver-3
volume_driver = cinder.volume.drivers.LVMVolumeDriver
volume_backend_name = lvmdriver-3
goodness_function = "55"

The above is an example of how back-end specific properties can be used in the filter and goodness
functions. In this example the LVM drivers total_volumes capability is being used to determine which
host gets used during a volume request. In the above example, lvm-1 and lvm-2 will handle volume
requests for all volumes with a size less than 5ăGB. Both lvm-1 and lvm-2 will have the same priority
while lvm-1 contains 3 or less volumes. After that lvm-2 will have priority while it contains 8 or less
volumes. The lvm-3 will collect all volumes greater or equal to 5ăGB as well as all volumes once lvm-1
and lvm-2 lose priority.

Rate-limit volume copy bandwidth

When you create a new volume from an image or an existing volume, or when you upload a volume
image to the Image service, large data copy may stress disk and network bandwidth. To mitigate slow
down of data access from the instances, OpenStack Block Storage supports rate-limiting of volume data
copy bandwidth.

Configure volume copy bandwidth limit

To configure the volume copy bandwidth limit, set the volume_copy_bps_limit option in the config-
uration groups for each back end in the cinder.conf file. This option takes the integer of maximum
bandwidth allowed for volume data copy in byte per second. If this option is set to 0, the rate-limit is
disabled.

While multiple volume data copy operations are running in the same back end, the specified bandwidth
is divided to each copy.

Example cinder.conf configuration file to limit volume copy bandwidth of lvmdriver-1 up to 100
MiB/s:

[lvmdriver-1]
volume_group=cinder-volumes-1
volume_driver=cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name=LVM
volume_copy_bps_limit=104857600

Note: This feature requires libcgroup to set up blkio cgroup for disk I/O bandwidth limit. The libcgroup
is provided by the cgroup-tools package in Debian and Ubuntu, or by the libcgroup-tools package in
Fedora, Red Hat Enterprise Linux, CentOS, openSUSE, and SUSE Linux Enterprise.

3.2. Administrating Cinder 75

Cinder Documentation, Release 20.3.2.dev3

Note: Some back ends which use remote file systems such as NFS are not supported by this feature.

Oversubscription in thin provisioning

OpenStack Block Storage enables you to choose a volume back end based on virtual capacities for thin
provisioning using the oversubscription ratio.

A reference implementation is provided for the default LVM driver. The illustration below uses the LVM
driver as an example.

Configure oversubscription settings

To support oversubscription in thin provisioning, a flag max_over_subscription_ratio is introduced
into cinder.conf. This is a float representation of the oversubscription ratio when thin provisioning
is involved. Default ratio is 20.0, meaning provisioned capacity can be 20 times of the total physical
capacity. A ratio of 10.5 means provisioned capacity can be 10.5 times of the total physical capacity. A
ratio of 1.0 means provisioned capacity cannot exceed the total physical capacity. A ratio lower than 1.0
is ignored and the default value is used instead.

This parameter also can be set as max_over_subscription_ratio=auto. When using auto, Cinder
will automatically calculate the max_over_subscription_ratio based on the provisioned capacity
and the used space. This allows the creation of a larger number of volumes at the beginning of the pools
life, and start to restrict the creation as the free space approaches to 0 or the reserved limit.

Note: max_over_subscription_ratio can be configured for each back end when multiple-storage
back ends are enabled. It is provided as a reference implementation and is used by the LVM driver.
However, it is not a requirement for a driver to use this option from cinder.conf.

max_over_subscription_ratio is for configuring a back end. For a driver that supports multiple
pools per back end, it can report this ratio for each pool. The LVM driver does not support multiple
pools.

Setting this value to auto. The values calculated by Cinder can dynamically vary according to the pools
provisioned capacity and consumed space.

The existing reserved_percentage flag is used to prevent over provisioning. This flag represents the
percentage of the back-end capacity that is reserved.

Note: There is a change on how reserved_percentage is used. It was measured against the free
capacity in the past. Now it is measured against the total capacity.

76 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Capabilities

Drivers can report the following capabilities for a back end or a pool:

thin_provisioning_support = True(or False)
thick_provisioning_support = True(or False)
provisioned_capacity_gb = PROVISIONED_CAPACITY
max_over_subscription_ratio = MAX_RATIO

Where PROVISIONED_CAPACITY is the apparent allocated space indicating how much capacity has
been provisioned and MAX_RATIO is the maximum oversubscription ratio. For the LVM driver, it is
max_over_subscription_ratio in cinder.conf.

Two capabilities are added here to allow a back end or pool to claim support for thin provisioning, or
thick provisioning, or both.

The LVM driver reports thin_provisioning_support=True and
thick_provisioning_support=False if the lvm_type flag in cinder.conf is thin. Other-
wise it reports thin_provisioning_support=False and thick_provisioning_support=True.

Volume type extra specs

If volume type is provided as part of the volume creation request, it can have the following extra specs
defined:

'capabilities:thin_provisioning_support': '<is> True' or '<is> False'
'capabilities:thick_provisioning_support': '<is> True' or '<is> False'

Note: capabilities scope key before thin_provisioning_support and
thick_provisioning_support is not required. So the following works too:

'thin_provisioning_support': '<is> True' or '<is> False'
'thick_provisioning_support': '<is> True' or '<is> False'

The above extra specs are used by the scheduler to find a back end that supports thin provisioning, thick
provisioning, or both to match the needs of a specific volume type.

Volume replication extra specs

OpenStack Block Storage has the ability to create volume replicas. Administrators can define a storage
policy that includes replication by adjusting the cinder volume driver. Volume replication for OpenStack
Block Storage helps safeguard OpenStack environments from data loss during disaster recovery.

To enable replication when creating volume types, configure the cinder volume with
capabilities:replication="<is> True".

Each volume created with the replication capability set to True generates a copy of the volume on a
storage back end.

3.2. Administrating Cinder 77

Cinder Documentation, Release 20.3.2.dev3

One use case for replication involves an OpenStack cloud environment installed across two data centers
located nearby each other. The distance between the two data centers in this use case is the length of a
city.

At each data center, a cinder host supports the Block Storage service. Both data centers include storage
back ends.

Depending on the storage requirements, there can be one or two cinder hosts. The administrator accesses
the /etc/cinder/cinder.conf configuration file and sets capabilities:replication="<is>
True".

If one data center experiences a service failure, administrators can redeploy the VM. The VM will run
using a replicated, backed up volume on a host in the second data center.

Capacity filter

In the capacity filter, max_over_subscription_ratio is used when choosing a back end if
thin_provisioning_support is True and max_over_subscription_ratio is greater than 1.0.

Capacity weigher

In the capacity weigher, virtual free capacity is used for ranking if thin_provisioning_support is
True. Otherwise, real free capacity will be used as before.

Image-Volume cache

OpenStack Block Storage has an optional Image cache which can dramatically improve the performance
of creating a volume from an image. The improvement depends on many factors, primarily how quickly
the configured back end can clone a volume.

When a volume is first created from an image, a new cached image-volume will be created that is owned
by the Block Storage Internal Tenant. Subsequent requests to create volumes from that image will clone
the cached version instead of downloading the image contents and copying data to the volume.

The cache itself is configurable per back end and will contain the most recently used images.

Configure the Internal Tenant

The Image-Volume cache requires that the Internal Tenant be configured for the Block Storage services.
This project will own the cached image-volumes so they can be managed like normal users including
tools like volume quotas. This protects normal users from having to see the cached image-volumes, but
does not make them globally hidden.

To enable the Block Storage services to have access to an Internal Tenant, set the following options in
the cinder.conf file:

cinder_internal_tenant_project_id = PROJECT_ID
cinder_internal_tenant_user_id = USER_ID

An example cinder.conf configuration file:

78 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

cinder_internal_tenant_project_id = b7455b8974bb4064ad247c8f375eae6c
cinder_internal_tenant_user_id = f46924c112a14c80ab0a24a613d95eef

Note: The actual user and project that are configured for the Internal Tenant do not require any special
privileges. They can be the Block Storage service project or can be any normal project and user.

Configure the Image-Volume cache

To enable the Image-Volume cache, set the following configuration option in the cinder.conf file:

image_volume_cache_enabled = True

Note: If you use Ceph as a back end, set the following configuration option in the cinder.conf file:

[ceph]
image_volume_cache_enabled = True

This can be scoped per back end definition or in the default options.

There are optional configuration settings that can limit the size of the cache. These can also be scoped
per back end or in the default options in the cinder.conf file:

image_volume_cache_max_size_gb = SIZE_GB
image_volume_cache_max_count = MAX_COUNT

By default they will be set to 0, which means unlimited.

For example, a configuration which would limit the max size to 200 GB and 50 cache entries will be
configured as:

image_volume_cache_max_size_gb = 200
image_volume_cache_max_count = 50

Notifications

Cache actions will trigger Telemetry messages. There are several that will be sent.

• image_volume_cache.miss - A volume is being created from an image which was not found in
the cache. Typically this will mean a new cache entry would be created for it.

• image_volume_cache.hit - A volume is being created from an image which was found in the
cache and the fast path can be taken.

• image_volume_cache.evict - A cached image-volume has been deleted from the cache.

3.2. Administrating Cinder 79

Cinder Documentation, Release 20.3.2.dev3

Managing cached Image-Volumes

In normal usage there should be no need for manual intervention with the cache. The entries and their
backing Image-Volumes are managed automatically.

If needed, you can delete these volumes manually to clear the cache. By using the standard volume
deletion APIs, the Block Storage service will clean up correctly.

Volume-backed image

OpenStack Block Storage can quickly create a volume from an image that refers to a volume storing
image data (Image-Volume). Compared to the other stores such as file and swift, creating a volume from
a Volume-backed image performs better when the block storage driver supports efficient volume cloning.

If the image is set to public in the Image service, the volume data can be shared among projects.

Configure the Volume-backed image

Volume-backed image feature requires locations information from the cinder store of the Image ser-
vice. To enable the Image service to use the cinder store, add cinder to the stores option in the
glance_store section of the glance-api.conf file:

stores = file, http, swift, cinder

To expose locations information, set the following options in the DEFAULT section of the glance-api.
conf file:

show_multiple_locations = True

To enable the Block Storage services to create a new volume by cloning Image- Volume, set the following
options in the DEFAULT section of the cinder.conf file. For example:

allowed_direct_url_schemes = cinder

To enable the openstack image create --volume <volume> command to create an image that
refers an Image-Volume, set the following options in each back-end section of the cinder.conf file:

image_upload_use_cinder_backend = True

By default, the openstack image create --volume <volume> command creates the Image-
Volume in the current project. To store the Image-Volume into the internal project, set the following
options in each back-end section of the cinder.conf file:

image_upload_use_internal_tenant = True

To make the Image-Volume in the internal project accessible from the Image service, set the following
options in the glance_store section of the glance-api.conf file:

• cinder_store_auth_address

• cinder_store_user_name

• cinder_store_password

80 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• cinder_store_project_name

Creating a Volume-backed image

To register an existing volume as a new Volume-backed image, use the following commands:

$ openstack image create --disk-format raw --container-format bare IMAGE_NAME

$ glance location-add <image-uuid> --url cinder://<volume-uuid>

If the image_upload_use_cinder_backend option is enabled, the following command creates a new
Image-Volume by cloning the specified volume and then registers its location to a new image. The disk
format and the container format must be raw and bare (default). Otherwise, the image is uploaded to the
default store of the Image service.

$ openstack image create --volume SOURCE_VOLUME IMAGE_NAME

Get capabilities

When an administrator configures volume type and extra specs of storage on the back end, the
administrator has to read the right documentation that corresponds to the version of the storage back end.
Deep knowledge of storage is also required.

OpenStack Block Storage enables administrators to configure volume type and extra specs without
specific knowledge of the storage back end.

Note:

• Volume Type: A group of volume policies.

• Extra Specs: The definition of a volume type. This is a group of policies. For example, provision
type, QOS that will be used to define a volume at creation time.

• Capabilities: What the current deployed back end in Cinder is able to do. These correspond to
extra specs.

Usage of cinder client

When an administrator wants to define new volume types for their OpenStack cloud, the administrator
would fetch a list of capabilities for a particular back end using the cinder client.

First, get a list of the services:

$ openstack volume service list
+------------------+-------------------+------+---------+-------+-------------
↪→---------------+
| Binary | Host | Zone | Status | State | Updated At ␣
↪→ |
+------------------+-------------------+------+---------+-------+-------------
↪→---------------+ (continues on next page)

3.2. Administrating Cinder 81

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| cinder-scheduler | controller | nova | enabled | up | 2016-10-
↪→24T13:53:35.000000 |
| cinder-volume | block1@ABC-driver | nova | enabled | up | 2016-10-
↪→24T13:53:35.000000 |
| cinder-backup | controller | nova | enabled | up | 2016-10-
↪→24T13:53:35.000000 |
+------------------+-------------------+------+---------+-------+-------------
↪→---------------+

With one of the listed hosts, pass that to get-capabilities, then the administrator can obtain volume
stats and also back end capabilities as listed below.

$ cinder get-capabilities block1@ABC-driver
+---------------------+--+
| Volume stats | Value |
+---------------------+--+
description	None
display_name	Capabilities of Cinder Vendor ABC driver
driver_version	2.0.0
namespace	OS::Storage::Capabilities::block1@ABC-driver
pool_name	None
replication_targets	[]
storage_protocol	iSCSI
vendor_name	Vendor ABC
visibility	pool
volume_backend_name	ABC-driver
+---------------------+--+	
+----------------------+---+	
Backend properties	Value
+----------------------+---+	
compression	{u'type':u'boolean', u'title':u'Compression', ...}
ABC:compression_type	{u'enum':u'['lossy', 'lossless', 'special']', ...}
qos	{u'type':u'boolean', u'title':u'QoS', ...}
replication	{u'type':u'boolean', u'title':u'Replication', ...}
thin_provisioning	{u'type':u'boolean', u'title':u'Thin Provisioning'}
ABC:minIOPS	{u'type':u'integer', u'title':u'Minimum IOPS QoS',}
ABC:maxIOPS	{u'type':u'integer', u'title':u'Maximum IOPS QoS',}
ABC:burstIOPS	{u'type':u'integer', u'title':u'Burst IOPS QoS',..}
+----------------------+---+

82 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Disable a service

When an administrator wants to disable a service, identify the Binary and the Host of the service. Use
the :command:‘ openstack volume service set‘ command combined with the Binary and Host to disable
the service:

1. Determine the binary and host of the service you want to remove initially.

$ openstack volume service list
+------------------+----------------------+------+---------+-------+------
↪→----------------------+
| Binary | Host | Zone | Status | State |␣
↪→Updated At |
+------------------+----------------------+------+---------+-------+------
↪→----------------------+
| cinder-scheduler | devstack | nova | enabled | up | 2016-
↪→10-24T13:53:35.000000 |
| cinder-volume | devstack@lvmdriver-1 | nova | enabled | up | 2016-
↪→10-24T13:53:35.000000 |
| cinder-backup | devstack | nova | enabled | up | 2016-
↪→10-24T13:53:35.000000 |
+------------------+----------------------+------+---------+-------+------
↪→----------------------+

2. Disable the service using the Binary and Host name, placing the Host before the Binary name.

$ openstack volume service set --disable HOST_NAME BINARY_NAME

3. Remove the service from the database.

$ cinder-manage service remove BINARY_NAME HOST_NAME

Usage of REST API

New endpoint to get capabilities list for specific storage back end is also available. For more details,
refer to the Block Storage API reference.

API request:

GET /v3/{tenant_id}/capabilities/{hostname}

Example of return value:

{
"namespace": "OS::Storage::Capabilities::block1@ABC-driver",
"volume_backend_name": "ABC-driver",
"pool_name": "pool",
"driver_version": "2.0.0",
"storage_protocol": "iSCSI",
"display_name": "Capabilities of Cinder Vendor ABC driver",
"description": "None",

(continues on next page)

3.2. Administrating Cinder 83

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

"visibility": "public",
"properties": {
"thin_provisioning": {
"title": "Thin Provisioning",
"description": "Sets thin provisioning.",
"type": "boolean"

},
"compression": {
"title": "Compression",
"description": "Enables compression.",
"type": "boolean"

},
"ABC:compression_type": {
"title": "Compression type",
"description": "Specifies compression type.",
"type": "string",
"enum": [
"lossy", "lossless", "special"

]
},
"replication": {
"title": "Replication",
"description": "Enables replication.",
"type": "boolean"

},
"qos": {
"title": "QoS",
"description": "Enables QoS.",
"type": "boolean"

},
"ABC:minIOPS": {
"title": "Minimum IOPS QoS",
"description": "Sets minimum IOPS if QoS is enabled.",
"type": "integer"

},
"ABC:maxIOPS": {
"title": "Maximum IOPS QoS",
"description": "Sets maximum IOPS if QoS is enabled.",
"type": "integer"

},
"ABC:burstIOPS": {
"title": "Burst IOPS QoS",
"description": "Sets burst IOPS if QoS is enabled.",
"type": "integer"

},
}

}

84 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Usage of volume type access extension

Some volume types should be restricted only. For example, test volume types where you are testing a
new technology or ultra high performance volumes (for special cases) where you do not want most users
to be able to select these volumes. An administrator/operator can then define private volume types using
cinder client. Volume type access extension adds the ability to manage volume type access. Volume
types are public by default. Private volume types can be created by setting the --private parameter at
creation time. Access to a private volume type can be controlled by adding or removing a project from
it. Private volume types without projects are only visible by users with the admin role/context.

Create a public volume type by setting --public parameter:

$ openstack volume type create vol_Type1 --description test1 --public
+-------------+--------------------------------------+
| Field | Value |
+-------------+--------------------------------------+
description	test1
id	b7dbed9e-de78-49f8-a840-651ae7308592
is_public	True
name	vol_Type1
+-------------+--------------------------------------+

Create a private volume type by setting --private parameter:

$ openstack volume type create vol_Type2 --description test2 --private
+-------------+--------------------------------------+
| Field | Value |
+-------------+--------------------------------------+
description	test2
id	154baa73-d2c4-462f-8258-a2df251b0d39
is_public	False
name	vol_Type2
+-------------+--------------------------------------+

Get a list of the volume types:

$ openstack volume type list
+--------------------------------------+-------------+
| ID | Name |
+--------------------------------------+-------------+
0a948c84-bad5-4fba-88a2-c062006e4f6b	vol_Type1
87e5be6f-9491-4ea5-9906-9ac56494bb91	lvmdriver-1
fd508846-213f-4a07-aaf2-40518fb9a23f	vol_Type2
+--------------------------------------+-------------+

Get a list of the projects:

$ openstack project list
+----------------------------------+--------------------+
| ID | Name |
+----------------------------------+--------------------+
| 4105ead90a854100ab6b121266707f2b | alt_demo |

(continues on next page)

3.2. Administrating Cinder 85

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

4a22a545cedd4fcfa9836eb75e558277	admin
71f9cdb1a3ab4b8e8d07d347a2e146bb	service
c4860af62ffe465e99ed1bc08ef6082e	demo
e4b648ba5108415cb9e75bff65fa8068	invisible_to_admin
+----------------------------------+--------------------+

Add volume type access for the given demo project, using its project-id:

$ openstack volume type set --project c4860af62ffe465e99ed1bc08ef6082e \
vol_Type2

List the access information about the given volume type:

$ openstack volume type show vol_Type2
+--------------------+--------------------------------------+
| Field | Value |
+--------------------+--------------------------------------+
access_project_ids	c4860af62ffe465e99ed1bc08ef6082e
description	
id	fd508846-213f-4a07-aaf2-40518fb9a23f
is_public	False
name	vol_Type2
properties	
qos_specs_id	None
+--------------------+--------------------------------------+

Remove volume type access for the given project:

$ openstack volume type unset --project c4860af62ffe465e99ed1bc08ef6082e \
vol_Type2

$ openstack volume type show vol_Type2
+--------------------+--------------------------------------+
| Field | Value |
+--------------------+--------------------------------------+
access_project_ids	
description	
id	fd508846-213f-4a07-aaf2-40518fb9a23f
is_public	False
name	vol_Type2
properties	
qos_specs_id	None
+--------------------+--------------------------------------+

86 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

User visible extra specs

Starting in Xena, certain volume type extra specs (i.e. properties) are considered user visible, meaning
their visibility is not restricted to only cloud administrators. This feature provides regular users with more
information about the volume types available to them, and lets them make more informed decisions on
which volume type to choose when creating volumes.

The following extra spec keys are treated as user visible:

• RESKEY:availability_zones

• multiattach

• replication_enabled

Note:

• The set of user visible extra specs is a fixed list that is not configurable.

• The feature is entirely policy based, and does not require a new microversion.

Behavior using openstack client

Consider the following volume type, as viewed from an administrators perspective. In this example,
multiattach is a user visible extra spec and volume_backend_name is not.

Administrator behavior
[admin@host]$ openstack volume type show vol_type
+--------------------+---+
| Field | Value |
+--------------------+---+
access_project_ids	None
description	None
id	d03a0f33-e695-4f5c-b712-7d92abbf72be
is_public	True
name	vol_type
properties	multiattach='<is> True', volume_backend_name='secret'
qos_specs_id	None
+--------------------+---+

Here is the output when a regular user executes the same command. Notice only the user visible
multiattach property is listed.

Regular user behavior
[user@host]$ openstack volume type show vol_type
+--------------------+--------------------------------------+
| Field | Value |
+--------------------+--------------------------------------+
access_project_ids	None
description	None
id	d03a0f33-e695-4f5c-b712-7d92abbf72be

(continues on next page)

3.2. Administrating Cinder 87

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

is_public	True
name	vol_type
properties	multiattach='<is> True'
+--------------------+--------------------------------------+

The behavior for listing volume types is similar. Administrators will see all extra specs but regular
users will see only user visible extra specs.

Administrator behavior
[admin@host]$ openstack volume type list --long
+--------------------------------------+-------------+-----------+------------
↪→---------+---+
| ID | Name | Is Public |␣
↪→Description | Properties ␣
↪→|
+--------------------------------------+-------------+-----------+------------
↪→---------+---+
| d03a0f33-e695-4f5c-b712-7d92abbf72be | vol_type | True | None ␣
↪→ | multiattach='<is> True', volume_backend_name='secret' |
| 80f38273-f4b9-4862-a4e6-87692eb66a96 | __DEFAULT__ | True | Default␣
↪→Volume Type | |
+--------------------------------------+-------------+-----------+------------
↪→---------+---+

Regular user behavior
[user@host]$ openstack volume type list --long
+--------------------------------------+-------------+-----------+------------
↪→---------+-------------------------+
| ID | Name | Is Public |␣
↪→Description | Properties |
+--------------------------------------+-------------+-----------+------------
↪→---------+-------------------------+
| d03a0f33-e695-4f5c-b712-7d92abbf72be | vol_type | True | None ␣
↪→ | multiattach='<is> True' |
| 80f38273-f4b9-4862-a4e6-87692eb66a96 | __DEFAULT__ | True | Default␣
↪→Volume Type | |
+--------------------------------------+-------------+-----------+------------
↪→---------+-------------------------+

Regular users may view these properties, but they may not modify them. Attempts to modify a user
visible property by a non-administrator will fail.

[user@host]$ openstack volume type set --property multiattach='<is> False'␣
↪→vol_type
Failed to set volume type property: Policy doesn't allow
volume_extension:types_extra_specs:create to be performed. (HTTP 403)

88 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Filtering with extra specs

API microversion 3.52 adds support for using extra specs to filter the list of volume types. Regular
users are able to use that feature to filter for user visible extra specs. If a regular user attempts to filter
on a non-user visible extra spec then an empty list is returned.

Administrator behavior
[admin@host]$ cinder --os-volume-api-version 3.52 type-list \
> --filters extra_specs={"multiattach":"<is> True"}
+--------------------------------------+----------+-------------+-----------+
| ID | Name | Description | Is_Public |
+--------------------------------------+----------+-------------+-----------+
| d03a0f33-e695-4f5c-b712-7d92abbf72be | vol_type | - | True |
+--------------------------------------+----------+-------------+-----------+

[admin@host]$ cinder --os-volume-api-version 3.52 type-list \
> --filters extra_specs={"volume_backend_name":"secret"}
+--------------------------------------+----------+-------------+-----------+
| ID | Name | Description | Is_Public |
+--------------------------------------+----------+-------------+-----------+
| d03a0f33-e695-4f5c-b712-7d92abbf72be | vol_type | - | True |
+--------------------------------------+----------+-------------+-----------+

Regular user behavior
[user@host]$ cinder --os-volume-api-version 3.52 type-list \
> --filters extra_specs={"multiattach":"<is> True"}
+--------------------------------------+----------+-------------+-----------+
| ID | Name | Description | Is_Public |
+--------------------------------------+----------+-------------+-----------+
| d03a0f33-e695-4f5c-b712-7d92abbf72be | vol_type | - | True |
+--------------------------------------+----------+-------------+-----------+

[user@host]$ cinder --os-volume-api-version 3.52 type-list \
> --filters extra_specs={"volume_backend_name":"secret"}
+----+------+-------------+-----------+
| ID | Name | Description | Is_Public |
+----+------+-------------+-----------+
+----+------+-------------+-----------+

Security considerations

Cloud administrators who do not wish to expose any extra specs to regular users may restore the
previous behavior by setting the following policies to their pre-Xena default values.

"volume_extension:access_types_extra_specs": "rule:admin_api"
"volume_extension:types_extra_specs:index": "rule:admin_api"
"volume_extension:types_extra_specs:show": "rule:admin_api"

To restrict regular users from using extra specs to filter the list of volume types, modify
/etc/cinder/resource_filters.json to restore the volume_type entry to its pre-Xena default value.

3.2. Administrating Cinder 89

Cinder Documentation, Release 20.3.2.dev3

"volume_type": ["is_public"]

Generic volume groups

Generic volume group support is available in OpenStack Block Storage (cinder) since the Newton release.
The support is added for creating group types and group specs, creating groups of volumes, and creating
snapshots of groups. The group operations can be performed using the Block Storage command line.

A group type is a type for a group just like a volume type for a volume. A group type can also have
associated group specs similar to extra specs for a volume type.

In cinder, there is a group construct called consistency group. Consistency groups only support consistent
group snapshots and only a small number of drivers can support it. The following is a list of drivers that
support consistency groups and the release when the support was added:

• Juno: EMC VNX

• Kilo: EMC VMAX, IBM (GPFS, Storwize, SVC, and XIV), ProphetStor, Pure

• Liberty: Dell Storage Center, EMC XtremIO, HPE 3Par and LeftHand

• Mitaka: EMC ScaleIO, NetApp Data ONTAP, SolidFire

• Newton: CoprHD, FalconStor, Huawei

Consistency group cannot be extended easily to serve other purposes. A tenant may want to put volumes
used in the same application together in a group so that it is easier to manage them together, and this group
of volumes may or may not support consistent group snapshot. Generic volume group is introduced to
solve this problem.

There is a plan to migrate existing consistency group operations to use generic volume group operations
in future releases. More information can be found in Cinder specs.

Note: Only Block Storage V3 API supports groups. You can specify --os-volume-api-version
3.x when using the cinder command line for group operations where 3.x contains a microversion value
for that command. The generic volume group feature was completed in several patches. As a result, the
minimum required microversion is different for group types, groups, and group snapshots APIs.

The following group type operations are supported:

• Create a group type.

• Delete a group type.

• Set group spec for a group type.

• Unset group spec for a group type.

• List group types.

• Show a group type details.

• Update a group.

• List group types and group specs.

The following group and group snapshot operations are supported:

90 Chapter 3. For operators

https://specs.openstack.org/openstack/cinder-specs/specs/newton/group-snapshots.html

Cinder Documentation, Release 20.3.2.dev3

• Create a group, given group type and volume types.

Note: A group must have one group type. A group can support more than one volume type. The
scheduler is responsible for finding a back end that can support the given group type and volume
types.

A group can only contain volumes hosted by the same back end.

A group is empty upon its creation. Volumes need to be created and added to it later.

• Show a group.

• List groups.

• Delete a group.

• Modify a group.

• Create a volume and add it to a group.

• Create a snapshot for a group.

• Show a group snapshot.

• List group snapshots.

• Delete a group snapshot.

• Create a group from a group snapshot.

• Create a group from a source group.

The following operations are not allowed if a volume is in a group:

• Volume migration.

• Volume retype.

• Volume deletion.

Note: A group has to be deleted as a whole with all the volumes.

The following operations are not allowed if a volume snapshot is in a group snapshot:

• Volume snapshot deletion.

Note: A group snapshot has to be deleted as a whole with all the volume snapshots.

The details of group type operations are shown in the following. The minimum microversion to support
group type and group specs is 3.11:

Create a group type:

cinder --os-volume-api-version 3.11 group-type-create
[--description DESCRIPTION]
[--is-public IS_PUBLIC]
NAME

3.2. Administrating Cinder 91

Cinder Documentation, Release 20.3.2.dev3

Note: The parameter NAME is required. The --is-public IS_PUBLIC determines whether the group
type is accessible to the public. It is True by default. By default, the policy on privileges for creating a
group type is admin-only.

Show a group type:

cinder --os-volume-api-version 3.11 group-type-show
GROUP_TYPE

Note: The parameter GROUP_TYPE is the name or UUID of a group type.

List group types:

cinder --os-volume-api-version 3.11 group-type-list

Note: Only admin can see private group types.

Update a group type:

cinder --os-volume-api-version 3.11 group-type-update
[--name NAME]
[--description DESCRIPTION]
[--is-public IS_PUBLIC]
GROUP_TYPE_ID

Note: The parameter GROUP_TYPE_ID is the UUID of a group type. By default, the policy on privileges
for updating a group type is admin-only.

Delete group type or types:

cinder --os-volume-api-version 3.11 group-type-delete
GROUP_TYPE [GROUP_TYPE ...]

Note: The parameter GROUP_TYPE is name or UUID of the group type or group types to be deleted. By
default, the policy on privileges for deleting a group type is admin-only.

Set or unset group spec for a group type:

cinder --os-volume-api-version 3.11 group-type-key
GROUP_TYPE ACTION KEY=VALUE [KEY=VALUE ...]

Note: The parameter GROUP_TYPE is the name or UUID of a group type. Valid values for the parameter
ACTION are set or unset. KEY=VALUE is the group specs key and value pair to set or unset. For unset,

92 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

specify only the key. By default, the policy on privileges for setting or unsetting group specs key is
admin-only.

List group types and group specs:

cinder --os-volume-api-version 3.11 group-specs-list

Note: By default, the policy on privileges for seeing group specs is admin-only.

The details of group operations are shown in the following. The minimum microversion to support groups
operations is 3.13.

Create a group:

cinder --os-volume-api-version 3.13 group-create
[--name NAME]
[--description DESCRIPTION]
[--availability-zone AVAILABILITY_ZONE]
GROUP_TYPE VOLUME_TYPES

Note: The parameters GROUP_TYPE and VOLUME_TYPES are required. GROUP_TYPE is the name or
UUID of a group type. VOLUME_TYPES can be a list of names or UUIDs of volume types separated by
commas without spaces in between. For example, volumetype1,volumetype2,volumetype3..

Show a group:

cinder --os-volume-api-version 3.13 group-show
GROUP

Note: The parameter GROUP is the name or UUID of a group.

List groups:

cinder --os-volume-api-version 3.13 group-list
[--all-tenants [<0|1>]]

Note: --all-tenants specifies whether to list groups for all tenants. Only admin can use this option.

Create a volume and add it to a group:

cinder --os-volume-api-version 3.13 create
--volume-type VOLUME_TYPE
--group-id GROUP_ID SIZE

Note: When creating a volume and adding it to a group, the parameters VOLUME_TYPE and GROUP_ID

3.2. Administrating Cinder 93

Cinder Documentation, Release 20.3.2.dev3

must be provided. This is because a group can support more than one volume type.

Delete a group:

cinder --os-volume-api-version 3.13 group-delete
[--delete-volumes]
GROUP [GROUP ...]

Note: --delete-volumes allows or disallows groups to be deleted if they are not empty. If the group
is empty, it can be deleted without --delete-volumes. If the group is not empty, the flag is required
for it to be deleted. When the flag is specified, the group and all volumes in the group will be deleted.

Modify a group:

cinder --os-volume-api-version 3.13 group-update
[--name NAME]
[--description DESCRIPTION]
[--add-volumes UUID1,UUID2,......]
[--remove-volumes UUID3,UUID4,......]
GROUP

Note: The parameter UUID1,UUID2,...... is the UUID of one or more volumes to be added to the
group, separated by commas. Similarly the parameter UUID3,UUID4,...... is the UUID of one or
more volumes to be removed from the group, separated by commas.

The details of group snapshots operations are shown in the following. The minimum microversion to
support group snapshots operations is 3.14.

Create a snapshot for a group:

cinder --os-volume-api-version 3.14 group-snapshot-create
[--name NAME]
[--description DESCRIPTION]
GROUP

Note: The parameter GROUP is the name or UUID of a group.

Show a group snapshot:

cinder --os-volume-api-version 3.14 group-snapshot-show
GROUP_SNAPSHOT

Note: The parameter GROUP_SNAPSHOT is the name or UUID of a group snapshot.

List group snapshots:

94 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

cinder --os-volume-api-version 3.14 group-snapshot-list
[--all-tenants [<0|1>]]
[--status STATUS]
[--group-id GROUP_ID]

Note: --all-tenants specifies whether to list group snapshots for all tenants. Only admin can use
this option. --status STATUS filters results by a status. --group-id GROUP_ID filters results by a
group id.

Delete group snapshot:

cinder --os-volume-api-version 3.14 group-snapshot-delete
GROUP_SNAPSHOT [GROUP_SNAPSHOT ...]

Note: The parameter GROUP_SNAPSHOT specifies the name or UUID of one or more group snapshots to
be deleted.

Create a group from a group snapshot or a source group:

$ cinder --os-volume-api-version 3.14 group-create-from-src
[--group-snapshot GROUP_SNAPSHOT]
[--source-group SOURCE_GROUP]
[--name NAME]
[--description DESCRIPTION]

Note: The parameter GROUP_SNAPSHOT is a name or UUID of a group snapshot. The parameter
SOURCE_GROUP is a name or UUID of a source group. Either GROUP_SNAPSHOT or SOURCE_GROUP
must be specified, but not both.

Note: To enable the use of encrypted volumes, see the setup instructions in Create an encrypted volume
type.

3.2. Administrating Cinder 95

Cinder Documentation, Release 20.3.2.dev3

Troubleshoot your installation

This section provides useful tips to help you troubleshoot your Block Storage installation.

Troubleshoot the Block Storage configuration

Most Block Storage errors are caused by incorrect volume configurations that result in volume creation
failures. To resolve these failures, review these logs:

• cinder-api log (/var/log/cinder/api.log)

• cinder-volume log (/var/log/cinder/volume.log)

The cinder-api log is useful for determining if you have endpoint or connectivity issues. If you send
a request to create a volume and it fails, review the cinder-api log to determine whether the request
made it to the Block Storage service. If the request is logged and you see no errors or tracebacks, check
the cinder-volume log for errors or tracebacks.

Note: Create commands are listed in the cinder-api log.

These entries in the cinder.conf file can be used to assist in troubleshooting your Block Storage con-
figuration.

Print debugging output (set logging level to DEBUG instead
of default WARNING level). (boolean value)
debug=false

Log output to standard error (boolean value)
use_stderr=true

Default file mode used when creating log files (string
value)
logfile_mode=0644

format string to use for log messages with context (string
value)
logging_context_format_string=%(asctime)s.%(msecs)03d %(levelname)s
%(name)s [%(request_id)s %(user)s %(tenant)s] %(instance)s%(message)s

format string to use for log mes #logging_default_format_string=%(asctime)s.
%(msecs)03d %(process)d %(levelname)s %(name)s [-] %(instance)s%(message)s

data to append to log format when level is DEBUG (string
value)
logging_debug_format_suffix=%(funcName)s %(pathname)s:%(lineno)d

prefix each line of exception output with this format
(string value)
logging_exception_prefix=%(asctime)s.%(msecs)03d %(process)d TRACE %(name)s
%(instance)s

(continues on next page)

96 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

list of logger=LEVEL pairs (list value)
default_log_levels=amqplib=WARN,sqlalchemy=WARN,boto=WARN,suds=INFO,
keystone=INFO,eventlet.wsgi.server=WARNsages without context
(string value)

If an instance is passed with the log message, format it
like this (string value)
instance_format="[instance: %(uuid)s]"

If an instance UUID is passed with the log message, format
it like this (string value)
#instance_uuid_format="[instance: %(uuid)s] "

Format string for %%(asctime)s in log records. Default:
%(default)s (string value)
log_date_format=%Y-%m-%d %H:%M:%S

(Optional) Name of log file to output to. If not set,
logging will go to stdout. (string value)
log_file=<None>

(Optional) The directory to keep log files in (will be
prepended to --log-file) (string value)
log_dir=<None>
instance_uuid_format="[instance: %(uuid)s]"

If this option is specified, the logging configuration file
specified is used and overrides any other logging options
specified. Please see the Python logging module
documentation for details on logging configuration files.
(string value)
Use syslog for logging. (boolean value)
use_syslog=false

syslog facility to receive log lines (string value)
syslog_log_facility=LOG_USER
log_config=<None>

These common issues might occur during configuration, and the following potential solutions describe
how to address the issues.

3.2. Administrating Cinder 97

Cinder Documentation, Release 20.3.2.dev3

Issues with state_path and volumes_dir settings

Problem

The OpenStack Block Storage uses tgtd as the default iSCSI helper and implements persistent targets.
This means that in the case of a tgt restart, or even a node reboot, your existing volumes on that node
will be restored automatically with their original IQN .

By default, Block Storage uses a state_path variable, which if installing with Yum or APT should
be set to /var/lib/cinder/. The next part is the volumes_dir variable, by default this appends a
volumes directory to the state_path. The result is a file-tree: /var/lib/cinder/volumes/.

Solution

In order to ensure nodes are restored to their original IQN, the iSCSI target information needs to be stored
in a file on creation that can be queried in case of restart of the tgt daemon. While the installer should
handle all this, it can go wrong.

If you have trouble creating volumes and this directory does not exist you should see an error message
in the cinder-volume log indicating that the volumes_dir does not exist, and it should provide infor-
mation about which path it was looking for.

The persistent tgt include file

Problem

The Block Storage service may have issues locating the persistent tgt include file. Along with the
volumes_dir option, the iSCSI target driver also needs to be configured to look in the correct place for
the persistent tgt include `` file. This is an entry in the ``/etc/tgt/conf.d file that
should have been set during the OpenStack installation.

Solution

If issues occur, verify that you have a /etc/tgt/conf.d/cinder.conf file. If the file is not present,
create it with:

echo 'include /var/lib/cinder/volumes/ *' >> /etc/tgt/conf.d/cinder.conf

Failed to create iscsi target error in the cinder-volume.log file

Problem

2013-03-12 01:35:43 1248 TRACE cinder.openstack.common.rpc.amqp \
ISCSITargetCreateFailed: \
Failed to create iscsi target for volume \
volume-137641b2-af72-4a2f-b243-65fdccd38780.

98 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

You might see this error in cinder-volume.log after trying to create a volume that is 1 GB.

Solution

To fix this issue, change the content of the /etc/tgt/targets.conf file from include /etc/tgt/
conf.d/*.conf to include /etc/tgt/conf.d/cinder_tgt.conf, as follows:

include /etc/tgt/conf.d/cinder_tgt.conf
include /etc/tgt/conf.d/cinder.conf
default-driver iscsi

Restart tgt and cinder-* services, so they pick up the new configuration.

Multipath call failed exit

Problem

Multipath call failed exit. This warning occurs in the Compute log if you do not have the optional
multipath-tools package installed on the compute node. This is an optional package and the vol-
ume attachment does work without the multipath tools installed. If the multipath-tools package is
installed on the compute node, it is used to perform the volume attachment. The IDs in your message are
unique to your system.

WARNING nova.storage.linuxscsi [req-cac861e3-8b29-4143-8f1b-705d0084e571
admin admin|req-cac861e3-8b29-4143-8f1b-705d0084e571 admin admin]
Multipath call failed exit (96)

Solution

Run the following command on the compute node to install the multipath-tools packages.

apt-get install multipath-tools

HTTP bad request in cinder volume log

Problem

These errors appear in the cinder-volume.log file:

2013-05-03 15:16:33 INFO [cinder.volume.manager] Updating volume status
2013-05-03 15:16:33 DEBUG [hp3parclient.http]
REQ: curl -i https://10.10.22.241:8080/api/v1/cpgs -X GET -H "X-Hp3Par-Wsapi-
↪→Sessionkey: 48dc-b69ed2e5
f259c58e26df9a4c85df110c-8d1e8451" -H "Accept: application/json" -H "User-
↪→Agent: python-3parclient"

(continues on next page)

3.2. Administrating Cinder 99

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

2013-05-03 15:16:33 DEBUG [hp3parclient.http] RESP:{'content-length': 311,
↪→'content-type': 'text/plain',
'status': '400'}

2013-05-03 15:16:33 DEBUG [hp3parclient.http] RESP BODY:Second simultaneous␣
↪→read on fileno 13 detected.
Unless you really know what you're doing, make sure that only one greenthread␣
↪→can read any particular socket.
Consider using a pools.Pool. If you do know what you're doing and want to␣
↪→disable this error,
call eventlet.debug.hub_multiple_reader_prevention(False)

2013-05-03 15:16:33 ERROR [cinder.manager] Error during VolumeManager._report_
↪→driver_status: Bad request (HTTP 400)
Traceback (most recent call last):
File "/usr/lib/python2.7/dist-packages/cinder/manager.py", line 167, in␣
↪→periodic_tasks task(self, context)
File "/usr/lib/python2.7/dist-packages/cinder/volume/manager.py", line 690,␣
↪→in _report_driver_status volume_stats =
self.driver.get_volume_stats(refresh=True)
File "/usr/lib/python2.7/dist-packages/cinder/volume/drivers/san/hp/hp_3par_
↪→fc.py", line 77, in get_volume_stats stats =
self.common.get_volume_stats(refresh, self.client)
File "/usr/lib/python2.7/dist-packages/cinder/volume/drivers/san/hp/hp_3par_
↪→common.py", line 421, in get_volume_stats cpg =
client.getCPG(self.config.hp3par_cpg)
File "/usr/lib/python2.7/dist-packages/hp3parclient/client.py", line 231, in␣
↪→getCPG cpgs = self.getCPGs()
File "/usr/lib/python2.7/dist-packages/hp3parclient/client.py", line 217, in␣
↪→getCPGs response, body = self.http.get('/cpgs')
File "/usr/lib/python2.7/dist-packages/hp3parclient/http.py", line 255, in␣
↪→get return self._cs_request(url, 'GET', **kwargs)
File "/usr/lib/python2.7/dist-packages/hp3parclient/http.py", line 224, in _
↪→cs_request **kwargs)
File "/usr/lib/python2.7/dist-packages/hp3parclient/http.py", line 198, in _
↪→time_request resp, body = self.request(url, method, **kwargs)
File "/usr/lib/python2.7/dist-packages/hp3parclient/http.py", line 192, in␣
↪→request raise exceptions.from_response(resp, body)
HTTPBadRequest: Bad request (HTTP 400)

100 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Solution

You need to update your copy of the hp_3par_fc.py driver which contains the synchronization code.

Duplicate 3PAR host

Problem

This error may be caused by a volume being exported outside of OpenStack using a host name different
from the system name that OpenStack expects. This error could be displayed with the IQN if the host
was exported using iSCSI:

Duplicate3PARHost: 3PAR Host already exists: Host wwn 50014380242B9750 \
already used by host cld4b5ubuntuW(id = 68. The hostname must be called\
'cld4b5ubuntu'.

Solution

Change the 3PAR host name to match the one that OpenStack expects. The 3PAR host constructed by the
driver uses just the local host name, not the fully qualified domain name (FQDN) of the compute host.
For example, if the FQDN was myhost.example.com, just myhost would be used as the 3PAR host name.
IP addresses are not allowed as host names on the 3PAR storage server.

Failed to attach volume after detaching

Problem

Failed to attach a volume after detaching the same volume.

Solution

You must change the device name on the nova-attach command. The VM might not clean up after
a nova-detach command runs. This example shows how the nova-attach command fails when you
use the vdb, vdc, or vdd device names:

ls -al /dev/disk/by-path/
total 0
drwxr-xr-x 2 root root 200 2012-08-29 17:33 .
drwxr-xr-x 5 root root 100 2012-08-29 17:33 ..
lrwxrwxrwx 1 root root 9 2012-08-29 17:33 pci-0000:00:04.0-virtio-pci-virtio0␣
↪→-> ../../vda
lrwxrwxrwx 1 root root 10 2012-08-29 17:33 pci-0000:00:04.0-virtio-pci-
↪→virtio0-part1 -> ../../vda1
lrwxrwxrwx 1 root root 10 2012-08-29 17:33 pci-0000:00:04.0-virtio-pci-
↪→virtio0-part2 -> ../../vda2
lrwxrwxrwx 1 root root 10 2012-08-29 17:33 pci-0000:00:04.0-virtio-pci-
↪→virtio0-part5 -> ../../vda5 (continues on next page)

3.2. Administrating Cinder 101

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

lrwxrwxrwx 1 root root 9 2012-08-29 17:33 pci-0000:00:06.0-virtio-pci-virtio2␣
↪→-> ../../vdb
lrwxrwxrwx 1 root root 9 2012-08-29 17:33 pci-0000:00:08.0-virtio-pci-virtio3␣
↪→-> ../../vdc
lrwxrwxrwx 1 root root 9 2012-08-29 17:33 pci-0000:00:09.0-virtio-pci-virtio4␣
↪→-> ../../vdd
lrwxrwxrwx 1 root root 10 2012-08-29 17:33 pci-0000:00:09.0-virtio-pci-
↪→virtio4-part1 -> ../../vdd1

You might also have this problem after attaching and detaching the same volume from the same VM with
the same mount point multiple times. In this case, restart the KVM host.

Failed to attach volume, systool is not installed

Problem

This warning and error occurs if you do not have the required sysfsutils package installed on the
compute node:

WARNING nova.virt.libvirt.utils [req-1200f887-c82b-4e7c-a891-fac2e3735dbb\
admin admin|req-1200f887-c82b-4e7c-a891-fac2e3735dbb admin admin] systool\
is not installed
ERROR nova.compute.manager [req-1200f887-c82b-4e7c-a891-fac2e3735dbb admin\
admin|req-1200f887-c82b-4e7c-a891-fac2e3735dbb admin admin]
[instance: df834b5a-8c3f-477a-be9b-47c97626555c|instance: df834b5a-8c3f-47\
7a-be9b-47c97626555c]
Failed to attach volume 13d5c633-903a-4764-a5a0-3336945b1db1 at /dev/vdk.

Solution

Run the following command on the compute node to install the sysfsutils packages:

apt-get install sysfsutils

Failed to connect volume in FC SAN

Problem

The compute node failed to connect to a volume in a Fibre Channel (FC) SAN configuration. The WWN
may not be zoned correctly in your FC SAN that links the compute host to the storage array:

ERROR nova.compute.manager [req-2ddd5297-e405-44ab-aed3-152cd2cfb8c2 admin\
demo|req-2ddd5297-e405-44ab-aed3-152cd2cfb8c2 admin demo] [instance: 60ebd\
6c7-c1e3-4bf0-8ef0-f07aa4c3d5f3|instance: 60ebd6c7-c1e3-4bf0-8ef0-f07aa4c3\
d5f3]
Failed to connect to volume 6f6a6a9c-dfcf-4c8d-b1a8-4445ff883200 while\

(continues on next page)

102 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

attaching at /dev/vdjTRACE nova.compute.manager [instance: 60ebd6c7-c1e3-4\
bf0-8ef0-f07aa4c3d5f3|instance: 60ebd6c7-c1e3-4bf0-8ef0-f07aa4c3d5f3]
Traceback (most recent call last):f07aa4c3d5f3\] ClientException: The\
server has either erred or is incapable of performing the requested\
operation.(HTTP 500)(Request-ID: req-71e5132b-21aa-46ee-b3cc-19b5b4ab2f00)

Solution

The network administrator must configure the FC SAN fabric by correctly zoning the WWN (port names)
from your compute node HBAs.

Cannot find suitable emulator for x86_64

Problem

When you attempt to create a VM, the error shows the VM is in the BUILD then ERROR state.

Solution

On the KVM host, run cat /proc/cpuinfo. Make sure the vmx or svm flags are set.

Follow the instructions in the Enable KVM section in the OpenStack Configuration Reference to enable
hardware virtualization support in your BIOS.

Non-existent host

Problem

This error could be caused by a volume being exported outside of OpenStack using a host name different
from the system name that OpenStack expects. This error could be displayed with the IQN if the host
was exported using iSCSI.

2013-04-19 04:02:02.336 2814 ERROR cinder.openstack.common.rpc.common [-]␣
↪→Returning exception Not found (HTTP 404)
NON_EXISTENT_HOST - HOST '10' was not found to caller.

3.2. Administrating Cinder 103

https://docs.openstack.org/ocata/config-reference/compute/hypervisor-kvm.html#enable-kvm

Cinder Documentation, Release 20.3.2.dev3

Solution

Host names constructed by the driver use just the local host name, not the fully qualified domain name
(FQDN) of the Compute host. For example, if the FQDN was myhost.example.com, just myhost would
be used as the 3PAR host name. IP addresses are not allowed as host names on the 3PAR storage server.

Non-existent VLUN

Problem

This error occurs if the 3PAR host exists with the correct host name that the OpenStack Block Storage
drivers expect but the volume was created in a different domain.

HTTPNotFound: Not found (HTTP 404) NON_EXISTENT_VLUN - VLUN 'osv-
↪→DqT7CE3mSrWi4gZJmHAP-Q' was not found.

Solution

The hpe3par_domain configuration items either need to be updated to use the domain the 3PAR host
currently resides in, or the 3PAR host needs to be moved to the domain that the volume was created in.

Availability-zone types

Background

In a newly deployed region environment, the volume types (SSD, HDD or others) may only exist on part
of the AZs, but end users have no idea which AZ is allowed for one specific volume type and they cant
realize that only when the volume failed to be scheduled to backend. In this case, we have supported
availability zone volume type in Rocky cycle which administrators can take advantage of to fix that.

How to config availability zone types?

We decided to use types extra-specs to store this additional info, administrators can turn it on by updating
volume types key RESKEY:availability_zones as below:

"RESKEY:availability_zones": "az1,az2,az3"

Its an array list whose items are separated by comma and stored in string. Once the availability zone type
is configured, any UI component or client can filter out invalid volume types based on their choice of
availability zone:

Request example:
/v3/{project_id}/types?extra_specs={'RESKEY:availability_zones':'az1'}

Remember, Cinder will always try inexact match for this spec value, for instance, when extra spec
RESKEY:availability_zones is configured with value az1,az2, both az1 and az2 are valid inputs

104 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

for query, also this spec will not be used during performing capability filter, instead it will be only used
for choosing suitable availability zones in these two cases below.

1. Create volume, within this feature, now we can specify availability zone via parame-
ter availability_zone, volume source (volume, snapshot, group), configuration option
default_availability_zone and storage_availability_zone. When creating new volume,
Cinder will try to read the AZ(s) in the priority of:

source group > parameter availability_zone > source snapshot (or volume) >␣
↪→volume type > configuration default_availability_zone > storage_
↪→availability_zone

If there is a conflict between any of them, 400 BadRequest will be raised, also now a AZ list instead of
single AZ will be delivered to AvailabilityZoneFilter.

2. Retype volume, this flow also has been updated, if new type has configured
RESKEY:availability_zones Cinder scheduler will validate this as well.

Generalized filters

Background

Cinder introduced generalized resource filters since Pike. Administrator can control the allowed filter
keys for non-admin user by editing the filter configuration file. Also since this feature, cinder will raise
400 BadRequest if any invalid query filter is specified.

How do I configure the filter keys?

resource_query_filters_file is introduced to cinder to represent the filter config file path, and the
config file accepts the valid filter keys for non-admin user with json format:

{
"volume": ["name", "status", "metadata"]

}

the key volume (singular) here stands for the resource you want to apply and the value accepts an list
which contains the allowed filters collection, once the configuration file is changed and API service is
restarted, cinder will only recognize this filter keys, NOTE: the default configuration file will include all
the filters we already enabled.

Which filter keys are supported?

Not all the attributes are supported at present, so we add this table below to indicate which filter keys are
valid and can be used in the configuration.

Since v3.34 we could use ~ to indicate supporting querying resource by inexact match, for example, if
we have a configuration file as below:

3.2. Administrating Cinder 105

Cinder Documentation, Release 20.3.2.dev3

{
"volume": ["name~"]

}

User can query volume both by name=volume and name~=volume, and the volumes named volume123
and a_volume123 are both valid for second input while neither are valid for first. The supported APIs
are marked with * below in the table.

API Valid filter keys
list vol-
ume*

id, group_id, name, status, bootable, migration_status, metadata, host, image_metadata,
availability_zone, user_id, volume_type_id, project_id, size, description, replica-
tion_status, multiattach

list
snap-
shot*

id, volume_id, user_id, project_id, status, volume_size, name, description, vol-
ume_type_id, group_snapshot_id, metadata, availability_zone

list
backup*

id, name, status, container, availability_zone, description, volume_id, is_incremental, size,
host, parent_id

list
group*

id, user_id, status, availability_zone, group_type, name, description, host

list g-
snapshot*

id, name, description, group_id, group_type_id, status

list
attach-
ment*

id, volume_id, instance_id, attach_status, attach_mode, connection_info, mountpoint, at-
tached_host

list
mes-
sage*

id, event_id, resource_uuid, resource_type, request_id, message_level, project_id

get
pools

name, volume_type

list
types
(3.52)

is_public, extra_specs

Basic volume quality of service

Basic volume QoS allows you to define hard performance limits for volumes on a per-volume basis.

Performance parameters for attached volumes are controlled using volume types and associated extra-
specs.

As of the 13.0.0 Rocky release, Cinder supports the following options to control volume quality of service,
the values of which should be fairly self-explanatory:

For Fixed IOPS per volume.

• read_iops_sec

• write_iops_sec

• total_iops_sec

For Burst IOPS per volume.

106 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• read_iops_sec_max

• write_iops_sec_max

• total_iops_sec_max

For Fixed bandwidth per volume.

• read_bytes_sec

• write_bytes_sec

• total_bytes_sec

For Burst bandwidth per volume.

• read_bytes_sec_max

• write_bytes_sec_max

• total_bytes_sec_max

For burst bucket size.

• size_iops_sec

Note that the total_* and total_*_max options for both iops and bytes cannot be used with the equivalent
read and write values.

For example, in order to create a QoS extra-spec with 20000 read IOPs and 10000 write IOPs, you might
use the Cinder client in the following way:

$ cinder qos-create high-iops consumer="front-end" \
read_iops_sec=20000 write_iops_sec=10000

+----------+--------------------------------------+
| Property | Value |
+----------+--------------------------------------+
consumer	front-end
id	f448f61c-4238-4eef-a93a-2024253b8f75
name	high-iops
specs	read_iops_sec : 20000
	write_iops_sec : 10000
+----------+--------------------------------------+

The equivalent OpenStack client command would be:

$ openstack volume qos create --consumer "front-end" \
--property "read_iops_sec=20000" \
--property "write_iops_sec=10000" \
high-iops

Once this is done, you can associate this QoS with a volume type by using the qos-associate Cinder client
command.

$ cinder qos-associate QOS_ID VOLUME_TYPE_ID

or using the openstack volume qos associate OpenStack client command.

3.2. Administrating Cinder 107

Cinder Documentation, Release 20.3.2.dev3

$ openstack volume qos associate QOS_ID VOLUME_TYPE_ID

You can now create a new volume and attempt to attach it to a consumer such as Nova. If you login to
the Nova compute host, youll be able to see the assigned limits when checking the XML definition of the
virtual machine with virsh dumpxml.

Note: As of the Nova 18.0.0 Rocky release, front end QoS settings are only supported when using the
libvirt driver.

Volume multi-attach: Enable attaching a volume to multiple servers

The ability to attach a volume to multiple hosts/servers simultaneously is a use case desired for ac-
tive/active or active/standby scenarios.

Support was added in both Cinder and Nova in the Queens release to volume multi-attach with read/write
(RW) mode.

Warning: It is the responsibility of the user to ensure that a multiattach or clustered file system is
used on the volumes. Otherwise there may be a high probability of data corruption.

In Cinder the functionality is available from microversion 3.50 or higher.

As a prerequisite new Attach/Detach APIs were added to Cinder in Ocata to overcome earlier limitations
towards achieving volume multi-attach.

In case you use Cinder together with Nova, compute API calls were switched to using the new block
storage volume attachment APIs in Queens, if the required block storage API microversion is available.

For more information on using multiattach volumes with the compute service, refer to the corresponding
compute admin guide section.

How to create a multiattach volume

In order to be able to attach a volume to multiple server instances you need to have the multiattach flag set
to True in the volume details. Please ensure you have the right role and policy settings before performing
the operation.

Currently you can create a multiattach volume in two ways.

Note: For information on back ends that provide the functionality see Back end support.

108 Chapter 3. For operators

https://specs.openstack.org/openstack/cinder-specs/specs/queens/enable-multiattach.html
https://specs.openstack.org/openstack/nova-specs/specs/queens/approved/cinder-volume-multi-attach.html
http://specs.openstack.org/openstack/cinder-specs/specs/ocata/add-new-attach-apis.html
https://docs.openstack.org/nova/latest/admin/manage-volumes.html#volume-multi-attach

Cinder Documentation, Release 20.3.2.dev3

Multiattach volume type

Starting from the Queens release the ability to attach a volume to multiple hosts/servers requires that the
volume is of a special type that includes an extra-spec capability setting of multiattach=<is> True.
You can create the volume type the following way:

$ cinder type-create multiattach
$ cinder type-key multiattach set multiattach="<is> True"

Note: Creating a new volume type is an admin-only operation by default. You can change the settings
in the cinder policy file if needed. For more information about configuring cinder policies, see Policy
configuration.

To create the volume you need to use the volume type you created earlier, like this:

$ cinder create <volume_size> --name <volume_name> --volume-type <volume_type_
↪→uuid>

In addition, it is possible to retype a volume to be (or not to be) multiattach capable. Currently however
we only allow retyping a volume if its status is available.

The reasoning behind the limitation is that some consumers/hypervisors need to make special consider-
ations at attach-time for multiattach volumes (like disable caching) and theres no mechanism currently
to update a currently attached volume in a safe way while keeping it attached the whole time.

RO / RW caveats (the secondary RW attachment issue)

By default, secondary volume attachments are made in read/write mode which can be problematic, es-
pecially for operations like volume migration.

There might be improvements to provide support to specify the attach-mode for the secondary attach-
ments, for the latest information please take a look into Cinders specs list for the current release.

Back end support

In order to have the feature available, multi-attach needs to be supported by the chosen back end which
is indicated through capabilities in the corresponding volume driver.

The reference implementation is available on LVM in the Queens release. You can check the Driver
Support Matrix for further information on which back end provides the functionality.

3.2. Administrating Cinder 109

https://specs.openstack.org/openstack/cinder-specs/index.html

Cinder Documentation, Release 20.3.2.dev3

Policy rules

You can control the availability of volume multi-attach through policies that you can configure in the
cinder policy file. For more information about the cinder policy file, including how to generate a sample
file so you can view the default policy settings, see Policy configuration.

Multiattach policy

The general policy rule to allow the creation or retyping of multiattach volumes is named
volume:multiattach.

Multiattach policy for bootable volumes

This is a policy to disallow the ability to create multiple attachments on a volume that is marked as
bootable with the name volume:multiattach_bootable_volume.

Known issues and limitations

• Retyping an in-use volume from a multiattach-capable type to a non-multiattach-capable type, or
vice-versa, is not supported.

• It is not recommended to retype an in-use multiattach volume if that volume has more than one
active read/write attachment.

• Encryption is not supported with multiattach-capable volumes.

Default Volume Types

Beginning with the Train release, untyped volumes (that is, volumes with no volume-type) have been
disallowed. To facilitate this, a __DEFAULT__ volume-type was included as part of the Train database
migration. Since the Train release, handling of the default volume-type has been improved:

• The default_volume_type configuration option is required to have a value. The default value is
__DEFAULT__.

• A request to delete the currently configured default_volume_type will fail. (You can delete that
volume-type, but you cannot do it while it is the value of the configuration option.)

• There must always be at least one volume-type defined in a Cinder installation. This is enforced
by the type-delete call.

• If the default_volume_type is misconfigured (that is, if the value refers to a non-existent volume-
type), requests that rely on the default volume-type (for example, a volume-create request that does
not specify a volume-type) will result in a HTTP 500 response.

110 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Default types per project

We have overriden the existing Cinder default Volume Type on a per project basis to make it easier to
manage complex deployments.

With the introduction of this new default volume type support, well now have 2 different default volume
types. From more specific to more generic these are:

• Per project

• Defined in cinder.conf (defaults to __DEFAULT__ type)

So when a user creates a new volume that has no defined volume type (explicit or in the source), Cinder
will look for the appropriate default first by checking if theres one defined in the DB for the specific project
and use it, if there isnt one, it will continue like it does today, using the default type from cinder.conf.

Administrators and users must still be careful with the normal Cinder behavior when creating volumes,
as Cinder will still only resort to using the default volume type if the user doesnt select one on the request
or if theres no volume type in the source, which means that Cinder will not use any of those defaults if
we:

• Create a volume providing a volume type

• Create a volume from a snapshot

• Clone a volume

• Create a volume from an image that has cinder_img_volume_type defined in its metadata.

There is a new set of commands in the python-cinderclient to match the new REST API endpoints:

• Set default: cinder default-type-set <project-id> <type-name>

• Unset default: cinder default-type-unset <project-id>

• List defaults: cinder default-type-list [--project <project-id>]

By default the policy restricting access to set, unset, get or list all project default volume type is set to
admins only.

API Configuration

Rate limiting

Warning: This is legacy functionality that is poorly tested and may be removed in the future. You
may wish to enforce rate limiting through a proxy server instead.

Cinder supports admin-configured API limits. These are disabled by default but can be configured
by modifying api-paste.ini to enabled the RateLimitingMiddleware middleware. For example,
given the following composite application definitions in e.g. /etc/cinder/api-paste.ini:

[composite:openstack_volume_api_v2]
use = call:cinder.api.middleware.auth:pipeline_factory
noauth = cors ... apiv2
keystone = cors ... apiv2

(continues on next page)

3.2. Administrating Cinder 111

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

keystone_nolimit = cors ... apiv2

[composite:openstack_volume_api_v3]
use = call:cinder.api.middleware.auth:pipeline_factory
noauth = cors ... apiv3
keystone = cors ... apiv3
keystone_nolimit = cors ... apiv3

You can configure rate limiting by adding a new filter to call RateLimitingMiddleware and configure
the composite applications to use this filter:

[composite:openstack_volume_api_v2]
use = call:cinder.api.middleware.auth:pipeline_factory
noauth = cors ... ratelimit apiv2
keystone = cors ... ratelimit apiv2
keystone_nolimit = cors ... ratelimit apiv2

[composite:openstack_volume_api_v3]
use = call:cinder.api.middleware.auth:pipeline_factory
noauth = cors ... ratelimit apiv3
keystone = cors ... ratelimit apiv3
keystone_nolimit = cors ... ratelimit apiv3

[filter:ratelimit]
paste.filter_factory = cinder.api.v2.limits:RateLimitingMiddleware.factory

Once configured, restart the cinder-api service. Users can then view API limits using the openstack
limits show --rate command. For example:

$ openstack limits show --rate
+--------+-----------------+-------+--------+--------+---------------------+
| Verb | URI | Value | Remain | Unit | Next Available |
+--------+-----------------+-------+--------+--------+---------------------+
POST	*	10	10	MINUTE	2021-03-23T12:36:09
PUT	*	10	10	MINUTE	2021-03-23T12:36:09
DELETE	*	100	100	MINUTE	2021-03-23T12:36:09
POST	*/servers	50	50	DAY	2021-03-23T12:36:09
GET	*changes-since*	3	3	MINUTE	2021-03-23T12:36:09
+--------+-----------------+-------+--------+--------+---------------------+

Note: Rate limits are entirely separate from absolute limits, which track resource utilization and can be
seen using the openstack limits show --absolute command.

112 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Upgrades

Cinder aims to provide upgrades with minimal downtime.

This should be achieved for both data and control plane. As Cinder doesnt interfere with data plane, its
upgrade shouldnt affect any volumes being accessed by virtual machines.

Keeping the control plane running during an upgrade is more difficult. This documents goal is to provide
preliminaries and a detailed procedure of such upgrade.

Concepts

Here are the key concepts you need to know before reading the section on the upgrade process:

RPC version pinning

Through careful RPC versioning, newer services are able to talk to older services (and vice-versa).
The versions are autodetected using information reported in services table. In case of receiving
CappedVersionUnknown or ServiceTooOld exceptions on service start, youre probably having some
old orphaned records in that table.

Graceful service shutdown

Many cinder services are python processes listening for messages on an AMQP queue. When the op-
erator sends SIGTERM signal to the process, it stops getting new work from its queue, completes any
outstanding work and then terminates. During this process, messages can be left on the queue for when
the python process starts back up. This gives us a way to shutdown a service using older code, and start
up a service using newer code with minimal impact.

Note: Waiting for completion of long-running operations (e.g. slow volume copy operation) may take
a while.

Note: This was tested with RabbitMQ messaging backend and may vary with other backends.

Database upgrades

Cinder has two types of database upgrades in use:

• Schema migrations

• Data migrations

Schema migrations are defined in cinder/db/migrations/versions. They are the routines that trans-
form our database structure, which should be additive and able to be applied to a running system before
service code has been upgraded.

Data migrations are banned from schema migration scripts and are instead defined in cinder/db/api.
py. They are kept separate to make DB schema migrations less painful to execute. Instead, the migrations

3.2. Administrating Cinder 113

Cinder Documentation, Release 20.3.2.dev3

are executed by a background process in a manner that doesnt interrupt running services (you can also exe-
cute online data migrations with services turned off if youre doing a cold upgrade). The cinder-manage
db online_data_migrations utility can be used for this purpose. Before upgrading N to N+1, you
need to run this tool in the background until it tells you no more migrations are needed. Note that you
wont be able to apply N+1s schema migrations before completing Ns online data migrations.

For information on developing your own schema or data migrations as part of a feature or bugfix, refer
to Database migrations.

API load balancer draining

When upgrading API nodes, you can make your load balancer only send new connections to the newer
API nodes, allowing for a seamless update of your API nodes.

DB prune deleted rows

Currently resources are soft deleted in the database, so users are able to track instances in the DB that
are created and destroyed in production. However, most people have a data retention policy, of say 30
days or 90 days after which they will want to delete those entries. Not deleting those entries affects
DB performance as indices grow very large and data migrations take longer as there is more data to
migrate. To make pruning easier theres a cinder-manage db purge <age_in_days> command that
permanently deletes records older than specified age.

Versioned object backports

RPC pinning ensures new services can talk to the older services method signatures. But many of the
parameters are objects that may well be too new for the old service to understand. Cinder makes sure to
backport an object to a version that it is pinned to before sending.

Minimal Downtime Upgrade Procedure

Plan your upgrade

• Read and ensure you understand the release notes for the next release.

• Make a backup of your database. Cinder does not support downgrading of the database. Hence,
in case of upgrade failure, restoring database from backup is the only choice.

• To avoid dependency hell it is advised to have your Cinder services deployed separately in con-
tainers or Python venvs.

Note: Cinder is basing version detection on what is reported in the services table in the
DB. Before upgrade make sure you dont have any orphaned old records there, because these can
block starting newer services. You can clean them up using cinder-manage service remove
<binary> <host> command.

Note that theres an assumption that live upgrade can be performed only between subsequent releases.
This means that you cannot upgrade N directly to N+2, you need to upgrade to N+1 first.

114 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

The assumed service upgrade order is cinder-scheduler, cinder-volume, cinder-backup and fi-
nally cinder-api.

Rolling upgrade process

To reduce downtime, the services can be upgraded in a rolling fashion. It means upgrading a few services
at a time. To minimise downtime you need to have HA Cinder deployment, so at the moment a service
is upgraded, youll keep other service instances running.

Before maintenance window

• First you should execute required DB schema migrations. To achieve that without interrupting
your existing installation, install new Cinder code in new venv or a container and run the DB sync
(cinder-manage db sync). These schema change operations should have minimal or no effect
on performance, and should not cause any operations to fail.

• At this point, new columns and tables may exist in the database. These DB schema changes are
done in a way that both the N and N+1 release can perform operations against the same schema.

During maintenance window

1. The first service is cinder-scheduler. It is load-balanced by the message queue, so the only thing
you need to worry about is to shut it down gracefully (using SIGTERM signal) to make sure it will
finish all the requests being processed before shutting down. Then you should upgrade the code
and restart the service.

2. Repeat first step for all of your cinder-scheduler services.

3. Then you proceed to upgrade cinder-volume services. The problem here is that due to Ac-
tive/Passive character of this service, youre unable to run multiple instances of cinder-volume
managing a single volume backend. This means that there will be a moment when you wont have
any cinder-volume in your deployment and you want that disruption to be as short as possible.

Note: The downtime here is non-disruptive as long as it doesnt exceed the service heartbeat
timeout. If you dont exceed that, then cinder-schedulers will not notice that cinder-volume is gone
and the message queue will take care of queuing any RPC messages until cinder-volume is back.

To make sure its achieved, you can either lengthen the timeout by tweaking service_down_time
value in cinder.conf, or prepare upgraded cinder-volume on another node and do a very quick
switch by shutting down older service and starting the new one just after that.

Also note that in case of A/P HA configuration you need to make sure both primary and secondary
c-vol have the same hostname set (you can override it using host option in cinder.conf), so
both will be listening on the same message queue and will accept the same messages.

4. Repeat third step for all cinder-volume services.

5. Now we should proceed with (optional) cinder-backup services. You should upgrade them in the
same manner like cinder-scheduler.

3.2. Administrating Cinder 115

Cinder Documentation, Release 20.3.2.dev3

Note: Backup operations are time consuming, so shutting down a c-bak service without inter-
rupting ongoing requests can take time. It may be useful to disable the service first using cinder
service-disable command, so it wont accept new requests, and wait a reasonable amount of
time until all the in-progress jobs are completed. Then you can proceed with the upgrade. To make
sure the backup service finished all the ongoing requests, you can check the service logs.

Note: Until Liberty cinder-backup was tightly coupled with cinder-volume service and needed
to coexist on the same physical node. This is not true starting with Mitaka version. If youre still
keeping that coupling, then your upgrade strategy for cinder-backup should be more similar to how
cinder-volume is upgraded.

6. cinder-api services should go last. In HA deployment youre typically running them behind a load
balancer (e.g. HAProxy), so you need to take one service instance out of the balancer, shut it down,
upgrade the code and dependencies, and start the service again. Then you can plug it back into the
load balancer.

Note: You may want to start another instance of older c-api to handle the load while youre up-
grading your original services.

7. Then you should repeat step 6 for all of the cinder-api services.

After maintenance window

• Once all services are running the new code, double check in the DB that there are no old orphaned
records in services table (Cinder doesnt remove the records when service is gone or service host-
name is changed, so you need to take care of that manually; you should be able to distinguish dead
records by looking at when the record was updated). Cinder is basing its RPC version detection
on that, so stale records can prevent you from going forward.

• Now all services are upgraded, we need to send the SIGHUP signal, so all the services clear any
cached service version data. When a new service starts, it automatically detects which version
of the services RPC protocol to use, and will downgrade any communication to that version. Be
advised that cinder-api service doesnt handle SIGHUP so it needs to be restarted. Its best to restart
your cinder-api services as last ones, as that way you make sure API will fail fast when user requests
new features on a deployment thats not fully upgraded (new features can fail when RPC messages
are backported to lowest common denominator). Order of the rest of the services shouldnt matter.

• Now all the services are upgraded, the system is able to use the latest version of the RPC protocol
and able to access all the features of the new release.

• At this point, you must also ensure you update the configuration, to stop using any deprecated
features or options, and perform any required work to transition to alternative features. All the
deprecated options should be supported for one cycle, but should be removed before your next
upgrade is performed.

• Since Ocata, you also need to run cinder-manage db online_data_migrations command
to make sure data migrations are applied. The tool lets you limit the impact of the data migrations
by using --max_count option to limit number of migrations executed in one run. If this option
is used, the exit status will be 1 if any migrations were successful (even if others generated errors,

116 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

which could be due to dependencies between migrations). The command should be rerun while the
exit status is 1. If no further migrations are possible, the exit status will be 2 if some migrations are
still generating errors, which requires intervention to resolve. The command should be considered
completed successfully only when the exit status is 0. You need to complete all of the migrations
before starting upgrade to the next version (e.g. you need to complete Ocatas data migrations
before proceeding with upgrade to Pike; you wont be able to execute Pikes DB schema migrations
before completing Ocatas data migrations).

3.3 Reference

Contents:

3.3.1 Cinder Service Configuration

Introduction to the Block Storage service

The Block Storage service provides persistent block storage resources that Compute instances can con-
sume. This includes secondary attached storage similar to the Amazon Elastic Block Storage (EBS)
offering. In addition, you can write images to a Block Storage device for Compute to use as a bootable
persistent instance.

The Block Storage service differs slightly from the Amazon EBS offering. The Block Storage service
does not provide a shared storage solution like NFS. With the Block Storage service, you can attach a
device to only one instance.

The Block Storage service provides:

• cinder-api - a WSGI app that authenticates and routes requests throughout the Block Storage
service. It supports the OpenStack APIs only, although there is a translation that can be done
through Computes EC2 interface, which calls in to the Block Storage client.

• cinder-scheduler - schedules and routes requests to the appropriate volume service. Depend-
ing upon your configuration, this may be simple round-robin scheduling to the running volume
services, or it can be more sophisticated through the use of the Filter Scheduler. The Filter Sched-
uler is the default and enables filters on things like Capacity, Availability Zone, Volume Types, and
Capabilities as well as custom filters.

• cinder-volume - manages Block Storage devices, specifically the back-end devices themselves.

• cinder-backup - provides a means to back up a Block Storage volume to OpenStack Object
Storage (swift).

The Block Storage service contains the following components:

• Back-end Storage Devices - the Block Storage service requires some form of back-end storage
that the service is built on. The default implementation is to use LVM on a local volume group
named cinder-volumes. In addition to the base driver implementation, the Block Storage service
also provides the means to add support for other storage devices to be utilized such as external
Raid Arrays or other storage appliances. These back-end storage devices may have custom block
sizes when using KVM or QEMU as the hypervisor.

• Users and Tenants (Projects) - the Block Storage service can be used by many different cloud
computing consumers or customers (tenants on a shared system), using role-based access assign-
ments. Roles control the actions that a user is allowed to perform. In the default configuration,

3.3. Reference 117

Cinder Documentation, Release 20.3.2.dev3

most actions do not require a particular role, but this can be configured by the system administrator
in the cinder policy file that maintains the rules.

Note: For more information about configuring cinder policies, see Policy configuration.

A users access to particular volumes is limited by tenant, but the user name and password are
assigned per user. Key pairs granting access to a volume are enabled per user, but quotas to control
resource consumption across available hardware resources are per tenant.

For tenants, quota controls are available to limit:

– The number of volumes that can be created.

– The number of snapshots that can be created.

– The total number of GBs allowed per tenant (shared between snapshots and volumes).

You can revise the default quota values with the Block Storage CLI, so the limits placed by quotas
are editable by admin users.

• Volumes, Snapshots, and Backups - the basic resources offered by the Block Storage service are
volumes and snapshots which are derived from volumes and volume backups:

– Volumes - allocated block storage resources that can be attached to instances as secondary
storage or they can be used as the root store to boot instances. Volumes are persistent R/W
block storage devices most commonly attached to the compute node through iSCSI.

– Snapshots - a read-only point in time copy of a volume. The snapshot can be created from a
volume that is currently in use (through the use of --force True) or in an available state.
The snapshot can then be used to create a new volume through create from snapshot.

– Backups - an archived copy of a volume currently stored in Object Storage (swift).

Using service tokens

When a user initiates a request whose processing involves multiple services (for example, a boot-from-
volume request to the Compute Service will require processing by the Block Storage Service, and may
require processing by the Image Service), the users token is handed from service to service. This ensures
that the requestor is tracked correctly for audit purposes and also guarantees that the requestor has the
appropriate permissions to do what needs to be done by the other services.

There are several instances where we want to differentiate between a request coming from the user to one
coming from another OpenStack service on behalf of the user:

• For security reasons There are some operations in the Block Storage service, required for normal
operations, that could be exploited by a malicious user to gain access to resources belonging to
other users. By differentiating when the request comes directly from a user and when from another
OpenStack service the Cinder service can protect the deployment.

• To prevent long-running job failures: If the chain of operations takes a long time, the users token
may expire before the action is completed, leading to the failure of the users original request.

One way to deal with this is to set a long token life in Keystone, and this may be what you are
currently doing. But this can be problematic for installations whose security policies prefer short
user token lives. Beginning with the Queens release, an alternative solution is available. You have
the ability to configure some services (particularly Nova and Cinder) to send a service token along

118 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

with the users token. When properly configured, the Identity Service will validate an expired user
token when it is accompanied by a valid service token. Thus if the users token expires somewhere
during a long running chain of operations among various OpenStack services, the operations can
continue.

Note: Theres nothing special about a service token. Its a regular token that has been requested by a
service user. And theres nothing special about a service user, its just a user that has been configured in
the Identity Service to have specific roles that identify that user as a service.

The key point here is that the service token doesnt need to have an extra long life it can have the same
short life as all the other tokens because it will be a fresh (and hence valid) token accompanying the
(possibly expired) users token.

Configuration

To configure Cinder to send a service token along with the users token when it makes a request to another
service, you must do the following:

1. Find the [service_user] section in the Cinder configuration file (usually /etc/cinder/
cinder.conf, though it may be in a different location in your installation).

2. In that section, set send_service_user_token = true.

3. Also in that section, fill in the appropriate configuration for your service user (username,
project_name, etc.)

Note: There is no configuration required for a service to receive service tokens. This is automatically
handled by the keystone middleware used by each service (beginning with the Pike release).

(The previous statement is true for the default configuration. It is possible for someone to change some
settings so that service tokens will be ignored. See the Troubleshooting section below.)

Troubleshooting

If youve configured this feature and are still having long-running job failures, there are basically three
degrees of freedom to take into account: (1) each source service, (2) each receiving service, and (3) the
Identity Service (Keystone).

1. Each source service (basically, Nova and Cinder) must have the [service_user] section in the
source service configuration file filled in as described in the Configuration section above.

Note: As of the Train release, Glance does not have the ability to pass service tokens. It can
receive them, though. The place where you may still see a long running failure is when Glance is
using a backend that requires Keystone validation (for example, the Swift backend) and the user
token has expired.

2. Each receiving service, by default, is set up to accept service tokens. There are two options to
be aware of, however, that can affect whether or not a receiving service (for example, Glance)

3.3. Reference 119

Cinder Documentation, Release 20.3.2.dev3

will actually accept service tokens. These appear in the [keystone_authtoken] section of the
receiving service configuration file (for example, /etc/glance/glance-api.conf).

service_token_roles The value is a list of roles; the service user passing the service token
must have at least one of these roles or the token will be rejected. (But see the next option.)
The default value is service.

service_token_roles_required This is a boolean; the default value is false. It governs
whether the keystone middleware used by the receiving service will pay any attention to the
service_token_roles setting. (Eventually the default is supposed to become True, but its
still False as of Stein.)

3. There are several things to pay attention to in Keystone:

• If youve decided to turn on service_token_roles_required for any of the receiving
services, then you must make sure that any service user who will be contacting that receiving
service (and for whom you want to enable service token usage) has one of the roles specified
in the receiving servicess service_token_roles setting. (This is a matter of creating and
assigning roles using the Identity Service API, its not a configuration file issue.)

• Even with a service token, an expired user token cannot be used indefinitely. Theres a
Keystone configuration setting that controls this: [token]/allow_expired_window in the
Keystone configuration file. The default setting is 2 days, so some security teams may want
to lower this just on general principles. You need to make sure its not set too low to be
completely ineffective.

• If you are using Fernet tokens, you need to be careful with your Fernet key rota-
tion period. Whoever sets up the key rotation has to pay attention to the [token]/
allow_expired_window setting as well as the obvious [token]/expiration setting. If
keys get rotated faster than expiration + allow_expired_window seconds, an expired
user token might not be decryptable, even though the request using it is being made within
allow_expired_window seconds.

To summarize, you need to be aware of:

• Keystone: must allow a decent sized allow_expired_window (default is 2 days)

• Each source service: must be configured to be able to create and send service tokens (default is
OFF)

• Each receiving service: has to be configured to accept service tokens (default is ON)

Volume drivers

To use different volume drivers for the cinder-volume service, use the parameters described in these
sections.

These volume drivers are included in the Block Storage repository. To set a volume driver, use the
volume_driver flag.

The default is:

volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver

Note that some third party storage systems may maintain more detailed configuration documentation
elsewhere. Contact your vendor for more information if needed.

120 Chapter 3. For operators

https://opendev.org/openstack/cinder

Cinder Documentation, Release 20.3.2.dev3

Driver Configuration Reference

Ceph RADOS Block Device (RBD)

If you use KVM, QEMU or Hyper-V as your hypervisor, you can configure the Compute service to use
Ceph RADOS block devices (RBD) for volumes.

Ceph is a massively scalable, open source, distributed storage system. It is comprised of an object store,
block store, and a POSIX-compliant distributed file system. The platform can auto-scale to the exabyte
level and beyond. It runs on commodity hardware, is self-healing and self-managing, and has no single
point of failure. Due to its open-source nature, you can install and use this portable storage platform in
public or private clouds.

Fig. 1: Ceph architecture

Note: Supported Ceph versions

The current release cycle model for Ceph targets a new release yearly on 1 March, with there being at
most two active stable releases at any time.

For a given OpenStack release, Cinder supports the current Ceph active stable releases plus the two prior
releases.

For example, at the time of the OpenStack Wallaby release in April 2021, the Ceph active supported
releases are Pacific and Octopus. The Cinder Wallaby release therefore supports Ceph Pacific, Octopus,
Nautilus, and Mimic.

Additionally, it is expected that the version of the Ceph client available to Cinder or any of its associated
libraries (os-brick, cinderlib) is aligned with the Ceph server version. Mixing server and client versions
is unsupported and may lead to anomalous behavior.

The minimum requirements for using Ceph with Hyper-V are Ceph Pacific and Windows Server 2016.

3.3. Reference 121

https://ceph.com/ceph-storage/block-storage/
https://docs.ceph.com/en/latest/releases/general/

Cinder Documentation, Release 20.3.2.dev3

RADOS

Ceph is based on Reliable Autonomic Distributed Object Store (RADOS). RADOS distributes objects
across the storage cluster and replicates objects for fault tolerance. RADOS contains the following major
components:

Object Storage Device (OSD) Daemon The storage daemon for the RADOS service, which interacts
with the OSD (physical or logical storage unit for your data). You must run this daemon on each
server in your cluster. For each OSD, you can have an associated hard drive disk. For performance
purposes, pool your hard drive disk with raid arrays, or logical volume management (LVM). By
default, the following pools are created: data, metadata, and RBD.

Meta-Data Server (MDS) Stores metadata. MDSs build a POSIX file system on top of objects for Ceph
clients. However, if you do not use the Ceph file system, you do not need a metadata server.

Monitor (MON) A lightweight daemon that handles all communications with external applications and
clients. It also provides a consensus for distributed decision making in a Ceph/RADOS cluster. For
instance, when you mount a Ceph shared on a client, you point to the address of a MON server.
It checks the state and the consistency of the data. In an ideal setup, you must run at least three
ceph-mon daemons on separate servers.

Ways to store, use, and expose data

To store and access your data, you can use the following storage systems:

RADOS Use as an object, default storage mechanism.

RBD Use as a block device. The Linux kernel RBD (RADOS block device) driver allows striping a
Linux block device over multiple distributed object store data objects. It is compatible with the
KVM RBD image.

CephFS Use as a file, POSIX-compliant file system.

Ceph exposes RADOS; you can access it through the following interfaces:

RADOS Gateway OpenStack Object Storage and Amazon-S3 compatible RESTful interface (see RA-
DOS_Gateway).

librados and its related C/C++ bindings

RBD and QEMU-RBD Linux kernel and QEMU block devices that stripe data across multiple objects.

RBD pool

The RBD pool used by the Cinder backend is configured with option rbd_pool, and by default the driver
expects exclusive management access to that pool, as in being the only system creating and deleting
resources in it, since thats the recommended deployment choice.

Pool sharing is strongly discouraged, and if we were to share the pool with other services, within Open-
Stack (Nova, Glance, another Cinder backend) or outside of OpenStack (oVirt), then the stats returned
by the driver to the scheduler would not be entirely accurate.

The inaccuracy would be that the actual size in use by the cinder volumes would be lower than the reported
one, since it would be also including the used space by the other services.

122 Chapter 3. For operators

http://docs.ceph.com/docs/master/radosgw/
http://docs.ceph.com/docs/master/radosgw/

Cinder Documentation, Release 20.3.2.dev3

We can set the rbd_exclusive_cinder_pool configuration option to false to fix this inaccuracy, but
this has a performance impact.

Warning: Setting rbd_exclusive_cinder_pool to false will increase the burden on the Cinder
driver and the Ceph cluster, since a request will be made for each existing image, to retrieve its size,
during the stats gathering process.

For deployments with large amount of volumes it is recommended to leave the default value of true,
and accept the inaccuracy, as it should not be particularly problematic.

Driver options

The following table contains the configuration options supported by the Ceph RADOS Block Device
driver.

3.3. Reference 123

Cinder Documentation, Release 20.3.2.dev3

Table 1: Description of Ceph storage configuration options
Config-
uration
option =
Default
value

Description

deferred_deletion_delay
= 0

(Integer) Time delay in seconds before a volume is eligible for permanent removal after
being tagged for deferred deletion.

deferred_deletion_purge_interval
= 60

(Integer) Number of seconds between runs of the periodic task to purge volumes tagged
for deletion.

enable_deferred_deletion
= False

(Boolean) Enable deferred deletion. Upon deletion, volumes are tagged for deletion but
will only be removed asynchronously at a later time.

rados_connect_timeout
= -1

(Integer) Timeout value (in seconds) used when connecting to ceph cluster. If value < 0,
no timeout is set and default librados value is used.

rados_connection_interval
= 5

(Integer) Interval value (in seconds) between connection retries to ceph cluster.

rados_connection_retries
= 3

(Integer) Number of retries if connection to ceph cluster failed.

rbd_ceph_conf
= <>

(String) Path to the ceph configuration file

rbd_cluster_name
= ceph

(String) The name of ceph cluster

rbd_exclusive_cinder_pool
= True

(Boolean) Set to False if the pool is shared with other usages. On exclusive use driver
wont query images provisioned size as they will match the value calculated by the Cinder
core code for allocated_capacity_gb. This reduces the load on the Ceph cluster as well
as on the volume service. On non exclusive use driver will query the Ceph cluster for per
image used disk, this is an intensive operation having an independent request for each
image.

rbd_flatten_volume_from_snapshot
= False

(Boolean) Flatten volumes created from snapshots to remove dependency from volume
to snapshot

rbd_max_clone_depth
= 5

(Integer) Maximum number of nested volume clones that are taken before a flatten occurs.
Set to 0 to disable cloning. Note: lowering this value will not affect existing volumes
whose clone depth exceeds the new value.

rbd_pool
= rbd

(String) The RADOS pool where rbd volumes are stored

rbd_secret_uuid
= None

(String) The libvirt uuid of the secret for the rbd_user volumes

rbd_store_chunk_size
= 4

(Integer) Volumes will be chunked into objects of this size (in megabytes).

rbd_user
= None

(String) The RADOS client name for accessing rbd volumes - only set when using cephx
authentication

replication_connect_timeout
= 5

(Integer) Timeout value (in seconds) used when connecting to ceph cluster to do a de-
motion/promotion of volumes. If value < 0, no timeout is set and default librados value
is used.

report_dynamic_total_capacity
= True

(Boolean) Set to True for driver to report total capacity as a dynamic value (used + current
free) and to False to report a static value (quota max bytes if defined and global size of
cluster if not).

124 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

LVM

The default volume back end uses local volumes managed by LVM.

This driver supports different transport protocols to attach volumes, currently iSCSI and iSER.

Set the following in your cinder.conf configuration file, and use the following options to configure for
iSCSI transport:

volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
target_protocol = iscsi

Use the following options to configure for the iSER transport:

volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
target_protocol = iser

Table 2: Description of LVM configuration options
Configuration
option = Default
value

Description

lvm_conf_file
= /etc/cinder/
lvm.conf

(String) LVM conf file to use for the LVM driver in Cinder; this setting is ig-
nored if the specified file does not exist (You can also specify None to not use
a conf file even if one exists).

lvm_mirrors = 0 (Integer) If >0, create LVs with multiple mirrors. Note that this requires
lvm_mirrors + 2 PVs with available space

lvm_suppress_fd_warnings
= False

(Boolean) Suppress leaked file descriptor warnings in LVM commands.

lvm_type = auto (String(choices=[default, thin, auto])) Type of LVM volumes to deploy; (de-
fault, thin, or auto). Auto defaults to thin if thin is supported.

volume_group =
cinder-volumes

(String) Name for the VG that will contain exported volumes

Caution: When extending an existing volume which has a linked snapshot, the re-
lated logical volume is deactivated. This logical volume is automatically reactivated unless
auto_activation_volume_list is defined in LVM configuration file lvm.conf. See the lvm.
conf file for more information.

If auto activated volumes are restricted, then include the cinder volume group into this list:

auto_activation_volume_list = ["existingVG", "cinder-volumes"]

This note does not apply for thinly provisioned volumes because they do not need to be deactivated.

3.3. Reference 125

Cinder Documentation, Release 20.3.2.dev3

NFS driver

The Network File System (NFS) is a distributed file system protocol originally developed by Sun Mi-
crosystems in 1984. An NFS server exports one or more of its file systems, known as shares. An
NFS client can mount these exported shares on its own file system. You can perform file actions on this
mounted remote file system as if the file system were local.

How the NFS driver works

The NFS driver, and other drivers based on it, work quite differently than a traditional block storage
driver.

The NFS driver does not actually allow an instance to access a storage device at the block level. Instead,
files are created on an NFS share and mapped to instances, which emulates a block device. This works
in a similar way to QEMU, which stores instances in the /var/lib/nova/instances directory.

Enable the NFS driver and related options

To use Cinder with the NFS driver, first set the volume_driver in the cinder.conf configuration file:

volume_driver=cinder.volume.drivers.nfs.NfsDriver

The following table contains the options supported by the NFS driver.

Table 3: Description of NFS storage configuration options
Configuration option
= Default value

Description

nfs_mount_attempts
= 3

(Integer) The number of attempts to mount NFS shares before raising an
error. At least one attempt will be made to mount an NFS share, regardless
of the value specified.

nfs_mount_options
= None

(String) Mount options passed to the NFS client. See the NFS(5) man page
for details.

nfs_mount_point_base
= $state_path/mnt

(String) Base dir containing mount points for NFS shares.

nfs_qcow2_volumes
= False

(Boolean) Create volumes as QCOW2 files rather than raw files.

nfs_shares_config
= /etc/cinder/
nfs_shares

(String) File with the list of available NFS shares.

nfs_snapshot_support
= False

(Boolean) Enable support for snapshots on the NFS driver. Platforms using
libvirt <1.2.7 will encounter issues with this feature.

nfs_sparsed_volumes
= True

(Boolean) Create volumes as sparsed files which take no space. If set to
False volume is created as regular file. In such case volume creation takes
a lot of time.

Note: As of the Icehouse release, the NFS driver (and other drivers based off it) will attempt to mount
shares using version 4.1 of the NFS protocol (including pNFS). If the mount attempt is unsuccessful due
to a lack of client or server support, a subsequent mount attempt that requests the default behavior of the

126 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

mount.nfs command will be performed. On most distributions, the default behavior is to attempt mount-
ing first with NFS v4.0, then silently fall back to NFS v3.0 if necessary. If the nfs_mount_options
configuration option contains a request for a specific version of NFS to be used, or if specific options are
specified in the shares configuration file specified by the nfs_shares_config configuration option, the
mount will be attempted as requested with no subsequent attempts.

How to use the NFS driver

Creating an NFS server is outside the scope of this document.

Configure with one NFS server

This example assumes access to the following NFS server and mount point:

• 192.168.1.200:/storage

This example demonstrates the usage of this driver with one NFS server.

Set the nas_host option to the IP address or host name of your NFS server, and the nas_share_path
option to the NFS export path:

nas_host = 192.168.1.200
nas_share_path = /storage

Configure with multiple NFS servers

Note: You can use the multiple NFS servers with cinder multi back ends feature. Configure the en-
abled_backends option with multiple values, and use the nas_host and nas_share options for each
back end as described above.

The below example is another method to use multiple NFS servers, and demonstrates the usage of this
driver with multiple NFS servers. Multiple servers are not required. One is usually enough.

This example assumes access to the following NFS servers and mount points:

• 192.168.1.200:/storage

• 192.168.1.201:/storage

• 192.168.1.202:/storage

1. Add your list of NFS servers to the file you specified with the nfs_shares_config option. For
example, if the value of this option was set to /etc/cinder/shares.txt file, then:

cat /etc/cinder/shares.txt
192.168.1.200:/storage
192.168.1.201:/storage
192.168.1.202:/storage

Comments are allowed in this file. They begin with a #.

3.3. Reference 127

https://wiki.openstack.org/wiki/Cinder-multi-backend

Cinder Documentation, Release 20.3.2.dev3

2. Configure the nfs_mount_point_base option. This is a directory where cinder-volume
mounts all NFS shares stored in the shares.txt file. For this example, /var/lib/cinder/nfs
is used. You can, of course, use the default value of $state_path/mnt.

3. Start the cinder-volume service. /var/lib/cinder/nfs should now contain a directory for
each NFS share specified in the shares.txt file. The name of each directory is a hashed name:

ls /var/lib/cinder/nfs/
...
46c5db75dc3a3a50a10bfd1a456a9f3f
...

4. You can now create volumes as you normally would:

$ openstack volume create --size 5 MYVOLUME
ls /var/lib/cinder/nfs/46c5db75dc3a3a50a10bfd1a456a9f3f
volume-a8862558-e6d6-4648-b5df-bb84f31c8935

This volume can also be attached and deleted just like other volumes.

NFS driver notes

• cinder-volume manages the mounting of the NFS shares as well as volume creation on the
shares. Keep this in mind when planning your OpenStack architecture. If you have one master
NFS server, it might make sense to only have one cinder-volume service to handle all requests
to that NFS server. However, if that single server is unable to handle all requests, more than one
cinder-volume service is needed as well as potentially more than one NFS server.

• Because data is stored in a file and not actually on a block storage device, you might not see the
same IO performance as you would with a traditional block storage driver. Please test accordingly.

• Despite possible IO performance loss, having volume data stored in a file might be beneficial. For
example, backing up volumes can be as easy as copying the volume files.

Note: Regular IO flushing and syncing still stands.

Datera drivers

Datera iSCSI driver

The Datera Data Services Platform (DSP) is a scale-out storage software that turns standard, commodity
hardware into a RESTful API-driven, intent-based policy controlled storage fabric for large-scale clouds.
The Datera DSP integrates seamlessly with the Block Storage service. It provides storage through the
iSCSI block protocol framework over the iSCSI block protocol. Datera supports all of the Block Storage
services.

128 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

System requirements, prerequisites, and recommendations

Prerequisites

• All nodes must have access to Datera DSP through the iSCSI block protocol.

• All nodes accessing the Datera DSP must have the following packages installed:

– Linux I/O (LIO)

– open-iscsi

– open-iscsi-utils

– wget

3.3. Reference 129

Cinder Documentation, Release 20.3.2.dev3

Table 4: Description of Datera configuration options
Configura-
tion option
= Default
value

Description

datera_503_interval
= 5

(Integer) Interval between 503 retries

datera_503_timeout
= 120

(Integer) Timeout for HTTP 503 retry messages

datera_debug
= False

(Boolean) True to set function arg and return logging

datera_debug_replica_count_override
= False

(Boolean) ONLY FOR DEBUG/TESTING PURPOSES True to set replica_count to 1

datera_disable_extended_metadata
= False

(Boolean) Set to True to disable sending additional metadata to the Datera backend

datera_disable_profiler
= False

(Boolean) Set to True to disable profiling in the Datera driver

datera_disable_template_override
= False

(Boolean) Set to True to disable automatic template override of the size attribute when
creating from a template

datera_enable_image_cache
= False

(Boolean) Set to True to enable Datera backend image caching

datera_image_cache_volume_type_id
= None

(String) Cinder volume type id to use for cached volumes

datera_ldap_server
= None

(String) LDAP authentication server

datera_tenant_id
= None

(String) If set to Map > OpenStack project ID will be mapped implicitly to Datera tenant
ID If set to None > Datera tenant ID will not be used during volume provisioning If set
to anything else > Datera tenant ID will be the provided value

datera_volume_type_defaults
= {}

(Dict of String) Settings here will be used as volume-type defaults if the volume-type
setting is not provided. This can be used, for example, to set a very low total_iops_max
value if none is specified in the volume-type to prevent accidental overusage. Op-
tions are specified via the following format, WITHOUT ANY DF: PREFIX: dat-
era_volume_type_defaults=iops_per_gb:100,bandwidth_per_gb:200etc.

datera_api_port
= 7717

(String) Datera API port. DEPRECATED

datera_api_version
= 2.2

(String) Datera API version. DEPRECATED

Configuring the Datera volume driver

Modify the /etc/cinder/cinder.conf file for Block Storage service.

• Enable the Datera volume driver:

[DEFAULT]
...
enabled_backends = datera
...

130 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Optional. Designate Datera as the default back-end:

default_volume_type = datera

• Create a new section for the Datera back-end definition. The VIP can be either the Datera Man-
agement Network VIP or one of the Datera iSCSI Access Network VIPs depending on the network
segregation requirements. For a complete list of parameters that can be configured, please see the
section Volume Driver Cinder.conf Options

[datera]
volume_driver = cinder.volume.drivers.datera.datera_iscsi.DateraDriver
san_ip = <VIP>
san_login = admin
san_password = password
datera_tenant_id =
volume_backend_name = datera
datera_volume_type_defaults=replica_count:3

Enable the Datera volume driver

• Verify the OpenStack control node can reach the Datera VIP:

$ ping -c 4 <VIP>

• Start the Block Storage service on all nodes running the cinder-volume services:

$ service cinder-volume restart

Configuring one (or more) Datera specific volume types

There are extra volume type parameters that can be used to define Datera volume types with specific QoS
policies (R/W IOPS, R/W bandwidth) and/or placement policies (replica count, type of media, IP pool
to use, etc.)

For a full list of supported options please see the Volume-Type ExtraSpecs section in the driver docu-
mentation. See more examples in the Usage section.

Create 2 replica volume type
$ openstack volume type create datera_2way --property volume_backend_
↪→name=datera --property DF:replica_count=2

Create volume type with limited write IOPS
$ openstack volume type create datera_iops --property volume_backend_
↪→name=datera --property DF:write_iops_max=5000

3.3. Reference 131

https://github.com/Datera/cinder-driver/blob/master/README.rst#volume-driver-cinderconf-options
https://github.com/Datera/cinder-driver/blob/master/README.rst#volume-type-extraspecs
https://github.com/Datera/cinder-driver/blob/master/README.rst#usage

Cinder Documentation, Release 20.3.2.dev3

Supported operations

• Create, delete, attach, detach, manage, unmanage, and list volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Support for naming convention changes.

Configuring multipathing

Enabling multipathing is strongly reccomended for reliability and availability reasons. Please refer to
the following file for an example of configuring multipathing in Linux 3.x kernels. Some parameters in
different Linux distributions may be different.

Dell EMC PowerFlex Storage driver

Overview

Dell EMC PowerFlex (formerly named Dell EMC ScaleIO/VxFlex OS) is a software-only solution that
uses existing servers local disks and LAN to create a virtual SAN that has all of the benefits of external
storage, but at a fraction of the cost and complexity. Using the driver, Block Storage hosts can connect
to a PowerFlex Storage cluster.

The Dell EMC PowerFlex Cinder driver is designed and tested to work with both PowerFlex and with
ScaleIO. The configuration options are identical for both PowerFlex and ScaleIO.

Official PowerFlex documentation

To find the PowerFlex documentation:

1. Go to the PowerFlex product documentation page.

2. From the left-side panel, select the relevant PowerFlex version.

132 Chapter 3. For operators

https://github.com/Datera/datera-csi/blob/master/assets/multipath.conf
https://support.emc.com/products/33925_ScaleIO/Documentation/?source=promotion

Cinder Documentation, Release 20.3.2.dev3

Supported PowerFlex, VxFlex OS and ScaleIO Versions

The Dell EMC PowerFlex Block Storage driver has been tested against the following versions of ScaleIO,
VxFlex OS and PowerFlex and found to be compatible:

• ScaleIO 2.0.x

• ScaleIO 2.5.x

• VxFlex OS 2.6.x

• VxFlex OS 3.0.x

• PowerFlex 3.5.x

Please consult the Official PowerFlex documentation to determine supported operating systems for each
version of PowerFlex, VxFlex OS or ScaleIO.

Deployment prerequisites

• The PowerFlex Gateway must be installed and accessible in the network. For installation steps,
refer to the Preparing the installation Manager and the Gateway section in PowerFlex Deployment
Guide. See Official PowerFlex documentation.

• PowerFlex Storage Data Client (SDC) must be installed on all OpenStack nodes.

Note: Ubuntu users must follow the specific instructions in the PowerFlex OS Deployment Guide for
Ubuntu environments. See the Deploying on Ubuntu Servers section in PowerFlex Deployment
Guide. See Official PowerFlex documentation.

Supported operations

• Create, delete, clone, attach, detach, migrate, manage, and unmanage volumes

• Create, delete, manage, and unmanage volume snapshots

• Create a volume from a snapshot

• Revert a volume to a snapshot

• Copy an image to a volume

• Copy a volume to an image

• Extend a volume

• Get volume statistics

• Create, list, update, and delete consistency groups

• Create, list, update, and delete consistency group snapshots

• OpenStack replication v2.1 support

3.3. Reference 133

Cinder Documentation, Release 20.3.2.dev3

PowerFlex Block Storage driver configuration

This section explains how to configure and connect the block storage nodes to a PowerFlex storage cluster.

Edit the cinder.conf file by adding the configuration below under a new section (for example,
[powerflex]) and change the enable_backends setting (in the [DEFAULT] section) to include this
new back end. The configuration file is usually located at /etc/cinder/cinder.conf.

For a configuration example, refer to the example cinder.conf .

PowerFlex driver name

Configure the driver name by adding the following parameter:

volume_driver = cinder.volume.drivers.dell_emc.powerflex.driver.
↪→PowerFlexDriver

PowerFlex Gateway server IP

The PowerFlex Gateway provides a REST interface to PowerFlex.

Configure the Gateway server IP address by adding the following parameter:

san_ip = <PowerFlex GATEWAY IP>

PowerFlex Storage Pools

Multiple Storage Pools and Protection Domains can be listed for use by the virtual machines. The list
should include every Protection Domain and Storage Pool pair that you would like Cinder to utilize.

To retrieve the available Storage Pools, use the command scli --query_all and search for available
Storage Pools.

Configure the available Storage Pools by adding the following parameter:

powerflex_storage_pools = <Comma-separated list of protection domain:storage␣
↪→pool name>

PowerFlex user credentials

Block Storage requires a PowerFlex user with administrative privileges. Dell EMC recommends creating
a dedicated OpenStack user account that has an administrative user role.

Refer to the PowerFlex User Guide for details on user account management.

Configure the user credentials by adding the following parameters:

san_login = <POWERFLEX_USER>
san_password = <POWERFLEX_PASSWD>

134 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Oversubscription

Configure the oversubscription ratio by adding the following parameter under the separate section for
PowerFlex:

powerflex_max_over_subscription_ratio = <OVER_SUBSCRIPTION_RATIO>

Note: The default value for powerflex_max_over_subscription_ratio is 10.0.

Oversubscription is calculated correctly by the Block Storage service only if the extra specification
provisioning:type appears in the volume type regardless of the default provisioning type. Maximum
oversubscription value supported for PowerFlex is 10.0.

Default provisioning type

If provisioning type settings are not specified in the volume type, the default value is set according to
the san_thin_provision option in the configuration file. The default provisioning type will be thin
if the option is not specified in the configuration file. To set the default provisioning type thick, set the
san_thin_provision option to false in the configuration file, as follows:

san_thin_provision = false

The configuration file is usually located in /etc/cinder/cinder.conf. For a configuration example,
see: cinder.conf .

Configuration example

cinder.conf example file

You can update the cinder.conf file by editing the necessary parameters as follows:

[DEFAULT]
enabled_backends = powerflex

[powerflex]
volume_driver = cinder.volume.drivers.dell_emc.powerflex.driver.
↪→PowerFlexDriver
volume_backend_name = powerflex
san_ip = GATEWAY_IP
powerflex_storage_pools = Domain1:Pool1,Domain2:Pool2
san_login = POWERFLEX_USER
san_password = POWERFLEX_PASSWD
san_thin_provision = false

3.3. Reference 135

Cinder Documentation, Release 20.3.2.dev3

Connector configuration

Before using attach/detach volume operations PowerFlex connector must be properly configured. On
each node where PowerFlex SDC is installed do the following:

1. Create /opt/emc/scaleio/openstack/connector.conf if it does not exist.

$ mkdir -p /opt/emc/scaleio/openstack
$ touch /opt/emc/scaleio/openstack/connector.conf

2. For each PowerFlex section in the cinder.conf create the same section in the /opt/emc/
scaleio/openstack/connector.conf and populate it with passwords. Example:

[powerflex]
san_password = POWERFLEX_PASSWD
replicating_san_password = REPLICATION_SYSTEM_POWERFLEX_PASSWD # if␣
↪→applicable

[powerflex-new]
san_password = SIO2_PASSWD
replicating_san_password = REPLICATION_SYSTEM_SIO2_PASSWD # if applicable

Configuration options

The PowerFlex driver supports these configuration options:

136 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 5: Description of PowerFlex configuration options
Configuration option
= Default value

Description

powerflex_allow_migration_during_rebuild
= False

(Boolean) Allow volume migration during rebuild.

powerflex_allow_non_padded_volumes
= False

(Boolean) Allow volumes to be created in Storage Pools when zero padding
is disabled. This option should not be enabled if multiple tenants will utilize
volumes from a shared Storage Pool.

powerflex_max_over_subscription_ratio
= 10.0

(Float) max_over_subscription_ratio setting for the driver. Maximum value
allowed is 10.0.

powerflex_rest_server_port
= 443

(Port(min=0, max=65535)) Gateway REST server port.

powerflex_round_volume_capacity
= True

(Boolean) Round volume sizes up to 8GB boundaries. PowerFlex/VxFlex
OS requires volumes to be sized in multiples of 8GB. If set to False, volume
creation will fail for volumes not sized properly

powerflex_server_api_version
= None

(String) PowerFlex/ScaleIO API version. This value should be left as the
default value unless otherwise instructed by technical support.

powerflex_storage_pools
= None

(String) Storage Pools. Comma separated list of storage pools used
to provide volumes. Each pool should be specified as a protec-
tion_domain_name:storage_pool_name value

powerflex_unmap_volume_before_deletion
= False

(Boolean) Unmap volumes before deletion.

vxflexos_allow_migration_during_rebuild
= False

(Boolean) renamed to powerflex_allow_migration_during_rebuild. DEP-
RECATED

vxflexos_allow_non_padded_volumes
= False

(Boolean) renamed to powerflex_allow_non_padded_volumes. DEPRE-
CATED

vxflexos_max_over_subscription_ratio
= 10.0

(Float) renamed to powerflex_max_over_subscription_ratio. DEPRE-
CATED

vxflexos_rest_server_port
= 443

(Port(min=0, max=65535)) renamed to powerflex_rest_server_port. DEP-
RECATED

vxflexos_round_volume_capacity
= True

(Boolean) renamed to powerflex_round_volume_capacity. DEPRE-
CATED

vxflexos_server_api_version
= None

(String) renamed to powerflex_server_api_version. DEPRECATED

vxflexos_storage_pools
= None

(String) renamed to powerflex_storage_pools. DEPRECATED

vxflexos_unmap_volume_before_deletion
= False

(Boolean) renamed to powerflex_round_volume_capacity. DEPRE-
CATED

3.3. Reference 137

Cinder Documentation, Release 20.3.2.dev3

Volume Types

Volume types can be used to specify characteristics of volumes allocated via the PowerFlex Driver. These
characteristics are defined as Extra Specs within Volume Types.

PowerFlex Protection Domain and Storage Pool

When multiple storage pools are specified in the Cinder configuration, users can specify which pool
should be utilized by adding the pool_name Extra Spec to the volume type extra-specs and setting the
value to the requested protection_domain:storage_pool.

$ openstack volume type create powerflex_type_1
$ openstack volume type set --property volume_backend_name=powerflex␣
↪→powerflex_type_1
$ openstack volume type set --property pool_name=Domain2:Pool2 powerflex_type_
↪→1

PowerFlex thin provisioning support

The Block Storage driver supports creation of thin-provisioned and thick-provisioned volumes. The pro-
visioning type settings can be added as an extra specification of the volume type, as follows:

$ openstack volume type create powerflex_type_thick
$ openstack volume type set --property provisioning:type=thick powerflex_type_
↪→thick

PowerFlex QoS support

QoS support for the PowerFlex driver includes the ability to set the following capabilities:

maxIOPS The QoS I/O rate limit. If not set, the I/O rate will be unlimited. The setting must be larger
than 10.

maxIOPSperGB The QoS I/O rate limit. The limit will be calculated by the specified value multiplied
by the volume size. The setting must be larger than 10.

maxBWS The QoS I/O bandwidth rate limit in KBs. If not set, the I/O bandwidth rate will be unlimited.
The setting must be a multiple of 1024.

maxBWSperGB The QoS I/O bandwidth rate limit in KBs. The limit will be calculated by the specified
value multiplied by the volume size. The setting must be a multiple of 1024.

The QoS keys above must be created and associated with a volume type. For example:

$ openstack volume qos create qos-limit-iops --consumer back-end --property␣
↪→maxIOPS=5000
$ openstack volume type create powerflex_limit_iops
$ openstack volume qos associate qos-limit-iops powerflex_limit_iops

138 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

The driver always chooses the minimum between the QoS keys value and the relevant calculated value
of maxIOPSperGB or maxBWSperGB.

Since the limits are per SDC, they will be applied after the volume is attached to an instance, and thus to
a compute node/SDC.

PowerFlex compression support

Starting from version 3.0, PowerFlex supports volume compression. By default driver will create volumes
without compression. In order to create a compressed volume, a volume type which enables compression
support needs to be created first:

$ openstack volume type create powerflex_compressed
$ openstack volume type set --property provisioning:type=compressed powerflex_
↪→compressed

If a volume with this type is scheduled to a storage pool which doesnt support compression, then thin
provisioning will be used. See table below for details.

provisioning:type storage pool supports compression
yes (PowerFlex 3.0 FG pool) no (other pools)

compressed thin with compression thin
thin thin thin
thick thin thick
not set thin thin

Note: PowerFlex 3.0 Fine Granularity storage pools dont support thick provisioned volumes.

You can add property compression_support='<is> True' to volume type to limit volumes alloca-
tion only to data pools which supports compression.

$ openstack volume type set --property compression_support='<is> True'␣
↪→powerflex_compressed

PowerFlex replication support

Starting from version 3.5, PowerFlex supports volume replication.

Prerequisites

• PowerFlex replication components must be installed on source and destination systems.

• Source and destination systems must have the same configuration for Protection Domains and their
Storage Pools (i.e. names, zero padding, etc.).

• Source and destination systems must be paired and have at least one Replication Consistency Group
created.

See Official PowerFlex documentation for instructions.

3.3. Reference 139

Cinder Documentation, Release 20.3.2.dev3

Configure replication

1. Enable replication in cinder.conf file.

To enable replication feature for storage backend replication_device must be set as below:

[DEFAULT]
enabled_backends = powerflex

[powerflex]
volume_driver = cinder.volume.drivers.dell_emc.powerflex.driver.
↪→PowerFlexDriver
volume_backend_name = powerflex
san_ip = GATEWAY_IP
powerflex_storage_pools = Domain1:Pool1,Domain2:Pool2
san_login = POWERFLEX_USER
san_password = POWERFLEX_PASSWD
san_thin_provision = false
replication_device = backend_id:powerflex_repl,

san_ip: REPLICATION_SYSTEM_GATEWAY_IP,
san_login: REPLICATION_SYSTEM_POWERFLEX_USER,
san_password: REPLICATION_SYSTEM_POWERFLEX_PASSWD

• Only one replication device is supported for storage backend.

• The following parameters are optional for replication device:

– REST API port - powerflex_rest_server_port.

– SSL certificate verification - driver_ssl_cert_verify and
driver_ssl_cert_path.

For more information see Configuration options.

2. Create volume type for volumes with replication enabled.

$ openstack volume type create powerflex_replicated
$ openstack volume type set --property replication_enabled='<is> True'␣
↪→powerflex_replicated

3. Set PowerFlex Replication Consistency Group name for volume type.

$ openstack volume type set --property powerflex:replication_cg=
↪→<replication_cg name> \

powerflex_replicated

4. Set Protection Domain and Storage Pool if multiple Protection Domains are specified.

PowerFlex Replication Consistency Group is created between source and destination Protection
Domains. If more than one Protection Domain is specified in cinder.conf you should set
pool_name property for volume type with appropriate Protection Domain and Storage Pool. See
PowerFlex Protection Domain and Storage Pool.

140 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Failover host

In the event of a disaster, or where there is a required downtime the administrator can issue the failover
host command:

$ cinder failover-host cinder_host@powerflex --backend_id powerflex_repl

After issuing Cinder failover-host command Cinder will switch to configured replication device, however
to get existing instances to use this target and new paths to volumes it is necessary to first shelve Nova
instances and then unshelve them, this will effectively restart the Nova instance and re-establish data
paths between Nova instances and the volumes.

$ nova shelve <server>
$ nova unshelve [--availability-zone <availability_zone>] <server>

If the primary system becomes available, the administrator can initiate failback operation using
--backend_id default:

$ cinder failover-host cinder_host@powerflex --backend_id default

PowerFlex storage-assisted volume migration

Starting from version 3.0, PowerFlex supports storage-assisted volume migration.

Known limitations

• Migration between different backends is not supported.

• For migration from Medium Granularity (MG) to Fine Granularity (FG) storage pool zero padding
must be enabled on the MG pool.

• For migration from MG to MG pool zero padding must be either enabled or disabled on both pools.

In the above cases host-assisted migration will be perfomed.

Migrate volume

Volume migration is performed by issuing the following command:

$ cinder migrate <volume> <host>

Note: Volume migration has a timeout of 3600 seconds (1 hour). It is done to prevent from endless
waiting for migration to complete if something unexpected happened. If volume still is in migration after
timeout has expired, volume status will be changed to maintenance to prevent future operations with
this volume. The corresponding warning will be logged.

In this situation the status of the volume should be checked on the storage side. If volume migration
succeeded, its status can be changed manually:

3.3. Reference 141

Cinder Documentation, Release 20.3.2.dev3

$ cinder reset-state --state available <volume>

Using PowerFlex Storage with a containerized overcloud

1. Create a file with below contents:

parameter_defaults:
NovaComputeOptVolumes:
- /opt/emc/scaleio:/opt/emc/scaleio

CinderVolumeOptVolumes:
- /opt/emc/scaleio:/opt/emc/scaleio

GlanceApiOptVolumes:
- /opt/emc/scaleio:/opt/emc/scaleio

Name it whatever you like, e.g. powerflex_volumes.yml.

2. Use -e to include this customization file to deploy command.

3. Install the Storage Data Client (SDC) on all nodes after deploying the overcloud.

Dell EMC PowerMax iSCSI and FC drivers

The Dell EMC PowerMax drivers, PowerMaxISCSIDriver and PowerMaxFCDriver, support the use
of Dell EMC PowerMax and VMAX storage arrays with the Cinder Block Storage project. They both
provide equivalent functions and differ only in support for their respective host attachment methods.

The drivers perform volume operations by communicating with the back-end PowerMax storage man-
agement software. They use the Requests HTTP library to communicate with a Unisphere for PowerMax
instance, using a RESTAPI interface in the backend to perform PowerMax and VMAX storage opera-
tions.

Note: DEPRECATION NOTICE: The VMAX Hybrid series will not be supported from the Z release
of OpenStack. Also, any All Flash array running HyperMaxOS 5977 will no longer be supported from
the Z release onwards.

Note: While PowerMax will be used throughout this document, it will be used to collectively categorize
the following supported arrays, PowerMax 2000, 8000, VMAX All Flash 250F, 450F, 850F and 950F
and VMAX-Hybrid.

142 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

System requirements and licensing

The Dell EMC PowerMax Cinder driver supports the VMAX-Hybrid series, VMAX All-Flash series and
the PowerMax arrays.

The array operating system software, Solutions Enabler 9.2.2 series, and Unisphere for PowerMax 9.2.2
series are required to run Dell EMC PowerMax Cinder driver for the Wallaby release. Please refer to
support-matrix-table for the support matrix of previous OpenStack versions.

Download Solutions Enabler and Unisphere from the Dell EMCs support web site (login is required). See
the Dell EMC Solutions Enabler 9.2.2 Installation and Configuration Guide and Dell EMC Unisphere
for PowerMax Installation Guide at the Dell EMC Support site.

Note: At the time each OpenStack release, support-matrix-table was the recommended PowerMax
management software and OS combinations. Please reach out your local PowerMax representative to see
if these versions are still valid.

Table 6: PowerMax Management software and OS for OpenStack
release

OpenStack Unisphere for PowerMax PowerMax OS
Xena 9.2.2 5978.711
Wallaby 9.2.1 5978.711
Victoria 9.2.x 5978.669
Ussuri 9.1.x 5978.479
Train 9.1.x 5978.444
Stein 9.0.x 5978.221

Note: A Hybrid array can only run HyperMax OS 5977, and is still supported until the Z release of
OpenStack. Some functionality will not be available in older versions of the OS. If in any doubt, please
contact your local PowerMax representative.

Note: Newer versions of Unisphere for PowerMax and PowerMax OS are not retrospectively tested on
older versions of OpenStack. If it is necessary to upgrade, the older REST endpoints will be used. For
example, in Ussuri, if upgrading to Unisphere for PowerMax 9.2, the older 91 endpoints will be used.

Required PowerMax software suites for OpenStack

The storage system requires a Unisphere for PowerMax (SMC) eLicense.

3.3. Reference 143

https://www.dell.com/support

Cinder Documentation, Release 20.3.2.dev3

PowerMax

There are two licenses for the PowerMax 2000 and 8000:

• Essentials software package

• Pro software package

The Dell EMC PowerMax cinder driver requires the Pro software package.

All Flash

For full functionality including SRDF for the VMAX All Flash, the FX package, or the F package plus
the SRDF a la carte add on is required.

Hybrid

There are five Dell EMC Software Suites sold with the VMAX-Hybrid arrays:

• Base Suite

• Advanced Suite

• Local Replication Suite

• Remote Replication Suite

• Total Productivity Pack

The Dell EMC PowerMax Cinder driver requires the Advanced Suite and the Local Replication Suite
or the Total Productivity Pack (it includes the Advanced Suite and the Local Replication Suite) for the
VMAX Hybrid.

Using PowerMax Remote Replication functionality will also require the Remote Replication Suite.

Note: Each are licensed separately. For further details on how to get the relevant license(s), reference
eLicensing Support below.

eLicensing support

To activate your entitlements and obtain your PowerMax license files, visit the Service Center on Dell
EMC Support, as directed on your License Authorization Code (LAC) letter emailed to you.

• For help with missing or incorrect entitlements after activation (that is, expected functionality
remains unavailable because it is not licensed), contact your EMC account representative or au-
thorized reseller.

• For help with any errors applying license files through Solutions Enabler, contact the Dell EMC
Customer Support Center.

• If you are missing a LAC letter or require further instructions on activating your licenses through
the Online Support site, contact EMCs worldwide Licensing team at licensing@emc.com or call:

144 Chapter 3. For operators

https://www.dell.com/support
https://www.dell.com/support

Cinder Documentation, Release 20.3.2.dev3

North America, Latin America, APJK, Australia, New Zealand: SVC4EMC (800-782-4362) and
follow the voice prompts.

EMEA: +353 (0) 21 4879862 and follow the voice prompts.

PowerMax for OpenStack Cinder customer support

If you require help or assistance with PowerMax and Cinder please open a Service Request (SR) through
standard support channels at Dell EMC Support. When opening a SR please include the following infor-
mation:

• Array Model & uCode level

• Unisphere for PowerMax version

• Solutions Enabler Version

• OpenStack host Operating System (Ubuntu, RHEL, etc.)

• OpenStack version (Usurri, Train, etc.)

• PowerMax for Cinder driver version, this can be located in the comments in the PowerMax driver
file: {cinder_install_dir}/cinder/volume/drivers/dell_emc/powermax/fc.py

• Cinder logs

• Detailed description of the issue you are encountering

Supported operations

PowerMax drivers support these operations:

• Create, list, delete, attach, and detach volumes

• Create, list, and delete volume snapshots

• Copy an image to a volume

• Copy a volume to an image

• Clone a volume

• Extend a volume

• Retype a volume (Host and storage assisted volume migration)

• Create a volume from a snapshot

• Create and delete generic volume group

• Create and delete generic volume group snapshot

• Modify generic volume group (add and remove volumes)

• Create generic volume group from source

• Live Migration

• Volume replication SRDF/S, SRDF/A and SRDF Metro

• Quality of service (QoS)

3.3. Reference 145

https://www.dell.com/support

Cinder Documentation, Release 20.3.2.dev3

• Manage and unmanage volumes and snapshots

• List Manageable Volumes/Snapshots

• Backup create, delete, list, restore and show

PowerMax drivers also support the following features:

• Dynamic masking view creation

• Dynamic determination of the target iSCSI IP address

• iSCSI multipath support

• Oversubscription

• Service Level support

• SnapVX support

• Compression support(All Flash and PowerMax)

• Deduplication support(PowerMax)

• CHAP Authentication

• Multi-attach support

• Volume Metadata in logs

• Encrypted Volume support

• Extending attached volume

• Replicated volume retype support

• Retyping attached(in-use) volume

• Unisphere High Availability(HA) support

• Online device expansion of a metro device

• Rapid TDEV deallocation of deletes

• Multiple replication devices

• PowerMax array and storage group tagging

• Short host name and port group templates

• Snap id support

• Seamless Live Migration from SMI-S support

• Port group & port performance load balancing

Note: In certain cases, when creating a volume from a source snapshot or source volume, subsequent
operations using the volumes may fail due to a missing snap_name exception. A manual refresh on the
connected Unisphere instance or waiting until another operation automatically refreshes the connected
Unisphere instance, will alleviate this issue.

146 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

PowerMax naming conventions

Note: shortHostName will be altered using the following formula, if its length exceeds 16 characters.
This is because the storage group and masking view names cannot exceed 64 characters:

if len(shortHostName) > 16:
1. Perform md5 hash on the shortHostName
2. Convert output of 1. to hex
3. Take last 6 characters of shortHostName and append output of 2.
4. If the length of output of 3. exceeds 16 characters, join the

first 8 characters and last 8 characters.

Note: portgroup_name will be altered using the following formula, if its length exceeds 12 characters.
This is because the storage group and masking view names cannot exceed 64 characters:

if len(portgroup_name) > 12:
1. Perform md5 hash on the portgroup_name
2. Convert output of 1. to hex
3. Take last 6 characters of portgroup_name and append output of 2.
4. If the length of output of 3. exceeds 12 characters, join the

first 6 characters and last 6 characters.

Masking view names

Masking views are dynamically created by the PowerMax FC and iSCSI drivers using the following
naming conventions. [protocol] is either I for volumes attached over iSCSI or F for volumes attached
over Fibre Channel.

OS-[shortHostName]-[protocol]-[portgroup_name]-MV

Initiator group names

For each host that is attached to PowerMax volumes using the drivers, an initiator group is created or
re-used (per attachment type). All initiators of the appropriate type known for that host are included
in the group. At each new attach volume operation, the PowerMax driver retrieves the initiators (either
WWNNs or IQNs) from OpenStack and adds or updates the contents of the Initiator Group as required.
Names are of the following format. [protocol] is either I for volumes attached over iSCSI or F for
volumes attached over Fibre Channel.

OS-[shortHostName]-[protocol]-IG

Note: Hosts attaching to OpenStack managed PowerMax storage cannot also attach to storage on the
same PowerMax that are not managed by OpenStack.

3.3. Reference 147

Cinder Documentation, Release 20.3.2.dev3

FA port groups

PowerMax array FA ports to be used in a new masking view are retrieved from the port group provided
as the extra spec on the volume type, or chosen from the list provided in the Dell EMC configuration file.

Storage group names

As volumes are attached to a host, they are either added to an existing storage group (if it exists) or a
new storage group is created and the volume is then added. Storage groups contain volumes created
from a pool, attached to a single host, over a single connection type (iSCSI or FC). [protocol] is either
I for volumes attached over iSCSI or F for volumes attached over Fibre Channel. PowerMax Cinder
driver utilizes cascaded storage groups - a parent storage group which is associated with the masking
view, which contains child storage groups for each configured SRP/slo/workload/compression-enabled
or disabled/replication-enabled or disabled combination.

PowerMax, VMAX All Flash and VMAX-Hybrid

Parent storage group:

OS-[shortHostName]-[protocol]-[portgroup_name]-SG

Child storage groups:

OS-[shortHostName]-[SRP]-[ServiceLevel/Workload]-[portgroup_name]-CD-RE

Note: CD and RE are only set if compression is explicitly disabled or replication explicitly enabled. See
the compression 11. All Flash compression support and replication Volume replication support sections
below.

Note: For VMAX All Flash with PowerMax OS (5978) or greater, workload if set will be ignored and
set to NONE.

Table 7: Replication storage group naming conventions
Default storage
group

Attached child storage
group

Management Group Replication
Type

OS-[SRP]-[SL]-[WL]-
SG

OS-[HOST]-[SRP]-
[SL/WL]-[PG]

N/A None

OS-[SRP]-[SL]-[WL]-
RE-SG

OS-[HOST]-[SRP]-
[SL/WL]-[PG]-RE

N/A Synchronous

OS-[SRP]-[SL]-[WL]-
RA-SG

OS-[HOST]-[SRP]-
[SL/WL]-[PG]-RA

OS-[RDFG]-
Asynchronous-rdf-sg

Asyn-
chronous

OS-[SRP]-[SL]-[WL]-
RM-SG

OS-[HOST]-[SRP]-
[SL/WL]-[PG]-RM

OS-[RDFG]-Metro-rdf-
sg

Metro

148 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

PowerMax driver integration

1. Prerequisites

1. Download Solutions Enabler from Dell EMC Support and install it.

You can install Solutions Enabler on a non-OpenStack host. Supported platforms include different
flavors of Windows, Red Hat, and SUSE Linux. Solutions Enabler can be installed on a physical
server, or as a Virtual Appliance (a VMware ESX server VM). Additionally, starting with HYPER-
MAX OS Q3 2015, you can manage VMAX3 arrays using the Embedded Management (eManage-
ment) container application. See the Dell EMC Solutions Enabler 9.2.1 Installation
and Configuration Guide on Dell EMC Support for more details.

Note: You must discover storage arrays before you can use the PowerMax drivers. Follow in-
structions in Dell EMC Solutions Enabler 9.2.1 Installation and Configuration
Guide on Dell EMC Support for more details.

2. Download Unisphere from Dell EMC Support and install it.

Unisphere can be installed in local, remote, or embedded configurations - i.e., on the same server
running Solutions Enabler; on a server connected to the Solutions Enabler server; or using the
eManagement container application (containing Solutions Enabler and Unisphere for PowerMax).
See Dell EMC Solutions Enabler 9.2.1 Installation and Configuration Guide at
Dell EMC Support.

2. FC zoning with PowerMax

Zone Manager is required when there is a fabric between the host and array. This is necessary for larger
configurations where pre-zoning would be too complex and open-zoning would raise security concerns.

3. iSCSI with PowerMax

• Make sure the open-iscsi package (or distro equivalent) is installed on all Compute nodes.

Note: You can only ping the PowerMax iSCSI target ports when there is a valid masking view. An
attach operation creates this masking view.

3.3. Reference 149

https://www.dell.com/support
https://www.dell.com/support
https://www.dell.com/support
https://www.dell.com/support
https://www.dell.com/support

Cinder Documentation, Release 20.3.2.dev3

4. Configure block storage in cinder.conf

Table 8: Description of PowerMax configuration options
Configuration
option = Default
value

Description

initiator_check
= False

(Boolean) Use this value to enable the initiator_check.

interval = 3 (Integer) Use this value to specify length of the interval in seconds.
load_balance =
False

(Boolean) Enable/disable load balancing for a PowerMax backend.

load_balance_real_time
= False

(Boolean) Enable/disable real-time performance metrics for Port level load
balancing for a PowerMax backend.

load_data_format
= Avg

(String) Performance data format, not applicable for real-time metrics. Avail-
able options are avg and max.

load_look_back =
60

(Integer) How far in minutes to look back for diagnostic performance metrics
in load calculation, minimum of 0 maximum of 1440 (24 hours).

load_look_back_real_time
= 1

(Integer) How far in minutes to look back for real-time performance metrics
in load calculation, minimum of 1 maximum of 10.

port_group_load_metric
= PercentBusy

(String) Metric used for port group load calculation.

port_load_metric
= PercentBusy

(String) Metric used for port load calculation.

powermax_array =
None

(String) Serial number of the array to connect to.

powermax_array_tag_list
= None

(List of String) List of user assigned name for storage array.

powermax_port_group_name_template
= portGroupName

(String) User defined override for port group name.

powermax_port_groups
= None

(List of String) List of port groups containing frontend ports configured prior
for server connection.

powermax_service_level
= None

(String) Service level to use for provisioning storage. Setting this as an extra
spec in pool_name is preferable.

powermax_short_host_name_template
= shortHostName

(String) User defined override for short host name.

powermax_srp =
None

(String) Storage resource pool on array to use for provisioning.

retries = 200 (Integer) Use this value to specify number of retries.
u4p_failover_autofailback
= True

(Boolean) If the driver should automatically failback to the primary instance
of Unisphere when a successful connection is re-established.

u4p_failover_backoff_factor
= 1

(Integer) A backoff factor to apply between attempts after the second try (most
errors are resolved immediately by a second try without a delay). Retries will
sleep for: {backoff factor} * (2 ^ ({number of total retries} - 1)) seconds.

u4p_failover_retries
= 3

(Integer) The maximum number of retries each connection should attempt.
Note, this applies only to failed DNS lookups, socket connections and con-
nection timeouts, never to requests where data has made it to the server.

u4p_failover_target
= None

(Dict of String) Dictionary of Unisphere failover target info.

u4p_failover_timeout
= 20.0

(Integer) How long to wait for the server to send data before giving up.

vmax_workload =
None

(String) Workload, setting this as an extra spec in pool_name is preferable.
150 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Note: san_api_port is 8443 by default but can be changed if necessary. For the purposes of this
documentation the default is assumed so the tag will not appear in any of the cinder.conf extracts
below.

Note: PowerMax PortGroups must be pre-configured to expose volumes managed by the
array. Port groups can be supplied in cinder.conf, or can be specified as an extra spec
storagetype:portgroupname on a volume type. If a port group is set on a volume type as an ex-
tra specification it takes precedence over any port groups set in cinder.conf. For more information on
port and port group selection please see the section port group & port load balancing.

Note: PowerMax SRP cannot be changed once configured and in-use. SRP renaming on the PowerMax
array is not supported.

Note: Service Level can be added to cinder.conf when the backend is the default case and there is
no associated volume type. This not a recommended configuration as it is too restrictive. Workload is
NONE for PowerMax and any All Flash with PowerMax OS (5978) or greater.

PowerMax parameter cinder.conf parameter Default Required
ServiceLevel powermax_service_level None No

To configure PowerMax block storage, add the following entries to /etc/cinder/cinder.conf:

enabled_backends = CONF_GROUP_ISCSI, CONF_GROUP_FC

[CONF_GROUP_ISCSI]
volume_driver = cinder.volume.drivers.dell_emc.powermax.iscsi.
↪→PowerMaxISCSIDriver
volume_backend_name = POWERMAX_ISCSI
powermax_port_groups = [OS-ISCSI-PG]
san_ip = 10.10.10.10
san_login = my_username
san_password = my_password
powermax_array = 000123456789
powermax_srp = SRP_1

[CONF_GROUP_FC]
volume_driver = cinder.volume.drivers.dell_emc.powermax.fc.PowerMaxFCDriver
volume_backend_name = POWERMAX_FC
powermax_port_groups = [OS-FC-PG]
san_ip = 10.10.10.10
san_login = my_username
san_password = my_password
powermax_array = 000123456789

(continues on next page)

3.3. Reference 151

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

powermax_srp = SRP_1

In this example, two back-end configuration groups are enabled: CONF_GROUP_ISCSI and
CONF_GROUP_FC. Each configuration group has a section describing unique parameters for connections,
drivers and the volume_backend_name.

5. SSL support

1. Get the CA certificate of the Unisphere server. This pulls the CA cert file and saves it as .pem file:

openssl s_client -showcerts \
-connect my_unisphere_host:8443 \
</dev/null 2>/dev/null \
| openssl x509 -outform PEM > my_unisphere_host.pem

Where my_unisphere_host is the hostname of the unisphere instance and
my_unisphere_host.pem is the name of the .pem file.

2. Add this path to cinder.conf under the PowerMax backend stanza and set SSL verify to True

driver_ssl_cert_verify = True
driver_ssl_cert_path = /path/to/my_unisphere_host.pem

OR follow the steps 3-6 below if you would like to add the CA cert to the system certificate bundle
instead of specifying the path to cert:

3. OPTIONAL: Copy the .pem cert to the system certificate directory and convert to .crt:

cp my_unisphere_host.pem /usr/share/ca-certificates/ca_cert.crt

4. OPTIONAL: Update CA certificate database with the following command. Ensure you select to
enable the cert from step 3 when prompted:

sudo dpkg-reconfigure ca-certificates

5. OPTIONAL: Set a system environment variable to tell the Requests library to use the system cert
bundle instead of the default Certifi bundle:

export REQUESTS_CA_BUNDLE = /etc/ssl/certs/ca-certificates.crt

6. OPTIONAL: Set cert verification to True under the PowerMax backend stanza in cinder.conf:

driver_ssl_cert_verify = True

7. Ensure driver_ssl_cert_verify is set to True in cinder.conf backend stanzas if steps 3-6
are followed, otherwise ensure both driver_ssl_cert_path and driver_ssl_cert_verify
are set in cinder.conf backend stanzas.

152 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

6. Create volume types

Once cinder.conf has been updated, Openstack CLI commands need to be issued in order to create
and associate OpenStack volume types with the declared volume_backend_names.

Additionally, each volume type will need an associated pool_name - an extra specification indicating the
service level/ workload combination to be used for that volume type.

Note: The pool_name is an additional property which has to be set and is of the format:
<ServiceLevel>+<SRP>+<Array ID>. This can be obtained from the output of the cinder
get-pools--detail. Workload is NONE for PowerMax or any All Flash with PowerMax OS (5978)
or greater.

There is also the option to assign a port group to a volume type by setting the
storagetype:portgroupname extra specification.

$ openstack volume type create POWERMAX_ISCSI_SILVER
$ openstack volume type set --property volume_backend_name=ISCSI_backend \

--property pool_name=Silver+SRP_1+000123456789 \
--property storagetype:portgroupname=OS-PG2 \
POWERMAX_ISCSI_SILVER

$ openstack volume type create POWERMAX_FC_DIAMOND
$ openstack volume type set --property volume_backend_name=FC_backend \

--property pool_name=Gold+SRP_1+000123456789 \
--property storagetype:portgroupname=OS-PG1 \
POWERMAX_FC_GOLD

By issuing these commands, the Block Storage volume type POWERMAX_ISCSI_SILVER is associated
with the ISCSI_backend, a Silver Service Level.

The type POWERMAX_FC_DIAMOND is associated with the FC_backend, a Diamond Service Level.

The ServiceLevel manages the underlying storage to provide expected performance. Setting the
ServiceLevel to None means that non-FAST managed storage groups will be created instead (storage
groups not associated with any service level).

openstack volume type set --property pool_name=None+SRP_1+000123456789

Note: PowerMax and VMAX-Hybrid support Diamond, Platinum, Gold, Silver, Bronze,
Optimized, and None service levels. VMAX All Flash running HyperMax OS (5977) supports Diamond
and None. VMAX-Hybrid and All Flash support DSS_REP, DSS, OLTP_REP, OLTP, and None workloads,
the latter up until ucode 5977. Please refer to Stein PowerMax online documentation if you wish to use
workload. There is no support for workloads in PowerMax OS (5978) or greater. These will be silently
ignored if set for VMAX All-Flash arrays which have been upgraded to PowerMax OS (5988).

3.3. Reference 153

https://docs.openstack.org/cinder/latest/cli/cli-manage-volumes.html#volume-types

Cinder Documentation, Release 20.3.2.dev3

7. Interval and retries

By default, interval and retries are 3 seconds and 200 retries respectively. These determine
how long (interval) and how many times (retries) a user is willing to wait for a single Rest call,
3*200=600seconds. Depending on usage, these may need to be overridden by the user in cinder.
conf. For example, if performance is a factor, then the interval should be decreased to check the job
status more frequently, and if multiple concurrent provisioning requests are issued then retries should
be increased so calls will not timeout prematurely.

In the example below, the driver checks every 3 seconds for the status of the job. It will continue checking
for 200 retries before it times out.

Add the following lines to the PowerMax backend in cinder.conf:

[CONF_GROUP_ISCSI]
volume_driver = cinder.volume.drivers.dell_emc.powermax.iscsi.
↪→PowerMaxISCSIDriver
volume_backend_name = POWERMAX_ISCSI
powermax_port_groups = [OS-ISCSI-PG]
san_ip = 10.10.10.10
san_login = my_username
san_password = my_password
powermax_array = 000123456789
powermax_srp = SRP_1
interval = 1
retries = 700

8. CHAP authentication support

This supports one-way initiator CHAP authentication functionality into the PowerMax backend. With
CHAP one-way authentication, the storage array challenges the host during the initial link negotiation
process and expects to receive a valid credential and CHAP secret in response. When challenged, the
host transmits a CHAP credential and CHAP secret to the storage array. The storage array looks for this
credential and CHAP secret which stored in the host initiators initiator group (IG) information in the
ACLX database. Once a positive authentication occurs, the storage array sends an acceptance message
to the host. However, if the storage array fails to find any record of the credential/secret pair, it sends a
rejection message, and the link is closed.

Assumptions, restrictions and prerequisites

1. The host initiator IQN is required along with the credentials the host initiator will use to log into
the storage array with. The same credentials should be used in a multi node system if connecting
to the same array.

2. Enable one-way CHAP authentication for the iSCSI initiator on the storage array using SYMCLI.
Template and example shown below. For the purpose of this setup, the credential/secret used
would be my_username/my_password with iSCSI initiator of iqn.1991-05.com.company.
lcseb130

154 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

symaccess -sid <SymmID> -iscsi <iscsi> \
{enable chap | disable chap | set chap} \
-cred <Credential> -secret <Secret>

symaccess -sid 128 \
-iscsi iqn.1991-05.com.company.lcseb130 \
set chap -cred my_username -secret my_password

Settings and configuration

1. Set the configuration in the PowerMax backend group in cinder.conf using the following pa-
rameters and restart cinder.

Configuration options Value required for CHAP Required for CHAP
use_chap_auth True Yes
chap_username my_username Yes
chap_password my_password Yes

[POWERMAX_ISCSI]
volume_driver = cinder.volume.drivers.dell_emc.powermax.iscsi.
↪→PowerMaxISCSIDriver
volume_backend_name = POWERMAX_ISCSI
san_ip = 10.10.10.10
san_login = my_u4v_username
san_password = my_u4v_password
powermax_srp = SRP_1
powermax_array = 000123456789
powermax_port_groups = [OS-ISCSI-PG]
use_chap_auth = True
chap_username = my_username
chap_password = my_password

Usage

1. Using SYMCLI, enable CHAP authentication for a host initiator as described above, but do not
set use_chap_auth, chap_username or chap_password in cinder.conf. Create a bootable
volume.

openstack volume create --size 1 \
--image <image_name> \
--type <volume_type> \
test

2. Boot instance named test_server using the volume created above:

openstack server create --volume test \
--flavor m1.small \

(continues on next page)

3.3. Reference 155

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

--nic net-id=private \
test_server

3. Verify the volume operation succeeds but the boot instance fails as CHAP authentication fails.

4. Update cinder.conf with use_chap_auth set to true and chap_username and
chap_password set with the correct credentials.

5. Rerun openstack server create

6. Verify that the boot instance operation ran correctly and the volume is accessible.

7. Verify that both the volume and boot instance operations ran successfully and the user is able to
access the volume.

9. QoS (Quality of Service) support

Quality of service (QoS) has traditionally been associated with network bandwidth usage. Network ad-
ministrators set limitations on certain networks in terms of bandwidth usage for clients. This enables
them to provide a tiered level of service based on cost. The Nova/Cinder QoS offer similar functionality
based on volume type setting limits on host storage bandwidth per service offering. Each volume type
is tied to specific QoS attributes some of which are unique to each storage vendor. In the hypervisor, the
QoS limits the following:

• Limit by throughput - Total bytes/sec, read bytes/sec, write bytes/sec

• Limit by IOPS - Total IOPS/sec, read IOPS/sec, write IOPS/sec

QoS enforcement in Cinder is done either at the hyper-visor (front-end), the storage subsystem (back-
end), or both. This section focuses on QoS limits that are enforced by either the PowerMax backend
and the hyper-visor front end interchangeably or just back end (Vendor Specific). The PowerMax driver
offers support for Total bytes/sec limit in throughput and Total IOPS/sec limit of IOPS.

The PowerMax driver supports the following attributes that are front end/back end agnostic

• total_iops_sec - Maximum IOPs (in I/Os per second). Valid values range from 100 IO/Sec to
100000 IO/sec.

• total_bytes_sec - Maximum bandwidth (throughput) in bytes per second. Valid values range
from 1048576 bytes (1MB) to 104857600000 bytes (100,000MB)

The PowerMax driver offers the following attribute that is vendor specific to the PowerMax and dependent
on the total_iops_sec and/or total_bytes_sec being set.

• Dynamic Distribution - Enables/Disables dynamic distribution of host I/O limits. Possible
values are:

– Always - Enables full dynamic distribution mode. When enabled, the configured host I/O
limits will be dynamically distributed across the configured ports, thereby allowing the limits
on each individual port to adjust to fluctuating demand.

– OnFailure - Enables port failure capability. When enabled, the fraction of configured host
I/O limits available to a configured port will adjust based on the number of ports currently
online.

– Never - Disables this feature (Default).

156 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

USE CASE 1 - Default values

Prerequisites - PowerMax

• Host I/O Limit (MB/Sec) - No Limit

• Host I/O Limit (IO/Sec) - No Limit

• Set Dynamic Distribution - N/A

Table 9: Prerequisites - Block Storage (Cinder) back-end (stor-
age group)

Key Value
total_iops_sec 500

total_bytes_sec 104857600 (100MB)
DistributionType Always

1. Create QoS Specs with the prerequisite values above:

$ openstack volume qos create --consumer back-end \
--property total_iops_sec=500 \
--property total_bytes_sec=104857600 \
--property DistributionType=Always \
my_qos

2. Associate QoS specs with specified volume type:

$ openstack volume qos associate my_qos my_volume_type

3. Create volume with the volume type indicated above:

$ openstack volume create --size 1 --type my_volume_type my_volume

Outcome - PowerMax (storage group)

• Host I/O Limit (MB/Sec) - 100

• Host I/O Limit (IO/Sec) - 500

• Set Dynamic Distribution - Always

Outcome - Block Storage (Cinder)

Volume is created against volume type and QoS is enforced with the parameters above.

USE CASE 2 - Pre-set limits

Prerequisites - PowerMax

• Host I/O Limit (MB/Sec) - 2000

• Host I/O Limit (IO/Sec) - 2000

• Set Dynamic Distribution - Never

3.3. Reference 157

Cinder Documentation, Release 20.3.2.dev3

Table 10: Prerequisites - Block Storage (Cinder) back-end (stor-
age group)

Key Value
total_iops_sec 500

total_bytes_sec 104857600 (100MB)
DistributionType Always

1. Create QoS specifications with the prerequisite values above. The consumer in this use case is
both for front-end and back-end:

$ openstack volume qos create --consumer back-end \
--property total_iops_sec=500 \
--property total_bytes_sec=104857600 \
--property DistributionType=Always \
my_qos

2. Associate QoS specifications with specified volume type:

$ openstack volume qos associate my_qos my_volume_type

3. Create volume with the volume type indicated above:

$ openstack volume create --size 1 --type my_volume_type my_volume

4. Attach the volume created in step 3 to an instance

$ openstack server add volume my_instance my_volume

Outcome - PowerMax (storage group)

• Host I/O Limit (MB/Sec) - 100

• Host I/O Limit (IO/Sec) - 500

• Set Dynamic Distribution - Always

Outcome - Block Storage (Cinder)

Volume is created against volume type and QoS is enforced with the parameters above.

Outcome - Hypervisor (Nova)

Libvirt includes an extra xml flag within the <disk> section called iotune that is responsible for
rate limitation. To confirm that, first get the OS-EXT-SRV-ATTR:instance_name value of the server
instance, for example instance-00000003.

$ openstack server show <serverid>

+-------------------------------------+---------------------------------------
↪→--------------------------+
| Field | Value ␣
↪→ |
+-------------------------------------+---------------------------------------
↪→--------------------------+

(continues on next page)

158 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| OS-DCF:diskConfig | AUTO ␣
↪→ |
| OS-EXT-AZ:availability_zone | nova ␣
↪→ |
| OS-EXT-SRV-ATTR:host | myhost ␣
↪→ |
| OS-EXT-SRV-ATTR:hypervisor_hostname | myhost ␣
↪→ |
| OS-EXT-SRV-ATTR:instance_name | instance-00000003 ␣
↪→ |
| OS-EXT-STS:power_state | Running ␣
↪→ |
| OS-EXT-STS:task_state | None ␣
↪→ |
| OS-EXT-STS:vm_state | active ␣
↪→ |
| OS-SRV-USG:launched_at | 2017-11-02T08:15:42.000000 ␣
↪→ |
| OS-SRV-USG:terminated_at | None ␣
↪→ |
| accessIPv4 | ␣
↪→ |
| accessIPv6 | ␣
↪→ |
| addresses |␣
↪→private=fd21:99c2:73f3:0:f816:3eff:febe:30ed, 10.0.0.3 |
| config_drive | ␣
↪→ |
| created | 2017-11-02T08:15:34Z ␣
↪→ |
| flavor | m1.tiny (1) ␣
↪→ |
| hostId |␣
↪→e7b8312581f9fbb8508587d45c0b6fb4dc86102c632ed1f3a6a49d42 |
| id | 0ef0ff4c-dbda-4dc7-b8ed-45d2fc2f31db ␣
↪→ |
| image | cirros-0.3.5-x86_64-disk (b7c220f5-
↪→2408-4296-9e58-fc5a41cb7e9d) |
| key_name | myhostname ␣
↪→ |
| name | myhosthame ␣
↪→ |
| progress | 0 ␣
↪→ |
| project_id | bae4b97a0d8b42c28a5add483981e5db ␣
↪→ |
| properties | ␣
↪→ |
| security_groups | name='default' ␣
↪→ | (continues on next page)

3.3. Reference 159

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| status | ACTIVE ␣
↪→ |
| updated | 2017-11-02T08:15:42Z ␣
↪→ |
| user_id | 7bccf456740546799a7e20457f13c38b ␣
↪→ |
| volumes_attached | ␣
↪→ |
+-------------------------------------+---------------------------------------
↪→--------------------------+

We then run the following command using the OS-EXT-SRV-ATTR:instance_name retrieved above.

$ virsh dumpxml instance-00000003 | grep -1 "total_bytes_sec\|total_iops_sec"

The output of the command contains the XML below. It is found between the <disk> start and end tag.

<iotune>
<total_bytes_sec>104857600</total_bytes_sec>
<total_iops_sec>500</total_iops_sec>

</iotune>

USE CASE 3 - Pre-set limits

Prerequisites - PowerMax

• Host I/O Limit (MB/Sec) - 100

• Host I/O Limit (IO/Sec) - 500

• Set Dynamic Distribution - Always

Table 11: Prerequisites - Block Storage (Cinder) back end (stor-
age group)

Key Value
total_iops_sec 500

total_bytes_sec 104857600 (100MB)
DistributionType OnFailure

1. Create QoS specifications with the prerequisite values above:

$ openstack volume qos create --consumer back-end \
--property total_iops_sec=500 \
--property total_bytes_sec=104857600 \
--property DistributionType=OnFailure \
my_qos

2. Associate QoS specifications with specified volume type:

$ openstack volume qos associate my_qos my_volume_type

160 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

3. Create volume with the volume type indicated above:

$ openstack volume create --size 1 --type my_volume_type my_volume

Outcome - PowerMax (storage group)

• Host I/O Limit (MB/Sec) - 100

• Host I/O Limit (IO/Sec) - 500

• Set Dynamic Distribution - OnFailure

Outcome - Block Storage (Cinder)

Volume is created against volume type and QOS is enforced with the parameters above.

USE CASE 4 - Default values

Prerequisites - PowerMax

• Host I/O Limit (MB/Sec) - No Limit

• Host I/O Limit (IO/Sec) - No Limit

• Set Dynamic Distribution - N/A

Table 12: Prerequisites - Block Storage (Cinder) back end (stor-
age group)

Key Value
DistributionType Always

1. Create QoS specifications with the prerequisite values above:

$ openstack volume qos create --consumer back-end \
--property DistributionType=Always \
my_qos

2. Associate QoS specifications with specified volume type:

$ openstack volume qos associate my_qos my_volume_type

3. Create volume with the volume type indicated above:

$ openstack volume create --size 1 --type my_volume_type my_volume

Outcome - PowerMax (storage group)

• Host I/O Limit (MB/Sec) - No Limit

• Host I/O Limit (IO/Sec) - No Limit

• Set Dynamic Distribution - N/A

Outcome - Block Storage (Cinder)

Volume is created against volume type and there is no QoS change.

3.3. Reference 161

Cinder Documentation, Release 20.3.2.dev3

10. Multi-pathing support

• Install open-iscsi on all nodes on your system if on an iSCSI setup.

• Do not install EMC PowerPath as they cannot co-exist with native multi-path software

• Multi-path tools must be installed on all Nova compute nodes

On Ubuntu:

apt-get install multipath-tools #multipath modules
apt-get install sysfsutils sg3-utils #file system utilities
apt-get install scsitools #SCSI tools

On openSUSE and SUSE Linux Enterprise Server:

zipper install multipath-tools #multipath modules
zipper install sysfsutils sg3-utils #file system utilities
zipper install scsitools #SCSI tools

On Red Hat Enterprise Linux and CentOS:

yum install iscsi-initiator-utils #ensure iSCSI is installed
yum install device-mapper-multipath #multipath modules
yum install sysfsutils sg3-utils #file system utilities

Multipath configuration file

The multi-path configuration file may be edited for better management and performance. Log in as
a privileged user and make the following changes to /etc/multipath.conf on the Compute (Nova)
node(s).

devices {
Device attributed for EMC PowerMax

device {
vendor "EMC"
product "SYMMETRIX"
path_grouping_policy multibus
getuid_callout "/lib/udev/scsi_id --page=pre-spc3-83 --

↪→whitelisted --device=/dev/%n"
path_selector "round-robin 0"
path_checker tur
features "0"
hardware_handler "0"
prio const
rr_weight uniform
no_path_retry 6
rr_min_io 1000
rr_min_io_rq 1

}
}

162 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

You may need to reboot the host after installing the MPIO tools or restart iSCSI and multi-path services.

On Ubuntu iSCSI:

service open-iscsi restart
service multipath-tools restart

On Ubuntu FC

service multipath-tools restart

On openSUSE, SUSE Linux Enterprise Server, Red Hat Enterprise Linux, and CentOS iSCSI:

systemctl restart open-iscsi
systemctl restart multipath-tools

On openSUSE, SUSE Linux Enterprise Server, Red Hat Enterprise Linux, and CentOS FC:

systemctl restart multipath-tools

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE ␣
↪→MOUNTPOINT
sda 8:0 0 1G 0 disk
..360000970000196701868533030303235 (dm-6) 252:6 0 1G 0 mpath
sdb 8:16 0 1G 0 disk
..360000970000196701868533030303235 (dm-6) 252:6 0 1G 0 mpath
vda 253:0 0 1T 0 disk

OpenStack configurations

On Compute (Nova) node, add the following flag in the [libvirt] section of nova.conf and
nova-cpu.conf:

volume_use_multipath = True

On Cinder controller node, multi-path for image transfer can be enabled in cinder.conf for each back-
end section or in [backend_defaults] section as a common configuration for all backends.

use_multipath_for_image_xfer = True

Restart nova-compute and cinder-volume services after the change.

3.3. Reference 163

Cinder Documentation, Release 20.3.2.dev3

Verify you have multiple initiators available on the compute node for I/O

1. Create a 3GB PowerMax volume.

2. Create an instance from image out of native LVM storage or from PowerMax storage, for example,
from a bootable volume

3. Attach the 3GB volume to the new instance:

multipath -ll
mpath102 (360000970000196700531533030383039) dm-3 EMC,SYMMETRIX
size=3G features='1 queue_if_no_path' hwhandler='0' wp=rw
'-+- policy='round-robin 0' prio=1 status=active
33:0:0:1 sdb 8:16 active ready running
'- 34:0:0:1 sdc 8:32 active ready running

4. Use the lsblk command to see the multi-path device:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE
sdb 8:0 0 3G 0 disk
..360000970000196700531533030383039 (dm-6) 252:6 0 3G 0 mpath
sdc 8:16 0 3G 0 disk
..360000970000196700531533030383039 (dm-6) 252:6 0 3G 0 mpath
vda

11. All Flash compression support

On an All Flash array, the creation of any storage group has a compressed attribute by default. Setting
compression on a storage group does not mean that all the devices will be immediately compressed. It
means that for all incoming writes compression will be considered. Setting compression off on a storage
group does not mean that all the devices will be uncompressed. It means all the writes to compressed
tracks will make these tracks uncompressed.

Note: This feature is only applicable for All Flash arrays, 250F, 450F, 850F and 950F and PowerMax
2000 and 8000. It was first introduced Solutions Enabler 8.3.0.11 or later and is enabled by default when
associated with a Service Level. This means volumes added to any newly created storage groups will be
compressed.

Use case 1 - Compression disabled create, attach, detach, and delete volume

1. Create a new volume type called POWERMAX_COMPRESSION_DISABLED.

2. Set an extra spec volume_backend_name.

3. Set a new extra spec storagetype:disablecompression = True.

4. Create a new volume.

164 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

5. Check in Unisphere or SYMCLI to see if the volume exists in storage group
OS-<srp>-<servicelevel>-<workload>-CD-SG, and compression is disabled on that
storage group.

6. Attach the volume to an instance. Check in Unisphere or SYMCLI to see if the volume exists in
storage group OS-<shorthostname>-<srp>-<servicelevel/workload>-<portgroup>-CD,
and compression is disabled on that storage group.

7. Detach volume from instance. Check in Unisphere or symcli to see if the volume exists in storage
group OS-<srp>-<servicelevel>-<workload>-CD-SG, and compression is disabled on that
storage group.

8. Delete the volume. If this was the last volume in the
OS-<srp>-<servicelevel>-<workload>-CD-SG storage group, it should also be deleted.

Use case 2 - Retype from compression disabled to compression enabled

1. Repeat steps 1-4 of Use case 1.

2. Create a new volume type. For example POWERMAX_COMPRESSION_ENABLED.

3. Set extra spec volume_backend_name as before.

4. Set the new extra specs compression as storagetype:disablecompression = False or DO
NOT set this extra spec.

5. Retype from volume type POWERMAX_COMPRESSION_DISABLED to
POWERMAX_COMPRESSION_ENABLED.

6. Check in Unisphere or symcli to see if the volume exists in storage group
OS-<srp>-<servicelevel>-<workload>-SG, and compression is enabled on that stor-
age group.

Note: If extra spec storagetype:disablecompression is set on a VMAX-Hybrid, it is ignored
because compression is not an available feature on a VMAX-Hybrid.

12. Oversubscription support

Please refer to the official OpenStack over-subscription documentation for further information on using
over-subscription with PowerMax.

13. Live migration support

Non-live migration (sometimes referred to simply as migration). The instance is shut down for a period
of time to be moved to another hyper-visor. In this case, the instance recognizes that it was rebooted.

Live migration (or true live migration). Almost no instance downtime. Useful when the instances must
be kept running during the migration. The different types of live migration are:

• Shared storage-based live migration Both hyper-visors have access to shared storage.

• Block live migration No shared storage is required. Incompatible with read-only devices such as
CD-ROMs and Configuration Drive (config_drive).

3.3. Reference 165

https://docs.openstack.org/cinder/latest/admin/over-subscription.html

Cinder Documentation, Release 20.3.2.dev3

• Volume-backed live migration Instances are backed by volumes rather than ephemeral disk. For
PowerMax volume-backed live migration, shared storage is required.

The PowerMax driver supports shared volume-backed live migration.

Architecture

In PowerMax, A volume cannot belong to two or more FAST storage groups at the same time. To get
around this limitation we leverage both cascaded storage groups and a temporary non-FAST storage
group.

A volume can remain live if moved between masking views that have the same initiator group and port
groups which preserves the host path.

During live migration, the following steps are performed by the PowerMax driver on the volume:

1. Within the originating masking view, the volume is moved from the FAST storage group to the
non-FAST storage group within the parent storage group.

2. The volume is added to the FAST storage group within the destination parent storage group of the
destination masking view. At this point the volume belongs to two storage groups.

3. One of two things happen:

• If the connection to the destination instance is successful, the volume is removed from the
non-FAST storage group in the originating masking view, deleting the storage group if it
contains no other volumes.

• If the connection to the destination instance fails, the volume is removed from the destina-
tion storage group, deleting the storage group, if empty. The volume is reverted back to the
original storage group.

Live migration configuration

Please refer to the official OpenStack documentation on configuring migrations and live migration usage
for more information.

Note: OpenStack Oslo uses an open standard for messaging middleware known as AMQP. This mes-
saging middleware (the RPC messaging system) enables the OpenStack services that run on multiple
servers to talk to each other. By default, the RPC messaging client is set to timeout after 60 seconds,
meaning if any operation you perform takes longer than 60 seconds to complete the operation will time-
out and fail with the ERROR message Messaging Timeout: Timed out waiting for a reply
to message ID [message_id]

If this occurs, increase the rpc_response_timeout flag value in cinder.conf and nova.conf on all
Cinder and Nova nodes and restart the services.

What to change this value to will depend entirely on your own environment, you might only need to
increase it slightly, or if your environment is under heavy network load it could need a bit more time than
normal. Fine tuning is required here, change the value and run intensive operations to determine if your
timeout value matches your environment requirements.

166 Chapter 3. For operators

https://docs.openstack.org/nova/latest/admin/configuring-migrations.html
https://docs.openstack.org/nova/latest/admin/live-migration-usage.html

Cinder Documentation, Release 20.3.2.dev3

At a minimum please set rpc_response_timeout to 240, but this will need to be raised if high con-
currency is a factor. This should be sufficient for all Cinder backup commands also.

System configuration

NOVA-INST-DIR/instances/ (for example, /opt/stack/data/nova/instances) has to be
mounted by shared storage. Ensure that NOVA-INST-DIR (set with state_path in the nova.conf file)
is the same on all hosts.

1. Configure your DNS or /etc/hosts and ensure it is consistent across all hosts. Make sure that
the three hosts can perform name resolution with each other. As a test, use the ping command to
ping each host from one another.

$ ping HostA
$ ping HostB
$ ping HostC

2. Export NOVA-INST-DIR/instances from HostA, and ensure it is readable and writable by the
Compute user on HostB and HostC. Please refer to the relevant OS documentation for further
details, for example Ubuntu NFS Documentation

3. On all compute nodes, enable the execute/search bit on your shared directory to allow qemu to
be able to use the images within the directories. On all hosts, run the following command:

$ chmod o+x NOVA-INST-DIR/instances

Note: If migrating from compute to controller, make sure to run step two above on the controller node
to export the instance directory.

Use case

For our use case shown below, we have three hosts with host names HostA, HostB and HostC. HostA is
the controller node while HostB and HostC are the compute nodes. The following were also used in live
migration.

• 2GB bootable volume using the CirrOS image.

• Instance created using the 2GB volume above with a flavor m1.small using 2048 RAM, 20GB of
Disk and 1 VCPU.

1. Create a bootable volume.

$ openstack volume create --size 2 \
--image cirros-0.3.5-x86_64-disk \
--volume_lm_1

2. Launch an instance using the volume created above on HostB.

3.3. Reference 167

https://help.ubuntu.com/lts/serverguide/network-file-system.html

Cinder Documentation, Release 20.3.2.dev3

$ openstack server create --volume volume_lm_1 \
--flavor m1.small \
--nic net-id=private \
--security-group default \
--availability-zone nova:HostB \
server_lm_1

3. Confirm on HostB has the instance created by running:

$ openstack server show server_lm_1 | grep "hypervisor_hostname\|instance_
↪→name"
| OS-EXT-SRV-ATTR:hypervisor_hostname | HostB
| OS-EXT-SRV-ATTR:instance_name | instance-00000006

4. Confirm, through virsh using the instance_name returned in step 3 (instance-00000006), on
HostB that the instance is created using:

$ virsh list --all

Id Name State

1 instance-00000006 Running

5. Migrate the instance from HostB to HostA with:

$ openstack server migrate --os-compute-api-version 2.30 \
--live-migration --host HostA \
server_lm_1

6. Run the command on step 3 above when the instance is back in available status. The hypervisor
should be on Host A.

7. Run the command on Step 4 on Host A to confirm that the instance is created through virsh.

14. Multi-attach support

PowerMax cinder driver supports the ability to attach a volume to multiple hosts/servers simultaneously.
Please see the official OpenStack multi-attach documentation for configuration information.

Multi-attach architecture

In PowerMax, a volume cannot belong to two or more FAST storage groups at the same time. This can
cause issues when we are attaching a volume to multiple instances on different hosts. To get around this
limitation, we leverage both cascaded storage groups and non-FAST storage groups (i.e. a storage group
with no service level, workload, or SRP specified).

Note: If no service level is assigned to the volume type, no extra work on the backend is required the
volume is attached to and detached from each host as normal.

168 Chapter 3. For operators

https://docs.openstack.org/cinder/latest/admin/volume-multiattach.html

Cinder Documentation, Release 20.3.2.dev3

Example use case

Volume Multi-attach-Vol-1 (with a multi-attach capable volume type, and associated with a Dia-
mond Service Level) is attached to Instance Multi-attach-Instance-A on HostA. We then issue the
command to attach Multi-attach-Vol-1 to Multi-attach-Instance-B on HostB:

1. In the HostA masking view, the volume is moved from the FAST managed storage group to the
non-FAST managed storage group within the parent storage group.

2. The volume is attached as normal on HostB i.e., it is added to a FAST managed storage group
within the parent storage group of the HostB masking view. The volume now belongs to two
masking views, and is exposed to both HostA and HostB.

We then decide to detach the volume from Multi-attach-Instance-B on HostB:

1. The volume is detached as normal from HostB i.e., it is removed from the FAST managed storage
group within the parent storage group of the HostB masking view this includes cleanup of the
associated elements if required. The volume now belongs to one masking view, and is no longer
exposed to HostB.

2. In the HostA masking view, the volume is returned to the FAST managed storage group from
the non-FAST managed storage group within the parent storage group. The non-FAST managed
storage group is cleaned up, if required.

15. Volume encryption support

Encryption is supported through the use of OpenStack Barbican. Only front-end encryption is supported,
back-end encryption is handled at the hardware level with Data at Rest Encryption (D@RE).

For further information on OpenStack Barbican including setup and configuration please refer to the
following official Barbican documentation.

16. Volume metadata

Volume metadata is returned to the user in both the Cinder Volume logs and with volumes and snapshots
created in Cinder via the UI or CLI.

16.1 Volume metadata in logs

If debug is enabled in the default section of cinder.conf, PowerMax Cinder driver will log additional
volume information in the Cinder volume log, on each successful operation. The facilitates bridging the
gap between OpenStack and the Array by tracing and describing the volume from a VMAX/ PowerMax
view point.

+------------------------------------+--
↪→-----------------+
| Key | Value ␣
↪→ |
+------------------------------------+--
↪→-----------------+
| service_level | Gold ␣
↪→ | (continues on next page)

3.3. Reference 169

https://www.dellemc.com/resources/en-us/asset/white-papers/products/storage/h13936-dell-emc-powermax-vmax-all-flash-data-rest-encryption.pdf
mailto:D@RE
https://docs.openstack.org/cinder/latest/configuration/block-storage/volume-encryption.html

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| is_compression_disabled | no ␣
↪→ |
| powermax_cinder_driver_version | 3.2.0 ␣
↪→ |
| identifier_name | OS-819470ab-a6d4-49cc-b4db-
↪→6f85e82822b7 |
| openstack_release | 13.0.0.0b3.dev3 ␣
↪→ |
| volume_id | 819470ab-a6d4-49cc-b4db-6f85e82822b7 ␣
↪→ |
| storage_model | PowerMax_8000 ␣
↪→ |
| successful_operation | delete ␣
↪→ |
| default_sg_name | OS-DEFAULT_SRP-Gold-NONE-SG ␣
↪→ |
| device_id | 01C03 ␣
↪→ |
| unisphere_for_powermax_version | V9.0.0.9 ␣
↪→ |
| workload | NONE ␣
↪→ |
| openstack_version | 13.0.0 ␣
↪→ |
| volume_updated_time | 2018-08-03 03:13:53 ␣
↪→ |
| platform | Linux-4.4.0-127-generic-x86_64-with-
↪→Ubuntu-16.04-xenial |
| python_version | 2.7.12 ␣
↪→ |
| volume_size | 20 ␣
↪→ |
| srp | DEFAULT_SRP ␣
↪→ |
| openstack_name | 90_Test_Vol56 ␣
↪→ |
| storage_firmware_version | 5978.143.144 ␣
↪→ |
| serial_number | 000123456789 ␣
↪→ |
+------------------------------------+--
↪→-----------------+

170 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

16.2 Metadata in the UI and CLI

By default metadata will be set on all volume and snapshot objects created in Cinder. This information
represents the state of the object on the backend PowerMax and will change when volume attributes are
changed by performing actions on them such as re-type or attaching to an instance.

demo@openstack-controller:~$ cinder show powermax-volume

+--------------------------------+--
↪→----------------+
| Property | Value ␣
↪→ |
+--------------------------------+--
↪→----------------+
| metadata | ArrayID : 000123456789 ␣
↪→ |
| | ArrayModel : PowerMax_8000 ␣
↪→ |
| | CompressionDisabled : False ␣
↪→ |
| | Configuration : TDEV ␣
↪→ |
| | DeviceID : 0012F ␣
↪→ |
| | DeviceLabel : OS-d87edb98-60fd-49dd-bb0f-
↪→cc388cf6f3f4 |
| | Emulation : FBA ␣
↪→ |
| | ReplicationEnabled : False ␣
↪→ |
| | ServiceLevel : Diamond ␣
↪→ |
| | Workload : None ␣
↪→ |
| name | powermax-volume ␣
↪→ |
+--------------------------------+--
↪→----------------+

17. Unisphere High Availability (HA) support

This feature facilitates high availability of Unisphere for PowerMax servers, allowing for one or more
backup unisphere instances in the event of a loss in connection to the primary Unisphere instance. The
PowerMax driver will cycle through the list of failover instances, trying each until a successful connec-
tion is made. The ordering is first in, first out (FIFO), so the first u4p_failover_target specified in
cinder.conf will be the first selected, the second u4p_failover_target in cinder.conf will be
the second selected, and so on until all failover targets are exhausted.

3.3. Reference 171

Cinder Documentation, Release 20.3.2.dev3

Requirements

• All required instances of Unisphere for PowerMax are set up and configured for the array(s)

• Array(s) are locally registered with the instance of Unisphere that will be used as a failover instance.
There are two failover types, local and remote:

– Local failover - Primary Unisphere is unreachable, failover to secondary local instance of
Unisphere to resume normal operations at primary site.

– Remote failover - Complete loss of primary site so primary instance of Unisphere is unreach-
able, failover to secondary instance of Unisphere at remote site to resume operations with the
R2 array.

Note: Replication must be configured in advance for remote failover to work successfully. Hu-
man intervention will also be required to failover from R1 array to R2 array in Cinder using cinder
failover-host command (see Volume replication support for replication setup details).

Note: The remote target array must be registered as local to the remote instance of Unisphere

Configuration

The following configuration changes need to be made in cinder.conf under the PowerMax backend
stanza in order to support the failover to secondary Unisphere. Cinder services will need to be restarted
for changes to take effect.

[POWERMAX_1]
...

u4p_failover_timeout = 30
u4p_failover_retries = 3
u4p_failover_backoff_factor = 1
u4p_failover_autofailback = True
u4p_failover_target = san_ip:10.10.10.12,

san_api_port: 8443,
san_login:my_username,
san_password:my_password,
driver_ssl_cert_verify: False,

u4p_failover_target = san_ip:10.10.10.13,
san_api_port: 8443
san_login:my_username,
san_password:my_password,
driver_ssl_cert_verify: True,
driver_ssl_cert_path: /path/to/my_unisphere_host.pem

Note: u4p_failover_target key value pairs will need to be on the same line (separated by commas)
in cinder.conf. They are displayed on separated lines above for readability.

172 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Note: To add more than one Unisphere failover target create additional u4p_failover_target details
for the Unisphere instance. These will be cycled through in a first-in, first-out (FIFO) basis, the first
failover target in cinder.conf will be the first backup instance of Unisphere used by the PowerMax
driver.

18. Rapid TDEV deallocation

The PowerMax driver can now leverage the enhanced volume delete feature-set made available in the
PowerMax 5978 Foxtail uCode release. These enhancements allow volume deallocation & deletion to
be combined into a single call. Previously, volume deallocation & deletion were split into separate tasks;
now a single REST call is dispatched and a response code on the projected outcome of their request is
issued rapidly allowing other task execution to proceed without the delay. No additional configuration
is necessary, the system will automatically determine when to use either the rapid or legacy compliant
volume deletion sequence based on the connected PowerMax arrays metadata.

19. PowerMax online (in-use) device expansion

uCode Level Supported In-Use Volume Extend Operations
R1 uCode Level R2 uCode Level Sync Async Metro
5978.711 5978.711 Y Y Y
5978.711 5978.669 Y Y Y
5978.711 5978.444 Y Y Y
5978.711 5978.221 Y Y N
5978.669 5978.669 Y Y Y
5978.669 5978.444 Y Y Y
5978.669 5978.221 Y Y N
5978.444 5978.444 Y Y Y
5978.444 5978.221 Y Y N
5978.221 5978.221 Y Y N

Assumptions, restrictions and prerequisites

• ODE in the context of this document refers to extending a volume where it is in-use, that is, attached
to an instance.

• The allow_extend is only applicable on VMAX-Hybrid arrays or All Flash arrays with HyperMax
OS. If included elsewhere, it is ignored.

• Where one array is a lower uCode than the other, the environment is limited to functionality of that
of the lowest uCode level, i.e. if R1 is 5978.444 and R2 is 5978.221, expanding a metro volume is
not supported, both R1 and R2 need to be on 5978.444 uCode at a minimum.

3.3. Reference 173

Cinder Documentation, Release 20.3.2.dev3

20. PowerMax array and storage group tagging

Unisphere for PowerMax 9.1 and later supports tagging of storage groups and arrays, so the user can give
their own tag for ease of searching and/or grouping.

Assumptions, restrictions and prerequisites

• The storage group tag(s) is associated with a volume type extra spec key
storagetype:storagegrouptags.

• The array tag is associated with the backend stanza using key powermax_array_tag_list.
It expects a list of one or more comma separated values, for example
powermax_array_tag_list=[value1,value2, value3]

• They can be one or more values in a comma separated list.

• There is a 64 characters limit of letters, numbers, - and _.

• 8 tags are allowed per storage group and array.

• Tags cannot be modified once a volume has been created with that volume type. This is an Open-
Stack constraint.

• Tags can be modified on the backend stanza, but none will ever be removed, only added.

• There is no restriction on creating or deleting tags of OpenStack storage groups or arrays outside
of OpenStack, for example Unisphere for PowerMax UI. The max number of 8 tags will apply
however, as this is a Unisphere for PowerMax limit.

Set a storage group tag on a volume type:

$ openstack volume type set --property␣
↪→storagetype:storagegrouptags=myStorageGroupTag1,myStorageGroupTag2

Set an array tag on the PowerMax backend:

[POWERMAX_ISCSI]
volume_driver = cinder.volume.drivers.dell_emc.powermax.iscsi.
↪→PowerMaxISCSIDriver
volume_backend_name = POWERMAX_ISCSI
san_ip = 10.10.10.10
san_login = my_u4v_username
san_password = my_u4v_password
powermax_srp = SRP_1
powermax_array = 000123456789
powermax_port_groups = [OS-ISCSI-PG]
powermax_array_tag_list = [openstack1, openstack2]

174 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

21. PowerMax short host name and port group name override

This functionality allows the user to customize the short host name and port group name that are contained
in the PowerMax driver storage groups and masking views names. For current functionality please refer
to PowerMax naming conventions for more details.

As the storage group name and masking view name are limited to 64 characters the short host name needs
to be truncated to 16 characters or less and port group needs to be truncated to 12 characters or less. This
functionality offers a little bit more flexibility to determine how these truncated components should look.

Note: Once the port group and short host name have been overridden with any new format,
it is not possible to return to the default format or change to another format if any volumes are
in an attached state. This is because there is no way to determine the overridden format once
powermax_short_host_name_template` or ``powermax_port_group_name_template have
been removed or changed.

Assumptions, restrictions, and prerequisites

• Backward compatibility with old format is preserved.

• cinder.conf will have 2 new configuration options, short_host_name_template and
port_group_name_template.

• If a storage group, masking view or initiator group in the old naming convention already exists,
this remains and any new attaches will use the new naming convention where the label for the short
host name and/or port group has been customized by the user.

• Only the short host name and port group name components can be renamed within the storage
group, initiator group and masking view names.

• If the powermax_short_host_name_template and powermax_port_group_name_template
do not adhere to the rules, then the operation will fail early and gracefully with a clear description
as to the problem.

• The templates cannot be changed once volumes have been attached using the new configuration.

• If only one of the templates are configured, then the other will revert to the default option.

• The UUID is generated from the MD5 hash of the full short host name and port group name

• If userdef is used, the onus is on the user to make sure it will be unique among all short host
names (controller and compute nodes) and unique among port groups.

3.3. Reference 175

Cinder Documentation, Release 20.3.2.dev3

Table 13: Short host name templates
power-
max_short_host_name_template

Description Rule

shortHostName This is the default option Existing functionality, if over 16
characters then see PowerMax nam-
ing conventions, otherwise short
host name

shortHost-
Name[:x])uuid[:x]
e.g. shortHost-
Name[:6]uuid[:9]

First x characters of the short host name
and x uuid characters created from md5
hash of short host name

Must be less than 16 characters

shortHost-
Name[:x]userdef
e.g.
shortHostName[:6]-
testHost

First x characters of the short host name
and a user defined x char name. NB - the
responsibility is on the user for unique-
ness

Must be less than 16 characters

shortHostName[-
x:]uuid[:x] e.g.
shortHostName[-
6:]uuid[:9]

Last x characters of the short host name
and x uuid characters created from md5
hash of short host name

Must be less than 16 characters

shortHostName[-
x:]userdef e.g.
shortHostName[-
6:]-testHost

Last x characters of the short host name
and a user defined x char name. NB - the
responsibility is on the user for unique-
ness

Must be less than 16 characters

Table 14: Port group name templates
power-
max_port_group_name_template

Description Rule

portGroupName This is the default option Existing functionality, if over 12
characters then see PowerMax nam-
ing conventions, otherwise port
group name

portGroup-
Name[:x])uuid[:x]
e.g. portGroup-
Name[:6]uuid[:5]

First x characters of the port group name
and x uuid characters created from md5
hash of port group name

Must be less than 12 characters

portGroup-
Name[:x]userdef
e.g.
portGroupName[:6]-
test

First x characters of the port group name
and a user defined x char name. NB - the
responsibility is on the user for unique-
ness

Must be less than 12 characters

portGroupName[-
x:]uuid[:x] e.g.
portGroupName[-
6:]uuid[:5]

Last x characters of the port group name
and x uuid characters created from md5
hash of port group name

Must be less than 12 characters

portGroupName[-
x:]userdef e.g.
portGroupName[-
6:]-test

Last x characters of the port group name
and a user defined x char name. NB - the
responsibility is on the user for unique-
ness

Must be less than 12 characters

176 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

21. Snap ids replacing generations

Snap ids were introduced to the PowerMax in microcde 5978.669.669 and Unisphere for PowerMax 9.2.
Generations existed previously and could cause stale data if deleted out of sequence, even though we
locked against this occurence. This happened when the newer generation(s) inherited its deleted pre-
decessors generation number. So in a series of 0, 1, 2 and 3 generations, if generation 1 gets deleted,
generation 2 now becomes generation 1 and generation 3 becomes generation 2 and so on down the
line. Snap ids are unique to each snapVX and will not change once assigned at creation so out of se-
quence deletions are no longer an issue. Generations will remain for arrays with microcode less than
5978.669.669.

Cinder supported operations

Volume replication support

Note: A mix of RDF1+TDEV and TDEV volumes should not exist in the same storage group. This can hap-
pen on a cleanup operation after breaking the pair and a TDEV remains in the storage group on either the
local or remote array. If this happens, remove the volume from the storage group so that further replicated
volume operations can continue. For example, Remove TDEV from OS-[SRP]-[SL]-[WL]-RA-SG.

Note: Replication storage groups should exist on both local and remote array but never on just one. For
example, if OS-[SRP]-[SL]-[WL]-RA-SG exists on local array A it must also exist on remote array B. If
this condition does not hold, further replication operations will fail. This applies to management storage
groups in the case of Asynchronous and Metro modes also. See Replication storage group naming
conventions.

Note: The number of devices in replication storage groups in both local and remote arrays should
be same. This also applies to management storage groups in Asynchronous and Metro modes. See
Replication storage group naming conventions.

Configure a single replication target

1. Configure an SRDF group between the chosen source and target arrays for the PowerMax Cinder
driver to use. The source array must correspond with the powermax_array entry in cinder.
conf.

2. Select both the director and the ports for the SRDF emulation to use on both sides. Bear in
mind that network topology is important when choosing director endpoints. Supported modes
are Synchronous, Asynchronous, and Metro.

Note: If the source and target arrays are not managed by the same Unisphere server (that is, the
target array is remotely connected to server - for example, if you are using embedded management),
in the event of a full disaster scenario (i.e. the primary array is completely lost and all connectivity
to it is gone), the Unisphere server would no longer be able to contact the target array. In this

3.3. Reference 177

Cinder Documentation, Release 20.3.2.dev3

scenario, the volumes would be automatically failed over to the target array, but administrator
intervention would be required to either; configure the target (remote) array as local to the current
Unisphere server (if it is a stand-alone server), or enter the details of a second Unisphere server
to the cinder.conf, which is locally connected to the target array (for example, the embedded
management Unisphere server of the target array), and restart the Cinder volume service.

Note: If you are setting up an SRDF/Metro configuration, it is recommended that you configure a
Witness or vWitness for bias management. Please see the SRDF Metro Overview & Best Practices
guide for more information.

Note: The PowerMax Cinder drivers do not support Cascaded SRDF.

Note: The transmit idle functionality must be disabled on the R2 array for Asynchronous rdf
groups. If this is not disabled it will prevent failover promotion in the event of access to the R1
array being lost.

symrdf -sid <sid> -rdfg <rdfg> set rdfa -transmit_idle off

Note: When creating RDF enabled volumes, if there are existing volumes in the target storage
group, all rdf pairs related to that storage group must have the same rdf state i.e. rdf pair states
must be consistent across all volumes in a storage group when attempting to create a new replication
enabled volume. If mixed rdf pair states are found during a volume creation attempt, an error will
be raised by the rdf state validation checks. In this event, please wait until all volumes in the storage
group have reached a consistent state.

3. Enable replication in /etc/cinder/cinder.conf. To enable the replication functionality in
PowerMax Cinder driver, it is necessary to create a replication volume-type. The corresponding
back-end stanza in cinder.conf for this volume-type must then include a replication_device
parameter. This parameter defines a single replication target array and takes the form of a list of
key value pairs.

enabled_backends = POWERMAX_FC_REPLICATION
[POWERMAX_FC_REPLICATION]
volume_driver = cinder.volume.drivers.dell_emc.powermax.fc.
↪→PowerMaxFCDriver
san_ip = 10.10.10.10
san_login = my_u4v_username
san_password = my_u4v_password
powermax_srp = SRP_1
powermax_array = 000123456789
powermax_port_groups = [OS-FC-PG]
volume_backend_name = POWERMAX_FC_REPLICATION
replication_device = target_device_id:000197811111,

remote_port_group:os-failover-pg,
(continues on next page)

178 Chapter 3. For operators

https://www.emc.com/collateral/technical-documentation/h14556-vmax3-srdf-metro-overview-and-best-practices-tech-note.pdf

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

remote_pool:SRP_1,
rdf_group_label: 28_11_07,
mode:Metro,
metro_use_bias:False,
sync_interval:3,
sync_retries:200

Note: replication_device key value pairs will need to be on the same line (separated by com-
mas) in cinder.conf. They are displayed here on separate lines above for improved readability.

• target_device_id The unique PowerMax array serial number of the target array. For full
failover functionality, the source and target PowerMax arrays must be discovered and man-
aged by the same U4V server.

• remote_port_group The name of a PowerMax port group that has been pre-configured to
expose volumes managed by this backend in the event of a failover. Make sure that this port
group contains either all FC or all iSCSI port groups (for a given back end), as appropriate
for the configured driver (iSCSI or FC).

• remote_pool The unique pool name for the given target array.

• rdf_group_label The name of a PowerMax SRDF group that has been pre-configured
between the source and target arrays.

• mode The SRDF replication mode. Options are Synchronous, Asynchronous, and Metro.
This defaults to Synchronous if not set.

• metro_use_bias Flag to indicate if bias protection should be used instead of Witness. This
defaults to False.

• sync_intervalHow long in seconds to wait between intervals for SRDF sync checks during
Cinder PowerMax SRDF operations. Default is 3 seconds.

• sync_retries How many times to retry RDF sync checks during Cinder PowerMax SRDF
operations. Default is 200 retries.

• allow_extend Only applicable to VMAX-Hybrid arrays or All Flash arrays running Hyper-
Max OS (5977). It is a flag for allowing the extension of replicated volumes. To extend a
volume in an SRDF relationship, this relationship must first be broken, the R1 device ex-
tended, and a new device pair established. If not explicitly set, this flag defaults to False.

Note: As the SRDF link must be severed, due caution should be exercised when performing
this operation. If absolutely necessary, only one source and target pair should be extended
at a time (only only applicable to VMAX-Hybrid arrays or All Flash arrays with HyperMax
OS).

4. Create a replication-enabled volume type. Once the replication_device parameter has
been entered in the PowerMax backend entry in the cinder.conf, a corresponding volume type
needs to be created replication_enabled property set. See above Create volume types for
details.

3.3. Reference 179

Cinder Documentation, Release 20.3.2.dev3

openstack volume type set --property replication_enabled="<is> True" \
POWERMAX_FC_REPLICATION

Note: Service Level and Workload: An attempt will be made to create a storage group on the
target array with the same service level and workload combination as the primary. However, if
this combination is unavailable on the target (for example, in a situation where the source array is
a VMAX-Hybrid, the target array is an All Flash, and an All Flash incompatible service level like
Bronze is configured), no service level will be applied.

Configure multiple replication targets

Setting multiple replication devices in cinder.conf allows the use of all the supported replication modes
simultaneously. Up to three replication devices can be set, one for each of the replication modes available.
An additional volume type extra spec (storagetype:replication_device_backend_id) is then
used to determine which replication device should be utilized when attempting to perform an operation
on a volume which is replication enabled. All details, guidelines and recommendations set out in the
Configure a single replication target section also apply in a multiple replication device scenario.

Multiple replication targets limitations and restrictions:

1. There can only be one of each replication mode present across all of the replication devices
set in cinder.conf.

2. Details for target_device_id, remote_port_group and remote_pool should be iden-
tical across replication devices.

3. The backend_id and rdf_group_label values must be unique across all replication de-
vices.

Adding additional replication_device to cinder.conf:

1. Open cinder.conf for editing

2. If a replication device is already present, add the backend_id key with a value of
backend_id_legacy_rep. If this key is already defined, its value must be updated to
backend_id_legacy_rep.

3. Add the additional replication devices to the backend stanza. Any additional repli-
cation devices must have a backend_id key set. The value of these must not be
backend_id_legacy_rep.

Example existing backend stanza pre-multiple replication:

enabled_backends = POWERMAX_FC_REPLICATION

[POWERMAX_FC_REPLICATION]
volume_driver = cinder.volume.drivers.dell_emc.powermax.fc.PowerMaxFCDriver
san_ip = 10.10.10.10
san_login = my_u4v_username
san_password = my_u4v_password
powermax_srp = SRP_1
powermax_array = 000123456789

(continues on next page)

180 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

powermax_port_groups = [OS-FC-PG]
volume_backend_name = POWERMAX_FC_REPLICATION
replication_device = backend_id:id,

target_device_id:000197811111,
remote_port_group:os-failover-pg,
remote_pool:SRP_1,
rdf_group_label: 28_11_07,
mode:Metro,
metro_use_bias:False,
sync_interval:3,
sync_retries:200

Example updated backend stanza:

enabled_backends = POWERMAX_FC_REPLICATION

[POWERMAX_FC_REPLICATION]
volume_driver = cinder.volume.drivers.dell_emc.powermax.fc.PowerMaxFCDriver
san_ip = 10.10.10.10
san_login = my_u4v_username
san_password = my_u4v_password
powermax_srp = SRP_1
powermax_array = 000123456789
powermax_port_groups = [OS-FC-PG]
volume_backend_name = POWERMAX_FC_REPLICATION
replication_device = backend_id:backend_id_legacy_rep

target_device_id:000197811111,
remote_port_group:os-failover-pg,
remote_pool:SRP_1,
rdf_group_label: 28_11_07,
mode:Metro,
metro_use_bias:False,
sync_interval:3,
sync_retries:200

replication_device = backend_id:sync-rep-id
target_device_id:000197811111,
remote_port_group:os-failover-pg,
remote_pool:SRP_1,
rdf_group_label: 29_12_08,
mode:Synchronous,
sync_interval:3,
sync_retries:200

replication_device = backend_id:async-rep-id
target_device_id:000197811111,
remote_port_group:os-failover-pg,
remote_pool:SRP_1,
rdf_group_label: 30_13_09,
mode:Asynchronous,
sync_interval:3,
sync_retries:200

3.3. Reference 181

Cinder Documentation, Release 20.3.2.dev3

Note: For environments without existing replication devices. The backend_id values can be set to any
value for all replication devices. The backend_id_legacy_rep value is only needed when updating a
legacy system with an existing replication device to use multiple replication devices.

The additional replication devices defined in cinder.conf will be detected after restarting the cinder
volume service.

To specify which replication_device a volume type should use an additional property named
storagetype:replication_device_backend_id must be added to the extra specs of the volume
type. The id value assigned to the storagetype:replication_device_backend_id key in the vol-
ume type must match the backend_id assigned to the replication_device in cinder.conf.

openstack volume type set \
--property storagetype:replication_device_backend_id="<id>" \
<VOLUME_TYPE>

Note: Specifying which replication device to use is done in addition to the basic replication setup for a
volume type seen in Configure a single replication target

Note: In a legacy system where volume types are present that were replication enabled be-
fore adding multiple replication devices, the storagetype:replication_device_backend_id
should be omitted from any volume type that does/will use the legacy replication_device i.e.
when storagetype:replication_device_backend_id is omitted the replication_device with a
backend_id of backend_id_legacy_rep will be used.

Volume replication interoperability with other features

Most features are supported, except for the following:

• Replication Group operations are available for volumes in Synchronous mode only.

• The Ussuri release of OpenStack supports retyping in-use volumes to and from replication enabled
volume types with limited exception of volumes with Metro replication enabled. To retype to a
volume-type that is Metro enabled the volume must first be detached then retyped. The reason for
this is so the paths from the Nova instance to the Metro R1 & R2 volumes must be initialised, this
is not possible on the R2 device whilst a volume is attached.

• The image volume cache functionality is supported (enabled by setting
image_volume_cache_enabled = True), but one of two actions must be taken when
creating the cached volume:

– The first boot volume created on a backend (which will trigger the cached volume to be
created) should be the smallest necessary size. For example, if the minimum size disk to
hold an image is 5GB, create the first boot volume as 5GB. All subsequent boot volumes are
extended to the user specific size.

– Alternatively, ensure that the allow_extend option in the replication_device
parameter is set to True. This is only applicable to VMAX-Hybrid arrays or All Flash
array with HyperMax OS.

182 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Failover host

Note: Failover and failback operations are not applicable in Metro configurations.

In the event of a disaster, or where there is required downtime, upgrade of the primary array for example,
the administrator can issue the failover host command to failover to the configured target:

cinder failover-host cinder_host@POWERMAX_FC_REPLICATION

After issuing cinder failover-host Cinder will set the R2 array as the target array for Cinder, how-
ever, to get existing instances to use this new array and paths to volumes it is necessary to first shelve
Nova instances and then unshelve them, this will effectively restart the Nova instance and re-establish
data paths between Nova instances and the volumes on the R2 array.

nova shelve <server>
nova unshelve [--availability-zone <availability_zone>] <server>

When a host is in failover mode performing normal volume or snapshot provisioning will not be possible,
failover host mode simply provides access to replicated volumes to minimise environment down-time.
The primary objective whilst in failover mode should be to get the R1 array back online. When the
primary array becomes available again, you can initiate a fail-back using the same failover command and
specifying --backend_id default:

cinder failover-host cinder_host@POWERMAX_FC_REPLICATION --backend_id␣
↪→default

After issuing the failover command to revert to the default backend host it is necessary to re-issue the Nova
shelve and unshelve commands to restore the data paths between Nova instances and their corresponding
back end volumes. Once reverted to the default backend volume and snapshot provisioning operations
can continue as normal.

Failover promotion

Failover promotion can be used to transfer all existing RDF enabled volumes to the R2 array and overwrite
any references to the original R1 array. This can be used in the event of total R1 array failure or in other
cases where an array transfer is warranted. If the R1 array is online and working and the RDF links are
still enabled the failover promotion will automatically delete rdf pairs as necessary. If the R1 array or
the link to the R1 array is down, a half deletepair must be issued manually for those volumes during the
failover promotion.

1. Issue failover command:

cinder failover-host <host>

2. Enable array promotion:

cinder failover-host --backend_id=pmax_failover_start_array_promotion <host>

3. View and re-enable the cinder service

3.3. Reference 183

Cinder Documentation, Release 20.3.2.dev3

cinder service-list
cinder service-enable <host> <binary>

4. Remove all volumes from volume groups

cinder --os-volume-api-version 3.13 group-update --remove-volumes <Vol1ID,␣
↪→etc..> <volume_group_name>

5. Detach all volumes that are attached to instances

openstack server remove volume <instance_id> <volume_id>

Note: Deleting the instance will call a detach volume for each attached volume. A terminate connection
can be issued manually using the following command for volumes that are stuck in the attached state
without an instance.

cinder --os-volume-api-version 3.50 attachment-delete <attachment_id>

6. Delete all remaining instances

nova delete <instance_id>

7. Create new volume types

New volume types must be created with references to the remote array. All new volume types must adhere
to the following guidelines:

1. Uses the same workload, SLO & compression setting as the previous R1␣
↪→volume type.
2. Uses the remote array instead of the primary for its pool name.
3. Uses the same volume_backend_name as the previous volume type.
4. Must not have replication enabled.

Example existing volume type extra specs.

pool_name='Gold+None+SRP_1+000297900330', replication_enabled='<is> True',
storagetype:replication_device_backend_id='async-rep-1', volume_backend_name=
↪→'POWERMAX_ISCSI_NONE'

Example new volume type extra specs.

pool_name='Gold+None+SRP_1+000197900049', volume_backend_name='POWERMAX_ISCSI_
↪→NONE'

8. Retype volumes to new volume types

Additional checks will be performed during failover promotion retype to ensure workload, compression
and slo settings meet the criteria specified above when creating the new volume types.

cinder retype --migration-policy on-demand <volume> <volume_type>

184 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Note: If the volumes RDF links are offline during this retype then a half deletepair must be performed
manually after retype. Please reference section 8.a. below for guidance on this process.

8.a. Retype and RDF half deletepair

In instances where the rdf links are offline and rdf pairs have been set to partitioned state there are addi-
tional requirements. In that scenario the following order should be adhered to:

1. Retype all Synchronous volumes.
2. Half_deletepair all Synchronous volumes using the default storage group.
3. Retype all Asynchronous volumes.
4. Half_deletepair all Asynchronous volumes using their management storage␣
↪→group.
5. Retype all Metro volumes.
6. Half_deletepair all Metro volumes using their management storage group.
7. Delete the Asynchronous and Metro management storage groups.

Note: A half deletepair cannot be performed on Metro enabled volumes unless the symforce
option has been enabled in the symapi options. In symapi/config/options uncomment and set
SYMAPI_ALLOW_RDF_SYMFORCE = True.

symrdf -sid <sid> -sg <sg> -rdfg <rdfg> -force -symforce half_deletepair

9. Issue failback

Issuing the failback command will disable both the failover and promotion flags. Please ensure all vol-
umes have been retyped and all replication pairs have been deleted before issuing this command.

cinder failover-host --backend_id default <host>

10. Update cinder.conf

Update the cinder.conf file to include details for the new primary array. For more information please see
the Configure block storage in cinder.conf section of this documentation.

11. Restart the cinder services

Restart the cinder volume service to allow it to detect the changes made to the cinder.conf file.

12. Set Metro volumes to ready state

Metro volumes will be set to a Not Ready state after performing rdf pair cleanup. Set these volumes back
to Ready state to allow them to be attached to instances. The U4P instance must be restarted for this
change to be detected.

symdev -sid <sid> ready -devs <dev_id1, dev_id2>

3.3. Reference 185

Cinder Documentation, Release 20.3.2.dev3

Asynchronous and metro replication management groups

Asynchronous and metro volumes in an RDF session, i.e. belonging to an SRDF group, must be managed
together for RDF operations (although there is a consistency exempt option for creating and deleting
pairs in an Async group). To facilitate this management, we create an internal RDF management storage
group on the backend. This RDF management storage group will use the following naming convention:

OS-[rdf_group_label]-[replication_mode]-rdf-sg

It is crucial for correct management that the volumes in this storage group directly correspond to the
volumes in the RDF group. For this reason, it is imperative that the RDF group specified in the cinder.
conf is for the exclusive use by this Cinder backend. If there are any issues with the state of your RDF
enabled volumes prior to performing additional operations in Cinder you will be notified in the Cinder
volume logs.

Metro support

SRDF/Metro is a high availability solution. It works by masking both sides of the RDF relationship to
the host, and presenting all paths to the host, appearing that they all point to the one device. In order to
do this, there needs to be multi-path software running to manage writing to the multiple paths.

Note: The metro issue around formatting volumes when they are added to existing metro RDF groups has
been fixed in Unisphere for PowerMax 9.1, however, it has only been addressed on arrays with PowerMax
OS and will not be available on arrays running a HyperMax OS.

Volume retype - storage assisted volume migration

Volume retype with storage assisted migration is supported now for PowerMax arrays. Cinder requires
that for storage assisted migration, a volume cannot be retyped across backends. For using storage assisted
volume retype, follow these steps:

Note: From the Ussuri release of OpenStack the PowerMax driver supports retyping in-use volumes
to and from replication enabled volume types with limited exception of volumes with Metro replication
enabled. To retype to a volume-type that is Metro enabled the volume must first be detached then retyped.
The reason for this is so the paths from the instance to the Metro R1 & R2 volumes must be initialised,
this is not possible on the R2 device whilst a volume is attached.

Note: When multiple replication devices are configured. If retyping from one replication mode to
another the R1 device ID is preserved and a new R2 side device is created. As a result, the device ID on
the R2 array may be different after the retype operation has completed.

Note: Retyping an in-use volume to a metro enabled volume type is not currently supported via
storage-assisted migration. This retype can still be performed using host-assisted migration by setting
the migration-policy to on-demand.

186 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

cinder retype --migration-policy on-demand <volume> <volume-type>

1. For migrating a volume from one Service Level or Workload combination to another, use volume
retype with the migration-policy to on-demand. The target volume type should have the same
volume_backend_name configured and should have the desired pool_name to which you are trying
to retype to (please refer to Create volume types for details).

$ cinder retype --migration-policy on-demand <volume> <volume-type>

Generic volume group support

Generic volume group operations are performed through the CLI using API version 3.1x of the Cinder
API. Generic volume groups are multi-purpose groups which can be used for various features. The Pow-
erMax driver supports consistent group snapshots and replication groups. Consistent group snapshots
allows the user to take group snapshots which are consistent based on the group specs. Replication groups
allow for tenant facing APIs to enable and disable replication, and to failover and failback, a group of
volumes. Generic volume groups have replaced the deprecated consistency groups.

Consistent group snapshot

To create a consistent group snapshot, set a group-spec, having the key
consistent_group_snapshot_enabled set to <is> True on the group.

cinder --os-volume-api-version 3.11 group-type-key GROUP_TYPE set␣
↪→consistent_group_snapshot_enabled="<is> True"

Similarly the same key should be set on any volume type which is specified while creating the group.

openstack volume type set --property consistent_group_snapshot_enabled="<is>
↪→ True" POWERMAX_GROUP

If this key is not set on the group-spec or volume type, then the generic volume group will be cre-
ated/managed by Cinder (not the PowerMax driver).

Note: The consistent group snapshot should not be confused with the PowerMax consistency group
which is an SRDF construct.

3.3. Reference 187

Cinder Documentation, Release 20.3.2.dev3

Replication groups

As with Consistent group snapshot consistent_group_snapshot_enabled should be set to true on
the group and the volume type for replication groups. Only Synchronous replication is supported for
use with Replication Groups. When a volume is created into a replication group, replication is on by
default. The disable_replication api suspends I/O traffic on the devices, but does NOT remove
replication for the group. The enable_replication api resumes I/O traffic on the RDF links. The
failover_group api allows a group to be failed over and back without failing over the entire host. See
below for usage.

Note: A generic volume group can be both consistent group snapshot enabled and consistent group
replication enabled.

Storage group names

Storage groups are created on the PowerMax as a result of creation of generic volume groups. These
storage groups follow a different naming convention and are of the following format depending upon
whether the groups have a name.

TruncatedGroupName_GroupUUID or GroupUUID

Group type, group, and group snapshot operations

Please refer to the official OpenStack block-storage groups documentation for the most up to date group
operations

Group replication operations

Generic volume group operations no longer require the user to specify the Cinder CLI version, however,
performing generic volume group replication operations still require this setting. When running generic
volume group commands set the value --os-volume-api-version to 3.38. These commands are not
listed in the latest Cinder CLI documentation so will remain here until added to the latest Cinder CLI
version or deprecated from Cinder.

• Enable group replication

cinder --os-volume-api-version 3.38 group-enable-replication GROUP

• Disable group replication

cinder --os-volume-api-version 3.38 group-disable-replication GROUP

• Failover group

cinder --os-volume-api-version 3.38 group-failover-replication GROUP

• Failback group

188 Chapter 3. For operators

https://docs.openstack.org/cinder/latest/admin/groups.html

Cinder Documentation, Release 20.3.2.dev3

cinder --os-volume-api-version 3.38 group-failover-replication GROUP /
--secondary-backend-id default

Manage and unmanage Volumes

Managing volumes in OpenStack is the process whereby a volume which exists on the storage device is
imported into OpenStack to be made available for use in the OpenStack environment. For a volume to
be valid for managing into OpenStack, the following prerequisites must be met:

• The volume exists in a Cinder managed pool

• The volume is not part of a Masking View

• The volume is not part of an SRDF relationship

• The volume is configured as a TDEV (thin device)

• The volume is set to FBA emulation

• The volume must a whole GB e.g. 5.5GB is not a valid size

• The volume cannot be a SnapVX target

For a volume to exist in a Cinder managed pool, it must reside in the same Storage Resource Pool (SRP)
as the backend which is configured for use in OpenStack. Specifying the pool correctly can be entered
manually as it follows the same format:

Pool format: <service_level>+<srp>+<array_id>
Pool example: Diamond+SRP_1+111111111111

Table 15: Pool values
Key Value
service_level The service level of the volume to be managed
srp The Storage Resource Pool configured for use by the backend
array_id The PowerMax serial number (12 digit numerical)

Manage volumes

With your pool name defined you can now manage the volume into OpenStack, this is possible with the
CLI command cinder manage. The bootable parameter is optional in the command, if the volume to
be managed into OpenStack is not bootable leave this parameter out. OpenStack will also determine the
size of the value when it is managed so there is no need to specify the volume size.

Command format:

$ cinder manage --name <new_volume_name> --volume-type <powermax_vol_type> \
--availability-zone <av_zone> <--bootable> <host> <identifier>

Command Example:

3.3. Reference 189

Cinder Documentation, Release 20.3.2.dev3

$ cinder manage --name powermax_managed_volume --volume-type POWERMAX_ISCSI_
↪→DIAMOND \
--availability-zone nova demo@POWERMAX_ISCSI_DIAMOND#Diamond+SRP_

↪→1+111111111111 031D8

After the above command has been run, the volume will be available for use in the same way as any other
OpenStack PowerMax volume.

Note: An unmanaged volume with a prefix of OS- in its identifier name cannot be managed into Open-
Stack, as this is a reserved keyword for managed volumes. If the identifier name has this prefix, an
exception will be thrown by the PowerMax driver on a manage operation.

Managing volumes with replication enabled

Whilst it is not possible to manage volumes into OpenStack that are part of a SRDF relationship, it is
possible to manage a volume into OpenStack and enable replication at the same time. This is done by
having a replication enabled PowerMax volume type (for more information see section Volume Replica-
tion) during the manage volume process you specify the replication volume type as the chosen volume
type. Once managed, replication will be enabled for that volume.

Note: It is not possible to manage into OpenStack SnapVX linked target volumes, only volumes which
are a SnapVX source are permitted. We do not want a scenario where a snapshot source can exist outside
of OpenStack management.

Unmanage volume

Unmanaging a volume is not the same as deleting a volume. When a volume is deleted from OpenStack,
it is also deleted from the PowerMax at the same time. Unmanaging a volume is the process whereby
a volume is removed from OpenStack but it remains for further use on the PowerMax. The volume can
also be managed back into OpenStack at a later date using the process discussed in the previous section.
Unmanaging volume is carried out using the Cinder unmanage CLI command:

Command format:

$ cinder unmanage <volume_name/volume_id>

Command example:

$ cinder unmanage powermax_test_vol

Once unmanaged from OpenStack, the volume can still be retrieved using its device ID or OpenStack
volume ID. Within Unisphere you will also notice that the OS- prefix has been removed, this is another
visual indication that the volume is no longer managed by OpenStack.

190 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Manage/unmanage snapshots

Users can manage PowerMax SnapVX snapshots into OpenStack if the source volume already exists in
Cinder. Similarly, users will be able to unmanage OpenStack snapshots to remove them from Cinder but
keep them on the storage backend.

Set-up, restrictions and requirements:

1. No additional settings or configuration is required to support this functionality.

2. Manage/Unmanage snapshots requires SnapVX functionality support on PowerMax.

3. Manage/Unmanage Snapshots in OpenStack Cinder is only supported at present through Cinder
CLI commands.

4. It is only possible to manage or unmanage one snapshot at a time in Cinder.

Manage SnapVX snapshot

It is possible to manage PowerMax SnapVX snapshots into OpenStack, where the source volume from
which the snapshot is taken already exists in, and is managed by OpenStack Cinder. The source volume
may have been created in OpenStack Cinder, or it may have been managed in to OpenStack Cinder also.
With the support of managing SnapVX snapshots included in OpenStack Queens, the restriction around
managing SnapVX source volumes has been removed.

Note: It is not possible to manage into OpenStack SnapVX linked target volumes, only volumes which
are a SnapVX source are permitted. We do not want a scenario where a snapshot source can exist outside
of OpenStack management.

Requirements/restrictions:

1. The SnapVX source volume must be present in and managed by Cinder.

2. The SnapVX snapshot name must not begin with OS-.

3. The SnapVX snapshot source volume must not be in a failed-over state.

4. Managing a SnapVX snapshot will only be allowed if the snapshot has no linked target volumes.

Command structure:

1. Identify your SnapVX snapshot for management on the PowerMax, note the name.

2. Ensure the source volume is already managed into OpenStack Cinder, note the device ID.

3. Using the Cinder CLI, use the following command structure to manage a Snapshot into OpenStack
Cinder:

$ cinder snapshot-manage --id-type source-name
[--name <name>]
[--description <description>]
[--metadata [<key=value> [<key=value> ...]]]
<volume name/id> <identifier>

Positional arguments:

3.3. Reference 191

Cinder Documentation, Release 20.3.2.dev3

• <volume name/id> Source OpenStack volume name

• <identifier> Name of existing snapshot on PowerMax backend

Optional arguments:

• --name <name> Snapshot name (Default=“None“)

• --description <description> Snapshot description (Default=“None“)

• --metadata [<key=value> [<key=value> ...]] Metadata key=value pairs (De-
fault=“None“)

Example:

$ cinder snapshot-manage --name SnapshotManaged \
--description "Managed Queens Feb18" \
powermax-vol-1 PowerMaxSnapshot

Where:

• The name in OpenStack after managing the SnapVX snapshot will be SnapshotManaged.

• The snapshot will have the description Managed Queens Feb18.

• The Cinder volume name is powermax-vol-1.

• The name of the SnapVX snapshot on the PowerMax backend is PowerMaxSnapshot.

Outcome:

After the process of managing the Snapshot has completed, the SnapVX snapshot on the Pow-
erMax backend will be prefixed by the letters OS-, leaving the snapshot in this example named
OS-PowerMaxSnapshot. The associated snapshot managed by Cinder will be present for use under
the name SnapshotManaged.

Unmanage cinder snapshot

Unmanaging a snapshot in Cinder is the process whereby the snapshot is removed from and no longer
managed by Cinder, but it still exists on the storage backend. Unmanaging a SnapVX snapshot in Open-
Stack Cinder follows this behaviour, whereby after unmanaging a PowerMax SnapVX snapshot from
Cinder, the snapshot is removed from OpenStack but is still present for use on the PowerMax backend.

Requirements/Restrictions:

• The SnapVX source volume must not be in a failed over state.

Command Structure:

Identify the SnapVX snapshot you want to unmanage from OpenStack Cinder, note the snapshot name
or ID as specified by Cinder. Using the Cinder CLI use the following command structure to unmanage
the SnapVX snapshot from Cinder:

$ cinder snapshot-unmanage <snapshot>

Positional arguments:

• <snapshot> Cinder snapshot name or ID.

Example:

192 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

$ cinder snapshot-unmanage SnapshotManaged

Where:

• The SnapVX snapshot name in OpenStack Cinder is SnapshotManaged.

After the process of unmanaging the SnapVX snapshot in Cinder, the snapshot on the PowerMax backend
will have the OS- prefix removed to indicate it is no longer OpenStack managed. In the example above, the
snapshot after unmanaging from OpenStack will be named PowerMaxSnapshot on the storage backend.

List manageable volumes and snapshots

Manageable volumes

Volumes that can be managed by and imported into Openstack.

List manageable volume is filtered by:

• Volume size should be 1026MB or greater (1GB PowerMax Cinder Vol = 1026 MB)

• Volume size should be a whole integer GB capacity

• Volume should not be a part of masking view.

• Volume status should be Ready

• Volume service state should be Normal

• Volume emulation type should be FBA

• Volume configuration should be TDEV

• Volume should not be a system resource.

• Volume should not be private

• Volume should not be encapsulated

• Volume should not be reserved

• Volume should not be a part of an RDF session

• Volume should not be a SnapVX Target

• Volume identifier should not begin with OS-.

• Volume should not be in more than one storage group.

Manageable snaphots

Snapshots that can be managed by and imported into Openstack

List manageable snapshots is filtered by:

• The source volume should be marked as SnapVX source.

• The source volume should be 1026MB or greater

• The source volume should be a whole integer GB capacity.

3.3. Reference 193

Cinder Documentation, Release 20.3.2.dev3

• The source volume emulation type should be FBA.

• The source volume configuration should be TDEV.

• The source volume should not be private.

• The source volume should be not be a system resource.

• The snapshot identifier should not start with OS- or temp-.

• The snapshot should not be expired.

• The snapshot generation number should npt be greater than 0.

Note: There is some delay in the syncing of the Unisphere for PowerMax database when the
state/properties of a volume is modified using symcli. To prevent this it is preferable to modify
state/properties of volumes within Unisphere.

Cinder backup support

PowerMax Cinder driver support Cinder backup functionality. For further information on setup, config-
uration and usage please see the official OpenStack volume backup documentation and related volume
backup CLI guide.

Note: rpc_response_timeout may need to be increased significantly in volume backup operations
especially in replication scenarios where the creation operation will be longer. For more information on
rpc_response_timeout please refer to Live migration configuration

Port group & port load balancing

By default port groups are selected at random from cinder.conf when connections are initialised be-
tween volumes on the backend array and compute instances in Nova. If a port group is set in the volume
type extra specifications this will take precedence over any port groups configured in cinder.conf. Port
selection within the chosen port group is also selected at random by default.

With port group and port load balancing in the PowerMax for Cinder driver users can now select the port
group and port load by determining which has the lowest load. The load metric is defined by the user
in both instances so the selection process can better match the needs of the user and their environment.
Available metrics are detailed in the performance metrics section.

Port Groups are reported on at five minute time deltas (diagnostic), and FE Ports are reported on at
one minute time deltas (real-time) if real-time metrics are enabled, else default five minute time delta
(diagnostic). The window at which performance metrics are analysed is a user-configured option in
cinder.conf, this is detailed in the configuration section.

194 Chapter 3. For operators

https://docs.openstack.org/cinder/latest/configuration/block-storage/backup-drivers.html
https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/volume-backup.html
https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/volume-backup.html

Cinder Documentation, Release 20.3.2.dev3

Calculating load

The process by which Port Group or Port load is calculated is the same for both. The user specifies the
look back window which determines how many performance intervals to measure, 60 minutes will give
12 intervals of 5 minutes each for example. If no lookback window is specified or is set to 0 only the most
recent performance metric will be analysed. This will give a slight performance improvement but with
the improvements made to the performance REST endpoints for load this improvement is negligible. For
real-time stats a minimum of 1 minute is required.

Once a call is made to the performance REST endpoints, the performance data for that PG or port is
extracted. Then the metric values are summed and divided by the count of intervals to get the average
for the look back window.

The performance metric average value for each asset is added to a Python heap. Once all assets have
been measured the lowest value will always be at position 0 in the heap so there is no extra time penalty
requirement for search.

Pre-requisites

Before load balancing can be enabled in the PowerMax for Cinder driver performance metrics collection
must be enabled in Unisphere. Real-time performance metrics collection is enabled separately from di-
agnostic metrics collection. Performance metric collection is only available for local arrays in Unisphere.

After performance metrics registration there is a time delay before Unisphere records performance met-
rics, adequate time must be given before enabling load balancing in Cinder else default random selection
method will be used. It is recommended to wait 4 hours after performance registration before enabling
load balancing in Cinder.

Configuration

A number of configuration options are available for users so load balancing can be set to better suit the
needs of the environment. These configuration options are detailed in the table below.

3.3. Reference 195

Cinder Documentation, Release 20.3.2.dev3

Table 16: Load balance cinder.conf configuration options
cinder.conf
parameter

options Default Description

load_balance True/False False

Enable/disable load
balancing for
a PowerMax backend.

load_balance_real_timeTrue/False False

Enable/disable
real-time performance
metrics for Port level
metrics
(not available for Port
Group).

load_data_format Avg/Max Avg

Performance data
format, not
applicable for
real-time.

load_lookback int 60

How far in minutes to
look back for
diagnostic
performance metrics
in
load calculation,
minimum of 0
maximum of 1440 (24
hours).

load_real_time_lookbackint 1

How far in minutes to
look back for
real-time performance
metrics in
load calculation,
minimum of 1
maximum of 60 (24
hours).

port_group_load_metricSee below PercentBusy

Metric used for port
group load
calculation.

port_load_metric See below PercentBusy

Metric used for port
group load
calculation.

196 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Port-Group Metrics

Table 17: Port-group performance metrics
Metric cinder.conf option Description
% Busy PercentBusy The percent of time the port

group is busy.
Avg IO Size (KB) AvgIOSize

Calculated value: (HA Kbytes
transferred per sec /
total IOs per sec)

Host IOs/sec IOs

The number of host IO
operations performed each
second,
including writes and random
and sequential reads.

Host MBs/sec MBs The number of host MBs read
each second.

MBs Read/sec MBRead The number of reads per second
in MBs.

MBs Written/sec MBWritten The number of writes per sec-
ond in MBs.

Reads/sec Reads The average number of host
reads performed per second.

Writes/sec Writes The average number of host
writes performed per second.

3.3. Reference 197

Cinder Documentation, Release 20.3.2.dev3

Port Metrics

Table 18: Port performance metrics
Metric cinder.conf option Real-Time Sup-

ported
Description

% Busy PercentBusy Yes The percent of time the
port is busy.

Avg IO Size (KB) AvgIOSize Yes

Calculated value: (HA
Kbytes transferred per
sec /
total IOs per sec)

Host IOs/sec IOs Yes

The number of host IO
operations performed
each second,
including writes and
random and sequential
reads.

Host MBs/sec MBs Yes The number of host
MBs read each second.

MBs Read/sec MBRead Yes The number of reads
per second in MBs.

MBs Written/sec MBWritten Yes The number of writes
per second in MBs.

Reads/sec Reads Yes The number of read op-
erations performed by
the port per second.

Writes/sec Writes Yes The number of write
operations performed
each second by the
port.

Speed Gb/sec SpeedGBs No Speed.
Response Time (ms) ResponseTime No The average response

time for the reads and
writes.

Read RT (ms) ReadResponseTime No The average time it
takes to serve one read
IO.

Write RT (ms) WriteResponseTime No The average time it
takes to serve one write
IO.

198 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Upgrading from SMI-S based driver to REST API based driver

Seamless upgrades from an SMI-S based driver to REST API based driver, following the setup instruc-
tions above, are supported with a few exceptions:

1. Seamless upgrade from SMI-S(Ocata and earlier) to REST(Pike and later) is now available on all
functionality including Live Migration.

2. Consistency groups are deprecated in Pike. Generic Volume Groups are supported from Pike
onwards.

Dell EMC PowerStore driver

This section explains how to configure and connect the block storage nodes to an PowerStore storage
cluster.

Supported operations

• Create, delete, attach and detach volumes.

• Create, delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Get volume statistics.

• Attach a volume to multiple servers simultaneously (multiattach).

• Revert a volume to a snapshot.

• OpenStack replication v2.1 support.

• Create, delete, update Consistency Groups.

• Create, delete Consistency Groups snapshots.

• Clone a Consistency Group.

• Create a Consistency Group from a Consistency Group snapshot.

3.3. Reference 199

Cinder Documentation, Release 20.3.2.dev3

Driver configuration

Add the following content into /etc/cinder/cinder.conf:

[DEFAULT]
enabled_backends = powerstore

[powerstore]
PowerStore REST IP
san_ip = <San IP>
PowerStore REST username and password
san_login = <San username>
san_password = <San Password>
Storage protocol
storage_protocol = <Storage protocol> # FC or iSCSI
Volume driver name
volume_driver = cinder.volume.drivers.dell_emc.powerstore.driver.
↪→PowerStoreDriver
Backend name
volume_backend_name = <Backend name>
PowerStore allowed ports
powerstore_ports = <Allowed ports> # Ex. 58:cc:f0:98:49:22:07:02,
↪→58:cc:f0:98:49:23:07:02

Driver options

The driver supports the following configuration options:

Table 19: Description of configuration options
Configuration
option = Default
value

Description

powerstore_ports
= []

(List of String) Allowed ports. Comma separated list of PowerStore iSCSI IPs
or FC WWNs (ex. 58:cc:f0:98:49:22:07:02) to be used. If option is not set all
ports are allowed.

powerstore_appliances
= []

(List of String) Appliances names. Comma separated list of PowerStore appli-
ances names used to provision volumes. DEPRECATED

SSL support

To enable the SSL certificate verification, modify the following options in the cinder.conf file:

driver_ssl_cert_verify = True
driver_ssl_cert_path = <path to the CA>

By default, the SSL certificate validation is disabled.

If the driver_ssl_cert_path option is omitted, the system default CA will be used.

200 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Thin provisioning and compression

The driver creates thin provisioned compressed volumes by default. Thick provisioning is not supported.

CHAP authentication support

The driver supports one-way (Single mode) CHAP authentication. To use CHAP authentication CHAP
Single mode has to be enabled on the storage side.

Note: When enabling CHAP, any previously added hosts will need to be updated with CHAP config-
uration since there will be I/O disruption for those hosts. It is recommended that before adding hosts to
the cluster, decide what type of CHAP configuration is required, if any.

CHAP configuration is retrieved from the storage during driver initialization, no additional configuration
is needed. Secrets are generated automatically.

Replication support

Configure replication

1. Pair source and destination PowerStore systems.

2. Create Protection policy and Replication rule with desired RPO.

3. Enable replication in cinder.conf file.

To enable replication feature for storage backend set replication_device as below:

...
replication_device = backend_id:powerstore_repl_1,

san_ip: <Replication system San ip>,
san_login: <Replication system San username>,
san_password: <Replication system San password>

• Only one replication device is supported for storage backend.

• Replication device supports the same options as the main storage backend.

4. Create volume type for volumes with replication enabled.

$ openstack volume type create powerstore_replicated
$ openstack volume type set --property replication_enabled='<is> True'␣
↪→powerstore_replicated

5. Set Protection policy name for volume type.

$ openstack volume type set --property powerstore:protection_policy=
↪→<protection policy name> \

powerstore_replicated

3.3. Reference 201

Cinder Documentation, Release 20.3.2.dev3

Failover host

In the event of a disaster, or where there is a required downtime the administrator can issue the failover
host command:

$ cinder failover-host cinder_host@powerstore --backend_id powerstore_repl_1

After issuing Cinder failover-host command Cinder will switch to configured replication device, however
to get existing instances to use this target and new paths to volumes it is necessary to first shelve Nova
instances and then unshelve them, this will effectively restart the Nova instance and re-establish data
paths between Nova instances and the volumes.

$ nova shelve <server>
$ nova unshelve [--availability-zone <availability_zone>] <server>

If the primary system becomes available, the administrator can initiate failback operation using
--backend_id default:

$ cinder failover-host cinder_host@powerstore --backend_id default

Consistency Groups support

To use PowerStore Volume Groups create Group Type with consistent group snapshot enabled.

$ cinder --os-volume-api-version 3.11 group-type-create powerstore_vg
$ cinder --os-volume-api-version 3.11 group-type-key powerstore_vg set␣
↪→consistent_group_snapshot_enabled="<is> True"

Note: Currently driver does not support Consistency Groups replication. Adding volume to Consistency
Group and creating volume in Consistency Group will fail if volume is replicated.

Dell EMC PowerVault ME4 Series Fibre Channel and iSCSI drivers

The PVMEFCDriver and PVMEISCSIDriverCinder drivers allow the Dell EMC PowerVault ME4 Series
storage arrays to be used for Block Storage in OpenStack deployments.

System requirements

To use the PowerVault ME4 Series drivers, the following are required:

• PowerVault ME4 Series storage array with:

– iSCSI or FC host interfaces

– G28x firmware or later

• Network connectivity between the OpenStack hosts and the arrays embedded management inter-
face

202 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• The HTTPS protocol must be enabled on the array

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Migrate a volume with back-end assistance.

• Retype a volume.

• Manage and unmanage a volume.

Configuring the array

1. Verify that the array can be managed via an HTTPS connection. HTTP can also be used if
driver_use_ssl is set to False in the cinder.conf file.

Confirm that virtual pools A and B are already present on the array. If they are missing, create
them.

2. Edit the cinder.conf file to define a storage back-end entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in a key=value format.

• The pvme_pool_name value specifies the name of the storage pool or vdisk on the array.

• The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

3. The following cinder.conf options generally have identical values for each backend section on
the array:

• volume_driver specifies the Cinder driver name.

• san_ip specifies the IP addresses or host names of the arrays management controllers.

• san_login and san_password specify the username and password of an array user account
with manage privileges

• driver_use_ssl must be set to True to enable use of the HTTPS protocol.

• pvme_iscsi_ips specifies the iSCSI IP addresses for the array if using the iSCSI transport
protocol

3.3. Reference 203

Cinder Documentation, Release 20.3.2.dev3

In the examples below, two back ends are defined, one for pool A and one for pool B, and a common
volume_backend_name is used so that a single volume type definition can be used to allocate
volumes from both pools.

iSCSI example back-end entries

[pool-a]
pvme_pool_name = A
volume_backend_name = pvme-array
volume_driver = cinder.volume.drivers.dell_emc.powervault.iscsi.
↪→PVMEISCSIDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
pvme_iscsi_ips = 10.2.3.4,10.2.3.5
driver_use_ssl = true

[pool-b]
pvme_pool_name = B
volume_backend_name = pvme-array
volume_driver = cinder.volume.drivers.dell_emc.powervault.iscsi.
↪→PVMEISCSIDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
pvme_iscsi_ips = 10.2.3.4,10.2.3.5
driver_use_ssl = true

Fibre Channel example back-end entries

[pool-a]
pvme_pool_name = A
volume_backend_name = pvme-array
volume_driver = cinder.volume.drivers.dell_emc.powervault.fc.PVMEFCDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
driver_use_ssl = true

[pool-b]
pvme_pool_name = B
volume_backend_name = pvme-array
volume_driver = cinder.volume.drivers.dell_emc.powervault.fc.PVMEFCDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
driver_use_ssl = true

4. If HTTPS is enabled, you can enable certificate verification with the option
driver_ssl_cert_verify = True. You may also use the driver_ssl_cert_path pa-
rameter to specify the path to a CA_BUNDLE file containing CAs other than those in the default
list.

204 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

5. Modify the [DEFAULT] section of the cinder.conf file to add an enabled_backends parameter
specifying the backend entries you added, and a default_volume_type parameter specifying the
name of a volume type that you will create in the next step.

Example of [DEFAULT] section changes

[DEFAULT]
enabled_backends = pool-a,pool-b
default_volume_type = pvme

6. Create a new volume type for each distinct volume_backend_name value that
you added in the cinder.conf file. The example below assumes that the same
volume_backend_name=pvme-array option was specified in all of the entries, and speci-
fies that the volume type pvme can be used to allocate volumes from any of them.

Example of creating a volume type

$ openstack volume type create pvme
$ openstack volume type set --property volume_backend_name=pvme-array pvme

7. After modifying the cinder.conf file, restart the cinder-volume service.

Driver-specific options

The following table contains the configuration options that are specific to the PowerVault ME Series
drivers.

Table 20: Description of PowerVault ME Series configuration op-
tions

Configuration option = Default
value

Description

pvme_iscsi_ips = [] (List of String) List of comma-separated target iSCSI IP ad-
dresses.

pvme_pool_name = A (String) Pool or Vdisk name to use for volume creation.

Dell EMC Unity driver

Unity driver has been integrated in the OpenStack Block Storage project since the Ocata release. The
driver is built on the top of Block Storage framework and a Dell EMC distributed Python package storops.

Prerequisites

Software Version
Unity OE 4.1.X or newer
storops 1.2.3 or newer

3.3. Reference 205

https://pypi.org/project/storops

Cinder Documentation, Release 20.3.2.dev3

Supported operations

• Create, delete, attach, and detach volumes.

• Create, delete, attach, and detach compressed volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Create an image from a volume.

• Clone a volume.

• Extend a volume.

• Migrate a volume.

• Get volume statistics.

• Efficient non-disruptive volume backup.

• Revert a volume to a snapshot.

• Create thick volumes.

• Create volume with tiering policy.

• Create and delete consistent groups.

• Add/remove volumes to/from a consistent group.

• Create and delete consistent group snapshots.

• Clone a consistent group.

• Create a consistent group from a snapshot.

• Attach a volume to multiple servers simultaneously (multiattach).

• Volume replications.

• Consistency group replications.

Driver configuration

Note: The following instructions should all be performed on Block Storage nodes.

1. Install storops from pypi:

pip install storops

2. Add the following content into /etc/cinder/cinder.conf:

206 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

[DEFAULT]
enabled_backends = unity

[unity]
Storage protocol
storage_protocol = iSCSI
Unisphere IP
san_ip = <SAN IP>
Unisphere username and password
san_login = <SAN LOGIN>
san_password = <SAN PASSWORD>
Volume driver name
volume_driver = cinder.volume.drivers.dell_emc.unity.Driver
backend's name
volume_backend_name = Storage_ISCSI_01

Note: These are minimal options for Unity driver, for more options, see Driver options.

Note: (Optional) If you require multipath based data access, perform below steps on both Block Storage
and Compute nodes.

1. Install sysfsutils, sg3-utils and multipath-tools:

apt-get install multipath-tools sg3-utils sysfsutils

2. (Required for FC driver in case Auto-zoning Support is disabled) Zone the FC ports of Compute
nodes with Unity FC target ports.

3. Enable Unity storage optimized multipath configuration:

Add the following content into /etc/multipath.conf

blacklist {
Skip the files uner /dev that are definitely not FC/iSCSI devices
Different system may need different customization
devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
devnode "^hd[a-z][0-9]*"
devnode "^cciss!c[0-9]d[0-9]*[p[0-9]*]"

Skip LUNZ device from VNX/Unity
device {

vendor "DGC"
product "LUNZ"

}
}

defaults {
user_friendly_names no

(continues on next page)

3.3. Reference 207

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

flush_on_last_del yes
}

devices {
Device attributed for EMC CLARiiON and VNX/Unity series ALUA
device {

vendor "DGC"
product ".*"
product_blacklist "LUNZ"
path_grouping_policy group_by_prio
path_selector "round-robin 0"
path_checker emc_clariion
features "0"
no_path_retry 12
hardware_handler "1 alua"
prio alua
failback immediate

}
}

4. Restart the multipath service:

service multipath-tools restart

5. Enable multipath for image transfer in /etc/cinder/cinder.conf for each backend or in
[backend_defaults] section as a common configuration for all backends.

use_multipath_for_image_xfer = True

Restart the cinder-volume service to load the change.

6. Enable multipath for volume attache/detach in /etc/nova/nova.conf.

[libvirt]
...
volume_use_multipath = True
...

7. Restart the nova-compute service.

208 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Driver options

Table 21: Description of Unity configuration options
Configuration option =
Default value

Description

remove_empty_host =
False

(Boolean) To remove the host from Unity when the last LUN is detached
from it. By default, it is False.

san_api_port = None (Port(min=0, max=65535)) Port to use to access the SAN API
san_clustername =
<>

(String) Cluster name to use for creating volumes

san_ip = <> (String) IP address of SAN controller
san_is_local =
False

(Boolean) Execute commands locally instead of over SSH; use if the vol-
ume service is running on the SAN device

san_login = admin (String) Username for SAN controller
san_password = <> (String) Password for SAN controller
san_private_key =
<>

(String) Filename of private key to use for SSH authentication

san_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use with SAN
san_thin_provision
= True

(Boolean) Use thin provisioning for SAN volumes?

ssh_conn_timeout =
30

(Integer) SSH connection timeout in seconds

ssh_max_pool_conn =
5

(Integer) Maximum ssh connections in the pool

ssh_min_pool_conn =
1

(Integer) Minimum ssh connections in the pool

unity_io_ports = [] (List of String) A comma-separated list of iSCSI or FC ports to be used.
Each port can be Unix-style glob expressions.

unity_storage_pool_names
= []

(List of String) A comma-separated list of storage pool names to be used.

FC or iSCSI ports option

Specify the list of FC or iSCSI ports to be used to perform the IO. Wild card character is supported. For
iSCSI ports, use the following format:

unity_io_ports = spa_eth2, spb_eth2, *_eth3

For FC ports, use the following format:

unity_io_ports = spa_iom_0_fc0, spb_iom_0_fc0, *_iom_0_fc1

List the port ID with the uemcli command:

$ uemcli /net/port/eth show -output csv
...
"spa_eth2","SP A Ethernet Port 2","spa","file, net, iscsi", ...
"spb_eth2","SP B Ethernet Port 2","spb","file, net, iscsi", ...

(continues on next page)

3.3. Reference 209

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

...

$ uemcli /net/port/fc show -output csv
...
"spa_iom_0_fc0","SP A I/O Module 0 FC Port 0","spa", ...
"spb_iom_0_fc0","SP B I/O Module 0 FC Port 0","spb", ...
...

Live migration integration

It is suggested to have multipath configured on Compute nodes for robust data access in VM instances live
migration scenario. Once user_friendly_names no is set in defaults section of /etc/multipath.
conf, Compute nodes will use the WWID as the alias for the multipath devices.

To enable multipath in live migration:

Note: Make sure Driver configuration steps are performed before following steps.

1. Set multipath in /etc/nova/nova.conf:

[libvirt]
...
volume_use_multipath = True
...

Restart nova-compute service.

2. Set user_friendly_names no in /etc/multipath.conf

...
defaults {

user_friendly_names no
}
...

3. Restart the multipath-tools service.

Thin and thick provisioning

By default, the volume created by Unity driver is thin provisioned. Run the following commands to create
a thick volume.

openstack volume type create --property provisioning:type=thick \
--property thick_provisioning_support='<is> True' thick_volume_type

openstack volume create --type thick_volume_type thick_volume

210 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Compressed volume support

Unity driver supports compressed volume creation, modification and deletion. In order to create a
compressed volume, a volume type which enables compression support needs to be created first:

$ openstack volume type create CompressedVolumeType
$ openstack volume type set --property provisioning:type=compressed --
↪→property compression_support='<is> True' CompressedVolumeType

Then create volume and specify the new created volume type.

Note: In Unity, only All-Flash pools support compressed volume, for the other type of pools, compres-
sion_support: False will be returned when getting pool stats.

Storage-assisted volume migration support

Unity driver supports storage-assisted volume migration, when the user starts migrating with cinder
migrate --force-host-copy False <volume_id> <host> or cinder migrate <volume_id>
<host>, cinder will try to leverage the Unitys native volume migration functionality. If Unity fails to
migrate the volume, host-assisted migration will be triggered.

In the following scenarios, Unity storage-assisted volume migration will not be triggered. Instead, host-
assisted volume migration will be triggered:

• Volume is to be migrated across backends.

• Migration of cloned volume. For example, if vol_2 was cloned from vol_1, the storage-assisted
volume migration of vol_2 will not be triggered.

Retype volume support

Unity driver supports to change a volumes type after its creation.

$ cinder retype [--migration-policy <never|on-demand>] <volume> <volume-type>

The migration-policy is not enabled by default. Some retype operations will require migration based
on back-end support. In these cases, the storage-assisted migration will be triggered regardless the
migration-policy. For examples: retype between thin and thick, retype between thick and compressed,
retype to type(s) current host doesnt support.

3.3. Reference 211

Cinder Documentation, Release 20.3.2.dev3

QoS support

Unity driver supports maxBWS and maxIOPS specs for the back-end consumer type. maxBWS represents the
Maximum Bandwidth (KBPS) absolute limit, maxIOPS represents the Maximum IO/S absolute limit on
the Unity respectively.

Storage tiering support

Unity supports fully automated storage tiering which requires the FAST VP license activated on the Unity.
The OpenStack administrator can use the extra spec key storagetype:tiering to set the tiering policy
of a volume and use the key fast_support='<is> True' to let Block Storage scheduler find a volume
back end which manages a Unity with FAST VP license activated. There are four supported values for
the extra spec key storagetype:tiering when creating volume.

• Key: storagetype:tiering

• Possible values:

– StartHighThenAuto

– Auto

– HighestAvailable

– LowestAvailable

• Default: StartHighThenAuto

Run the following commands to create a volume type with tiering policy:

$ openstack volume type create VolumeOnAutoTier
$ openstack volume type set --property storagetype:tiering=Auto --property␣
↪→fast_support='<is> True' VolumeOnAutoTier

Auto-zoning support

Unity volume driver supports auto-zoning, and share the same configuration guide for other vendors.
Refer to Fibre Channel Zone Manager for detailed configuration steps.

Solution for LUNZ device

The EMC host team also found LUNZ on all of the hosts, EMC best practice is to present a LUN with
HLU 0 to clear any LUNZ devices as they can cause issues on the host. See KB LUNZ Device.

To workaround this issue, Unity driver creates a Dummy LUN (if not present), and adds it to each host to
occupy the HLU 0 during volume attachment.

Note: This Dummy LUN is shared among all hosts connected to the Unity.

212 Chapter 3. For operators

https://support.emc.com/kb/463402

Cinder Documentation, Release 20.3.2.dev3

Efficient non-disruptive volume backup

The default implementation in Block Storage for non-disruptive volume backup is not efficient since a
cloned volume will be created during backup.

An effective approach to backups is to create a snapshot for the volume and connect this snapshot to the
Block Storage host for volume backup.

SSL support

Admin is able to enable the SSL verification for any communication against Unity REST API.

By default, the SSL verification is disabled, user can enable it by following steps:

1. Setup the Unity array certificate and import it to the Unity, see section Storage system certificate
of Security Configuration Guide.

2. Import the CA certificate to the Cinder nodes on which the driver is running.

3. Enable the changes on cinder nodes and restart the cinder services.

[unity]
...
driver_ssl_cert_verify = True
driver_ssl_cert_path = <path to the CA>
...

If driver_ssl_cert_path is omitted, the system default CA will be used for CA verification.

IPv6 support

This driver can support IPv6-based control path and data path.

For control path, please follow below steps:

• Enable Unitys Unipshere IPv6 address.

• Configure the IPv6 network to make sure that cinder node can access Unishpere via IPv6 address.

• Change Cinder config file /etc/cinder/cinder.conf. Make the san_ip as Unisphere IPv6
address. For example, san_ip = [fd99:f17b:37d0::100].

• Restart the Cinder service to make new configuration take effect.

Note: The IPv6 support on control path depends on the fix of cpython bug 32185. Please make sure your
Pythons version includes this bugs fix.

For data path, please follow below steps:

• On Unity, Create iSCSI interface with IPv6 address.

• Configure the IPv6 network to make sure that you can ping the Unitys iSCSI IPv6 address from
the Cinder node.

• If you create a volume using Cinder and attach it to a VM, the connection between this VM and
volume will be IPv6-based iSCSI.

3.3. Reference 213

https://www.emc.com/collateral/TechnicalDocument/docu69321.pdf
https://bugs.python.org/issue32185

Cinder Documentation, Release 20.3.2.dev3

Force detach volume from all hosts

The user could use os-force_detach action to detach a volume from all its attached hosts.
For more detail, please refer to https://docs.openstack.org/api-ref/block-storage/v3/?expanded=
force-detach-a-volume-detail#force-detach-a-volume

Consistent group support

For a group to support consistent group snapshot, the group specs in the corresponding group type should
have the following entry:

{'consistent_group_snapshot_enabled': <is> True}

Similarly, for a volume to be in a group that supports consistent group snapshots, the volume type extra
specs would also have the following entry:

{'consistent_group_snapshot_enabled': <is> True}

Refer to Generic volume groups for command lines detail.

Volume replications

To enable volume replications, follow below steps:

1. On Unisphere, configure remote system and interfaces for replications.

The way could be different depending on the type of replications - sync or async. Refer to Unity Repli-
cation White Paper for more detail.

2. Add replication_device to storage backend settings in cinder.conf, then restart Cinder Volume ser-
vice.

Example of cinder.conf for volume replications:

[unity-primary]
san_ip = xxx.xxx.xxx.xxx
...
replication_device = backend_id:unity-secondary,san_ip:yyy.yyy.yyy.yyy,
↪→san_login:username,san_password:****,max_time_out_of_sync:60

• Only one replication_device can be configured for each primary backend.

• Keys backend_id, san_ip, san_password, and max_time_out_of_sync are supported in repli-
cation_device, while backend_id and san_ip are required.

• san_password uses the same one as primary backends if it is omitted.

• max_time_out_of_sync is the max time in minutes replications are out of sync. It must be
equal or greater than 0. 0 means sync replications of volumes will be created. Note that
remote systems for sync replications need to be created on Unity first. 60 will be used if it is
omitted.

3. Create a volume type with property replication_enabled=<is> True.

214 Chapter 3. For operators

https://docs.openstack.org/api-ref/block-storage/v3/?expanded=force-detach-a-volume-detail#force-detach-a-volume
https://docs.openstack.org/api-ref/block-storage/v3/?expanded=force-detach-a-volume-detail#force-detach-a-volume
https://dl.dell.com/content/docu69886_dell-emc-unity-replication-technologies-a-detailed-review.pdf
https://dl.dell.com/content/docu69886_dell-emc-unity-replication-technologies-a-detailed-review.pdf

Cinder Documentation, Release 20.3.2.dev3

$ openstack volume type create --property replication_enabled='<is> True'␣
↪→type-replication

4. Any volumes with volume type of step #3 will failover to secondary backend after failover_host is
executed.

$ cinder failover-host --backend_id unity-secondary stein@unity-primary

5. Later, they could be failed back.

$ cinder failover-host --backend_id default stein@unity-primary

Note: The volume can be deleted even when it is participating in a replication. The replication session
will be deleted from Unity before the LUN is deleted.

Consistency group replications

To enable consistency group replications, follow below steps:

1. On Unisphere, configure remote system and interfaces for replications.

The way could be different depending on the type of replications - sync or async. Refer to Unity Repli-
cation White Paper for more detail.

2. Add replication_device to storage backend settings in cinder.conf, then restart Cinder Volume ser-
vice.

Example of cinder.conf for volume replications:

[unity-primary]
san_ip = xxx.xxx.xxx.xxx
...
replication_device = backend_id:unity-secondary,san_ip:yyy.yyy.yyy.yyy,
↪→san_login:username,san_password:****,max_time_out_of_sync:60

• Only one replication_device can be configured for each primary backend.

• Keys backend_id, san_ip, san_password, and max_time_out_of_sync are supported in repli-
cation_device, while backend_id and san_ip are required.

• san_password uses the same one as primary backends if it is omitted.

• max_time_out_of_sync is the max time in minutes replications are out of sync. It must be
equal or greater than 0. 0 means sync replications of volumes will be created. Note that
remote systems for sync replications need to be created on Unity first. 60 will be used if it is
omitted.

3. Create a volume type with property replication_enabled=<is> True.

$ openstack volume type create --property replication_enabled='<is> True'␣
↪→type-replication

3.3. Reference 215

https://dl.dell.com/content/docu69886_dell-emc-unity-replication-technologies-a-detailed-review.pdf
https://dl.dell.com/content/docu69886_dell-emc-unity-replication-technologies-a-detailed-review.pdf

Cinder Documentation, Release 20.3.2.dev3

4. Create a consistency group type with properties consistent_group_snapshot_enabled=<is> True
and consistent_group_replication_enabled=<is> True.

$ cinder --os-volume-api-version 3.38 group-type-create type-cg-
↪→replication
$ cinder --os-volume-api-version 3.38 group-type-key type-cg-replication␣
↪→set
consistent_group_snapshot_enabled='<is> True' consistent_group_
↪→replication_enabled='<is> True'

5. Create a group type with volume types support replication.

$ cinder --os-volume-api-version 3.38 group-create --name test-cg {type-
↪→cg-replication-id} type-replication

6. Create volume in the consistency group.

$ cinder --os-volume-api-version 3.38 create --volume-type type-
↪→replication --group-id {test-cg-id}
--name {volume-name} {size}

7. Enable consistency group replication.

$ cinder --os-volume-api-version 3.38 group-enable-replication test-cg

8. Disable consistency group replication.

$ cinder --os-volume-api-version 3.38 group-disable-replication test-cg

9. Failover consistency group replication.

$ cinder --os-volume-api-version 3.38 group-failover-replication test-cg

10. Failback consistency group replication.

$ cinder --os-volume-api-version 3.38 group-failover-replication test-cg -
↪→-secondary-backend-id default

Note: Only support group replication of consistency group, see step 4 and 5 to create consistency group
support replication.

Troubleshooting

To troubleshoot a failure in OpenStack deployment, the best way is to enable verbose and debug log, at
the same time, leverage the build-in Return request ID to caller to track specific Block Storage command
logs.

1. Enable verbose log, set following in /etc/cinder/cinder.conf and restart all Block Storage
services:

216 Chapter 3. For operators

https://specs.openstack.org/openstack/openstack-specs/specs/return-request-id.html

Cinder Documentation, Release 20.3.2.dev3

[DEFAULT]

...

debug = True
verbose = True

...

If other projects (usually Compute) are also involved, set debug and verbose to True.

2. use --debug to trigger any problematic Block Storage operation:

cinder --debug create --name unity_vol1 100

You will see the request ID from the console, for example:

DEBUG:keystoneauth:REQ: curl -g -i -X POST
http://192.168.1.9:8776/v2/e50d22bdb5a34078a8bfe7be89324078/volumes -H
"User-Agent: python-cinderclient" -H "Content-Type: application/json" -H
"Accept: application/json" -H "X-Auth-Token:
{SHA1}bf4a85ad64302b67a39ad7c6f695a9630f39ab0e" -d '{"volume": {"status":
"creating", "user_id": null, "name": "unity_vol1", "imageRef": null,
"availability_zone": null, "description": null, "multiattach": false,
"attach_status": "detached", "volume_type": null, "metadata": {},
"consistencygroup_id": null, "source_volid": null, "snapshot_id": null,
"project_id": null, "source_replica": null, "size": 10}}'
DEBUG:keystoneauth:RESP: [202] X-Compute-Request-Id:
req-3a459e0e-871a-49f9-9796-b63cc48b5015 Content-Type: application/json
Content-Length: 804 X-Openstack-Request-Id:
req-3a459e0e-871a-49f9-9796-b63cc48b5015 Date: Mon, 12 Dec 2016 09:31:44␣
↪→GMT
Connection: keep-alive

3. Use commands like grep, awk to find the error related to the Block Storage operations.

grep "req-3a459e0e-871a-49f9-9796-b63cc48b5015" cinder-volume.log

Dell EMC VNX driver

EMC VNX driver interacts with configured VNX array. It supports both iSCSI and FC protocol.

The VNX cinder driver performs the volume operations by executing Navisphere CLI (NaviSecCLI)
which is a command-line interface used for management, diagnostics, and reporting functions for VNX.
It also supports both iSCSI and FC protocol.

3.3. Reference 217

Cinder Documentation, Release 20.3.2.dev3

System requirements

• VNX Operational Environment for Block version 5.32 or higher.

• VNX Snapshot and Thin Provisioning license should be activated for VNX.

• Python library storops version 0.5.7 or higher to interact with VNX.

• Navisphere CLI v7.32 or higher is installed along with the driver.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Clone a volume.

• Extend a volume.

• Migrate a volume.

• Retype a volume.

• Get volume statistics.

• Create and delete consistency groups.

• Create, list, and delete consistency group snapshots.

• Modify consistency groups.

• Efficient non-disruptive volume backup.

• Create a cloned consistency group.

• Create a consistency group from consistency group snapshots.

• Replication v2.1 support.

• Generic Group support.

• Revert a volume to a snapshot.

Preparation

This section contains instructions to prepare the Block Storage nodes to use the EMC VNX driver. You
should install the Navisphere CLI and ensure you have correct zoning configurations.

218 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Install Navisphere CLI

Navisphere CLI needs to be installed on all Block Storage nodes within an OpenStack deployment. You
need to download different versions for different platforms:

• For Ubuntu x64, DEB is available at EMC OpenStack Github.

• For all other variants of Linux, Navisphere CLI is available at Downloads for VNX2 Series or
Downloads for VNX1 Series.

Install Python library storops

storops is a Python library that interacts with VNX array through Navisphere CLI. Use the following
command to install the storops library:

$ pip install storops

Check array software

Make sure your have the following software installed for certain features:

Feature Software Required
All ThinProvisioning
All VNXSnapshots
FAST cache support FASTCache
Create volume with type compressed Compression
Create volume with type deduplicated Deduplication

Required software

You can check the status of your array software in the Software page of Storage System Properties. Here
is how it looks like:

Network configuration

For the FC Driver, FC zoning is properly configured between the hosts and the VNX. Check Register FC
port with VNX for reference.

For the iSCSI Driver, make sure your VNX iSCSI port is accessible by your hosts. Check Register iSCSI
port with VNX for reference.

You can use initiator_auto_registration = True configuration to avoid registering the ports
manually. Check the detail of the configuration in Back-end configuration for reference.

If you are trying to setup multipath, refer to Multipath setup.

3.3. Reference 219

https://github.com/emc-openstack/naviseccli
https://support.emc.com/downloads/36656_VNX2-Series
https://support.emc.com/downloads/12781_VNX1-Series

Cinder Documentation, Release 20.3.2.dev3

220 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Back-end configuration

Make the following changes in the /etc/cinder/cinder.conf file.

Minimum configuration

Here is a sample of minimum back-end configuration. See the following sections for the detail of each
option. Set storage_protocol = iscsi if iSCSI protocol is used.

[DEFAULT]
enabled_backends = vnx_array1

[vnx_array1]
san_ip = 10.10.72.41
san_login = sysadmin
san_password = sysadmin
naviseccli_path = /opt/Navisphere/bin/naviseccli
volume_driver = cinder.volume.drivers.dell_emc.vnx.driver.VNXDriver
initiator_auto_registration = True
storage_protocol = fc

Multiple back-end configuration

Here is a sample of a minimum back-end configuration. See following sections for the detail of each
option. Set storage_protocol = iscsi if iSCSI protocol is used.

[DEFAULT]
enabled_backends = backendA, backendB

[backendA]
storage_vnx_pool_names = Pool_01_SAS, Pool_02_FLASH
san_ip = 10.10.72.41
storage_vnx_security_file_dir = /etc/secfile/array1
naviseccli_path = /opt/Navisphere/bin/naviseccli
volume_driver = cinder.volume.drivers.dell_emc.vnx.driver.VNXDriver
initiator_auto_registration = True
storage_protocol = fc

[backendB]
storage_vnx_pool_names = Pool_02_SAS
san_ip = 10.10.26.101
san_login = username
san_password = password
naviseccli_path = /opt/Navisphere/bin/naviseccli
volume_driver = cinder.volume.drivers.dell_emc.vnx.driver.VNXDriver
initiator_auto_registration = True
storage_protocol = fc

The value of the option storage_protocol can be either fc or iscsi, which is case insensitive.

3.3. Reference 221

Cinder Documentation, Release 20.3.2.dev3

For more details on multiple back ends, see Configure multiple-storage back ends.

Required configurations

IP of the VNX Storage Processors

Specify SP A or SP B IP to connect:

san_ip = <IP of VNX Storage Processor>

VNX login credentials

There are two ways to specify the credentials.

• Use plain text username and password.

Supply for plain username and password:

san_login = <VNX account with administrator role>
san_password = <password for VNX account>
storage_vnx_authentication_type = global

Valid values for storage_vnx_authentication_type are: global (default), local, and ldap.

• Use Security file.

This approach avoids the plain text password in your cinder configuration file. Supply a security
file as below:

storage_vnx_security_file_dir = <path to security file>

Check Unisphere CLI user guide or Authenticate by security file for how to create a security file.

Path to your Unisphere CLI

Specify the absolute path to your naviseccli:

naviseccli_path = /opt/Navisphere/bin/naviseccli

Drivers storage protocol

• For the FC Driver, add the following option:

volume_driver = cinder.volume.drivers.dell_emc.vnx.driver.VNXDriver
storage_protocol = fc

• For iSCSI Driver, add the following option:

volume_driver = cinder.volume.drivers.dell_emc.vnx.driver.VNXDriver
storage_protocol = iscsi

222 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Optional configurations

VNX pool names

Specify the list of pools to be managed, separated by commas. They should already exist in VNX.

storage_vnx_pool_names = pool 1, pool 2

If this value is not specified, all pools of the array will be used.

Initiator auto registration

When initiator_auto_registration is set to True, the driver will automatically register initiators
to all working target ports of the VNX array during volume attaching (The driver will skip those initiators
that have already been registered) if the option io_port_list is not specified in the cinder.conf file.

If the user wants to register the initiators with some specific ports but not register with the other ports,
this functionality should be disabled.

When a comma-separated list is given to io_port_list, the driver will only register the initiator to
the ports specified in the list and only return target port(s) which belong to the target ports in the
io_port_list instead of all target ports.

• Example for FC ports:

io_port_list = a-1,B-3

a or B is Storage Processor, number 1 and 3 are Port ID.

• Example for iSCSI ports:

io_port_list = a-1-0,B-3-0

a or B is Storage Processor, the first numbers 1 and 3 are Port ID and the second number 0 is
Virtual Port ID

Note:

• Rather than de-registered, the registered ports will be simply bypassed whatever they are in
io_port_list or not.

• The driver will raise an exception if ports in io_port_list do not exist in VNX during startup.

Force delete volumes in storage group

Some available volumes may remain in storage group on the VNX array due to some OpenStack
timeout issue. But the VNX array do not allow the user to delete the volumes which are in storage
group. Option force_delete_lun_in_storagegroup is introduced to allow the user to delete the
available volumes in this tricky situation.

When force_delete_lun_in_storagegroup is set to True in the back-end section, the driver will
move the volumes out of the storage groups and then delete them if the user tries to delete the volumes
that remain in the storage group on the VNX array.

3.3. Reference 223

Cinder Documentation, Release 20.3.2.dev3

The default value of force_delete_lun_in_storagegroup is True.

Over subscription in thin provisioning

Over subscription allows that the sum of all volumes capacity (provisioned capacity) to be larger than the
pools total capacity.

max_over_subscription_ratio in the back-end section is the ratio of provisioned capacity over total
capacity.

The default value of max_over_subscription_ratio is 20.0, which means the provisioned capacity
can be 20 times of the total capacity. If the value of this ratio is set larger than 1.0, the provisioned
capacity can exceed the total capacity.

Storage group automatic deletion

For volume attaching, the driver has a storage group on VNX for each compute node hosting the vm
instances which are going to consume VNX Block Storage (using compute nodes host name as stor-
age groups name). All the volumes attached to the VM instances in a compute node will be put
into the storage group. If destroy_empty_storage_group is set to True, the driver will remove
the empty storage group after its last volume is detached. For data safety, it does not suggest to set
destroy_empty_storage_group=True unless the VNX is exclusively managed by one Block Storage
node because consistent lock_path is required for operation synchronization for this behavior.

Initiator auto deregistration

Enabling storage group automatic deletion is the precondition of this function. If
initiator_auto_deregistration is set to True is set, the driver will deregister all FC and
iSCSI initiators of the host after its storage group is deleted.

FC SAN auto zoning

The EMC VNX driver supports FC SAN auto zoning when ZoneManager is configured and
zoning_mode is set to fabric in cinder.conf. For ZoneManager configuration, refer to Fibre Chan-
nel Zone Manager.

Volume number threshold

In VNX, there is a limitation on the number of pool volumes that can be created in the system. When
the limitation is reached, no more pool volumes can be created even if there is remaining capacity in the
storage pool. In other words, if the scheduler dispatches a volume creation request to a back end that has
free capacity but reaches the volume limitation, the creation fails.

The default value of check_max_pool_luns_threshold is False. When
check_max_pool_luns_threshold=True, the pool-based back end will check the limit and
will report 0 free capacity to the scheduler if the limit is reached. So the scheduler will be able to skip
this kind of pool-based back end that runs out of the pool volume number.

224 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Note: From Queens, check_max_pool_luns_threshold is obsolete. And the behavior is like where
check_max_pool_luns_threshold is set to True.

iSCSI initiators

iscsi_initiators is a dictionary of IP addresses of the iSCSI initiator ports on OpenStack compute
and block storage nodes which want to connect to VNX via iSCSI. If this option is configured, the driver
will leverage this information to find an accessible iSCSI target portal for the initiator when attaching
volume. Otherwise, the iSCSI target portal will be chosen in a relative random way.

Note: This option is only valid for iSCSI driver.

Here is an example. VNX will connect host1with 10.0.0.1 and 10.0.0.2. And it will connect host2
with 10.0.0.3.

The key name (host1 in the example) should be the output of hostname command.

iscsi_initiators = {"host1":["10.0.0.1", "10.0.0.2"],"host2":["10.0.0.3"]}

Default timeout

Specify the timeout in minutes for operations like LUN migration, LUN creation, etc. For example, LUN
migration is a typical long running operation, which depends on the LUN size and the load of the array.
An upper bound in the specific deployment can be set to avoid unnecessary long wait.

The default value for this option is infinite.

default_timeout = 60

Max LUNs per storage group

The max_luns_per_storage_group specify the maximum number of LUNs in a storage group. De-
fault value is 255. It is also the maximum value supported by VNX.

Ignore pool full threshold

If ignore_pool_full_threshold is set to True, driver will force LUN creation even if the full thresh-
old of pool is reached. Default to False.

3.3. Reference 225

Cinder Documentation, Release 20.3.2.dev3

Default value for async migration

Option vnx_async_migrate is used to set the default value of async migration for the backend.
The default value of this option is True if it isnt set in cinder.conf to preserve compatibility. If
async_migrate is not set in metadata of volume, the value of this option will be used. Otherwise,
async_migrate value in metadata will override the value of this option. For more detail, refer to asyn-
chronous migration support.

Extra spec options

Extra specs are used in volume types created in Block Storage as the preferred property of the volume.

The Block Storage scheduler will use extra specs to find the suitable back end for the volume and the
Block Storage driver will create the volume based on the properties specified by the extra spec.

Use the following command to create a volume type:

$ openstack volume type create demoVolumeType

Use the following command to update the extra spec of a volume type:

$ openstack volume type set --property provisioning:type=thin --property␣
↪→thick_provisioning_support='<is> True' demoVolumeType

The following sections describe the VNX extra keys.

Provisioning type

• Key: provisioning:type

• Possible Values:

– thick

Volume is fully provisioned.

Run the following commands to create a thick volume type:

$ openstack volume type create ThickVolumeType
$ openstack volume type set --property provisioning:type=thick --
↪→property thick_provisioning_support='<is> True' ThickVolumeType

– thin

Volume is virtually provisioned.

Run the following commands to create a thin volume type:

$ openstack volume type create ThinVolumeType
$ openstack volume type set --property provisioning:type=thin --
↪→property thin_provisioning_support='<is> True' ThinVolumeType

– deduplicated

226 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Volume is thin and deduplication is enabled. The administrator shall go to VNX to configure
the system level deduplication settings. To create a deduplicated volume, the VNX Dedupli-
cation license must be activated on VNX, and specify deduplication_support=True to
let Block Storage scheduler find the proper volume back end.

Run the following commands to create a deduplicated volume type:

$ openstack volume type create DeduplicatedVolumeType
$ openstack volume type set --property␣
↪→provisioning:type=deduplicated --property deduplicated_support='
↪→<is> True' DeduplicatedVolumeType

– compressed

Volume is thin and compression is enabled. The administrator shall go to the VNX to
configure the system level compression settings. To create a compressed volume, the VNX
Compression license must be activated on VNX, and use compression_support=True to
let Block Storage scheduler find a volume back end. VNX does not support creating snapshots
on a compressed volume.

Run the following commands to create a compressed volume type:

$ openstack volume type create CompressedVolumeType
$ openstack volume type set --property provisioning:type=compressed -
↪→-property compression_support='<is> True' CompressedVolumeType

• Default: thick

Note: provisioning:type replaces the old spec key storagetype:provisioning. The latter one
is obsolete since the Mitaka release.

Storage tiering support

• Key: storagetype:tiering

• Possible values:

– StartHighThenAuto

– Auto

– HighestAvailable

– LowestAvailable

– NoMovement

• Default: StartHighThenAuto

VNX supports fully automated storage tiering which requires the FAST license activated on the VNX.
The OpenStack administrator can use the extra spec key storagetype:tiering to set the tiering policy
of a volume and use the key fast_support='<is> True' to let Block Storage scheduler find a volume
back end which manages a VNX with FAST license activated. Here are the five supported values for the
extra spec key storagetype:tiering:

3.3. Reference 227

Cinder Documentation, Release 20.3.2.dev3

Run the following commands to create a volume type with tiering policy:

$ openstack volume type create ThinVolumeOnAutoTier
$ openstack volume type set --property provisioning:type=thin --property␣
↪→storagetype:tiering=Auto --property fast_support='<is> True'␣
↪→ThinVolumeOnAutoTier

Note: The tiering policy cannot be applied to a deduplicated volume. Tiering policy of the deduplicated
LUN align with the settings of the pool.

FAST cache support

• Key: fast_cache_enabled

• Possible values:

– True

– False

• Default: False

VNX has FAST Cache feature which requires the FAST Cache license activated on the VNX. Volume
will be created on the backend with FAST cache enabled when <is> True is specified.

Pool name

• Key: pool_name

• Possible values: name of the storage pool managed by cinder

• Default: None

If the user wants to create a volume on a certain storage pool in a back end that manages multiple pools,
a volume type with a extra spec specified storage pool should be created first, then the user can use this
volume type to create the volume.

Run the following commands to create the volume type:

$ openstack volume type create HighPerf
$ openstack volume type set --property pool_name=Pool_02_SASFLASH --property␣
↪→volume_backend_name=vnx_41 HighPerf

228 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Obsolete extra specs

Note: DO NOT use the following obsolete extra spec keys:

• storagetype:provisioning

• storagetype:pool

Force detach

The user could use os-force_detach action to detach a volume from all its attached hosts.
For more detail, please refer to https://docs.openstack.org/api-ref/block-storage/v3/?expanded=
force-detach-a-volume-detail#force-detach-a-volume

Advanced features

Snap copy

• Metadata Key: snapcopy

• Possible Values:

– True or true

– False or false

• Default: False

VNX driver supports snap copy which accelerates the process for creating a copied volume.

By default, the driver will use asynchronous migration support, which will start a VNX migration session.
When snap copy is used, driver creates a snapshot and mounts it as a volume for the 2 kinds of operations
which will be instant even for large volumes.

To enable this functionality, append --metadata snapcopy=True when creating cloned volume or
creating volume from snapshot.

$ cinder create --source-volid <source-void> --name "cloned_volume" --
↪→metadata snapcopy=True

Or

$ cinder create --snapshot-id <snapshot-id> --name "vol_from_snapshot" --
↪→metadata snapcopy=True

The newly created volume is a snap copy instead of a full copy. If a full copy is needed, retype or migrate
can be used to convert the snap-copy volume to a full-copy volume which may be time-consuming.

You can determine whether the volume is a snap-copy volume or not by showing its metadata. If the
snapcopy in metadata is True or true, the volume is a snap-copy volume. Otherwise, it is a full-copy
volume.

3.3. Reference 229

https://docs.openstack.org/api-ref/block-storage/v3/?expanded=force-detach-a-volume-detail#force-detach-a-volume
https://docs.openstack.org/api-ref/block-storage/v3/?expanded=force-detach-a-volume-detail#force-detach-a-volume

Cinder Documentation, Release 20.3.2.dev3

$ cinder metadata-show <volume>

Constraints

• The number of snap-copy volumes created from a single source volume is limited to 255 at one
point in time.

• The source volume which has snap-copy volume can not be deleted or migrated.

• snapcopy volume will be change to full-copy volume after host-assisted or storage-assisted migra-
tion.

• snapcopy volume can not be added to consisgroup because of VNX limitation.

Efficient non-disruptive volume backup

The default implementation in Block Storage for non-disruptive volume backup is not efficient since a
cloned volume will be created during backup.

The approach of efficient backup is to create a snapshot for the volume and connect this snapshot (a mount
point in VNX) to the Block Storage host for volume backup. This eliminates migration time involved in
volume clone.

Constraints

• Backup creation for a snap-copy volume is not allowed if the volume status is in-use since snap-
shot cannot be taken from this volume.

Configurable migration rate

VNX cinder driver is leveraging the LUN migration from the VNX. LUN migration is involved in
cloning, migrating, retyping, and creating volume from snapshot. When admin set migrate_rate in
volumes metadata, VNX driver can start migration with specified rate. The available values for the
migrate_rate are high, asap, low and medium.

The following is an example to set migrate_rate to asap:

$ cinder metadata <volume-id> set migrate_rate=asap

After set, any cinder volume operations involving VNX LUN migration will take the value as the migra-
tion rate. To restore the migration rate to default, unset the metadata as following:

$ cinder metadata <volume-id> unset migrate_rate

Note: Do not use the asap migration rate when the system is in production, as the normal host I/O may
be interrupted. Use asap only when the system is offline (free of any host-level I/O).

230 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Replication v2.1 support

Cinder introduces Replication v2.1 support in Mitaka, it supports fail-over and fail-back replication for
specific back end. In VNX cinder driver, MirrorView is used to set up replication for the volume.

To enable this feature, you need to set configuration in cinder.conf as below:

replication_device = backend_id:<secondary VNX serial number>,
san_ip:192.168.1.2,
san_login:admin,
san_password:admin,
naviseccli_path:/opt/Navisphere/bin/naviseccli,
storage_vnx_authentication_type:global,
storage_vnx_security_file_dir:

Currently, only synchronized mode MirrorView is supported, and one volume can only have 1 sec-
ondary storage system. Therefore, you can have only one replication_device presented in driver
configuration section.

To create a replication enabled volume, you need to create a volume type:

$ openstack volume type create replication-type
$ openstack volume type set --property replication_enabled="<is> True"␣
↪→replication-type

And then create volume with above volume type:

$ openstack volume create replication-volume --type replication-type --size 1

Supported operations

• Create volume

• Create cloned volume

• Create volume from snapshot

• Fail-over volume:

$ cinder failover-host --backend_id <secondary VNX serial number>
↪→<hostname>

• Fail-back volume:

$ cinder failover-host --backend_id default <hostname>

Requirements

• 2 VNX systems must be in same domain.

• For iSCSI MirrorView, user needs to setup iSCSI connection before enable replication in Cinder.

• For FC MirrorView, user needs to zone specific FC ports from 2 VNX system together.

• MirrorView Sync enabler(MirrorView/S) installed on both systems.

• Write intent log enabled on both VNX systems.

3.3. Reference 231

Cinder Documentation, Release 20.3.2.dev3

For more information on how to configure, please refer to: MirrorView-Knowledgebook:-Releases-30--
33

Asynchronous migration support

VNX Cinder driver now supports asynchronous migration during volume cloning.

The driver now using asynchronous migration when creating a volume from source as the default cloning
method. The driver will return immediately after the migration session starts on the VNX, which dra-
matically reduces the time before a volume is available for use.

To disable this feature, user needs to do any one of below actions:

• Configure vnx_async_migrate = False for the backend in cinder.conf, then restart Cinder
services.

• Add --metadata async_migrate=False when creating new volume from source.

Be aware, async_migrate in metadata overrides the option vnx_async_migrate when both are set.

Constraints

• Before the migration finishes, snapshots cannot be created from the source volume, which could
affect subsequent clones from the same source volume. The typical affected use case is that creating
volume-2 via cloning volume-1 immediately after creating volume-1 via cloning volume-0. To
achieve so, users are advised to take any one of below actions:

1) wait for the first clone finishing, or

2) create volume-2 via cloning volume-0 instead of volume-1, or

3) create volume-1 with --metadata async_migrate=False.

Best practice

Multipath setup

Enabling multipath volume access is recommended for robust data access. The major configuration
includes:

1. Install multipath-tools, sysfsutils and sg3-utils on the nodes hosting compute
and cinder-volume services. Check the operating system manual for the system dis-
tribution for specific installation steps. For Red Hat based distributions, they should be
device-mapper-multipath, sysfsutils and sg3_utils.

2. Specify use_multipath_for_image_xfer=true in the cinder.conf file for each FC/iSCSI
back end.

3. Specify volume_use_multipath=True in libvirt section of the nova.conf file. This op-
tion is valid for both iSCSI and FC driver. In versions prior to Newton, the option was called
iscsi_use_multipath.

For multipath-tools, here is an EMC recommended sample of /etc/multipath.conf file.

user_friendly_names is not specified in the configuration and thus it will take the default value no.
It is not recommended to set it to yes because it may fail operations such as VM live migration.

232 Chapter 3. For operators

https://support.emc.com/docu32906_MirrorView-Knowledgebook:-Releases-30-%E2%80%93-33---A-Detailed-Review.pdf?language=en_US
https://support.emc.com/docu32906_MirrorView-Knowledgebook:-Releases-30-%E2%80%93-33---A-Detailed-Review.pdf?language=en_US

Cinder Documentation, Release 20.3.2.dev3

blacklist {
Skip the files under /dev that are definitely not FC/iSCSI devices
Different system may need different customization
devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
devnode "^hd[a-z][0-9]*"
devnode "^cciss!c[0-9]d[0-9]*[p[0-9]*]"

Skip LUNZ device from VNX
device {

vendor "DGC"
product "LUNZ"
}

}

defaults {
user_friendly_names no
flush_on_last_del yes

}

devices {
Device attributed for EMC CLARiiON and VNX series ALUA
device {

vendor "DGC"
product ".*"
product_blacklist "LUNZ"
path_grouping_policy group_by_prio
path_selector "round-robin 0"
path_checker emc_clariion
features "1 queue_if_no_path"
hardware_handler "1 alua"
prio alua
failback immediate

}
}

Note: When multipath is used in OpenStack, multipath faulty devices may come out in Nova-Compute
nodes due to different issues (Bug 1336683 is a typical example).

A solution to completely avoid faulty devices has not been found yet. faulty_device_cleanup.py
mitigates this issue when VNX iSCSI storage is used. Cloud administrators can deploy the script in all
Nova-Compute nodes and use a CRON job to run the script on each Nova-Compute node periodically so
that faulty devices will not stay too long. Refer to: VNX faulty device cleanup for detailed usage and the
script.

3.3. Reference 233

https://bugs.launchpad.net/nova/+bug/1336683
https://github.com/emc-openstack/vnx-faulty-device-cleanup

Cinder Documentation, Release 20.3.2.dev3

Restrictions and limitations

iSCSI port cache

EMC VNX iSCSI driver caches the iSCSI ports information, so that the user should restart the
cinder-volume service or wait for seconds (which is configured by periodic_interval in the
cinder.conf file) before any volume attachment operation after changing the iSCSI port configura-
tions. Otherwise the attachment may fail because the old iSCSI port configurations were used.

No extending for volume with snapshots

VNX does not support extending the thick volume which has a snapshot. If the user tries to extend a
volume which has a snapshot, the status of the volume would change to error_extending.

Limitations for deploying cinder on computer node

It is not recommended to deploy the driver on a compute node if cinder upload-to-image --force
True is used against an in-use volume. Otherwise, cinder upload-to-image --force True will
terminate the data access of the vm instance to the volume.

Storage group with host names in VNX

When the driver notices that there is no existing storage group that has the host name as the storage group
name, it will create the storage group and also add the compute nodes or Block Storage nodes registered
initiators into the storage group.

If the driver notices that the storage group already exists, it will assume that the registered initiators have
also been put into it and skip the operations above for better performance.

It is recommended that the storage administrator does not create the storage group manually and instead
relies on the driver for the preparation. If the storage administrator needs to create the storage group
manually for some special requirements, the correct registered initiators should be put into the storage
group as well (otherwise the following volume attaching operations will fail).

EMC storage-assisted volume migration

EMC VNX driver supports storage-assisted volume migration, when the user starts migrating
with cinder migrate --force-host-copy False <volume_id> <host> or cinder migrate
<volume_id> <host>, cinder will try to leverage the VNXs native volume migration functionality.

In following scenarios, VNX storage-assisted volume migration will not be triggered:

• in-use volume migration between back ends with different storage protocol, for example, FC and
iSCSI.

• Volume is to be migrated across arrays.

234 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Appendix

Authenticate by security file

VNX credentials are necessary when the driver connects to the VNX system. Credentials in global,
local and ldap scopes are supported. There are two approaches to provide the credentials.

The recommended one is using the Navisphere CLI security file to provide the credentials which can get
rid of providing the plain text credentials in the configuration file. Following is the instruction on how to
do this.

1. Find out the Linux user id of the cinder-volume processes. Assuming the cinder-volume
service is running by the account cinder.

2. Run su as root user.

3. In /etc/passwd file, change cinder:x:113:120::/var/lib/cinder:/bin/false to
cinder:x:113:120::/var/lib/cinder:/bin/bash (This temporary change is to make step
4 work.)

4. Save the credentials on behalf of cinder user to a security file (assuming the array credentials are
admin/admin in global scope). In the command below, the -secfilepath switch is used to
specify the location to save the security file.

su -l cinder -c \
'/opt/Navisphere/bin/naviseccli -AddUserSecurity -user admin -password␣

↪→admin -scope 0 -secfilepath <location>'

5. Change cinder:x:113:120::/var/lib/cinder:/bin/bash back to
cinder:x:113:120::/var/lib/cinder:/bin/false in /etc/passwd file.

6. Remove the credentials options san_login, san_password and
storage_vnx_authentication_type from cinder.conf file. (normally it is /etc/
cinder/cinder.conf file). Add option storage_vnx_security_file_dir and set its
value to the directory path of your security file generated in the above step. Omit this option if
-secfilepath is not used in the above step.

7. Restart the cinder-volume service to validate the change.

Register FC port with VNX

This configuration is only required when initiator_auto_registration=False.

To access VNX storage, the Compute nodes should be registered on VNX first if initiator auto registration
is not enabled.

To perform Copy Image to Volume and Copy Volume to Image operations, the nodes running the
cinder-volume service (Block Storage nodes) must be registered with the VNX as well.

The steps mentioned below are for the compute nodes. Follow the same steps for the Block Storage nodes
also (The steps can be skipped if initiator auto registration is enabled).

1. Assume 20:00:00:24:FF:48:BA:C2:21:00:00:24:FF:48:BA:C2 is the WWN of a FC ini-
tiator port name of the compute node whose host name and IP are myhost1 and 10.10.61.1.
Register 20:00:00:24:FF:48:BA:C2:21:00:00:24:FF:48:BA:C2 in Unisphere:

3.3. Reference 235

Cinder Documentation, Release 20.3.2.dev3

2. Log in to Unisphere, go to FNM0000000000 > Hosts > Initiators.

3. Refresh and wait until the initiator 20:00:00:24:FF:48:BA:C2:21:00:00:24:FF:48:BA:C2
with SP Port A-1 appears.

4. Click the Register button, select CLARiiON/VNX and enter the host name (which is the output of
the hostname command) and IP address:

• Hostname: myhost1

• IP: 10.10.61.1

• Click Register.

5. Then host 10.10.61.1 will appear under Hosts > Host List as well.

6. Register the wwn with more ports if needed.

Register iSCSI port with VNX

This configuration is only required when initiator_auto_registration=False.

To access VNX storage, the compute nodes should be registered on VNX first if initiator auto registration
is not enabled.

To perform Copy Image to Volume and Copy Volume to Image operations, the nodes running the
cinder-volume service (Block Storage nodes) must be registered with the VNX as well.

The steps mentioned below are for the compute nodes. Follow the same steps for the Block Storage nodes
also (The steps can be skipped if initiator auto registration is enabled).

1. On the compute node with IP address 10.10.61.1 and host name myhost1, execute the following
commands (assuming 10.10.61.35 is the iSCSI target):

1. Start the iSCSI initiator service on the node:

/etc/init.d/open-iscsi start

2. Discover the iSCSI target portals on VNX:

iscsiadm -m discovery -t st -p 10.10.61.35

3. Change directory to /etc/iscsi :

cd /etc/iscsi

4. Find out the iqn of the node:

more initiatorname.iscsi

2. Log in to VNX from the compute node using the target corresponding to the SPA port:

iscsiadm -m node -T iqn.1992-04.com.emc:cx.apm01234567890.a0 -p 10.10.
↪→61.35 -l

3. Assume iqn.1993-08.org.debian:01:1a2b3c4d5f6g is the initiator name of the compute
node. Register iqn.1993-08.org.debian:01:1a2b3c4d5f6g in Unisphere:

236 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

1. Log in to Unisphere, go to FNM0000000000 > Hosts > Initiators.

2. Refresh and wait until the initiator iqn.1993-08.org.debian:01:1a2b3c4d5f6g with
SP Port A-8v0 appears.

3. Click the Register button, select CLARiiON/VNX and enter the host name (which is the output
of the hostname command) and IP address:

• Hostname: myhost1

• IP: 10.10.61.1

• Click Register.

4. Then host 10.10.61.1 will appear under Hosts > Host List as well.

4. Log out iSCSI on the node:

iscsiadm -m node -u

5. Log in to VNX from the compute node using the target corresponding to the SPB port:

iscsiadm -m node -T iqn.1992-04.com.emc:cx.apm01234567890.b8 -p 10.10.
↪→61.36 -l

6. In Unisphere, register the initiator with the SPB port.

7. Log out iSCSI on the node:

iscsiadm -m node -u

8. Register the iqn with more ports if needed.

Dell EMC XtremIO Block Storage driver

The high performance XtremIO All Flash Array (AFA) offers Block Storage services to OpenStack.
Using the driver, OpenStack Block Storage hosts can connect to an XtremIO Storage cluster.

This section explains how to configure and connect the block storage nodes to an XtremIO storage cluster.

Support matrix

XtremIO version 4.x is supported.

Supported operations

• Create, delete, clone, attach, and detach volumes.

• Create and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

3.3. Reference 237

Cinder Documentation, Release 20.3.2.dev3

• Extend a volume.

• Manage and unmanage a volume.

• Manage and unmanage a snapshot.

• Get volume statistics.

• Create, modify, delete, and list consistency groups.

• Create, modify, delete, and list snapshots of consistency groups.

• Create consistency group from consistency group or consistency group snapshot.

• Volume Migration (host assisted)

XtremIO Block Storage driver configuration

Edit the cinder.conf file by adding the configuration below under the [DEFAULT] section of the file
in case of a single back end or under a separate section in case of multiple back ends (for example
[XTREMIO]). The configuration file is usually located under the following path /etc/cinder/cinder.
conf.

Table 22: Description of XtremIO configuration options
Configura-
tion option
= Default
value

Description

xtremio_array_busy_retry_count
= 5

(Integer) Number of retries in case array is busy

xtremio_array_busy_retry_interval
= 5

(Integer) Interval between retries in case array is busy

xtremio_clean_unused_ig
= False

(Boolean) Should the driver remove initiator groups with no volumes after the last
connection was terminated. Since the behavior till now was to leave the IG be, we
default to False (not deleting IGs without connected volumes); setting this parameter
to True will remove any IG after terminating its connection to the last volume.

xtremio_cluster_name
= <>

(String) XMS cluster id in multi-cluster environment

xtremio_ports
= []

(List of String) Allowed ports. Comma separated list of XtremIO iSCSI IPs or FC
WWNs (ex. 58:cc:f0:98:49:22:07:02) to be used. If option is not set all ports are
allowed.

xtremio_volumes_per_glance_cache
= 100

(Integer) Number of volumes created from each cached glance image

For a configuration example, refer to the configuration Configuration example.

238 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

XtremIO driver name

Configure the driver name by setting the following parameter in the cinder.conf file:

• For iSCSI:

volume_driver = cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver

• For Fibre Channel:

volume_driver = cinder.volume.drivers.dell_emc.xtremio.
↪→XtremIOFibreChannelDriver

XtremIO management server (XMS) IP

To retrieve the management IP, use the show-xms CLI command.

Configure the management IP by adding the following parameter:

san_ip = XMS Management IP

XtremIO cluster name

In XtremIO version 4.0, a single XMS can manage multiple cluster back ends. In such setups, the admin-
istrator is required to specify the cluster name (in addition to the XMS IP). Each cluster must be defined
as a separate back end.

To retrieve the cluster name, run the show-clusters CLI command.

Configure the cluster name by adding the following parameter:

xtremio_cluster_name = Cluster-Name

Note: When a single cluster is managed in XtremIO version 4.0, the cluster name is not required.

XtremIO user credentials

OpenStack Block Storage requires an XtremIO XMS user with administrative privileges. XtremIO rec-
ommends creating a dedicated OpenStack user account that holds an administrative user role.

Refer to the XtremIO User Guide for details on user account management.

Create an XMS account using either the XMS GUI or the add-user-account CLI command.

Configure the user credentials by adding the following parameters:

san_login = XMS username
san_password = XMS username password

3.3. Reference 239

Cinder Documentation, Release 20.3.2.dev3

Multiple back ends

Configuring multiple storage back ends enables you to create several back-end storage solutions that serve
the same OpenStack Compute resources.

When a volume is created, the scheduler selects the appropriate back end to handle the request, according
to the specified volume type.

Setting thin provisioning and multipathing parameters

To support thin provisioning and multipathing in the XtremIO Array, the following parameters from the
Nova and Cinder configuration files should be modified as follows:

• Thin Provisioning

All XtremIO volumes are thin provisioned. The default value of 20 should be maintained for the
max_over_subscription_ratio parameter.

The use_cow_images parameter in the nova.conf file should be set to False as follows:

use_cow_images = False

• Multipathing

The use_multipath_for_image_xfer parameter in the cinder.conf file should be set to True
for each backend or in [backend_defaults] section as a common configuration for all backends.

use_multipath_for_image_xfer = True

Image service optimization

Limit the number of copies (XtremIO snapshots) taken from each image cache.

xtremio_volumes_per_glance_cache = 100

The default value is 100. A value of 0 ignores the limit and defers to the array maximum as the effective
limit.

SSL certification

To enable SSL certificate validation, modify the following option in the cinder.conf file:

driver_ssl_cert_verify = true

By default, SSL certificate validation is disabled.

To specify a non-default path to CA_Bundle file or directory with certificates of trusted CAs:

driver_ssl_cert_path = Certificate path

240 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Configuring CHAP

The XtremIO Block Storage driver supports CHAP initiator authentication and discovery.

If CHAP initiator authentication is required, set the CHAP Authentication mode to initiator.

To set the CHAP initiator mode using CLI, run the following XMCLI command:

$ modify-chap chap-authentication-mode=initiator

If CHAP initiator discovery is required, set the CHAP discovery mode to initiator.

To set the CHAP initiator discovery mode using CLI, run the following XMCLI command:

$ modify-chap chap-discovery-mode=initiator

The CHAP initiator modes can also be set via the XMS GUI.

Refer to XtremIO User Guide for details on CHAP configuration via GUI and CLI.

The CHAP initiator authentication and discovery credentials (username and password) are generated
automatically by the Block Storage driver. Therefore, there is no need to configure the initial CHAP
credentials manually in XMS.

Configuring ports filtering

The XtremIO Block Storage driver supports ports filtering to define a list of iSCSI IP-addresses or FC
WWNs which will be used to attach volumes. If option is not set all ports are allowed.

xtremio_ports = iSCSI IPs or FC WWNs

Configuration example

You can update the cinder.conf file by editing the necessary parameters as follows:

[Default]
enabled_backends = XtremIO

[XtremIO]
volume_driver = cinder.volume.drivers.dell_emc.xtremio.
↪→XtremIOFibreChannelDriver
san_ip = XMS_IP
xtremio_cluster_name = Cluster01
xtremio_ports = 21:00:00:24:ff:57:b2:36,21:00:00:24:ff:57:b2:55
san_login = XMS_USER
san_password = XMS_PASSWD
volume_backend_name = XtremIOAFA

3.3. Reference 241

Cinder Documentation, Release 20.3.2.dev3

Dell EMC SC Series Fibre Channel and iSCSI drivers

The Dell EMC Storage Center volume driver interacts with configured Storage Center arrays.

The Dell EMC Storage Center driver manages a Storage Center array via the Dell EMC Storage Manager
(DSM) Data Collector or by directly connecting to the Storage Center at the cost of replication and Live
Volume functionality. Also note that the directly connecting to the Storage Center is only supported with
Storage Center OS 7.1.1 or later. Any version of Storage Center OS supported by DSM is supported if
connecting via the Data Collector.

Driver configuration settings and Storage Center options are defined in the cinder.conf file.

Prerequisites:

• Storage Center OS version 7.1.1 or later and OpenStack Ocata or later must be used if connecting
directly to the Storage Center.

• Dell EMC Storage Manager 2015 R1 or later if connecting through DSM.

Supported operations

The Dell EMC Storage Center volume driver provides the following Cinder volume operations:

• Create, delete, attach (map), and detach (unmap) volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Create, delete, list and update a consistency group.

• Create, delete, and list consistency group snapshots.

• Manage an existing volume.

• Replication (Requires DSM.)

• Failover-host for replicated back ends. (Requires DSM.)

• Create a replication using Live Volume. (Requires DSM.)

Extra spec options

Volume type extra specs can be used to enable a variety of Dell EMC Storage Center options. Selecting
Storage Profiles, Replay Profiles, enabling replication, replication options including Live Volume and
Active Replay replication. (Replication options are available when connected via DSM.)

Storage Profiles control how Storage Center manages volume data. For a given volume, the selected
Storage Profile dictates which disk tier accepts initial writes, as well as how data progression moves data
between tiers to balance performance and cost. Predefined Storage Profiles are the most effective way to
manage data in Storage Center.

242 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

By default, if no Storage Profile is specified in the volume extra specs, the default Storage Pro-
file for the user account configured for the Block Storage driver is used. The extra spec key
storagetype:storageprofilewith the value of the name of the Storage Profile on the Storage Center
can be set to allow to use Storage Profiles other than the default.

For ease of use from the command line, spaces in Storage Profile names are ignored. As an example,
here is how to define two volume types using the High Priority and Low Priority Storage Profiles:

$ openstack volume type create "GoldVolumeType"
$ openstack volume type set --property␣
↪→storagetype:storageprofile=highpriority "GoldVolumeType"
$ openstack volume type create "BronzeVolumeType"
$ openstack volume type set --property storagetype:storageprofile=lowpriority
↪→"BronzeVolumeType"

Replay Profiles control how often the Storage Center takes a replay of a given volume and how long those
replays are kept. The default profile is the daily profile that sets the replay to occur once a day and to
persist for one week.

The extra spec key storagetype:replayprofiles with the value of the name of the Replay Profile
or profiles on the Storage Center can be set to allow to use Replay Profiles other than the default daily
profile.

As an example, here is how to define a volume type using the hourly Replay Profile and another speci-
fying both hourly and the default daily profile:

$ openstack volume type create "HourlyType"
$ openstack volume type set --property storagetype:replayprofile=hourly
↪→"HourlyType"
$ openstack volume type create "HourlyAndDailyType"
$ openstack volume type set --property storagetype:replayprofiles=hourly,
↪→daily "HourlyAndDailyType"

Note the comma separated string for the HourlyAndDailyType.

Replication for a given volume type is enabled via the extra spec replication_enabled.

To create a volume type that specifies only replication enabled back ends:

$ openstack volume type create "ReplicationType"
$ openstack volume type set --property replication_enabled='<is> True'
↪→"ReplicationType"

Extra specs can be used to configure replication. In addition to the Replay Profiles above,
replication:activereplay can be set to enable replication of the volumes active replay. And the
replication type can be changed to synchronous via the replication_type extra spec can be set.

To create a volume type that enables replication of the active replay:

$ openstack volume type create "ReplicationType"
$ openstack volume type key --property replication_enabled='<is> True'
↪→"ReplicationType"
$ openstack volume type key --property replication:activereplay='<is> True'
↪→"ReplicationType"

3.3. Reference 243

Cinder Documentation, Release 20.3.2.dev3

To create a volume type that enables synchronous replication :

$ openstack volume type create "ReplicationType"
$ openstack volume type key --property replication_enabled='<is> True'
↪→"ReplicationType"
$ openstack volume type key --property replication_type='<is> sync'
↪→"ReplicationType"

To create a volume type that enables replication using Live Volume:

$ openstack volume type create "ReplicationType"
$ openstack volume type key --property replication_enabled='<is> True'
↪→"ReplicationType"
$ openstack volume type key --property replication:livevolume='<is> True'
↪→"ReplicationType"

If QOS options are enabled on the Storage Center they can be enabled via extra specs. The name of the
Volume QOS can be specified via the storagetype:volumeqos extra spec. Likewise the name of the
Group QOS to use can be specified via the storagetype:groupqos extra spec. Volumes created with
these extra specs set will be added to the specified QOS groups.

To create a volume type that sets both Volume and Group QOS:

$ openstack volume type create "StorageCenterQOS"
$ openstack volume type key --property 'storagetype:volumeqos'='unlimited'
↪→"StorageCenterQOS"
$ openstack volume type key --property 'storagetype:groupqos'='limited'
↪→"StorageCenterQOS"

Data reduction profiles can be specified in the storagetype:datareductionprofile extra spec.
Available options are None, Compression, and Deduplication. Note that not all options are available
on every Storage Center.

To create volume types that support no compression, compression, and deduplication and compression
respectively:

$ openstack volume type create "NoCompressionType"
$ openstack volume type key --property 'storagetype:datareductionprofile'=
↪→'None' "NoCompressionType"
$ openstack volume type create "CompressedType"
$ openstack volume type key --property 'storagetype:datareductionprofile'=
↪→'Compression' "CompressedType"
$ openstack volume type create "DedupType"
$ openstack volume type key --property 'storagetype:datareductionprofile'=
↪→'Deduplication' "DedupType"

Note: The default is no compression.

244 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

iSCSI configuration

Use the following instructions to update the configuration file for iSCSI:

default_volume_type = delliscsi
enabled_backends = delliscsi

[delliscsi]
Name to give this storage back-end
volume_backend_name = delliscsi
The iSCSI driver to load
volume_driver = cinder.volume.drivers.dell_emc.sc.storagecenter_iscsi.
↪→SCISCSIDriver
IP address of the DSM or the Storage Center if attaching directly.
san_ip = 172.23.8.101
DSM user name
san_login = Admin
DSM password
san_password = secret
The Storage Center serial number to use
dell_sc_ssn = 64702

==Optional settings==

The DSM API port
dell_sc_api_port = 3033
Server folder to place new server definitions
dell_sc_server_folder = devstacksrv
Volume folder to place created volumes
dell_sc_volume_folder = devstackvol/Cinder

Fibre Channel configuration

Use the following instructions to update the configuration file for fibre channel:

default_volume_type = dellfc
enabled_backends = dellfc

[dellfc]
Name to give this storage back-end
volume_backend_name = dellfc
The FC driver to load
volume_driver = cinder.volume.drivers.dell_emc.sc.storagecenter_fc.SCFCDriver

IP address of the DSM or the Storage Center if attaching directly.
san_ip = 172.23.8.101
DSM user name
san_login = Admin
DSM password

(continues on next page)

3.3. Reference 245

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

san_password = secret
The Storage Center serial number to use
dell_sc_ssn = 64702

==Optional settings==

The DSM API port
dell_sc_api_port = 3033
Server folder to place new server definitions
dell_sc_server_folder = devstacksrv
Volume folder to place created volumes
dell_sc_volume_folder = devstackvol/Cinder

Dual DSM

It is possible to specify a secondary DSM to use in case the primary DSM fails.

Configuration is done through the cinder.conf. Both DSMs have to be configured to manage the same
set of Storage Centers for this backend. That means the dell_sc_ssn and any Storage Centers used for
replication or Live Volume.

Add network and credential information to the backend to enable Dual DSM.

[dell]
The IP address and port of the secondary DSM.
secondary_san_ip = 192.168.0.102
secondary_sc_api_port = 3033
Specify credentials for the secondary DSM.
secondary_san_login = Admin
secondary_san_password = secret

The driver will use the primary until a failure. At that point it will attempt to use the secondary. It will
continue to use the secondary until the volume service is restarted or the secondary fails at which point
it will attempt to use the primary.

Note: Requires two DSM Data Collectors.

Replication configuration

Add the following to the back-end specification to specify another Storage Center to replicate to.

[dell]
replication_device = target_device_id: 65495, qosnode: cinderqos

The target_device_id is the SSN of the remote Storage Center and the qosnode is the QoS Node
setup between the two Storage Centers.

Note that more than one replication_device line can be added. This will slow things down, however.

A volume is only replicated if the volume is of a volume-type that has the extra spec
replication_enabled set to <is> True.

246 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Warning: replication_device requires DSM. If this is on a backend that is directly connected to the Storage
Center the driver will not load as it is unable to meet the replication requirement.

Replication notes

This driver supports both standard replication and Live Volume (if supported and licensed). The main
difference is that a VM attached to a Live Volume is mapped to both Storage Centers. In the case of
a failure of the primary Live Volume still requires a failover-host to move control of the volume to the
second controller.

Existing mappings should work and not require the instance to be remapped but it might need to be
rebooted.

Live Volume is more resource intensive than replication. One should be sure to plan accordingly.

Failback

The failover-host command is designed for the case where the primary system is not coming back. If it
has been executed and the primary has been restored it is possible to attempt a failback.

Simply specify default as the backend_id.

$ cinder failover-host cinder@delliscsi --backend_id default

Non trivial heavy lifting is done by this command. It attempts to recover as best it can but if things have
diverged too far it can only do so much. It is also a one time only command so do not reboot or restart
the service in the middle of it.

Failover and failback are significant operations under OpenStack Cinder. Be sure to consult with support
before attempting.

Server type configuration

This option allows one to set a default Server OS type to use when creating a server definition on the Dell
EMC Storage Center.

When attaching a volume to a node the Dell EMC Storage Center driver creates a server definition on the
storage array. This definition includes a Server OS type. The type used by the Dell EMC Storage Center
cinder driver is Red Hat Linux 6.x. This is a modern operating system definition that supports all the
features of an OpenStack node.

Add the following to the back-end specification to specify the Server OS to use when creating a server
definition. The server type used must come from the drop down list in the DSM.

[dell]
dell_server_os = 'Red Hat Linux 7.x'

Note that this server definition is created once. Changing this setting after the fact will not change an
existing definition. The selected Server OS does not have to match the actual OS used on the node.

3.3. Reference 247

Cinder Documentation, Release 20.3.2.dev3

Excluding a domain

This option excludes a list of Storage Center ISCSI fault domains from the ISCSI properties returned by
the initialize_connection call. This only applies to the ISCSI driver.

Add the excluded_domain_ips option into the backend config for several fault domains to be excluded.
This option takes a comma separated list of Target IP addresses listed under the fault domain. Older
versions of DSM (EM) may list this as the Well Known IP Address.

Note that the included_domain_ips takes precedance over excluded_domain_ips. When
included_domain_ips is not an empty list, the option excluded_domain_ips is ignored.

Add the following to the back-end specification to exclude the domains at 172.20.25.15 and 172.20.26.15.

[dell]
excluded_domain_ips=172.20.25.15, 172.20.26.15, 0:0:0:0:0:ffff:c0a8:15

Including domains

This option includes or will whitelist a list of Storage Center ISCSI fault domains from the ISCSI prop-
erties returned by the initialize_connection call. This only applies to the ISCSI driver.

Add the included_domain_ips option into the backend config for several default domains to be in-
cluded or whitelisted. This option takes a comma separated list of Target IP addresses listed under the
fault domain. Older versions of DSM (EM) may list this as the Well Known IP Address.

Note that the included_domain_ips takes precedance over excluded_domain_ips. When
included_domain_ips is not an empty list, the option excluded_domain_ips is ignored.

Add the following to the back-end specification to include or whitelist the domains at 172.20.25.15 and
172.20.26.15.

[dell]
included_domain_ips=172.20.25.15, 172.20.26.15, 0:0:0:0:0:ffff:c0a8:15

Setting Dell EMC SC REST API timeouts

The user can specify timeouts for Dell EMC SC REST API calls.

To set the timeout for ASYNC REST API calls in seconds.

[dell]
dell_api_async_rest_timeout=15

To set the timeout for SYNC REST API calls in seconds.

[dell]
dell_api_sync_rest_timeout=30

Generally these should not be set without guidance from Dell EMC support.

248 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Driver options

The following table contains the configuration options specific to the Dell EMC Storage Center volume
driver.

Table 23: Description of SC Series configuration options
Configuration option =
Default value

Description

dell_api_async_rest_timeout
= 15

(Integer) Dell SC API async call default timeout in seconds.

dell_api_sync_rest_timeout
= 30

(Integer) Dell SC API sync call default timeout in seconds.

dell_sc_api_port =
3033

(Port(min=0, max=65535)) Dell API port

dell_sc_server_folder
= openstack

(String) Name of the server folder to use on the Storage Center

dell_sc_ssn = 64702 (Integer) Storage Center System Serial Number
dell_sc_verify_cert =
False

(Boolean) Enable HTTPS SC certificate verification

dell_sc_volume_folder
= openstack

(String) Name of the volume folder to use on the Storage Center

dell_server_os = Red
Hat Linux 6.x

(String) Server OS type to use when creating a new server on the Storage
Center.

excluded_domain_ips =
[]

(List of IPAddress) Comma separated Fault Domain IPs to be excluded
from iSCSI returns.

included_domain_ips =
[]

(List of IPAddress) Comma separated Fault Domain IPs to be included
from iSCSI returns.

san_api_port = None (Port(min=0, max=65535)) Port to use to access the SAN API
san_clustername = <> (String) Cluster name to use for creating volumes
san_ip = <> (String) IP address of SAN controller
san_is_local = False (Boolean) Execute commands locally instead of over SSH; use if the

volume service is running on the SAN device
san_login = admin (String) Username for SAN controller
san_password = <> (String) Password for SAN controller
san_private_key = <> (String) Filename of private key to use for SSH authentication
san_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use with SAN
san_thin_provision =
True

(Boolean) Use thin provisioning for SAN volumes?

secondary_san_ip = <> (String) IP address of secondary DSM controller
secondary_san_login =
Admin

(String) Secondary DSM user name

secondary_san_password
= <>

(String) Secondary DSM user password name

secondary_sc_api_port
= 3033

(Port(min=0, max=65535)) Secondary Dell API port

ssh_conn_timeout = 30 (Integer) SSH connection timeout in seconds
ssh_max_pool_conn = 5 (Integer) Maximum ssh connections in the pool
ssh_min_pool_conn = 1 (Integer) Minimum ssh connections in the pool
excluded_domain_ip =
None

(IPAddress) DEPRECATED: Fault Domain IP to be excluded from
iSCSI returns. DEPRECATED

3.3. Reference 249

Cinder Documentation, Release 20.3.2.dev3

Fujitsu ETERNUS DX driver

Fujitsu ETERNUS DX driver provides FC and iSCSI support for ETERNUS DX S3 series.

The driver performs volume operations by communicating with ETERNUS DX. It uses a CIM client in
Python called PyWBEM to perform CIM operations over HTTP.

You can specify RAID Group and Thin Provisioning Pool (TPP) in ETERNUS DX as a storage pool.

System requirements

Supported storages:

• ETERNUS DX60 S3

• ETERNUS DX100 S3/DX200 S3

• ETERNUS DX500 S3/DX600 S3

• ETERNUS DX8700 S3/DX8900 S3

• ETERNUS DX200F

Requirements:

• Firmware version V10L30 or later is required.

• The multipath environment with ETERNUS Multipath Driver is unsupported.

• An Advanced Copy Feature license is required to create a snapshot and a clone.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume. (*1)

• Get volume statistics.

(*1): It is executable only when you use TPP as a storage pool.

250 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Preparation

Package installation

Install the python-pywbem package for your distribution.

ETERNUS DX setup

Perform the following steps using ETERNUS Web GUI or ETERNUS CLI.

Note:

• These following operations require an account that has the Admin role.

• For detailed operations, refer to ETERNUS Web GUI Users Guide or ETERNUS CLI Users Guide
for ETERNUS DX S3 series.

1. Create an account for communication with cinder controller.

2. Enable the SMI-S of ETERNUS DX.

3. Register an Advanced Copy Feature license and configure copy table size.

4. Create a storage pool for volumes.

5. (Optional) If you want to create snapshots on a different storage pool for volumes, create a storage
pool for snapshots.

6. Create Snap Data Pool Volume (SDPV) to enable Snap Data Pool (SDP) for create a snapshot.

7. Configure storage ports used for OpenStack.

• Set those storage ports to CA mode.

• Enable the host-affinity settings of those storage ports.

(ETERNUS CLI command for enabling host-affinity settings):

CLI> set fc-parameters -host-affinity enable -port <CM#><CA#><Port#>
CLI> set iscsi-parameters -host-affinity enable -port <CM#><CA#><Port
↪→#>

8. Ensure LAN connection between cinder controller and MNT port of ETERNUS DX and SAN
connection between Compute nodes and CA ports of ETERNUS DX.

3.3. Reference 251

Cinder Documentation, Release 20.3.2.dev3

Configuration

1. Add the following entries to /etc/cinder/cinder.conf:

FC entries:

volume_driver = cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_fc.
↪→FJDXFCDriver
cinder_eternus_config_file = /etc/cinder/eternus_dx.xml

iSCSI entries:

volume_driver = cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_iscsi.
↪→FJDXISCSIDriver
cinder_eternus_config_file = /etc/cinder/eternus_dx.xml

If there is no description about cinder_eternus_config_file, then the parameter is set to
default value /etc/cinder/cinder_fujitsu_eternus_dx.xml.

2. Create a driver configuration file.

Create a driver configuration file in the file path specified as cinder_eternus_config_file in
cinder.conf, and add parameters to the file as below:

FC configuration:

<?xml version='1.0' encoding='UTF-8'?>
<FUJITSU>
<EternusIP>0.0.0.0</EternusIP>
<EternusPort>5988</EternusPort>
<EternusUser>smisuser</EternusUser>
<EternusPassword>smispassword</EternusPassword>
<EternusPool>raid5_0001</EternusPool>
<EternusPool>tpp_0001</EternusPool>
<EternusPool>raid_0002</EternusPool>
<EternusSnapPool>raid5_0001</EternusSnapPool>
</FUJITSU>

iSCSI configuration:

<?xml version='1.0' encoding='UTF-8'?>
<FUJITSU>
<EternusIP>0.0.0.0</EternusIP>
<EternusPort>5988</EternusPort>
<EternusUser>smisuser</EternusUser>
<EternusPassword>smispassword</EternusPassword>
<EternusPool>raid5_0001</EternusPool>
<EternusPool>tpp_0001</EternusPool>
<EternusPool>raid_0002</EternusPool>
<EternusSnapPool>raid5_0001</EternusSnapPool>
<EternusISCSIIP>1.1.1.1</EternusISCSIIP>
<EternusISCSIIP>1.1.1.2</EternusISCSIIP>
<EternusISCSIIP>1.1.1.3</EternusISCSIIP>

(continues on next page)

252 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

<EternusISCSIIP>1.1.1.4</EternusISCSIIP>
</FUJITSU>

Where:

EternusIP IP address for the SMI-S connection of the ETRENUS DX.

Enter the IP address of MNT port of the ETERNUS DX.

EternusPort Port number for the SMI-S connection port of the ETERNUS DX.

EternusUser User name for the SMI-S connection of the ETERNUS DX.

EternusPassword Password for the SMI-S connection of the ETERNUS DX.

EternusPool (Multiple setting allowed) Storage pool name for volumes.

Enter RAID Group name or TPP name in the ETERNUS DX.

EternusSnapPool Storage pool name for snapshots.

Enter RAID Group name in the ETERNUS DX.

EternusISCSIIP (Multiple setting allowed) iSCSI connection IP address of the ETERNUS
DX.

Note:

• For EternusSnapPool, you can specify only RAID Group name and cannot specify TPP
name.

• You can specify the same RAID Group name for EternusPool and EternusSnapPool if
you create volumes and snapshots on a same storage pool.

• For EternusPool, when multiple pools are specified, cinder-scheduler will select one from
multiple pools to create the volume.

Configuration example

1. Edit cinder.conf:

[DEFAULT]
enabled_backends = DXFC, DXISCSI

[DXFC]
volume_driver = cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_fc.
↪→FJDXFCDriver
cinder_eternus_config_file = /etc/cinder/fc.xml
volume_backend_name = FC

[DXISCSI]
volume_driver = cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_iscsi.
↪→FJDXISCSIDriver

(continues on next page)

3.3. Reference 253

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

cinder_eternus_config_file = /etc/cinder/iscsi.xml
volume_backend_name = ISCSI

2. Create the driver configuration files fc.xml and iscsi.xml.

3. Create a volume type and set extra specs to the type:

$ openstack volume type create DX_FC
$ openstack volume type set --property volume_backend_name=FC DX_FX
$ openstack volume type create DX_ISCSI
$ openstack volume type set --property volume_backend_name=ISCSI DX_ISCSI

By issuing these commands, the volume type DX_FC is associated with the FC, and the type
DX_ISCSI is associated with the ISCSI.

Hedvig Volume Driver

Hedvig provides software-defined storage for enterprises building private, hybrid, or multi-cloud envi-
ronments. Hedvigs patented Universal Data Plane technology forms a distributed, scale-out cluster that
transforms commodity servers or cloud computing into a unified data fabric.

The Hedvig Cinder Driver interacts with a configured backend Hedvig Cluster using REST APIs.

Using the Hedvig Volume Driver

With the Hedvig Volume Driver for OpenStack, you can :

• Integrate public and private clouds: Build a unified hybrid environment to easily migrate to or
from your data center and public clouds.

• Set granular virtual disk policies: Assign enterprise-class features on a per volume basis to best
fit your application requirements.

• Connect to any compute environment: Use with any hypervisor, application, or bare-metal sys-
tem.

• Grow seamlessly with an elastic cluster: Scale storage performance and capacity on-the-fly
with off-the-shelf x86 servers.

• Deliver predictable performance: Receive consistent high-IOPS performance for demanding
applications through massive parallelism, dedicated flash, and edge cache configurations.

Requirement

Hedvig Volume Driver, version 1.0.0 and later, supports Hedvig release 3.0 and later.

254 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Supported operations

Hedvig supports the core features of OpenStack Cinder:

• Create and delete volumes

• Attach and detach volumes

• Create and delete snapshots

• Create volume from snapshot

• Get volume stats

• Copy image to volume

• Copy volume to image

• Clone volume

• Extend volume

• Enable deduplication, encryption, cache, compression, custom replication policy on a volume level
using volume-type extra-specs

Hedvig Volume Driver configuration

The Hedvig Volume Driver can be configured by editing the cinder.conf file located in the /etc/cinder/
directory.

[DEFAULT]
enabled_backends=hedvig

[HEDVIG_BACKEND_NAME]
volume_driver=cinder.volume.drivers.hedvig.hedvig_cinder.HedvigISCSIDriver
san_ip=<Comma-separated list of HEDVIG_IP/HOSTNAME of the cluster nodes>
san_login=HEDVIG_USER
san_password=HEDVIG_PASSWORD
san_clustername=HEDVIG_CLUSTER

Run the following commands on the OpenStack Cinder Node to create a Volume Type for Hedvig:

cinder type-create HEDVIG_VOLUME_TYPE
cinder type-key HEDVIG_VOLUME_TYPE set volume_backend_name=HEDVIG_BACKEND_
↪→NAME

This section contains definitions of the terms used above.

HEDVIG_IP/HOSTNAME The IP address or hostnames of the Hedvig Storage Cluster Nodes

HEDVIG_USER Username to login to the Hedvig Cluster with minimum super user (admin) privi-
lege

HEDVIG_PASSWORD Password to login to the Hedvig Cluster

HEDVIG_CLUSTER Name of the Hedvig Cluster

3.3. Reference 255

Cinder Documentation, Release 20.3.2.dev3

Note: Restart the cinder-volume service after updating the cinder.conf file to apply the changes
and to initialize the Hedvig Volume Driver.

Hedvig QoS Spec parameters and values

• dedup_enable true/false

• compressed_enable true/false

• cache_enable true/false

• replication_factor 1-6

• replication_policy Agnostic/RackAware/DataCenterAware

• replication_policy_info comma-separated list of data center names (applies only to a replica-
tion_policy of DataCenterAware)

• disk_residence Flash/HDD

• encryption true/false

Creating a Hedvig Cinder Volume with custom attributes (QoS Specs)

1. Create a QoS Spec with the list of attributes that you want to associate with a volume. For example,
to create a Cinder Volume with deduplication enabled, create a QoS Spec called dedup_enable with
dedup_enable=true

2. Create a new volume type and associate this QoS Spec with it, OR associate the QoS Spec with an
existing volume type.

3. Every Cinder Volume that you create of the above volume type will have deduplication enabled.

4. If you do create a new volume type, make sure to add the key volume_backend_name so OpenStack
knows that the Hedvig Volume Driver handles all requests for this volume.

Hitachi block storage driver

Hitachi block storage driver provides Fibre Channel and iSCSI support for Hitachi VSP storages.

System requirements

Supported storages:

256 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Storage model Firmware version
VSP E990, 93-01-01 or later
VSP F350, F370, F700, F900
VSP G350, G370, G700, G900

88-01-04 or later

VSP F400, F600, F800
VSP G200, G400, G600, G800

83-04-43 or later

VSP N400, N600, N800 83-06-01 or later
VSP 5100, 5500, 5100H, 5500H 90-01-41 or later
VSP F1500
VSP G1000, VSP G1500

80-05-43 or later

Required storage licenses:

• Hitachi Storage Virtualization Operating System (SVOS)

– Hitachi LUN Manager

– Hitachi Dynamic Provisioning

• Hitachi Local Replication (Hitachi Thin Image)

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Create, list, update, and delete consistency groups.

• Create, list, and delete consistency group snapshots.

• Copy a volume to an image.

• Copy an image to a volume.

• Clone a volume.

• Extend a volume.

• Migrate a volume.

• Get volume statistics.

• Efficient non-disruptive volume backup.

• Manage and unmanage a volume.

• Attach a volume to multiple instances at once (multi-attach).

• Revert a volume to a snapshot.

Note: The volume having snapshots cannot be extended in this driver.

3.3. Reference 257

Cinder Documentation, Release 20.3.2.dev3

Configuration

Set up Hitachi storage

You need to specify settings as described below for storage systems. For details about each setting, see
the users guide of the storage systems.

1. User accounts

Create a storage device account belonging to the Administrator User Group.

2. DP Pool

Create a DP pool that is used by the driver.

3. Ports

Enable Port Security for the ports used by the driver.

Set up Hitachi storage volume driver

Set the volume driver to Hitachi block storage driver by setting the volume_driver option in the cin-
der.conf file as follows:

If you use Fibre Channel:

[hitachi_vsp]
volume_driver = cinder.volume.drivers.hitachi.hbsd_fc.HBSDFCDriver
volume_backend_name = hitachi_vsp
san_ip = 1.2.3.4
san_login = hitachiuser
san_password = password
hitachi_storage_id = 123456789012
hitachi_pool = pool0

If you use iSCSI:

[hitachi_vsp]
volume_driver = cinder.volume.drivers.hitachi.hbsd_iscsi.HBSDISCSIDriver
volume_backend_name = hitachi_vsp
san_ip = 1.2.3.4
san_login = hitachiuser
san_password = password
hitachi_storage_id = 123456789012
hitachi_pool = pool0

This table shows configuration options for Hitachi block storage driver.

Table 24: Description of Hitachi block storage driver configuration
options

Configuration option = Default value Description
hitachi_async_copy_check_interval = 10 (Integer(min=1, max=600)) Interval in seconds to check asynchronous copying status during a copy pair deletion or data restoration.

continues on next page

258 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 24 – continued from previous page
Configuration option = Default value Description
hitachi_compute_target_ports = [] (List of String) IDs of the storage ports used to attach volumes to compute nodes. To specify multiple ports, connect them by commas (e.g. CL1-A,CL2-A).
hitachi_copy_check_interval = 3 (Integer(min=1, max=600)) Interval in seconds to check copying status during a volume copy.
hitachi_copy_speed = 3 (Integer(min=1, max=15)) Copy speed of storage system. 1 or 2 indicates low speed, 3 indicates middle speed, and a value between 4 and 15 indicates high speed.
hitachi_discard_zero_page = True (Boolean) Enable or disable zero page reclamation in a DP-VOL.
hitachi_exec_retry_interval = 5 (Integer) Retry interval in seconds for REST API execution.
hitachi_extend_timeout = 600 (Integer) Maximum wait time in seconds for a volume extention to complete.
hitachi_group_create = False (Boolean) If True, the driver will create host groups or iSCSI targets on storage ports as needed.
hitachi_group_delete = False (Boolean) If True, the driver will delete host groups or iSCSI targets on storage ports as needed.
hitachi_host_mode_options = [] (List of Integer) Host mode option for host group or iSCSI target.
hitachi_ldev_range = None (String) Range of the LDEV numbers in the format of xxxx-yyyy that can be used by the driver. Values can be in decimal format (e.g. 1000) or in colon-separated hexadecimal format (e.g. 00:03:E8).
hitachi_lock_timeout = 7200 (Integer) Maximum wait time in seconds for storage to be logined or unlocked.
hitachi_lun_retry_interval = 1 (Integer) Retry interval in seconds for REST API adding a LUN mapping to the server.
hitachi_lun_timeout = 50 (Integer) Maximum wait time in seconds for adding a LUN mapping to the server.
hitachi_pool = None (String) Pool number or pool name of the DP pool.
hitachi_rest_another_ldev_mapped_retry_timeout = 600 (Integer) Retry time in seconds when new LUN allocation request fails.
hitachi_rest_connect_timeout = 30 (Integer) Maximum wait time in seconds for connecting to REST API session.
hitachi_rest_disable_io_wait = True (Boolean) This option will allow detaching volume immediately. If set False, storage may take few minutes to detach volume after I/O.
hitachi_rest_get_api_response_timeout = 1800 (Integer) Maximum wait time in seconds for a response against sync methods, for example GET
hitachi_rest_job_api_response_timeout = 1800 (Integer) Maximum wait time in seconds for a response against async methods from REST API, for example PUT and DELETE.
hitachi_rest_keep_session_loop_interval = 180 (Integer) Loop interval in seconds for keeping REST API session.
hitachi_rest_server_busy_timeout = 7200 (Integer) Maximum wait time in seconds when REST API returns busy.
hitachi_rest_tcp_keepalive = True (Boolean) Enables or disables use of REST API tcp keepalive
hitachi_rest_tcp_keepcnt = 4 (Integer) Maximum number of transmissions for TCP keepalive packet.
hitachi_rest_tcp_keepidle = 60 (Integer) Wait time in seconds for sending a first TCP keepalive packet.
hitachi_rest_tcp_keepintvl = 15 (Integer) Interval of transmissions in seconds for TCP keepalive packet.
hitachi_rest_timeout = 30 (Integer) Maximum wait time in seconds for each REST API request.
hitachi_restore_timeout = 86400 (Integer) Maximum wait time in seconds for the restore operation to complete.
hitachi_snap_pool = None (String) Pool number or pool name of the snapshot pool.
hitachi_state_transition_timeout = 900 (Integer) Maximum wait time in seconds for a volume transition to complete.
hitachi_storage_id = None (String) Product number of the storage system.
hitachi_target_ports = [] (List of String) IDs of the storage ports used to attach volumes to the controller node. To specify multiple ports, connect them by commas (e.g. CL1-A,CL2-A).

Required options

• san_ip IP address of SAN controller

• san_login Username for SAN controller

• san_password Password for SAN controller

• hitachi_storage_id Product number of the storage system.

• hitachi_pool Pool number or pool name of the DP pool.

3.3. Reference 259

Cinder Documentation, Release 20.3.2.dev3

HPE MSA Fibre Channel and iSCSI drivers

The HPMSAFCDriver and HPMSAISCSIDriver Cinder drivers allow the HPE MSA 2060, 1060, 2050,
1050, 2040, and 1040 arrays to be used for Block Storage in OpenStack deployments.

System requirements

To use the HPMSA drivers, the following are required:

• HPE MSA 2060, 1060, 2050, 1050, 2040 or 1040 array with:

– iSCSI or FC host interfaces

– G22x, V270 or I100 firmware or later

• Network connectivity between the OpenStack host and the array management interfaces

• HTTPS or HTTP must be enabled on the array

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Migrate a volume with back-end assistance.

• Retype a volume.

• Manage and unmanage a volume.

Configuring the array

1. Verify that the array can be managed using an HTTPS connection. HTTP can also be used if
hpmsa_api_protocol=http is placed into the appropriate sections of the cinder.conf file,
but this option is deprecated and will be removed in a future release.

Confirm that virtual pools A and B are present if you plan to use virtual pools for OpenStack
storage.

If you plan to use vdisks instead of virtual pools, create or identify one or more vdisks to be used
for OpenStack storage; typically this will mean creating or setting aside one disk group for each of
the A and B controllers.

2. Edit the cinder.conf file to define a storage back-end entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in key=value format.

260 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• The hpmsa_pool_name value specifies the name of the storage pool or vdisk on the array.

• The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

• The rest of the options will be repeated for each storage pool in a given array:

– volume_driver specifies the Cinder driver name.

– san_ip specifies the IP addresses or host names of the arrays management controllers.

– san_login and san_password specify the username and password of an array user
account with manage privileges.

– driver_use_ssl should be set to true to enable use of the HTTPS protocol.

– hpmsa_iscsi_ips specifies the iSCSI IP addresses for the array if using the iSCSI
transport protocol.

In the examples below, two back ends are defined, one for pool A and one for pool B, and a common
volume_backend_name is used so that a single volume type definition can be used to allocate
volumes from both pools.

Example: iSCSI example back-end entries

[pool-a]
hpmsa_pool_name = A
volume_backend_name = hpmsa-array
volume_driver = cinder.volume.drivers.san.hp.hpmsa_iscsi.HPMSAISCSIDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
hpmsa_iscsi_ips = 10.2.3.4,10.2.3.5
driver_use_ssl = true

[pool-b]
hpmsa_pool_name = B
volume_backend_name = hpmsa-array
volume_driver = cinder.volume.drivers.san.hp.hpmsa_iscsi.HPMSAISCSIDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
hpmsa_iscsi_ips = 10.2.3.4,10.2.3.5
driver_use_ssl = true

Example: Fibre Channel example back-end entries

[pool-a]
hpmsa_pool_name = A
volume_backend_name = hpmsa-array
volume_driver = cinder.volume.drivers.san.hp.hpmsa_fc.HPMSAFCDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage

(continues on next page)

3.3. Reference 261

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

driver_use_ssl = true

[pool-b]
hpmsa_pool_name = B
volume_backend_name = hpmsa-array
volume_driver = cinder.volume.drivers.san.hp.hpmsa_fc.HPMSAFCDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
driver_use_ssl = true

3. If any volume_backend_name value refers to a vdisk rather than a virtual pool, add an additional
statement hpmsa_pool_type = linear to that back end entry.

4. If HTTPS is not enabled in the array, include hpmsa_api_protocol = http in each of the back-
end definitions.

5. If HTTPS is enabled, you can enable certificate verification with the option
driver_ssl_cert_verify = True. You may also use the driver_ssl_cert_path op-
tion to specify the path to a CA_BUNDLE file containing CAs other than those in the default
list.

6. Modify the [DEFAULT] section of the cinder.conf file to add an enabled_backends parameter
specifying the back-end entries you added, and a default_volume_type parameter specifying
the name of a volume type that you will create in the next step.

Example: [DEFAULT] section changes

[DEFAULT]
...
enabled_backends = pool-a,pool-b
default_volume_type = hpmsa

7. Create a new volume type for each distinct volume_backend_name value that
you added to the cinder.conf file. The example below assumes that the same
volume_backend_name=hpmsa-array option was specified in all of the entries, and specifies
that the volume type hpmsa can be used to allocate volumes from any of them.

Example: Creating a volume type

$ openstack volume type create hpmsa
$ openstack volume type set --property volume_backend_name=hpmsa-array␣
↪→hpmsa

8. After modifying the cinder.conf file, restart the cinder-volume service.

262 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Driver-specific options

The following table contains the configuration options that are specific to the HPMSA drivers.

Table 25: Description of HPE MSA configuration options
Configuration option = Default
value

Description

hpmsa_iscsi_ips = [] (List of String) List of comma-separated target iSCSI IP ad-
dresses.

hpmsa_pool_name = A (String) Pool or Vdisk name to use for volume creation.
hpmsa_pool_type = virtual (String(choices=[linear, virtual])) linear (for Vdisk) or virtual

(for Pool).
hpmsa_api_protocol = https (String(choices=[http, https])) HPMSA API interface protocol.

DEPRECATED
hpmsa_verify_certificate =
False

(Boolean) Whether to verify HPMSA array SSL certificate.
DEPRECATED

hpmsa_verify_certificate_path
= None

(String) HPMSA array SSL certificate path. DEPRECATED

HPE 3PAR, HPE Primera and HPE Alletra 9k Driver

The HPE3PARFCDriver and HPE3PARISCSIDriver drivers, which are based on the Block Storage ser-
vice (Cinder) plug-in architecture, run volume operations by communicating with the HPE 3PAR, HPE
Primera and HPE Alletra 9k storage systems over HTTP, HTTPS, and SSH connections. The HTTP &
HTTPS communications use python-3parclient, which is part of PyPi.

For information on HPE 3PAR, HPE Primera and HPE Alletra 9k Driver, refer to content kit page.

System requirements

To use the HPE 3PAR, HPE Primera and HPE Alletra 9k drivers, install the following software and
components on the HPE 3PAR storage system:

• HPE 3PAR Operating System software version 3.1.3 MU1 or higher.

– Deduplication provisioning requires SSD disks and HPE 3PAR Operating System software
version 3.2.1 MU1 or higher.

– Enabling Flash Cache Policy requires the following:

∗ Array must contain SSD disks.

∗ HPE 3PAR Operating System software version 3.2.1 MU2 or higher.

∗ python-3parclient version 4.2.0 or newer.

∗ Flash Cache must be enabled on the array with the CLI command createflashcache
SIZE, where size must be in 16 GB increments. For example, createflashcache
128g will create 128 GB of Flash Cache for each node pair in the array.

– The Dynamic Optimization is required to support any feature that results in a volume chang-
ing provisioning type or CPG. This may apply to the volume migrate, retype and manage
commands.

3.3. Reference 263

https://www.hpe.com/us/en/product-catalog/storage/storage-software/pip.openstack-device-management-software.1008537377.html

Cinder Documentation, Release 20.3.2.dev3

– The Virtual Copy feature supports any operation that involves volume snapshots. This applies
to the volume snapshot-* commands.

– Enabling Volume Compression requires the following:

∗ Array must contain SSD disks.

∗ HPE 3PAR Operating System software version 3.3.1 MU1 or higher.

∗ HPE 3PAR Storage System with 8k or 20k series

• HPE 3PAR Web Services API Server must be enabled and running.

• One Common Provisioning Group (CPG).

• Additionally, you must install the python-3parclient version 4.2.0 or newer from PyPi on the
system with the enabled Block Storage service volume drivers.

To use the HPE Primera and HPE Alletra 9k backends, install the following software and components on
the HPE Primera storage system:

• HPE Primera Operating System software version 4.0.0 or higher.

– On HPE Primera/Alletra 9k storage system, Dedup & Compression is combined as single
option deco. Due to this, only either thin volume or deco volume can be created.

– Also, port number 443 is used instead of 8080. This only affects cinder configuration.

• Additionally, you must install the python-3parclient version 4.2.11 or newer from PyPi on the
system with the enabled Block Storage service volume drivers.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Migrate a volume with back-end assistance.

• Retype a volume.

• Manage and unmanage a volume.

• Manage and unmanage a snapshot.

• Replicate host volumes.

• Fail-over host volumes.

• Fail-back host volumes.

• Retype a replicated volume.

• Create, delete, update, snapshot, and clone generic volume groups.

264 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Create and delete generic volume group snapshots.

• Create a generic volume group from a group snapshot or another group.

• Volume Compression.

• Group Replication with More Granularity (Tiramisu).

• Volume Revert to Snapshot.

• Additional Backend Capabilities.

• Report Backend State in Service List.

• Attach a volume to multiple servers simultaneously (multiattach).

• Peer Persistence.

Volume type support for both HPE 3PAR drivers includes the ability to set the following capabilities
in the OpenStack Block Storage API cinder.api.contrib.types_extra_specs volume type extra
specs extension module:

• hpe3par:snap_cpg

• hpe3par:provisioning

• hpe3par:persona

• hpe3par:vvs

• hpe3par:flash_cache

• hpe3par:compression

To work with the default filter scheduler, the key values are case sensitive and scoped with hpe3par:.
For information about how to set the key-value pairs and associate them with a volume type, run the
following command:

$ openstack help volume type

Note: Volumes that are cloned only support the extra specs keys cpg, snap_cpg, provisioning and vvs.
The others are ignored. In addition the comments section of the cloned volume in the HPE 3PAR /
Primera / Alletra 9k array is not populated.

If volume types are not used or a particular key is not set for a volume type, the following defaults are
used:

• hpe3par:cpg - Defaults to the hpe3par_cpg setting in the cinder.conf file.

• hpe3par:snap_cpg - Defaults to the hpe3par_snap setting in the cinder.conf file. If
hpe3par_snap is not set, it defaults to the hpe3par_cpg setting.

• hpe3par:provisioning - Defaults to thin provisioning, the valid values are thin, full, and
dedup.

• hpe3par:persona - Defaults to the 2 - Generic-ALUA persona. The valid values are:

– 1 - Generic

– 2 - Generic-ALUA

3.3. Reference 265

Cinder Documentation, Release 20.3.2.dev3

– 3 - Generic-legacy

– 4 - HPUX-legacy

– 5 - AIX-legacy

– 6 - EGENERA

– 7 - ONTAP-legacy

– 8 - VMware

– 9 - OpenVMS

– 10 - HPUX

– 11 - WindowsServer

• hpe3par:flash_cache - Defaults to false, the valid values are true and false.

QoS support for both HPE 3PAR drivers includes the ability to set the following capabilities in the Open-
Stack Block Storage API cinder.api.contrib.qos_specs_manage qos specs extension module:

• minBWS

• maxBWS

• minIOPS

• maxIOPS

• latency

• priority

The qos keys above no longer require to be scoped but must be created and associated to a volume type.
For information about how to set the key-value pairs and associate them with a volume type, run the
following commands:

$ openstack help volume qos

The following keys require that the HPE 3PAR / Primera / Alletra 9k array has a Priority Optimization
enabled.

hpe3par:vvs The virtual volume set name that has been predefined by the Administrator with quality
of service (QoS) rules associated to it. If you specify extra_specs hpe3par:vvs, the qos_specs
minIOPS, maxIOPS, minBWS, and maxBWS settings are ignored.

minBWS The QoS I/O issue bandwidth minimum goal in MBs. If not set, the I/O issue bandwidth rate
has no minimum goal.

maxBWS The QoS I/O issue bandwidth rate limit in MBs. If not set, the I/O issue bandwidth rate has no
limit.

minIOPS The QoS I/O issue count minimum goal. If not set, the I/O issue count has no minimum goal.

maxIOPS The QoS I/O issue count rate limit. If not set, the I/O issue count rate has no limit.

latency The latency goal in milliseconds.

priority The priority of the QoS rule over other rules. If not set, the priority is normal, valid values
are low, normal and high.

266 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Note: Since the Icehouse release, minIOPS and maxIOPS must be used together to set I/O limits.
Similarly, minBWS and maxBWS must be used together. If only one is set the other will be set to the
same value.

The following key requires that the HPE 3PAR / Primera / Alletra 9k array has an Adaptive Flash Cache
enabled.

• hpe3par:flash_cache - The flash-cache policy, which can be turned on and off by setting the
value to true or false.

• hpe3par:compression - The volume compression, which can be turned on and off by setting the
value to true or false.

Other restrictions and considerations for hpe3par:compression:

• For a compressed volume, minimum volume size needed is 16 GB; otherwise resulting volume
will be created successfully but will not be a compressed volume.

• A full provisioned volume cannot be compressed, if a compression is enabled and provisioning
type requested is full, the resulting volume defaults to thinly provisioned compressed volume.

• While creating volume on HPE Primera / Alletra 9k storage system, only below two combinations
are supported. If any other combination is used, then volume is not created.

– thin volume: provisioning = thin and compression = false

– deco volume: provisioning = dedup and compression = true

LDAP and AD authentication is now supported in the HPE 3PAR driver.

The 3PAR back end must be properly configured for LDAP and AD authentication prior to configuring
the volume driver. For details on setting up LDAP with 3PAR, see the 3PAR user guide.

Once configured, hpe3par_username and hpe3par_password parameters in cinder.conf can be
used with LDAP and AD credentials.

Enable the HPE 3PAR Fibre Channel and iSCSI drivers

The HPE3PARFCDriver and HPE3PARISCSIDriver are installed with the OpenStack software.

1. Install the python-3parclient Python package on the OpenStack Block Storage system.

$ pip install 'python-3parclient>=4.0,<5.0'

2. Verify that the HPE 3PAR Web Services API server is enabled and running on the HPE 3PAR /
Primera / Alletra 9k storage system.

a. Log onto the HPE 3PAR / Primera / Alletra 9k storage system with administrator access.

$ ssh 3paradm@<HPE storage system IP Address>

b. View the current state of the Web Services API Server.

3.3. Reference 267

Cinder Documentation, Release 20.3.2.dev3

$ showwsapi
-Service- -State- -HTTP_State- HTTP_Port -HTTPS_State- HTTPS_Port -
↪→Version-
Enabled Active Enabled 8008 Enabled 8080 ␣
↪→1.1

c. If the Web Services API Server is disabled, start it.

$ startwsapi

3. If the HTTP or HTTPS state is disabled, enable one of them.

$ setwsapi -http enable

or

$ setwsapi -https enable

Note: To stop the Web Services API Server, use the stopwsapi command. For other options run
the setwsapi -h command.

4. If you are not using an existing CPG, create a CPG on the HPE 3PAR / Primera / Alletra 9k storage
system to be used as the default location for creating volumes.

5. Make the following changes in the /etc/cinder/cinder.conf file.

WSAPI Server URL.
This setting applies to all: 3PAR, Primera and Alletra 9k.
Example 1: for 3PAR, URL is:
https://<3par ip>:8080/api/v1

Example 2: for Primera/Alletra 9k, URL is:
https://<primera/alletra_9k ip>:443/api/v1

3PAR / Primera / Alletra 9k username with the 'edit' role
hpe3par_username=edit3par

3PAR / Primera / Alletra 9k password for the user specified in hpe3par_
↪→username
hpe3par_password=3parpass

3PAR / Primera / Alletra 9k CPG to use for volume creation
hpe3par_cpg=OpenStackCPG_RAID5_NL

IP address of SAN controller for SSH access to the array
san_ip=10.10.22.241

Username for SAN controller for SSH access to the array
san_login=3paradm

(continues on next page)

268 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

Password for SAN controller for SSH access to the array
san_password=3parpass

FIBRE CHANNEL DRIVER
(uncomment the next line to enable the FC driver)
#volume_driver=cinder.volume.drivers.hpe.hpe_3par_fc.HPE3PARFCDriver

iSCSI DRIVER
If you enable the iSCSI driver, you must also set values
for hpe3par_iscsi_ips or iscsi_ip_address in this file.
Note: The iSCSI driver is supported with 3PAR (all versions)
and Primera (version 4.2 or higher). If you configure iSCSI
with Primera 4.0 or 4.1, the driver will fail to start.
(uncomment the next line to enable the iSCSI driver)
#volume_driver=cinder.volume.drivers.hpe.hpe_3par_iscsi.
↪→HPE3PARISCSIDriver

iSCSI multiple port configuration
hpe3par_iscsi_ips=10.10.220.253:3261,10.10.222.234

Still available for single port iSCSI configuration
#iscsi_ip_address=10.10.220.253

Enable HTTP debugging to 3PAR / Primera / Alletra 9k
hpe3par_debug=False

Enable CHAP authentication for iSCSI connections.
hpe3par_iscsi_chap_enabled=false

The CPG to use for Snapshots for volumes. If empty hpe3par_cpg will be
used.
hpe3par_cpg_snap=OpenStackSNAP_CPG

Time in hours to retain a snapshot. You can't delete it before this
expires.
hpe3par_snapshot_retention=48

Time in hours when a snapshot expires and is deleted. This must be
larger than retention.
hpe3par_snapshot_expiration=72

The ratio of oversubscription when thin provisioned volumes are
involved. Default ratio is 20.0, this means that a provisioned
capacity can be 20 times of the total physical capacity.
max_over_subscription_ratio=20.0

This flag represents the percentage of reserved back-end capacity.
reserved_percentage=15

3.3. Reference 269

Cinder Documentation, Release 20.3.2.dev3

Note: You can enable only one driver on each cinder instance unless you enable multiple back-end
support. See the Cinder multiple back-end support instructions to enable this feature.

Note: You can configure one or more iSCSI addresses by using the hpe3par_iscsi_ips option.
Separate multiple IP addresses with a comma (,). When you configure multiple addresses, the
driver selects the iSCSI port with the fewest active volumes at attach time. The 3PAR array does
not allow the default port 3260 to be changed, so IP ports need not be specified.

6. Save the changes to the cinder.conf file and restart the cinder-volume service.

The HPE 3PAR Fibre Channel and iSCSI drivers are now enabled on your OpenStack system. If you
experience problems, review the Block Storage service log files for errors.

The following table contains all the configuration options supported by the HPE 3PAR Fibre Channel
and iSCSI drivers.

Table 26: Description of 3PAR configuration options
Configura-
tion option
= Default
value

Description

hpe3par_api_url
= <>

(String) WSAPI Server URL. This setting applies to: 3PAR, Primera and Alletra
9k Example 1: for 3PAR, URL is: https://<3par ip>:8080/api/v1 Example 2: for
Primera/Alletra 9k, URL is: https://<primera ip>:443/api/v1

hpe3par_cpg
=
[OpenStack]

(List of String) List of the 3PAR/Primera/Alletra 9k CPG(s) to use for volume creation

hpe3par_cpg_snap
= <>

(String) The 3PAR/Primera/Alletra 9k CPG to use for snapshots of volumes. If empty
the userCPG will be used.

hpe3par_debug
= False

(Boolean) Enable HTTP debugging to 3PAR/Primera/Alletra 9k

hpe3par_iscsi_chap_enabled
= False

(Boolean) Enable CHAP authentication for iSCSI connections.

hpe3par_iscsi_ips
= []

(List of String) List of target iSCSI addresses to use.

hpe3par_password
= <>

(String) 3PAR/Primera/Alletra 9k password for the user specified in
hpe3par_username

hpe3par_snapshot_expiration
= <>

(String) The time in hours when a snapshot expires and is deleted. This must be larger
than expiration

hpe3par_snapshot_retention
= <>

(String) The time in hours to retain a snapshot. You cant delete it before this expires.

hpe3par_target_nsp
= <>

(String) The nsp of 3PAR/Primera/Alletra 9k backend to be used when: (1) multipath
is not enabled in cinder.conf. (2) Fiber Channel Zone Manager is not used. (3) the
backend is prezoned with this specific nsp only. For example if nsp is 2 1 2, the format
of the options value is 2:1:2

hpe3par_username
= <>

(String) 3PAR/Primera/Alletra 9k username with the edit role

270 Chapter 3. For operators

https:/
https:/

Cinder Documentation, Release 20.3.2.dev3

Specify NSP for FC Bootable Volume

Given a system connected to HPE 3PAR via FC and multipath setting is NOT used in cinder.conf. When
the user tries to create a bootable volume, it fails intermittently with the following error: Fibre Channel
volume device not found

This happens when a zone is created using second or later target from 3PAR backend. In this case, HPE
3PAR client code picks up first target to form initiator target map. This can be illustrated with below
example.

Sample output of showport command:

$ showport -sortcol 6

N:S:P Mode State ----Node_WWN---- -Port_WWN/HW_Addr- Type Protocol␣
↪→Partner FailoverState
0:1:1 target ready 2FF70002AC002DB6 20110002AC002DB6 host FC ␣
↪→ - -
0:1:2 target ready 2FF70002AC002DB6 20120002AC002DB6 host FC ␣
↪→1:1:2 none
1:1:1 initiator ready 2FF70002AC002DB6 21110002AC002DB6 rcfc FC ␣
↪→ - -
1:1:2 target ready 2FF70002AC002DB6 21120002AC002DB6 host FC ␣
↪→0:1:2 none
2:1:1 initiator ready 2FF70002AC002DB6 22110002AC002DB6 rcfc FC ␣
↪→ - -
2:1:2 target ready 2FF70002AC002DB6 22120002AC002DB6 host FC ␣
↪→3:1:2 none
3:1:1 target ready 2FF70002AC002DB6 23110002AC002DB6 host FC ␣
↪→ - -
3:1:2 target ready 2FF70002AC002DB6 23120002AC002DB6 host FC ␣
↪→2:1:2 none

Suppose zone is created using targets 2:1:2 and 3:1:2 from above output. Then initiator target map is
created using target 0:1:1 only. In such a case, the path is not found, and bootable volume creation fails.

To avoid above mentioned failure, the user can specify the target in 3PAR backend section of cinder.conf
as follows:

hpe3par_target_nsp = 3:1:2

Using above mentioned nsp, respective wwn information is fetched. Later initiator target map is created
using wwn information and bootable volume is created successfully.

Note: If above mentioned option (nsp) is not specified in cinder.conf, then the original flow is executed
i.e first target is picked and bootable volume creation may fail.

3.3. Reference 271

Cinder Documentation, Release 20.3.2.dev3

Peer Persistence support

Given 3PAR/Primera backend configured with replication setup, currently only Active/Passive replication
is supported by 3PAR/Primera in OpenStack. When failover happens, nova does not support volume
force-detach (from dead primary backend) / re-attach to secondary backend. Storage engineers manual
intervention is required.

To overcome above scenario, support for Peer Persistence is added. Given a system with Peer Persistence
configured and replicated volume is created. When this volume is attached to an instance, vlun is created
automatically in secondary backend, in addition to primary backend. So that when a failover happens, it
is seamless.

For Peer Persistence support, perform following steps: 1] enable multipath 2] set replication mode as
sync 3] configure a quorum witness server

Specify ip address of quorum witness server in /etc/cinder/cinder.conf [within backend section]
as given below:

[3pariscsirep]
hpe3par_api_url = http://10.50.3.7:8008/api/v1
hpe3par_username = <user_name>
hpe3par_password = <password>
...
<other parameters>
...
replication_device = backend_id:CSIM-EOS12_1611702,

replication_mode:sync,
quorum_witness_ip:10.50.3.192,
hpe3par_api_url:http://10.50.3.22:8008/api/v1,
...
<other parameters>
...

Support duplicated FQDN in network

The 3PAR driver uses the FQDN of the node that is doing the attach as an unique identifier to map the
volume.

The problem is that the FQDN is not always unique, there are environments where the same FQDN can
be found in different systems, and in those cases if both try to attach volumes the second system will fail.

One example of this happening would be on a QA environment where you are creating VMs and they all
have names like controller-0.localdomain and compute-0.localdomain.

To support these kind of environments, the user can specify below flag in backend_defaults section or
the specific cinder driver section of cinder.conf as follows:

unique_fqdn_network = False

When this flag is used, then during attach volume to instance, iscsi initiator name is used instead of
FQDN.

If above mentioned flag is not specified in cinder.conf, then its value is considered as True (by default)
and FQDN is used (existing behavior).

272 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Huawei volume driver

Huawei volume driver can be used to provide functions such as the logical volume and snapshot for
virtual machines (VMs) in the OpenStack Block Storage driver that supports iSCSI and Fibre Channel
protocols.

Version mappings

The following table describes the version mappings among the Block Storage driver, Huawei storage
system and OpenStack:

Table 27: Version mappings among the Block Storage driver
and Huawei storage system

Description Storage System Version
Create, delete, expand, attach, detach, man-
age and unmanage volumes
Create volumes with assigned storage pools
Create volumes with assigned disk types
Create, delete and update a consistency group
Copy an image to a volume
Copy a volume to an image
Auto Zoning
SmartThin
Volume Migration
Replication V2.1
Create, delete, manage, unmanage and
backup snapshots
Create and delete a cgsnapshot

OceanStor T series V2R2 C00/C20/C30
OceanStor V3 V3R1C10/C20 V3R2C10
V3R3C00/C10/C20
OceanStor 2200V3 V300R005C00
OceanStor 2600V3 V300R005C00
OceanStor 18500/18800 V1R1C00/C20/C30
V3R3C00
OceanStor Dorado V300R001C00
OceanStor V3 V300R006C00
OceanStor 2200V3 V300R006C00
OceanStor 2600V3 V300R006C00

Clone a volume
Create volume from snapshot
Retype
SmartQoS
SmartTier
SmartCache
Thick

OceanStor T series V2R2 C00/C20/C30
OceanStor V3 V3R1C10/C20 V3R2C10
V3R3C00/C10/C20
OceanStor 2200V3 V300R005C00
OceanStor 2600V3 V300R005C00
OceanStor 18500/18800V1R1C00/C20/C30
OceanStor V3 V300R006C00
OceanStor 2200V3 V300R006C00
OceanStor 2600V3 V300R006C00

SmartPartition OceanStor T series V2R2 C00/C20/C30
OceanStor V3 V3R1C10/C20 V3R2C10
V3R3C00/C10/C20
OceanStor 2600V3 V300R005C00
OceanStor 18500/18800V1R1C00/C20/C30
OceanStor V3 V300R006C00
OceanStor 2600V3 V300R006C00

Hypermetro
Hypermetro consistency group

OceanStor V3 V3R3C00/C10/C20
OceanStor 2600V3 V3R5C00
OceanStor 18500/18800 V3R3C00
OceanStor Dorado V300R001C00
OceanStor V3 V300R006C00
OceanStor 2600V3 V300R006C00

3.3. Reference 273

Cinder Documentation, Release 20.3.2.dev3

Volume driver configuration

This section describes how to configure the Huawei volume driver for either iSCSI storage or Fibre
Channel storage.

Pre-requisites

When creating a volume from image, install the multipath tool and add the following configuration
keys for each backend section or in [backend_defaults] section as a common configuration for all
backends in /etc/cinder/cinder.conf file:

use_multipath_for_image_xfer = True
enforce_multipath_for_image_xfer = True

To configure the volume driver, follow the steps below:

1. In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML.

2. Change the name of the driver configuration file based on the site requirements, for example,
cinder_huawei_conf.xml.

3. Configure parameters in the driver configuration file.

Each product has its own value for the Product parameter under the Storage xml block. The full
xml file with the appropriate Product parameter is as below:

<?xml version="1.0" encoding="UTF-8"?>
<config>
<Storage>
<Product>PRODUCT</Product>
<Protocol>PROTOCOL</Protocol>
<UserName>xxxxxxxx</UserName>
<UserPassword>xxxxxxxx</UserPassword>
<RestURL>https://x.x.x.x:8088/deviceManager/rest/</RestURL>

</Storage>
<LUN>
<LUNType>xxx</LUNType>
<WriteType>xxx</WriteType>
<Prefetch Type="xxx" Value="xxx" />
<StoragePool>xxx</StoragePool>

</LUN>
<iSCSI>
<DefaultTargetIP>x.x.x.x</DefaultTargetIP>
<Initiator Name="xxxxxxxx" TargetIP="x.x.x.x"/>

</iSCSI>
<Host OSType="Linux" HostIP="x.x.x.x, x.x.x.x"/>

</config>

The corresponding ``Product`` values for each product are as below:

• For T series V2

<Product>TV2</Product>

• For V3

274 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

<Product>V3</Product>

• For OceanStor 18000 series

<Product>18000</Product>

• For OceanStor Dorado series

<Product>Dorado</Product>

The Protocol value to be used is iSCSI for iSCSI and FC for Fibre Channel as shown below:

For iSCSI
<Protocol>iSCSI</Protocol>

For Fibre channel
<Protocol>FC</Protocol>

Note: For details about the parameters in the configuration file, see the Configuration file param-
eters section.

4. Configure the cinder.conf file.

In the [default] block of /etc/cinder/cinder.conf, enable the VOLUME_BACKEND:

enabled_backends = VOLUME_BACKEND

Add a new block [VOLUME_BACKEND], and add the following contents:

[VOLUME_BACKEND]
volume_driver = VOLUME_DRIVER
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml
volume_backend_name = Huawei_Storage

• volume_driver indicates the loaded driver.

• cinder_huawei_conf_file indicates the specified Huawei-customized configuration file.

• volume_backend_name indicates the name of the backend.

Add information about remote devices in /etc/cinder/cinder.conf in target backend block
for Hypermetro.

[VOLUME_BACKEND]
volume_driver = VOLUME_DRIVER
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml
volume_backend_name = Huawei_Storage
metro_san_user = xxx
metro_san_password = xxx
metro_domain_name = xxx
metro_san_address = https://x.x.x.x:8088/deviceManager/rest/
metro_storage_pools = xxx

3.3. Reference 275

Cinder Documentation, Release 20.3.2.dev3

Add information about remote devices in /etc/cinder/cinder.conf in target backend block
for Replication.

[VOLUME_BACKEND]
volume_driver = VOLUME_DRIVER
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf.xml
volume_backend_name = Huawei_Storage
replication_device =

backend_id: xxx,
storage_pool :xxx,
san_address: https://x.x.x.x:8088/deviceManager/rest/,
san_user: xxx,
san_password: xxx,
iscsi_default_target_ip: x.x.x.x

Note: By default, the value for Hypermetro and Replication is None. For details about the
parameters in the configuration file, see the Configuration file parameters section.

The volume-driver value for every product is as below:

For iSCSI
volume_driver = cinder.volume.drivers.huawei.huawei_driver.
↪→HuaweiISCSIDriver

For FC
volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiFCDriver

5. Run the service cinder-volume restart command to restart the Block Storage service.

Configuring iSCSI Multipathing

To configure iSCSI Multipathing, follow the steps below:

1. Add the port group settings in the Huawei-customized driver configuration file and configure the
port group name needed by an initiator.

<iSCSI>
<DefaultTargetIP>x.x.x.x</DefaultTargetIP>
<Initiator Name="xxxxxx" TargetPortGroup="xxxx" />

</iSCSI>

2. Enable the multipathing switch of the Compute service module.

Add volume_use_multipath = True in [libvirt] of /etc/nova/nova.conf.

3. Run the service nova-compute restart command to restart the nova-compute service.

276 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Configuring FC Multipathing

To configure FC Multipathing, follow the steps below:

1. Enable the multipathing switch of the Compute service module.

Add volume_use_multipath = True in [libvirt] of /etc/nova/nova.conf.

2. Run the service nova-compute restart command to restart the nova-compute service.

Configuring CHAP and ALUA

On a public network, any application server whose IP address resides on the same network segment as
that of the storage systems iSCSI host port can access the storage system and perform read and write
operations in it. This poses risks to the data security of the storage system. To ensure the storage systems
access security, you can configure CHAP authentication to control application servers access to the storage
system.

Adjust the driver configuration file as follows:

<Initiator ALUA="xxx" CHAPinfo="xxx" Name="xxx" TargetIP="x.x.x.x"/>

ALUA indicates a multipathing mode. 0 indicates that ALUA is disabled. 1 indicates that ALUA is en-
abled. CHAPinfo indicates the user name and password authenticated by CHAP. The format is mmuser;
mm-user@storage. The user name and password are separated by semicolons (;).

Configuring multiple storage

Multiple storage systems configuration example:

enabled_backends = v3_fc, 18000_fc
[v3_fc]
volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiFCDriver
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf_v3_fc.xml
volume_backend_name = huawei_v3_fc
[18000_fc]
volume_driver = cinder.volume.drivers.huawei.huawei_driver.HuaweiFCDriver
cinder_huawei_conf_file = /etc/cinder/cinder_huawei_conf_18000_fc.xml
volume_backend_name = huawei_18000_fc

Configuration file parameters

This section describes mandatory and optional configuration file parameters of the Huawei volume driver.

3.3. Reference 277

Cinder Documentation, Release 20.3.2.dev3

Table 28: Mandatory parameters
Parame-
ter

Default
value

Description Appli-
cable
to

Product - Type of a storage product. Possible values are TV2, 18000 and
V3.

All

Protocol - Type of a connection protocol. The possible value is either
'iSCSI' or 'FC'.

All

RestURL - Access address of the REST interface, https://x.x.x.
x/devicemanager/rest/. The value x.x.x.x indicates
the management IP address. OceanStor 18000 uses the
preceding setting, and V2 and V3 requires you to add
port number 8088, for example, https://x.x.x.x:8088/
deviceManager/rest/. If you need to configure multiple
RestURL, separate them by semicolons (;).

All

User-
Name

- User name of a storage administrator. All

UserPass-
word

- Password of a storage administrator. All

Storage-
Pool

- Name of a storage pool to be used. If you need to configure
multiple storage pools, separate them by semicolons (;).

All

Note: The value of StoragePool cannot contain Chinese characters.

278 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 29: Optional parameters
Parameter Default

value
Description Applicable

to
LUNType Thick Type of the LUNs to be created. The value can be

Thick or Thin. Dorado series only support Thin
LUNs.

All

WriteType 1 Cache write type, possible values are: 1 (write
back), 2 (write through), and 3 (mandatory write
back).

All

LUNcopyWaitIn-
terval

5 After LUN copy is enabled, the plug-in frequently
queries the copy progress. You can set a value to
specify the query interval.

All

Timeout 432000 Timeout interval for waiting LUN copy of a storage
device to complete. The unit is second.

All

Initiator Name - Name of a compute node initiator. All
Initiator TargetIP - IP address of the iSCSI port provided for compute

nodes.
All

Initiator Target-
PortGroup

- IP address of the iSCSI target port that is provided
for compute nodes.

All

DefaultTargetIP - Default IP address of the iSCSI target port that is
provided for compute nodes.

All

OSType Linux Operating system of the Nova compute nodes host. All
HostIP - IP address of the Nova compute nodes host. All
metro_san_user - User name of a storage administrator of hypermetro

remote device.
V3R3/2600
V3R5/18000
V3R3

metro_san_password - Password of a storage administrator of hypermetro
remote device.

V3R3/2600
V3R5/18000
V3R3

metro_domain_name - Hypermetro domain name configured on ISM. V3R3/2600
V3R5/18000
V3R3

metro_san_address - Access address of the REST interface, https://x.x.x.
x/devicemanager/rest/. The value x.x.x.x indicates
the management IP address.

V3R3/2600
V3R5/18000
V3R3

metro_storage_pools - Remote storage pool for hypermetro. V3R3/2600
V3R5/18000
V3R3

backend_id - Target device ID. All
storage_pool - Pool name of target backend when failover for repli-

cation.
All

san_address - Access address of the REST interface, https://x.x.x.
x/devicemanager/rest/. The value x.x.x.x indicates
the management IP address.

All

san_user - User name of a storage administrator of replication
remote device.

All

san_password - Password of a storage administrator of replication re-
mote device.

All

iscsi_default_target_ip- Remote transaction port IP. All

3.3. Reference 279

https://x.x.x.x/devicemanager/rest/
https://x.x.x.x/devicemanager/rest/
https://x.x.x.x/devicemanager/rest/
https://x.x.x.x/devicemanager/rest/

Cinder Documentation, Release 20.3.2.dev3

Important: The Initiator Name, Initiator TargetIP, and Initiator TargetPortGroup are
ISCSI parameters and therefore not applicable to FC.

The following are the Huawei driver specific options that may be set in cinder.conf :

Table 30: Description of Huawei configuration options
Configuration option = Default value Description
cinder_huawei_conf_file = /etc/cinder/
cinder_huawei_conf.xml

(String) The configuration file for the Cin-
der Huawei driver.

hypermetro_devices = None (String) The remote device hypermetro will
use.

metro_domain_name = None (String) The remote metro device domain
name.

metro_san_address = None (String) The remote metro device request
url.

metro_san_password = None (String) The remote metro device san pass-
word.

metro_san_user = None (String) The remote metro device san user.
metro_storage_pools = None (String) The remote metro device pool

names.

IBM FlashSystem 840/900 driver

The volume driver for FlashSystem provides OpenStack Block Storage hosts with access to IBM Flash-
Systems.

This driver is to be used with IBM FlashSystem 840/900 systems only. For any other FlashSystem storage
systems (including 5xxx, 7xxx, and 9xxx platforms) see the IBM Spectrum Virtualize family volume
driver documentation.

Supported operations

These operations are supported:

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Get volume statistics.

• Manage and unmanage a volume.

280 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Configure FlashSystem

Configure storage array

The volume driver requires a pre-defined array. You must create an array on the FlashSystem before
using the volume driver. An existing array can also be used and existing data will not be deleted.

Note: FlashSystem can only create one array, so no configuration option is needed for the IBM Flash-
System driver to assign it.

Configure user authentication for the driver

The driver requires access to the FlashSystem management interface using SSH. It should be provided
with the FlashSystem management IP using the san_ip flag, and the management port should be pro-
vided by the san_ssh_port flag. By default, the port value is configured to be port 22 (SSH).

Note: Make sure the compute node running the cinder-volume driver has SSH network access to the
storage system.

Using password authentication, assign a password to the user on the FlashSystem. For more detail, see
the driver configuration flags for the user and password here: Enable IBM FlashSystem FC driver or
Enable IBM FlashSystem iSCSI driver.

There are some common configuration options for either driver:

Table 31: List of common configuration options for IBM FlashSys-
tem drivers

Flag name Type Default Description
san_ip Required Management IP or host name
san_ssh_port Optional 22 Management port
san_login Required Management login user name
san_password Required Management login password

IBM FlashSystem FC driver

Data Path configuration

Using Fiber Channel (FC), each FlashSystem node should have at least one WWPN port configured. If
the flashsystem_multipath_enabled flag is set to True in the Block Storage service configuration
file, the driver uses all available WWPNs to attach the volume to the instance. If the flag is not set, the
driver uses the WWPN associated with the volumes preferred node (if available). Otherwise, it uses the
first available WWPN of the system. The driver obtains the WWPNs directly from the storage system.
You do not need to provide these WWPNs to the driver.

3.3. Reference 281

Cinder Documentation, Release 20.3.2.dev3

Note: Using FC, ensure that the block storage hosts have FC connectivity to the FlashSystem.

Enable IBM FlashSystem FC driver

Set the volume driver to the FlashSystem driver by setting the volume_driver option in the cinder.
conf configuration file, as follows:

volume_driver = cinder.volume.drivers.ibm.flashsystem_fc.FlashSystemFCDriver

To enable the IBM FlashSystem FC driver, configure the following options in the cinder.conf config-
uration file:

Table 32: Description of IBM FlashSystem FC configuration op-
tions

Configuration option = Default value Description
flashsystem_connection_protocol =
FC

(String) Connection protocol should be FC. (Default is
FC.)

flashsystem_multihostmap_enabled
= True

(Boolean) Allows vdisk to multi host mapping. (Default
is True)

IBM FlashSystem iSCSI driver

Network configuration

Using iSCSI, each FlashSystem node should have at least one iSCSI port configured. iSCSI IP addresses
of IBM FlashSystem can be obtained by FlashSystem GUI or CLI. For more information, see the appro-
priate IBM Redbook for the FlashSystem.

Note: Using iSCSI, ensure that the compute nodes have iSCSI network access to the IBM FlashSystem.

Enable IBM FlashSystem iSCSI driver

Set the volume driver to the FlashSystem driver by setting the volume_driver option in the cinder.
conf configuration file, as follows:

volume_driver = cinder.volume.drivers.ibm.flashsystem_iscsi.
↪→FlashSystemISCSIDriver

To enable IBM FlashSystem iSCSI driver, configure the following options in the cinder.conf config-
uration file:

282 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 33: Description of IBM FlashSystem iSCSI configuration
options

Configuration option = Default value Description
flashsystem_connection_protocol
= FC

(String) Connection protocol should be FC. (Default is
FC.)

flashsystem_iscsi_portid = 0 (Integer) Default iSCSI Port ID of FlashSystem. (Default
port is 0.)

flashsystem_multihostmap_enabled
= True

(Boolean) Allows vdisk to multi host mapping. (Default
is True)

Note: On the cluster of the FlashSystem, the iscsi_ip_address column is the seventh column
IP_address of the output of lsportip.

Note: On the cluster of the FlashSystem, port ID column is the first column id of the output of
lsportip, not the sixth column port_id.

Limitations and known issues

IBM FlashSystem only works when:

open_access_enabled=off

Note: The flashsystem_multihost_enabled setting allows the driver to map a vdisk to more than
one host at a time. This scenario occurs during migration of a virtual machine with an attached volume;
the volume is simultaneously mapped to both the source and destination compute hosts. If your deploy-
ment does not require attaching vdisks to multiple hosts, setting this flag to False will provide added
safety.

IBM Spectrum Scale volume driver

IBM Spectrum Scale is a flexible software-defined storage that can be deployed as high performance
file storage or a cost optimized large-scale content repository. IBM Spectrum Scale, previously known
as IBM General Parallel File System (GPFS), is designed to scale performance and capacity with no
bottlenecks. IBM Spectrum Scale is a cluster file system that provides concurrent access to file systems
from multiple nodes. The storage provided by these nodes can be direct attached, network attached, SAN
attached, or a combination of these methods. Spectrum Scale provides many features beyond common
data access, including data replication, policy based storage management, and space efficient file snapshot
and clone operations.

3.3. Reference 283

Cinder Documentation, Release 20.3.2.dev3

How the Spectrum Scale volume driver works

The Spectrum Scale volume driver, named gpfs.py, enables the use of Spectrum Scale in a fashion
similar to that of the NFS driver. With the Spectrum Scale driver, instances do not actually access a
storage device at the block level. Instead, volume backing files are created in a Spectrum Scale file
system and mapped to instances, which emulate a block device.

Note: Spectrum Scale must be installed and cluster has to be created on the storage nodes in the Open-
Stack environment. A file system must also be created and mounted on these nodes before configuring
the cinder service to use Spectrum Scale storage.For more details, please refer to Spectrum Scale product
documentation.

Optionally, the Image service can be configured to store glance images in a Spectrum Scale file system.
When a Block Storage volume is created from an image, if both image data and volume data reside in the
same Spectrum Scale file system, the data from image file is moved efficiently to the volume file using
copy-on-write optimization strategy.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, delete volume snapshots.

• Create a volume from a snapshot.

• Create cloned volumes.

• Extend a volume.

• Migrate a volume.

• Retype a volume.

• Create, delete consistency groups.

• Create, delete consistency group snapshots.

• Copy an image to a volume.

• Copy a volume to an image.

• Backup and restore volumes.

Driver configurations

The Spectrum Scale volume driver supports three modes of deployment.

284 Chapter 3. For operators

https://ibm.biz/Bdi84g
https://ibm.biz/Bdi84g

Cinder Documentation, Release 20.3.2.dev3

Mode 1 Pervasive Spectrum Scale Client

When Spectrum Scale is running on compute nodes as well as on the cinder node. For example, Spectrum
Scale filesystem is available to both Compute and Block Storage services as a local filesystem.

To use Spectrum Scale driver in this deployment mode, set the volume_driver in the cinder.conf as:

volume_driver = cinder.volume.drivers.ibm.gpfs.GPFSDriver

The following table contains the configuration options supported by the Spectrum Scale driver in this
deployment mode.

Table 34: Description of Spectrum Scale volume driver configura-
tion options

Config-
uration
option
= De-
fault
value

Description

[DE-
FAULT]
gpfs_images_dir
= None

(String) Specifies the path of the Image service repository in GPFS. Leave undefined if not
storing images in GPFS.

gpfs_images_share_mode
= None

(String) Specifies the type of image copy to be used. Set this when the Image service
repository also uses GPFS so that image files can be transferred efficiently from the Image
service to the Block Storage service. There are two valid values: copy specifies that a
full copy of the image is made; copy_on_write specifies that copy-on-write optimization
strategy is used and unmodified blocks of the image file are shared efficiently.

gpfs_max_clone_depth
= 0

(Integer) Specifies an upper limit on the number of indirections required to reach a specific
block due to snapshots or clones. A lengthy chain of copy-on-write snapshots or clones
can have a negative impact on performance, but improves space utilization. 0 indicates
unlimited clone depth.

gpfs_mount_point_base
= None

(String) Specifies the path of the GPFS directory where Block Storage volume and snapshot
files are stored.

gpfs_sparse_volumes
= True

(Boolean) Specifies that volumes are created as sparse files which initially consume no
space. If set to False, the volume is created as a fully allocated file, in which case, creation
may take a significantly longer time.

gpfs_storage_pool
=
system

(String) Specifies the storage pool that volumes are assigned to. By default, the system
storage pool is used.

Note: The gpfs_images_share_mode flag is only valid if the Image Service is configured to use
Spectrum Scale with the gpfs_images_dir flag. When the value of this flag is copy_on_write, the
paths specified by the gpfs_mount_point_base and gpfs_images_dir flags must both reside in the
same GPFS file system and in the same GPFS file set.

3.3. Reference 285

Cinder Documentation, Release 20.3.2.dev3

Mode 2 Remote Spectrum Scale Driver with Local Compute Access

When Spectrum Scale is running on compute nodes, but not on the Block Storage node. For example,
Spectrum Scale filesystem is only available to Compute service as Local filesystem where as Block Stor-
age service accesses Spectrum Scale remotely. In this case, cinder-volume service running Spectrum
Scale driver access storage system over SSH and creates volume backing files to make them available
on the compute nodes. This mode is typically deployed when the cinder and glance services are run-
ning inside a Linux container. The container host should have Spectrum Scale client running and GPFS
filesystem mount path should be bind mounted into the Linux containers.

Note: Note that the user IDs present in the containers should match as that in the host machines. For
example, the containers running cinder and glance services should be privileged containers.

To use Spectrum Scale driver in this deployment mode, set the volume_driver in the cinder.conf as:

volume_driver = cinder.volume.drivers.ibm.gpfs.GPFSRemoteDriver

The following table contains the configuration options supported by the Spectrum Scale driver in this
deployment mode.

286 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 35: Description of Spectrum Scale Remote volume driver
configuration options

Configura-
tion option
= Default
value

Description

[DE-
FAULT]
gpfs_hosts
=

(List) Comma-separated list of IP address or hostnames of GPFS nodes.

gpfs_hosts_key_file
=
$state_path/
ssh_known_hosts

(String) File containing SSH host keys for the gpfs nodes with which driver needs to
communicate. Default=$state_path/ssh_known_hosts

gpfs_images_dir
= None

(String) Specifies the path of the Image service repository in GPFS. Leave undefined
if not storing images in GPFS.

gpfs_images_share_mode
= None

(String) Specifies the type of image copy to be used. Set this when the Image service
repository also uses GPFS so that image files can be transferred efficiently from the
Image service to the Block Storage service. There are two valid values: copy specifies
that a full copy of the image is made; copy_on_write specifies that copy-on-write opti-
mization strategy is used and unmodified blocks of the image file are shared efficiently.

gpfs_max_clone_depth
= 0

(Integer) Specifies an upper limit on the number of indirections required to reach a
specific block due to snapshots or clones. A lengthy chain of copy-on-write snapshots
or clones can have a negative impact on performance, but improves space utilization.
0 indicates unlimited clone depth.

gpfs_mount_point_base
= None

(String) Specifies the path of the GPFS directory where Block Storage volume and
snapshot files are stored.

gpfs_private_key
=

(String) Filename of private key to use for SSH authentication.

gpfs_sparse_volumes
= True

(Boolean) Specifies that volumes are created as sparse files which initially consume
no space. If set to False, the volume is created as a fully allocated file, in which case,
creation may take a significantly longer time.

gpfs_ssh_port
= 22

(Port number) SSH port to use.

gpfs_storage_pool
= system

(String) Specifies the storage pool that volumes are assigned to. By default, the system
storage pool is used.

gpfs_strict_host_key_policy
= False

(Boolean) Option to enable strict gpfs host key checking while connecting to gpfs
nodes. Default=False

gpfs_user_login
= root

(String) Username for GPFS nodes.

gpfs_user_password
=

(String) Password for GPFS node user.

Note: The gpfs_images_share_mode flag is only valid if the Image Service is configured to use
Spectrum Scale with the gpfs_images_dir flag. When the value of this flag is copy_on_write, the
paths specified by the gpfs_mount_point_base and gpfs_images_dir flags must both reside in the
same GPFS file system and in the same GPFS file set.

3.3. Reference 287

Cinder Documentation, Release 20.3.2.dev3

Mode 3 Remote Spectrum Scale Access

When both Compute and Block Storage nodes are not running Spectrum Scale software and do not have
access to Spectrum Scale file system directly as local filesystem. In this case, we create an NFS export
on the volume path and make it available on the cinder node and on compute nodes.

Optionally, if one wants to use the copy-on-write optimization to create bootable volumes from glance
images, one need to also export the glance images path and mount it on the nodes where glance and cinder
services are running. The cinder and glance services will access the GPFS filesystem through NFS.

To use Spectrum Scale driver in this deployment mode, set the volume_driver in the cinder.conf as:

volume_driver = cinder.volume.drivers.ibm.gpfs.GPFSNFSDriver

The following table contains the configuration options supported by the Spectrum Scale driver in this
deployment mode.

288 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 36: Description of Spectrum Scale NFS volume driver con-
figuration options

Config-
uration
option =
Default
value

Description

[DE-
FAULT]
gpfs_images_dir
= None

(String) Specifies the path of the Image service repository in GPFS. Leave undefined if
not storing images in GPFS.

gpfs_images_share_mode
= None

(String) Specifies the type of image copy to be used. Set this when the Image service
repository also uses GPFS so that image files can be transferred efficiently from the Im-
age service to the Block Storage service. There are two valid values: copy specifies that a
full copy of the image is made; copy_on_write specifies that copy-on-write optimization
strategy is used and unmodified blocks of the image file are shared efficiently.

gpfs_max_clone_depth
= 0

(Integer) Specifies an upper limit on the number of indirections required to reach a spe-
cific block due to snapshots or clones. A lengthy chain of copy-on-write snapshots or
clones can have a negative impact on performance, but improves space utilization. 0
indicates unlimited clone depth.

gpfs_mount_point_base
= None

(String) Specifies the path of the GPFS directory where Block Storage volume and snap-
shot files are stored.

gpfs_sparse_volumes
= True

(Boolean) Specifies that volumes are created as sparse files which initially consume no
space. If set to False, the volume is created as a fully allocated file, in which case,
creation may take a significantly longer time.

gpfs_storage_pool
= system

(String) Specifies the storage pool that volumes are assigned to. By default, the system
storage pool is used.

nas_host
=

(String) IP address or Hostname of NAS system.

nas_login
= admin

(String) User name to connect to NAS system.

nas_password
=

(String) Password to connect to NAS system.

nas_private_key
=

(String) Filename of private key to use for SSH authentication.

nas_ssh_port
= 22

(Port number) SSH port to use to connect to NAS system.

nfs_mount_point_base
=
$state_path/
mnt

(String) Base dir containing mount points for NFS shares.

nfs_shares_config
= /etc/
cinder/
nfs_shares

(String) File with the list of available NFS shares.

Additionally, all the options of the base NFS driver are applicable for GPFSNFSDriver. The above table
lists the basic configuration options which are needed for initialization of the driver.

3.3. Reference 289

Cinder Documentation, Release 20.3.2.dev3

Note: The gpfs_images_share_mode flag is only valid if the Image Service is configured to use
Spectrum Scale with the gpfs_images_dir flag. When the value of this flag is copy_on_write, the
paths specified by the gpfs_mount_point_base and gpfs_images_dir flags must both reside in the
same GPFS file system and in the same GPFS file set.

Volume creation options

It is possible to specify additional volume configuration options on a per-volume basis by specifying
volume metadata. The volume is created using the specified options. Changing the metadata after the
volume is created has no effect. The following table lists the volume creation options supported by the
GPFS volume driver.

Table 37: Volume Create Options for Spectrum Scale Volume
Drivers

Metadata Item Name Description
fstype Specifies whether to create a file system or a swap area on the new vol-

ume. If fstype=swap is specified, the mkswap command is used to create
a swap area. Otherwise the mkfs command is passed the specified file
system type, for example ext3, ext4 or ntfs.

fslabel Sets the file system label for the file system specified by fstype option.
This value is only used if fstype is specified.

data_pool_name Specifies the GPFS storage pool to which the volume is to be assigned.
Note: The GPFS storage pool must already have been created.

replicas Specifies how many copies of the volume file to create. Valid values are
1, 2, and, for Spectrum Scale V3.5.0.7 and later, 3. This value cannot
be greater than the value of the MaxDataReplicasattribute of the file
system.

dio Enables or disables the Direct I/O caching policy for the volume file.
Valid values are yes and no.

write_affinity_depth Specifies the allocation policy to be used for the volume file. Note: This
option only works if allow-write-affinity is set for the GPFS data pool.

block_group_factor Specifies how many blocks are laid out sequentially in the volume file
to behave as a single large block. Note: This option only works if allow-
write-affinity is set for the GPFS data pool.

write_affinity_failure_group Specifies the range of nodes (in GPFS shared nothing architecture)
where replicas of blocks in the volume file are to be written. See Spec-
trum Scale documentation for more details about this option.

This example shows the creation of a 50GB volume with an ext4 file system labeled newfs and direct
IO enabled:

$ openstack volume create --property fstype=ext4 fslabel=newfs dio=yes \
--size 50 VOLUME

Note that if the metadata for the volume is changed later, the changes do not reflect in the backend.
User will have to manually change the volume attributes corresponding to metadata on Spectrum Scale
filesystem.

290 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Operational notes for GPFS driver

Volume snapshots are implemented using the GPFS file clone feature. Whenever a new snapshot is
created, the snapshot file is efficiently created as a read-only clone parent of the volume, and the volume
file uses copy-on-write optimization strategy to minimize data movement.

Similarly when a new volume is created from a snapshot or from an existing volume, the same approach
is taken. The same approach is also used when a new volume is created from an Image service image, if
the source image is in raw format, and gpfs_images_share_mode is set to copy_on_write.

The Spectrum Scale driver supports encrypted volume back end feature. To encrypt a volume at rest,
specify the extra specification gpfs_encryption_rest = True.

IBM Storage Driver for OpenStack

Introduction

The IBM Storage Driver for OpenStack is a software component of the OpenStack cloud environment
that enables utilization of storage resources provided by supported IBM storage systems.

The driver was validated on storage systems, as detailed in the Supported storage systems section below.

After the driver is configured on the OpenStack Cinder nodes, storage volumes can be allocated by the
Cinder nodes to the Nova nodes. Virtual machines on the Nova nodes can then utilize these storage
resources.

Concept diagram

This figure illustrates how an IBM storage system is connected to the OpenStack cloud environment and
provides storage resources when the IBM Storage Driver for OpenStack is configured on the OpenStack
Cinder nodes. The OpenStack cloud is connected to the IBM storage system over Fibre Channel. Re-
mote cloud users can issue requests for storage resources from the OpenStack cloud. These requests are
transparently handled by the IBM Storage Driver, which communicates with the IBM storage system and
controls the storage volumes on it. The IBM storage resources are then provided to the Nova nodes in
the OpenStack cloud.

Compatibility and requirements

This section specifies the compatibility and requirements of the IBM Storage Driver for OpenStack.

3.3. Reference 291

Cinder Documentation, Release 20.3.2.dev3

Supported storage systems

The IBM Storage Driver for OpenStack supports the IBM storage systems, as detailed in the following
table.

Storage system Microcode version Connectivity
IBM DS8870 7.5 SP4 or later, 7.5 with RESTful API patch Fibre Channel (FC)
IBM DS8880 8.1 or later Fibre Channel (FC)

Copy Services license

Copy Services features help you implement storage solutions to keep your business running 24 hours a
day, 7 days a week by providing image caching, replication and cloning functions. The Copy Services
license is based on usable capacity of the volumes involved in Copy Services functionality.

The Copy Services license is available for the following license scopes: FB and ALL (both FB and CKD).

The Copy Services license includes the following features:

• Global Mirror

• Metro Mirror

• Metro/Global Mirror

• Point-in-Time Copy/FlashCopyő

• z/OSő Global Mirror

292 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• z/OS Metro/Global Mirror Incremental Resync (RMZ)

The Copy Services license feature codes are ordered in increments up to a specific capacity. For example,
if you require 160 TB of capacity, order 10 of feature code 8251 (10 TB each up to 100 TB capacity),
and 4 of feature code 8252 (15 TB each, for an extra 60 TB).

The Copy Services license includes the following feature codes.

Feature Code Feature code for licensed function indicator
8250 CS - inactive
8251 CS - 10 TB (up to 100 TB capacity)
8252 CS - 15 TB (from 100.1 TB to 250 TB capacity)
8253 CS - 25 TB (from 250.1 TB to 500 TB capacity)
8254 CS - 75 TB (from 500.1 to 1250 TB capacity)
8255 CS - 175 TB (from 1250.1 TB to 3000 TB capacity)
8256 CS - 300 TB (from 3000.1 TB to 6000 TB capacity)
8260 CS - 500 TB (from 6000.1 TB to 10,000 TB capacity)

The following ordering rules apply when you order the Copy Services license:

• The Copy Services license should be ordered based on the total usable capacity of all volumes
involved in one or more Copy Services relationships.

• The licensed authorization must be equal to or less that the total usable capacity allocated to the
volumes that participate in Copy Services operations.

• You must purchase features for both the source (primary) and target (secondary) storage system.

Required software on the OpenStack Cinder and Nova nodes

The IBM Storage Driver makes use of the following software on the OpenStack Cinder and Nova-compute
nodes.

Software Installed on
Ubuntu Server (16.04), x64
Red Hat Enterprise Linux (RHEL) 7.x, x64
CentOS Linux 7.x, x64
KVM for IBM z Systems

All OpenStack Cinder nodes

IBM Storage Host Attachment Kit for Linux All OpenStack Cinder and Nova compute nodes
that connect to storage systems and use RHEL 7.x
or CentOS Linux 7.x

Linux patch package All OpenStack Cinder nodes
sysfsutils utility All OpenStack Cinder nodes on FC network

3.3. Reference 293

Cinder Documentation, Release 20.3.2.dev3

Configuration

Configure the driver manually by changing the cinder.conf file as follows:

volume_driver = cinder.volume.drivers.ibm.ibm_storage.IBMStorageDriver

Configuration Description for DS8000

Table 38: Description of IBM Storage driver configuration options
Configura-
tion option =
Default value

Description

[DEFAULT]
ds8k_devadd_unitadd_mapping
=

(String) Mapping between IODevice address and unit address.

ds8k_host_type
= auto

(String) Set to zLinux if your OpenStack version is prior to Liberty and youre con-
necting to zLinux systems. Otherwise set to auto. Valid values for this parameter
are: auto, AMDLinuxRHEL, AMDLinuxSuse, AppleOSX, Fujitsu, Hp, HpTru64,
HpVms, LinuxDT, LinuxRF, LinuxRHEL, LinuxSuse, Novell, SGI, SVC, SanF-
sAIX, SanFsLinux, Sun, VMWare, Win2000, Win2003, Win2008, Win2012, iL-
inux, nSeries, pLinux, pSeries, pSeriesPowerswap, zLinux, iSeries.

ds8k_ssid_prefix
= FF

(String) Set the first two digits of SSID

proxy =
cinder.
volume.
drivers.
ibm.
ibm_storage.
proxy.
IBMStorageProxy

(String) Proxy driver that connects to the IBM Storage Array

san_clustername
=

(String) Cluster name to use for creating volumes

san_ip = (String) IP address of SAN controller
san_login =
admin

(String) Username for SAN controller

san_password
=

(String) Password for SAN controller

294 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Replication parameters

Parameter Description Applicable
to

replication _de-
vice

Volume replication parameters DS8000

backend_id IP address or host name of the target storage system DS8000
san_login User name to be used during replication procedure DS8000
san_password Password to be used during replication procedure (base64-

encoded)
DS8000

san_clustername Pool name on the target storage system DS8000
port_pairs ID pairs of IO ports, participating in replication DS8000
lss_range_for _cg LSS range to reserve for consistency groups DS8000

Security

The following information provides an overview of security for the IBM Storage Driver for OpenStack.

Configuring Cinder nodes for trusted communication

The IBM Storage Driver for OpenStack communicates with DS8000 over HTTPS, using self-signed
certificate or certificate signed by a certificate authority (CA). Configure a trusted communication link to
ensure a successful attachment of a Cinder node to a DS8000 storage system, as detailed in the following
sections.

Configuring trusted communication link

Before configuring a DS8000 backend, complete the following steps to establish the chain of trust.

1. In your operating system shell, run this command to obtain the certificate: openssl x509 -in
<(openssl s_client -connect <host fqdn>:8452 -prexit 2>/dev/null) -text
-out <host fqdn>.pem

If the certificate is self-signed, the following information is displayed:

Certificate chain
0 s:/CN=ds8000.ibm.com
i:/CN=ds8000.ibm.com

2. Create an exception by moving the certificate <fqdn>.pem to the /opt/ibm/ds8k_certs/
<host>.pem file.

3. Verify that the <host fqdn> is the same as configured in san_ip.

4. If the certificate subject and issuer are different, the certificate is signed by a CA, as illustrated
below:

3.3. Reference 295

Cinder Documentation, Release 20.3.2.dev3

Certificate chain
0 s:/C=US/ST=New York/L=Armonk/O=IBM/OU=EI/CN=www.ibm.com
i:/C=US/O=GeoTrust Inc./CN=GeoTrust SSL CA - G3
1 s:/C=US/O=GeoTrust Inc./CN=GeoTrust SSL CA - G3
i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA

5. Add a public certificate to trusted CA certificate store to complete the chain of trust, as explained
below.

6. Verify trusted communication link, as explained below.

Adding a public certificate to trusted CA certificate store

Add the CA public certificate to the trusted CA certificates store on the Cinder node, according to pro-
cedures for the operating system in use.

1. For RHEL 7.x or CentOS 7.x, place the certificate to be trusted (in PEM format) into the /etc/pki/ca-
trust/source/anchors/ directory. Then, run the sudo update-ca-trust command.

2. For Ubuntu 18.04, place the certificate to be trusted (in PEM format) into the /usr/local/share/ca-
certificates/ directory. Rename the file, using the *.crt extension. Then, run the sudo
update-ca-certificates command.

3. For Python requests library with certifi, run the cat ca_public_certificate.pem command
to append the certificate to the location of the certifi trust store file. For example:

cat ca_public_certificate.pem >> /usr/local/lib/python3.6/
dist-packages/certifi/cacert.pem.

Verifying trusted communication link

Verify the chain of trust has been established successfully.

1. Obtain the location of the Python library requests trust store, according to the installation type.

2. RHEL 7.x or CentOS 7.x:

python3
Python 3.6.8 (default, Aug 7 2019, 17:28:10)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> import requests
>>> print(requests.certs.where())
/etc/pki/ca-trust/extracted/openssl/
ca-bundle.trust.crt

3. Ubuntu 18.04:

296 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

python3
Python 3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> import requests
>>> print(requests.certs.where())
/etc/ssl/certs/ca-certificates.crt

4. Python requests library with certifi:

python3
Python 3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> import requests
>>> print(requests.certs.where())
/usr/local/lib/python3.6/dist-packages/
certifi/cacert.pem

5. Run the openssl s_client -CAfile <location> -connect <host fqdn>:8452 </
dev/null command. The following return codes indicate a successful or failed attempt in
establishing a trusted communication link.

• Verify return code: 0 (ok): success.

• Verify return code: 21 (unable to verify the first certificate), or any other non-zero value: failure.

Troubleshooting

Refer to this information to troubleshoot technical problems that you might encounter when using the
IBM Storage Driver for OpenStack.

Checking the Cinder log files

The Cinder log files record operation information that might be useful for troubleshooting.

To achieve optimal and clear logging of events, activate the verbose logging level in the cinder.conf file,
located in the /etc/cinder folder. Add the following line in the file, save the file, and then restart the
cinder-volume service:

verbose = True
debug = True

To turn off the verbose logging level, change True to False, save the file, and then restart the cinder-
volume service.

Check the log files on a periodic basis to ensure that the IBM Storage Driver is functioning properly. To
check the log file on a Cinder node, go to the /var/log/cinder folder and open the activity log file named
cinder-volume.log or volume.log.

3.3. Reference 297

Cinder Documentation, Release 20.3.2.dev3

Best practices

This section contains the general guidance and best practices.

Configuring volume replication (DS8000 Family)

Volume replication is required for disaster recovery and high-availability applications running on top of
OpenStack-based clouds. The IBM Storage Driver for OpenStack supports synchronous (Metro Mirror)
volume replication for DS8000 storage systems.

1. Verify that:

• Master and remote storage pools exist on DS8000 systems.

• Reliable communication link is established between the primary and secondary sites, includ-
ing physical connection and PPRC path.

• Metro Mirror replication is enabled on DS8000 storage systems.

2. Perform the following procedure, replacing the values in the example with your own:

enabled_backends = ibm_ds8k_1, ibm_ds8k_2
[ibm_ds8k_1]
proxy = cinder.volume.drivers.ds8k_proxy.DS8KProxy
volume_backend_name = ibm_ds8k_1
san_clustername = P2,P3
san_password = actual_password
san_login = actual_username
san_ip = host_fqdn
volume_driver = cinder.volume.drivers.ibm.ibm_storage.IBMStorageDriver
chap = disabled
connection_type = fibre_channel
replication_device = connection_type: fibre_channel,
backend_id: bar, san_ip: host_fqdn,
san_login: actual_username, san_password: actual_password,
san_clustername: P4, port_pairs: I0236-I0306; I0237-I0307

[ibm_ds8k_2]
proxy = cinder.volume.drivers.ibm.ds8k_proxy.DS8KProxy
volume_backend_name = ibm_ds8k_2
san_clustername = P4,P5
san_password = actual_password
san_login = actual_username
san_ip = 10.0.0.1
volume_driver = cinder.volume.drivers.ibm.ibm_storage.IBMStorageDriver
chap = disabled
connection_type = fibre_channel

298 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Configuring groups

The IBM Storage Driver for OpenStack supports volume grouping. These groups can be assigned a group
type, and used for replication and group snapshotting.

Replication groups

For better control over replication granularity, the user can employ volume grouping. This enables vol-
ume group replication and failover without affecting the entire backend. The user can choose between
a generic group replication and consistency group (CG) replication. For consistency group replication,
the driver utilizes the storage capabilities to handle CGs and replicate them to a remote site. On the other
hand, in generic group replication, the driver replicates each volume individually. In addition, the user
can select the replication type.

To configure group replication:

1. Create sync replicated consistency-group.

• Create a volume type for replication.

#cinder type-create rep-vol-1

• Create a volume type for replication.

#cinder type-key rep-vol-1
set replication_type='<is> sync'
replication_enabled='<is> True'

• Create a group type.

#cinder group-type-create rep-gr-1

• Configure the group type.

#cinder group-type-key rep-gr-1 set group_replication_enabled='<is> True'␣
↪→replication_type='<is> sync'

• Create a replicated group, using existing group type and volume type.

#cinder group-create rep-gr-1 rep-vol-1 --name replicated-gr-1

2. Create a volume and add it to the group.

• Create a replicated volume.

#cinder create --name vol-1 --volume-type rep-vol-1 1

• Add the volume to the group.

#cinder group-update --add-volumes 91492ed9-c3cf-4732-a525-60e146510b90␣
↪→replicated-gr-1

3.3. Reference 299

Cinder Documentation, Release 20.3.2.dev3

Note: You can also create the volume directly into the group by using the group-id parameter,
followed by ID of a group that the new volume belongs to. This function is supported by API
version 3.13 and later.

3. Enable replication.

#cinder group-enable-replication replicated-gr-1

4. Disable replication.

#cinder group-disable-replication replicated-gr-1

5. Fail over the replicated group.

#cinder group-failover-replication replicated-gr-1

Consistency groups

Consistency groups are mostly the same as replication groups, but with additional support of group
snapshots (consistent_group_snapshot_enabled parameter). See configuration example below.

#cinder group-type-create cg1
#cinder group-type-show cg1
#cinder group-type-key cg1 set consistent_group_snapshot_enabled="<is> True"
#cinder group-create --name cg1 IBM-DS8K_ibm.com_P0_P1_fibre_channel_not_thin,
IBM-DS8K_ibm.com_P0_P1_fibre_channel_thin,
IBM-DS8K_ibm.com_P0_P1_fibre_channel_not_thin_replica,
IBM-DS8K_ibm.com_P0_P1_fibre_channel_thin_replica

Using volume types for volume allocation control (DS8000 Family)

For better controls over volume placement granularity, you can use volume types. This enables volumes
to be created on specific LSSes or pools. You can combine both types.

• Storage pool

#cinder type-key pool-1_2 set drivers:storage_pool_ids='P1,P2'

• LSS

#cinder type-key lss80_81 set drivers:storage_lss_ids='80,81'

300 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

IBM Spectrum Virtualize family volume driver

The volume management driver for Spectrum Virtualize family offers various block storage services. It
provides OpenStack Compute instances with access to IBM Spectrum Virtualize family storage products.
These products include the IBM SAN Volume Controller and IBM FlashSystem family members built
with IBM Spectrum Virtualize (including FlashSystem 5xxx, 7xxx, 9xxx).

For specific product publications, see IBM Documentation.

Note: IBM Spectrum Virtualize family is formerly known as IBM Storwize. As a result, the product
code contains Storwize terminology and prefixes.

Supported operations

The IBM Spectrum Virtualize family volume driver supports the following block storage service volume
operations:

• Create, list, delete, attach (map), and detach (unmap) volumes.

• Create, list, and delete volume snapshots.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Retype a volume.

• Create a volume from a snapshot.

• Create, list, and delete consistency group.

• Create, list, and delete consistency group snapshot.

• Modify consistency group (add or remove volumes).

• Create consistency group from source (source can be a CG or CG snapshot)

• Manage an existing volume.

• Failover-host for replicated back ends.

• Failback-host for replicated back ends.

• Create, list, and delete replication group.

• Enable, disable replication group.

• Failover, failback replication group.

3.3. Reference 301

Cinder Documentation, Release 20.3.2.dev3

Configure the Spectrum Virtualize family system

Network configuration

The Spectrum Virtualize family system must be configured for iSCSI, Fibre Channel, or both.

If using iSCSI, each Spectrum Virtualize family node should have at least one iSCSI IP address. The
Spectrum Virtualize family driver uses an iSCSI IP address associated with the volumes preferred node
(if available) to attach the volume to the instance, otherwise it uses the first available iSCSI IP address of
the system. The driver obtains the iSCSI IP address directly from the storage system. You do not need
to provide these iSCSI IP addresses directly to the driver.

Note: If using iSCSI, ensure that the compute nodes have iSCSI network access to the Spectrum Virtu-
alize family system.

If using Fibre Channel (FC), each Spectrum Virtualize family node should have at least one WWPN port
configured. The driver uses all available WWPNs to attach the volume to the instance. The driver obtains
the WWPNs directly from the storage system. You do not need to provide these WWPNs directly to the
driver.

Note: If using FC, ensure that the compute nodes have FC connectivity to the Spectrum Virtualize
family system.

iSCSI CHAP authentication

If using iSCSI for data access and the storwize_svc_iscsi_chap_enabled is set to True, the driver
will associate randomly-generated CHAP secrets with all hosts on the Spectrum Virtualize family. The
compute nodes use these secrets when creating iSCSI connections.

Warning: CHAP secrets are added to existing hosts as well as newly-created ones. If the CHAP
option is enabled, hosts will not be able to access the storage without the generated secrets.

Note: Not all OpenStack Compute drivers support CHAP authentication. Please check compatibility
before using.

Note: CHAP secrets are passed from OpenStack Block Storage to Compute in clear text. This commu-
nication should be secured to ensure that CHAP secrets are not discovered.

302 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Configure storage pools

The IBM Spectrum Virtualize family driver can allocate volumes in multiple pools. The pools should be
created in advance and be provided to the driver using the storwize_svc_volpool_name configuration
flag in the form of a comma-separated list. For the complete list of configuration flags, see Spectrum
Virtualize family driver options in cinder.conf .

Configure user authentication for the driver

The driver requires access to the Spectrum Virtualize family system management interface. The driver
communicates with the management using SSH. The driver should be provided with the Spectrum Vir-
tualize family management IP using the san_ip flag, and the management port should be provided by
the san_ssh_port flag. By default, the port value is configured to be port 22 (SSH). Also, you can set
the secondary management IP using the storwize_san_secondary_ip flag.

Note: Make sure the compute node running the cinder-volume management driver has SSH network
access to the storage system.

To allow the driver to communicate with the Spectrum Virtualize family system, you must provide the
driver with a user on the storage system. The driver has two authentication methods: password-based
authentication and SSH key pair authentication. The user should have an Administrator role. It is sug-
gested to create a new user for the management driver. Please consult with your storage and security
administrator regarding the preferred authentication method and how passwords or SSH keys should be
stored in a secure manner.

Note: When creating a new user on the Spectrum Virtualize family system, make sure the user belongs
to the Administrator group or to another group that has an Administrator role.

If using password authentication, assign a password to the user on the Spectrum Virtualize family system.
The driver configuration flags for the user and password are san_login and san_password, respec-
tively.

If you are using the SSH key pair authentication, create SSH private and public keys using the instructions
below or by any other method. Associate the public key with the user by uploading the public key:
select the choose file option in the Spectrum Virtualize family management GUI under SSH public key.
Alternatively, you may associate the SSH public key using the command-line interface; details can be
found in the Spectrum Virtualize family documentation. The private key should be provided to the driver
using the san_private_key configuration flag.

3.3. Reference 303

Cinder Documentation, Release 20.3.2.dev3

Create a SSH key pair with OpenSSH

You can create an SSH key pair using OpenSSH, by running:

$ ssh-keygen -t rsa

The command prompts for a file to save the key pair. For example, if you select key as the filename,
two files are created: key and key.pub. The key file holds the private SSH key and key.pub holds the
public SSH key.

The command also prompts for a pass phrase, which should be empty.

The private key file should be provided to the driver using the san_private_key configuration flag. The
public key should be uploaded to the Spectrum Virtualize family system using the storage management
GUI or command-line interface.

Note: Ensure that Cinder has read permissions on the private key file.

Configure the Spectrum Virtualize family driver

Enable the Spectrum Virtualize family driver

Set the volume driver to the Spectrum Virtualize family driver by setting the volume_driver option in
the cinder.conf file as follows:

iSCSI:

[svc1234]
volume_driver = cinder.volume.drivers.ibm.storwize_svc.storwize_svc_iscsi.
↪→StorwizeSVCISCSIDriver
san_ip = 1.2.3.4
san_login = superuser
san_password = passw0rd
storwize_svc_volpool_name = cinder_pool1
volume_backend_name = svc1234

FC:

[svc1234]
volume_driver = cinder.volume.drivers.ibm.storwize_svc.storwize_svc_fc.
↪→StorwizeSVCFCDriver
san_ip = 1.2.3.4
san_login = superuser
san_password = passw0rd
storwize_svc_volpool_name = cinder_pool1
volume_backend_name = svc1234

304 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Replication configuration

Add the following to the back-end specification to specify another storage to replicate to:

replication_device = backend_id:rep_svc,
san_ip:1.2.3.5,
san_login:superuser,
san_password:passw0rd,
pool_name:cinder_pool1

The backend_id is a unique name of the remote storage, the san_ip, san_login, and san_password
is authentication information for the remote storage. The pool_name is the pool name for the replication
target volume.

Note: Only one replication_device can be configured for one back end storage since only one
replication target is supported now.

Spectrum Virtualize family driver options in cinder.conf

The following options specify default values for all volumes. Some can be over-ridden using volume
types, which are described below.

Note: IBM Spectrum Virtualize family is formerly known as IBM Storwize. As a result, the product
code contains Storwize terminology and prefixes.

Table 39: Description of IBM Spectrum Virtualize Family driver
configuration options

Configuration option = Default value Description
[DEFAULT]
san_ip = (String) IP address of SAN controller.
san_login = admin (String) Username for SAN controller.
san_password = (String) Password for SAN controller.
san_private_key = (String) Filename of private key to use for SSH authentication.
san_ssh_port = 22 (Port number) SSH port to use with SAN.
ssh_conn_timeout = 30 (Integer) SSH connection timeout in seconds.
ssh_min_pool_conn = 1 (Integer) Minimum SSH connections in the pool.
ssh_max_pool_conn = 5 (Integer) Maximum SSH connections in the pool.
storwize_san_secondary_ip = None (String) Specifies secondary management IP or hostname to be used if san_ip is invalid or becomes inaccessible.
storwize_svc_allow_tenant_qos = False (Boolean) Allow tenants to specify QoS on create.
storwize_svc_flashcopy_rate = 50 (Integer) Specifies the Spectrum Virtualize Family FlashCopy copy rate to be used when creating a full volume copy. The default is rate is 50, and the valid rates are 1-100.
storwize_svc_clean_rate = 50 (Integer) Specifies the Storwize cleaning rate for the mapping. The default rate is 50, and the valid rates are 0-150.
storwize_svc_flashcopy_timeout = 120 (Integer) Maximum number of seconds to wait for FlashCopy to be prepared.
storwize_svc_iscsi_chap_enabled = True (Boolean) Configure CHAP authentication for iSCSI connections. (Default: Enabled)
storwize_svc_multihostmap_enabled = True (Boolean) DEPRECATED: This option no longer has any affect. It is deprecated and will be removed in the next release.
storwize_svc_multipath_enabled = False (Boolean) Connect with multipath (FC only; iSCSI multipath is controlled by Nova).

continues on next page

3.3. Reference 305

Cinder Documentation, Release 20.3.2.dev3

Table 39 – continued from previous page
Configuration option = Default value Description
storwize_svc_stretched_cluster_partner = None (String) If operating in stretched cluster mode, specify the name of the pool in which mirrored copies are stored. For example: pool2
storwize_svc_vol_autoexpand = True (Boolean) Storage system autoexpand parameter for volumes (True/False).
storwize_svc_vol_compression = False (Boolean) Storage system compression option for volumes.
storwize_svc_vol_easytier = True (Boolean) Enable Easy Tier for volumes.
storwize_svc_vol_grainsize = 256 (Integer) Storage system grain size parameter for volumes (32/64/128/256)
storwize_svc_vol_iogrp = 0 (Integer) The I/O group in which to allocate volumes
storwize_svc_vol_nofmtdisk = False (Boolean) Specifies that the volume not be formatted during creation.
storwize_svc_vol_rsize = 2 (Integer) Storage system space-efficiency parameter for volumes (percentage).
storwize_svc_vol_warning = 0 (Integer) Storage system threshold for volume capacity warnings (percentage).
storwize_svc_volpool_name = volpool (List) Comma separated list of storage system storage pools for volumes.
storwize_svc_mirror_pool = None (String) Specifies the name of the pool in which mirrored copy is stored. For example: pool2
storwize_svc_retain_aux_volume = False (Boolean) Defines an optional parameter to retain an auxiliary volume in a mirror relationship upon deletion of the primary volume or moving it to a non-mirror relationship.
storwize_peer_pool = None (String) Specifies the name of the peer pool for a HyperSwap volume. The peer pool must exist on the other site.
storwize_preferred_host_site = {} (Dictionary) Specifies the site information for host. One WWPN or multi-WWPNs used in the host can be specified. For example: storwize_preferred_host_site=site1:wwpn1,site2:wwpn2&wwpn3 or storwize_preferred_host_site=site1:iqn1,site2:iqn2
cycle_period_seconds = 300 (Integer) Defines an optional cycle period that applies to Global Mirror relationships with a cycling mode of multi. A Global Mirror relationship using the multi cycling_mode performs a complete cycle at most once each period. The default is 300 seconds, and the valid seconds are 60-86400.
storwize_portset = None (String) Specifies the name of the portset in which host to be created.

Note the following:

• The authentication requires either a password (san_password) or SSH private key
(san_private_key). One must be specified. If both are specified, the driver uses only
the SSH private key.

• The driver creates thin-provisioned volumes by default. The storwize_svc_vol_rsize flag
defines the initial physical allocation percentage for thin-provisioned volumes, or if set to -1, the
driver creates full allocated volumes. More details about the available options are available in the
Spectrum Virtualize family documentation.

Placement with volume types

The IBM Spectrum Virtualize family exposes capabilities that can be added to the extra specs of
volume types, and used by the filter scheduler to determine placement of new volumes. Make sure to
prefix these keys with capabilities: to indicate that the scheduler should use them. The following
extra specs are supported:

• capabilities:volume_backend_name - Specify a specific back-end where the volume should
be created. The back-end name is a concatenation of the name of the Spectrum Virtualize family
storage system as shown in lssystem, an underscore, and the name of the pool (mdisk group).
For example:

capabilities:volume_backend_name=myV7000_openstackpool

• capabilities:compression_support - Specify a back-end according to compression support.
A value of True should be used to request a back-end that supports compression, and a value of
Falsewill request a back-end that does not support compression. If you do not have constraints on
compression support, do not set this key. Note that specifying True does not enable compression;
it only requests that the volume be placed on a back-end that supports compression. Example
syntax:

306 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

capabilities:compression_support='<is> True'

Note: Currently, the compression_enabled() API that indicates compression_license support is not fully
functional. It does not work on all storage types. Additional functionalities will be added in a later release.

• capabilities:easytier_support - Similar semantics as the compression_support key, but
for specifying according to support of the Easy Tier feature. Example syntax:

capabilities:easytier_support='<is> True'

• capabilities:pool_name - Specify a specific pool to create volume if only multiple pools are
configured. pool_name should be one value configured in storwize_svc_volpool_name flag. Ex-
ample syntax:

capabilities:pool_name=cinder_pool2

Configure per-volume creation options

Volume types can also be used to pass options to the IBM Spectrum Virtualize family driver, which
over-ride the default values set in the configuration file. Contrary to the previous examples where the
capabilities scope was used to pass parameters to the Cinder scheduler, options can be passed to the
Spectrum Virtualize family driver with the drivers scope.

The following extra specs keys are supported by the Spectrum Virtualize family driver:

• rsize

• warning

• autoexpand

• grainsize

• compression

• easytier

• multipath

• iogrp

• mirror_pool

• volume_topology

• peer_pool

• flashcopy_rate

• clean_rate

• cycle_period_seconds

These keys have the same semantics as their counterparts in the configuration file. They are set similarly;
for example, rsize=2 or compression=False.

3.3. Reference 307

Cinder Documentation, Release 20.3.2.dev3

Example: Volume types

In the following example, we create a volume type to specify a controller that supports compression, and
enable compression:

$ openstack volume type create compressed
$ openstack volume type set --property capabilities:compression_support='<is>␣
↪→True' --property drivers:compression=True compressed

We can then create a 50GB volume using this type:

$ openstack volume create "compressed volume" --type compressed --size 50

In the following example, create a volume type that enables synchronous replication (metro mirror):

$ openstack volume type create ReplicationType
$ openstack volume type set --property replication_type="<in> metro" \

--property replication_enabled='<is> True' --property volume_backend_
↪→name=svc234 ReplicationType

In the following example, we create a volume type to support stretch cluster volume or mirror volume:

$ openstack volume type create mirror_vol_type
$ openstack volume type set --property volume_backend_name=svc1 \

--property drivers:mirror_pool=pool2 mirror_vol_type

Volume types can be used, for example, to provide users with different

• performance levels (such as, allocating entirely on an HDD tier, using Easy Tier for an HDD-SDD
mix, or allocating entirely on an SSD tier)

• resiliency levels (such as, allocating volumes in pools with different RAID levels)

• features (such as, enabling/disabling Real-time Compression, replication volume creation)

QOS

The Spectrum Virtualize family driver provides QOS support for storage volumes by controlling
the I/O amount. QOS is enabled by editing the etc/cinder/cinder.conf file and setting the
storwize_svc_allow_tenant_qos to True.

There are three ways to set the Spectrum Virtualize family IOThrotting parameter for storage volumes:

• Add the qos:IOThrottling key into a QOS specification and associate it with a volume type.

• Add the qos:IOThrottling key into an extra specification with a volume type.

• Add the qos:IOThrottling key to the storage volume metadata.

Note: If you are changing a volume type with QOS to a new volume type without QOS, the QOS
configuration settings will be removed.

308 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Operational notes for the Spectrum Virtualize family driver

Migrate volumes

In the context of OpenStack block storages volume migration feature, the IBM Spectrum Virtualize family
driver enables the storages virtualization technology. When migrating a volume from one pool to another,
the volume will appear in the destination pool almost immediately, while the storage moves the data in
the background.

Note: To enable this feature, both pools involved in a given volume migration must have the same
values for extent_size. If the pools have different values for extent_size, the data will still be
moved directly between the pools (not host-side copy), but the operation will be synchronous.

Extend volumes

The IBM Spectrum Virtualize family driver allows for extending a volumes size, but only for volumes
without snapshots.

Snapshots and clones

Snapshots are implemented using FlashCopy with no background copy (space-efficient). Volume clones
(volumes created from existing volumes) are implemented with FlashCopy, but with background copy
enabled. This means that volume clones are independent, full copies. While this background copy is
taking place, attempting to delete or extend the source volume will result in that operation waiting for the
copy to complete.

Volume retype

The IBM Spectrum Virtualize family driver enables you to modify volume types. When you modify
volume types, you can also change these extra specs properties:

• rsize

• warning

• autoexpand

• grainsize

• compression

• easytier

• iogrp

• nofmtdisk

• mirror_pool

• volume_topology

• peer_pool

3.3. Reference 309

Cinder Documentation, Release 20.3.2.dev3

• flashcopy_rate

• cycle_period_seconds

Note: When you change the rsize, grainsize or compression properties, volume copies are asyn-
chronously synchronized on the array.

Note: To change the iogrp property, IBM Spectrum Virtualize family firmware version 6.4.0 or later
is required.

Replication operation

Configure replication in volume type

A volume is only replicated if the volume is created with a volume-type that has the extra spec
replication_enabled set to <is> True. Three types of replication are supported now, global mir-
ror(async), global mirror with change volume(async) and metro mirror(sync). It can be specified by
a volume-type that has the extra spec replication_type set to <in> global, <in> gmcv or <in>
metro. If no replication_type is specified, global mirror will be created for replication.

If replication_type set to <in> gmcv, cycle_period_seconds can be set as the cycling time perform
global mirror relationship with multi cycling mode. Default value is 300. Example syntax:

$ cinder type-create gmcv_type
$ cinder type-key gmcv_type set replication_enabled='<is> True' \

replication_type="<in> gmcv" drivers:cycle_period_seconds=500

Note: It is better to establish the partnership relationship between the replication source storage and the
replication target storage manually on the storage back end before replication volume creation.

Failover host

The failover-host command is designed for the case where the primary storage is down.

$ cinder failover-host cinder@svciscsi --backend_id target_svc_id

If a failover command has been executed and the primary storage has been restored, it is possible to do a
failback by simply specifying default as the backend_id:

$ cinder failover-host cinder@svciscsi --backend_id default

Note: Before you perform a failback operation, synchronize the data from the replication target volume
to the primary one on the storage back end manually, and do the failback only after the synchronization
is done since the synchronization may take a long time. If the synchronization is not done manually,

310 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Spectrum Virtualize family block storage service driver will perform the synchronization and do the
failback after the synchronization is finished.

Replication group

Before creating replication group, a group-spec which key consistent_group_replication_enabled
set to <is> True should be set in group type. Volume type used to create group must be replica-
tion enabled, and its replication_type should be set either <in> global or <in> metro. The
failover_group api allows group to be failed over and back without failing over the entire host. Example
syntax:

• Create replication group

$ cinder group-type-create rep-group-type-example
$ cinder group-type-key rep-group-type-example set consistent_group_
↪→replication_enabled='<is> True'
$ cinder type-create type-global
$ cinder type-key type-global set replication_enabled='<is> True' replication_
↪→type='<in> global'
$ cinder group-create rep-group-type-example type-global --name global-group

• Failover replication group

$ cinder group-failover-replication --secondary-backend-id target_svc_id␣
↪→group_id

• Failback replication group

$ cinder group-failover-replication --secondary-backend-id default group_id

Note: Optionally, allow-attached-volume can be used to failover the in-use volume, but fail over/back an
in-use volume is not recommended. If the user does failover operation to an in-use volume, the volume
status remains in-use after failover. But the in-use replication volume would change to read-only since
the primary volume is changed to auxiliary side and the instance is still attached to the master volume.
As a result please detach the replication volume first and attach again if user want to reuse the in-use
replication volume as read-write.

HyperSwap Volumes

A HyperSwap volume is created with a volume-type that has the extra spec drivers:volume_topology
set to hyperswap. To support HyperSwap volumes, IBM Spectrum Virtualize family firmware version
7.6.0 or later is required. Add the following to the back-end configuration to specify the host preferred
site for HyperSwap volume. FC:

storwize_preferred_host_site = site1:20000090fa17311e&ff00000000000001,
site2:20000089762sedce&ff00000000000000

iSCSI:

3.3. Reference 311

Cinder Documentation, Release 20.3.2.dev3

storwize_preferred_host_site = site1:iqn.1993-08.org.debian:01:eac5ccc1aaa&
↪→iqn.1993-08.org.debian:01:be53b7e236be,

site2:iqn.1993-08.org.debian:01:eac5ccc1bbb&
↪→iqn.1993-08.org.debian:01:abcdefg9876w

The site1 and site2 are names of the two host sites used in Spectrum Virtualize family storage systems.
The WWPNs and IQNs are the connectors used for host mapping in the Spectrum Virtualize family.

$ cinder type-create hyper_type
$ cinder type-key hyper_type set drivers:volume_topology=hyperswap \

drivers:peer_pool=Pool_site2

Note: The property rsize is considered as buffersize for the HyperSwap volume. The HyperSwap
property iogrp is selected by storage.

A group is created as a HyperSwap group with a group-type that has the group spec
hyperswap_group_enabled set to <is> True.

INFINIDAT InfiniBox Block Storage driver

The INFINIDAT Block Storage volume driver provides iSCSI and Fibre Channel support for INFINIDAT
InfiniBox storage systems.

This section explains how to configure the INFINIDAT driver.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy a volume to an image.

• Copy an image to a volume.

• Clone a volume.

• Extend a volume.

• Get volume statistics.

• Create, modify, delete, and list consistency groups.

• Create, modify, delete, and list snapshots of consistency groups.

• Create consistency group from consistency group or consistency group snapshot.

312 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

External package installation

The driver requires the infinisdk package for communicating with InfiniBox systems. Install the pack-
age from PyPI using the following command:

$ pip install infinisdk

Setting up the storage array

Create a storage pool object on the InfiniBox array in advance. The storage pool will contain volumes
managed by OpenStack. Refer to the InfiniBox manuals for details on pool management.

Driver configuration

Edit the cinder.conf file, which is usually located under the following path /etc/cinder/cinder.
conf.

• Add a section for the INFINIDAT driver back end.

• Under the [DEFAULT] section, set the enabled_backends parameter with the name of the new
back-end section.

Configure the driver back-end section with the parameters below.

• Configure the driver name by setting the following parameter:

volume_driver = cinder.volume.drivers.infinidat.InfiniboxVolumeDriver

• Configure the management IP of the InfiniBox array by adding the following parameter:

san_ip = InfiniBox management IP

• Verify that the InfiniBox array can be managed via an HTTPS connection. And the
driver_use_ssl parameter should be set to true to enable use of the HTTPS protocol. HTTP
can also be used if driver_use_ssl is set to (or defaults to) false. To suppress requests library
SSL certificate warnings, set the suppress_requests_ssl_warnings parameter to true.

driver_use_ssl = true/false
suppress_requests_ssl_warnings = true/false

These parameters defaults to false.

• Configure user credentials.

The driver requires an InfiniBox user with administrative privileges. We recommend creating a
dedicated OpenStack user account that holds an administrative user role. Refer to the InfiniBox
manuals for details on user account management. Configure the user credentials by adding the
following parameters:

san_login = infinibox_username
san_password = infinibox_password

• Configure the name of the InfiniBox pool by adding the following parameter:

3.3. Reference 313

Cinder Documentation, Release 20.3.2.dev3

infinidat_pool_name = Pool defined in InfiniBox

• The back-end name is an identifier for the back end. We recommend using the same name as the
name of the section. Configure the back-end name by adding the following parameter:

volume_backend_name = back-end name

• Thin provisioning.

The INFINIDAT driver supports creating thin or thick provisioned volumes. Configure thin or
thick provisioning by adding the following parameter:

san_thin_provision = true/false

This parameter defaults to true.

• Configure the connectivity protocol.

The InfiniBox driver supports connection to the InfiniBox system in both the fibre channel and
iSCSI protocols. Configure the desired protocol by adding the following parameter:

infinidat_storage_protocol = iscsi/fc

This parameter defaults to fc.

• Configure iSCSI netspaces.

When using the iSCSI protocol to connect to InfiniBox systems, you must configure one or more
iSCSI network spaces in the InfiniBox storage array. Refer to the InfiniBox manuals for details on
network space management. Configure the names of the iSCSI network spaces to connect to by
adding the following parameter:

infinidat_iscsi_netspaces = iscsi_netspace

Multiple network spaces can be specified by a comma separated string.

This parameter is ignored when using the FC protocol.

• Configure CHAP

InfiniBox supports CHAP authentication when using the iSCSI protocol. To enable CHAP authen-
tication, add the following parameter:

use_chap_auth = true

To manually define the username and password, add the following parameters:

chap_username = username
chap_password = password

If the CHAP username or password are not defined, they will be auto-generated by the driver.

The CHAP parameters are ignored when using the FC protocol.

• Volume compression

Volume compression is disabled by default. To enable volume compression, add the following
parameter:

314 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

infinidat_use_compression = true

Volume compression is available on InfiniBox 3.0 onward.

Configuration example

[DEFAULT]
enabled_backends = infinidat-pool-a

[infinidat-pool-a]
volume_driver = cinder.volume.drivers.infinidat.InfiniboxVolumeDriver
volume_backend_name = infinidat-pool-a
driver_use_ssl = true
suppress_requests_ssl_warnings = true
san_ip = 10.1.2.3
san_login = openstackuser
san_password = openstackpass
san_thin_provision = true
infinidat_pool_name = pool-a
infinidat_storage_protocol = iscsi
infinidat_iscsi_netspaces = default_iscsi_space

Driver-specific options

The following table contains the configuration options that are specific to the INFINIDAT driver.

Table 40: Description of INFINIDAT InfiniBox configuration op-
tions

Configuration option = De-
fault value

Description

infinidat_iscsi_netspaces
= []

(List of String) List of names of network spaces to use for iSCSI
connectivity

infinidat_pool_name =
None

(String) Name of the pool from which volumes are allocated

infinidat_storage_protocol
= fc

(String(choices=[iscsi, fc])) Protocol for transferring data between
host and storage back-end.

infinidat_use_compression
= False

(Boolean) Specifies whether to turn on compression for newly cre-
ated volumes.

3.3. Reference 315

Cinder Documentation, Release 20.3.2.dev3

Infortrend volume driver

The Infortrend volume driver is a Block Storage driver providing iSCSI and Fibre Channel support for
Infortrend storages.

Supported operations

The Infortrend volume driver supports the following volume operations:

• Create, delete, attach, and detach volumes.

• Create and delete a snapshot.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume

• Retype a volume.

• Manage and unmanage a volume.

• Migrate a volume with back-end assistance.

• Live migrate an instance with volumes hosted on an Infortrend backend.

System requirements

To use the Infortrend volume driver, the following settings are required:

Set up Infortrend storage

• Create logical volumes in advance.

• Host side setting Peripheral device type should be No Device Present (Type=0x7f).

Set up cinder-volume node

• Install JRE 7 or later.

• Download the Infortrend storage CLI from the release page. Choose the raidcmd_ESDS10.jar
file, whichs under v2.1.3 on the github releases page, and assign it to the default path /opt/bin/
Infortrend/.

316 Chapter 3. For operators

http://www.infortrend.com/global
https://github.com/infortrend-openstack/infortrend-cinder-driver/releases

Cinder Documentation, Release 20.3.2.dev3

Driver configuration

On cinder-volume nodes, set the following in your /etc/cinder/cinder.conf, and use the follow-
ing options to configure it:

Driver options

Table 41: Description of Infortrend volume driver configuration
options

Configuration option =
Default value

Description

[DEFAULT]
infortrend_cli_max_retries
= 5

(Integer) The maximum retry times if a command fails.

infortrend_cli_path
= /opt/bin/
Infortrend/
raidcmd_ESDS10.jar

(String) The Infortrend CLI absolute path.

infortrend_cli_timeout
= 60

(Integer) The timeout for CLI in seconds.

infortrend_cli_cache
= False

(Boolean) The Infortrend CLI cache. Make sure the array is only managed
by Openstack, and it is only used by one cinder-volume node. Otherwise,
never enable it! The data might be asynchronous if there were any other
operations.

infortrend_pools_name
= None

(String) The Infortrend logical volumes name list. It is separated with
comma.

infortrend_iqn_prefix
= iqn.2002-10.com.
infortrend

(String) Infortrend iqn prefix for iSCSI.

infortrend_slots_a_channels_id
= None

(String) Infortrend raid channel ID list on Slot A for OpenStack usage. It
is separated with comma.

infortrend_slots_b_channels_id
= None

(String) Infortrend raid channel ID list on Slot A for OpenStack usage. It
is separated with comma.

java_path = /usr/
bin/java

(String) The Java absolute path.

iSCSI configuration example

[DEFAULT]
default_volume_type = IFT-ISCSI
enabled_backends = IFT-ISCSI

[IFT-ISCSI]
volume_driver = cinder.volume.drivers.infortrend.infortrend_iscsi_cli.
↪→InfortrendCLIISCSIDriver
volume_backend_name = IFT-ISCSI
infortrend_pools_name = POOL-1,POOL-2

(continues on next page)

3.3. Reference 317

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

san_ip = MANAGEMENT_PORT_IP
san_password = MANAGEMENT_PASSWORD
infortrend_slots_a_channels_id = 0,1,2,3
infortrend_slots_b_channels_id = 0,1,2,3

Fibre Channel configuration example

[DEFAULT]
default_volume_type = IFT-FC
enabled_backends = IFT-FC

[IFT-FC]
volume_driver = cinder.volume.drivers.infortrend.infortrend_fc_cli.
↪→InfortrendCLIFCDriver
volume_backend_name = IFT-FC
infortrend_pools_name = POOL-1,POOL-2,POOL-3
san_ip = MANAGEMENT_PORT_IP
san_password = MANAGEMENT_PASSWORD
infortrend_slots_a_channels_id = 4,5

Multipath configuration

• Enable multipath for image transfer in /etc/cinder/cinder.conf for each back end or in
[backend_defaults] section as a common configuration for all backends.

use_multipath_for_image_xfer = True

Restart the cinder-volume service.

• Enable multipath for volume attach and detach in /etc/nova/nova.conf.

[libvirt]
...
volume_use_multipath = True
...

Restart the nova-compute service.

Extra spec usage

• infortrend:provisioning - Defaults to full provisioning, the valid values are thin and full.

• infortrend:tiering - Defaults to use all tiering, the valid values are subsets of 0, 1, 2, 3.

If multi-pools are configured in cinder.conf, it can be specified for each pool, separated by
semicolon.

For example:

318 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

infortrend:provisioning: POOL-1:thin; POOL-2:full

infortrend:tiering: POOL-1:all; POOL-2:0; POOL-3:0,1,3

For more details, see Infortrend documents.

Inspur AS13000 series volume driver

Inspur AS13000 series volume driver provides OpenStack Compute instances with access to Inspur
AS13000 series storage system.

Inspur AS13000 storage can be used with iSCSI connection.

This documentation explains how to configure and connect the block storage nodes to Inspur AS13000
series storage.

Driver options

The following table contains the configuration options supported by the Inspur AS13000 iSCSI driver.

Table 42: Description of Inspur AS13000 configuration options
Configuration
option = Default
value

Description

as13000_ipsan_pools
= [Pool0]

(List of String) The Storage Pools Cinder should use, a comma separated list.

as13000_meta_pool
= None

(String) The pool which is used as a meta pool when creating a volume, and it
should be a replication pool at present. If not set, the driver will choose a repli-
cation pool from the value of as13000_ipsan_pools.

as13000_token_available_time
= 3300

(Integer(min=600, max=3600)) The effective time of token validity in seconds.

Supported operations

• Create, list, delete, attach (map), and detach (unmap) volumes.

• Create, list and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

3.3. Reference 319

http://www.infortrend.com/ImageLoader/LoadDoc/715

Cinder Documentation, Release 20.3.2.dev3

Configure Inspur AS13000 iSCSI backend

This section details the steps required to configure the Inspur AS13000 storage cinder driver.

1. In the cinder.conf configuration file under the [DEFAULT] section, set the enabled_backends
parameter.

[DEFAULT]
enabled_backends = AS13000-1

2. Add a backend group section for backend group specified in the enabled_backends parameter.

3. In the newly created backend group section, set the following configuration options:

[AS13000-1]
The driver path
volume_driver = cinder.volume.drivers.inspur.as13000.as13000_driver.
↪→AS13000Driver
Management IP of Inspur AS13000 storage array
san_ip = 10.0.0.10
The Rest API port
san_api_port = 8088
Management username of Inspur AS13000 storage array
san_login = root
Management password of Inspur AS13000 storage array
san_password = passw0rd
The Pool used to allocated volumes
as13000_ipsan_pools = Pool0
The Meta Pool to use, should be a replication Pool
as13000_meta_pool = Pool_Rep
Backend name
volume_backend_name = AS13000

4. Save the changes to the /etc/cinder/cinder.conf file and restart the cinder-volume service.

Inspur InStorage family volume driver

Inspur InStorage family volume driver provides OpenStack Compute instances with access to Inspur
Instorage family storage system.

Inspur InStorage storage system can be used with FC or iSCSI connection.

This documentation explains how to configure and connect the block storage nodes to Inspur InStorage
family storage system.

320 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Supported operations

• Create, list, delete, attach (map), and detach (unmap) volumes.

• Create, list and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Retype a volume.

• Manage and unmanage a volume.

• Create, list, and delete consistency group.

• Create, list, and delete consistency group snapshot.

• Modify consistency group (add or remove volumes).

• Create consistency group from source.

• Failover and Failback support.

Configure Inspur InStorage iSCSI/FC backend

This section details the steps required to configure the Inspur InStorage Cinder Driver for single FC or
iSCSI backend.

1. In the cinder.conf configuration file under the [DEFAULT] section, set the enabled_backends
parameter with the iSCSI or FC back-end group

• For Fibre Channel:

[DEFAULT]
enabled_backends = instorage-fc-1

• For iSCSI:

[DEFAULT]
enabled_backends = instorage-iscsi-1

2. Add a back-end group section for back-end group specified in the enabled_backends parameter

3. In the newly created back-end group section, set the following configuration options:

• For Fibre Channel:

[instorage-fc-1]
Management IP of Inspur InStorage storage array
san_ip = 10.0.0.10
Management Port of Inspur InStorage storage array, by default set␣
↪→to 22

(continues on next page)

3.3. Reference 321

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

san_ssh_port = 22
Management username of Inspur InStorage storage array
san_login = username
Management password of Inspur InStorage storage array
san_password = password
Private key for Inspur InStorage storage array
san_private_key = path/to/the/private/key
The Pool used to allocated volumes
instorage_mcs_volpool_name = Pool0
The driver path
volume_driver = cinder.volume.drivers.inspur.instorage.instorage_fc.
↪→InStorageMCSFCDriver
Backend name
volume_backend_name = instorage_fc

• For iSCSI:

[instorage-iscsi-1]
Management IP of Inspur InStorage storage array
san_ip = 10.0.0.10
Management Port of Inspur InStorage storage array, by default set␣
↪→to 22
san_ssh_port = 22
Management username of Inspur InStorage storage array
san_login = username
Management password of Inspur InStorage storage array
san_password = password
Private key for Inspur InStorage storage array
san_private_key = path/to/the/private/key
The Pool used to allocated volumes
instorage_mcs_volpool_name = Pool0
The driver path
volume_driver = cinder.volume.drivers.inspur.instorage.instorage_
↪→iscsi.InStorageMCSISCSIDriver
Backend name
volume_backend_name = instorage_iscsi

Note: When both san_password and san_private_key are provide, the driver will use private
key prefer to password.

4. Save the changes to the /etc/cinder/cinder.conf file and restart the cinder-volume service.

322 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Intel Rack Scale Design (RSD) driver

The Intel Rack Scale Design volume driver is a block storage driver providing NVMe-oF support for
RSD storage.

System requirements

To use the RSD driver, the following requirements are needed:

• The driver only supports RSD API at version 2.4 or later.

• The driver requires rsd-lib.

• cinder-volume should be running on one of the composed node in RSD, and have access to the
PODM url.

• All the nova-compute services should be running on the composed nodes in RSD.

• All the cinder-volume and nova-compute nodes should have installed dmidecode and the latest
nvme-cli with connect/disconnect subcommands.

Supported operations

• Create, delete volumes.

• Attach, detach volumes.

• Copy an image to a volume.

• Copy a volume to an image.

• Create, delete snapshots.

• Create a volume from a snapshot.

• Clone a volume.

• Extend a volume.

• Get volume statistics.

Configuration

On cinder-volume nodes, using the following configurations in your /etc/cinder/cinder.conf:

volume_driver = cinder.volume.drivers.rsd.RSDDriver

The following table contains the configuration options supported by the RSD driver:

Table 43: Description of RSD configuration options
Configuration option = Default value Description
podm_password = <> (String) Password of PODM service
podm_url = <> (String) URL of PODM service
podm_username = <> (String) Username of PODM service

3.3. Reference 323

Cinder Documentation, Release 20.3.2.dev3

Kaminario K2 all-flash array iSCSI and FC volume drivers

Kaminarios K2 all-flash array leverages a unique software-defined architecture that delivers highly valued
predictable performance, scalability and cost-efficiency.

Kaminarios K2 all-flash iSCSI and FC arrays can be used in OpenStack Block Storage for providing
block storage using KaminarioISCSIDriver class and KaminarioFCDriver class respectively.

This documentation explains how to configure and connect the block storage nodes to one or more K2
all-flash arrays.

Driver requirements

• Kaminarios K2 all-flash iSCSI and/or FC array

• K2 REST API version >= 2.2.0

• K2 version 5.8 or later are supported

• krest python library(version 1.3.1 or later) should be installed on the Block Storage node using
sudo pip install krest

• The Block Storage Node should also have a data path to the K2 array for the following operations:

– Create a volume from snapshot

– Clone a volume

– Copy volume to image

– Copy image to volume

– Retype dedup without replication<->nodedup without replication

Supported operations

• Create, delete, attach, and detach volumes.

• Create and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Retype a volume.

• Manage and unmanage a volume.

• Replicate volume with failover and failback support to K2 array.

324 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Limitations and known issues

If your OpenStack deployment is not setup to use multipath, the network connectivity of the K2 all-flash
array will use a single physical port.

This may significantly limit the following benefits provided by K2:

• available bandwidth

• high-availability

• non disruptive-upgrade

The following steps are required to setup multipath access on the Compute and the Block Storage nodes

1. Install multipath software on both Compute and Block Storage nodes.

For example:

apt-get install sg3-utils multipath-tools

2. In the [libvirt] section of the nova.conf configuration file, specify
volume_use_multipath=True. This option is valid for both iSCSI and FC drivers. In
versions prior to Newton, the option was called iscsi_use_multipath.

Additional resources: Kaminario Host Configuration Guide for Linux (for configuring multipath)

3. Restart the compute service for the changes to take effect.

service nova-compute restart

Configure single Kaminario iSCSI/FC back end

This section details the steps required to configure the Kaminario Cinder Driver for single FC or iSCSI
backend.

1. In the cinder.conf configuration file under the [DEFAULT] section, set the
scheduler_default_filters parameter:

[DEFAULT]
scheduler_default_filters = DriverFilter,CapabilitiesFilter

See following documents for more information: Cinder Scheduler Filters and Configure and use
driver filter and weighing for scheduler.

2. Under the [DEFAULT] section, set the enabled_backends parameter with the iSCSI or FC back-end
group

[DEFAULT]
For iSCSI
enabled_backends = kaminario-iscsi-1

For FC
enabled_backends = kaminario-fc-1

3. Add a back-end group section for back-end group specified in the enabled_backends parameter

3.3. Reference 325

Cinder Documentation, Release 20.3.2.dev3

4. In the newly created back-end group section, set the following configuration options:

[kaminario-iscsi-1]
Management IP of Kaminario K2 All-Flash iSCSI/FC array
san_ip = 10.0.0.10
Management username of Kaminario K2 All-Flash iSCSI/FC array
san_login = username
Management password of Kaminario K2 All-Flash iSCSI/FC array
san_password = password
Enable Kaminario K2 iSCSI/FC driver
volume_driver = cinder.volume.drivers.kaminario.kaminario_iscsi.
↪→KaminarioISCSIDriver
volume_driver = cinder.volume.drivers.kaminario.kaminario_fc.
↪→KaminarioFCDriver

Backend name
volume_backend_name = kaminario_fc_1
volume_backend_name = kaminario_iscsi_1

K2 driver calculates max_oversubscription_ratio on setting below
option as True. Default value is False
auto_calc_max_oversubscription_ratio = False

Set a limit on total number of volumes to be created on K2 array, for␣
↪→example:
filter_function = "capabilities.total_volumes < 250"

For replication, replication_device must be set and the replication␣
↪→peer must be configured
on the primary and the secondary K2 arrays
Syntax:
replication_device = backend_id:<s-array-ip>,login:<s-username>,
↪→password:<s-password>,rpo:<value>
where:
s-array-ip is the secondary K2 array IP
rpo must be either 60(1 min) or multiple of 300(5 min)
Example:
replication_device = backend_id:10.0.0.50,login:kaminario,
↪→password:kaminario,rpo:300

Suppress requests library SSL certificate warnings on setting this␣
↪→option as True
Default value is 'False'
suppress_requests_ssl_warnings = False

5. Restart the Block Storage services for the changes to take effect:

service cinder-api restart
service cinder-scheduler restart
service cinder-volume restart

326 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Setting multiple Kaminario iSCSI/FC back ends

The following steps are required to configure multiple K2 iSCSI/FC backends:

1. In the cinder.conf file under the [DEFAULT] section, set the enabled_backends parameter with
the comma-separated iSCSI/FC back-end groups.

[DEFAULT]
enabled_backends = kaminario-iscsi-1, kaminario-iscsi-2, kaminario-iscsi-3

2. Add a back-end group section for each back-end group specified in the enabled_backends parameter

3. For each back-end group section, enter the configuration options as described in the above section
Configure single Kaminario iSCSI/FC back end

See Configure multiple-storage back ends for additional information.

4. Restart the cinder volume service for the changes to take effect.

service cinder-volume restart

Creating volume types

Create volume types for supporting volume creation on the multiple K2 iSCSI/FC backends. Set follow-
ing extras-specs in the volume types:

• volume_backend_name : Set value of this spec according to the value of volume_backend_name
in the back-end group sections. If only this spec is set, then dedup Kaminario cinder volumes will
be created without replication support

$ openstack volume type create kaminario_iscsi_dedup_noreplication
$ openstack volume type set --property volume_backend_name=kaminario_
↪→iscsi_1 \
kaminario_iscsi_dedup_noreplication

• kaminario:thin_prov_type : Set this spec in the volume type for creating nodedup Kaminario cinder
volumes. If this spec is not set, dedup Kaminario cinder volumes will be created.

• kaminario:replication : Set this spec in the volume type for creating replication supported Kami-
nario cinder volumes. If this spec is not set, then Kaminario cinder volumes will be created without
replication support.

$ openstack volume type create kaminario_iscsi_dedup_replication
$ openstack volume type set --property volume_backend_name=kaminario_
↪→iscsi_1 \
kaminario:replication=enabled kaminario_iscsi_dedup_replication

$ openstack volume type create kaminario_iscsi_nodedup_replication
$ openstack volume type set --property volume_backend_name=kaminario_
↪→iscsi_1 \
kaminario:replication=enabled kaminario:thin_prov_type=nodedup \
kaminario_iscsi_nodedup_replication

(continues on next page)

3.3. Reference 327

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

$ openstack volume type create kaminario_iscsi_nodedup_noreplication
$ openstack volume type set --property volume_backend_name=kaminario_
↪→iscsi_1 \
kaminario:thin_prov_type=nodedup kaminario_iscsi_nodedup_noreplication

Supported retype cases

The following are the supported retypes for Kaminario cinder volumes:

• Nodedup-noreplication <> Nodedup-replication

$ cinder retype volume-id new-type

• Dedup-noreplication <> Dedup-replication

$ cinder retype volume-id new-type

• Dedup-noreplication <> Nodedup-noreplication

$ cinder retype --migration-policy on-demand volume-id new-type

For non-supported cases, try combinations of the cinder retype command.

Driver options

The following table contains the configuration options that are specific to the Kaminario K2 FC and
iSCSI Block Storage drivers.

Table 44: Description of Kaminario configuration options
Configuration option = Default
value

Description

auto_calc_max_oversubscription_ratio
= False

(Boolean) K2 driver will calculate
max_oversubscription_ratio on setting this option as
True.

disable_discovery = False (Boolean) Disabling iSCSI discovery (sendtargets) for multi-
path connections on K2 driver.

KIOXIA Kumoscale NVMeOF Driver

KIOXIA Kumoscale volume driver provides OpenStack Compute instances with access to KIOXIA Ku-
moscale NVMeOF storage systems.

This documentation explains how to configure Cinder for use with the KIOXIA Kumoscale storage back-
end system.

328 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Driver options

The following table contains the configuration options supported by the KIOXIA Kumoscale NVMeOF
driver.

Table 45: Description of KIOXIA Kumoscale configuration op-
tions

Configuration option = Default value Description
kioxia_block_size = 4096 (Integer) Volume block size in bytes - 512 or 4096 (De-

fault).
kioxia_cafile = None (String) Cert for provisioner REST API SSL
kioxia_desired_bw_per_gb = 0 (Integer) Desired bandwidth in B/s per GB.
kioxia_desired_iops_per_gb = 0 (Integer) Desired IOPS/GB.
kioxia_max_bw_per_gb = 0 (Integer) Upper limit for bandwidth in B/s per GB.
kioxia_max_iops_per_gb = 0 (Integer) Upper limit for IOPS/GB.
kioxia_max_replica_down_time = 0 (Integer) Replicated volume max downtime for replica

in minutes.
kioxia_num_replicas = 1 (Integer) Number of volume replicas.
kioxia_provisioning_type = THICK (String(choices=[THICK, THIN])) Thin or thick vol-

ume, Default thick.
kioxia_same_rack_allowed = False (Boolean) Can more than one replica be allocated to

same rack.
kioxia_snap_reserved_space_percentage
= 0

(Integer) Percentage of the parent volume to be used
for log.

kioxia_snap_vol_reserved_space_percentage
= 0

(Integer) Writable snapshot percentage of parent vol-
ume used for log.

kioxia_snap_vol_span_allowed =
True

(Boolean) Allow span in snapshot volume - Default
True.

kioxia_span_allowed = True (Boolean) Allow span - Default True.
kioxia_token = None (String) KumoScale Provisioner auth token.
kioxia_url = None (String) KumoScale provisioner REST API URL
kioxia_vol_reserved_space_percentage
= 0

(Integer) Thin volume reserved capacity allocation per-
centage.

kioxia_writable = False (Boolean) Volumes from snapshot writeable or not.

Supported operations

• Create, list, delete, attach and detach volumes

• Create, list and delete volume snapshots

• Create a volume from a snapshot

• Copy an image to a volume.

• Copy a volume to an image.

• Create volume from snapshot

• Clone a volume

• Extend a volume

3.3. Reference 329

Cinder Documentation, Release 20.3.2.dev3

Configure KIOXIA Kumoscale NVMeOF backend

This section details the steps required to configure the KIOXIA Kumoscale storage cinder driver.

1. In the cinder.conf configuration file under the [DEFAULT] section, set the enabled_backends
parameter.

[DEFAULT]
enabled_backends = kumoscale-1

2. Add a backend group section for the backend group specified in the enabled_backends parameter.

3. In the newly created backend group section, set the following configuration options:

[kumoscale-1]
Backend name
volume_backend_name=kumoscale-1
The driver path
volume_driver=cinder.volume.drivers.kioxia.kumoscale.
↪→KumoScaleBaseVolumeDriver
Kumoscale provisioner URL
kioxia_url=https://70.0.0.13:30100
Kumoscale provisioner cert file
kioxia_cafile=/etc/kioxia/ssdtoolbox.pem
Kumoscale provisioner token
token=eyJhbGciOiJIUzI1NiJ9...

Lenovo Fibre Channel and iSCSI drivers

The LenovoFCDriver and LenovoISCSIDriver Cinder drivers allow Lenovo S-Series arrays to be
used for block storage in OpenStack deployments.

System requirements

To use the Lenovo drivers, the following are required:

• Lenovo S2200, S3200, DS2200, DS4200 or DS6200 array with:

– iSCSI or FC host interfaces

– G22x firmware or later

• Network connectivity between the OpenStack host and the array management interfaces

• HTTPS or HTTP must be enabled on the array

330 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Migrate a volume with back-end assistance.

• Retype a volume.

• Manage and unmanage a volume.

Note: The generic grouping functionality supported in the G265 and later firmware is not supported by
OpenStack Cinder due to differences in the grouping models used in Cinder and the S-Series firmware.

Configuring the array

1. Verify that the array can be managed using an HTTPS connection. HTTP can also be used if
hpmsa_api_protocol=http is placed into the appropriate sections of the cinder.conf file,
but this option is deprecated and will be removed in a future release.

Confirm that virtual pools A and B are present if you plan to use virtual pools for OpenStack
storage.

2. Edit the cinder.conf file to define a storage back-end entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in key=value format.

• The lenovo_pool_name value specifies the name of the storage pool on the array.

• The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

• The rest of the options will be repeated for each storage pool in a given array:

– volume_driver specifies the Cinder driver name.

– san_ip specifies the IP addresses or host names of the arrays management controllers.

– san_login and san_password specify the username and password of an array user
account with manage privileges.

– driver_use_ssl should be set to true to enable use of the HTTPS protocol.

– lenovo_iscsi_ips specifies the iSCSI IP addresses for the array if using the iSCSI
transport protocol.

3.3. Reference 331

Cinder Documentation, Release 20.3.2.dev3

In the examples below, two back ends are defined, one for pool A and one for pool B, and a common
volume_backend_name is used so that a single volume type definition can be used to allocate
volumes from both pools.

Example: iSCSI example back-end entries

[pool-a]
lenovo_pool_name = A
volume_backend_name = lenovo-array
volume_driver = cinder.volume.drivers.lenovo.lenovo_iscsi.
↪→LenovoISCSIDriver
san_ip = 10.1.2.3
san_login = manage
san_password = !manage
lenovo_iscsi_ips = 10.2.3.4,10.2.3.5
driver_use_ssl = true

[pool-b]
lenovo_pool_name = B
volume_backend_name = lenovo-array
volume_driver = cinder.volume.drivers.lenovo.lenovo_iscsi.
↪→LenovoISCSIDriver
san_ip = 10.1.2.3
san_login = manage
san_password = !manage
lenovo_iscsi_ips = 10.2.3.4,10.2.3.5
driver_use_ssl = true

Example: Fibre Channel example back-end entries

[pool-a]
lenovo_pool_name = A
volume_backend_name = lenovo-array
volume_driver = cinder.volume.drivers.lenovo.lenovo_fc.LenovoFCDriver
san_ip = 10.1.2.3
san_login = manage
san_password = !manage
driver_use_ssl = true

[pool-b]
lenovo_pool_name = B
volume_backend_name = lenovo-array
volume_driver = cinder.volume.drivers.lenovo.lenovo_fc.LenovoFCDriver
san_ip = 10.1.2.3
san_login = manage
san_password = !manage
driver_use_ssl = true

3. If HTTPS is not enabled in the array, add lenovo_api_protocol = http in each of the back-end
definitions.

4. If HTTPS is enabled, you can enable certificate verification with the option
driver_ssl_cert_verify = True. You may also use the driver_ssl_cert_path op-

332 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

tion to specify the path to a CA_BUNDLE file containing CAs other than those in the default
list.

5. Modify the [DEFAULT] section of the cinder.conf file to add an enabled_backends parameter
specifying the back-end entries you added, and a default_volume_type parameter specifying
the name of a volume type that you will create in the next step.

Example: [DEFAULT] section changes

[DEFAULT]
...
enabled_backends = pool-a,pool-b
default_volume_type = lenovo

6. Create a new volume type for each distinct volume_backend_name value that
you added to the cinder.conf file. The example below assumes that the same
volume_backend_name=lenovo-array option was specified in all of the entries, and
specifies that the volume type lenovo can be used to allocate volumes from any of them.

Example: Creating a volume type

$ openstack volume type create lenovo
$ openstack volume type set --property volume_backend_name=lenovo-array␣
↪→lenovo

7. After modifying the cinder.conf file, restart the cinder-volume service.

Driver-specific options

The following table contains the configuration options that are specific to the Lenovo drivers.

Table 46: Description of Lenovo configuration options
Configuration option = Default
value

Description

lenovo_iscsi_ips = [] (List of String) List of comma-separated target iSCSI IP ad-
dresses.

lenovo_pool_name = A (String) Pool or Vdisk name to use for volume creation.
lenovo_pool_type = virtual (String(choices=[linear, virtual])) linear (for VDisk) or virtual

(for Pool).
lenovo_api_protocol = https (String(choices=[http, https])) Lenovo api interface protocol.

DEPRECATED
lenovo_verify_certificate =
False

(Boolean) Whether to verify Lenovo array SSL certificate.
DEPRECATED

lenovo_verify_certificate_path
= None

(String) Lenovo array SSL certificate path. DEPRECATED

3.3. Reference 333

Cinder Documentation, Release 20.3.2.dev3

Lightbits LightOS Cinder Driver

The Lightbits(TM) LightOS(R) OpenStack driver enables OpenStack clusters to use LightOS clustered
storage servers. This documentation explains how to configure Cinder for use with the Lightbits LightOS
storage backend system.

Supported operations

• Create volume

• Delete volume

• Attach volume

• Detach volume

• Create image from volume

• Live migration

• Volume replication

• Thin provisioning

• Multi-attach

• Supported vendor driver

• Extend volume

• Create snapshot

• Delete snapshot

• Create volume from snapshot

• Create volume from volume (clone)

LightOS OpenStack Driver Components

The LightOS OpenStack driver has three components: - Cinder driver - Nova libvirt volume driver -
os_brick initiator connector

In addition, it requires the LightOS discovery-client, provided with LightOS. The os_brick connec-
tor uses the LightOS discovery-client to communicate with LightOS NVMe/TCP discovery services.

The Cinder Driver

The Cinder driver integrates with Cinder and performs REST operations against the LightOS cluster. To
enable the driver, add the following to Cinders configuration file

enabled_backends = lightos,<any other storage backend you use>

and

334 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

[lightos]
volume_driver = cinder.volume.drivers.lightos.LightOSVolumeDriver
volume_backend_name = lightos
lightos_api_address = <TARGET_ACCESS_IPS>
lightos_api_port = 443
lightos_jwt=<LIGHTOS_JWT>
lightos_default_num_replicas = 3
lightos_default_compression_enabled = False
lightos_api_service_timeout=30

• TARGET_ACCESS_IPS are the LightOS cluster nodes access IPs. Multiple nodes should be sep-
arated by commas. For example: lightos_api_address = 192.168.67.78,192.168.34.
56,192.168.12.17. These IPs are where the driver looks for the LightOS clusters REST API
servers.

• LIGHTOS_JWT is the JWT (JSON Web Token) that is located at the LightOS installation controller.
You can find the jwt at ~/lightos-default-admin-jwt.

• The default number of replicas for volumes is 3, and valid values for
lightos_default_num_replicas are 1, 2, or 3.

• The default compression setting is False (i.e., data is uncompressed). The default compression
setting can also be True to indicate that new volumes should be created compressed, assuming no
other compression setting is specified via the volume type. To control compression on a per-volume
basis, create volume types for compressed and uncompressed, and use them as appropriate.

• The default time to wait for API service response is 30 seconds per API endpoint.

Creating volumes with non-default compression and number of replicas settings can be done through the
volume types mechanism. To create a new volume type with compression enabled:

$ openstack volume type create --property compression='<is> True' volume-with-
↪→compression

To create a new volume type with one replica:

$ openstack volume type create --property lightos:num_replicas=1 volume-with-
↪→one-replica

To create a new type for a compressed volume with three replicas:

$ openstack volume type create --property compression='<is> True' --property␣
↪→lightos:num_replicas=3 volume-with-three-replicas-and-compression

Then create a new volume with one of these volume types:

$ openstack volume create --size <size> --type <type name> <vol name>

3.3. Reference 335

Cinder Documentation, Release 20.3.2.dev3

NVNe/TCP and Asymmetric Namespace Access (ANA)

The LightOS clusters expose their volumes using NVMe/TCP Asynchronous Namespace Access (ANA).
ANA is a relatively new feature in the NVMe/TCP stack in Linux but it is fully supported in Ubuntu
20.04. Each compute host in the OpenStack cluster needs to be ANA-capable to provide OpenStack
VMs with LightOS volumes over NVMe/TCP. For more information on how to set up the compute nodes
to use ANA, see the CentOS Linux Cluster Client Software Installation section of the Lightbits(TM)
LightOS(R) Cluster Installation and Initial Configuration Guide.

Note

In the current version, if any of the cluster nodes changes its access IPs, the Cinder drivers configuration
file should be updated with the cluster nodes access IPs and restarted. As long as the Cinder driver can
access at least one cluster access IP it will work, but will be susceptible to cluster node failures.

Driver options

The following table contains the configuration options supported by the Lightbits LightOS Cinder driver.

Table 47: Description of Lightbits LightOS configuration options
Configuration option =
Default value

Description

lightos_api_address
= None

(List of IPAddress) The IP addresses of the LightOS API servers separated
by commas.

lightos_api_port =
443

(Port(min=0, max=65535)) The TCP/IP port at which the LightOS API
endpoints listen. Port 443 is used for HTTPS and other values are used for
HTTP.

lightos_api_service_timeout
= 30

(Integer) The default amount of time (in seconds) to wait for an API end-
point response.

lightos_default_compression_enabled
= False

(Boolean) Set to True to create new volumes compressed assuming no
other compression setting is specified via the volumes type.

lightos_default_num_replicas
= 3

(Integer(min=1, max=3)) The default number of replicas to create for each
volume.

lightos_jwt = None (String) JWT to be used for volume and snapshot operations with the
LightOS cluster. Do not set this parameter if the cluster is installed with
multi-tenancy disabled.

LINSTOR driver

The LINSTOR driver allows Cinder to use DRBD/LINSTOR instances.

336 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Configuration

Set the following option in the cinder.conf file for the DRBD transport:

volume_driver = cinder.volume.drivers.linstordrv.LinstorDrbdDriver

Or use the following for iSCSI transport:

volume_driver = cinder.volume.drivers.linstordrv.LinstorIscsiDriver

The following table contains the configuration options supported by the LINSTOR driver:

Table 48: Description of LINSTOR configuration options
Configuration option
= Default value

Description

linstor_autoplace_count
= 0

(Integer) Autoplace replication count on volume deployment. 0 = Full cluster
replication without autoplace, 1 = Single node deployment without replica-
tion, 2 or greater = Replicated deployment with autoplace.

linstor_controller_diskless
= True

(Boolean) True means Cinder node is a diskless LINSTOR node.

linstor_default_blocksize
= 4096

(Integer) Default Block size for Image restoration. When using iSCSI trans-
port, this option specifies the block size.

linstor_default_storage_pool_name
= DfltStorPool

(String) Default Storage Pool name for LINSTOR.

linstor_default_uri
= linstor://
localhost

(String) Default storage URI for LINSTOR.

linstor_default_volume_group_name
= drbd-vg

(String) Default Volume Group name for LINSTOR. Not Cinder Volume.

linstor_volume_downsize_factor
= 4096

(Float) Default volume downscale size in KiB = 4 MiB.

MacroSAN Fibre Channel and iSCSI drivers

The MacroSANFCDriver and MacroSANISCSIDriver Cinder drivers allow the MacroSAN Storage ar-
rays to be used for Block Storage in OpenStack deployments.

System requirements

To use the MacroSAN drivers, the following are required:

• MacroSAN Storage arrays with: - iSCSI or FC host interfaces - Enable RESTful service on the
MacroSAN Storage Appliance. (The service is automatically turned on in the device. You can
check if python /odsp/scripts/devop/devop.py is available via ps -aux|grep python.)

• Network connectivity between the OpenStack host and the array management interfaces

• HTTPS or HTTP must be enabled on the array

3.3. Reference 337

Cinder Documentation, Release 20.3.2.dev3

When creating a volume from image, install the multipath tool and add the following configuration
keys for each backend section or in [backend_defaults] section as a common configuration for all
backends in /etc/cinder/cinder.conf file:

[cinder-iscsi-a]
use_multipath_for_image_xfer = True

When creating a instance from image, install the multipath tool and add the following configuration
keys in the [libvirt] configuration group of the /etc/nova/nova.conf file:

iscsi_use_multipath = True

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Volume Migration (Host Assisted).

• Volume Migration (Storage Assisted).

• Retype a volume.

• Manage and unmanage a volume.

• Manage and unmanage a snapshot.

• Volume Replication.

• Thin Provisioning.

Configuring the array

1. Verify that the array can be managed via an HTTPS connection.

Confirm that virtual pools A and B are present if you plan to use virtual pools for OpenStack
storage.

2. Edit the cinder.conf file to define a storage backend entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in a key=value format.

• The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

In the examples below, two back ends are defined, one for pool A and one for pool B.

338 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Add the following configuration keys in the configuration group of enabled_backends of the
/etc/cinder/cinder.conf file:

iSCSI example back-end entries

[DEFAULT]
enabled_backends = cinder-iscsi-a, cinder-iscsi-b
rpc_response_timeout = 300

[cinder-iscsi-a]
Storage protocol.
iscsi_protocol = iscsi

#iSCSI target user-land tool.
iscsi_helper = tgtadm

The iSCSI driver to load
volume_driver = cinder.volume.drivers.macrosan.driver.MacroSANISCSIDriver.

Name to give this storage back-end.
volume_backend_name = macrosan

#Choose attach/detach volumes in cinder using multipath for volume to␣
↪→image and image to volume transfers.
use_multipath_for_image_xfer = True

IP address of the Storage if attaching directly.
san_ip = 172.17.251.142, 172.17.251.143

Storage user name.
san_login = openstack

Storage user password.
san_password = openstack

#Choose using thin-lun or thick lun. When set san_thin_provision to True,
↪→you must set
#macrosan_thin_lun_extent_size, macrosan_thin_lun_low_watermark, macrosan_
↪→thin_lun_high_watermark.
san_thin_provision = False

#The name of Pool in the Storage.
macrosan_pool = Pool-a

#The default ports used for initializing connection.
#Separate the controller by semicolons (``;``)
#Separate the ports by comma (``,``)
macrosan_client_default = eth-1:0:0, eth-1:0:1; eth-2:0:0, eth-2:0:1

#The switch to force detach volume when deleting
macrosan_force_unmap_itl = True

(continues on next page)

3.3. Reference 339

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

#Set snapshot's resource ratio
macrosan_snapshot_resource_ratio = 1

#Calculate the time spent on the operation in the log file.
macrosan_log_timing = True

=============Optional settings=============

#Set the thin lun's extent size when the san_thin_provision is True.
macrosan_thin_lun_extent_size = 8

#Set the thin lun's low watermark when the san_thin_provision is True.
#macrosan_thin_lun_low_watermark = 8

#Set the thin lun's high watermark when the san_thin_provision is True.
macrosan_thin_lun_high_watermark = 40

#The setting of Symmetrical Dual Active Storage
macrosan_sdas_ipaddrs = 172.17.251.142, 172.17.251.143
macrosan_sdas_username = openstack
macrosan_sdas_password = openstack

#The setting of Replication Storage. When you set ip, you must set
#the macrosan_replication_destination_ports parameter.
macrosan_replication_ipaddrs = 172.17.251.142, 172.17.251.143
macrosan_replication_username = openstack
macrosan_replication_password = openstack

##The ports used for the Replication Storage.
#Separate the controller by semicolons (``,``)
#Separate the ports by semicolons (``/``)
macrosan_replication_destination_ports = eth-1:0:0/eth-1:0:1, eth-2:0:0/
↪→eth-2:0:1

#Macrosan iscsi_clients list. You can configure multiple clients.␣
↪→Separate the ports by semicolons (``/``)
macrosan_client = (devstack; controller1name; eth-1:0:0/eth-1:0:1; eth-
↪→2:0:0/eth-2:0:1), (dev; controller2name; eth-1:0:0/eth-1:0:1; eth-2:0:0/
↪→eth-2:0:1)

[cinder-iscsi-b]
iscsi_protocol = iscsi
iscsi_helper = tgtadm
volume_driver = cinder.volume.drivers.macrosan.driver.MacroSANISCSIDriver
volume_backend_name = macrosan
use_multipath_for_image_xfer = True
san_ip = 172.17.251.142, 172.17.251.143
san_login = openstack

(continues on next page)

340 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

san_password = openstack
macrosan_pool = Pool-b
san_thin_provision = False
macrosan_force_unmap_itl = True
macrosan_snapshot_resource_ratio = 1
macrosan_log_timing = True
macrosan_client_default = eth-1:0:0, eth-1:0:1; eth-2:0:0, eth-2:0:1

macrosan_thin_lun_extent_size = 8
macrosan_thin_lun_low_watermark = 8
macrosan_thin_lun_high_watermark = 40
macrosan_sdas_ipaddrs = 172.17.251.142, 172.17.251.143
macrosan_sdas_username = openstack
macrosan_sdas_password = openstack
macrosan_replication_ipaddrs = 172.17.251.142, 172.17.251.143
macrosan_replication_username = openstack
macrosan_replication_password = openstack
macrosan_replication_destination_ports = eth-1:0:0, eth-2:0:0
macrosan_client = (devstack; controller1name; eth-1:0:0; eth-2:0:0), (dev;
↪→ controller2name; eth-1:0:0; eth-2:0:0)

Fibre Channel example backend entries

[DEFAULT]
enabled_backends = cinder-fc-a, cinder-fc-b
rpc_response_timeout = 300

[cinder-fc-a]
volume_driver = cinder.volume.drivers.macrosan.driver.MacroSANFCDriver
volume_backend_name = macrosan
use_multipath_for_image_xfer = True
san_ip = 172.17.251.142, 172.17.251.143
san_login = openstack
san_password = openstack
macrosan_pool = Pool-a
san_thin_provision = False
macrosan_force_unmap_itl = True
macrosan_snapshot_resource_ratio = 1
macrosan_log_timing = True

#FC Zoning mode configured.
zoning_mode = fabric

#The number of ports used for initializing connection.
macrosan_fc_use_sp_port_nr = 1

#In the case of an FC connection, the configuration item associated with␣
↪→the port is maintained.
macrosan_fc_keep_mapped_ports = True

(continues on next page)

3.3. Reference 341

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

=============Optional settings=============

macrosan_thin_lun_extent_size = 8
macrosan_thin_lun_low_watermark = 8
macrosan_thin_lun_high_watermark = 40
macrosan_sdas_ipaddrs = 172.17.251.142, 172.17.251.143
macrosan_sdas_username = openstack
macrosan_sdas_password = openstack
macrosan_replication_ipaddrs = 172.17.251.142, 172.17.251.143
macrosan_replication_username = openstack
macrosan_replication_password = openstack
macrosan_replication_destination_ports = eth-1:0:0, eth-2:0:0

[cinder-fc-b]
volume_driver = cinder.volume.drivers.macrosan.driver.MacroSANFCDriver
volume_backend_name = macrosan
use_multipath_for_image_xfer = True
san_ip = 172.17.251.142, 172.17.251.143
san_login = openstack
san_password = openstack
macrosan_pool = Pool-b
san_thin_provision = False
macrosan_force_unmap_itl = True
macrosan_snapshot_resource_ratio = 1
macrosan_log_timing = True
zoning_mode = fabric
macrosan_fc_use_sp_port_nr = 1
macrosan_fc_keep_mapped_ports = True

macrosan_thin_lun_extent_size = 8
macrosan_thin_lun_low_watermark = 8
macrosan_thin_lun_high_watermark = 40
macrosan_sdas_ipaddrs = 172.17.251.142, 172.17.251.143
macrosan_sdas_username = openstack
macrosan_sdas_password = openstack
macrosan_replication_ipaddrs = 172.17.251.142, 172.17.251.143
macrosan_replication_username = openstack
macrosan_replication_password = openstack
macrosan_replication_destination_ports = eth-1:0:0, eth-2:0:0

3. After modifying the cinder.conf file, restart the cinder-volume service.

4. Create and use volume types.

Create and use sdas volume types

$ openstack volume type create sdas
$ openstack volume type set --property sdas=True sdas

342 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Create and use replication volume types

$ openstack volume type create replication
$ openstack volume type set --property replication_enabled=True␣
↪→replication

Configuration file parameters

This section describes mandatory and optional configuration file parameters of the MacroSAN volume
driver.

Table 49: Mandatory parameters
Parame-
ter

Default
value

Description Appli-
cable
to

vol-
ume_backend_name

- indicates the name of the backend All

vol-
ume_driver

cinder.
volume.
drivers.
lvm.
LVMVolumeDriver

indicates the loaded driver All

use_multipath_for_image_xferFalse Chose attach/detach volumes in cinder using multipath for vol-
ume to image and image to volume transfers.

All

san_thin_provisionTrue Default volume type setting, True is thin lun, and False is thick
lun.

All

macrosan_force_unmap_itlTrue Force detach volume when deleting All
macrosan_log_timingTrue Calculate the time spent on the operation in the log file. All
macrosan_snapshot_resource_ratio1 Set snapshots resource ratio. All
iscsi_helper tgtadm iSCSI target user-land tool to use. iSCSI
iscsi_protocoliscsi Determines the iSCSI protocol for new iSCSI volumes, created

with tgtadm.
iSCSI

macrosan_client_defaultNone This is the default connection information for iscsi. This de-
fault configuration is used when no host related information is
obtained.

iSCSI

zon-
ing_mode

True FC Zoning mode configured. Fibre
channel

macrosan_fc_use_sp_port_nr1 The use_sp_port_nr parameter is the number of online FC
ports used by the single-ended memory when the FC connec-
tion is established in the switch non-all-pass mode. The max-
imum is 4.

Fibre
channel

macrosan_fc_keep_mapped_portsTrue In the case of an FC connection, the configuration item asso-
ciated with the port is maintained.

Fibre
channel

3.3. Reference 343

Cinder Documentation, Release 20.3.2.dev3

Table 50: Optional parameters
Parameter Default

value
Description Applicable

to
macrosan_sdas_ipaddrs- The ip of Symmetrical Dual Active Storage All
macrosan_sdas_username- The username of Symmetrical Dual Active Storage All
macrosan_sdas_password- The password of Symmetrical Dual Active Storage All
macrosan_replication_ipaddrs- The ip of replication Storage.

When you set ip, you must set the
macrosan_replication_destination_ports parameter.

All

macrosan_replication_username- The username of replication Storage All
macrosan_replication_password- The password of replication Storage All
macrosan_replication_destination_ports- The ports of replication storage when using replica-

tion storage.
All

macrosan_thin_lun_extent_size8 Set the thin luns extent size when the
san_thin_provision is True.

All

macrosan_thin_lun_low_watermark5 Set the thin luns low watermark when the
san_thin_provision is True.

All

macrosan_thin_lun_high_watermark20 Set the thin luns high watermark when the
san_thin_provision is True.

All

macrosan_client True Macrosan iscsi_clients list. You can configure
multiple clients. You can configure it in this
format: (hostname; client_name; sp1_iscsi_port;
sp2_iscsi_port), E.g: (controller1; decive1; eth-
1:0:0; eth-2:0:0),(controller2; decive2; eth-1:0:0/
eth-1:0:1; eth-2:0:0/ eth-2:0:1)

All

Important:

Client_name has the following requirements: [a-zA-Z0-9.-_:], the maximum number of characters is
31

The following are the MacroSAN driver specific options that may be set in cinder.conf :

344 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 51: Description of MacroSAN configuration options
Configuration
option = Default
value

Description

macrosan_client
= None

(List of String) Macrosan iscsi_clients list. You can configure multiple clients.
You can configure it in this format: (host; client_name; sp1_iscsi_port;
sp2_iscsi_port), (host; client_name; sp1_iscsi_port; sp2_iscsi_port) Important
warning, Client_name has the following requirements: [a-zA-Z0-9.-_:], the max-
imum number of characters is 31 E.g: (controller1; device1; eth-1:0; eth-2:0),
(controller2; device2; eth-1:0/eth-1:1; eth-2:0/eth-2:1),

macrosan_client_default
= None

(String) This is the default connection ports name for iscsi. This default configu-
ration is used when no host related information is obtained.E.g: eth-1:0/eth-1:1;
eth-2:0/eth-2:1

macrosan_fc_keep_mapped_ports
= True

(Boolean) In the case of an FC connection, the configuration item associated with
the port is maintained.

macrosan_fc_use_sp_port_nr
= 1

(Integer(max=4)) The use_sp_port_nr parameter is the number of online FC ports
used by the single-ended memory when the FC connection is established in the
switch non-all-pass mode. The maximum is 4

macrosan_force_unmap_itl
= True

(Boolean) Force disconnect while deleting volume

macrosan_log_timing
= True

(Boolean) Whether enable log timing

macrosan_pool
= None

(String) Pool to use for volume creation

macrosan_replication_destination_ports
= eth-1:0/
eth-1:1,
eth-2:0/
eth-2:1

(List of String) Slave device

macrosan_replication_ipaddrs
= None

(List of String) MacroSAN replication devices ip addresses

macrosan_replication_password
= None

(String) MacroSAN replication devices password

macrosan_replication_username
= None

(String) MacroSAN replication devices username

macrosan_sdas_ipaddrs
= None

(List of String) MacroSAN sdas devices ip addresses

macrosan_sdas_password
= None

(String) MacroSAN sdas devices password

macrosan_sdas_username
= None

(String) MacroSAN sdas devices username

macrosan_snapshot_resource_ratio
= 1.0

(Float) Set snapshots resource ratio

macrosan_thin_lun_extent_size
= 8

(Integer) Set the thin luns extent size

macrosan_thin_lun_high_watermark
= 20

(Integer) Set the thin luns high watermark

macrosan_thin_lun_low_watermark
= 5

(Integer) Set the thin luns low watermark

3.3. Reference 345

Cinder Documentation, Release 20.3.2.dev3

NEC Storage M series driver

NEC Storage M series are dual-controller disk arrays which support online maintenance. This driver
supports both iSCSI and Fibre Channel.

System requirements

Supported models:

Storage model Storage control software (firmware) Disk type
M110, M310, M510, M710 0979 or later SSD/HDD hybrid
M310F, M710F 0979 or later all flash
M120, M320 1028 or later SSD/HDD hybrid
M320F 1028 or later all flash

Requirements:

• NEC Storage M series requires firmware revision 1028 or later to create more than 1024 volumes
in a pool.

• NEC Storage DynamicDataReplication license.

• (Optional) NEC Storage IO Load Manager license for QoS.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Migrate a volume.

• Get volume statistics.

• Efficient non-disruptive volume backup.

• Manage and unmanage a volume.

• Manage and unmanage a snapshot.

• Attach a volume to multiple instances at once (multi-attach).

• Revert a volume to a snapshot.

346 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Preparation

Below is minimum preparation to a disk array. For details of each command, see the NEC Storage
Manager Command Reference (IS052).

• Common (iSCSI and Fibre Channel)

1. Initial setup

– Set IP addresses for management and BMC with the network configuration tool.

– Enter license keys. (iSMcfg licenserelease)

2. Create pools

– Create pools for volumes. (iSMcfg poolbind)

– Create pools for snapshots. (iSMcfg poolbind)

3. Create system volumes

– Create a Replication Reserved Volume (RSV) in one of pools. (iSMcfg ldbind)

– Create Snapshot Reserve Areas (SRAs) in each snapshot pool. (iSMcfg srabind)

4. (Optional) Register SSH public key

• iSCSI only

1. Set IP addresses of each iSCSI port. (iSMcfg setiscsiport)

2. Create LD Sets for each node. (iSMcfg addldset)

3. Register initiator names of each node to the corresponding LD Set. (iSMcfg addldsetinitiator)

• Fibre Channel only

1. Start access control. (iSMcfg startacc)

2. Create LD Sets for each node. (iSMcfg addldset)

3. Register WWPNs of each node to the corresponding LD Set. (iSMcfg addldsetpath)

Configuration

Set the following in your cinder.conf, and use the following options to configure it.

If you use Fibre Channel:

[Storage1]
volume_driver = cinder.volume.drivers.nec.volume.MStorageFCDriver

If you use iSCSI:

[Storage1]
volume_driver = cinder.volume.drivers.nec.volume.MStorageISCSIDriver

Also, set volume_backend_name.

3.3. Reference 347

Cinder Documentation, Release 20.3.2.dev3

[DEFAULT]
volume_backend_name = Storage1

This table shows configuration options for NEC Storage M series driver.

Table 52: Description of NEC Storage M Series configuration op-
tions

Configuration option =
Default value

Description

nec_actual_free_capacity
= False

(Boolean) Return actual free capacity.

nec_auto_accesscontrol
= True

(Boolean) Configure access control automatically.

nec_backend_max_ld_count
= 1024

(Integer) Maximum number of managing sessions.

nec_backup_ldname_format
= LX:%s

(String) M-Series Storage LD name format for snapshots.

nec_backup_pools = [] (List of String) M-Series Storage backup pool number to be used.
nec_cv_ldname_format
=
LX:__ControlVolume_%xh

(String) M-Series Storage Control Volume name format.

nec_diskarray_name =
<>

(String) Diskarray name of M-Series Storage.

nec_ismcli_fip = None (IPAddress) FIP address of M-Series Storage iSMCLI.
nec_ismcli_password
= <>

(String) Password for M-Series Storage iSMCLI.

nec_ismcli_privkey =
<>

(String) Filename of RSA private key for M-Series Storage iSMCLI.

nec_ismcli_user = <> (String) User name for M-Series Storage iSMCLI.
nec_ismview_alloptimize
= False

(Boolean) Use legacy iSMCLI command with optimization.

nec_ismview_dir =
/tmp/nec/cinder

(String) Output path of iSMview file.

nec_ldname_format =
LX:%s

(String) M-Series Storage LD name format for volumes.

nec_ldset = <> (String) M-Series Storage LD Set name for Compute Node.
nec_pools = [] (List of String) M-Series Storage pool numbers list to be used.
nec_queryconfig_view
= False

(Boolean) Use legacy iSMCLI command.

nec_ssh_pool_port_number
= 22

(Integer) Port number of ssh pool.

nec_unpairthread_timeout
= 3600

(Integer) Timeout value of Unpairthread.

nec_iscsi_portals_per_cont
= 0

(Integer) Max number of iSCSI portals per controller. 0 => unlimited.
This option is deprecated and may be removed in the next release. DEP-
RECATED

348 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Required options

• nec_ismcli_fip FIP address of M-Series Storage.

• nec_ismcli_user User name for M-Series Storage iSMCLI.

• nec_ismcli_password Password for M-Series Storage iSMCLI.

• nec_ismcli_privkey RSA secret key file name for iSMCLI (for public key authentication only).
Encrypted RSA secret key file cannot be specified.

• nec_diskarray_name Diskarray name of M-Series Storage. This parameter must be specified to
configure multiple groups (multi back end) by using the same storage device (storage device
that has the same nec_ismcli_fip). Specify the disk array name targeted by the relevant
config-group for this parameter.

• nec_backup_pools Specify one pool number where snapshots are created. Multiple pools are
not supported.

Timeout configuration

• rpc_response_timeout Set the timeout value in seconds. If three or more volumes can be cre-
ated at the same time, the reference value is 30 seconds multiplied by the number of volumes
created at the same time. Also, Specify nova parameters below in nova.conf file.

[DEFAULT]
block_device_allocate_retries = 120
block_device_allocate_retries_interval = 10

• timeout server (HAProxy configuration) In addition, you need to edit the following
value in the HAProxy configuration file (/etc/haproxy/haproxy.cfg) in an environment
where HAProxy is used.

timeout server = 600 #Specify a value greater than rpc_response_
↪→timeout.

Run the service haproxy reload command after editing the value to reload the HAProxy
settings.

Note: The OpenStack environment set up using Red Hat OpenStack Platform Director may
be set to use HAProxy.

3.3. Reference 349

Cinder Documentation, Release 20.3.2.dev3

Configuration example for /etc/cinder/cinder.conf

When using one config-group

• When using nec_ismcli_password to authenticate iSMCLI (Password authentication):

[DEFAULT]
enabled_backends = Storage1

[Storage1]
volume_driver = cinder.volume.drivers.nec.volume.MStorageISCSIDriver
volume_backend_name = Storage1
nec_ismcli_fip = 192.168.1.10
nec_ismcli_user = sysadmin
nec_ismcli_password = sys123
nec_pools = 0
nec_backup_pools = 1

• When using nec_ismcli_privkey to authenticate iSMCLI (Public key authentication):

[DEFAULT]
enabled_backends = Storage1

[Storage1]
volume_driver = cinder.volume.drivers.nec.volume.MStorageISCSIDriver
volume_backend_name = Storage1
nec_ismcli_fip = 192.168.1.10
nec_ismcli_user = sysadmin
nec_ismcli_privkey = /etc/cinder/id_rsa
nec_pools = 0
nec_backup_pools = 1

When using multi config-group (multi-backend)

• Four config-groups (backends)

Storage1, Storage2, Storage3, Storage4

• Two disk arrays

200000255C3A21CC(192.168.1.10) Example for using config-group, Storage1 and Storage2

2000000991000316(192.168.1.20) Example for using config-group, Storage3 and Storage4

[DEFAULT]
enabled_backends = Storage1,Storage2,Storage3,Storage4

[Storage1]
volume_driver = cinder.volume.drivers.nec.volume.MStorageISCSIDriver
volume_backend_name = Gold
nec_ismcli_fip = 192.168.1.10

(continues on next page)

350 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

nec_ismcli_user = sysadmin
nec_ismcli_password = sys123
nec_pools = 0
nec_backup_pools = 2
nec_diskarray_name = 200000255C3A21CC

[Storage2]
volume_driver = cinder.volume.drivers.nec.volume.MStorageISCSIDriver
volume_backend_name = Silver
nec_ismcli_fip = 192.168.1.10
nec_ismcli_user = sysadmin
nec_ismcli_password = sys123
nec_pools = 1
nec_backup_pools = 3
nec_diskarray_name = 200000255C3A21CC

[Storage3]
volume_driver = cinder.volume.drivers.nec.volume.MStorageISCSIDriver
volume_backend_name = Gold
nec_ismcli_fip = 192.168.1.20
nec_ismcli_user = sysadmin
nec_ismcli_password = sys123
nec_pools = 0
nec_backup_pools = 2
nec_diskarray_name = 2000000991000316

[Storage4]
volume_driver = cinder.volume.drivers.nec.volume.MStorageISCSIDriver
volume_backend_name = Silver
nec_ismcli_fip = 192.168.1.20
nec_ismcli_user = sysadmin
nec_ismcli_password = sys123
nec_pools = 1
nec_backup_pools = 3
nec_diskarray_name = 2000000991000316

NEC Storage V series driver

NEC Storage V series driver provides Fibre Channel and iSCSI support for NEC V series storages.

3.3. Reference 351

Cinder Documentation, Release 20.3.2.dev3

System requirements

Supported models:

Storage model Firmware version
V100, V300 93-04-21 or later

Required storage licenses:

• iStorage Local Replication Local Replication Software

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Create, list, update, and delete consistency groups.

• Create, list, and delete consistency group snapshots.

• Copy a volume to an image.

• Copy an image to a volume.

• Clone a volume.

• Extend a volume.

• Migrate a volume.

• Get volume statistics.

• Efficient non-disruptive volume backup.

• Manage and unmanage a volume.

• Attach a volume to multiple instances at once (multi-attach).

• Revert a volume to a snapshot.

Note: A volume with snapshots cannot be extended in this driver.

Configuration

Set up NEC V series storage

You need to specify settings as described below for storage systems. For details about each setting, see
the users guide of the storage systems.

Common resources:

352 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• All resources All storage resources, such as DP pools and host groups, can not have a name
including blank space in order for the driver to use them.

• User accounts Create a storage device account belonging to the Administrator User Group.

• DP Pool Create a DP pool that is used by the driver.

• Resource group If using a new resource group for exclusive use by an OpenStack system, create
a new resource group, and assign the necessary resources, such as LDEVs, port, and host
group (iSCSI target) to the created resource.

• Ports Enable Port Security for the ports used by the driver.

If you use iSCSI:

• Ports Assign an IP address and a TCP port number to the port.

Set up NEC V series storage volume driver

Set the volume driver to NEC V series storage driver by setting the volume_driver option in the cin-
der.conf file as follows:

If you use Fibre Channel:

[Storage1]
volume_driver = cinder.volume.drivers.nec.v.nec_v_fc.VStorageFCDriver
volume_backend_name = Storage1
san_ip = 1.2.3.4
san_api_port = 23451
san_login = userid
san_password = password
nec_v_storage_id = 123456789012
nec_v_pool = pool0

If you use iSCSI:

[Storage1]
volume_driver = cinder.volume.drivers.nec.v.nec_v_iscsi.VStorageISCSIDriver
volume_backend_name = Storage1
san_ip = 1.2.3.4
san_api_port = 23451
san_login = userid
san_password = password
nec_v_storage_id = 123456789012
nec_v_pool = pool0

This table shows configuration options for NEC V series storage driver.

Table 53: Description of NEC V series storage driver configuration
options

Configuration option = Default value Description
nec_v_async_copy_check_interval = 10 (Integer(min=1, max=600)) Interval in seconds to check asynchronous copying status during a copy pair deletion or data restoration.
nec_v_compute_target_ports = [] (List of String) IDs of the storage ports used to attach volumes to compute nodes. To specify multiple ports, connect them by commas (e.g. CL1-A,CL2-A).

continues on next page

3.3. Reference 353

Cinder Documentation, Release 20.3.2.dev3

Table 53 – continued from previous page
Configuration option = Default value Description
nec_v_copy_check_interval = 3 (Integer(min=1, max=600)) Interval in seconds to check copying status during a volume copy.
nec_v_copy_speed = 3 (Integer(min=1, max=15)) Copy speed of storage system. 1 or 2 indicates low speed, 3 indicates middle speed, and a value between 4 and 15 indicates high speed.
nec_v_discard_zero_page = True (Boolean) Enable or disable zero page reclamation in a DP-VOL.
nec_v_exec_retry_interval = 5 (Integer) Retry interval in seconds for REST API execution.
nec_v_extend_timeout = 600 (Integer) Maximum wait time in seconds for a volume extention to complete.
nec_v_group_create = False (Boolean) If True, the driver will create host groups or iSCSI targets on storage ports as needed.
nec_v_group_delete = False (Boolean) If True, the driver will delete host groups or iSCSI targets on storage ports as needed.
nec_v_host_mode_options = [] (List of String) Host mode option for host group or iSCSI target
nec_v_ldev_range = None (String) Range of the LDEV numbers in the format of xxxx-yyyy that can be used by the driver. Values can be in decimal format (e.g. 1000) or in colon-separated hexadecimal format (e.g. 00:03:E8).
nec_v_lock_timeout = 7200 (Integer) Maximum wait time in seconds for storage to be unlocked.
nec_v_lun_retry_interval = 1 (Integer) Retry interval in seconds for REST API adding a LUN.
nec_v_lun_timeout = 50 (Integer) Maximum wait time in seconds for adding a LUN to complete.
nec_v_pool = None (String) Pool number or pool name of the DP pool.
nec_v_rest_another_ldev_mapped_retry_timeout = 600 (Integer) Retry time in seconds when new LUN allocation request fails.
nec_v_rest_connect_timeout = 30 (Integer) Maximum wait time in seconds for REST API connection to complete.
nec_v_rest_disable_io_wait = True (Boolean) It may take some time to detach volume after I/O. This option will allow detaching volume to complete immediately.
nec_v_rest_get_api_response_timeout = 1800 (Integer) Maximum wait time in seconds for a response against GET method of REST API.
nec_v_rest_job_api_response_timeout = 1800 (Integer) Maximum wait time in seconds for a response from REST API.
nec_v_rest_keep_session_loop_interval = 180 (Integer) Loop interval in seconds for keeping REST API session.
nec_v_rest_server_busy_timeout = 7200 (Integer) Maximum wait time in seconds when REST API returns busy.
nec_v_rest_tcp_keepalive = True (Boolean) Enables or disables use of REST API tcp keepalive
nec_v_rest_tcp_keepcnt = 4 (Integer) Maximum number of transmissions for TCP keepalive packet.
nec_v_rest_tcp_keepidle = 60 (Integer) Wait time in seconds for sending a first TCP keepalive packet.
nec_v_rest_tcp_keepintvl = 15 (Integer) Interval of transmissions in seconds for TCP keepalive packet.
nec_v_rest_timeout = 30 (Integer) Maximum wait time in seconds for REST API execution to complete.
nec_v_restore_timeout = 86400 (Integer) Maximum wait time in seconds for the restore operation to complete.
nec_v_snap_pool = None (String) Pool number or pool name of the snapshot pool.
nec_v_state_transition_timeout = 900 (Integer) Maximum wait time in seconds for a volume transition to complete.
nec_v_storage_id = None (String) Product number of the storage system.
nec_v_target_ports = [] (List of String) IDs of the storage ports used to attach volumes to the controller node. To specify multiple ports, connect them by commas (e.g. CL1-A,CL2-A).
nec_v_zoning_request = False (Boolean) If True, the driver will configure FC zoning between the server and the storage system provided that FC zoning manager is enabled.

Required options

• san_ip IP address of SAN controller

• san_login Username for SAN controller

• san_password Password for SAN controller

• nec_v_storage_id Product number of the storage system.

• nec_v_pool Pool number or pool name of the DP pool.

354 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

NetApp unified driver

The NetApp unified driver is a Block Storage driver that supports multiple storage families and protocols.
Currently, the only storage family supported by this driver is the clustered Data ONTAP. The storage
protocol refers to the protocol used to initiate data storage and access operations on those storage systems
like iSCSI and NFS. The NetApp unified driver can be configured to provision and manage OpenStack
volumes on a given storage family using a specified storage protocol.

Also, the NetApp unified driver supports over subscription or over provisioning when thin provisioned
Block Storage volumes are in use. The OpenStack volumes can then be used for accessing and storing
data using the storage protocol on the storage family system. The NetApp unified driver is an extensible
interface that can support new storage families and protocols.

Note: With the Juno release of OpenStack, Block Storage has introduced the concept of storage pools,
in which a single Block Storage back end may present one or more logical storage resource pools from
which Block Storage will select a storage location when provisioning volumes.

In releases prior to Juno, the NetApp unified driver contained some scheduling logic that determined
which NetApp storage container (namely, a FlexVol volume for Data ONTAP) that a new Block Storage
volume would be placed into.

With the introduction of pools, all scheduling logic is performed completely within the Block Storage
scheduler, as each NetApp storage container is directly exposed to the Block Storage scheduler as a
storage pool. Previously, the NetApp unified driver presented an aggregated view to the scheduler and
made a final placement decision as to which NetApp storage container the Block Storage volume would
be provisioned into.

NetApp clustered Data ONTAP storage family

The NetApp clustered Data ONTAP storage family represents a configuration group which provides
Compute instances access to clustered Data ONTAP storage systems. At present it can be configured in
Block Storage to work with iSCSI and NFS storage protocols.

NetApp iSCSI configuration for clustered Data ONTAP

The NetApp iSCSI configuration for clustered Data ONTAP is an interface from OpenStack to clustered
Data ONTAP storage systems. It provisions and manages the SAN block storage entity, which is a NetApp
LUN that can be accessed using the iSCSI protocol.

The iSCSI configuration for clustered Data ONTAP is a direct interface from Block Storage to the clus-
tered Data ONTAP instance and as such does not require additional management software to achieve the
desired functionality. It uses NetApp APIs to interact with the clustered Data ONTAP instance.

Configuration options

Configure the volume driver, storage family, and storage protocol to the NetApp unified driver, clustered
Data ONTAP, and iSCSI respectively by setting the volume_driver, netapp_storage_family and
netapp_storage_protocol options in the cinder.conf file as follows:

3.3. Reference 355

Cinder Documentation, Release 20.3.2.dev3

volume_driver = cinder.volume.drivers.netapp.common.NetAppDriver
netapp_storage_family = ontap_cluster
netapp_storage_protocol = iscsi
netapp_vserver = openstack-vserver
netapp_server_hostname = myhostname
netapp_server_port = port
netapp_login = username
netapp_password = password

Note: To use the iSCSI protocol, you must override the default value of netapp_storage_protocol
with iscsi. Note that this is not the same value that is reported by the driver to the scheduler as stor-
age_protocol, which is always iSCSI (case sensitive).

356 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 54: Description of NetApp cDOT iSCSI driver configuration
options

Con-
figu-
ration
option
= De-
fault
value

Description

[DE-
FAULT]
netapp_login
=
None

(String) Administrative user account name used to access the storage system or proxy server.

netapp_lun_ostype
=
None

(String) This option defines the type of operating system that will access a LUN exported
from Data ONTAP; it is assigned to the LUN at the time it is created.

netapp_lun_space_reservation
=
enabled

(String) This option determines if storage space is reserved for LUN allocation. If enabled,
LUNs are thick provisioned. If space reservation is disabled, storage space is allocated on
demand.

netapp_password
=
None

(String) Password for the administrative user account specified in the netapp_login option.

netapp_pool_name_search_pattern
= (.
+)

(String) This option is used to restrict provisioning to the specified pools. Specify the value
of this option to be a regular expression which will be applied to the names of objects from
the storage backend which represent pools in Cinder. This option is only utilized when the
storage protocol is configured to use iSCSI or FC.

netapp_replication_aggregate_map
=
None

(Unknown) Multi opt of dictionaries to represent the aggregate mapping between
source and destination back ends when using whole back end replication. For ev-
ery source aggregate associated with a cinder pool (NetApp FlexVol), you would
need to specify the destination aggregate on the replication target device. A repli-
cation target device is configured with the configuration option replication_device.
Specify this option as many times as you have replication devices. Each entry
takes the standard dict config form: netapp_replication_aggregate_map = back-
end_id:<name_of_replication_device_section>,src_aggr_name1:dest_aggr_name1,src_aggr_name2:dest_aggr_name2,

netapp_server_hostname
=
None

(String) The hostname (or IP address) for the storage system or proxy server.

netapp_server_port
=
None

(Integer) The TCP port to use for communication with the storage system or proxy server.
If not specified, Data ONTAP drivers will use 80 for HTTP and 443 for HTTPS.

netapp_size_multiplier
= 1.2

(Floating point) The quantity to be multiplied by the requested volume size to ensure enough
space is available on the virtual storage server (Vserver) to fulfill the volume creation request.
Note: this option is deprecated and will be removed in favor of reserved_percentage in the
Mitaka release.

netapp_snapmirror_quiesce_timeout
=
3600

(Integer) The maximum time in seconds to wait for existing SnapMirror transfers to complete
before aborting during a failover.

netapp_storage_family
=
ontap_cluster

(String) The storage family type used on the storage system; the only valid value is on-
tap_cluster for using clustered Data ONTAP.

netapp_storage_protocol
=
None

(String) The storage protocol to be used on the data path with the storage system.

netapp_transport_type
=
http

(String) The transport protocol used when communicating with the storage system or proxy
server.

netapp_vserver
=
None

(String) This option specifies the virtual storage server (Vserver) name on the storage cluster
on which provisioning of block storage volumes should occur.

3.3. Reference 357

Cinder Documentation, Release 20.3.2.dev3

Note: If you specify an account in the netapp_login that only has virtual storage server (Vserver)
administration privileges (rather than cluster-wide administration privileges), some advanced features of
the NetApp unified driver will not work and you may see warnings in the Block Storage logs.

Note: The driver supports iSCSI CHAP uni-directional authentication. To enable it, set the
use_chap_auth option to True.

Tip: For more information on these options and other deployment and operational scenarios, visit the
NetApp OpenStack website.

NetApp NFS configuration for clustered Data ONTAP

The NetApp NFS configuration for clustered Data ONTAP is an interface from OpenStack to a clustered
Data ONTAP system for provisioning and managing OpenStack volumes on NFS exports provided by
the clustered Data ONTAP system that are accessed using the NFS protocol.

The NFS configuration for clustered Data ONTAP is a direct interface from Block Storage to the clustered
Data ONTAP instance and as such does not require any additional management software to achieve the
desired functionality. It uses NetApp APIs to interact with the clustered Data ONTAP instance.

Configuration options

Configure the volume driver, storage family, and storage protocol to NetApp unified driver, clustered
Data ONTAP, and NFS respectively by setting the volume_driver, netapp_storage_family, and
netapp_storage_protocol options in the cinder.conf file as follows:

volume_driver = cinder.volume.drivers.netapp.common.NetAppDriver
netapp_storage_family = ontap_cluster
netapp_storage_protocol = nfs
netapp_vserver = openstack-vserver
netapp_server_hostname = myhostname
netapp_server_port = port
netapp_login = username
netapp_password = password
nfs_shares_config = /etc/cinder/nfs_shares

358 Chapter 3. For operators

http://netapp.io/openstack/

Cinder Documentation, Release 20.3.2.dev3

Table 55: Description of NetApp cDOT NFS driver configuration
options

Con-
figu-
ration
option
= De-
fault
value

Description

[DE-
FAULT]
expiry_thres_minutes
= 720

(Integer) This option specifies the threshold for last access time for images in the NFS image
cache. When a cache cleaning cycle begins, images in the cache that have not been accessed
in the last M minutes, where M is the value of this parameter, will be deleted from the cache
to create free space on the NFS share.

netapp_copyoffload_tool_path
=
None

(String) This option specifies the path of the NetApp copy offload tool binary. Ensure that
the binary has execute permissions set which allow the effective user of the cinder-volume
process to execute the file.

netapp_host_type
=
None

(String) This option defines the type of operating system for all initiators that can access a
LUN. This information is used when mapping LUNs to individual hosts or groups of hosts.

netapp_login
=
None

(String) Administrative user account name used to access the storage system or proxy server.

netapp_lun_ostype
=
None

(String) This option defines the type of operating system that will access a LUN exported
from Data ONTAP; it is assigned to the LUN at the time it is created.

netapp_password
=
None

(String) Password for the administrative user account specified in the netapp_login option.

netapp_pool_name_search_pattern
= (.
+)

(String) This option is used to restrict provisioning to the specified pools. Specify the value
of this option to be a regular expression which will be applied to the names of objects from
the storage backend which represent pools in Cinder. This option is only utilized when the
storage protocol is configured to use iSCSI or FC.

netapp_replication_aggregate_map
=
None

(Unknown) Multi opt of dictionaries to represent the aggregate mapping between
source and destination back ends when using whole back end replication. For ev-
ery source aggregate associated with a cinder pool (NetApp FlexVol), you would
need to specify the destination aggregate on the replication target device. A repli-
cation target device is configured with the configuration option replication_device.
Specify this option as many times as you have replication devices. Each entry
takes the standard dict config form: netapp_replication_aggregate_map = back-
end_id:<name_of_replication_device_section>,src_aggr_name1:dest_aggr_name1,src_aggr_name2:dest_aggr_name2,

netapp_server_hostname
=
None

(String) The hostname (or IP address) for the storage system or proxy server.

netapp_server_port
=
None

(Integer) The TCP port to use for communication with the storage system or proxy server.
If not specified, Data ONTAP drivers will use 80 for HTTP and 443 for HTTPS.

netapp_snapmirror_quiesce_timeout
=
3600

(Integer) The maximum time in seconds to wait for existing SnapMirror transfers to complete
before aborting during a failover.

netapp_storage_family
=
ontap_cluster

(String) The storage family type used on the storage system; the only valid value is on-
tap_cluster for using clustered Data ONTAP.

netapp_storage_protocol
=
None

(String) The storage protocol to be used on the data path with the storage system.

netapp_transport_type
=
http

(String) The transport protocol used when communicating with the storage system or proxy
server.

netapp_vserver
=
None

(String) This option specifies the virtual storage server (Vserver) name on the storage cluster
on which provisioning of block storage volumes should occur.

thres_avl_size_perc_start
= 20

(Integer) If the percentage of available space for an NFS share has dropped below the value
specified by this option, the NFS image cache will be cleaned.

thres_avl_size_perc_stop
= 60

(Integer) When the percentage of available space on an NFS share has reached the percentage
specified by this option, the driver will stop clearing files from the NFS image cache that have
not been accessed in the last M minutes, where M is the value of the expiry_thres_minutes
configuration option.

3.3. Reference 359

Cinder Documentation, Release 20.3.2.dev3

Note: Additional NetApp NFS configuration options are shared with the generic NFS driver. These
options can be found here: Description of NFS storage configuration options.

Note: If you specify an account in the netapp_login that only has virtual storage server (Vserver)
administration privileges (rather than cluster-wide administration privileges), some advanced features of
the NetApp unified driver will not work and you may see warnings in the Block Storage logs.

NetApp NFS Copy Offload client

A feature was added in the Icehouse release of the NetApp unified driver that enables Image service
images to be efficiently copied to a destination Block Storage volume. When the Block Storage and
Image service are configured to use the NetApp NFS Copy Offload client, a controller-side copy will
be attempted before reverting to downloading the image from the Image service. This improves image
provisioning times while reducing the consumption of bandwidth and CPU cycles on the host(s) running
the Image and Block Storage services. This is due to the copy operation being performed completely
within the storage cluster.

The NetApp NFS Copy Offload client can be used in either of the following scenarios:

• The Image service is configured to store images in an NFS share that is exported from a NetApp
FlexVol volume and the destination for the new Block Storage volume will be on an NFS share
exported from a different FlexVol volume than the one used by the Image service. Both FlexVols
must be located within the same cluster.

• The source image from the Image service has already been cached in an NFS image cache within
a Block Storage back end. The cached image resides on a different FlexVol volume than the desti-
nation for the new Block Storage volume. Both FlexVols must be located within the same cluster.

To use this feature, you must configure the Image service, as follows:

• Set the default_store configuration option to file.

• Set the filesystem_store_datadir configuration option to the path to the Image service NFS
export.

• Set the show_image_direct_url configuration option to True.

• Set the show_multiple_locations configuration option to True.

• Set the filesystem_store_metadata_file configuration option to a metadata file. The meta-
data file should contain a JSON object that contains the correct information about the NFS export
used by the Image service.

To use this feature, you must configure the Block Storage service, as follows:

• Set the netapp_copyoffload_tool_path configuration option to the path to the NetApp Copy
Offload binary.

Important: This feature requires that:

– The storage system must have Data ONTAP v8.2 or greater installed.

360 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– The vStorage feature must be enabled on each storage virtual machine (SVM, also known as
a Vserver) that is permitted to interact with the copy offload client.

– To configure the copy offload workflow, enable NFS v4.0 or greater and export it from the
SVM.

Tip: To download the NetApp copy offload binary to be utilized in conjunction with the
netapp_copyoffload_tool_path configuration option, please visit the Utility Toolchest page at the
NetApp Support portal (login is required).

Tip: For more information on these options and other deployment and operational scenarios, visit the
NetApp OpenStack website.

NetApp-supported extra specs for clustered Data ONTAP

Extra specs enable vendors to specify extra filter criteria. The Block Storage scheduler uses the specs
when the scheduler determines which volume node should fulfill a volume provisioning request. When
you use the NetApp unified driver with a clustered Data ONTAP storage system, you can leverage extra
specs with Block Storage volume types to ensure that Block Storage volumes are created on storage
back ends that have certain properties. An example of this is when you configure QoS, mirroring, or
compression for a storage back end.

Extra specs are associated with Block Storage volume types. When users request volumes of a particular
volume type, the volumes are created on storage back ends that meet the list of requirements. An example
of this is the back ends that have the available space or extra specs. Use the specs in the following table
to configure volumes. Define Block Storage volume types by using the openstack volume type set
command.

3.3. Reference 361

http://mysupport.netapp.com/NOW/download/tools/ntap_openstack_nfs/
http://netapp.io/openstack/

Cinder Documentation, Release 20.3.2.dev3

Table 56: Description of extra specs options for NetApp Unified
Driver with Clustered Data ONTAP

Extra
spec

Type Description

netapp_raid_typeString Limit the candidate volume list based on one of the following raid types: raid4,
raid_dp.

netapp_disk_typeString Limit the candidate volume list based on one of the following disk types: ATA,
BSAS, EATA, FCAL, FSAS, LUN, MSATA, SAS, SATA, SCSI, XATA,
XSAS, or SSD.

netapp:qos_policy_group1String Specify the name of a QoS policy group, which defines measurable Service Level
Objectives, that should be applied to the OpenStack Block Storage volume at the
time of volume creation. Ensure that the QoS policy group object within Data ON-
TAP should be defined before an OpenStack Block Storage volume is created, and
that the QoS policy group is not associated with the destination FlexVol volume.

netapp:qos_policy_group_is_adaptiveBooleanSet to <is> True in order to instruct the driver to use an Adaptive QoS policy group
for the netapp:qos_policy_group setting. Leave this unset or set to <is> False in
order to use a standard QoS policy group for the netapp:qos_policy_group setting.

netapp_mirroredBooleanLimit the candidate volume list to only the ones that are mirrored on the storage
controller.

netapp_unmirrored2BooleanLimit the candidate volume list to only the ones that are not mirrored on the storage
controller.

netapp_dedupBooleanLimit the candidate volume list to only the ones that have deduplication enabled on
the storage controller.

netapp_nodedupBooleanLimit the candidate volume list to only the ones that have deduplication disabled
on the storage controller.

netapp_compressionBooleanLimit the candidate volume list to only the ones that have compression enabled on
the storage controller.

netapp_nocompressionBooleanLimit the candidate volume list to only the ones that have compression disabled on
the storage controller.

netapp_thin_provisionedBooleanLimit the candidate volume list to only the ones that support thin provisioning on
the storage controller.

netapp_thick_provisionedBooleanLimit the candidate volume list to only the ones that support thick provisioning on
the storage controller.

NexentaStor 4.x NFS and iSCSI drivers

NexentaStor is an Open Source-driven Software-Defined Storage (OpenSDS) platform delivering unified
file (NFS and SMB) and block (FC and iSCSI) storage services, runs on industry standard hardware,
scales from tens of terabytes to petabyte configurations, and includes all data management functionality
by default.

For NexentaStor 4.x user documentation, visit https://nexenta.com/products/downloads/nexentastor.
1 Please note that this extra spec has a colon (:) in its name because it is used by the driver to assign the QoS policy group

to the OpenStack Block Storage volume after it has been provisioned.
2 In the Juno release, these negative-assertion extra specs are formally deprecated by the NetApp unified driver. Instead

of using the deprecated negative-assertion extra specs (for example, netapp_unmirrored) with a value of true, use the
corresponding positive-assertion extra spec (for example, netapp_mirrored) with a value of false.

362 Chapter 3. For operators

https://nexenta.com/products/downloads/nexentastor

Cinder Documentation, Release 20.3.2.dev3

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Migrate a volume.

• Change volume type.

Nexenta iSCSI driver

The Nexenta iSCSI driver allows you to use a NexentaStor appliance to store Compute volumes. Every
Compute volume is represented by a single zvol in a predefined Nexenta namespace. The Nexenta iSCSI
volume driver should work with all versions of NexentaStor.

The NexentaStor appliance must be installed and configured according to the relevant Nexenta documen-
tation. A volume and an enclosing namespace must be created for all iSCSI volumes to be accessed
through the volume driver. This should be done as specified in the release-specific NexentaStor docu-
mentation.

The NexentaStor Appliance iSCSI driver is selected using the normal procedures for one or multiple
backend volume drivers.

You must configure these items for each NexentaStor appliance that the iSCSI volume driver controls:

1. Make the following changes on the volume node /etc/cinder/cinder.conf file.

Enable Nexenta iSCSI driver
volume_driver=cinder.volume.drivers.nexenta.iscsi.NexentaISCSIDriver

IP address of NexentaStor host (string value)
nexenta_host=HOST-IP

Username for NexentaStor REST (string value)
nexenta_user=USERNAME

Port for Rest API (integer value)
nexenta_rest_port=8457

Password for NexentaStor REST (string value)
nexenta_password=PASSWORD

Volume on NexentaStor appliance (string value)
nexenta_volume=volume_name

3.3. Reference 363

Cinder Documentation, Release 20.3.2.dev3

Note: nexenta_volume represents a zpool which is called volume on NS appliance. It must be pre-
created before enabling the driver.

1. Save the changes to the /etc/cinder/cinder.conf file and restart the cinder-volume service.

Nexenta NFS driver

The Nexenta NFS driver allows you to use NexentaStor appliance to store Compute volumes via NFS.
Every Compute volume is represented by a single NFS file within a shared directory.

While the NFS protocols standardize file access for users, they do not standardize administrative actions
such as taking snapshots or replicating file systems. The OpenStack Volume Drivers bring a common
interface to these operations. The Nexenta NFS driver implements these standard actions using the ZFS
management plane that is already deployed on NexentaStor appliances.

The Nexenta NFS volume driver should work with all versions of NexentaStor. The NexentaStor appli-
ance must be installed and configured according to the relevant Nexenta documentation. A single-parent
file system must be created for all virtual disk directories supported for OpenStack. This directory must
be created and exported on each NexentaStor appliance. This should be done as specified in the release-
specific NexentaStor documentation.

You must configure these items for each NexentaStor appliance that the NFS volume driver controls:

1. Make the following changes on the volume node /etc/cinder/cinder.conf file.

Enable Nexenta NFS driver
volume_driver=cinder.volume.drivers.nexenta.nfs.NexentaNfsDriver

Path to shares config file
nexenta_shares_config=/home/ubuntu/shares.cfg

Note: Add your list of Nexenta NFS servers to the file you specified with the
nexenta_shares_config option. For example, this is how this file should look:

192.168.1.200:/volumes/VOLUME_NAME/NFS_SHARE http://USER:PASSWORD@192.168.
↪→1.200:8457
192.168.1.201:/volumes/VOLUME_NAME/NFS_SHARE http://USER:PASSWORD@192.168.
↪→1.201:8457
192.168.1.202:/volumes/VOLUME_NAME/NFS_SHARE http://USER:PASSWORD@192.168.
↪→1.202:8457

Each line in this file represents an NFS share. The first part of the line is the NFS share URL, the second
line is the connection URL to the NexentaStor Appliance.

364 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Driver options

Nexenta Driver supports these options:

3.3. Reference 365

Cinder Documentation, Release 20.3.2.dev3

Table 57: Description of Nexenta driver configuration options
Configuration option = De-
fault value

Description

[DEFAULT]
nexenta_blocksize =
4096

(Integer) Block size for datasets

nexenta_chunksize =
32768

(Integer) NexentaEdge iSCSI LUN object chunk size

nexenta_client_address
=

(String) NexentaEdge iSCSI Gateway client address for non-VIP ser-
vice

nexenta_dataset_compression
= on

(String) Compression value for new ZFS folders.

nexenta_dataset_dedup
= off

(String) Deduplication value for new ZFS folders.

nexenta_dataset_description
=

(String) Human-readable description for the folder.

nexenta_host = (String) IP address of Nexenta SA
nexenta_iscsi_target_portal_port
= 3260

(Integer) Nexenta target portal port

nexenta_mount_point_base
= $state_path/mnt

(String) Base directory that contains NFS share mount points

nexenta_nbd_symlinks_dir
= /dev/disk/by-path

(String) NexentaEdge logical path of directory to store symbolic links
to NBDs

nexenta_nms_cache_volroot
= True

(Boolean) If set True cache NexentaStor appliance volroot option
value.

nexenta_password =
nexenta

(String) Password to connect to Nexenta SA

nexenta_rest_port = 0 (Integer) HTTP(S) port to connect to Nexenta REST API server. If it
is equal zero, 8443 for HTTPS and 8080 for HTTP is used

nexenta_rest_protocol
= auto

(String) Use http or https for REST connection (default auto)

nexenta_rrmgr_compression
= 0

(Integer) Enable stream compression, level 1..9. 1 - gives best speed;
9 - gives best compression.

nexenta_rrmgr_connections
= 2

(Integer) Number of TCP connections.

nexenta_rrmgr_tcp_buf_size
= 4096

(Integer) TCP Buffer size in KiloBytes.

nexenta_shares_config
= /etc/cinder/
nfs_shares

(String) File with the list of available nfs shares

nexenta_sparse = False (Boolean) Enables or disables the creation of sparse datasets
nexenta_sparsed_volumes
= True

(Boolean) Enables or disables the creation of volumes as sparsed files
that take no space. If disabled (False), volume is created as a regular
file, which takes a long time.

nexenta_target_group_prefix
= cinder/

(String) Prefix for iSCSI target groups on SA

nexenta_target_prefix
= iqn.1986-03.com.
sun:02:cinder-

(String) IQN prefix for iSCSI targets

nexenta_use_https =
True

(Boolean) Use secure HTTP for REST connection (default True)

nexenta_user = admin (String) User name to connect to Nexenta SA
nexenta_volume = cinder (String) SA Pool that holds all volumes

366 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

NexentaStor 5.x NFS and iSCSI drivers

NexentaStor is an Open Source-driven Software-Defined Storage (OpenSDS) platform delivering unified
file (NFS and SMB) and block (FC and iSCSI) storage services. NexentaStor runs on industry standard
hardware, scales from tens of terabytes to petabyte configurations, and includes all data management
functionality by default.

For user documentation, see the Nexenta Documentation Center.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Migrate a volume.

• Change volume type.

• Get volume statistics.

• Revert a volume to a snapshot.

• Manage and unmanage volumes and snapshots.

• List manageable volumes and snapshots.

• Create, modify, delete, and list consistency groups.

• Create, modify, delete, and list snapshots of consistency groups.

• Create consistency group from consistency group or consistency group snapshot.

• Support consistency groups capability to generic volume groups.

• Attach a volume to multiple servers simultaneously (multiattach).

iSCSI driver

The NexentaStor appliance must be installed and configured according to the relevant Nexenta documen-
tation. A pool and an enclosing namespace must be created for all iSCSI volumes to be accessed through
the volume driver. This should be done as specified in the release-specific NexentaStor documentation.

The NexentaStor Appliance iSCSI driver is selected using the normal procedures for one or multiple
back-end volume drivers.

You must configure these items for each NexentaStor appliance that the iSCSI volume driver controls:

1. Make the following changes on the volume node /etc/cinder/cinder.conf file.

3.3. Reference 367

https://nexenta.com/products/documentation

Cinder Documentation, Release 20.3.2.dev3

Enable Nexenta iSCSI driver
volume_driver=cinder.volume.drivers.nexenta.ns5.iscsi.NexentaISCSIDriver

IP address of NexentaStor host (string value)
nexenta_host=HOST-IP

Port for Rest API (integer value)
nexenta_rest_port=8443

Username for NexentaStor Rest (string value)
nexenta_user=USERNAME

Password for NexentaStor Rest (string value)
nexenta_password=PASSWORD

Pool on NexentaStor appliance (string value)
nexenta_volume=volume_name

Name of a parent Volume group where cinder created zvols will reside␣
↪→(string value)
nexenta_volume_group = iscsi

Note: nexenta_volume represents a zpool, which is called pool on NS 5.x appliance. It must be
pre-created before enabling the driver.

Volume group does not need to be pre-created, the driver will create it if does not exist.

2. Save the changes to the /etc/cinder/cinder.conf file and restart the cinder-volume service.

NFS driver

The Nexenta NFS driver allows you to use NexentaStor appliance to store Compute volumes via NFS.
Every Compute volume is represented by a single NFS file within a shared directory.

While the NFS protocols standardize file access for users, they do not standardize administrative actions
such as taking snapshots or replicating file systems. The OpenStack Volume Drivers bring a common
interface to these operations. The Nexenta NFS driver implements these standard actions using the ZFS
management plane that already is deployed on NexentaStor appliances.

The NexentaStor appliance must be installed and configured according to the relevant Nexenta documen-
tation. A single-parent file system must be created for all virtual disk directories supported for OpenStack.
Create and export the directory on each NexentaStor appliance.

You must configure these items for each NexentaStor appliance that the NFS volume driver controls:

1. Make the following changes on the volume node /etc/cinder/cinder.conf file.

Enable Nexenta NFS driver
volume_driver=cinder.volume.drivers.nexenta.ns5.nfs.NexentaNfsDriver

(continues on next page)

368 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

IP address or Hostname of NexentaStor host (string value)
nas_host=HOST-IP

Port for Rest API (integer value)
nexenta_rest_port=8443

Path to parent filesystem (string value)
nas_share_path=POOL/FILESYSTEM

Recommended NFS options
nas_mount_options=vers=3,minorversion=0,timeo=100,nolock

2. Create filesystem on appliance and share via NFS. For example:

"securityContexts": [
{"readWriteList": [{"allow": true, "etype": "fqnip", "entity": "1.1.1.1

↪→"}],
"root": [{"allow": true, "etype": "fqnip", "entity": "1.1.1.1"}],
"securityModes": ["sys"]}]

3. Create ACL for the filesystem. For example:

{"type": "allow",
"principal": "everyone@",
"permissions": ["list_directory","read_data","add_file","write_data",
"add_subdirectory","append_data","read_xattr","write_xattr","execute",
"delete_child","read_attributes","write_attributes","delete","read_acl",
"write_acl","write_owner","synchronize"],
"flags": ["file_inherit","dir_inherit"]}

Driver options

Nexenta Driver supports these options:

3.3. Reference 369

Cinder Documentation, Release 20.3.2.dev3

Table 58: Description of NexentaStor 5 driver configuration op-
tions

Configuration option
= Default value

Description

[DEFAULT]
nexenta_dataset_compression
= on

(String) Compression value for new ZFS folders.

nexenta_dataset_dedup
= off

(String) Deduplication value for new ZFS folders.

nexenta_dataset_description
=

(String) Human-readable description for the folder.

nexenta_host = (String) IP address of Nexenta SA
nexenta_iscsi_target_portal_port
= 3260

(Integer) Nexenta target portal port

nexenta_mount_point_base
= $state_path/mnt

(String) Base directory that contains NFS share mount points

nexenta_ns5_blocksize
= 32

(Integer) Block size for datasets

nexenta_rest_port
= 0

(Integer) HTTP(S) port to connect to Nexenta REST API server. If it is
equal zero, 8443 for HTTPS and 8080 for HTTP is used

nexenta_rest_protocol
= auto

(String) Use http or https for REST connection (default auto)

nexenta_sparse =
False

(Boolean) Enables or disables the creation of sparse datasets

nexenta_sparsed_volumes
= True

(Boolean) Enables or disables the creation of volumes as sparsed files that
take no space. If disabled (False), volume is created as a regular file, which
takes a long time.

nexenta_use_https
= True

(Boolean) Use secure HTTP for REST connection (default True)

nexenta_user =
admin

(String) User name to connect to Nexenta SA

nexenta_volume =
cinder

(String) SA Pool that holds all volumes

nexenta_volume_group
= iscsi

(String) Volume group for ns5

Nimble & Alletra 6k Storage volume driver

Nimble Storage fully integrates with the OpenStack platform through the Nimble Cinder driver, allowing
a host to configure and manage Nimble and Alletra 6k Storage array features through Block Storage
interfaces.

Support for iSCSI storage protocol is available with NimbleISCSIDriver Volume Driver class and Fibre
Channel with NimbleFCDriver.

Support for the Liberty release and above is available from Nimble OS 2.3.8 or later.

Support for the Ocata release and above is available from Nimble OS 3.6 or later.

For Xena release, Nimble OS 5.3 or later is used and Alletra OS 6.0 or later is used.

370 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Nimble and Alletra 6k Storage Cinder driver does not support port binding with multiple interfaces on
the same subnet due to existing limitation in os-brick. This is partially referenced in the bug https:
//bugs.launchpad.net/os-brick/+bug/1722432 but does not resolve for multiple software iscsi ifaces.

Supported operations

• Create, delete, clone, attach, and detach volumes

• Create and delete volume snapshots

• Create a volume from a snapshot

• Copy an image to a volume

• Copy a volume to an image

• Extend a volume

• Get volume statistics

• Manage and unmanage a volume

• Enable encryption and default performance policy for a volume-type extra-specs

• Force backup of an in-use volume

• Retype a volume

• Create a Thinly Provisioned Volume

• Attach a volume to multiple servers simultaneously (multiattach)

• Volume Revert to Snapshot

• Create, list, update, and delete consistency groups

• Create, list, and delete consistency group snapshots

Nimble and Alletra 6k Storage driver configuration

Update the file /etc/cinder/cinder.conf with the given configuration. Note: These parameters
apply to Alletra 6k Storage as well.

In case of a basic (single back-end) configuration, add the parameters within the [default] section as
follows.

[default]
san_ip = NIMBLE_MGMT_IP
san_login = NIMBLE_USER
san_password = NIMBLE_PASSWORD
use_multipath_for_image_xfer = True
volume_driver = NIMBLE_VOLUME_DRIVER
san_thin_provision = True

In case of multiple back-end configuration, for example, configuration which supports multiple Nim-
ble Storage arrays or a single Nimble Storage array with arrays from other vendors, use the following
parameters.

3.3. Reference 371

https://bugs.launchpad.net/os-brick/+bug/1722432
https://bugs.launchpad.net/os-brick/+bug/1722432

Cinder Documentation, Release 20.3.2.dev3

[default]
enabled_backends = Nimble-Cinder

[Nimble-Cinder]
san_ip = NIMBLE_MGMT_IP
san_login = NIMBLE_USER
san_password = NIMBLE_PASSWORD
use_multipath_for_image_xfer = True
volume_driver = NIMBLE_VOLUME_DRIVER
volume_backend_name = NIMBLE_BACKEND_NAME

In case of multiple back-end configuration, Nimble Storage volume type is created and associated with a
back-end name as follows.

Note: Single back-end configuration users do not need to create the volume type.

$ openstack volume type create NIMBLE_VOLUME_TYPE
$ openstack volume type set --property volume_backend_name=NIMBLE_BACKEND_
↪→NAME NIMBLE_VOLUME_TYPE

This section explains the variables used above:

NIMBLE_MGMT_IP Management IP address of Nimble/Alletra 6k Storage array/group.

NIMBLE_USER Nimble/Alletra 6k Storage account login with minimum power user (admin) priv-
ilege if RBAC is used.

NIMBLE_PASSWORD Password of the admin account for Nimble/Alletra 6k array.

NIMBLE_VOLUME_DRIVER Use either cinder.volume.drivers.hpe.nimble.NimbleISCSIDriver for
iSCSI or cinder.volume.drivers.hpe.nimble.NimbleFCDriver for Fibre Channel.

NIMBLE_BACKEND_NAME A volume back-end name which is specified in the cinder.conf file.
This is also used while assigning a back-end name to the Nimble volume type.

NIMBLE_VOLUME_TYPE The Nimble volume-type which is created from the CLI and associated
with NIMBLE_BACKEND_NAME.

Note: Restart the cinder-api, cinder-scheduler, and cinder-volume services after updat-
ing the cinder.conf file.

Nimble driver extra spec options

The Nimble volume driver also supports the following extra spec options:

nimble:encryption=yes Used to enable encryption for a volume-type.

nimble:perfpol-name=PERF_POL_NAME PERF_POL_NAME is the name of a performance policy
which exists on the Nimble/Alletra 6k array and should be enabled for every volume in a volume
type.

372 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Note: When upgrading to OpenStack deployment to Victoria or later, do unset
nimble:multi-initiator extra-spec and set multiattach='<is> True'.

nimble:dedupe=true Used to enable dedupe support for a volume-type.

nimble:iops-limit=IOPS_LIMIT Used to set the IOPS_LIMIT between 256 and 4294967294 for all
volumes created for this volume-type.

nimble:folder=FOLDER_NAME FOLDER_NAME is the name of the folder which exists on the Nim-
ble/Alletra 6k array and should be enabled for every volume in a volume type

These extra-specs can be enabled by using the following command:

$ openstack volume type set --property KEY=VALUE VOLUME_TYPE

VOLUME_TYPE is the Nimble volume type and KEY and VALUE are the options mentioned above.

Configuration options

The Nimble/Alletra 6k storage driver supports these configuration options:

Table 59: Description of Nimble configuration options
Configuration option = Default value Description
nimble_pool_name = default (String) Nimble Controller pool name
nimble_subnet_label = * (String) Nimble Subnet Label
nimble_verify_cert_path = None (String) Path to Nimble Array SSL certificate
nimble_verify_certificate = False (Boolean) Whether to verify Nimble SSL Certificate

Multipathing

In OpenStack environments where Cinder block device multipathing is desired there are a few things to
consider.

Configuring mulitpathing varies by system depending on the environment. In a scenario where solely
Nimble devices are being created by Cinder, the following /etc/multipath.conf file may be used:

defaults {
user_friendly_names yes
find_multipaths no

}

blacklist {
devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
devnode "^hd[a-z]"
device {

vendor ".*"
product ".*"

}
}

(continues on next page)

3.3. Reference 373

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

blacklist_exceptions {
device {

vendor "Nimble"
product "Server"

}
}

devices {
device {

vendor "Nimble"
product "Server"
path_grouping_policy group_by_prio
prio "alua"
hardware_handler "1 alua"
path_selector "service-time 0"
path_checker tur
features "1 queue_if_no_path"
no_path_retry 30
failback immediate
fast_io_fail_tmo 5
dev_loss_tmo infinity
rr_min_io_rq 1
rr_weight uniform

}
}

After making changes to /etc/multipath.conf, the multipath subsystem needs to be reconfigured:

multipathd reconfigure

Tip: The latest best practices for Nimble devices can be found in the HPE Nimble Storage Linux
Integration Guide found on https://infosight.hpe.com

Important: OpenStack Cinder is currently not compatible with the HPE Nimble Storage Linux Toolkit
(NLT)

Nova needs to be configured to pickup the actual multipath device created on the host.

In /etc/nova/nova.conf, add the following to the [libvirt] section:

[libvirt]
volume_use_multipath = True

Note: In versions prior to Newton, the option was called iscsi_use_multipath

After editing the Nova configuration file, the nova-conductor service needs to be restarted.

374 Chapter 3. For operators

https://infosight.hpe.com

Cinder Documentation, Release 20.3.2.dev3

Tip: Depending on which particular OpenStack distribution is being used, Nova may use a different
configuration file than the default.

To validate that instances get properly connected to the multipath device, inspect the instance devices:

virsh dumpxml <Instance ID | Instance Name | Instance UUID>

Open-E JovianDSS iSCSI driver

The JovianISCSIDriver allows usage of Open-E JovianDSS Data Storage Solution to be used as Block
Storage in OpenStack deployments.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Migrate a volume with back-end assistance.

Configuring

Edit with your favourite editor Cinder config file. It can be found at /etc/cinder/cinder.conf

Add the field enabled_backends with value open-e-jdss-0:

enabled_backends = open-e-jdss-0

Provide settings to Open-E JovianDSS driver by adding open-e-jdss-0 description:

[open-e-jdss-0]
backend_name = Open-EJovianDSS
chap_password_len = 14
driver_use_ssl = True
driver_ssl_cert_verify = True
driver_ssl_cert_path = /etc/cinder/jdss.crt
iscsi_target_prefix = iqn.2016-04.com.open-e.cinder:
jovian_pool = Pool-0
jovian_block_size = 128K
san_api_port = 82

(continues on next page)

3.3. Reference 375

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

target_port = 3260
volume_driver = cinder.volume.drivers.open_e.iscsi.JovianISCSIDriver
san_hosts = 192.168.0.40
san_login = admin
san_password = admin
san_thin_provision = True

Table 60: Open-E JovianDSS configuration options
Option Default value Description
backend_name Open-EJovianDSS Name of the back end
chap_password_len 12 Length of the unique generated CHAP pass-

word.
driver_use_ssl True Use SSL to send requests to Open-E Jo-

vianDSS[1]
driver_ssl_cert_verifyTrue Verify authenticity of Open-E JovianDSS[1]

certificate
driver_ssl_cert_pathNone Path to the Open-E JovianDSS[1] certificate for

verification
iscsi_target_prefixiqn.2016-04.com.open-

e:01:cinder-
Prefix that will be used to form target name for
volume

jovian_pool Pool-0 Pool name that is going to be used. Must be
created in [2]

jovian_block_size 128K Block size for newly created volumes
san_api_port 82 Rest port according to the settings in [1]
target_port 3260 Port for iSCSI connections
volume_driver Location of the driver source code
san_hosts Comma separated list of IP address of the

Open-E JovianDSS
san_login admin Must be set according to the settings in [1]
san_password admin Open-E Jovian DSS password [1], should be

changed
san_thin_provision False Using thin provisioning for new volumes

1. Open-E JovianDSS Web interface/System Settings/REST Access

2. Pool can be created by going to Open-E JovianDSS Web interface/Storage

More info about Open-E JovianDSS

Multiple Pools

In order to add another Open-E JovianDSS Pool, create a copy of Open-E JovianDSS config in cinder.conf
file.

For instance if you want to add Pool-1 located on the same host as Pool-0. You extend cinder.conf
file like:

enabled_backends = open-e-jdss-0, open-e-jdss-1

(continues on next page)

376 Chapter 3. For operators

http://blog.open-e.com/?s=how+to

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

[open-e-jdss-0]
backend_name = open-e-jdss-0
chap_password_len = 14
driver_use_ssl = True
driver_ssl_cert_verify = False
iscsi_target_prefix = iqn.2016-04.com.open-e.cinder:
jovian_pool = Pool-0
jovian_block_size = 128K
san_api_port = 82
target_port = 3260
volume_driver = cinder.volume.drivers.open_e.iscsi.JovianISCSIDriver
san_hosts = 192.168.0.40
san_login = admin
san_password = admin
san_thin_provision = True

[open-e-jdss-1]
backend_name = open-e-jdss-1
chap_password_len = 14
driver_use_ssl = True
driver_ssl_cert_verify = False
iscsi_target_prefix = iqn.2016-04.com.open-e.cinder:
jovian_pool = Pool-1
jovian_block_size = 128K
san_api_port = 82
target_port = 3260
volume_driver = cinder.volume.drivers.open_e.iscsi.JovianISCSIDriver
san_hosts = 192.168.0.50
san_login = admin
san_password = admin
san_thin_provision = True

HA Cluster

To utilize High Availability feature of Open-E JovianDSS:

1. Guide on configuring Pool to high availability cluster

2. Set jovian_hosts with list of virtual IPs associated with this Pool

For instance if you have Pool-2 with 2 virtual IPs 192.168.21.100 and 192.168.31.100 the configuration
file will look like:

[open-e-jdss-2]
backend_name = open-e-jdss-2
chap_password_len = 14
driver_use_ssl = True
driver_ssl_cert_verify = False
iscsi_target_prefix = iqn.2016-04.com.open-e.cinder:
jovian_pool = Pool-0

(continues on next page)

3.3. Reference 377

https://www.youtube.com/watch?v=juWIQT_bAfM

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

jovian_block_size = 128K
san_api_port = 82
target_port = 3260
volume_driver = cinder.volume.drivers.open_e.iscsi.JovianISCSIDriver
san_hosts = 192.168.21.100, 192.168.31.100
san_login = admin
san_password = admin
san_thin_provision = True

Feedback

Please address problems and proposals to andrei.perepiolkin@open-e.com

ProphetStor Fibre Channel and iSCSI drivers

ProhetStor Fibre Channel and iSCSI drivers add support for ProphetStor Flexvisor through the Block
Storage service. ProphetStor Flexvisor enables commodity x86 hardware as software-defined storage
leveraging well-proven ZFS for disk management to provide enterprise grade storage services such as
snapshots, data protection with different RAID levels, replication, and deduplication.

The DPLFCDriver and DPLISCSIDriver drivers run volume operations by communicating with the
ProphetStor storage system over HTTPS.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

Enable the Fibre Channel or iSCSI drivers

The DPLFCDriver and DPLISCSIDriver are installed with the OpenStack software.

1. Query storage pool id to configure dpl_pool of the cinder.conf file.

a. Log on to the storage system with administrator access.

$ ssh root@STORAGE_IP_ADDRESS

b. View the current usable pool id.

378 Chapter 3. For operators

mailto:andrei.perepiolkin@open-e.com

Cinder Documentation, Release 20.3.2.dev3

$ flvcli show pool list
- d5bd40b58ea84e9da09dcf25a01fdc07 : default_pool_dc07

c. Use d5bd40b58ea84e9da09dcf25a01fdc07 to configure the dpl_pool of /etc/
cinder/cinder.conf file.

Note: Other management commands can be referenced with the help command flvcli
-h.

2. Make the following changes on the volume node /etc/cinder/cinder.conf file.

IP address of SAN controller (string value)
san_ip=STORAGE IP ADDRESS

Username for SAN controller (string value)
san_login=USERNAME

Password for SAN controller (string value)
san_password=PASSWORD

Use thin provisioning for SAN volumes? (boolean value)
san_thin_provision=true

The port that the iSCSI daemon is listening on. (integer value)
iscsi_port=3260

DPL pool uuid in which DPL volumes are stored. (string value)
dpl_pool=d5bd40b58ea84e9da09dcf25a01fdc07

DPL port number. (integer value)
dpl_port=8357

Uncomment one of the next two option to enable Fibre channel or iSCSI
FIBRE CHANNEL(uncomment the next line to enable the FC driver)
#volume_driver=cinder.volume.drivers.prophetstor.dpl_fc.DPLFCDriver
iSCSI (uncomment the next line to enable the iSCSI driver)
#volume_driver=cinder.volume.drivers.prophetstor.dpl_iscsi.DPLISCSIDriver

3. Save the changes to the /etc/cinder/cinder.conf file and restart the cinder-volume service.

The ProphetStor Fibre Channel or iSCSI drivers are now enabled on your OpenStack system. If you
experience problems, review the Block Storage service log files for errors.

The following table contains the options supported by the ProphetStor storage driver.

3.3. Reference 379

Cinder Documentation, Release 20.3.2.dev3

Table 61: Description of ProphetStor Fibre Channel and iSCSi
drivers configuration options

Configuration option = Default
value

Description

[DEFAULT]
dpl_pool = (String) DPL pool uuid in which DPL volumes are stored.
dpl_port = 8357 (Port number) DPL port number.
iscsi_port = 3260 (Port number) The port that the iSCSI daemon is listening

on
san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
san_thin_provision = True (Boolean) Use thin provisioning for SAN volumes?

Pure Storage iSCSI and Fibre Channel volume drivers

The Pure Storage FlashArray volume drivers for OpenStack Block Storage interact with configured Pure
Storage arrays and support various operations.

Support for iSCSI storage protocol is available with the PureISCSIDriver Volume Driver class, and Fibre
Channel with PureFCDriver.

All drivers are compatible with Purity FlashArrays that support the REST API version 1.2, 1.3, 1.4, 1.5,
1.13, and 1.14 (Purity 4.0.0 and newer). Some features may require newer versions of Purity.

Limitations and known issues

If you do not set up the nodes hosting instances to use multipathing, all network connectivity will use
a single physical port on the array. In addition to significantly limiting the available bandwidth, this
means you do not have the high-availability and non-disruptive upgrade benefits provided by FlashArray.
Multipathing must be used to take advantage of these benefits.

Supported operations

• Create, delete, attach, detach, retype, clone, and extend volumes.

• Create a volume from snapshot.

• Create, list, and delete volume snapshots.

• Create, list, update, and delete consistency groups.

• Create, list, and delete consistency group snapshots.

• Revert a volume to a snapshot.

• Manage and unmanage a volume.

• Manage and unmanage a snapshot.

• Get volume statistics.

• Create a thin provisioned volume.

380 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Replicate volumes to remote Pure Storage array(s).

QoS support for the Pure Storage drivers include the ability to set the following capabilities in the Open-
Stack Block Storage API cinder.api.contrib.qos_spec_manage qos specs extension module:

• maxIOPS - Maximum number of IOPs allowed for volume. Range: 100 - 100M

• maxBWS - Maximum bandwidth limit in MB/s. Range: 1 - 524288 (512GB/s)

The qos keys above must be created and asscoiated to a volume type. For information on how to set
the key-value pairs and associate them with a volume type see the volume qos section in the OpenStack
Client command list.

Configure OpenStack and Purity

You need to configure both your Purity array and your OpenStack cluster.

Note: These instructions assume that the cinder-api and cinder-scheduler services are installed
and configured in your OpenStack cluster.

Configure the OpenStack Block Storage service

In these steps, you will edit the cinder.conf file to configure the OpenStack Block Storage service to
enable multipathing and to use the Pure Storage FlashArray as back-end storage.

1. Install Pure Storage PyPI module. A requirement for the Pure Storage driver is the installation of
the Pure Storage Python SDK version 1.4.0 or later from PyPI.

$ pip install purestorage

2. Retrieve an API token from Purity. The OpenStack Block Storage service configuration requires
an API token from Purity. Actions performed by the volume driver use this token for authorization.
Also, Purity logs the volume drivers actions as being performed by the user who owns this API
token.

If you created a Purity user account that is dedicated to managing your OpenStack Block Storage
volumes, copy the API token from that user account.

Use the appropriate create or list command below to display and copy the Purity API token:

• To create a new API token:

$ pureadmin create --api-token USER

The following is an example output:

$ pureadmin create --api-token pureuser
Name API Token Created
pureuser 902fdca3-7e3f-d2e4-d6a6-24c2285fe1d9 2014-08-04 14:50:30

• To list an existing API token:

3.3. Reference 381

https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/volume-qos.html

Cinder Documentation, Release 20.3.2.dev3

$ pureadmin list --api-token --expose USER

The following is an example output:

$ pureadmin list --api-token --expose pureuser
Name API Token Created
pureuser 902fdca3-7e3f-d2e4-d6a6-24c2285fe1d9 2014-08-04 14:50:30

3. Copy the API token retrieved (902fdca3-7e3f-d2e4-d6a6-24c2285fe1d9 from the examples
above) to use in the next step.

4. Edit the OpenStack Block Storage service configuration file. The following sample /etc/cinder/
cinder.conf configuration lists the relevant settings for a typical Block Storage service using a
single Pure Storage array:

[DEFAULT]
enabled_backends = puredriver-1
default_volume_type = puredriver-1

[puredriver-1]
volume_backend_name = puredriver-1
volume_driver = PURE_VOLUME_DRIVER
san_ip = IP_PURE_MGMT
pure_api_token = PURE_API_TOKEN
use_multipath_for_image_xfer = True

Replace the following variables accordingly:

PURE_VOLUME_DRIVER Use either cinder.volume.drivers.pure.PureISCSIDriver
for iSCSI or cinder.volume.drivers.pure.PureFCDriver for Fibre Channel connec-
tivity.

IP_PURE_MGMT The IP address of the Pure Storage arrays management interface or a domain
name that resolves to that IP address.

PURE_API_TOKEN The Purity Authorization token that the volume driver uses to perform vol-
ume management on the Pure Storage array.

Note: The volume driver automatically creates Purity host objects for initiators as needed. If CHAP
authentication is enabled via the use_chap_auth setting, you must ensure there are no manually created
host objects with IQNs that will be used by the OpenStack Block Storage service. The driver will only
modify credentials on hosts that it manages.

Note: If using the PureFCDriver it is recommended to use the OpenStack Block Storage Fibre Channel
Zone Manager.

382 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Volume auto-eradication

To enable auto-eradication of deleted volumes, snapshots, and consistency groups on deletion, modify
the following option in the cinder.conf file:

pure_eradicate_on_delete = true

By default, auto-eradication is disabled and all deleted volumes, snapshots, and consistency groups are
retained on the Pure Storage array in a recoverable state for 24 hours from time of deletion.

Setting host personality

The host personality determines how the Purity system tunes the protocol used between the array and
the initiator. To ensure the array works optimally with the host, set the personality to the name of the
host operating or virtual memory system. Valid values are aix, esxi, hitachi-vsp, hpux, oracle-vm-server,
solaris, and vms. If your system is not listed as one of the valid host personalities, do not set the option.
By default, the host personality is not set.

To set the host personality, modify the following option in the cinder.conf file:

pure_host_personality = <personality>

Note: pure_host_personality is available from Purity REST API version 1.14, and affects only
newly-created hosts.

SSL certification

To enable SSL certificate validation, modify the following option in the cinder.conf file:

driver_ssl_cert_verify = true

By default, SSL certificate validation is disabled.

To specify a non-default path to CA_Bundle file or directory with certificates of trusted CAs:

driver_ssl_cert_path = Certificate path

Note: This requires the use of Pure Storage Python SDK > 1.4.0.

3.3. Reference 383

Cinder Documentation, Release 20.3.2.dev3

Replication configuration

Add the following to the back-end specification to specify another Flash Array to replicate to:

[puredriver-1]
replication_device = backend_id:PURE2_NAME,san_ip:IP_PURE2_MGMT,api_
↪→token:PURE2_API_TOKEN,type:REPLICATION_TYPE

Where PURE2_NAME is the name of the remote Pure Storage system, IP_PURE2_MGMT is the management
IP address of the remote array, and PURE2_API_TOKEN is the Purity Authorization token of the remote
array.

The REPLICATION_TYPE value for the type key can be either sync or async

If the type is sync volumes will be created in a stretched Pod. This requires two arrays pre-configured
with Active Cluster enabled. You can optionally specify uniform as true or false, this will instruct
the driver that data paths are uniform between arrays in the cluster and data connections should be made
to both upon attaching.

Note that more than one replication_device line can be added to allow for multi-target device repli-
cation.

A volume is only replicated if the volume is of a volume-type that has the extra spec
replication_enabled set to <is> True. You can optionally specify the replication_type key
to specify <in> sync or <in> async to choose the type of replication for that volume. If not specified
it will default to async.

To create a volume type that specifies replication to remote back ends with async replication:

$ openstack volume type create ReplicationType
$ openstack volume type set --property replication_enabled='<is> True'␣
↪→ReplicationType
$ openstack volume type set --property replication_type='<in> async'␣
↪→ReplicationType

The following table contains the optional configuration parameters available for async replication con-
figuration with the Pure Storage array.

Table 62: Pure Storage replication configuration options
Option Description Default
pure_replica_interval_defaultSnapshot replication interval in seconds. 3600

pure_replica_retention_short_term_defaultRetain all snapshots on target for this time (in sec-
onds).

14400

pure_replica_retention_long_term_per_day_defaultRetain how many snapshots for each day. 3

pure_replica_retention_long_term_defaultRetain snapshots per day on target for this time (in
days).

7

pure_replication_pg_name Pure Protection Group name to use for async repli-
cation (will be created if it does not exist).

cinder-group

pure_replication_pod_name Pure Pod name to use for sync replication (will be
created if it does not exist).

cinder-pod

Note: failover-host is only supported from the primary array to any of the multiple secondary arrays,

384 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

but subsequent failover-host is only supported back to the original primary array.

Note: pure_replication_pg_name and pure_replication_pod_name should not be changed after
volumes have been created in the Cinder backend, as this could have unexpected results in both replication
and failover.

Automatic thin-provisioning/oversubscription ratio

This feature allows the driver to calculate the array oversubscription ratio as (total provisioned/actual
used). By default this feature is enabled.

To disable this feature and honor the hard-coded configuration option max_over_subscription_ratio
add the following option in the cinder.conf file:

[puredriver-1]
pure_automatic_max_oversubscription_ratio = False

Note: Arrays with very good data reduction rates (compression/data deduplication/thin provisioning)
can get very large oversubscription rates applied.

Scheduling metrics

A large number of metrics are reported by the volume driver which can be useful in implementing more
control over volume placement in multi-backend environments using the driver filter and weighter meth-
ods.

Metrics reported include, but are not limited to:

total_capacity_gb
free_capacity_gb
provisioned_capacity
total_volumes
total_snapshots
total_hosts
total_pgroups
writes_per_sec
reads_per_sec
input_per_sec
output_per_sec
usec_per_read_op
usec_per_read_op
queue_depth
replication_type

Note: All total metrics include non-OpenStack managed objects on the array.

3.3. Reference 385

Cinder Documentation, Release 20.3.2.dev3

In conjunction with QOS extra-specs, you can create very complex algorithms to manage volume place-
ment. More detailed documentation on this is available in other external documentation.

Configuration Options

The following list all Pure driver specific configuration options that can be set in cinder.conf :

Table 63: Description of Pure configuration options
Configuration
option = Default
value

Description

pure_api_token
= None

(String) REST API authorization token.

pure_automatic_max_oversubscription_ratio
= True

(Boolean) Automatically determine an oversubscription ratio based on the cur-
rent total data reduction values. If used this calculated value will override the
max_over_subscription_ratio config option.

pure_eradicate_on_delete
= False

(Boolean) When enabled, all Pure volumes, snapshots, and protection groups
will be eradicated at the time of deletion in Cinder. Data will NOT be recoverable
after a delete with this set to True! When disabled, volumes and snapshots will
go into pending eradication state and can be recovered.

pure_host_personality
= None

(String(choices=[aix, esxi, hitachi-vsp, hpux, oracle-vm-server, solaris, vms,
None])) Determines how the Purity system tunes the protocol used between the
array and the initiator.

pure_iscsi_cidr
= 0.0.0.0/0

(String) CIDR of FlashArray iSCSI targets hosts are allowed to connect to. De-
fault will allow connection to any IPv4 address. This parameter now supports
IPv6 subnets. Ignored when pure_iscsi_cidr_list is set.

pure_iscsi_cidr_list
= None

(List of String) Comma-separated list of CIDR of FlashArray iSCSI targets hosts
are allowed to connect to. It supports IPv4 and IPv6 subnets. This parameter
supersedes pure_iscsi_cidr.

pure_replica_interval_default
= 3600

(Integer) Snapshot replication interval in seconds.

pure_replica_retention_long_term_default
= 7

(Integer) Retain snapshots per day on target for this time (in days.)

pure_replica_retention_long_term_per_day_default
= 3

(Integer) Retain how many snapshots for each day.

pure_replica_retention_short_term_default
= 14400

(Integer) Retain all snapshots on target for this time (in seconds.)

pure_replication_pg_name
= cinder-group

(String) Pure Protection Group name to use for async replication (will be created
if it does not exist).

pure_replication_pod_name
= cinder-pod

(String) Pure Pod name to use for sync replication (will be created if it does not
exist).

386 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Quobyte driver

The Quobyte volume driver enables storing Block Storage service volumes on a Quobyte storage back
end. Block Storage service back ends are mapped to Quobyte volumes and individual Block Storage
service volumes are stored as files on a Quobyte volume. Selection of the appropriate Quobyte volume
is done by the aforementioned back end configuration that specifies the Quobyte volume explicitly.

Note: Note the dual use of the term volume in the context of Block Storage service volumes and in the
context of Quobyte volumes.

For more information see the Quobyte support webpage.

Supported operations

The Quobyte volume driver supports the following volume operations:

• Create, delete, attach, and detach volumes

• Secure NAS operation (Starting with Mitaka release secure NAS operation is optional but still
default)

• Create and delete a snapshot

• Create a volume from a snapshot

• Extend a volume

• Clone a volume

• Copy a volume to image

• Generic volume migration (no back end optimization)

Note: When running VM instances off Quobyte volumes, ensure that the Quobyte Compute service
driver has been configured in your OpenStack cloud.

Configuration

To activate the Quobyte volume driver, configure the corresponding volume_driver parameter:

volume_driver = cinder.volume.drivers.quobyte.QuobyteDriver

The following table contains the configuration options supported by the Quobyte driver:

3.3. Reference 387

http://www.quobyte.com/
http://support.quobyte.com/
https://wiki.openstack.org/wiki/Nova/Quobyte
https://wiki.openstack.org/wiki/Nova/Quobyte

Cinder Documentation, Release 20.3.2.dev3

Table 64: Description of Quobyte USP configuration options
Configura-
tion option
= Default
value

Description

quobyte_client_cfg
= None

(String) Path to a Quobyte Client configuration file.

quobyte_mount_point_base
=
$state_path/
mnt

(String) Base dir containing the mount point for the Quobyte volume.

quobyte_overlay_volumes
= False

(Boolean) Create new volumes from the volume_from_snapshot_cache by creat-
ing overlay files instead of full copies. This speeds up the creation of volumes
from this cache. This feature requires the options quobyte_qcow2_volumes and
quobyte_volume_from_snapshot_cache to be set to True. If one of these is set to
False this option is ignored.

quobyte_qcow2_volumes
= True

(Boolean) Create volumes as QCOW2 files rather than raw files.

quobyte_sparsed_volumes
= True

(Boolean) Create volumes as sparse files which take no space. If set to False, volume
is created as regular file.

quobyte_volume_from_snapshot_cache
= False

(Boolean) Create a cache of volumes from merged snapshots to speed up creation of
multiple volumes from a single snapshot.

quobyte_volume_url
= None

(String) Quobyte URL to the Quobyte volume using e.g. a DNS SRV record (pre-
ferred) or a host list (alternatively) like quobyte://<DIR host1>, <DIR host2>/<volume
name>

SandStone iSCSI Driver

SandStone USP volume can be used as a block storage resource in the OpenStack Block Storage driver
that supports iSCSI protocols.

Before to go, you should have installed SandStoneUSP.

System requirements

Cluster version
SandStone USP 3.2.3+

To use the SandStone driver, the following are required:

• Network connectivity between the OpenStack host and the SandStone USP management interfaces.

• HTTPS or HTTP must be enabled on the array.

When creating a volume from image, add the following configuration keys in the [DEFAULT] configura-
tion group of the /etc/cinder/cinder.conf file:

388 Chapter 3. For operators

http://www.szsandstone.com

Cinder Documentation, Release 20.3.2.dev3

Configuration example

The following table contains the configuration options supported by the SandStone driver.

[DEFAULT]
enabled_backends = sds-iscsi

[sds-iscsi]
volume_driver = cinder.volume.drivers.sandstone.sds_driver.SdsISCSIDriver
volume_backend_name = sds-iscsi
san_ip = 10.10.16.21
san_login = admin
san_password = admin
default_sandstone_target_ips = 10.10.16.21,10.10.16.22,10.10.16.23
chap_username = 123456789123
chap_password = 1234567891234
sandstone_pool = vms
initiator_assign_sandstone_target_ip = {"iqn.1993-08.org.debian:01:3a9cd5c484a
↪→": "10.10.16.21"}

General parameters

Parameter Description
volume_driver Indicates the loaded driver
volume_backend_name Indicates the name of the backend
san_ip IP addresses of the management interfaces of SandStone USP
san_login Storage system user name
san_password Storage system password
default_sandstone _target_ips Default IP address of the iSCSI target port that is provided for com-

pute nodes
chap_username CHAP authentication username
chap_password CHAP authentication password
sandstone_pool SandStone storage pool resource name
initiator_assign _sand-
stone_target_ip

Initiator assign target with assign ip

1. After modifying the cinder.conf file, restart the cinder-volume service.

2. Create and use volume types.

Create and use sds-iscsi volume types

$ openstack volume type create sandstone
$ openstack volume type set --property volume_backend_name=sds-iscsi␣
↪→sandstone

3.3. Reference 389

Cinder Documentation, Release 20.3.2.dev3

Seagate Array Fibre Channel and iSCSI drivers

The STXFCDriver and STXISCSIDriver Cinder drivers allow the Seagate Technology (STX) storage
arrays to be used for Block Storage in OpenStack deployments.

System requirements

To use the Seagate drivers, the following are required:

• Seagate storage array with:

– iSCSI or FC host interfaces

– G28x firmware or later

• Network connectivity between the OpenStack host and the array management interfaces

• The HTTPS or HTTP protocol must be enabled on the array

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Migrate a volume with back-end assistance.

• Retype a volume.

• Manage and unmanage a volume.

Configuring the array

1. Verify that the array can be managed via an HTTPS connection. HTTP can also be used if
driver_use_ssl is set to (or defaults to) False in the cinder.conf file.

Confirm that virtual pools A and B are present if you plan to use virtual pools for OpenStack
storage.

If you plan to use vdisks instead of virtual pools, create or identify one or more vdisks to be used
for OpenStack storage; typically this will mean creating or setting aside one disk group for each of
the A and B controllers.

2. Edit the cinder.conf file to define a storage back-end entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in a key=value format.

390 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• The seagate_pool_name value specifies the name of the storage pool or vdisk on the array.

• The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

3. The following cinder.conf options generally have identical values for each backend section on
the array:

• volume_driver specifies the Cinder driver name.

• san_ip specifies the IP addresses or host names of the arrays management controllers.

• san_login and san_password specify the username and password of an array user account
with manage privileges

• driver_use_ssl must be set to True to enable use of the HTTPS protocol.

• seagate_iscsi_ips specifies the iSCSI IP addresses for the array if using the iSCSI trans-
port protocol

In the examples below, two back ends are defined, one for pool A and one for pool B, and a common
volume_backend_name is used so that a single volume type definition can be used to allocate
volumes from both pools.

iSCSI example back-end entries

[pool-a]
seagate_pool_name = A
volume_backend_name = seagate-array
volume_driver = cinder.volume.drivers.stx.iscsi.STXISCSIDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
seagate_iscsi_ips = 10.2.3.4,10.2.3.5
driver_use_ssl = true

[pool-b]
seagate_backend_name = B
volume_backend_name = seagate-array
volume_driver = cinder.volume.drivers.stx.iscsi.STXISCSIDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
seagate_iscsi_ips = 10.2.3.4,10.2.3.5
driver_use_ssl = true

Fibre Channel example back-end entries

[pool-a]
seagate_backend_name = A
volume_backend_name = seagate-array
volume_driver = cinder.volume.drivers.stx.fc.STXFCDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage

(continues on next page)

3.3. Reference 391

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

san_password = !manage
driver_use_ssl = true

[pool-b]
seagate_backend_name = B
volume_backend_name = seagate-array
volume_driver = cinder.volume.drivers.stx.fc.STXFCDriver
san_ip = 10.1.2.3,10.1.2.4
san_login = manage
san_password = !manage
driver_use_ssl = true

4. If any volume_backend_name value refers to a vdisk rather than a virtual pool, add an additional
statement seagate_backend_type = linear to that back-end entry.

5. If HTTPS is enabled, you can enable certificate verification with the option
driver_ssl_cert_verify = True. You may also use the driver_ssl_cert_path pa-
rameter to specify the path to a CA_BUNDLE file containing CAs other than those in the default
list.

6. Modify the [DEFAULT] section of the cinder.conf file to add an enabled_backends parameter
specifying the backend entries you added, and a default_volume_type parameter specifying the
name of a volume type that you will create in the next step.

Example of [DEFAULT] section changes

[DEFAULT]
enabled_backends = pool-a,pool-b
default_volume_type = seagate

7. Create a new volume type for each distinct volume_backend_name value that
you added in the cinder.conf file. The example below assumes that the same
volume_backend_name=seagate-array option was specified in all of the entries, and
specifies that the volume type seagate can be used to allocate volumes from any of them.

Example of creating a volume type

$ openstack volume type create seagate
$ openstack volume type set --property volume_backend_name=seagate-array␣
↪→seagate

8. After modifying the cinder.conf file, restart the cinder-volume service.

392 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Driver-specific options

The following table contains the configuration options that are specific to the Seagate drivers.

Table 65: Description of Seagate configuration options
Configuration option = Default
value

Description

seagate_iscsi_ips = [] (List of String) List of comma-separated target iSCSI IP ad-
dresses.

seagate_pool_name = A (String) Pool or vdisk name to use for volume creation.
seagate_pool_type =
virtual

(String(choices=[linear, virtual])) linear (for vdisk) or virtual (for
virtual pool).

SolidFire

The SolidFire Cluster is a high performance all SSD iSCSI storage device that provides massive scale
out capability and extreme fault tolerance. A key feature of the SolidFire cluster is the ability to set and
modify during operation specific QoS levels on a volume for volume basis. The SolidFire cluster offers
this along with de-duplication, compression, and an architecture that takes full advantage of SSDs.

To configure the use of a SolidFire cluster with Block Storage, modify your cinder.conf file as follows:

volume_driver = cinder.volume.drivers.solidfire.SolidFireDriver
san_ip = 172.17.1.182 # the address of your MVIP
san_login = sfadmin # your cluster admin login
san_password = sfpassword # your cluster admin password
sf_account_prefix = '' # prefix for tenant account creation on␣
↪→solidfire cluster

Warning: Older versions of the SolidFire driver (prior to Icehouse) created a unique account pre-
fixed with $cinder-volume-service-hostname-$tenant-id on the SolidFire cluster for each
tenant. Unfortunately, this account formation resulted in issues for High Availability (HA) instal-
lations and installations where the cinder-volume service can move to a new node. The current
default implementation does not experience this issue as no prefix is used. For installations created
on a prior release, the OLD default behavior can be configured by using the keyword hostname in
sf_account_prefix.

Note: The SolidFire driver creates names for volumes on the back end using the format UUID-<cinder-
id>. This works well, but there is a possibility of a UUID collision for customers running multiple
clouds against the same cluster. In Mitaka the ability was added to eliminate the possibility of collisions
by introducing the sf_volume_prefix configuration variable. On the SolidFire cluster each volume will
be labeled with the prefix, providing the ability to configure unique volume names for each cloud. The
default prefix is UUID-.

Changing the setting on an existing deployment will result in the existing volumes being inaccessible.
To introduce this change to an existing deployment it is recommended to add the Cluster as if it were a
second backend and disable new deployments to the current back end.

3.3. Reference 393

Cinder Documentation, Release 20.3.2.dev3

Table 66: Description of SolidFire configuration options
Configuration
option = Default
value

Description

sf_account_prefix
= None

(String) Create SolidFire accounts with this prefix. Any string can be used here,
but the string hostname is special and will create a prefix using the cinder node
hostname (previous default behavior). The default is NO prefix.

sf_allow_tenant_qos
= False

(Boolean) Allow tenants to specify QOS on create

sf_api_port =
443

(Port(min=0, max=65535)) SolidFire API port. Useful if the device api is behind
a proxy on a different port.

sf_api_request_timeout
= 30

(Integer(min=30)) Sets time in seconds to wait for an api request to complete.

sf_cluster_pairing_timeout
= 60

(Integer(min=3)) Sets time in seconds to wait for clusters to complete pairing.

sf_emulate_512
= True

(Boolean) Set 512 byte emulation on volume creation;

sf_enable_vag
= False

(Boolean) Utilize volume access groups on a per-tenant basis.

sf_provisioning_calc
=
maxProvisionedSpace

(String(choices=[maxProvisionedSpace, usedSpace])) Change how SolidFire re-
ports used space and provisioning calculations. If this parameter is set to
usedSpace, the driver will report correct values as expected by Cinder thin pro-
visioning.

sf_svip = None (String) Overrides default cluster SVIP with the one specified. This is required
or deployments that have implemented the use of VLANs for iSCSI networks in
their cloud.

sf_volume_clone_timeout
= 600

(Integer(min=60)) Sets time in seconds to wait for a clone of a volume or snapshot
to complete.

sf_volume_create_timeout
= 60

(Integer(min=30)) Sets time in seconds to wait for a create volume operation to
complete.

sf_volume_pairing_timeout
= 3600

(Integer(min=30)) Sets time in seconds to wait for a migrating volume to com-
plete pairing and sync.

sf_volume_prefix
= UUID-

(String) Create SolidFire volumes with this prefix. Volume names are of the form
<sf_volume_prefix><cinder-volume-id>. The default is to use a prefix of UUID-.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Retype a volume.

394 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Manage and unmanage a volume.

• Consistency group snapshots.

QoS support for the SolidFire drivers includes the ability to set the following capabilities in the OpenStack
Block Storage API cinder.api.contrib.qos_specs_manage qos specs extension module:

• minIOPS - The minimum number of IOPS guaranteed for this volume. Default = 100.

• maxIOPS - The maximum number of IOPS allowed for this volume. Default = 15,000.

• burstIOPS - The maximum number of IOPS allowed over a short period of time. Default = 15,000.

• scaledIOPS - The presence of this key is a flag indicating that the above IOPS should be scaled
by the following scale values. It is recommended to set the value of scaledIOPS to True, but any
value will work. The absence of this key implies false.

• scaleMin - The amount to scale the minIOPS by for every 1GB of additional volume size. The
value must be an integer.

• scaleMax - The amount to scale the maxIOPS by for every 1GB of additional volume size. The
value must be an integer.

• scaleBurst - The amount to scale the burstIOPS by for every 1GB of additional volume size. The
value must be an integer.

The QoS keys above no longer require to be scoped but must be created and associated to a volume type.
For information about how to set the key-value pairs and associate them with a volume type, see the
volume qos section in the OpenStackClient command list.

Note: When using scaledIOPS, the scale values must be chosen such that the constraint minIOPS <=
maxIOPS <= burstIOPS is always true. The driver will enforce this constraint.

Storage Performance Development Kit driver

Storage Performance Development Kit (SPDK) is a user space, polled-mode, asynchronous, lockless
NVMe driver. It provides zero-copy, highly parallel access directly to an SSD from a user space appli-
cation. SPDK provides NVMe-oF target that is capable of serving disks over the network or to other
processes.

Preparation

SPDK NVMe-oF target installation

Follow instructions available on https://spdk.io/doc/nvmf.html to install and configure environment with
SPDK NVMe-oF target application. Starting from Ussuri release SPDK release v19.10 or higher is
required.

3.3. Reference 395

https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/volume-qos.html
https://spdk.io/doc/nvmf.html

Cinder Documentation, Release 20.3.2.dev3

Storage pools configuration

SPDK Cinder driver requires storage pools to be configured upfront in SPDK NVMe-oF target applica-
tion. SPDK driver uses Logical Volume Stores (LVS) as storage pools. Details on configuring LVS are
available on https://spdk.io/doc/logical_volumes.html. After storage pools are configured remote access
has to be enabled. Launch scripts/rpc_http_proxy.py script from SPDK directory to start an http
server that will manage requests from volume driver.

Supported operations

• Create, delete, attach, and detach volumes.

• Create, list, and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

• Get volume statistics.

Configuration

Use the following options to configure for the SPDK NVMe-oF transport:

volume_driver = cinder.volume.drivers.spdk.SPDKDriver
target_protocol = nvmet_rdma # SPDK driver supports only nvmet_rdma␣
↪→target protocol
target_helper = spdk-nvmeof # SPDK volume driver requires SPDK NVMe-
↪→oF target driver
target_ip_address = 192.168.0.1 # NVMe-oF target IP address
target_port = 4260 # NVMe-oF target port
target_prefix = nqn.2014-08.org.spdk # NVMe-oF target nqn prefix

Table 67: Description of SPDK configuration options
Configuration option = Default
value

Description

spdk_max_queue_depth = 64 (Integer(min=1, max=128)) Queue depth for rdma transport.
spdk_rpc_ip = None (String) The NVMe target remote configuration IP address.
spdk_rpc_password = None (String) The NVMe target remote configuration password.
spdk_rpc_port = 8000 (Port(min=0, max=65535)) The NVMe target remote configura-

tion port.
spdk_rpc_protocol = http (String(choices=[http, https])) Protocol to be used with SPDK

RPC proxy
spdk_rpc_username = None (String) The NVMe target remote configuration username.

396 Chapter 3. For operators

https://spdk.io/doc/logical_volumes.html

Cinder Documentation, Release 20.3.2.dev3

StorPool volume driver

StorPool is distributed data storage software running on standard x86 servers. StorPool aggregates the
performance and capacity of all drives into a shared pool of storage distributed among the servers. Within
this storage pool the user creates thin-provisioned volumes that are exposed to the clients as block devices.
StorPool consists of two parts wrapped in one package - a server and a client. The StorPool server allows
a hypervisor to act as a storage node, while the StorPool client allows a hypervisor node to access the
storage pool and act as a compute node. In OpenStack terms the StorPool solution allows each hypervisor
node to be both a storage and a compute node simultaneously.

Prerequisites

• The controller and all the compute nodes must have access to the StorPool API service.

• All nodes where StorPool-backed volumes will be attached must have access to the StorPool data
network and run the storpool_block service.

• If StorPool-backed Cinder volumes need to be created directly from Glance images, then the node
running the cinder-volume service must also have access to the StorPool data network and run
the storpool_block service.

• All nodes that need to access the StorPool API (the compute nodes and the node running the
cinder-volume service) must have the following packages installed:

– storpool-config (part of the StorPool installation)

– the storpool Python bindings package

– the storpool.spopenstack Python helper package

Configuring the StorPool volume driver

A valid /etc/storpool.conf file is required; please contact the StorPool support team for assistance.

The StorPool Cinder volume driver has two configuration options that may be specified both in the global
configuration (e.g. in a cinder.conf volume backend definition) and per volume type:

• storpool_template: specifies the StorPool template (replication, placement, etc. specifications
defined once and used for multiple volumes and snapshots) to use for the Cinder volume type or, if
specified globally, as a default value for Cinder volumes. There is no default value for this option,
see storpool_replication.

• storpool_replication: if storpool_template is not set, the volume will be created with the
specified chain replication and with the default placement constraints for the StorPool cluster. The
default value for the chain replication is 3.

3.3. Reference 397

Cinder Documentation, Release 20.3.2.dev3

Using the StorPool volume driver

The most common use for the Cinder StorPool volume driver is probably attaching volumes to Nova
instances. For this to work, the nova-compute service and the os-brick library must recognize the
storpool volume attachment driver; please contact the StorPool support team for more information.

Currently there is no StorPool driver for Nova ephemeral volumes; to run Nova instances with a StorPool-
backed volume as a root device, create a Cinder volume with the root filesystem image, make a snapshot,
and let Nova create the instance with a root device as a new volume created from that snapshot.

Synology DSM volume driver

The SynoISCSIDriver volume driver allows Synology NAS to be used for Block Storage (cinder) in
OpenStack deployments. Information on OpenStack Block Storage volumes is available in the DSM
Storage Manager.

System requirements

The Synology driver has the following requirements:

• DSM version 6.0.2 or later.

• Your Synology NAS model must support advanced file LUN, iSCSI Target, and snapshot features.
Refer to the Support List for applied models.

Note: The DSM driver is available in the OpenStack Newton release.

Supported operations

• Create, delete, clone, attach, and detach volumes.

• Create and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Extend a volume.

• Get volume statistics.

398 Chapter 3. For operators

https://www.synology.com/en-global/dsm/6.0/iSCSI_virtualization#OpenStack

Cinder Documentation, Release 20.3.2.dev3

Driver configuration

Edit the /etc/cinder/cinder.conf file on your volume driver host.

Synology driver uses a volume in Synology NAS as the back end of Block Storage. Every time you create
a new Block Storage volume, the system will create an advanced file LUN in your Synology volume to
be used for this new Block Storage volume.

The following example shows how to use different Synology NAS servers as the back end. If you want
to use all volumes on your Synology NAS, add another section with the volume number to differentiate
between volumes within the same Synology NAS.

[default]
enabled_backends = ds1515pV1, ds1515pV2, rs3017xsV3, others

[ds1515pV1]
configuration for volume 1 in DS1515+

[ds1515pV2]
configuration for volume 2 in DS1515+

[rs3017xsV1]
configuration for volume 1 in RS3017xs

Each section indicates the volume number and the way in which the connection is established. Below is
an example of a basic configuration:

[Your_Section_Name]

Required settings
volume_driver = cinder.volume.drivers.synology.synology_iscsi.SynoISCSIDriver
target_protocol = iscsi
target_ip_address = DS_IP
synology_admin_port = DS_PORT
synology_username = DS_USER
synology_password = DS_PW
synology_pool_name = DS_VOLUME

Optional settings
volume_backend_name = VOLUME_BACKEND_NAME
iscsi_secondary_ip_addresses = IP_ADDRESSES
driver_use_ssl = True
use_chap_auth = True
chap_username = CHAP_USER_NAME
chap_password = CHAP_PASSWORD

DS_PORT This is the port for DSM management. The default value for DSM is 5000 (HTTP) and 5001
(HTTPS). To use HTTPS connections, you must set driver_use_ssl = True.

DS_IP This is the IP address of your Synology NAS.

DS_USER This is the account of any DSM administrator.

DS_PW This is the password for DS_USER.

3.3. Reference 399

Cinder Documentation, Release 20.3.2.dev3

DS_VOLUME This is the volume you want to use as the storage pool for the Block Storage service. The
format is volume[0-9]+, and the number is the same as the volume number in DSM.

Note: If you set driver_use_ssl as True, synology_admin_port must be an HTTPS port.

Configuration options

The Synology DSM driver supports the following configuration options:

TOYOU NetStor Cinder driver

TOYOU NetStor series volume driver provides OpenStack Compute instances with access to TOYOU
NetStor series storage systems.

TOYOU NetStor storage can be used with iSCSI or FC connection.

This documentation explains how to configure and connect the block storage nodes to TOYOU NetStor
series storage.

Driver options

The following table contains the configuration options supported by the TOYOU NetStor iSCSI/FC
driver.

Table 68: Description of TOYOU NetStor configuration options
Configuration option = De-
fault value

Description

acs5000_copy_interval
= 5

(Integer(min=3, max=100)) When volume copy task is going
on,refresh volume status interval

acs5000_multiattach =
False

(Boolean) Enable to allow volumes attaching to multiple hosts with
no limit.

acs5000_volpool_name =
[pool01]

(List of String) Comma separated list of storage system storage pools
for volumes.

Supported operations

• Create, list, delete, attach (map), and detach (unmap) volumes.

• Create, list and delete volume snapshots.

• Create a volume from a snapshot.

• Copy an image to a volume.

• Copy a volume to an image.

• Clone a volume.

• Extend a volume.

400 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Migrate a volume.

• Manage/Unmanage volume.

• Revert to Snapshot.

• Multi-attach.

• Thin Provisioning.

• Extend Attached Volume.

Configure TOYOU NetStor iSCSI/FC backend

This section details the steps required to configure the TOYOU NetStor storage cinder driver.

1. In the cinder.conf configuration file under the [DEFAULT] section, set the enabled_backends
parameter with the iSCSI or FC back-end group.

• For Fibre Channel:

[DEFAULT]
enabled_backends = toyou-fc-1

• For iSCSI:

[DEFAULT]
enabled_backends = toyou-iscsi-1

2. Add a backend group section for the backend group specified in the enabled_backends parameter.

3. In the newly created backend group section, set the following configuration options:

• For Fibre Channel:

[toyou-fc-1]
The TOYOU NetStor driver path
volume_driver = cinder.volume.drivers.toyou.acs5000.acs5000_fc.
↪→Acs5000FCDriver
Management IP of TOYOU NetStor storage array
san_ip = 10.0.0.10
Management username of TOYOU NetStor storage array
san_login = cliuser
Management password of TOYOU NetStor storage array
san_password = clipassword
The Pool used to allocated volumes
acs5000_volpool_name = pool01
Backend name
volume_backend_name = toyou-fc

• For iSCSI:

[toyou-iscsi-1]
The TOYOU NetStor driver path
volume_driver = cinder.volume.drivers.toyou.acs5000.acs5000_iscsi.
↪→Acs5000ISCSIDriver (continues on next page)

3.3. Reference 401

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

Management IP of TOYOU NetStor storage array
san_ip = 10.0.0.10
Management username of TOYOU NetStor storage array
san_login = cliuser
Management password of TOYOU NetStor storage array
san_password = clipassword
The Pool used to allocated volumes
acs5000_volpool_name = pool01
Backend name
volume_backend_name = toyou-iscsi

Veritas ACCESS iSCSI driver

Veritas Access is a software-defined scale-out network-attached storage (NAS) solution for unstructured
data that works on commodity hardware and takes advantage of placing data on premise or in the cloud
based on intelligent policies. Through Veritas Access iSCSI Driver, OpenStack Block Storage can use
Veritas Access backend as a block storage resource. The driver enables you to create iSCSI volumes that
an OpenStack Block Storage server can allocate to any virtual machine running on a compute host.

Requirements

The Veritas ACCESS iSCSI Driver, version 1.0.0 and later, supports Veritas ACCESS release 7.4 and
later.

Supported operations

• Create and delete volumes.

• Create and delete snapshots.

• Create volume from snapshot.

• Extend a volume.

• Attach and detach volumes.

• Clone volumes.

Configuration

1. Enable RESTful service on the Veritas Access Backend.

2. Create Veritas Access iSCSI target, add store and portal IP to it.

You can create target and add portal IP, store to it as follows:

Target> iscsi target create iqn.2018-02.com.veritas:target02
Target> iscsi target store add target_fs iqn.2018-02.com.veritas:target02

(continues on next page)

402 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

Target> iscsi target portal add iqn.2018-02.com.veritas:target02 10.10.10.
↪→1
...

You can add authentication to target as follows:

Target> iscsi target auth incominguser add iqn.2018-02.com.
↪→veritas:target02 user1
...

3. Ensure that the Veritas Access iSCSI target service is online. If the Veritas Access iSCSI target
service is not online, enable the service by using the CLI or REST API.

Target> iscsi service start
Target> iscsi service status
...

Define the following required properties in the cinder.conf file:

volume_driver = cinder.volume.drivers.veritas_access.veritas_iscsi.
↪→ACCESSIscsiDriver
san_ip = va_console_ip
san_api_port = 14161
san_login = master
san_password = password
target_port = 3260
vrts_lun_sparse = True
vrts_target_config = /etc/cinder/vrts_target.xml

4. Define Veritas Access Target details in /etc/cinder/vrts_target.xml:

<?xml version="1.0" ?>
<VRTS>

<VrtsTargets>
<Target>

<Name>iqn.2018-02.com.veritas:target02</Name>
<PortalIP>10.10.10.1</PortalIP>
<Authentication>0</Authentication>

</Target>
</VrtsTargets>

</VRTS>
...

3.3. Reference 403

Cinder Documentation, Release 20.3.2.dev3

VMware VMDK driver

Use the VMware VMDK driver to enable management of the OpenStack Block Storage volumes on
vCenter-managed data stores. Volumes are backed by VMDK files on data stores that use any VMware-
compatible storage technology such as NFS, iSCSI, FiberChannel, and vSAN.

Note: The VMware VMDK driver requires vCenter version 5.1 at minimum.

Functional context

The VMware VMDK driver connects to vCenter, through which it can dynamically access all the data
stores visible from the ESX hosts in the managed cluster.

When you create a volume, the VMDK driver creates a VMDK file on demand. The VMDK file creation
completes only when the volume is subsequently attached to an instance. The reason for this requirement
is that data stores visible to the instance determine where to place the volume. Before the service creates
the VMDK file, attach a volume to the target instance.

The running vSphere VM is automatically reconfigured to attach the VMDK file as an extra disk. Once
attached, you can log in to the running vSphere VM to rescan and discover this extra disk.

With the update to ESX version 6.0, the VMDK driver now supports NFS version 4.1.

Configuration

The recommended volume driver for OpenStack Block Storage is the VMware vCenter VMDK driver.
When you configure the driver, you must match it with the appropriate OpenStack Compute driver from
VMware and both drivers must point to the same server.

In the nova.conf file, use this option to define the Compute driver:

compute_driver = vmwareapi.VMwareVCDriver

In the cinder.conf file, use this option to define the volume driver:

volume_driver = cinder.volume.drivers.vmware.vmdk.VMwareVcVmdkDriver

The following table lists various options that the drivers support for the OpenStack Block Storage con-
figuration (cinder.conf):

404 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 69: Description of VMware configuration options
Configuration
option = Default
value

Description

[DEFAULT]
vmware_adapter_type
= lsiLogic

(String) Default adapter type to be used for attaching volumes.

vmware_api_retry_count
= 10

(Integer) Number of times VMware vCenter server API must be retried upon
connection related issues.

vmware_ca_file
= None

(String) CA bundle file to use in verifying the vCenter server certificate.

vmware_cluster_name
= None

(Multi-valued) Name of a vCenter compute cluster where volumes should be
created.

vmware_connection_pool_size
= 10

(Integer) Maximum number of connections in http connection pool.

vmware_host_ip
= None

(String) IP address for connecting to VMware vCenter server.

vmware_host_password
= None

(String) Password for authenticating with VMware vCenter server.

vmware_host_port
= 443

(Port number) Port number for connecting to VMware vCenter server.

vmware_host_username
= None

(String) Username for authenticating with VMware vCenter server.

vmware_host_version
= None

(String) Optional string specifying the VMware vCenter server version. The
driver attempts to retrieve the version from VMware vCenter server. Set this
configuration only if you want to override the vCenter server version.

vmware_image_transfer_timeout_secs
= 7200

(Integer) Timeout in seconds for VMDK volume transfer between Cinder and
Glance.

vmware_insecure
= False

(Boolean) If true, the vCenter server certificate is not verified. If false, then
the default CA truststore is used for verification. This option is ignored if
vmware_ca_file is set.

vmware_max_objects_retrieval
= 100

(Integer) Max number of objects to be retrieved per batch. Query results will be
obtained in batches from the server and not in one shot. Server may still limit
the count to something less than the configured value.

vmware_task_poll_interval
= 2.0

(Floating point) The interval (in seconds) for polling remote tasks invoked on
VMware vCenter server.

vmware_tmp_dir
= /tmp

(String) Directory where virtual disks are stored during volume backup and re-
store.

vmware_volume_folder
= Volumes

(String) Name of the vCenter inventory folder that will contain Cinder vol-
umes. This folder will be created under OpenStack/<project_folder>, where
project_folder is of format Project (<volume_project_id>).

vmware_wsdl_location
= None

(String) Optional VIM service WSDL Location e.g http:
//<server>/vimService.wsdl. Optional over-ride to default location for
bug work-arounds.

3.3. Reference 405

http:/
http:/

Cinder Documentation, Release 20.3.2.dev3

VMDK disk type

The VMware VMDK drivers support the creation of VMDK disk file types thin, lazyZeroedThick
(sometimes called thick or flat), or eagerZeroedThick.

A thin virtual disk is allocated and zeroed on demand as the space is used. Unused space on a Thin disk
is available to other users.

A lazy zeroed thick virtual disk will have all space allocated at disk creation. This reserves the entire
disk space, so it is not available to other users at any time.

An eager zeroed thick virtual disk is similar to a lazy zeroed thick disk, in that the entire disk is allocated
at creation. However, in this type, any previous data will be wiped clean on the disk before the write. This
can mean that the disk will take longer to create, but can also prevent issues with stale data on physical
media.

Use the vmware:vmdk_type extra spec key with the appropriate value to specify the VMDK disk file
type. This table shows the mapping between the extra spec entry and the VMDK disk file type:

Table 70: Extra spec entry to VMDK disk file type mapping
Disk file type Extra spec key Extra spec value
thin vmware:vmdk_type thin

lazyZeroedThick vmware:vmdk_type thick

eagerZeroedThick vmware:vmdk_type eagerZeroedThick

If you do not specify a vmdk_type extra spec entry, the disk file type will default to thin.

The following example shows how to create a lazyZeroedThick VMDK volume by using the appro-
priate vmdk_type:

$ openstack volume type create THICK_VOLUME
$ openstack volume type set --property vmware:vmdk_type=thick THICK_VOLUME
$ openstack volume create --size 1 --type THICK_VOLUME VOLUME1

Clone type

With the VMware VMDK drivers, you can create a volume from another source volume or a snapshot
point. The VMware vCenter VMDK driver supports the full and linked/fast clone types. Use the
vmware:clone_type extra spec key to specify the clone type. The following table captures the mapping
for clone types:

Table 71: Extra spec entry to clone type mapping
Clone type Extra spec key Extra spec value
full vmware:clone_type full

linked/fast vmware:clone_type linked

If you do not specify the clone type, the default is full.

The following example shows linked cloning from a source volume, which is created from an image:

406 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

$ openstack volume type create FAST_CLONE
$ openstack volume type set --property vmware:clone_type=linked FAST_CLONE
$ openstack volume create --size 1 --type FAST_CLONE --image MYIMAGE SOURCE_
↪→VOL
$ openstack volume create --size 1 --source SOURCE_VOL DEST_VOL

Adapter type

The VMware vCenter VMDK driver supports the adapter types LSI Logic Parallel,
BusLogic Parallel, LSI Logic SAS, VMware Paravirtual and IDE for volumes. Use the
vmware:adapter_type extra spec key to specify the adapter type. The following table captures the
mapping for adapter types:

Table 72: Extra spec entry to adapter type mapping
Adapter type Extra spec key Extra spec value
BusLogic Parallel vmware:adapter_type busLogic

IDE vmware:adapter_type ide

LSI Logic Parallel vmware:adapter_type lsiLogic

LSI Logic SAS vmware:adapter_type lsiLogicsas

VMware Paravirtual vmware:adapter_type paraVirtual

If you do not specify the adapter type, the default is the value specified by the config option
vmware_adapter_type.

Use vCenter storage policies to specify back-end data stores

This section describes how to configure back-end data stores using storage policies. In vCenter 5.5 and
greater, you can create one or more storage policies and expose them as a Block Storage volume-type
to a vmdk volume. The storage policies are exposed to the vmdk driver through the extra spec property
with the vmware:storage_profile key.

For example, assume a storage policy in vCenter named gold_policy. and a Block Storage volume
type named vol1 with the extra spec key vmware:storage_profile set to the value gold_policy.
Any Block Storage volume creation that uses the vol1 volume type places the volume only in data stores
that match the gold_policy storage policy.

The Block Storage back-end configuration for vSphere data stores is automatically determined based
on the vCenter configuration. If you configure a connection to connect to vCenter version 5.5 or later
in the cinder.conf file, the use of storage policies to configure back-end data stores is automatically
supported.

Note: You must configure any data stores that you configure for the Block Storage service for the
Compute service.

To configure back-end data stores by using storage policies

1. In vCenter, tag the data stores to be used for the back end.

3.3. Reference 407

Cinder Documentation, Release 20.3.2.dev3

OpenStack also supports policies that are created by using vendor-specific capabilities; for example
vSAN-specific storage policies.

Note: The tag value serves as the policy. For details, see Storage policy-based configuration in
vCenter.

2. Set the extra spec key vmware:storage_profile in the desired Block Storage volume types to
the policy name that you created in the previous step.

3. Optionally, for the vmware_host_version parameter, enter the version number of your vSphere
platform. For example, 5.5.

This setting overrides the default location for the corresponding WSDL file. Among other scenar-
ios, you can use this setting to prevent WSDL error messages during the development phase or to
work with a newer version of vCenter.

4. Complete the other vCenter configuration parameters as appropriate.

Note: Any volume that is created without an associated policy (that is to say, without an associated
volume type that specifies vmware:storage_profile extra spec), there is no policy-based placement
for that volume.

Supported operations

The VMware vCenter VMDK driver supports these operations:

• Create, delete, attach, and detach volumes.

Note: When a volume is attached to an instance, a reconfigure operation is performed on the
instance to add the volumes VMDK to it. The user must manually rescan and mount the device
from within the guest operating system.

• Create, list, and delete volume snapshots.

Note: Allowed only if volume is not attached to an instance.

• Create a volume from a snapshot.

Note: The vmdk UUID in vCenter will not be set to the volume UUID if the vCenter version is
6.0 or above and the extra spec key vmware:clone_type in the destination volume type is set to
linked.

• Copy an image to a volume.

Note: Only images in vmdk disk format with bare container format are supported. The
vmware_disktype property of the image can be preallocated, sparse, streamOptimized

408 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

or thin.

• Copy a volume to an image.

Note:

– Allowed only if the volume is not attached to an instance.

– This operation creates a streamOptimized disk image.

• Clone a volume.

Note:

– Supported only if the source volume is not attached to an instance.

– The vmdk UUID in vCenter will not be set to the volume UUID if the vCenter version is 6.0
or above and the extra spec key vmware:clone_type in the destination volume type is set
to linked.

• Backup a volume.

Note: This operation creates a backup of the volume in streamOptimized disk format.

• Restore backup to new or existing volume.

Note: Supported only if the existing volume doesnt contain snapshots.

• Change the type of a volume.

Note: This operation is supported only if the volume state is available.

• Extend a volume.

Storage policy-based configuration in vCenter

You can configure Storage Policy-Based Management (SPBM) profiles for vCenter data stores supporting
the Compute, Image service, and Block Storage components of an OpenStack implementation.

In a vSphere OpenStack deployment, SPBM enables you to delegate several data stores for storage, which
reduces the risk of running out of storage space. The policy logic selects the data store based on acces-
sibility and available storage space.

3.3. Reference 409

Cinder Documentation, Release 20.3.2.dev3

Prerequisites

• Determine the data stores to be used by the SPBM policy.

• Determine the tag that identifies the data stores in the OpenStack component configuration.

• Create separate policies or sets of data stores for separate OpenStack components.

Create storage policies in vCenter

1. In vCenter, create the tag that identifies the data stores:

1. From the Home screen, click Tags.

2. Specify a name for the tag.

3. Specify a tag category. For example, spbm-cinder.

2. Apply the tag to the data stores to be used by the SPBM policy.

Note: For details about creating tags in vSphere, see the vSphere documentation.

3. In vCenter, create a tag-based storage policy that uses one or more tags to identify a set of data
stores.

Note: For details about creating storage policies in vSphere, see the vSphere documentation.

Data store selection

If storage policy is enabled, the driver initially selects all the data stores that match the associated storage
policy.

If two or more data stores match the storage policy, the driver chooses a data store that is connected to
the maximum number of hosts.

In case of ties, the driver chooses the data store with lowest space utilization, where space utilization is
defined by the (1-freespace/totalspace) meters.

These actions reduce the number of volume migrations while attaching the volume to instances.

The volume must be migrated if the ESX host for the instance cannot access the data store that contains
the volume.

410 Chapter 3. For operators

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.vcenterhost.doc/GUID-05323758-1EBF-406F-99B6-B1A33E893453.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.storage.doc/GUID-D025AA68-BF00-4FC2-9C7E-863E5787E743.html

Cinder Documentation, Release 20.3.2.dev3

Virtuozzo Storage driver

The Virtuozzo Storage driver is a fault-tolerant distributed storage system that is optimized for virtualiza-
tion workloads. Set the following in your cinder.conf file, and use the following options to configure
it.

volume_driver = cinder.volume.drivers.vzstorage.VZStorageDriver

Table 73: Description of Virtuozzo Storage configuration options
Configuration option = De-
fault value

Description

vzstorage_default_volume_format
= raw

(String) Default format that will be used when creating volumes if no
volume format is specified.

vzstorage_mount_options
= None

(List of String) Mount options passed to the vzstorage client. See
section of the pstorage-mount man page for details.

vzstorage_mount_point_base
= $state_path/mnt

(String) Base dir containing mount points for vzstorage shares.

vzstorage_shares_config
= /etc/cinder/
vzstorage_shares

(String) File with the list of available vzstorage shares.

vzstorage_sparsed_volumes
= True

(Boolean) Create volumes as sparsed files which take no space rather
than regular files when using raw format, in which case volume cre-
ation takes lot of time.

vzstorage_used_ratio =
0.95

(Float) Percent of ACTUAL usage of the underlying volume before
no new volumes can be allocated to the volume destination.

Windows iSCSI volume driver

Windows Server offers an integrated iSCSI Target service that can be used with OpenStack Block Storage
in your stack.

Being entirely a software solution, consider it in particular for mid-sized networks where the costs of a
SAN might be excessive.

The Windows iSCSI Block Storage driver works with OpenStack Compute on any hypervisor.

This driver creates volumes backed by fixed-type VHD images on Windows Server 2012 and dynamic-
type VHDX on Windows Server 2012 R2 and onwards, stored locally on a user-specified path. The
system uses those images as iSCSI disks and exports them through iSCSI targets. Each volume has its
own iSCSI target.

The cinder-volume service as well as the required Python components will be installed directly onto
the Windows node.

3.3. Reference 411

Cinder Documentation, Release 20.3.2.dev3

Prerequisites

The Windows iSCSI volume driver depends on the wintarget Windows service. This will require the
iSCSI Target Server Windows feature to be installed.

Note: The Cinder MSI will automatically enable this feature, if available (some minimal Windows
versions do not provide it).

You may check the availability of this feature by running the following:

Get-WindowsFeature FS-iSCSITarget-Server

The Windows Server installation requires at least 16 GB of disk space. The volumes hosted by this node
will need extra space.

Configuring cinder-volume

Below is a configuration sample for using the Windows iSCSI Driver. Append those options to your
already existing cinder.conf file, described at Install and configure a storage node.

[DEFAULT]
enabled_backends = winiscsi

[winiscsi]
volume_driver = cinder.volume.drivers.windows.iscsi.WindowsISCSIDriver
windows_iscsi_lun_path = C:\iSCSIVirtualDisks
volume_backend_name = winiscsi

The following config options are optional
#
use_chap_auth = true
target_port = 3260
target_ip_addres = <IP_USED_FOR_ISCSI_TRAFFIC>
iscsi_secondary_ip_addresses = <SECONDARY_ISCSI_IPS>
reserved_percentage = 5

The windows_iscsi_lun_path config option specifies the directory in which VHD backed volumes
will be stored.

Windows SMB volume driver

Description

The Windows SMB volume driver leverages pre-existing SMB shares, used to store volumes as virtual
disk images.

The main reasons to use the Windows SMB driver are:

• ease of management and use

412 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• great integration with other Microsoft technologies (e.g. Hyper-V Failover Cluster)

• suitable for a various range of deployment types and sizes

The cinder-volume service as well as the required Python components will be installed directly onto
designated Windows nodes (preferably the ones exposing the shares).

Common deployment scenarios

The SMB driver is designed to support a variety of scenarios, such as:

• Scale-Out File Servers (SoFS), providing highly available SMB shares.

• standalone Windows or Samba shares

• any other SMB 3.0 capable device

By using SoFS shares, the virtual disk images are stored on Cluster Shared Volumes (CSV).

A common practice involves deploying CSVs on top of SAN backed LUNs (exposed to all the nodes of
the cluster through iSCSI or Fibre Channel). In absence of a SAN, Storage Spaces/Storage Spaces Direct
(S2D) may be used for the underlying storage.

Note: S2D is commonly used in hyper-converged deployments.

Features

VHD and VHDX are the currently supported image formats and may be consumed by Hyper-V and KVM
compute nodes. By default, dynamic (thinly provisioned) images will be used, unless configured other-
wise.

The driver accepts one or more shares that will be reported to the Cinder scheduler as storage pools. This
can provide means of tiering, allowing specific shares (pools) to be requested through volume types.

openstack volume type set $volume_type --property pool_name=$pool_name

Frontend QoS specs may be associated with the volume types and enforced on the consumer side (e.g.
Hyper-V).

openstack volume qos create $rule_name --property consumer=front-end --
↪→property total_bytes_sec=20971520
openstack volume qos associate $rule_name $volume_type_id
openstack volume create $volume_name --type $volume_type_id --size $size

The Cinder Backup Service can be run on Windows. This driver stores the volumes using vhdx
images stored on SMB shares which can be attached in order to retrieve the volume data and send it to
the backup service.

Prerequisites:

• All physical disks must be in byte mode

• rb+ must be used when writing backups to disk

3.3. Reference 413

Cinder Documentation, Release 20.3.2.dev3

Clustering support

Active-Active Cinder clustering is currently experimental and should not be used in production. This
implies having multiple Cinder Volume services handling the same share simultaneously.

On the other hand, Active-Passive clustering can easily be achieved, configuring the Cinder Volume
service as clustered using Microsoft Failover Cluster.

By using SoFS, you can provide high availability of the shares used by Cinder. This can be used in
conjunction with the Nova Hyper-V cluster driver, which allows clustering virtual machines. This ensures
that when a compute node is compromised, the virtual machines are transparently migrated to a healthy
node, preserving volume connectivity.

Note: The Windows SMB driver is the only Cinder driver that may be used along with the Nova Hyper-
V cluster driver. The reason is that during an unexpected failover, the volumes need to be available on
the destination compute node side.

Prerequisites

Before setting up the SMB driver, you will need to create and configure one or more SMB shares that
will be used for storing virtual disk images.

Note: The driver does not manage share permissions. You will have to make sure that Cinder as well as
share consumers (e.g. Nova, Hyper-V) have access.

Note that Hyper-V VMs are run using a built-in user group: NT VIRTUAL MACHINE\Virtual
Machines.

The easiest way to provide share access is by using Active Directory accounts. You may grant share
access to the users running OpenStack services, as well as the compute nodes (and optionally storage
nodes), using per computer account access rules. One of the main advantages is that by doing so, you
dont need to pass share credentials to Cinder (and implicitly volume consumers).

By granting access to a computer account, youre basically granting access to the LocalSystem account
of that node, and thus to the VMs running on that host.

Note: By default, OpenStack services deployed using the MSIs are run as LocalSystem.

Once youve granted share access to a specific account, dont forget to also configure file system level
permissions on the directory exported by the share.

414 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Configuring cinder-volume

Below is a configuration sample for using the Windows SMB Driver. Append those options to your
already existing cinder.conf file, described at Install and configure a storage node.

[DEFAULT]
enabled_backends = winsmb

[winsmb]
volume_backend_name = myWindowsSMBBackend
volume_driver = cinder.volume.drivers.windows.smbfs.WindowsSmbfsDriver
smbfs_mount_point_base = C:\OpenStack\mnt\
smbfs_shares_config = C:\Program Files\Cloudbase Solutions\OpenStack\etc\
↪→cinder\smbfs_shares_list

The following config options are optional
#
image_volume_cache_enabled = true
image_volume_cache_max_size_gb = 100
image_volume_cache_max_count = 10
#
nas_volume_prov_type = thin
smbfs_default_volume_format = vhdx
max_over_subscription_ratio = 1.5
reserved_percentage = 5
smbfs_pool_mappings = //addr/share:pool_name,//addr/share2:pool_name2

The smbfs_mount_point_base config option allows you to specify where the shares will be mounted.
This directory will contain symlinks pointing to the shares used by Cinder. Each symlink name will be
a hash of the actual share path.

Configuring the list of available shares

In addition to cinder.conf, you will need to have another config file, providing a list of shares that
will be used by Cinder for storing disk images. In the above sample, this file is referenced by the
smbfs_shares_config option.

The share list config file must contain one share per line, optionally including mount options. You may
also add comments, using a # at the beginning of the line.

Bellow is a sample of the share list config file:

Cinder Volume shares
//sofs-cluster/share
//10.0.0.10/volumes -o username=user,password=mypassword

Keep in mind that Linux hosts can also consume those volumes. For this reason, the mount options
resemble the ones used by mount.cifs (in fact, those will actually be passed to mount.cifs by the Nova
Linux nodes).

In case of Windows nodes, only the share location, username and password will be used when mounting
the shares. The share address must use slashes instead of backslashes (as opposed to what Windows

3.3. Reference 415

Cinder Documentation, Release 20.3.2.dev3

admins may expect) because of the above mentioned reason.

Depending on the configured share access rules, you may skip including share credentials in the config
file, as described in the Prerequisites section.

Configuring Nova credentials

The SMB volume driver relies on the nova assisted volume snapshots feature when snapshotting
in-use volumes, as do other similar drivers using shared filesystems.

By default, the Nova policy requires admin rights for this operation. You may provide Cinder specific
credentials to be used when requesting Nova assisted volume snapshots, as shown bellow:

[nova]
region_name=RegionOne
auth_strategy=keystone
auth_type=password
auth_url=http://keystone_host/identity
project_name=service
username=nova
password=password
project_domain_name=Default
user_domain_name=Default

Configuring storage pools

Each share is reported to the Cinder scheduler as a storage pool.

By default, the share name will be the name of the pool. If needed, you may provide pool name mappings,
specifying a custom pool name for each share, as shown bellow:

smbfs_pool_mappings = //addr/share:pool0

In the above sample, the //addr/share share will be reported as pool0.

Zadara Storage VPSA volume driver

Zadara Storage, Virtual Private Storage Array (VPSA) is the first software defined, Enterprise-Storage-
as-a-Service. It is an elastic and private block and file storage system which, provides enterprise-grade
data protection and data management storage services.

The ZadaraVPSAISCSIDriver volume driver allows the Zadara Storage VPSA to be used as a volume
back end storage in OpenStack deployments.

416 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

System requirements

To use Zadara Storage VPSA Volume Driver you will require:

• Zadara Storage VPSA version 15.07 and above

• iSCSI or iSER host interfaces

Supported operations

• Create, delete, attach, and detach volumes

• Create, list, and delete volume snapshots

• Create a volume from a snapshot

• Copy an image to a volume

• Copy a volume to an image

• Clone a volume

• Extend a volume

• Migrate a volume with back end assistance

• Manage and unmanage a volume

• Manage and unmanage volume snapshots

• Multiattach a volume

Configuration

1. Create a VPSA pool(s) or make sure you have an existing pool(s) that will be used for volume
services. The VPSA pool(s) will be identified by its ID (pool-xxxxxxxx). For further details, see
the VPSAs user guide.

2. Adjust the cinder.conf configuration file to define the volume driver name along with a storage
back end entry for each VPSA pool that will be managed by the block storage service. Each back
end entry requires a unique section name, surrounded by square brackets (or parentheses), followed
by options in key=value format.

Note: Restart cinder-volume service after modifying cinder.conf.

Sample minimum back end configuration

[DEFAULT]
enabled_backends = vpsa

[vpsa]
zadara_vpsa_host = 172.31.250.10
zadara_vpsa_port = 80
zadara_user = vpsauser

(continues on next page)

3.3. Reference 417

http://tinyurl.com/hxo3tt5

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

zadara_password = mysecretpassword
zadara_use_iser = false
zadara_vpsa_poolname = pool-00000001
volume_driver = cinder.volume.drivers.zadara.zadara.ZadaraVPSAISCSIDriver
volume_backend_name = vpsa

Driver-specific options

This section contains the configuration options that are specific to the Zadara Storage VPSA driver.

Table 74: Description of Zadara configuration options
Configuration
option = Default
value

Description

zadara_access_key
= None

(String) VPSA access key

zadara_default_snap_policy
= False

(Boolean) VPSA - Attach snapshot policy for volumes. If the option is neither
configured nor provided as metadata, the VPSA will inherit the default value.

zadara_gen3_vol_compress
= False

(Boolean) VPSA - Enable compression for volumes. If the option is neither
configured nor provided as metadata, the VPSA will inherit the default value.

zadara_gen3_vol_dedupe
= False

(Boolean) VPSA - Enable deduplication for volumes. If the option is neither
configured nor provided as metadata, the VPSA will inherit the default value.

zadara_ssl_cert_verify
= True

(Boolean) If set to True the http client will validate the SSL certificate of the
VPSA endpoint.

zadara_use_iser
= True

(Boolean) VPSA - Use ISER instead of iSCSI

zadara_vol_encrypt
= False

(Boolean) VPSA - Default encryption policy for volumes. If the option is
neither configured nor provided as metadata, the VPSA will inherit the default
value.

zadara_vol_name_template
= OS_%s

(String) VPSA - Default template for VPSA volume names

zadara_vpsa_host
= None

(HostAddress) VPSA - Management Host name or IP address

zadara_vpsa_poolname
= None

(String) VPSA - Storage Pool assigned for volumes

zadara_vpsa_port
= None

(Port(min=0, max=65535)) VPSA - Port number

zadara_vpsa_use_ssl
= False

(Boolean) VPSA - Use SSL connection

Note: By design, all volumes created within the VPSA are thin provisioned.

418 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Backup drivers

Ceph backup driver

The Ceph backup driver backs up volumes of any type to a Ceph back-end store. The driver can also detect
whether the volume to be backed up is a Ceph RBD volume, and if so, it tries to perform incremental
and differential backups.

For source Ceph RBD volumes, you can perform backups within the same Ceph pool (not recommended).
You can also perform backups between different Ceph pools and between different Ceph clusters.

At the time of writing, differential backup support in Ceph/librbd was quite new. This driver attempts
a differential backup in the first instance. If the differential backup fails, the driver falls back to full
backup/copy.

If incremental backups are used, multiple backups of the same volume are stored as snapshots so that
minimal space is consumed in the backup store. It takes far less time to restore a volume than to take a
full copy.

Note: Block Storage enables you to:

• Restore to a new volume, which is the default and recommended action.

• Restore to the original volume from which the backup was taken. The restore action takes a full
copy because this is the safest action.

To enable the Ceph backup driver, include the following option in the cinder.conf file:

backup_driver = cinder.backup.drivers.ceph.CephBackupDriver

The following configuration options are available for the Ceph backup driver.

Table 75: Description of Ceph backup driver configuration options
Configuration option =
Default value

Description

backup_ceph_chunk_size
= 134217728

(Integer) The chunk size, in bytes, that a backup is broken into before
transfer to the Ceph object store.

backup_ceph_conf
= /etc/ceph/ceph.
conf

(String) Ceph configuration file to use.

backup_ceph_image_journals
= False

(Boolean) If True, apply JOURNALING and EXCLUSIVE_LOCK fea-
ture bits to the backup RBD objects to allow mirroring

backup_ceph_pool =
backups

(String) The Ceph pool where volume backups are stored.

backup_ceph_stripe_count
= 0

(Integer) RBD stripe count to use when creating a backup image.

backup_ceph_stripe_unit
= 0

(Integer) RBD stripe unit to use when creating a backup image.

backup_ceph_user =
cinder

(String) The Ceph user to connect with. Default here is to use the same
user as for Cinder volumes. If not using cephx this should be set to None.

restore_discard_excess_bytes
= True

(Boolean) If True, always discard excess bytes when restoring volumes i.e.
pad with zeroes.

3.3. Reference 419

Cinder Documentation, Release 20.3.2.dev3

This example shows the default options for the Ceph backup driver.

backup_ceph_conf=/etc/ceph/ceph.conf
backup_ceph_user = cinder-backup
backup_ceph_chunk_size = 134217728
backup_ceph_pool = backups
backup_ceph_stripe_unit = 0
backup_ceph_stripe_count = 0

GlusterFS backup driver

The GlusterFS backup driver backs up volumes of any type to GlusterFS.

To enable the GlusterFS backup driver, include the following option in the cinder.conf file:

backup_driver = cinder.backup.drivers.glusterfs.GlusterfsBackupDriver

The following configuration options are available for the GlusterFS backup driver.

Table 76: Description of GlusterFS backup driver configuration
options

Configuration option = Default
value

Description

glusterfs_backup_mount_point
= $state_path/backup_mount

(String) Base dir containing mount point for gluster share.

glusterfs_backup_share = None (String) GlusterFS share in <host-
name|ipv4addr|ipv6addr>:<gluster_vol_name> format.
Eg: 1.2.3.4:backup_vol

NFS backup driver

The backup driver for the NFS back end backs up volumes of any type to an NFS exported backup
repository.

To enable the NFS backup driver, include the following option in the [DEFAULT] section of the cinder.
conf file:

backup_driver = cinder.backup.drivers.nfs.NFSBackupDriver

The following configuration options are available for the NFS back-end backup driver.

420 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 77: Description of NFS backup driver configuration options
Configuration
option = Default
value

Description

backup_container
= None

(String) Custom directory to use for backups.

backup_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress notifica-
tions to Ceilometer when backing up the volume to the backend storage. The
default value is True to enable the timer.

backup_file_size
= 1999994880

(Integer) The maximum size in bytes of the files used to hold back-
ups. If the volume being backed up exceeds this size, then it will
be backed up into multiple files.backup_file_size must be a multiple of
backup_sha_block_size_bytes.

backup_mount_attempts
= 3

(Integer(min=1)) The number of attempts to mount NFS shares before raising
an error.

backup_mount_options
= None

(String) Mount options passed to the NFS client. See NFS man page for de-
tails.

backup_mount_point_base
= $state_path/
backup_mount

(String) Base dir containing mount point for NFS share.

backup_posix_path
= $state_path/
backup

(String) Path specifying where to store backups.

backup_sha_block_size_bytes
= 32768

(Integer) The size in bytes that changes are tracked for incremental backups.
backup_file_size has to be multiple of backup_sha_block_size_bytes.

backup_share =
None

(String) NFS share in hostname:path, ipv4addr:path, or [ipv6addr]:path for-
mat.

POSIX file systems backup driver

The POSIX file systems backup driver backs up volumes of any type to POSIX file systems.

To enable the POSIX file systems backup driver, include the following option in the cinder.conf file:

backup_driver = cinder.backup.drivers.posix.PosixBackupDriver

The following configuration options are available for the POSIX file systems backup driver.

3.3. Reference 421

Cinder Documentation, Release 20.3.2.dev3

Table 78: Description of POSIX backup driver configuration op-
tions

Configura-
tion option =
Default value

Description

backup_container
= None

(String) Custom directory to use for backups.

backup_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress notifications
to Ceilometer when backing up the volume to the backend storage. The default
value is True to enable the timer.

backup_file_size
= 1999994880

(Integer) The maximum size in bytes of the files used to hold backups. If the
volume being backed up exceeds this size, then it will be backed up into multiple
files.backup_file_size must be a multiple of backup_sha_block_size_bytes.

backup_posix_path
=
$state_path/
backup

(String) Path specifying where to store backups.

backup_sha_block_size_bytes
= 32768

(Integer) The size in bytes that changes are tracked for incremental backups.
backup_file_size has to be multiple of backup_sha_block_size_bytes.

Swift backup driver

The backup driver for the swift back end performs a volume backup to an object storage system.

To enable the swift backup driver, include the following option in the cinder.conf file:

backup_driver = cinder.backup.drivers.swift.SwiftBackupDriver

The following configuration options are available for the Swift back-end backup driver.

422 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 79: Description of Swift backup driver configuration options
Configuration option =
Default value

Description

backup_swift_auth =
per_user

(String(choices=[per_user, single_user])) Swift authentication mecha-
nism (per_user or single_user).

backup_swift_auth_insecure
= False

(Boolean) Bypass verification of server certificate when making SSL
connection to Swift.

backup_swift_auth_url
= None

(URI) The URL of the Keystone endpoint

backup_swift_auth_version
= 1

(String) Swift authentication version. Specify 1 for auth 1.0, or 2 for auth
2.0 or 3 for auth 3.0

backup_swift_block_size
= 32768

(Integer) The size in bytes that changes are tracked for incre-
mental backups. backup_swift_object_size has to be multiple of
backup_swift_block_size.

backup_swift_ca_cert_file
= None

(String) Location of the CA certificate file to use for swift client requests.

backup_swift_container
= volumebackups

(String) The default Swift container to use

backup_swift_create_storage_policy
= None

(String) The storage policy to use when creating the Swift container. If
the container already exists the storage policy cannot be enforced

backup_swift_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress noti-
fications to Ceilometer when backing up the volume to the Swift backend
storage. The default value is True to enable the timer.

backup_swift_key =
None

(String) Swift key for authentication

backup_swift_object_size
= 52428800

(Integer) The size in bytes of Swift backup objects

backup_swift_project
= None

(String) Swift project/account name. Required when connecting to an
auth 3.0 system

backup_swift_project_domain
= None

(String) Swift project domain name. Required when connecting to an
auth 3.0 system

backup_swift_retry_attempts
= 3

(Integer) The number of retries to make for Swift operations

backup_swift_retry_backoff
= 2

(Integer) The backoff time in seconds between Swift retries

backup_swift_tenant
= None

(String) Swift tenant/account name. Required when connecting to an
auth 2.0 system

backup_swift_url =
None

(URI) The URL of the Swift endpoint

backup_swift_user =
None

(String) Swift user name

backup_swift_user_domain
= None

(String) Swift user domain name. Required when connecting to an auth
3.0 system

keystone_catalog_info
= identity:Identity
Service:publicURL

(String) Info to match when looking for keystone in the ser-
vice catalog. Format is: separated values of the form: <ser-
vice_type>:<service_name>:<endpoint_type> - Only used if
backup_swift_auth_url is unset

swift_catalog_info =
object-store:swift:publicURL

(String) Info to match when looking for swift in the ser-
vice catalog. Format is: separated values of the form: <ser-
vice_type>:<service_name>:<endpoint_type> - Only used if
backup_swift_url is unset

3.3. Reference 423

Cinder Documentation, Release 20.3.2.dev3

To enable the swift backup driver for 1.0, 2.0, or 3.0 authentication version, specify 1, 2, or 3 corre-
spondingly. For example:

backup_swift_auth_version = 2

In addition, the 2.0 authentication system requires the definition of the backup_swift_tenant setting:

backup_swift_tenant = <None>

This example shows the default options for the Swift back-end backup driver.

backup_swift_url = http://localhost:8080/v1/AUTH_
backup_swift_auth_url = http://localhost:5000/v3
backup_swift_auth = per_user
backup_swift_auth_version = 1
backup_swift_user = <None>
backup_swift_user_domain = <None>
backup_swift_key = <None>
backup_swift_container = volumebackups
backup_swift_object_size = 52428800
backup_swift_project = <None>
backup_swift_project_domain = <None>
backup_swift_retry_attempts = 3
backup_swift_retry_backoff = 2
backup_compression_algorithm = zlib

Google Cloud Storage backup driver

The Google Cloud Storage (GCS) backup driver backs up volumes of any type to Google Cloud Storage.

To enable the GCS backup driver, include the following option in the cinder.conf file:

backup_driver = cinder.backup.drivers.gcs.GoogleBackupDriver

The following configuration options are available for the GCS backup driver.

424 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 80: Description of GCS backup driver configuration options
Configuration
option = Default
value

Description

backup_gcs_block_size
= 32768

(Integer) The size in bytes that changes are tracked for incremental backups.
backup_gcs_object_size has to be multiple of backup_gcs_block_size.

backup_gcs_bucket
= None

(String) The GCS bucket to use.

backup_gcs_bucket_location
= US

(String) Location of GCS bucket.

backup_gcs_credential_file
= None

(String) Absolute path of GCS service account credential file.

backup_gcs_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress notifica-
tions to Ceilometer when backing up the volume to the GCS backend storage.
The default value is True to enable the timer.

backup_gcs_num_retries
= 3

(Integer) Number of times to retry.

backup_gcs_object_size
= 52428800

(Integer) The size in bytes of GCS backup objects.

backup_gcs_project_id
= None

(String) Owner project id for GCS bucket.

backup_gcs_proxy_url
= None

(URI) URL for http proxy access.

backup_gcs_reader_chunk_size
= 2097152

(Integer) GCS object will be downloaded in chunks of bytes.

backup_gcs_retry_error_codes
= [429]

(List of String) List of GCS error codes.

backup_gcs_storage_class
= NEARLINE

(String) Storage class of GCS bucket.

backup_gcs_user_agent
= gcscinder

(String) Http user-agent string for gcs api.

backup_gcs_writer_chunk_size
= 2097152

(Integer) GCS object will be uploaded in chunks of bytes. Pass in a value of -1
if the file is to be uploaded as a single chunk.

S3 Storage backup driver

The S3 backup driver backs up volumes to any type of Amazon S3 and S3 compatible object storages.

To enable the S3 backup driver, include the following option in the cinder.conf file:

backup_driver = cinder.backup.drivers.s3.S3BackupDriver

The following configuration options are available for the S3 backup driver.

3.3. Reference 425

Cinder Documentation, Release 20.3.2.dev3

Table 81: Description of S3 backup driver configuration options
Configuration
option = Default
value

Description

backup_s3_block_size
= 32768

(Integer) The size in bytes that changes are tracked for incremental backups.
backup_s3_object_size has to be multiple of backup_s3_block_size.

backup_s3_ca_cert_file
= None

(String) path/to/cert/bundle.pem - A filename of the CA cert bundle to use.

backup_s3_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress notifica-
tions to Ceilometer when backing up the volume to the S3 backend storage.
The default value is True to enable the timer.

backup_s3_endpoint_url
= None

(String) The url where the S3 server is listening.

backup_s3_http_proxy
= <>

(String) Address or host for the http proxy server.

backup_s3_https_proxy
= <>

(String) Address or host for the https proxy server.

backup_s3_max_pool_connections
= 10

(Integer) The maximum number of connections to keep in a connection pool.

backup_s3_md5_validation
= True

(Boolean) Enable or Disable md5 validation in the s3 backend.

backup_s3_object_size
= 52428800

(Integer) The size in bytes of S3 backup objects

backup_s3_retry_max_attempts
= 4

(Integer) An integer representing the maximum number of retry attempts that
will be made on a single request.

backup_s3_retry_mode
= legacy

(String) A string representing the type of retry mode. e.g: legacy, standard,
adaptive

backup_s3_sse_customer_algorithm
= None

(String) The SSECustomerAlgorithm. backup_s3_sse_customer_key must be
set at the same time to enable SSE.

backup_s3_sse_customer_key
= None

(String) The SSECustomerKey. backup_s3_sse_customer_algorithm must be
set at the same time to enable SSE.

backup_s3_store_access_key
= None

(String) The S3 query token access key.

backup_s3_store_bucket
= volumebackups

(String) The S3 bucket to be used to store the Cinder backup data.

backup_s3_store_secret_key
= None

(String) The S3 query token secret key.

backup_s3_timeout
= 60

(Float) The time in seconds till a timeout exception is thrown.

backup_s3_verify_ssl
= True

(Boolean) Enable or Disable ssl verify.

This section describes how to configure the cinder-backup service and its drivers.

The volume drivers are included with the Block Storage repository. To set a backup driver, use the
backup_driver flag. By default there is no backup driver enabled.

426 Chapter 3. For operators

https://opendev.org/openstack/cinder

Cinder Documentation, Release 20.3.2.dev3

Block Storage schedulers

Block Storage service uses the cinder-scheduler service to determine how to dispatch block storage
requests.

For more information, see:

Cinder Scheduler Filters

AvailabilityZoneFilter

Filters Backends by availability zone.

CapabilitiesFilter

BackendFilter to work with resource (instance & volume) type records.

CapacityFilter

Capacity filters based on volume backends capacity utilization.

DifferentBackendFilter

Schedule volume on a different back-end from a set of volumes.

DriverFilter

DriverFilter filters backend based on a filter function and metrics.

DriverFilter filters based on volume backends provided filter function and metrics.

InstanceLocalityFilter

Schedule volume on the same host as a given instance.

This filter enables selection of a storage back-end located on the host where the instances hypervisor
is running. This provides data locality: the instance and the volume are located on the same physical
machine.

In order to work:

• The Extended Server Attributes extension needs to be active in Nova (this is by default), so that
the OS-EXT-SRV-ATTR:host property is returned when requesting instance info.

• Either an account with privileged rights for Nova must be configured in Cinder configuration (con-
figure a keystone authentication plugin in the [nova] section), or the user making the call needs to
have sufficient rights (see extended_server_attributes in Nova policy).

3.3. Reference 427

Cinder Documentation, Release 20.3.2.dev3

JsonFilter

Backend filter for simple JSON-based grammar for selecting backends.

If you want to choose one of your backend, make a query hint, for example:

cinder create hint query=[=, $backend_id, rbd:vol@ceph#cloud]

RetryFilter

Filter out previously attempted hosts

A host passes this filter if it has not already been attempted for scheduling. The scheduler needs to add
previously attempted hosts to the retry key of filter_properties in order for this to work correctly. For
example:

{
'retry': {

'backends': ['backend1', 'backend2'],
'num_attempts': 3,
}

}

SameBackendFilter

Schedule volume on the same back-end as another volume.

Cinder Scheduler Weights

AllocatedCapacityWeigher

Allocated Capacity Weigher weighs hosts by their allocated capacity.

The default behavior is to place new volume to the host allocated the least space. This weigher is intended
to simulate the behavior of SimpleScheduler. If you prefer to place volumes to host allocated the most
space, you can set the allocated_capacity_weight_multiplier option to a positive number and
the weighing has the opposite effect of the default.

CapacityWeigher

Capacity Weigher weighs hosts by their virtual or actual free capacity.

For thin provisioning, weigh hosts by their virtual free capacity calculated by the total capacity multiplied
by the max over subscription ratio and subtracting the provisioned capacity; Otherwise, weigh hosts by
their actual free capacity, taking into account the reserved space.

The default is to spread volumes across all hosts evenly. If you prefer stacking, you can set the
capacity_weight_multiplier option to a negative number and the weighing has the opposite effect
of the default.

428 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

ChanceWeigher

Chance Weigher assigns random weights to hosts.

Used to spread volumes randomly across a list of equally suitable hosts.

GoodnessWeigher

Goodness Weigher. Assign weights based on a hosts goodness function.

Goodness rating is the following:

0 -- host is a poor choice
.
.

50 -- host is a good choice
.
.

100 -- host is a perfect choice

VolumeNumberWeigher

Weigher that weighs hosts by volume number in backends.

The default is to spread volumes across all hosts evenly. If you prefer stacking, you can set the
volume_number_multiplier option to a positive number and the weighing has the opposite effect
of the default.

Log files used by Block Storage

The corresponding log file of each Block Storage service is stored in the /var/log/cinder/ directory
of the host on which each service runs.

Table 82: Log files used by Block Storage services
Log file Service/interface (for CentOS, Fedora,

openSUSE, Red Hat Enterprise Linux, and
SUSE Linux Enterprise)

Service/interface (for
Ubuntu and Debian)

api.log openstack-cinder-api cinder-api
cinder-manage.log cinder-manage cinder-manage
scheduler.log openstack-cinder-scheduler cinder-scheduler
volume.log openstack-cinder-volume cinder-volume

3.3. Reference 429

Cinder Documentation, Release 20.3.2.dev3

Policy Personas and Permissions

Beginning with the Xena release, the Block Storage service API v3 takes advantage of the default au-
thentication and authorization apparatus supplied by the Keystone project to give operators a rich set of
default policies to control how users interact with the Block Storage service API.

This document describes Cinders part in an effort across OpenStack services to provide a consistent and
useful default RBAC configuration. (This effort is referred to as secure RBAC for short.)

Note: The secure RBAC effort not only spans OpenStack services, it is also taking place over several
OpenStack development cycles. Thus its important to make sure that you are looking at the version of
this document that is applicable to the OpenStack release you have deployed.

This document applies to the Yoga release.

Additionally, keep in mind that different projects are implementing secure RBAC on different schedules.
This document applies only to Cinder. To get an idea of the full scope of this effort, consult the Consistent
and Secure Default RBAC community goal document.

Vocabulary Note

We need to clarify some terms well be using below.

Project This is a grouping of users into a unit that can own cloud resources. (This is what used to be
called a tenant, but you should never call it that.) Users, projects, and their associations are created
in Keystone.

Service This is an OpenStack component that users interact with through an API it provides. For ex-
ample, Cinder is the OpenStack code name for the service that provides the Block Storage API
version 3. Cinder is also known as the OpenStack Block Storage service.

The point of making this distinction is that theres another use of the term project that is relevant to the
discussion, but that were not going to use. Each OpenStack service is produced and maintained by a
project team. We will not be using the term project in that sense in this document. Well always use the
term service. (If you are new to OpenStack, this wont be a problem. But if youre discussing this content
with someone whos been around OpenStack for a while, youll want to be clear about this so that youre
not talking past each other.)

The Cinder Personas

This is easiest to explain if we introduce the three personas Cinder recognizes in the Xena and Yoga
releases. In the list below, a system refers to the deployed system (that is, Cinder and all its services), and
a project refers to a container or namespace for resources.

• In order to consume resources, a user must be assigned to a project by being given a role (for
example, member) in that project. Thats done in Keystone; its not a Cinder concern.

See Default Roles in the Keystone documentation for more information.

430 Chapter 3. For operators

https://governance.openstack.org/tc/goals/selected/consistent-and-secure-rbac.html
https://governance.openstack.org/tc/goals/selected/consistent-and-secure-rbac.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html

Cinder Documentation, Release 20.3.2.dev3

Table 83: The Cinder Personas in Xena and Yoga
who what
project-
reader

Has access to the API for read-only requests that affect only project-specific resources (that is,
cannot create, update, or delete resources within a project)

project-
member

A normal user in a project.

system-
admin

Has the highest level of authorization on the system and can perform any action in Cinder. In
most deployments, only the operator, deployer, or other highly trusted person will be assigned
this persona. This is a Cinder super-user who can do everything, both with respect to the Cinder
system and all individual projects.
Note that if you assign the admin role to a user, that user can affect the entire Cinder system,
not just the project that person is a member of. Please keep this in mind as you assign roles to
users in the Identity service.

Note: The Keystone project provides the ability to describe additional personas, but Cinder does not
recognize them in Yoga. In particular:

• Cinder does not recognize the domain scope at all. So even if you successfully request a domain-
scoped token from the Identity service, you wont be able to use it with Cinder. Instead, request a
project-scoped token for the particular project in your domain that you want to act upon.

• Cinder does not recognize a system-member persona, that is, a user with the member role on a
system. Likewise, cinder does not recognize a system-reader persona, that is, a user with the
reader role on a system.

Further, while the Cinder system-admin persona is implemented in Yoga, it is not implemented by
using scope.

More information about roles and scope is available in the Keystone Administrator Guides.

Note: Privacy Expectations

Cinders model of resources (volumes, backups, snapshots, etc.) is that they are owned by the project.
Thus, they are shared by all users who have a role assignment on that project, no matter what persona
that user has been assigned.

For example, if Alice and Bob are in Project P, and Alice has persona project-member while Bob has
persona project-reader, if Alice creates volume V in Project P, Bob can see volume V in the volume-
list response, and Bob can read all the volume metadata on volume V that Alice can readeven volume
metadata that Alice may have added to the volume. The key point here is that even though Alice created
volume V, its not her volume. The volume is owned by Project P and is available to all users who have
authorization on that project via role assignments in keystone. What a user can do with volume V depends
on whether that user has an admin, member, or reader role in project P.

With respect to Project P, the personas with system scope (system-admin and system-reader) have access
to the project in the sense that a cinder system-admin can do anything in Project P that the project-admin
can do plus some additional powers. A cinder system-reader has read-only access to everything in Project
P that the system-admin can access.

The above describe the default policy configuration for Cinder. It is possible to modify policies to obtain
different behavior, but that is beyond the scope of this document.

3.3. Reference 431

https://docs.openstack.org/keystone/latest/admin/service-api-protection.html

Cinder Documentation, Release 20.3.2.dev3

Implementation Schedule

For reasons that will become clear in this section, the secure RBAC effort is being implemented in Cinder
in two phases. In Xena and Yoga, there are three personas.

Table 84: The 3 Xena/Yoga Personas
who Keystone technical info
project-
reader

reader role on a project, resulting in project-scope

project-
member

member role on a project, resulting in project-scope

system-
admin

admin role on a project, but recognized by Cinder as having permission to act on
the cinder system

Note that you cannot create a project-admin persona on your own simply by assigning the admin role to
a user. Such assignment results in that user becoming a system-admin.

In the Zed release, we plan to implement more Cinder personas that the default policy configuration
will recognize. During the development of this OpenStack wide effort, however, some complexities were
discovered that have affected exactly what this set of personas and their capabilities will be. Please consult
the Zed version of this document (or the latest version, if at the time you are reading this, Zed is still under
development) for more information.

Cinder Permissions Matrix

Now that you know who the personas are, heres what they can do with respect to the policies that are
recognized by Cinder.

432 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 85: Attachments (Microversion 3.27)
functionality API call policy name project-

reader
project-
member

system-
admin

Create attach-
ment

POST /
attachments

vol-
ume:attachment_create

no yes yes

Update attach-
ment

PUT /
attachments/
{attachment_id}

vol-
ume:attachment_update

no yes yes

Delete attach-
ment

DELETE /
attachments/
{attachment_id}

vol-
ume:attachment_delete

no yes yes

Mark a
volume at-
tachment
process as
completed
(in-use)

Microversion
3.44
POST /
attachments/
{attachment_id}/
action
(os-complete)

vol-
ume:attachment_complete

no yes yes

Allow mul-
tiattach of
bootable
volumes

This is a
secondary
check on
POST /
attachments

which is
governed by
another policy

vol-
ume:multiattach_bootable_volume

no yes yes

Table 86: User Messages (Microversion 3.3)
function-
ality

API call policy
name

project-
reader

project-
member

system-
admin

List mes-
sages

GET /messages mes-
sage:get_all

yes yes yes

Show mes-
sage

GET /messages/
{message_id}

mes-
sage:get

yes yes yes

Delete
message

DELETE /messages/
{message_id}

mes-
sage:delete

no yes yes

3.3. Reference 433

Cinder Documentation, Release 20.3.2.dev3

Table 87: Clusters (Microversion 3.7)
functionality API call policy name project-

reader
project-
member

system-
admin

List clusters

GET
/clusters

GET
/clusters/
detail

clus-
ters:get_all

no no yes

Show cluster GET /
clusters/
{cluster_id}

clusters:get no no yes

Update cluster PUT /
clusters/
{cluster_id}

clus-
ters:update

no no yes

Table 88: Workers (Microversion 3.24)
functionality API call policy

name
project-
reader

project-
member

system-
admin

Clean up
workers

POST /workers/
cleanup

work-
ers:cleanup

no no yes

434 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 89: Snapshots
functionality API call policy name project-

reader
project-
member

system-
admin

List snapshots

GET
/snapshots

GET /
snapshots/
detail

vol-
ume:get_all_snapshots

yes yes yes

List or show
snapshots
with extended
attributes

GET /
snapshots/
{snapshot_id}

GET /
snapshots/
detail

vol-
ume_extension:extended_snapshot_attributes

yes yes yes

Create snap-
shot

POST /
snapshots

vol-
ume:create_snapshot

no yes yes

Show snap-
shot

GET /
snapshots/
{snapshot_id}

vol-
ume:get_snapshot

yes yes yes

Update snap-
shot

PUT /
snapshots/
{snapshot_id}

vol-
ume:update_snapshot

no yes yes

Delete snap-
shot

DELETE /
snapshots/
{snapshot_id}

vol-
ume:delete_snapshot

no yes yes

Reset status of
a snapshot.

POST /
snapshots/
{snapshot_id}/
action (os-
reset_status)

vol-
ume_extension:snapshot_admin_actions:reset_status

no no yes

Update status
(and option-
ally progress)
of snapshot

POST /
snapshots/
{snapshot_id}/
action (os-
update_snapshot_status)

snap-
shot_extension:snapshot_actions:update_snapshot_status

no yes yes

Force delete a
snapshot

POST /
snapshots/
{snapshot_id}/
action (os-
force_delete)

vol-
ume_extension:snapshot_admin_actions:force_delete

no no yes

List (in detail)
of snapshots
which are
available to
manage

GET /
manageable_snapshots

GET /
manageable_snapshots/
detail

snap-
shot_extension:list_manageable

no no yes

Manage
an existing
snapshot

POST /
manageable_snapshots

snap-
shot_extension:snapshot_manage

no no yes

Unmanage a
snapshot

POST /
snapshots/
{snapshot_id}/
action (os-
unmanage)

snap-
shot_extension:snapshot_unmanage

no no yes

3.3. Reference 435

Cinder Documentation, Release 20.3.2.dev3

Table 90: Snapshot Metadata
functionality API call policy name project-

reader
project-
member

system-
admin

Show snap-
shots meta-
data or one
specified
metadata with
a given key

GET /
snapshots/
{snapshot_id}/
metadata

GET /
snapshots/
{snapshot_id}/
metadata/
{key}

vol-
ume:get_snapshot_metadata

yes yes yes

Update
snapshots
metadata or
one specified
metadata with
a given key

PUT /
snapshots/
{snapshot_id}/
metadata

PUT /
snapshots/
{snapshot_id}/
metadata/
{key}

vol-
ume:update_snapshot_metadata

no yes yes

Delete snap-
shots speci-
fied metadata
with a given
key

DELETE /
snapshots/
{snapshot_id}/
metadata/
{key}

vol-
ume:delete_snapshot_metadata

no yes yes

436 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 91: Backups
functionality API call policy name project-

reader
project-
member

system-
admin

List backups

GET
/backups

GET
/backups/
detail

backup:get_all yes yes yes

Include
project at-
tributes in the
list backups,
show backup
responses

Microversion
3.18
Adds
os-backup-project-attr:project_id
to the
following
responses:
GET
/backups/
detail

GET
/backups/
{backup_id}

The ability to
make these
API calls is
governed by
other policies.

backup:backup_project_attributeno no yes

Create backup POST /
backups

backup:create no yes yes

Show backup GET /
backups/
{backup_id}

backup:get yes yes yes

Update
backup

Microversion
3.9
PUT
/backups/
{backup_id}

backup:update no yes yes

Delete backup DELETE
/backups/
{backup_id}

backup:delete no yes yes

Restore
backup

POST /
backups/
{backup_id}/
restore

backup:restore no yes yes

Import
backup

POST /
backups/
{backup_id}/
import_record

backup:backup-
import

no no yes

Export
backup

POST /
backups/
{backup_id}/
export_record

backup:export-
import

no no yes

Reset status of
a backup

POST /
backups/
{backup_id}/
action (os-
reset_status)

vol-
ume_extension:backup_admin_actions:reset_status

no no yes

Force delete a
backup

POST /
backups/
{backup_id}/
action (os-
force_delete)

vol-
ume_extension:backup_admin_actions:force_delete

no no yes

3.3. Reference 437

Cinder Documentation, Release 20.3.2.dev3

Table 92: Groups (Microversion 3.13)
functionality API call policy name project-

reader
project-
member

system-
admin

List groups

GET
/groups

GET
/groups/
detail

group:get_all yes yes yes

Create group,
create group
from src POST

/groups

Microversion
3.14:
POST
/groups/
action
(create-from-
src)

group:create no yes yes

Show group GET /
groups/
{group_id}

group:get yes yes yes

Update group PUT /
groups/
{group_id}

group:update no yes yes

Include
project at-
tributes in the
list groups,
show group
responses

Microversion
3.58
Adds
project_id
to the
following
responses:
GET
/groups/
detail

GET
/groups/
{group_id}

The ability to
make these
API calls is
governed by
other policies.

group:group_project_attributeno no yes

438 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 93: Group Types (Microversion 3.11)
functionality API call policy name project-

reader
project-
member

system-
admin

DEPRECATED
Create, update
or delete a
group type

(NOTE: Yoga
policies split
POST, PUT,
DELETE)
POST /
group_types/

PUT /
group_types/
{group_type_id}

DELETE /
group_types/
{group_type_id}

group:group_types_manageno no yes

Create a group
type

POST /
group_types/

group:group_types:createno no yes

Update a
group type

PUT /
group_types/
{group_type_id}

group:group_types:updateno no yes

Delete a group
type

DELETE /
group_types/
{group_type_id}

group:group_types:deleteno no yes

Show group
type with
type specs
attributes

Adds
group_specs
to the
following
responses:
GET /
group_types

GET /
group_types/
default

GET /
group_types/
{group_type_id}

These calls
are not
governed by a
policy.

group:access_group_types_specsno no yes

DEPRECATED
Create, show,
update and
delete group
type spec

(NOTE: Yoga
policies split
GET, POST,
PUT,
DELETE)
GET /
group_types/
{group_type_id}/
group_specs

GET /
group_types/
{group_type_id}/
group_specs/
{g_spec_id}

POST /
group_types/
{group_type_id}/
group_specs

PUT /
group_types/
{group_type_id}/
group_specs/
{g_spec_id}

DELETE /
group_types/
{group_type_id}/
group_specs/
{g_spec_id}

group:group_types_specsno no yes

Create group
type spec

POST /
group_types/
{group_type_id}/
group_specs

group:group_types_specs:createno no yes

List group
type specs

GET /
group_types/
{group_type_id}/
group_specs

group:group_types_specs:get_allno no yes

Show detail
for a group
type spec

GET /
group_types/
{group_type_id}/
group_specs/
{g_spec_id}

group:group_types_specs:getno no yes

Update group
type spec

PUT /
group_types/
{group_type_id}/
group_specs/
{g_spec_id}

group:group_types_specs:updateno no yes

Delete group
type spec

DELETE /
group_types/
{group_type_id}/
group_specs/
{g_spec_id}

group:group_types_specs:deleteno no yes

3.3. Reference 439

Cinder Documentation, Release 20.3.2.dev3

Table 94: Group Snapshots (Microversion 3.14)
functionality API call policy name project-

reader
project-
member

system-
admin

List group
snapshots

GET /
group_snapshots

GET /
group_snapshots/
detail

group:get_all_group_snapshotsyes yes yes

Create group
snapshot

POST /
group_snapshots

group:create_group_snapshotno yes yes

Show group
snapshot

GET /
group_snapshots/
{group_snapshot_id}

group:get_group_snapshotyes yes yes

Delete group
snapshot

DELETE /
group_snapshots/
{group_snapshot_id}

group:delete_group_snapshotno yes yes

Update group
snapshot

PUT /
group_snapshots/
{group_snapshot_id}

Note: even
though the
policy is
defined, this
call is not
implemented
in the Block
Storage API.

group:update_group_snapshotno yes yes

Reset status
of group
snapshot Microversion

3.19
POST /
group_snapshots/
{group_snapshot_id}/
action
(reset_status)

group:reset_group_snapshot_statusno no yes

Include
project at-
tributes in
the list group
snapshots,
show group
snapshot
responses

Microversion
3.58
Adds
project_id
to the
following
responses:
GET /
group_snapshots/
detail

GET /
group_snapshots/
{group_snapshot_id}

The ability to
make these
API calls is
governed by
other policies.

group:group_snapshot_project_attributeno no yes

440 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 95: Group Actions
functionality API call policy name project-

reader
project-
member

system-
admin

Delete group POST /
groups/
{group_id}/
action
(delete)

group:delete no yes yes

Reset status of
group

Microversion
3.20
POST
/groups/
{group_id}/
action
(reset_status)

group:reset_statusno no yes

Enable repli-
cation

Microversion
3.38
POST
/groups/
{group_id}/
action
(en-
able_replication)

group:enable_replicationno yes yes

Disable repli-
cation

Microversion
3.38
POST
/groups/
{group_id}/
action
(dis-
able_replication)

group:disable_replicationno yes yes

Fail over repli-
cation

Microversion
3.38
POST
/groups/
{group_id}/
action
(failover_replication)

group:failover_replicationno yes yes

List failover
replication

Microversion
3.38
POST
/groups/
{group_id}/
action
(list_replication_targets)

group:list_replication_targetsno yes yes

3.3. Reference 441

Cinder Documentation, Release 20.3.2.dev3

Table 96: QOS specs
functionality API call policy name project-

reader
project-
member

system-
admin

List qos specs
or list all asso-
ciations GET

/qos-specs

GET /
qos-specs/
{qos_id}/
associations

vol-
ume_extension:qos_specs_manage:get_all

no no yes

Show qos
specs

GET /
qos-specs/
{qos_id}

vol-
ume_extension:qos_specs_manage:get

no no yes

Create qos
specs

POST /
qos-specs

vol-
ume_extension:qos_specs_manage:create

no no yes

Update qos
specs: update
key/values in
the qos-spec
or update the
volume-types
associated
with the
qos-spec

PUT /
qos-specs/
{qos_id}

GET /
qos-specs/
{qos_id}/
associate?
vol_type_id={volume_id}

GET /
qos-specs/
{qos_id}/
disassociate?
vol_type_id={volume_id}

GET /
qos-specs/
{qos_id}/
disassociate_all

(yes, these
GETs are
really
updates)

vol-
ume_extension:qos_specs_manage:update

no no yes

Delete a
qos-spec, or
remove a list
of keys from
the qos-spec

DELETE /
qos-specs/
{qos_id}

PUT /
qos-specs/
{qos_id}/
delete_keys

vol-
ume_extension:qos_specs_manage:delete

no no yes

442 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 97: Quotas
functionality API call policy name project-

reader
project-
member

system-
admin

DEPRECATED
Show or
update project
quota class

(NOTE: Yoga
policies split
GET and
PUT)
GET /
os-quota-class-sets/
{project_id}

PUT /
os-quota-class-sets/
{project_id}

vol-
ume_extension:quota_classes

no no yes

Show project
quota class

GET /
os-quota-class-sets/
{project_id}

vol-
ume_extension:quota_classes:get

no no yes

Update
project quota
class

PUT /
os-quota-class-sets/
{project_id}

vol-
ume_extension:quota_classes:update

no no yes

Show project
quota (includ-
ing usage and
default)

GET /
os-quota-sets/
{project_id}

GET /
os-quota-sets/
{project_id}/
default

GET /
os-quota-sets/
{project_id}?
usage=True

vol-
ume_extension:quotas:show

yes yes yes

Update
project quota

PUT /
os-quota-sets/
{project_id}

vol-
ume_extension:quotas:update

no no yes

Delete project
quota

DELETE /
os-quota-sets/
{project_id}

vol-
ume_extension:quotas:delete

no no yes

Table 98: Capabilities
functionality API call policy name project-

reader
project-
member

system-
admin

Show backend
capabilities

GET /
capabilities/
{host_name}

vol-
ume_extension:capabilities

no no yes

3.3. Reference 443

Cinder Documentation, Release 20.3.2.dev3

Table 99: Services
functionality API call policy name project-

reader
project-
member

system-
admin

List all ser-
vices

GET /
os-services

vol-
ume_extension:services:index

no no yes

Update ser-
vice

PUT /
os-services/
enable

PUT /
os-services/
disable

PUT /
os-services/
disable-log-reason

PUT /
os-services/
freeze

PUT /
os-services/
thaw

PUT /
os-services/
failover_host

PUT /
os-services/
failover
(microversion
3.26)
PUT /
os-services/
set-log

PUT /
os-services/
get-log

vol-
ume_extension:services:update

no no yes

Freeze a
backend
host. Sec-
ondary check;
must also
satisfy vol-
ume_extension:services:update
to make this
call.

PUT /
os-services/
freeze

vol-
ume:freeze_host

no no yes

Thaw a
backend
host. Sec-
ondary check;
must also
satisfy vol-
ume_extension:services:update
to make this
call.

PUT /
os-services/
thaw

vol-
ume:thaw_host

no no yes

Failover a
backend
host. Sec-
ondary check;
must also
satisfy vol-
ume_extension:services:update
to make this
call.

PUT /
os-services/
failover_host

PUT /
os-services/
failover
(microversion
3.26)

vol-
ume:failover_host

no no yes

List all back-
end pools

GET /
scheduler-stats/
get_pools

sched-
uler_extension:scheduler_stats:get_pools

no no yes

List, update
or show hosts
for a project
(NOTE: will
be deprecated
in Zed and
new policies
introduced
for GETs and
PUT)

GET
/os-hosts

PUT
/os-hosts/
{host_name}

GET
/os-hosts/
{host_id}

vol-
ume_extension:hosts

no no yes

Show lim-
its with
used limit
attributes

GET /
limits

lim-
its_extension:used_limits

yes yes yes

List (in detail)
of volumes
which are
available to
manage

GET /
manageable_volumes

GET /
manageable_volumes/
detail

vol-
ume_extension:list_manageable

no no yes

Manage exist-
ing volumes

POST /
manageable_volumes

vol-
ume_extension:volume_manage

no no yes

Unmanage a
volume

POST /
volumes/
{volume_id}/
action (os-
unmanage)

vol-
ume_extension:volume_unmanage

no no yes

444 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 100: Volume Types
functionality API call policy name project-

reader
project-
member

system-
admin

DEPRECATED
Create, update
and delete
volume type
(Yoga policies
for cre-
ate/update/delete)

POST
/types

PUT
/types/
{type_id}

DELETE
/types

vol-
ume_extension:types_manage

no no yes

Create a vol-
ume type

POST /
types

vol-
ume_extension:type_create

no no yes

Update a vol-
ume type

PUT /
types/
{type_id}

vol-
ume_extension:type_update

no no yes

Delete a vol-
ume type

DELETE
/types/
{type_id}

vol-
ume_extension:type_delete

no no yes

Show a spe-
cific volume
type

GET /
types/
{type_id}

vol-
ume_extension:type_get

yes yes yes

List volume
types

GET /types vol-
ume_extension:type_get_all

yes yes yes

DEPRECATED
Base policy
for all volume
type
encryption
type
operations
(NOTE: cant
use this
anymore,
because it
gives GET
and POST
same
permissions)

Convenience
default policy
for the situ-
ation where
you dont
want to con-
figure all the
volume_type_encryption
policies sepa-
rately

vol-
ume_extension:volume_type_encryption

Create vol-
ume type
encryption

POST /
types/
{type_id}/
encryption

vol-
ume_extension:volume_type_encryption:create

no no yes

Show a vol-
ume types en-
cryption type,
show an en-
cryption specs
item

GET
/types/
{type_id}/
encryption

GET
/types/
{type_id}/
encryption/
{key}

vol-
ume_extension:volume_type_encryption:get

no no yes

Update vol-
ume type
encryption

PUT /
types/
{type_id}/
encryption/
{encryption_id}

vol-
ume_extension:volume_type_encryption:update

no no yes

Delete vol-
ume type
encryption

DELETE
/types/
{type_id}/
encryption/
{encryption_id}

vol-
ume_extension:volume_type_encryption:delete

no no yes

List or show
volume type
with extra
specs attribute

Adds
extra_specs
to the
following
responses:
GET
/types/
{type_id}

GET /types

The ability to
make these
API calls is
governed by
other policies.

vol-
ume_extension:access_types_extra_specs

yes yes yes

List or show
volume type
with access
type qos specs
id attribute

Adds
qos_specs_id
to the
following
responses:
GET
/types/
{type_id}

GET /types

The ability to
make these
API calls is
governed by
other policies.

vol-
ume_extension:access_types_qos_specs_id

no no yes

Show whether
a volume type
is public in the
type response

Adds
os-volume-type-access:is_public
to the
following
responses:
GET /types

GET
/types/
{type_id}

POST
/types

The ability to
make these
API calls is
governed by
other policies.

vol-
ume_extension:volume_type_access

no yes yes

List private
volume type
access detail,
that is, list the
projects that
have access to
this type
(was formerly
controlled by
vol-
ume_extension:volume_type_access)

GET /
types/
{type_id}/
os-volume-type-access

vol-
ume_extension:volume_type_access:get_all_for_type

no no yes

Add volume
type access
for project

POST /
types/
{type_id}/
action
(addProjec-
tAccess)

vol-
ume_extension:volume_type_access:addProjectAccess

no no yes

Remove vol-
ume type
access for
project

POST /
types/
{type_id}/
action
(removePro-
jectAccess)

vol-
ume_extension:volume_type_access:removeProjectAccess

no no yes

3.3. Reference 445

Cinder Documentation, Release 20.3.2.dev3

Table 101: Volume Actions
functionality API call policy name project-

reader
project-
member

system-
admin

Extend a vol-
ume

POST /
volumes/
{volume_id}/
action
(os-extend)

vol-
ume:extend

no yes yes

Extend an at-
tached volume

Microversion
3.42
POST
/volumes/
{volume_id}/
action
(os-extend)

vol-
ume:extend_attached_volume

no yes yes

Revert a vol-
ume to a snap-
shot Microversion

3.40
POST
/volumes/
{volume_id}/
action
(revert)

vol-
ume:revert_to_snapshot

no yes yes

Reset status of
a volume

POST /
volumes/
{volume_id}/
action (os-
reset_status)

vol-
ume_extension:volume_admin_actions:reset_status

no no yes

Retype a vol-
ume

POST /
volumes/
{volume_id}/
action
(os-retype)

volume:retype no yes yes

Update a vol-
umes readonly
flag

POST /
volumes/
{volume_id}/
action (os-
update_readonly_flag)

vol-
ume:update_readonly_flag

no yes yes

Force delete a
volume

POST /
volumes/
{volume_id}/
action (os-
force_delete)

vol-
ume_extension:volume_admin_actions:force_delete

no no yes

Upload a vol-
ume to image
with public
visibility

POST /
volumes/
{volume_id}/
action (os-
volume_upload_image)

vol-
ume_extension:volume_actions:upload_public

no no yes

Upload a vol-
ume to image

POST /
volumes/
{volume_id}/
action (os-
volume_upload_image)

vol-
ume_extension:volume_actions:upload_image

no yes yes

Force detach a
volume.

POST /
volumes/
{volume_id}/
action (os-
force_detach)

vol-
ume_extension:volume_admin_actions:force_detach

no no yes

Migrate a vol-
ume to a spec-
ified host

POST /
volumes/
{volume_id}/
action (os-
migrate_volume)

vol-
ume_extension:volume_admin_actions:migrate_volume

no no yes

Complete
a volume
migration

POST /
volumes/
{volume_id}/
action (os-
migrate_volume_completion)

vol-
ume_extension:volume_admin_actions:migrate_volume_completion

no no yes

Initialize
volume at-
tachment

POST /
volumes/
{volume_id}/
action (os-
initialize_connection)

vol-
ume_extension:volume_actions:initialize_connection

no yes yes

Terminate
volume at-
tachment

POST /
volumes/
{volume_id}/
action (os-
terminate_connection)

vol-
ume_extension:volume_actions:terminate_connection

no yes yes

Roll back vol-
ume status to
in-use

POST /
volumes/
{volume_id}/
action (os-
roll_detaching)

vol-
ume_extension:volume_actions:roll_detaching

no yes yes

Mark volume
as reserved

POST /
volumes/
{volume_id}/
action
(os-reserve)

vol-
ume_extension:volume_actions:reserve

no yes yes

Unmark
volume as
reserved

POST /
volumes/
{volume_id}/
action (os-
unreserve)

vol-
ume_extension:volume_actions:unreserve

no yes yes

Begin detach
volumes

POST /
volumes/
{volume_id}/
action (os-
begin_detaching)

vol-
ume_extension:volume_actions:begin_detaching

no yes yes

Add at-
tachment
metadata

POST /
volumes/
{volume_id}/
action
(os-attach)

vol-
ume_extension:volume_actions:attach

no yes yes

Clear at-
tachment
metadata

POST /
volumes/
{volume_id}/
action
(os-detach)

vol-
ume_extension:volume_actions:detach

no yes yes

Reimage a
volume in
available
or error
status

POST /
volumes/
{volume_id}/
action
(os-reimage)

vol-
ume:reimage

no yes yes

Reimage a
volume in
reserved
status

POST /
volumes/
{volume_id}/
action
(os-reimage)

vol-
ume:reimage_reserved

no yes yes

446 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 102: Volume Transfers
functionality API call policy name project-

reader
project-
member

system-
admin

List volume
transfer

GET /
os-volume-transfer

GET /
os-volume-transfer/
detail

GET /
volume-transfers

GET /
volume-transfers/
detail

vol-
ume:get_all_transfers

yes yes yes

Create a vol-
ume transfer

POST /
os-volume-transfer

POST /
volume-transfers

vol-
ume:create_transfer

no yes yes

Show one
specified vol-
ume transfer GET /

os-volume-transfer/
{transfer_id}

GET /
volume-transfers/
{transfer_id}

vol-
ume:get_transfer

yes yes yes

Accept a vol-
ume transfer

POST /
os-volume-transfer/
{transfer_id}/
accept

POST /
volume-transfers/
{transfer_id}/
accept

vol-
ume:accept_transfer

no yes yes

Delete volume
transfer

DELETE /
os-volume-transfer/
{transfer_id}

DELETE /
volume-transfers/
{transfer_id}

vol-
ume:delete_transfer

no yes yes

3.3. Reference 447

Cinder Documentation, Release 20.3.2.dev3

Table 103: Volume Metadata
functionality API call policy name project-

reader
project-
member

system-
admin

Show vol-
umes meta-
data or one
specified
metadata with
a given key.

GET
/volumes/
{volume_id}/
metadata

GET
/volumes/
{volume_id}/
metadata/
{key}

POST
/volumes/
{volume_id}/
action
(os-
show_image_metadata)

vol-
ume:get_volume_metadata

yes yes yes

Create volume
metadata

POST /
volumes/
{volume_id}/
metadata

vol-
ume:create_volume_metadata

no yes yes

Update
volumes
metadata or
one specified
metadata with
a given key

PUT
/volumes/
{volume_id}/
metadata

PUT
/volumes/
{volume_id}/
metadata/
{key}

vol-
ume:update_volume_metadata

no yes yes

Delete vol-
umes speci-
fied metadata
with a given
key

DELETE
/volumes/
{volume_id}/
metadata/
{key}

vol-
ume:delete_volume_metadata

no yes yes

DEPRECATED
Volumes
image
metadata
related
operation,
create, delete,
show and list

(NOTE: Yoga
policies split
GET and
POST)
Microversion
3.4
GET
/volumes/
detail

GET
/volumes/
{volume_id}

POST
/volumes/
{volume_id}/
action
(os-
set_image_metadata)
POST
/volumes/
{volume_id}/
action
(os-
unset_image_metadata)
(NOTE: POST
/volumes/
{volume_id}/
action
(os-
show_image_metadata)
is governed
by vol-
ume:get_volume_metadata

vol-
ume_extension:volume_image_metadata

no yes yes

Include vol-
umes image
metadata in
volume detail
responses

Microversion
3.4
GET
/volumes/
detail

GET
/volumes/
{volume_id}

The ability to
make these
API calls is
governed by
other policies.

vol-
ume_extension:volume_image_metadata:show

yes yes yes

Set image
metadata for a
volume Microversion

3.4
POST
/volumes/
{volume_id}/
action
(os-
set_image_metadata)

vol-
ume_extension:volume_image_metadata:set

no yes yes

Remove spe-
cific image
metadata from
a volume

Microversion
3.4
POST
/volumes/
{volume_id}/
action
(os-
unset_image_metadata)

vol-
ume_extension:volume_image_metadata:remove

no yes yes

Update vol-
ume admin
metadata. This

permission is
required to
complete the
following
operations:
POST
/volumes/
{volume_id}/
action
(os-
update_readonly_flag)
POST
/volumes/
{volume_id}/
action
(os-attach)
The ability to
make these
API calls is
governed by
other policies.

vol-
ume:update_volume_admin_metadata

no no yes

448 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 104: Volume Type Extra-Specs
functionality API call policy name project-

reader
project-
member

system-
admin

List type extra
specs

GET /
types/
{type_id}/
extra_specs

vol-
ume_extension:types_extra_specs:index

yes yes yes

Create type
extra specs

POST /
types/
{type_id}/
extra_specs

vol-
ume_extension:types_extra_specs:create

no no yes

Show one
specified type
extra specs

GET /
types/
{type_id}/
extra_specs/
{extra_spec_key}

vol-
ume_extension:types_extra_specs:show

yes yes yes

Update type
extra specs

PUT /
types/
{type_id}/
extra_specs/
{extra_spec_key}

vol-
ume_extension:types_extra_specs:update

no no yes

Delete type
extra specs

DELETE
/types/
{type_id}/
extra_specs/
{extra_spec_key}

vol-
ume_extension:types_extra_specs:delete

no no yes

Include ex-
tra_specs
fields that
may reveal
sensitive
information
about the de-
ployment that
should not
be exposed
to end users
in various
volume-type
responses
that show
extra_specs.

GET /types

GET
/types/
{type_id}

GET
/types/
{type_id}/
extra_specs

GET
/types/
{type_id}/
extra_specs/
{extra_spec_key}

The ability to
make these
API calls is
governed by
other policies.

vol-
ume_extension:types_extra_specs:read_sensitive

no no yes

3.3. Reference 449

Cinder Documentation, Release 20.3.2.dev3

Table 105: Volumes
functionality API call policy name project-

reader
project-
member

system-
admin

Create volume POST /
volumes

volume:create no yes yes

Create volume
from image

POST /
volumes

vol-
ume:create_from_image

no yes yes

Show volume GET /
volumes/
{volume_id}

volume:get yes yes yes

List vol-
umes or get
summary of
volumes

GET
/volumes

GET
/volumes/
detail

GET
/volumes/
summary

vol-
ume:get_all

yes yes yes

Update vol-
ume or update
a volumes
bootable
status

PUT
/volumes

POST
/volumes/
{volume_id}/
action
(os-
set_bootable)

vol-
ume:update

no yes yes

Delete volume DELETE
/volumes/
{volume_id}

volume:delete no yes yes

Force Delete
a volume
(Microversion
3.23)

DELETE
/volumes/
{volume_id}?
force=true

vol-
ume:force_delete

no no yes

List or show
volume with
host attribute Adds

os-vol-host-attr:host
to the
following
responses:
GET
/volumes/
{volume_id}

GET
/volumes/
detail

The ability to
make these
API calls is
governed by
other policies.

vol-
ume_extension:volume_host_attribute

no no yes

List or show
volume
with tenant
attribute (ac-
tually, the
project ID)

Adds
os-vol-tenant-attr:tenant_id
to the
following
responses:
GET
/volumes/
{volume_id}

GET
/volumes/
detail

The ability to
make these
API calls is
governed by
other policies.

vol-
ume_extension:volume_tenant_attribute

yes yes yes

List or show
volume with
migration sta-
tus attribute

Adds
os-vol-mig-status-attr:migstat
to the
following
responses:
GET
/volumes/
{volume_id}

GET
/volumes/
detail

The ability to
make these
API calls is
governed by
other policies.

vol-
ume_extension:volume_mig_status_attribute

no no yes

Show vol-
umes encryp-
tion metadata GET

/volumes/
{volume_id}/
encryption

GET
/volumes/
{volume_id}/
encryption/
{encryption_key}

vol-
ume_extension:volume_encryption_metadata

yes yes yes

Create multi-
attach capable
volume Indirectly

affects the
success of
these API
calls:
POST
/volumes

POST
/volumes/
{volume_id}/
action
(os-retype)
The ability to
make these
API calls is
governed by
other policies.

vol-
ume:multiattach

no yes yes

450 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 106: Default Volume Types (Microversion 3.62)
functionality API call policy name project-

reader
project-
member

system-
admin

Set or update
default vol-
ume type for a
project

PUT /
default-types

vol-
ume_extension:default_set_or_update

no no yes

Get default
type for a
project GET /

default-types/
{project-id}

(Note: a
project-*
persona can
always
determine
their effective
default-type
by making the
GET /v3/
{project_id}/
types/
default call,
which is
governed by
the vol-
ume_extension:type_get
policy.)

vol-
ume_extension:default_get

no no yes

Get all default
types

GET /
default-types/

vol-
ume_extension:default_get_all

no no yes

Unset default
type for a
project

DELETE /
default-types/
{project-id}

vol-
ume_extension:default_unset

no no yes

Policy configuration

Configuration

The following is an overview of all available policies in Cinder. For information on how to write a custom
policy file to modify these policies, see policy.yaml in the Cinder configuration documentation.

3.3. Reference 451

Cinder Documentation, Release 20.3.2.dev3

cinder

admin_or_owner

Default is_admin:True or (role:admin and is_admin_project:True) or
project_id:%(project_id)s

DEPRECATED: This rule will be removed in the Yoga release. Default rule for most non-Admin
APIs.

system_or_domain_or_project_admin

Default (role:admin and system_scope:all) or (role:admin
and domain_id:%(domain_id)s) or (role:admin and
project_id:%(project_id)s)

DEPRECATED: This rule will be removed in the Yoga release. Default rule for admins of cloud,
domain or a project.

context_is_admin

Default role:admin

Decides what is required for the is_admin:True check to succeed.

admin_api

Default is_admin:True or (role:admin and is_admin_project:True)

Default rule for most Admin APIs.

xena_system_admin_or_project_reader

Default (role:admin) or (role:reader and project_id:%(project_id)s)

NOTE: this purely role-based rule recognizes only project scope

xena_system_admin_or_project_member

Default (role:admin) or (role:member and project_id:%(project_id)s)

NOTE: this purely role-based rule recognizes only project scope

volume:attachment_create

Default rule:xena_system_admin_or_project_member

Operations

• POST /attachments

Create attachment.

volume:attachment_update

Default rule:xena_system_admin_or_project_member

Operations

• PUT /attachments/{attachment_id}

Update attachment.

volume:attachment_delete

452 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Default rule:xena_system_admin_or_project_member

Operations

• DELETE /attachments/{attachment_id}

Delete attachment.

volume:attachment_complete

Default rule:xena_system_admin_or_project_member

Operations

• POST /attachments/{attachment_id}/action (os-complete)

Mark a volume attachment process as completed (in-use)

volume:multiattach_bootable_volume

Default rule:xena_system_admin_or_project_member

Operations

• POST /attachments

Allow multiattach of bootable volumes.

message:get_all

Default rule:xena_system_admin_or_project_reader

Operations

• GET /messages

List messages.

message:get

Default rule:xena_system_admin_or_project_reader

Operations

• GET /messages/{message_id}

Show message.

message:delete

Default rule:xena_system_admin_or_project_member

Operations

• DELETE /messages/{message_id}

Delete message.

clusters:get_all

Default rule:admin_api

Operations

• GET /clusters

• GET /clusters/detail

3.3. Reference 453

Cinder Documentation, Release 20.3.2.dev3

List clusters.

clusters:get

Default rule:admin_api

Operations

• GET /clusters/{cluster_id}

Show cluster.

clusters:update

Default rule:admin_api

Operations

• PUT /clusters/{cluster_id}

Update cluster.

workers:cleanup

Default rule:admin_api

Operations

• POST /workers/cleanup

Clean up workers.

volume:get_snapshot_metadata

Default rule:xena_system_admin_or_project_reader

Operations

• GET /snapshots/{snapshot_id}/metadata

• GET /snapshots/{snapshot_id}/metadata/{key}

Show snapshots metadata or one specified metadata with a given key.

volume:update_snapshot_metadata

Default rule:xena_system_admin_or_project_member

Operations

• POST /snapshots/{snapshot_id}/metadata

• PUT /snapshots/{snapshot_id}/metadata/{key}

Update snapshots metadata or one specified metadata with a given key.

volume:delete_snapshot_metadata

Default rule:xena_system_admin_or_project_member

Operations

• DELETE /snapshots/{snapshot_id}/metadata/{key}

Delete snapshots specified metadata with a given key.

volume:get_all_snapshots

454 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Default rule:xena_system_admin_or_project_reader

Operations

• GET /snapshots

• GET /snapshots/detail

List snapshots.

volume_extension:extended_snapshot_attributes

Default rule:xena_system_admin_or_project_reader

Operations

• GET /snapshots/{snapshot_id}

• GET /snapshots/detail

List or show snapshots with extended attributes.

volume:create_snapshot

Default rule:xena_system_admin_or_project_member

Operations

• POST /snapshots

Create snapshot.

volume:get_snapshot

Default rule:xena_system_admin_or_project_reader

Operations

• GET /snapshots/{snapshot_id}

Show snapshot.

volume:update_snapshot

Default rule:xena_system_admin_or_project_member

Operations

• PUT /snapshots/{snapshot_id}

Update snapshot.

volume:delete_snapshot

Default rule:xena_system_admin_or_project_member

Operations

• DELETE /snapshots/{snapshot_id}

Delete snapshot.

volume_extension:snapshot_admin_actions:reset_status

Default rule:admin_api

Operations

3.3. Reference 455

Cinder Documentation, Release 20.3.2.dev3

• POST /snapshots/{snapshot_id}/action (os-reset_status)

Reset status of a snapshot.

snapshot_extension:snapshot_actions:update_snapshot_status

Default rule:xena_system_admin_or_project_member

Operations

• POST /snapshots/{snapshot_id}/action
(update_snapshot_status)

Update database fields of snapshot.

volume_extension:snapshot_admin_actions:force_delete

Default rule:admin_api

Operations

• POST /snapshots/{snapshot_id}/action (os-force_delete)

Force delete a snapshot.

snapshot_extension:list_manageable

Default rule:admin_api

Operations

• GET /manageable_snapshots

• GET /manageable_snapshots/detail

List (in detail) of snapshots which are available to manage.

snapshot_extension:snapshot_manage

Default rule:admin_api

Operations

• POST /manageable_snapshots

Manage an existing snapshot.

snapshot_extension:snapshot_unmanage

Default rule:admin_api

Operations

• POST /snapshots/{snapshot_id}/action (os-unmanage)

Stop managing a snapshot.

backup:get_all

Default rule:xena_system_admin_or_project_reader

Operations

• GET /backups

• GET /backups/detail

List backups.

456 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

backup:backup_project_attribute

Default rule:admin_api

Operations

• GET /backups/{backup_id}

• GET /backups/detail

List backups or show backup with project attributes.

backup:create

Default rule:xena_system_admin_or_project_member

Operations

• POST /backups

Create backup.

backup:get

Default rule:xena_system_admin_or_project_reader

Operations

• GET /backups/{backup_id}

Show backup.

backup:update

Default rule:xena_system_admin_or_project_member

Operations

• PUT /backups/{backup_id}

Update backup.

backup:delete

Default rule:xena_system_admin_or_project_member

Operations

• DELETE /backups/{backup_id}

Delete backup.

backup:restore

Default rule:xena_system_admin_or_project_member

Operations

• POST /backups/{backup_id}/restore

Restore backup.

backup:backup-import

Default rule:admin_api

Operations

3.3. Reference 457

Cinder Documentation, Release 20.3.2.dev3

• POST /backups/{backup_id}/import_record

Import backup.

backup:export-import

Default rule:admin_api

Operations

• POST /backups/{backup_id}/export_record

Export backup.

volume_extension:backup_admin_actions:reset_status

Default rule:admin_api

Operations

• POST /backups/{backup_id}/action (os-reset_status)

Reset status of a backup.

volume_extension:backup_admin_actions:force_delete

Default rule:admin_api

Operations

• POST /backups/{backup_id}/action (os-force_delete)

Force delete a backup.

group:get_all

Default rule:xena_system_admin_or_project_reader

Operations

• GET /groups

• GET /groups/detail

List groups.

group:create

Default rule:xena_system_admin_or_project_member

Operations

• POST /groups

Create group.

group:get

Default rule:xena_system_admin_or_project_reader

Operations

• GET /groups/{group_id}

Show group.

group:update

458 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Default rule:xena_system_admin_or_project_member

Operations

• PUT /groups/{group_id}

Update group.

group:group_project_attribute

Default rule:admin_api

Operations

• GET /groups/{group_id}

• GET /groups/detail

List groups or show group with project attributes.

group:group_types:create

Default rule:admin_api

Operations

• POST /group_types/

Create a group type.

group:group_types:update

Default rule:admin_api

Operations

• PUT /group_types/{group_type_id}

Update a group type.

group:group_types:delete

Default rule:admin_api

Operations

• DELETE /group_types/{group_type_id}

Delete a group type.

group:access_group_types_specs

Default rule:admin_api

Operations

• GET /group_types/{group_type_id}

Show group type with type specs attributes.

group:group_types_specs:get

Default rule:admin_api

Operations

• GET /group_types/{group_type_id}/group_specs/{g_spec_id}

3.3. Reference 459

Cinder Documentation, Release 20.3.2.dev3

Show a group type spec.

group:group_types_specs:get_all

Default rule:admin_api

Operations

• GET /group_types/{group_type_id}/group_specs

List group type specs.

group:group_types_specs:create

Default rule:admin_api

Operations

• POST /group_types/{group_type_id}/group_specs

Create a group type spec.

group:group_types_specs:update

Default rule:admin_api

Operations

• PUT /group_types/{group_type_id}/group_specs/{g_spec_id}

Update a group type spec.

group:group_types_specs:delete

Default rule:admin_api

Operations

• DELETE /group_types/{group_type_id}/group_specs/
{g_spec_id}

Delete a group type spec.

group:get_all_group_snapshots

Default rule:xena_system_admin_or_project_reader

Operations

• GET /group_snapshots

• GET /group_snapshots/detail

List group snapshots.

group:create_group_snapshot

Default rule:xena_system_admin_or_project_member

Operations

• POST /group_snapshots

Create group snapshot.

group:get_group_snapshot

Default rule:xena_system_admin_or_project_reader

460 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Operations

• GET /group_snapshots/{group_snapshot_id}

Show group snapshot.

group:delete_group_snapshot

Default rule:xena_system_admin_or_project_member

Operations

• DELETE /group_snapshots/{group_snapshot_id}

Delete group snapshot.

group:update_group_snapshot

Default rule:xena_system_admin_or_project_member

Operations

• PUT /group_snapshots/{group_snapshot_id}

Update group snapshot.

group:group_snapshot_project_attribute

Default rule:admin_api

Operations

• GET /group_snapshots/{group_snapshot_id}

• GET /group_snapshots/detail

List group snapshots or show group snapshot with project attributes.

group:reset_group_snapshot_status

Default rule:admin_api

Operations

• POST /group_snapshots/{g_snapshot_id}/action
(reset_status)

Reset status of group snapshot.

group:delete

Default rule:xena_system_admin_or_project_member

Operations

• POST /groups/{group_id}/action (delete)

Delete group.

group:reset_status

Default rule:admin_api

Operations

• POST /groups/{group_id}/action (reset_status)

Reset status of group.

3.3. Reference 461

Cinder Documentation, Release 20.3.2.dev3

group:enable_replication

Default rule:xena_system_admin_or_project_member

Operations

• POST /groups/{group_id}/action (enable_replication)

Enable replication.

group:disable_replication

Default rule:xena_system_admin_or_project_member

Operations

• POST /groups/{group_id}/action (disable_replication)

Disable replication.

group:failover_replication

Default rule:xena_system_admin_or_project_member

Operations

• POST /groups/{group_id}/action (failover_replication)

Fail over replication.

group:list_replication_targets

Default rule:xena_system_admin_or_project_member

Operations

• POST /groups/{group_id}/action (list_replication_targets)

List failover replication.

volume_extension:qos_specs_manage:get_all

Default rule:admin_api

Operations

• GET /qos-specs

• GET /qos-specs/{qos_id}/associations

List qos specs or list all associations.

volume_extension:qos_specs_manage:get

Default rule:admin_api

Operations

• GET /qos-specs/{qos_id}

Show qos specs.

volume_extension:qos_specs_manage:create

Default rule:admin_api

Operations

462 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• POST /qos-specs

Create qos specs.

volume_extension:qos_specs_manage:update

Default rule:admin_api

Operations

• PUT /qos-specs/{qos_id}

• GET /qos-specs/{qos_id}/disassociate_all

• GET /qos-specs/{qos_id}/associate

• GET /qos-specs/{qos_id}/disassociate

Update qos specs (including updating association).

volume_extension:qos_specs_manage:delete

Default rule:admin_api

Operations

• DELETE /qos-specs/{qos_id}

• PUT /qos-specs/{qos_id}/delete_keys

delete qos specs or unset one specified qos key.

volume_extension:quota_classes:get

Default rule:admin_api

Operations

• GET /os-quota-class-sets/{project_id}

Show project quota class.

volume_extension:quota_classes:update

Default rule:admin_api

Operations

• PUT /os-quota-class-sets/{project_id}

Update project quota class.

volume_extension:quotas:show

Default rule:xena_system_admin_or_project_reader

Operations

• GET /os-quota-sets/{project_id}

• GET /os-quota-sets/{project_id}/default

• GET /os-quota-sets/{project_id}?usage=True

Show project quota (including usage and default).

volume_extension:quotas:update

3.3. Reference 463

Cinder Documentation, Release 20.3.2.dev3

Default rule:admin_api

Operations

• PUT /os-quota-sets/{project_id}

Update project quota.

volume_extension:quotas:delete

Default rule:admin_api

Operations

• DELETE /os-quota-sets/{project_id}

Delete project quota.

volume_extension:capabilities

Default rule:admin_api

Operations

• GET /capabilities/{host_name}

Show backend capabilities.

volume_extension:services:index

Default rule:admin_api

Operations

• GET /os-services

List all services.

volume_extension:services:update

Default rule:admin_api

Operations

• PUT /os-services/{action}

Update service, including failover_host, thaw, freeze, disable, enable, set-log and get-log actions.

volume:freeze_host

Default rule:admin_api

Operations

• PUT /os-services/freeze

Freeze a backend host.

volume:thaw_host

Default rule:admin_api

Operations

• PUT /os-services/thaw

Thaw a backend host.

464 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

volume:failover_host

Default rule:admin_api

Operations

• PUT /os-services/failover_host

Failover a backend host.

scheduler_extension:scheduler_stats:get_pools

Default rule:admin_api

Operations

• GET /scheduler-stats/get_pools

List all backend pools.

volume_extension:hosts

Default rule:admin_api

Operations

• GET /os-hosts

• PUT /os-hosts/{host_name}

• GET /os-hosts/{host_id}

List, update or show hosts for a project.

limits_extension:used_limits

Default rule:xena_system_admin_or_project_reader

Operations

• GET /limits

Show limits with used limit attributes.

volume_extension:list_manageable

Default rule:admin_api

Operations

• GET /manageable_volumes

• GET /manageable_volumes/detail

List (in detail) of volumes which are available to manage.

volume_extension:volume_manage

Default rule:admin_api

Operations

• POST /manageable_volumes

Manage existing volumes.

volume_extension:volume_unmanage

3.3. Reference 465

Cinder Documentation, Release 20.3.2.dev3

Default rule:admin_api

Operations

• POST /volumes/{volume_id}/action (os-unmanage)

Stop managing a volume.

volume_extension:type_create

Default rule:admin_api

Operations

• POST /types

Create volume type.

volume_extension:type_update

Default rule:admin_api

Operations

• PUT /types

Update volume type.

volume_extension:type_delete

Default rule:admin_api

Operations

• DELETE /types

Delete volume type.

volume_extension:type_get

Default rule:xena_system_admin_or_project_reader

Operations

• GET /types/{type_id}

Get one specific volume type.

volume_extension:type_get_all

Default rule:xena_system_admin_or_project_reader

Operations

• GET /types/

List volume types.

volume_extension:access_types_extra_specs

Default rule:xena_system_admin_or_project_reader

Operations

• GET /types/{type_id}

• GET /types

466 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Include the volume types extra_specs attribute in the volume type list or show requests. The ability
to make these calls is governed by other policies.

volume_extension:access_types_qos_specs_id

Default rule:admin_api

Operations

• GET /types/{type_id}

• GET /types

Include the volume types QoS specifications ID attribute in the volume type list or show requests.
The ability to make these calls is governed by other policies.

volume_extension:volume_type_encryption

Default rule:admin_api

DEPRECATED: This rule will be removed in the Yoga release.

volume_extension:volume_type_encryption:create

Default rule:admin_api

Operations

• POST /types/{type_id}/encryption

Create volume type encryption.

volume_extension:volume_type_encryption:get

Default rule:admin_api

Operations

• GET /types/{type_id}/encryption

• GET /types/{type_id}/encryption/{key}

Show a volume types encryption type, show an encryption specs item.

volume_extension:volume_type_encryption:update

Default rule:admin_api

Operations

• PUT /types/{type_id}/encryption/{encryption_id}

Update volume type encryption.

volume_extension:volume_type_encryption:delete

Default rule:admin_api

Operations

• DELETE /types/{type_id}/encryption/{encryption_id}

Delete volume type encryption.

volume_extension:volume_type_access

Default rule:xena_system_admin_or_project_member

3.3. Reference 467

Cinder Documentation, Release 20.3.2.dev3

Operations

• GET /types

• GET /types/{type_id}

• POST /types

Adds the boolean field os-volume-type-access:is_public to the responses for these API calls. The
ability to make these calls is governed by other policies.

volume_extension:volume_type_access:addProjectAccess

Default rule:admin_api

Operations

• POST /types/{type_id}/action (addProjectAccess)

Add volume type access for project.

volume_extension:volume_type_access:removeProjectAccess

Default rule:admin_api

Operations

• POST /types/{type_id}/action (removeProjectAccess)

Remove volume type access for project.

volume_extension:volume_type_access:get_all_for_type

Default rule:admin_api

Operations

• GET /types/{type_id}/os-volume-type-access

List private volume type access detail, that is, list the projects that have access to this volume type.

volume:extend

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-extend)

Extend a volume.

volume:extend_attached_volume

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-extend)

Extend a attached volume.

volume:revert_to_snapshot

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (revert)

468 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Revert a volume to a snapshot.

volume_extension:volume_admin_actions:reset_status

Default rule:admin_api

Operations

• POST /volumes/{volume_id}/action (os-reset_status)

Reset status of a volume.

volume:retype

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-retype)

Retype a volume.

volume:update_readonly_flag

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-update_readonly_flag)

Update a volumes readonly flag.

volume_extension:volume_admin_actions:force_delete

Default rule:admin_api

Operations

• POST /volumes/{volume_id}/action (os-force_delete)

Force delete a volume.

volume_extension:volume_actions:upload_public

Default rule:admin_api

Operations

• POST /volumes/{volume_id}/action (os-volume_upload_image)

Upload a volume to image with public visibility.

volume_extension:volume_actions:upload_image

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-volume_upload_image)

Upload a volume to image.

volume_extension:volume_admin_actions:force_detach

Default rule:admin_api

Operations

3.3. Reference 469

Cinder Documentation, Release 20.3.2.dev3

• POST /volumes/{volume_id}/action (os-force_detach)

Force detach a volume.

volume_extension:volume_admin_actions:migrate_volume

Default rule:admin_api

Operations

• POST /volumes/{volume_id}/action (os-migrate_volume)

migrate a volume to a specified host.

volume_extension:volume_admin_actions:migrate_volume_completion

Default rule:admin_api

Operations

• POST /volumes/{volume_id}/action (os-migrate_volume_completion)

Complete a volume migration.

volume_extension:volume_actions:initialize_connection

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-initialize_connection)

Initialize volume attachment.

volume_extension:volume_actions:terminate_connection

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-terminate_connection)

Terminate volume attachment.

volume_extension:volume_actions:roll_detaching

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-roll_detaching)

Roll back volume status to in-use.

volume_extension:volume_actions:reserve

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-reserve)

Mark volume as reserved.

volume_extension:volume_actions:unreserve

Default rule:xena_system_admin_or_project_member

470 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Operations

• POST /volumes/{volume_id}/action (os-unreserve)

Unmark volume as reserved.

volume_extension:volume_actions:begin_detaching

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-begin_detaching)

Begin detach volumes.

volume_extension:volume_actions:attach

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-attach)

Add attachment metadata.

volume_extension:volume_actions:detach

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-detach)

Clear attachment metadata.

volume:reimage

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-reimage)

Reimage a volume in available or error status.

volume:reimage_reserved

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-reimage)

Reimage a volume in reserved status.

volume:get_all_transfers

Default rule:xena_system_admin_or_project_reader

Operations

• GET /os-volume-transfer

• GET /os-volume-transfer/detail

• GET /volume_transfers

3.3. Reference 471

Cinder Documentation, Release 20.3.2.dev3

• GET /volume-transfers/detail

List volume transfer.

volume:create_transfer

Default rule:xena_system_admin_or_project_member

Operations

• POST /os-volume-transfer

• POST /volume_transfers

Create a volume transfer.

volume:get_transfer

Default rule:xena_system_admin_or_project_reader

Operations

• GET /os-volume-transfer/{transfer_id}

• GET /volume-transfers/{transfer_id}

Show one specified volume transfer.

volume:accept_transfer

Default rule:xena_system_admin_or_project_member

Operations

• POST /os-volume-transfer/{transfer_id}/accept

• POST /volume-transfers/{transfer_id}/accept

Accept a volume transfer.

volume:delete_transfer

Default rule:xena_system_admin_or_project_member

Operations

• DELETE /os-volume-transfer/{transfer_id}

• DELETE /volume-transfers/{transfer_id}

Delete volume transfer.

volume:get_volume_metadata

Default rule:xena_system_admin_or_project_reader

Operations

• GET /volumes/{volume_id}/metadata

• GET /volumes/{volume_id}/metadata/{key}

• POST /volumes/{volume_id}/action (os-show_image_metadata)

Show volumes metadata or one specified metadata with a given key.

volume:create_volume_metadata

472 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/metadata

Create volume metadata.

volume:update_volume_metadata

Default rule:xena_system_admin_or_project_member

Operations

• PUT /volumes/{volume_id}/metadata

• PUT /volumes/{volume_id}/metadata/{key}

Replace a volumes metadata dictionary or update a single metadatum with a given key.

volume:delete_volume_metadata

Default rule:xena_system_admin_or_project_member

Operations

• DELETE /volumes/{volume_id}/metadata/{key}

Delete a volumes metadatum with the given key.

volume_extension:volume_image_metadata:show

Default rule:xena_system_admin_or_project_reader

Operations

• GET /volumes/detail

• GET /volumes/{volume_id}

Include a volumes image metadata in volume detail responses. The ability to make these calls is
governed by other policies.

volume_extension:volume_image_metadata:set

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-set_image_metadata)

Set image metadata for a volume

volume_extension:volume_image_metadata:remove

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes/{volume_id}/action (os-unset_image_metadata)

Remove specific image metadata from a volume

volume:update_volume_admin_metadata

Default rule:admin_api

Operations

3.3. Reference 473

Cinder Documentation, Release 20.3.2.dev3

• POST /volumes/{volume_id}/action (os-update_readonly_flag)

• POST /volumes/{volume_id}/action (os-attach)

Update volume admin metadata. This permission is required to complete these API calls, though
the ability to make these calls is governed by other policies.

volume_extension:types_extra_specs:index

Default rule:xena_system_admin_or_project_reader

Operations

• GET /types/{type_id}/extra_specs

List type extra specs.

volume_extension:types_extra_specs:create

Default rule:admin_api

Operations

• POST /types/{type_id}/extra_specs

Create type extra specs.

volume_extension:types_extra_specs:show

Default rule:xena_system_admin_or_project_reader

Operations

• GET /types/{type_id}/extra_specs/{extra_spec_key}

Show one specified type extra specs.

volume_extension:types_extra_specs:read_sensitive

Default rule:admin_api

Operations

• GET /types

• GET /types/{type_id}

• GET /types/{type_id}/extra_specs

• GET /types/{type_id}/extra_specs/{extra_spec_key}

Include extra_specs fields that may reveal sensitive information about the deployment that should
not be exposed to end users in various volume-type responses that show extra_specs. The ability
to make these calls is governed by other policies.

volume_extension:types_extra_specs:update

Default rule:admin_api

Operations

• PUT /types/{type_id}/extra_specs/{extra_spec_key}

Update type extra specs.

volume_extension:types_extra_specs:delete

474 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Default rule:admin_api

Operations

• DELETE /types/{type_id}/extra_specs/{extra_spec_key}

Delete type extra specs.

volume:create

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes

Create volume.

volume:create_from_image

Default rule:xena_system_admin_or_project_member

Operations

• POST /volumes

Create volume from image.

volume:get

Default rule:xena_system_admin_or_project_reader

Operations

• GET /volumes/{volume_id}

Show volume.

volume:get_all

Default rule:xena_system_admin_or_project_reader

Operations

• GET /volumes

• GET /volumes/detail

• GET /volumes/summary

List volumes or get summary of volumes.

volume:update

Default rule:xena_system_admin_or_project_member

Operations

• PUT /volumes

• POST /volumes/{volume_id}/action (os-set_bootable)

Update volume or update a volumes bootable status.

volume:delete

Default rule:xena_system_admin_or_project_member

3.3. Reference 475

Cinder Documentation, Release 20.3.2.dev3

Operations

• DELETE /volumes/{volume_id}

Delete volume.

volume:force_delete

Default rule:admin_api

Operations

• DELETE /volumes/{volume_id}

Force Delete a volume.

volume_extension:volume_host_attribute

Default rule:admin_api

Operations

• GET /volumes/{volume_id}

• GET /volumes/detail

List or show volume with host attribute.

volume_extension:volume_tenant_attribute

Default rule:xena_system_admin_or_project_reader

Operations

• GET /volumes/{volume_id}

• GET /volumes/detail

List or show volume with tenant attribute.

volume_extension:volume_mig_status_attribute

Default rule:admin_api

Operations

• GET /volumes/{volume_id}

• GET /volumes/detail

List or show volume with migration status attribute.

volume_extension:volume_encryption_metadata

Default rule:xena_system_admin_or_project_reader

Operations

• GET /volumes/{volume_id}/encryption

• GET /volumes/{volume_id}/encryption/{encryption_key}

Show volumes encryption metadata.

volume:multiattach

Default rule:xena_system_admin_or_project_member

476 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Operations

• POST /volumes

Create multiattach capable volume.

volume_extension:default_set_or_update

Default rule:admin_api

Operations

• PUT /default-types

Set or update default volume type.

volume_extension:default_get

Default rule:admin_api

Operations

• GET /default-types/{project-id}

Get default types.

volume_extension:default_get_all

Default rule:admin_api

Operations

• GET /default-types/

Get all default types. WARNING: Changing this might open up too much information regarding
cloud deployment.

volume_extension:default_unset

Default rule:admin_api

Operations

• DELETE /default-types/{project-id}

Unset default type.

Policy configuration HowTo

You can use Cinder policies to control how your users and administrators interact with the Block Storage
Service. In this HowTo, well discuss the user model Cinder employs and how it can be modified by
adjusting policies.

• Like most OpenStack services, Cinder uses the OpenStack oslo.policy library as a base for its
policy-related code. For a discussion of rules and roles, other vocabulary, and general information
about OpenStack policies and the policy configuration file, see Administering Applications that
use oslo.policy.

• See Policy configuration for the list of policy targets recognized by Cinder.

• Since the Queens release, the default way to run Cinder is without a policy file. This is because
sensible default values are defined in the code. To run Cinder with a custom policy configuration,
however, youll need to write your changes into a policy file.

3.3. Reference 477

https://docs.openstack.org/oslo.policy/latest/admin/index.html
https://docs.openstack.org/oslo.policy/latest/admin/index.html

Cinder Documentation, Release 20.3.2.dev3

• Instructions for generating a sample policy.yaml file directly from the Cinder source code can
be found in the file README-policy.generate.md in the etc/cinder directory in the Cinder
source code repository (or its github mirror).

• OpenStack has deprecated the use of a JSON policy file since the Wallaby release (Cinder 18.0.0).
If you are still using the JSON format, there is a oslopolicy-convert-json-to-yaml tool that will
migrate your existing JSON-formatted policy file to YAML in a backward-compatible way.

Vocabulary Note

We need to clarify some terms well be using below.

Project This is an administrative grouping of users into a unit that can own cloud resources. (This is
what used to be called a tenant.)

Service This is an OpenStack component that users interact with through an API it provides. For ex-
ample, Cinder is the OpenStack code name for the service that provides the Block Storage API
versions 2 and 3. Cinder is also known as the OpenStack Block Storage Service.

The point of making this distinction is that theres another use of the term project that is relevant to the
discussion, but that were not going to use. Each OpenStack service is produced and maintained by a
project team. We will not be using the term project in that sense in this document. Well always use the
term service. (If you are new to OpenStack, this wont be a problem. But if youre discussing this content
with someone whos been around OpenStack for a while, youll want to be clear about this so that youre
not talking past each other.)

The User Model

The Cinder code is written with the expectation that there are two kinds of users.

End users These are users who consume resources and (possibly) pay the bills. End users are restricted
to acting within a specific project and cannot perform operations on resources that are not owned
by the project(s) they are in.

Administrative users (admins) These are users who keep the lights on. They have the ability to view
all resources controlled by Cinder and can perform most operations on them. They also have access
to other operations (for example, setting quotas) that cannot be performed by end users.

Additionally, admins can view resource properties that cannot be seen by end users (for example,
the migration status of a volume). The technical term to describe this is that when a volume-
show call is made in an administrative context it will contain additional properties than when the
call is not made in an administrative context. Similarly, when a volume-list call is made in an
administrative context, the response may include volumes that are not owned by the project of the
person making the call; this never happens when a call is not made in an administrative context.

478 Chapter 3. For operators

https://opendev.org/openstack/cinder
https://github.com/openstack/cinder
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Cinder Documentation, Release 20.3.2.dev3

Policies

Broadly speaking, an operator can accomplish two things with policies:

1. The policy file can define the criteria for what users are granted the privilege to act in an adminis-
trative context.

2. The policy file can specify for specific actions (or policy targets), which users can perform those
actions.

In general, while an operator can define who can make calls in an administrative context, an operator
cannot affect what can be done in an administrative context (because thats already been decided when
the code was implemented). For example, the boundaries between projects are strictly enforced in Cinder,
and only an admin can view resources across projects. There is no way to grant a user the ability to see
into another project (at least not by policy configurationthis could be done by using the Identity Service
to add the user to the other project, but note that at that point, the user is no longer not a member of the
project owning the now visible resources.)

Pre-Defined Policy Rules

The default Cinder policy file contains three rules that are used as the basis of policy file configuration.

context_is_admin This defines the administrative context in Cinder. Youll notice that its defined once at
the beginning of the sample policy file and isnt referred to anywhere else in that file. To understand
what this does, its helpful to know something about the API implementation.

A users API request must be accompanied by an authentication token from the Identity Service.
(If you are using client software, for example, the python-cinderclient or python-openstack client,
the token is being requested for you under the hood.) The Block Storage API confirms that the
token is unexpired and obtains other information about the requestor, for example, what roles the
Identity Service recognizes the user to have. Cinder uses this information to create an internal
context object that will be passed around the code as various functions and services are called to
satisfy the users request.

When the request context object is created, Cinder uses the context_is_admin rule to decide
whether this context object will be recognized as providing an administrative context. It does this
by setting the is_admin property to True on the context object. Cinder code later in the call chain
simply checks whether the is_admin property is true on the context object to determine whether
the call is taking place in an administrative context. Similarly, policies will refer to is_admin:True
(either directly or indirectly) to require an administrative context.

All of this is a long-winded way to say that in a Cinder policy file, youll only see context_is_admin
at the top; after that, youll see is_admin:True whenever you want to refer to an administrative
context.

admin_or_owner This is the default rule for most non-admin API calls. As the name indicates, it allows
an administrator or an owner to make the call.

admin_api This is the default rule for API calls that only administrators should be allowed to make.

Note: For some API calls, there are checks way down in the code to ensure that a call is being made
in an administrative context before the request is allowed to succeed. Thus it is not always the case
that simply changing a policy target whose value is rule:admin_api to rule:admin_or_owner (or
rule:admin_api or role:some-special-role) will give a non-admin user the ability to successfully

3.3. Reference 479

Cinder Documentation, Release 20.3.2.dev3

make the call. Unfortunately, you cant tell which calls these are without experimenting with a
policy file (or looking at the source code). A good rule of thumb, however, is that API calls
governed by policies marked as rule:admin_api in the default policy configuration fall into this
category.

Example: Configuring a Read-Only Administrator

A fairly common configuration request is to create a special category of administrator who has only an
observer (look but dont touch) function. The idea is that for security and stability reasons, its a good
idea to allow all users, including administrators, the least amount of privileges they need to successfully
perform their job. Someone whose job is to audit information about Cinder (for example, to see what the
current quota settings are) doesnt need the ability to change these settings. In this section, well discuss
one way to configure the Cinder policy file to accomplish this.

Note: To keep the discussion focused, this example assumes that youre working from the default policy
file. Hopefully the general strategy will be clear enough to be applied to clouds already using non-
default configurations. Additionally, there are other logically equivalent ways to configure the policy file
to introduce a read-only administrator; this is not by any means the only way to do it.

Given the job requirements, the observer administrator (who well refer to as the observer-admin for short)
needs to operate in the administrative context. Thus, well have to adjust the context_is_admin definition
in the policy file to include such a person. Note that this will make such a person a full administrator if
we make no other changes to the policy file. Thus the strategy well use is to first make the observer-admin
a full administrator, and then block the observer-admins access to those API calls that arent read-only.

Warning: Metaphorically, what we are doing is opening the floodgates and then plugging up the
holes one by one. That sounds alarming, and it should. We cannot emphasize strongly enough that
any policy file changes should be well-contained (that is, you know exactly who has the new role or
roles) and tested (you should have some kind of tests in place to determine that your changes have
only the effects you intend).

This is probably as good a place as any to remind you that the suggestions that follow are provided
without warranty of any kind, either expressed or implied. Like the OpenStack source code, they are
covered by the Apache License, version 2.0. In particular, we direct your attention to sections 7-9.

Step 0: Testing

We mention testing first (even though you havent made any changes yet) because if we wait to mention
it until after weve made the configuration changes, you might get the impression that its the last thing to
do (or the least important). It will make your life much easier if you come up with a plan for how you
will test these changes before you start modifiying the policy configuration.

We advise setting up automated tests because the Block Storage API has a lot of API calls and youll want
to test each of them against an admin user, an observer-admin user, and a regular end user. Further, if
you anticipate that you may require finer-grained access than outlined in this example (for example, you
would like a creator role that can create and read, but not delete), your configuration will be all the more
complex and hence require more extensive testing that you wont want to do by hand.

480 Chapter 3. For operators

http://www.apache.org/licenses/LICENSE-2.0

Cinder Documentation, Release 20.3.2.dev3

Step 1: Create a new role

In the Identity Service, create a new role. Its a good idea to make this a new, never before assigned role
so that you can easily track who its been assigned to. As you recall from the discussion above, this person
will have full administrative powers for any functions that are missed when we do the block up the holes
stage.

For this example, well use a role named cinder:reader-admin. There is nothing special about this
role name; you may use any name that makes sense to the administrators who will be assigning the role
and configuring the policies. (The cinder: part is to remind you that this role applies to the Block Storage
Service, the reader part is from the role name that OpenStack has converged upon for this type of observer
role, and the -admin part is to remind you that whoever has this role will be able to observe admin-type
stuff.)

Note: Beginning with the Rocky release, the Identity Service (Keystone) creates three roles when the
service is initiated: member, reader, and admin. By default, the reader role is not assigned to any
users. Work is underway during the Stein cycle so that the Identity API will recognize users with the
reader role as having read-only access to the Identity API. See the Keystone spec Basic Default Roles
for more information.

We mention this so that you are aware that if you use a role named reader when doing the policy
configuration described in this document, at some point users assigned the reader role may have read-
only access to services other than the Block Storage Service. The desirability of this outcome depends
upon your particular use case.

Step 2: Open the floodgates

If your installation doesnt have an /etc/cinder/policy.yaml file, you can generate one from the
source code (see the introductory section of this document).

Note: The default file is completely commented out. For any of the changes you make below to be
effective, dont forget to uncomment the line in which they occur.

To extend the administrative context to include the new role, change:

"context_is_admin": "role:admin"

to:

"context_is_admin": "role:admin or role:cinder:reader-admin"

3.3. Reference 481

http://specs.openstack.org/openstack/keystone-specs/specs/keystone/rocky/define-default-roles.html

Cinder Documentation, Release 20.3.2.dev3

Step 3: Plug the holes in the Admin API

Now we make adjustments to the policy configuration so that the observer-admin will in fact have only
read-only access to Cinder resources.

3A: New Policy Rule

First, we create a new policy rule for Admin API access that specifically excludes the new role. Find the
line in the policy file that has "admin_api" on the left hand side. Immediately after it, introduce a new
rule:

"strict_admin_api": "not role:cinder:reader-admin and rule:admin_api"

3B: Plugging Holes

Now, plug up the holes weve opened in the Admin API by using this new rule. Find each of the lines in
the remainder of the policy file that look like:

"target": "rule:admin_api"

and for each line, decide whether the observer-admin needs access to this action or not. For example, the
target "volume_extension:services:index" specifies a read-only action, so its appropriate for the
observer-admin to perform. Well leave that one in its default configuration of:

"volume_extension:services:index": "rule:admin_api"

On the other hand, if the target is something that allows modification, we most likely dont want to allow
the observer-admin to perform it. For such actions we need to use the strict form of the admin rule. For
example, consider the action "volume_extension:quotas:delete". To exclude the observer-admin
from performing it, change the default setting of:

"volume_extension:quotas:delete": "rule:admin_api"

to:

"volume_extension:quotas:delete": "rule:strict_admin_api"

Do this on a case-by-case basis for the other policy targets that by default are governed by the
rule:admin_api.

3C: Other Changes

Youve probably figured this out already, but there may be some other changes that are implied by, but
not explicitly mentioned in, the above instructions. For example, youll find the following policies in the
sample file:

"volume_extension:volume_type_encryption": "rule:admin_api"
"volume_extension:volume_type_encryption:create": "rule:volume_
↪→extension:volume_type_encryption"

(continues on next page)

482 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

"volume_extension:volume_type_encryption:get": "rule:volume_extension:volume_
↪→type_encryption"
"volume_extension:volume_type_encryption:update": "rule:volume_
↪→extension:volume_type_encryption"
"volume_extension:volume_type_encryption:delete": "rule:volume_
↪→extension:volume_type_encryption"

The first policy covers all of create/read/update/delete (and is deprecated for removal during the Stein
development cycle). However, if you set it to "rule:strict_admin_api", the observer-admin wont
be able to read the volume type encryption. So it should be left at "rule:admin_api" and the cre-
ate/update/delete policies should be changed to "rule:strict_admin_api". Additionally, in prepara-
tion for the deprecated policy targets removal, its a good idea to change the value of the get policy to
"rule:admin_api".

Step 4: Plug the holes in the Regular API

As stated earlier, a user with the role cinder:reader-admin is elevated to full administrative powers.
That implies that such a user can perform administrative functions on end-user resources. Hence, we
have another set of holes to plug up.

4A: New Policy Rule

As we did for the Admin API, well create a strict version of the admin_or_owner rule so we can specif-
ically exclude the observer-admin from executing that action. Find the line in the policy file where
"admin_or_owner" appears on the left hand side. It probably looks something like this:

"admin_or_owner": "is_admin:True or (role:admin and is_admin_project:True) or␣
↪→project_id:%(project_id)s"

Immediately following it, introduce a new rule:

"strict_admin_or_owner": "(not role:cinder:reader-admin and (is_admin:True or␣
↪→(role:admin and is_admin_project:True))) or project_id:%(project_id)s"

Note: To understand what this change does, note that the admin_or_owner rule definition has the general
structure:

<admin-stuff> or <project-stuff>

To construct the strict version, we need to make sure that the not cinder:reader-admin part applies
only the left-hand side (the <admin-stuff>). The easiest way to do that is to structure the new rule as
follows:

(not role:cinder:reader-admin and (<admin-stuff>)) or <project-stuff>

3.3. Reference 483

Cinder Documentation, Release 20.3.2.dev3

Note: If you dont need a user with the role cinder:reader-admin to manage resources in their own
project, you could simplify this rule to:

"strict_admin_or_owner": "not role:cinder:reader-admin and rule:admin_or_owner
↪→"

4B: Plugging Holes

Find each line in the policy file that looks like:

"target": "rule:admin_or_owner"

and decide whether it represents an action that the observer-admin needs to perform. For those actions
you dont want the observer-admin to do, change the policy to:

"target": "rule:strict_admin_or_owner"

4C: Unrestricted Policies

There are some policies in the default file that look like this:

"target": ""

These are called unrestricted policies because the requirements are empty, and hence can be satisfied by
any authenticated user. (Recall from the earlier discussion of The User Model, however, that this does
not mean that any user can see any other users resources.)

Unrestricted policies may be found on GET calls that dont have a particular resource to refer to (for ex-
ample, the call to get all volumes) or a POST call that creates a completely new resource (for example,
the call to create a volume). You dont see them much in the Cinder policy file because the code imple-
menting the Block Storage API v2 and v3 always make sure theres a target object containing at least the
project_id and user_id that can be used in evaluating whether the policy should allow the action or
not.

Thus, obvious read-only targets (for example, volume_extension:type_get) can be left unrestricted.
Policy targets that are not read only (for example, volume:accept_transfer), can be changed to
rule:strict_admin_or_owner.

Step 5: Testing

We emphasized above that because of the nature of this change, it is extremely important to test it care-
fully. One thing to watch out for: because were using a clause like not role:cinder:reader-admin,
a typographical error in the role name will cause problems. (For example, if you enter it into the file
as not role:cinder_reader-admin, it wont exclude the user were worried about, who has the role
cinder:reader-admin.)

As mentioned earlier, we advise setting up automated tests so that you can prevent regressions if you have
to modify your policy files at some point.

484 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Fibre Channel Zone Manager

The Fibre Channel Zone Manager allows FC SAN Zone/Access control management in conjunction with
Fibre Channel block storage. The configuration of Fibre Channel Zone Manager and various zone drivers
are described in this section.

Configure Block Storage to use Fibre Channel Zone Manager

If Block Storage is configured to use a Fibre Channel volume driver that supports Zone Manager, update
cinder.conf to add the following configuration options to enable Fibre Channel Zone Manager.

Make the following changes in the /etc/cinder/cinder.conf file under a [fc-zone-manager] sec-
tion.

Table 107: Description of zoning configuration options
Configuration option = De-
fault value

Description

enable_unsupported_driver
= False

(Boolean) Set this to True when you want to allow an unsupported
zone manager driver to start. Drivers that havent maintained a
working CI system and testing are marked as unsupported until CI
is working again. This also marks a driver as deprecated and may
be removed in the next release.

fc_fabric_names = None (String) Comma separated list of Fibre Channel fabric names. This
list of names is used to retrieve other SAN credentials for connect-
ing to each SAN fabric

fc_san_lookup_service
= cinder.zonemanager.
drivers.brocade.
brcd_fc_san_lookup_service.
BrcdFCSanLookupService

(String) FC SAN Lookup Service

zone_driver =
cinder.zonemanager.
drivers.brocade.
brcd_fc_zone_driver.
BrcdFCZoneDriver

(String) FC Zone Driver responsible for zone management

zoning_policy =
initiator-target

(String) Zoning policy configured by user; valid values include
initiator-target or initiator

To use different Fibre Channel Zone Drivers, use the parameters described in this section.

Note: When multi backend configuration is used, provide the zoning_mode configuration option as
part of the volume driver configuration where volume_driver option is specified.

Note: Default value of zoning_mode is None and this needs to be changed to fabric to allow fabric
zoning.

3.3. Reference 485

Cinder Documentation, Release 20.3.2.dev3

Note: zoning_policy can be configured as initiator-target or initiator

Brocade Fibre Channel Zone Driver

Brocade Fibre Channel Zone Driver performs zoning operations through HTTP, HTTPS, or SSH.

Warning: The Brocade Fibre Channel Zone Driver is being supported by the Cinder community
on a best-effort basis. While it is tested with the first Release Candidate of each release, be aware
that it is not continually tested by a third-party CI system. The driver was deprecated and marked
as unsupported in the Ussuri release, and is subject to immediate removal if the maintenance burden
exceeds the communitys capacity.

Set the following options in the cinder.conf configuration file under the [fc-zone-manager] section.

Table 108: Description of Brocade zoning manager configuration
options

Configuration option = Default value Description
brcd_sb_connector = HTTP (String) South bound connector for zoning operation

Configure SAN fabric parameters under a section matching the name used in fc_fabric_names as
described in the example below:

Table 109: Description of Brocade zoning fabrics configuration
options

Configuration option =
Default value

Description

fc_fabric_address = <> (String) Management IP of fabric.
fc_fabric_password =
<>

(String) Password for user.

fc_fabric_port = 22 (Port(min=0, max=65535)) Connecting port
fc_fabric_ssh_cert_path
= <>

(String) Local SSH certificate Path.

fc_fabric_user = <> (String) Fabric user ID.
fc_southbound_protocol
= REST_HTTP

(String(choices=[SSH, HTTP, HTTPS, REST_HTTP,
REST_HTTPS])) South bound connector for the fabric.

fc_virtual_fabric_id
= None

(String) Virtual Fabric ID.

zone_activate = True (Boolean) Overridden zoning activation state.
zone_name_prefix =
openstack

(String) Overridden zone name prefix.

zoning_policy =
initiator-target

(String) Overridden zoning policy.

Note: Define a fabric group for each fabric using the fabric names used in fc_fabric_names config-

486 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

uration option as group name.

Note: To define a fabric group for a switch which has Virtual Fabrics enabled, include the
fc_virtual_fabric_id configuration option and fc_southbound_protocol configuration option
set to HTTP, HTTPS, REST_HTTP or REST_HTTPS in the fabric group. Zoning on VF enabled fabric using
SSH southbound protocol is not supported.

Note: On switches running Fabric OS v8.2.1 or greater, the use of the REST interface is recommended
for southbound communication. Set the fc_southbound_protocol configuration option to REST_HTTP
or REST_HTTPS in the fabric group.

System requirements

Brocade Fibre Channel Zone Driver requires firmware version FOS v6.4 or higher.

As a best practice for zone management, use a user account with zoneadmin role. Users with admin role
(including the default admin user account) are limited to a maximum of two concurrent SSH sessions.

For information about how to manage Brocade Fibre Channel switches, see the Brocade Fabric OS user
documentation.

Cisco Fibre Channel Zone Driver

Cisco Fibre Channel Zone Driver automates the zoning operations through SSH. Configure Cisco Zone
Driver, Cisco Southbound connector, FC SAN lookup service and Fabric name.

Set the following options in the cinder.conf configuration file.

[fc-zone-manager]
zone_driver = cinder.zonemanager.drivers.cisco.cisco_fc_zone_driver.
↪→CiscoFCZoneDriver
fc_san_lookup_service = cinder.zonemanager.drivers.cisco.cisco_fc_san_lookup_
↪→service.CiscoFCSanLookupService
fc_fabric_names = CISCO_FABRIC_EXAMPLE
cisco_sb_connector = cinder.zonemanager.drivers.cisco.cisco_fc_zone_client_
↪→cli.CiscoFCZoneClientCLI

Table 110: Description of Cisco zoning manager configuration op-
tions

Configuration option = Default value Description
cisco_sb_connector = cinder.zonemanager.drivers.cisco.
cisco_fc_zone_client_cli.CiscoFCZoneClientCLI

(String) Southbound con-
nector for zoning operation

Configure SAN fabric parameters under a section matching the name used in fc_fabric_names as
described in the example below:

3.3. Reference 487

Cinder Documentation, Release 20.3.2.dev3

Table 111: Description of Cisco zoning fabrics configuration op-
tions

Configuration option = Default value Description
cisco_fc_fabric_address = <> (String) Management IP of fabric
cisco_fc_fabric_password = <> (String) Password for user
cisco_fc_fabric_port = 22 (Port(min=0, max=65535)) Connecting port
cisco_fc_fabric_user = <> (String) Fabric user ID
cisco_zone_activate = True (Boolean) overridden zoning activation state
cisco_zone_name_prefix = None (String) overridden zone name prefix
cisco_zoning_policy = initiator-target (String) overridden zoning policy
cisco_zoning_vsan = None (String) VSAN of the Fabric

Note: Define a fabric group for each fabric using the fabric names used in fc_fabric_names config-
uration option as group name.

The Cisco Fibre Channel Zone Driver supports basic and enhanced zoning modes.The zoning VSAN
must exist with an active zone set name which is same as the fc_fabric_names option.

System requirements

Cisco MDS 9000 Family Switches.

Cisco MDS NX-OS Release 6.2(9) or later.

For information about how to manage Cisco Fibre Channel switches, see the Cisco MDS 9000 user
documentation.

Volume encryption supported by the key manager

We recommend the Key management service (barbican) for storing encryption keys used by the Open-
Stack volume encryption feature. It can be enabled by updating cinder.conf and nova.conf.

Initial configuration

Configuration changes need to be made to any nodes running the cinder-api or nova-compute server.

Steps to update cinder-api servers:

1. Edit the /etc/cinder/cinder.conf file to use Key management service as follows:

• Look for the [key_manager] section.

• Enter a new line directly below [key_manager] with the following:

backend = barbican

2. Restart cinder-api, cinder-volume and cinder-backup.

Update nova-compute servers:

488 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

1. Install the python-barbicanclient Python package.

2. Set up the Key Manager service by editing /etc/nova/nova.conf:

[key_manager]
backend = barbican

Note: Use a # prefix to comment out the line in this section that begins with fixed_key.

3. Restart nova-compute.

Key management access control

Special privileges can be assigned on behalf of an end user to allow them to manage their own encryption
keys, which are required when creating the encrypted volumes. The Barbican Default Policy for access
control specifies that only users with an admin or creator role can create keys. The policy is very
flexible and can be modified.

To assign the creator role, the admin must know the user ID, project ID, and creator role ID. See Assign
a role for more information. An admin can list existing roles and associated IDs using the openstack
role list command. If the creator role does not exist, the admin can create the role.

Create an encrypted volume type

Block Storage volume type assignment provides scheduling to a specific back-end, and can be used to
specify actionable information for a back-end storage device.

This example creates a volume type called LUKS and provides configuration information for the storage
system to encrypt or decrypt the volume.

1. Source your admin credentials:

$. admin-openrc.sh

2. Create the volume type, marking the volume type as encrypted and providing the necessary details.
Use --encryption-control-location to specify where encryption is performed: front-end
(default) or back-end.

$ openstack volume type create --encryption-provider luks \
--encryption-cipher aes-xts-plain64 --encryption-key-size 256 --

↪→encryption-control-location front-end LUKS

+-------------+---
↪→-------+
| Field | Value ␣

↪→ |
+-------------+---

↪→-------+
| description | None ␣

↪→ |
(continues on next page)

3.3. Reference 489

https://docs.openstack.org/barbican/latest/admin/access_control.html#default-policy
https://docs.openstack.org/keystone/latest/admin/cli-manage-projects-users-and-roles.html#assign-a-role
https://docs.openstack.org/keystone/latest/admin/cli-manage-projects-users-and-roles.html#assign-a-role
https://docs.openstack.org/keystone/latest/admin/cli-manage-projects-users-and-roles.html#create-a-role

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| encryption | cipher='aes-xts-plain64', control_location='front-end',␣
↪→ |
| | encryption_id='8584c43f-1666-43d1-a348-45cfcef72898', ␣

↪→ |
| | key_size='256', ␣

↪→ |
| | provider='luks' ␣

↪→ |
| id | b9a8cff5-2f60-40d1-8562-d33f3bf18312 ␣

↪→ |
| is_public | True ␣

↪→ |
| name | LUKS ␣

↪→ |
+-------------+---

↪→-------+

The OpenStack dashboard (horizon) supports creating the encrypted volume type as of the Kilo release.
For instructions, see Create an encrypted volume type.

Create an encrypted volume

Use the OpenStack dashboard (horizon), or openstack volume create command to create volumes
just as you normally would. For an encrypted volume, pass the --type LUKS flag, which specifies that
the volume type will be LUKS (Linux Unified Key Setup). If that argument is left out, the default volume
type, unencrypted, is used.

1. Source your admin credentials:

$. admin-openrc.sh

2. Create an unencrypted 1GB test volume:

$ openstack volume create --size 1 'unencrypted volume'

3. Create an encrypted 1GB test volume:

$ openstack volume create --size 1 --type LUKS 'encrypted volume'

Notice the encrypted parameter; it will show True or False. The option volume_type is also shown
for easy review.

Non-admin users need the creator role to store secrets in Barbican and to create encrypted volumes.
As an administrator, you can give a user the creator role in the following way:

$ openstack role add --project PROJECT --user USER creator

For details, see the Barbican Access Control page.

490 Chapter 3. For operators

https://docs.openstack.org/horizon/latest/admin/manage-volumes.html#create-an-encrypted-volume-type
https://docs.openstack.org/barbican/latest/admin/access_control.html

Cinder Documentation, Release 20.3.2.dev3

Testing volume encryption

This is a simple test scenario to help validate your encryption. It assumes an LVM based Block Storage
server.

Perform these steps after completing the volume encryption setup and creating the volume-type for LUKS
as described in the preceding sections.

1. Create a VM:

$ openstack server create --image cirros-0.3.1-x86_64-disk --flavor m1.
↪→tiny TESTVM

2. Create two volumes, one encrypted and one not encrypted then attach them to your VM:

$ openstack volume create --size 1 'unencrypted volume'
$ openstack volume create --size 1 --type LUKS 'encrypted volume'
$ openstack volume list
$ openstack server add volume --device /dev/vdb TESTVM 'unencrypted volume
↪→'

$ openstack server add volume --device /dev/vdc TESTVM 'encrypted volume'

Note: The --device option to specify the mountpoint for the attached volume may not be where
the block device is actually attached in the guest VM, it is used here for illustration purposes.

3. On the VM, send some text to the newly attached volumes and synchronize them:

echo "Hello, world (unencrypted /dev/vdb)" >> /dev/vdb
echo "Hello, world (encrypted /dev/vdc)" >> /dev/vdc
sync && sleep 2
sync && sleep 2

4. On the system hosting cinder volume services, synchronize to flush the I/O cache then test to see
if your strings can be found:

sync && sleep 2
sync && sleep 2
strings /dev/stack-volumes/volume-* | grep "Hello"
Hello, world (unencrypted /dev/vdb)

In the above example you see that the search returns the string written to the unencrypted volume, but
not the encrypted one.

3.3. Reference 491

Cinder Documentation, Release 20.3.2.dev3

Known Issues

Retyping an unencrypted volume to the same size encrypted volume will most likely fail. Even though the
volume is the same size as the source volume, the encrypted volume needs to store additional encryption
information overhead. This results in the new volume not being large enough to hold all data.

Additional options

These options can also be set in the cinder.conf file.

Table 112: Description of API configuration options
Configuration option = Default
value

Description

api_rate_limit = True (Boolean) Enables or disables rate limit of the API.
compute_api_class = cinder.
compute.nova.API

(String) The full class name of the compute API class to use

group_api_class = cinder.
group.api.API

(String) The full class name of the group API class

osapi_volume_ext_list = [] (List of String) Specify list of extensions to load
when using osapi_volume_extension option with cin-
der.api.contrib.select_extensions

osapi_volume_extension
= [cinder.api.contrib.
standard_extensions]

(String) osapi volume extension to load

tcp_keepalive = True (Boolean) Sets the value of TCP_KEEPALIVE (True/False)
for each server socket.

tcp_keepalive_count = None (Integer) Sets the value of TCP_KEEPCNT for each server
socket. Not supported on OS X.

tcp_keepalive_interval = None (Integer) Sets the value of TCP_KEEPINTVL in seconds for
each server socket. Not supported on OS X.

volume_api_class = cinder.
volume.api.API

(String) The full class name of the volume API class to use

Table 113: Description of [oslo_middleware] configuration op-
tions

Configuration option
= Default value

Description

enable_proxy_headers_parsing
= False

(Boolean) Whether the application is behind a proxy or not. This deter-
mines if the middleware should parse the headers or not.

max_request_body_size
= 114688

(Integer) The maximum body size for each request, in bytes.

secure_proxy_ssl_header
=
X-Forwarded-Proto

(String) The HTTP Header that will be used to determine what the original
request protocol scheme was, even if it was hidden by a SSL termination
proxy. DEPRECATED

492 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 114: Description of authorization configuration options
Configuration
option = Default
value

Description

auth_strategy =
keystone

(String(choices=[noauth, noauth_include_project_id, keystone])) The strategy
to use for auth. Supports noauth, noauth_include_project_id or keystone.

Table 115: Description of Volume Manager configuration options
Configura-
tion option =
Default value

Description

backend_native_threads_pool_size
= 20

(Integer(min=20)) Size of the native threads pool for the backend. Increase for
backends that heavily rely on this, like the RBD driver.

backend_stats_polling_interval
= 60

(Integer(min=3)) Time in seconds between requests for usage statistics from the
backend. Be aware that generating usage statistics is expensive for some backends,
so setting this value too low may adversely affect performance.

extra_capabilities
= {}

(String) User defined capabilities, a JSON formatted string specifying key/value
pairs. The key/value pairs can be used by the CapabilitiesFilter to select between
backends when requests specify volume types. For example, specifying a service
level or the geographical location of a backend, then creating a volume type to
allow the user to select by these different properties.

init_host_max_objects_retrieval
= 0

(Integer) Max number of volumes and snapshots to be retrieved per batch during
volume manager host initialization. Query results will be obtained in batches from
the database and not in one shot to avoid extreme memory usage. Set 0 to turn off
this functionality.

migration_create_volume_timeout_secs
= 300

(Integer) Timeout for creating the volume to migrate to when performing volume
migration (seconds)

reinit_driver_count
= 3

(Integer) Maximum times to reintialize the driver if volume initialization fails. The
interval of retry is exponentially backoff, and will be 1s, 2s, 4s etc.

suppress_requests_ssl_warnings
= False

(Boolean) Suppress requests library SSL certificate warnings.

volume_driver
= cinder.
volume.
drivers.lvm.
LVMVolumeDriver

(String) Driver to use for volume creation

volume_service_inithost_offload
= False

(Boolean) Offload pending volume delete during volume service startup

zoning_mode
= None

(String) FC Zoning mode configured, only fabric is supported now.

3.3. Reference 493

Cinder Documentation, Release 20.3.2.dev3

Table 116: Description of Volume Scheduler configuration options
Configuration option = Default value Description
allocated_capacity_weight_multiplier =
-1.0

(Float) Multiplier used for weighing allocated
capacity. Positive numbers mean to stack vs
spread.

capacity_weight_multiplier = 1.0 (Float) Multiplier used for weighing free ca-
pacity. Negative numbers mean to stack vs
spread.

scheduler_default_filters
= [AvailabilityZoneFilter,
CapacityFilter, CapabilitiesFilter]

(List of String) Which filter class names to use
for filtering hosts when not specified in the re-
quest.

scheduler_default_weighers =
[CapacityWeigher]

(List of String) Which weigher class names to
use for weighing hosts.

scheduler_driver = cinder.scheduler.
filter_scheduler.FilterScheduler

(String) Default scheduler driver to use

scheduler_driver_init_wait_time = 60 (Integer(min=1)) Maximum time in seconds
to wait for the driver to report as ready

scheduler_host_manager = cinder.
scheduler.host_manager.HostManager

(String) The scheduler host manager class to
use

scheduler_max_attempts = 3 (Integer) Maximum number of attempts to
schedule a volume

scheduler_weight_handler =
cinder.scheduler.weights.
OrderedHostWeightHandler

(String) Which handler to use for selecting the
host/pool after weighing

volume_number_multiplier = -1.0 (Float) Multiplier used for weighing volume
number. Negative numbers mean to spread vs
stack.

494 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 117: Description of backup configuration options
Configuration option = De-
fault value

Description

backup_api_class =
cinder.backup.api.API

(String) The full class name of the volume backup API class

backup_compression_algorithm
= zlib

(String(choices=[none, off, no, zlib, gzip, bz2, bzip2, zstd])) Com-
pression algorithm for backups (none to disable)

backup_driver = cinder.
backup.drivers.swift.
SwiftBackupDriver

(String) Driver to use for backups.

backup_driver_init_check_interval
= 60

(Integer(min=5)) Time in seconds between checks to see if the
backup driver has been successfully initialized, any time the driver
is restarted.

backup_driver_stats_polling_interval
= 60

(Integer(min=10)) Time in seconds between checks of the backup
driver status. If does not report as working, it is restarted.

backup_manager =
cinder.backup.manager.
BackupManager

(String) Full class name for the Manager for volume backup

backup_metadata_version
= 2

(Integer) Backup metadata version to be used when backing up vol-
ume metadata. If this number is bumped, make sure the service
doing the restore supports the new version.

backup_name_template =
backup-%s

(String) Template string to be used to generate backup names

backup_native_threads_pool_size
= 60

(Integer(min=20)) Size of the native threads pool for the backups.
Most backup drivers rely heavily on this, it can be decreased for
specific drivers that dont.

backup_object_number_per_notification
= 10

(Integer) The number of chunks or objects, for which one Ceilometer
notification will be sent

backup_service_inithost_offload
= True

(Boolean) Offload pending backup delete during backup service
startup. If false, the backup service will remain down until all pend-
ing backups are deleted.

backup_timer_interval =
120

(Integer) Interval, in seconds, between two progress notifications re-
porting the backup status

backup_use_same_host =
False

(Boolean) Backup services use same backend.

3.3. Reference 495

Cinder Documentation, Release 20.3.2.dev3

Table 118: Description of [nova] configuration options
Configuration
option = Default
value

Description

auth_section =
None

(<class str>) Config Section from which to load plugin specific options

auth_type =
None

(<class str>) Authentication type to load

cafile = None (String) PEM encoded Certificate Authority to use when verifying HTTPs con-
nections.

certfile =
None

(String) PEM encoded client certificate cert file

collect-timing
= False

(Boolean) Collect per-API call timing information.

insecure =
False

(Boolean) Verify HTTPS connections.

interface =
public

(String(choices=[public, admin, internal])) Type of the nova endpoint to use. This
endpoint will be looked up in the keystone catalog and should be one of public,
internal or admin.

keyfile = None (String) PEM encoded client certificate key file
region_name =
None

(String) Name of nova region to use. Useful if keystone manages more than one
region.

split-loggers
= False

(Boolean) Log requests to multiple loggers.

timeout = None (Integer) Timeout value for http requests
token_auth_url
= None

(String) The authentication URL for the nova connection when using the current
users token

496 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 119: Description of images configuration options
Configura-
tion option =
Default value

Description

allowed_direct_url_schemes
= []

(List of String) A list of url schemes that can be downloaded directly via the di-
rect_url. Currently supported schemes: [file, cinder].

enforce_multipath_for_image_xfer
= False

(Boolean) If this is set to True, attachment of volumes for image transfer will
be aborted when multipathd is not running. Otherwise, it will fallback to single
path. This parameter needs to be configured for each backend section or in [back-
end_defaults] section as a common configuration for all backends.

glance_api_insecure
= False

(Boolean) Allow to perform insecure SSL (https) requests to glance (https will be
used but cert validation will not be performed).

glance_api_servers
= None

(List of String) A list of the URLs of glance API servers available to cinder
([http[s]://][hostname|ip]:port). If protocol is not specified it defaults to http.

glance_api_ssl_compression
= False

(Boolean) Enables or disables negotiation of SSL layer compression. In some cases
disabling compression can improve data throughput, such as when high network
bandwidth is available and you use compressed image formats like qcow2.

glance_ca_certificates_file
= None

(String) Location of ca certificates file to use for glance client requests.

glance_catalog_info
=
image:glance:publicURL

(String) Info to match when looking for glance in the service catalog. Format is:
separated values of the form: <service_type>:<service_name>:<endpoint_type> -
Only used if glance_api_servers are not provided.

glance_certfile
= None

(String) Location of certificate file to use for glance client requests.

glance_core_properties
= [checksum,
container_format,

disk_format,
image_name,
image_id,
min_disk,
min_ram,
name, size]

(List of String) Default core properties of image

glance_keyfile
= None

(String) Location of certificate key file to use for glance client requests.

glance_num_retries
= 3

(Integer(min=0)) Number retries when downloading an image from glance

glance_request_timeout
= None

(Integer) http/https timeout value for glance operations. If no value (None) is sup-
plied here, the glanceclient default value is used.

image_compress_on_upload
= True

(Boolean) When possible, compress images uploaded to the image service

image_conversion_address_space_limit
= 1

(Integer) Address space limit in gigabytes to convert the image

image_conversion_cpu_limit
= 60

(Integer) CPU time limit in seconds to convert the image

image_conversion_dir
=
$state_path/
conversion

(String) Directory used for temporary storage during image conversion

image_upload_use_cinder_backend
= False

(Boolean) If set to True, upload-to-image in raw format will create a cloned vol-
ume and register its location to the image service, instead of uploading the volume
content. The cinder backend and locations support must be enabled in the image
service.

image_upload_use_internal_tenant
= False

(Boolean) If set to True, the image volume created by upload-to-image will be
placed in the internal tenant. Otherwise, the image volume is created in the cur-
rent contexts tenant.

image_volume_cache_enabled
= False

(Boolean) Enable the image volume cache for this backend.

image_volume_cache_max_count
= 0

(Integer) Max number of entries allowed in the image volume cache. 0 => unlim-
ited.

image_volume_cache_max_size_gb
= 0

(Integer) Max size of the image volume cache for this backend in GB. 0 => unlim-
ited.

reserved_image_namespaces
= []

(List of String) List of reserved image namespaces that should be filtered out when
uploading a volume as an image back to Glance. When a volume is created from
an image, Cinder stores the image properties as volume image metadata, and if
the volume is later uploaded as an image, Cinder will add these properties when
it creates the image in Glance. This can cause problems for image metadata that
are in namespaces that glance reserves for itself, or when properties (such as an
image signature) cannot apply to the new image, or when an operator has configured
glance property protections to make some image properties read-only. Cinder will
always filter out image metadata in the namespaces os_glance and img_signature;
this configuration option allows operators to specify additional namespaces to be
excluded.

use_multipath_for_image_xfer
= False

(Boolean) Do we attach/detach volumes in cinder using multipath for volume to
image and image to volume transfers? This parameter needs to be configured for
each backend section or in [backend_defaults] section as a common configuration
for all backends.

verify_glance_signatures
= enabled

(String(choices=[disabled, enabled])) Enable image signature verification.
Cinder uses the image signature metadata from Glance and verifies the signature of
a signed image while downloading that image. There are two options here.
1. enabled: verify when image has signature metadata. 2. disabled: verification
is turned off.
If the image signature cannot be verified or if the image signature metadata is in-
complete when required, then Cinder will not create the volume and update it into
an error state. This provides end users with stronger assurances of the integrity of
the image data they are using to create volumes.

vmdk_allowed_types
=
[streamOptimized,

monolithicSparse]

(List of String) A list of strings describing the VMDK createType subformats that
are allowed. We recommend that you only include single-file-with-sparse-header
variants to avoid potential host file exposure when processing named extents when
an image is converted to raw format as it is written to a volume. If this list is empty,
no VMDK images are allowed.

3.3. Reference 497

Cinder Documentation, Release 20.3.2.dev3

Table 120: Description of NAS configuration options
Config-
uration
option =
Default
value

Description

nas_host
= <>

(String) IP address or Hostname of NAS system.

nas_login
= admin

(String) User name to connect to NAS system.

nas_mount_options
= None

(String) Options used to mount the storage backend file system where Cinder volumes
are stored.

nas_password
= <>

(String) Password to connect to NAS system.

nas_private_key
= <>

(String) Filename of private key to use for SSH authentication.

nas_secure_file_operations
= auto

(String) Allow network-attached storage systems to operate in a secure environment
where root level access is not permitted. If set to False, access is as the root user and
insecure. If set to True, access is not as root. If set to auto, a check is done to determine
if this is a new installation: True is used if so, otherwise False. Default is auto.

nas_secure_file_permissions
= auto

(String) Set more secure file permissions on network-attached storage volume files to
restrict broad other/world access. If set to False, volumes are created with open permis-
sions. If set to True, volumes are created with permissions for the cinder user and group
(660). If set to auto, a check is done to determine if this is a new installation: True is used
if so, otherwise False. Default is auto.

nas_share_path
= <>

(String) Path to the share to use for storing Cinder volumes. For example: /srv/export1
for an NFS server export available at 10.0.5.10:/srv/export1 .

nas_ssh_port
= 22

(Port(min=0, max=65535)) SSH port to use to connect to NAS system.

nas_volume_prov_type
= thin

(String(choices=[thin, thick])) Provisioning type that will be used when creating volumes.

Table 121: Description of common driver configuration options
Configuration option = Default value Description
backend_availability_zone = None (String) Availability zone for this volume backend. If not set, the storage_availability_zone option value is used as the default for all backends.
chap_password = <> (String) Password for specified CHAP account name.
chap_username = <> (String) CHAP user name.
chiscsi_conf = /etc/chelsio-iscsi/chiscsi.conf (String) Chiscsi (CXT) global defaults configuration file
driver_client_cert = None (String) The path to the client certificate for verification, if the driver supports it.
driver_client_cert_key = None (String) The path to the client certificate key for verification, if the driver supports it.
driver_data_namespace = None (String) Namespace for driver private data values to be saved in.
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE file or directory with certificates of trusted CAs, which will be used to validate the backend
driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate of the backend endpoint.
driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage if the driver supports it.
enable_unsupported_driver = False (Boolean) Set this to True when you want to allow an unsupported driver to start. Drivers that havent maintained a working CI system and testing are marked as unsupported until CI is working again. This also marks a driver as deprecated and may be removed in the next release.
filter_function = None (String) String representation for an equation that will be used to filter hosts. Only used when the driver filter is set to be used by the Cinder scheduler.
goodness_function = None (String) String representation for an equation that will be used to determine the goodness of a host. Only used when using the goodness weigher is set to be used by the Cinder scheduler.

continues on next page

498 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 121 – continued from previous page
Configuration option = Default value Description
iscsi_iotype = fileio (String(choices=[blockio, fileio, auto])) Sets the behavior of the iSCSI target to either perform blockio or fileio optionally, auto can be set and Cinder will autodetect type of backing device
iscsi_secondary_ip_addresses = [] (List of String) The list of secondary IP addresses of the iSCSI daemon
iscsi_target_flags = <> (String) Sets the target-specific flags for the iSCSI target. Only used for tgtadm to specify backing device flags using bsoflags option. The specified string is passed as is to the underlying tool.
iscsi_write_cache = on (String(choices=[on, off])) Sets the behavior of the iSCSI target to either perform write-back(on) or write-through(off). This parameter is valid if target_helper is set to tgtadm.
max_over_subscription_ratio = 20.0 (String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over subscription ratio when thin provisioning is enabled. Default ratio is 20.0, meaning provisioned capacity can be 20 times of the total physical capacity. If the ratio is 10.5, it means provisioned capacity can be 10.5 times of the total physical capacity. A ratio of 1.0 means provisioned capacity cannot exceed the total physical capacity. If ratio is auto, Cinder will automatically calculate the ratio based on the provisioned capacity and the used space. If not set to auto, the ratio has to be a minimum of 1.0.
num_shell_tries = 3 (Integer) Number of times to attempt to run flakey shell commands
num_volume_device_scan_tries = 3 (Integer) The maximum number of times to rescan targets to find volume
replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication target device. This option may be specified multiple times in a single config section to specify multiple replication target devices. Each entry takes the standard dict config form: replication_device = target_device_id:<required>,key1:value1,key2:value2
report_discard_supported = False (Boolean) Report to clients of Cinder that the backend supports discard (aka. trim/unmap). This will not actually change the behavior of the backend or the client directly, it will only notify that it can be used.
reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is reserved
storage_protocol = iscsi (String(choices=[iscsi, fc])) Protocol for transferring data between host and storage back-end.
target_helper = tgtadm (String(choices=[tgtadm, lioadm, scstadmin, iscsictl, ietadm, nvmet, spdk-nvmeof, fake])) Target user-land tool to use. tgtadm is default, use lioadm for LIO iSCSI support, scstadmin for SCST target support, ietadm for iSCSI Enterprise Target, iscsictl for Chelsio iSCSI Target, nvmet for NVMEoF support, spdk-nvmeof for SPDK NVMe-oF, or fake for testing. Note: The IET driver is deprecated and will be removed in the V release.
target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is listening on
target_prefix = iqn.2010-10.org.openstack: (String) Prefix for iSCSI volumes
target_protocol = iscsi (String(choices=[iscsi, iser, nvmet_rdma, nvmet_tcp])) Determines the target protocol for new volumes, created with tgtadm, lioadm and nvmet target helpers. In order to enable RDMA, this parameter should be set with the value iser. The supported iSCSI protocol values are iscsi and iser, in case of nvmet target set to nvmet_rdma or nvmet_tcp.
trace_flags = None (List of String) List of options that control which trace info is written to the DEBUG log level to assist developers. Valid values are method and api.
use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
volume_backend_name = None (String) The backend name for a given driver implementation
volume_clear = zero (String(choices=[none, zero])) Method used to wipe old volumes
volume_clear_ionice = None (String) The flag to pass to ionice to alter the i/o priority of the process used to zero a volume after deletion, for example -c3 for idle only priority.
volume_clear_size = 0 (Integer(max=1024)) Size in MiB to wipe at start of old volumes. 1024 MiB at max. 0 => all
volume_copy_blkio_cgroup_name = cinder-volume-copy (String) The blkio cgroup name to be used to limit bandwidth of volume copy
volume_copy_bps_limit = 0 (Integer) The upper limit of bandwidth of volume copy. 0 => unlimited
volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes
volumes_dir = $state_path/volumes (String) Volume configuration file storage directory
iet_conf = /etc/iet/ietd.conf (String) DEPRECATED: IET configuration file DEPRECATED

3.3. Reference 499

Cinder Documentation, Release 20.3.2.dev3

Table 122: Description of common configuration options
Configuration option = De-
fault value

Description

allow_availability_zone_fallback
= False

(Boolean) If the requested Cinder availability zone is unavail-
able, fall back to the value of default_availability_zone, then stor-
age_availability_zone, instead of failing.

consistencygroup_api_class
= cinder.
consistencygroup.api.
API

(String) The full class name of the consistencygroup API class

default_availability_zone
= None

(String) Default availability zone for new volumes. If not set, the
storage_availability_zone option value is used as the default for new
volumes.

default_group_type = None (String) Default group type to use
default_volume_type =
__DEFAULT__

(String) Default volume type to use

enabled_backends = None (List of String) A list of backend names to use. These backend
names should be backed by a unique [CONFIG] group with its op-
tions

host = localhost (String) Name of this node. This can be an opaque identifier. It is
not necessarily a host name, FQDN, or IP address.

monkey_patch = False (Boolean) Enable monkey patching
monkey_patch_modules = [] (List of String) List of modules/decorators to monkey patch
my_ip = <HOST_IP_ADDRESS> (HostAddress) IP address of this host
no_snapshot_gb_quota =
False

(Boolean) Whether snapshots sizes count against global and per
volume type gigabyte quotas. By default snapshots sizes are
counted.

rootwrap_config = /etc/
cinder/rootwrap.conf

(String) Path to the rootwrap configuration file to use for running
commands as root

scheduler_manager
= cinder.
scheduler.manager.
SchedulerManager

(String) Full class name for the Manager for scheduler

service_down_time = 60 (Integer) Maximum time since last check-in for a service to be con-
sidered up

split_loggers = False (Boolean) Log requests to multiple loggers.
storage_availability_zone
= nova

(String) Availability zone of this node. Can be overridden per vol-
ume backend with the option backend_availability_zone.

transfer_api_class =
cinder.transfer.api.API

(String) The full class name of the volume transfer API class

volume_manager =
cinder.volume.manager.
VolumeManager

(String) Full class name for the Manager for volume

volume_usage_audit_period
= month

(String) Time period for which to generate volume usages. The
options are hour, day, month, or year.

500 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 123: Description of [profiler] configuration options
Con-
fig-
ura-
tion
op-
tion
=
De-
fault
value

Description

connection_string
=
messaging:/
/

(String) Connection string for a notifier backend.
Default value is messaging:// which sets the notifier to oslo_messaging.
Examples of possible values:
* messaging:// - use oslo_messaging driver for sending spans. * redis://127.0.0.
1:6379 - use redis driver for sending spans. * mongodb://127.0.0.1:27017 - use mon-
godb driver for sending spans. * elasticsearch://127.0.0.1:9200 - use elasticsearch
driver for sending spans. * jaeger://127.0.0.1:6831 - use jaeger tracing as driver for
sending spans.

enabled
=
False

(Boolean) Enable the profiling for all services on this node.
Default value is False (fully disable the profiling feature).
Possible values:
* True: Enables the feature * False: Disables the feature. The profiling cannot be started via
this project operations. If the profiling is triggered by another project, this project part will be
empty.

es_doc_type
=
notification

(String) Document type for notification indexing in elasticsearch.

es_scroll_size
=
10000

(Integer) Elasticsearch splits large requests in batches. This parameter defines maximum size
of each batch (for example: es_scroll_size=10000).

es_scroll_time
= 2m

(String) This parameter is a time value parameter (for example: es_scroll_time=2m), indicat-
ing for how long the nodes that participate in the search will maintain relevant resources in
order to continue and support it.

filter_error_trace
=
False

(Boolean) Enable filter traces that contain error/exception to a separated place.
Default value is set to False.
Possible values:
* True: Enable filter traces that contain error/exception. * False: Disable the filter.

hmac_keys
=
SECRET_KEY

(String) Secret key(s) to use for encrypting context data for performance profiling.
This string value should have the following format: <key1>[,<key2>,<keyn>], where each
key is some random string. A user who triggers the profiling via the REST API has to set one
of these keys in the headers of the REST API call to include profiling results of this node for
this particular project.
Both enabled flag and hmac_keys config options should be set to enable profiling. Also, to
generate correct profiling information across all services at least one key needs to be consistent
between OpenStack projects. This ensures it can be used from client side to generate the trace,
containing information from all possible resources.

sentinel_service_name
=
mymaster

(String) Redissentinel uses a service name to identify a master redis service. This parameter
defines the name (for example: sentinal_service_name=mymaster).

socket_timeout
= 0.
1

(Float) Redissentinel provides a timeout option on the connections. This parameter defines
that timeout (for example: socket_timeout=0.1).

trace_sqlalchemy
=
False

(Boolean) Enable SQL requests profiling in services.
Default value is False (SQL requests wont be traced).
Possible values:
* True: Enables SQL requests profiling. Each SQL query will be part of the trace and can the
be analyzed by how much time was spent for that. * False: Disables SQL requests profiling.
The spent time is only shown on a higher level of operations. Single SQL queries cannot be
analyzed this way.

3.3. Reference 501

Cinder Documentation, Release 20.3.2.dev3

Table 124: Description of quota configuration options
Configuration option = Default value Description
max_age = 0 (Integer) Number of seconds between subsequent usage re-

freshes
per_volume_size_limit = -1 (Integer) Max size allowed per volume, in gigabytes
quota_backup_gigabytes = 1000 (Integer) Total amount of storage, in gigabytes, allowed for

backups per project
quota_backups = 10 (Integer) Number of volume backups allowed per project
quota_consistencygroups = 10 (Integer) Number of consistencygroups allowed per project
quota_driver = cinder.quota.
DbQuotaDriver

(String) Default driver to use for quota checks

quota_gigabytes = 1000 (Integer) Total amount of storage, in gigabytes, allowed for
volumes and snapshots per project

quota_groups = 10 (Integer) Number of groups allowed per project
quota_snapshots = 10 (Integer) Number of volume snapshots allowed per project
quota_volumes = 10 (Integer) Number of volumes allowed per project
reservation_clean_interval =
$reservation_expire

(Integer) Interval between periodic task runs to clean ex-
pired reservations in seconds.

reservation_expire = 86400 (Integer) Number of seconds until a reservation expires
until_refresh = 0 (Integer) Count of reservations until usage is refreshed
use_default_quota_class = True (Boolean) Enables or disables use of default quota class

with default quota.

Table 125: Description of SAN configuration options
Configuration option =
Default value

Description

san_api_port = None (Port(min=0, max=65535)) Port to use to access the SAN API
san_clustername = <> (String) Cluster name to use for creating volumes
san_ip = <> (String) IP address of SAN controller
san_is_local = False (Boolean) Execute commands locally instead of over SSH; use if the vol-

ume service is running on the SAN device
san_login = admin (String) Username for SAN controller
san_password = <> (String) Password for SAN controller
san_private_key = <> (String) Filename of private key to use for SSH authentication
san_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use with SAN
san_thin_provision
= True

(Boolean) Use thin provisioning for SAN volumes?

ssh_conn_timeout =
30

(Integer) SSH connection timeout in seconds

ssh_max_pool_conn =
5

(Integer) Maximum ssh connections in the pool

ssh_min_pool_conn =
1

(Integer) Minimum ssh connections in the pool

502 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 126: Description of iSER volume driver configuration op-
tions

Configuration option = Default value Description
iser_helper = tgtadm (String) The name of the iSER target user-land tool to

use
iser_ip_address = $my_ip (String) The IP address that the iSER daemon is listen-

ing on
iser_port = 3260 (Port(min=0, max=65535)) The port that the iSER dae-

mon is listening on
iser_target_prefix = iqn.2010-10.
org.openstack:

(String) Prefix for iSER volumes

num_iser_scan_tries = 3 (Integer) The maximum number of times to rescan iSER
target to find volume

Table 127: Description of NVMET volume driver configuration
options

Configuration option =
Default value

Description

nvmet_ns_id = 10 (Integer) The namespace id associated with the subsystem that will be
created with the path for the LVM volume.

nvmet_port_id = 1 (Port(min=0, max=65535)) The port that the NVMe target is listening on.

Table 128: Description of SCST volume driver configuration op-
tions

Configuration option = De-
fault value

Description

scst_target_driver =
iscsi

(String) SCST target implementation can choose from multiple SCST
target drivers.

scst_target_iqn_name =
None

(String) Certain ISCSI targets have predefined target names, SCST
target driver uses this name.

Table 129: Description of zones configuration options
Configuration option = De-
fault value

Description

cloned_volume_same_az =
True

(Boolean) Ensure that the new volumes are the same AZ as snapshot
or source volume

3.3. Reference 503

Cinder Documentation, Release 20.3.2.dev3

Block Storage service sample configuration files

All the files in this section can be found in /etc/cinder.

cinder.conf

The cinder.conf file is installed in /etc/cinder by default. When you manually install the Block
Storage service, the options in the cinder.conf file are set to default values.

See the on-line version of this documentation for the full example config file.

api-paste.ini

Use the api-paste.ini file to configure the Block Storage API service.

#############
OpenStack
#############

[composite:osapi_volume]
use = call:cinder.api:root_app_factory
/: apiversions
/v3: openstack_volume_api_v3

[composite:openstack_volume_api_v3]
use = call:cinder.api.middleware.auth:pipeline_factory
noauth = cors http_proxy_to_wsgi request_id faultwrap sizelimit osprofiler␣
↪→noauth apiv3
noauth_include_project_id = cors http_proxy_to_wsgi request_id faultwrap␣
↪→sizelimit osprofiler noauth_include_project_id apiv3
keystone = cors http_proxy_to_wsgi request_id faultwrap sizelimit osprofiler␣
↪→authtoken keystonecontext apiv3
keystone_nolimit = cors http_proxy_to_wsgi request_id faultwrap sizelimit␣
↪→osprofiler authtoken keystonecontext apiv3

[filter:request_id]
paste.filter_factory = oslo_middleware.request_id:RequestId.factory

[filter:http_proxy_to_wsgi]
paste.filter_factory = oslo_middleware.http_proxy_to_wsgi:HTTPProxyToWSGI.
↪→factory

[filter:cors]
paste.filter_factory = oslo_middleware.cors:filter_factory
oslo_config_project = cinder

[filter:faultwrap]
paste.filter_factory = cinder.api.middleware.fault:FaultWrapper.factory

(continues on next page)

504 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

[filter:osprofiler]
paste.filter_factory = osprofiler.web:WsgiMiddleware.factory

[filter:noauth]
paste.filter_factory = cinder.api.middleware.auth:NoAuthMiddleware.factory

[filter:noauth_include_project_id]
paste.filter_factory = cinder.api.middleware.
↪→auth:NoAuthMiddlewareIncludeProjectID.factory

[filter:sizelimit]
paste.filter_factory = oslo_middleware.sizelimit:RequestBodySizeLimiter.
↪→factory

[app:apiv3]
paste.app_factory = cinder.api.v3.router:APIRouter.factory

[pipeline:apiversions]
pipeline = cors http_proxy_to_wsgi faultwrap osvolumeversionapp

[app:osvolumeversionapp]
paste.app_factory = cinder.api.versions:Versions.factory

##########
Shared
##########

[filter:keystonecontext]
paste.filter_factory = cinder.api.middleware.auth:CinderKeystoneContext.
↪→factory

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_factory

policy.yaml

The policy.yaml file defines additional access controls that apply to the Block Storage service.

Prior to Cinder 12.0.0 (the Queens release), a JSON policy file was required to run Cinder. From the
Queens release onward, the following hold:

• It is possible to run Cinder safely without a policy file, as sensible default values are defined in the
code.

• If you wish to run Cinder with policies different from the default, you may write a policy file.

– Given that JSON does not allow comments, we recommend using YAML to write a custom
policy file. (Also, see next item.)

– OpenStack has deprecated the use of a JSON policy file since the Wallaby release (Cinder
18.0.0). If you are still using the JSON format, there is a oslopolicy-convert-json-to-yaml

3.3. Reference 505

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Cinder Documentation, Release 20.3.2.dev3

tool that will migrate your existing JSON-formatted policy file to YAML in a backward-
compatible way.

• If you supply a custom policy file, you only need to supply entries for the policies you wish to
change from their default values. For instance, if you want to change the default value of vol-
ume:create, you only need to keep this single rule in your policy config file.

• The default policy file location is /etc/cinder/policy.yaml. You may override this by spec-
ifying a different file location as the value of the policy_file configuration option in the
[oslo_policy] section of the the Cinder configuration file.

• Instructions for generating a sample policy.yaml file directly from the Cinder source code can
be found in the file README-policy.generate.md in the etc/cinder directory in the Cinder
source code repository (or its github mirror).

A sample policy file is available in the online version of this documentation. Make sure you are looking
at the sample file for the OpenStack release you are running as the available policy rules and their default
values may change from release to release.

rootwrap.conf

The rootwrap.conf file defines configuration values used by the rootwrap script when the Block
Storage service must escalate its privileges to those of the root user.

Configuration for cinder-rootwrap
This file should be owned by (and only-writeable by) the root user

[DEFAULT]
List of directories to load filter definitions from (separated by ',').
These directories MUST all be only writeable by root !
filters_path=/etc/cinder/rootwrap.d,/usr/share/cinder/rootwrap

List of directories to search executables in, in case filters do not
explicitely specify a full path (separated by ',')
If not specified, defaults to system PATH environment variable.
These directories MUST all be only writeable by root !
exec_dirs=/sbin,/usr/sbin,/bin,/usr/bin,/usr/local/bin,/usr/local/sbin,/usr/
↪→lpp/mmfs/bin

Enable logging to syslog
Default value is False
use_syslog=False

Which syslog facility to use.
Valid values include auth, authpriv, syslog, local0, local1...
Default value is 'syslog'
syslog_log_facility=syslog

Which messages to log.
INFO means log all usage
ERROR means only log unsuccessful attempts

(continues on next page)

506 Chapter 3. For operators

https://opendev.org/openstack/cinder
https://github.com/openstack/cinder

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

syslog_log_level=ERROR

Warning: For security reasons Service Tokens must to be configured in OpenStack for Cinder to
operate securely. Pay close attention to the specific section describing it:. See https://bugs.launchpad.
net/nova/+bug/2004555 for details.

Note: The examples of common configurations for shared service and libraries, such as database con-
nections and RPC messaging, can be seen in Cinders sample configuration file: cinder.conf.sample.

The Block Storage service works with many different storage drivers that you can configure by using
these instructions.

3.3.2 All About Cinder Drivers

Cinder Driver Support Matrix

The following support matrix reflects the drivers that are currently available or are available in Cinders
driver tree at the time of release.

Note: This matrix replaces the old wiki based version of the Cinder Support Matrix as there was no
way to ensure the wiki version was properly maintained. The old matrix will be left for reference but this
matrix should be treated as the correct state of Cinder.

Required Driver Functions

There are a number of functions that are required to be accepted as a Cinder driver. Rather than list all
the required functionality in the matrix we include the list of required functions here for reference.

• Create Volume

• Delete Volume

• Attach Volume

• Detach Volume

• Extend Volume

• Create Snapshot

• Delete Snapshot

• Create Volume from Snapshot

• Create Volume from Volume (clone)

• Create Image from Volume

3.3. Reference 507

https://bugs.launchpad.net/nova/+bug/2004555
https://bugs.launchpad.net/nova/+bug/2004555
../_static/cinder.conf.sample
https://opendev.org/openstack/cinder/src/branch/master/cinder/volume/drivers
https://opendev.org/openstack/cinder/src/branch/master/cinder/volume/drivers

Cinder Documentation, Release 20.3.2.dev3

• Volume Migration (host assisted)

Note: Since the above functions are required their support is assumed and the matrix only includes
support for optional functionality.

Note: This matrix is not dynamically generated. It is maintained by the Cinder team and Vendor driver
maintainers. While every effort is made to ensure the accuracy of the data in this matrix, discrepancies
with actual functionality are possible. Please refer to your vendors support documentation for additional
information.

Summary

508 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Fea-
ture

Sta-
tus

(Ceph)
iSCSI
Stor-
age
Driver
(iSCSI)

Dat-
era
Stor-
age
Driver
(iSCSI)

Dell
EMC
Pow-
er-
Flex
(ScaleIO)
Stor-
age
Driver
(ScaleIO)

Dell
EMC
Pow-
er-
Max
(2000,
8000)
Stor-
age
Driver
(iSCSI,
FC)

Dell
EMC
Pow-
er-
Store
Stor-
age
Driver
(iSCSI,
FC)

Dell
EMC
Pow-
er-
Vault
ME
Se-
ries
(iSCSI,
FC)

Dell
EMC
SC
Se-
ries
Stor-
age
Driver
(iSCSI,
FC)

Dell
EMC
Unity
Stor-
age
Driver
(FC,
iSCSI)

Dell
EMC
VMAX
Af
(250F,
450F,
850F,
950F)
Stor-
age
Driver
(FC,
iSCSI)

Dell
EMC
VMAX3
(100K,
200K,
400K)
Stor-
age
Driver
(iSCSI,
FC)

Dell
EMC
VNX
Stor-
age
Driver
(FC,
iSCSI)

Dell
EMC
XtremeIO
Stor-
age
Driver
(FC,
iSCSI)

Fu-
jitsu
ETER-
NUS
Driver
(FC,
iSCSI)

Generic
NFS
Ref-
er-
ence
Driver
(NFS)

HPE
3PAR
Stor-
age
Driver
(FC,
iSCSI)

HPE
MSA
Driver
(iSCSI,
FC)

Hi-
tachi
VSP
Stor-
age
Driver
(FC,
iSCSI)

Huawei
18000
Se-
ries
Driver
(iSCSI,
FC)

Huawei
Do-
rado
V3,
V6
Se-
ries
Driver
(iSCSI,
FC)

Huawei
F
V3
Se-
ries
Driver
(iSCSI,
FC)

Huawei
F
V5
Se-
ries
Driver
(iSCSI,
FC)

Huawei
Fu-
sion-
Stor-
age,
OceanStor
100D
Driver
(dsware)

Huawei
T
Se-
ries
V1
Driver
(iSCSI,
FC)

Huawei
T
Se-
ries
V2
Driver
(iSCSI,
FC)

Huawei
V3
Se-
ries
Driver
(iSCSI,
FC)

Huawei
V5
Se-
ries
Driver
(iSCSI,
FC)

IBM
DS8000
Fam-
ily
Stor-
age
Driver
(FC)

IBM
Flash-
Sys-
tem
Driver
(iSCSI)

IBM
GPFS
Stor-
age
Driver
(gpfs)

IBM
Spec-
trum
Ac-
cel-
er-
ate
Fam-
ily
Driver
(iSCSI,
FC)

IBM
Spec-
trum
Vir-
tu-
al-
ize
Fam-
ily
Driver
(iSCSI,
FC)

In-
finidat
Stor-
age
Driver
(iSCSI,
FC)

In-
spur
AS13000
Stor-
age
Driver
(iSCSI)

In-
spurăAS/HFăSeriesăDriveră(iSCSI,ăFC)

Kam-
i-
nario
Stor-
age
Driver
(iSCSI,
FC)

Kioxia
Ku-
moscale
Driver
(NVMeOF)

LIN-
BIT
DRBD/LINSTOR
Driver
(DRBD)

Lenovo
Stor-
age
Driver
(FC,
iSCSI)

Light-
bits
LightOS
Stor-
age
Driver
(NVMeTCP)

Log-
i-
cal
Vol-
ume
Man-
ager
(LVM)
Ref-
er-
ence
Driver
(iSCSI)

MacroSAN
Stor-
age
Driver
(iSCSI,
FC)

NEC
Stor-
age
M
Se-
ries
Driver
(iSCSI,
FC)

NEC
Stor-
age
V
Se-
ries
Driver
(iSCSI,
FC)

Ne-
tApp
Data
ON-
TAP
Driver
(iSCSI,
NFS,
FC)

Ne-
tApp
Solid-
fire
Driver
(iSCSI)

Nex-
enta
Driver
(iSCSI,
NFS)

Nim-
ble
Stor-
age
Driver
(iSCSI,
FC)

Open-
E
Jo-
vianDSS
Stor-
age
Driver
(iSCSI)

Prophet-
Stor
Flexvi-
sor
Driver
(iSCSI,
NFS)

Pure
Stor-
age
Driver
(iSCSI,
FC)

QNAP
Stor-
age
Driver
(iSCSI)

Quobyte
Stor-
age
Driver
(quobyte)

RBD
(Ceph)
Stor-
age
Driver
(RBD)

Sand-
Stone
Stor-
age
Driver
(iSCSI)

Sea-
gate
Driver
(iSCSI,
FC)

Stor-
Pool
Stor-
age
Driver
(stor-
pool)

Syn-
ol-
ogy
Stor-
age
Driver
(iSCSI)

TOYOU
Net-
Stor
Stor-
age
Driver
(iSCSI,
FC)

VMware
Stor-
age
Driver
(vmdk)

Ver-
i-
tas
Ac-
cess
iSCSI
Driver
(iSCSI)

Ver-
i-
tas
Clus-
ter
NFS
Driver
(NFS)

Vir-
tuozzo
Stor-
age
Driver
(re-
motefs)

Win-
dows
SMB
Driver

Win-
dows
iSCSI
Driver

Zadara
Stor-
age
Driver
(iSCSI,
NFS)

in-
fortrend
Stor-
age
Driver
(iSCSI,
FC)

Sup-
ported
Ven-
dor
Driver

op-
tional

✓✓✓ ××× ✓✓✓ ××× ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Ex-
tend
an
At-
tached
Vol-
ume

op-
tional

✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

QoSop-
tional

××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ××× ✓✓✓ ✓✓✓ ××× ✓✓✓ ××× ××× ××× ××× ××× ××× ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ××× ××× ××× ××× ✓✓✓ ××× ××× ××× ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ×××

Vol-
ume
Repli-
ca-
tion

op-
tional

✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ××× ××× ××× ××× ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ××× ××× ××× ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ××× ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ××× ✓✓✓

Con-
sis-
tency
Groups

op-
tional

××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ××× ✓✓✓ ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ×××

Thin
Pro-
vi-
sion-
ing

op-
tional

✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ✓✓✓ ××× ××× ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ××× ✓✓✓ ××× ✓✓✓ ××× ××× ××× ××× ✓✓✓ ××× ××× ✓✓✓

Vol-
ume
Mi-
gra-
tion
(Stor-
age
As-
sisted)

op-
tional

××× ××× ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ××× ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ✓✓✓ ××× ××× ××× ××× ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ××× ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ✓✓✓ ××× ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ✓✓✓

Multi-
Attach
Sup-
port

op-
tional

✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ××× ××× ××× ××× ××× ××× ✓✓✓ ✓✓✓

Re-
vert
to
Snap-
shot

op-
tional

✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ××× ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ××× ✓✓✓ ××× ××× ××× ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ✓✓✓ ××× ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ××× ✓✓✓ ✓✓✓ ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓ ✓✓✓ ××× ××× ××× ××× ××× ××× ×××

Ac-
tive/Active
High
Avail-
abil-
ity
Sup-
port

op-
tional

✓✓✓ ××× ✓✓✓ ××× ××× ××× ✓✓✓ ××× ××× ××× ××× ✓✓✓ ××× ××× ✓✓✓ ✓✓✓ ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ×××

3.3. Reference 509

Cinder Documentation, Release 20.3.2.dev3

Details

• Supported Vendor Driver Status: optional.

Notes: A vendor driver is considered supported if the vendor is running a third party CI that
regularly runs and reports accurate results. If a vendor doesnt meet this requirement the driver is
marked unsupported and is removed if the problem isnt resolved before the end of the subsequent
release.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): complete

– Datera Storage Driver (iSCSI): complete

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): complete

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): complete

– Dell EMC PowerStore Storage Driver (iSCSI, FC): complete

– Dell EMC PowerVault ME Series (iSCSI, FC): complete

– Dell EMC SC Series Storage Driver (iSCSI, FC): complete

– Dell EMC Unity Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): complete

– Dell EMC VNX Storage Driver (FC, iSCSI): complete

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): complete

– Fujitsu ETERNUS Driver (FC, iSCSI): complete

– Generic NFS Reference Driver (NFS): complete

– HPE 3PAR Storage Driver (FC, iSCSI): complete

– HPE MSA Driver (iSCSI, FC): complete

– Hitachi VSP Storage Driver (FC, iSCSI): complete

– Huawei 18000 Series Driver (iSCSI, FC): complete

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): complete

– Huawei F V3 Series Driver (iSCSI, FC): complete

– Huawei F V5 Series Driver (iSCSI, FC): complete

– Huawei FusionStorage, OceanStor 100D Driver (dsware): complete

– Huawei T Series V1 Driver (iSCSI, FC): complete

– Huawei T Series V2 Driver (iSCSI, FC): complete

– Huawei V3 Series Driver (iSCSI, FC): complete

– Huawei V5 Series Driver (iSCSI, FC): complete

– IBM DS8000 Family Storage Driver (FC): complete

– IBM FlashSystem Driver (iSCSI): missing

510 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– IBM GPFS Storage Driver (gpfs): complete

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): complete

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): complete

– Infinidat Storage Driver (iSCSI, FC): complete

– Inspur AS13000 Storage Driver (iSCSI): complete

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): complete

– Kaminario Storage Driver (iSCSI, FC): complete

– Kioxia Kumoscale Driver (NVMeOF): complete

– LINBIT DRBD/LINSTOR Driver (DRBD): complete

– Lenovo Storage Driver (FC, iSCSI): complete

– Lightbits LightOS Storage Driver (NVMeTCP): complete

– Logical Volume Manager (LVM) Reference Driver (iSCSI): complete

– MacroSAN Storage Driver (iSCSI, FC): complete

– NEC Storage M Series Driver (iSCSI, FC): complete

– NEC Storage V Series Driver (iSCSI, FC): complete

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): complete

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): complete

– Nimble Storage Driver (iSCSI, FC): complete

– Open-E JovianDSS Storage Driver (iSCSI): complete

– ProphetStor Flexvisor Driver (iSCSI, NFS): missing

– Pure Storage Driver (iSCSI, FC): complete

– QNAP Storage Driver (iSCSI): missing

– Quobyte Storage Driver (quobyte): complete

– RBD (Ceph) Storage Driver (RBD): complete

– SandStone Storage Driver (iSCSI): complete

– Seagate Driver (iSCSI, FC): complete

– StorPool Storage Driver (storpool): complete

– Synology Storage Driver (iSCSI): complete

– TOYOU NetStor Storage Driver (iSCSI, FC): complete

– VMware Storage Driver (vmdk): complete

– Veritas Access iSCSI Driver (iSCSI): missing

– Veritas Cluster NFS Driver (NFS): missing

– Virtuozzo Storage Driver (remotefs): missing

3.3. Reference 511

Cinder Documentation, Release 20.3.2.dev3

– Windows SMB Driver: complete

– Windows iSCSI Driver: complete

– Zadara Storage Driver (iSCSI, NFS): complete

– infortrend Storage Driver (iSCSI, FC): complete

• Extend an Attached Volume Status: optional.

Notes: Cinder supports the ability to extend a volume that is attached to an instance, but not all
drivers are able to do this.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): complete

– Datera Storage Driver (iSCSI): complete

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): complete

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): complete

– Dell EMC PowerStore Storage Driver (iSCSI, FC): complete

– Dell EMC PowerVault ME Series (iSCSI, FC): complete

– Dell EMC SC Series Storage Driver (iSCSI, FC): complete

– Dell EMC Unity Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): complete

– Dell EMC VNX Storage Driver (FC, iSCSI): complete

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): complete

– Fujitsu ETERNUS Driver (FC, iSCSI): complete

– Generic NFS Reference Driver (NFS): missing

– HPE 3PAR Storage Driver (FC, iSCSI): complete

– HPE MSA Driver (iSCSI, FC): complete

– Hitachi VSP Storage Driver (FC, iSCSI): complete

– Huawei 18000 Series Driver (iSCSI, FC): complete

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): complete

– Huawei F V3 Series Driver (iSCSI, FC): complete

– Huawei F V5 Series Driver (iSCSI, FC): complete

– Huawei FusionStorage, OceanStor 100D Driver (dsware): complete

– Huawei T Series V1 Driver (iSCSI, FC): complete

– Huawei T Series V2 Driver (iSCSI, FC): complete

– Huawei V3 Series Driver (iSCSI, FC): complete

– Huawei V5 Series Driver (iSCSI, FC): complete

– IBM DS8000 Family Storage Driver (FC): complete

512 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– IBM FlashSystem Driver (iSCSI): complete

– IBM GPFS Storage Driver (gpfs): missing

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): missing

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): complete

– Infinidat Storage Driver (iSCSI, FC): complete

– Inspur AS13000 Storage Driver (iSCSI): complete

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): complete

– Kaminario Storage Driver (iSCSI, FC): complete

– Kioxia Kumoscale Driver (NVMeOF): complete

– LINBIT DRBD/LINSTOR Driver (DRBD): complete

– Lenovo Storage Driver (FC, iSCSI): complete

– Lightbits LightOS Storage Driver (NVMeTCP): complete

– Logical Volume Manager (LVM) Reference Driver (iSCSI): complete

– MacroSAN Storage Driver (iSCSI, FC): complete

– NEC Storage M Series Driver (iSCSI, FC): complete

– NEC Storage V Series Driver (iSCSI, FC): complete

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): complete

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): complete

– Nimble Storage Driver (iSCSI, FC): complete

– Open-E JovianDSS Storage Driver (iSCSI): missing

– ProphetStor Flexvisor Driver (iSCSI, NFS): complete

– Pure Storage Driver (iSCSI, FC): complete

– QNAP Storage Driver (iSCSI): complete

– Quobyte Storage Driver (quobyte): missing

– RBD (Ceph) Storage Driver (RBD): complete

– SandStone Storage Driver (iSCSI): complete

– Seagate Driver (iSCSI, FC): complete

– StorPool Storage Driver (storpool): complete

– Synology Storage Driver (iSCSI): complete

– TOYOU NetStor Storage Driver (iSCSI, FC): complete

– VMware Storage Driver (vmdk): complete

– Veritas Access iSCSI Driver (iSCSI): complete

– Veritas Cluster NFS Driver (NFS): complete

3.3. Reference 513

Cinder Documentation, Release 20.3.2.dev3

– Virtuozzo Storage Driver (remotefs): complete

– Windows SMB Driver: complete

– Windows iSCSI Driver: complete

– Zadara Storage Driver (iSCSI, NFS): complete

– infortrend Storage Driver (iSCSI, FC): complete

• QoS Status: optional.

Notes: Vendor drivers that support Quality of Service (QoS) at the backend. This means they are
able to utilize QoS Specs associated with volume extra specs to control QoS settings at the storage
device on a per volume basis. Drivers that dont support this can utilize frontend QoS via libvirt.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): missing

– Datera Storage Driver (iSCSI): complete

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): complete

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): complete

– Dell EMC PowerStore Storage Driver (iSCSI, FC): missing

– Dell EMC PowerVault ME Series (iSCSI, FC): missing

– Dell EMC SC Series Storage Driver (iSCSI, FC): complete

– Dell EMC Unity Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): complete

– Dell EMC VNX Storage Driver (FC, iSCSI): complete

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): missing

– Fujitsu ETERNUS Driver (FC, iSCSI): missing

– Generic NFS Reference Driver (NFS): missing

– HPE 3PAR Storage Driver (FC, iSCSI): complete

– HPE MSA Driver (iSCSI, FC): missing

– Hitachi VSP Storage Driver (FC, iSCSI): missing

– Huawei 18000 Series Driver (iSCSI, FC): complete

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): complete

– Huawei F V3 Series Driver (iSCSI, FC): complete

– Huawei F V5 Series Driver (iSCSI, FC): complete

– Huawei FusionStorage, OceanStor 100D Driver (dsware): missing

– Huawei T Series V1 Driver (iSCSI, FC): missing

– Huawei T Series V2 Driver (iSCSI, FC): complete

– Huawei V3 Series Driver (iSCSI, FC): complete

514 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– Huawei V5 Series Driver (iSCSI, FC): complete

– IBM DS8000 Family Storage Driver (FC): missing

– IBM FlashSystem Driver (iSCSI): missing

– IBM GPFS Storage Driver (gpfs): missing

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): missing

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): complete

– Infinidat Storage Driver (iSCSI, FC): complete

– Inspur AS13000 Storage Driver (iSCSI): missing

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): complete

– Kaminario Storage Driver (iSCSI, FC): missing

– Kioxia Kumoscale Driver (NVMeOF): missing

– LINBIT DRBD/LINSTOR Driver (DRBD): missing

– Lenovo Storage Driver (FC, iSCSI): missing

– Lightbits LightOS Storage Driver (NVMeTCP): missing

– Logical Volume Manager (LVM) Reference Driver (iSCSI): missing

– MacroSAN Storage Driver (iSCSI, FC): complete

– NEC Storage M Series Driver (iSCSI, FC): complete

– NEC Storage V Series Driver (iSCSI, FC): missing

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): complete

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): missing

– Nimble Storage Driver (iSCSI, FC): missing

– Open-E JovianDSS Storage Driver (iSCSI): missing

– ProphetStor Flexvisor Driver (iSCSI, NFS): missing

– Pure Storage Driver (iSCSI, FC): complete

– QNAP Storage Driver (iSCSI): missing

– Quobyte Storage Driver (quobyte): missing

– RBD (Ceph) Storage Driver (RBD): missing

– SandStone Storage Driver (iSCSI): complete

– Seagate Driver (iSCSI, FC): missing

– StorPool Storage Driver (storpool): missing

– Synology Storage Driver (iSCSI): missing

– TOYOU NetStor Storage Driver (iSCSI, FC): missing

– VMware Storage Driver (vmdk): missing

3.3. Reference 515

Cinder Documentation, Release 20.3.2.dev3

– Veritas Access iSCSI Driver (iSCSI): missing

– Veritas Cluster NFS Driver (NFS): missing

– Virtuozzo Storage Driver (remotefs): missing

– Windows SMB Driver: missing

– Windows iSCSI Driver: missing

– Zadara Storage Driver (iSCSI, NFS): missing

– infortrend Storage Driver (iSCSI, FC): missing

• Volume Replication Status: optional.

Notes: Vendor drivers that support volume replication can report this capability to be utilized by
the scheduler allowing users to request replicated volumes via extra specs. Such drivers are also
then able to take advantage of Cinders failover and failback commands.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): complete

– Datera Storage Driver (iSCSI): missing

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): complete

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): complete

– Dell EMC PowerStore Storage Driver (iSCSI, FC): complete

– Dell EMC PowerVault ME Series (iSCSI, FC): missing

– Dell EMC SC Series Storage Driver (iSCSI, FC): complete

– Dell EMC Unity Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): complete

– Dell EMC VNX Storage Driver (FC, iSCSI): complete

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): missing

– Fujitsu ETERNUS Driver (FC, iSCSI): missing

– Generic NFS Reference Driver (NFS): missing

– HPE 3PAR Storage Driver (FC, iSCSI): complete

– HPE MSA Driver (iSCSI, FC): missing

– Hitachi VSP Storage Driver (FC, iSCSI): missing

– Huawei 18000 Series Driver (iSCSI, FC): complete

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): complete

– Huawei F V3 Series Driver (iSCSI, FC): complete

– Huawei F V5 Series Driver (iSCSI, FC): complete

– Huawei FusionStorage, OceanStor 100D Driver (dsware): missing

– Huawei T Series V1 Driver (iSCSI, FC): missing

516 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– Huawei T Series V2 Driver (iSCSI, FC): missing

– Huawei V3 Series Driver (iSCSI, FC): complete

– Huawei V5 Series Driver (iSCSI, FC): complete

– IBM DS8000 Family Storage Driver (FC): complete

– IBM FlashSystem Driver (iSCSI): missing

– IBM GPFS Storage Driver (gpfs): missing

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): complete

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): complete

– Infinidat Storage Driver (iSCSI, FC): missing

– Inspur AS13000 Storage Driver (iSCSI): missing

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): complete

– Kaminario Storage Driver (iSCSI, FC): complete

– Kioxia Kumoscale Driver (NVMeOF): missing

– LINBIT DRBD/LINSTOR Driver (DRBD): missing

– Lenovo Storage Driver (FC, iSCSI): missing

– Lightbits LightOS Storage Driver (NVMeTCP): missing

– Logical Volume Manager (LVM) Reference Driver (iSCSI): missing

– MacroSAN Storage Driver (iSCSI, FC): complete

– NEC Storage M Series Driver (iSCSI, FC): missing

– NEC Storage V Series Driver (iSCSI, FC): missing

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): complete

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): missing

– Nimble Storage Driver (iSCSI, FC): missing

– Open-E JovianDSS Storage Driver (iSCSI): missing

– ProphetStor Flexvisor Driver (iSCSI, NFS): missing

– Pure Storage Driver (iSCSI, FC): complete

– QNAP Storage Driver (iSCSI): missing

– Quobyte Storage Driver (quobyte): missing

– RBD (Ceph) Storage Driver (RBD): complete

– SandStone Storage Driver (iSCSI): complete

– Seagate Driver (iSCSI, FC): missing

– StorPool Storage Driver (storpool): complete

– Synology Storage Driver (iSCSI): missing

3.3. Reference 517

Cinder Documentation, Release 20.3.2.dev3

– TOYOU NetStor Storage Driver (iSCSI, FC): missing

– VMware Storage Driver (vmdk): missing

– Veritas Access iSCSI Driver (iSCSI): missing

– Veritas Cluster NFS Driver (NFS): missing

– Virtuozzo Storage Driver (remotefs): missing

– Windows SMB Driver: missing

– Windows iSCSI Driver: missing

– Zadara Storage Driver (iSCSI, NFS): missing

– infortrend Storage Driver (iSCSI, FC): complete

• Consistency Groups Status: optional.

Notes: Vendor drivers that support consistency groups are able to logically group volumes together
for things like snapshotting and deletion. Grouping the volumes ensures that operations are only
completed on the group of volumes, not individually, enabling the creation of consistent snapshots
across a group.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): missing

– Datera Storage Driver (iSCSI): missing

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): complete

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): complete

– Dell EMC PowerStore Storage Driver (iSCSI, FC): complete

– Dell EMC PowerVault ME Series (iSCSI, FC): missing

– Dell EMC SC Series Storage Driver (iSCSI, FC): complete

– Dell EMC Unity Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): complete

– Dell EMC VNX Storage Driver (FC, iSCSI): complete

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): complete

– Fujitsu ETERNUS Driver (FC, iSCSI): missing

– Generic NFS Reference Driver (NFS): missing

– HPE 3PAR Storage Driver (FC, iSCSI): complete

– HPE MSA Driver (iSCSI, FC): missing

– Hitachi VSP Storage Driver (FC, iSCSI): complete

– Huawei 18000 Series Driver (iSCSI, FC): complete

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): complete

– Huawei F V3 Series Driver (iSCSI, FC): complete

518 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– Huawei F V5 Series Driver (iSCSI, FC): complete

– Huawei FusionStorage, OceanStor 100D Driver (dsware): missing

– Huawei T Series V1 Driver (iSCSI, FC): missing

– Huawei T Series V2 Driver (iSCSI, FC): missing

– Huawei V3 Series Driver (iSCSI, FC): complete

– Huawei V5 Series Driver (iSCSI, FC): complete

– IBM DS8000 Family Storage Driver (FC): complete

– IBM FlashSystem Driver (iSCSI): missing

– IBM GPFS Storage Driver (gpfs): missing

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): complete

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): complete

– Infinidat Storage Driver (iSCSI, FC): missing

– Inspur AS13000 Storage Driver (iSCSI): missing

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): complete

– Kaminario Storage Driver (iSCSI, FC): missing

– Kioxia Kumoscale Driver (NVMeOF): missing

– LINBIT DRBD/LINSTOR Driver (DRBD): missing

– Lenovo Storage Driver (FC, iSCSI): missing

– Lightbits LightOS Storage Driver (NVMeTCP): missing

– Logical Volume Manager (LVM) Reference Driver (iSCSI): missing

– MacroSAN Storage Driver (iSCSI, FC): missing

– NEC Storage M Series Driver (iSCSI, FC): missing

– NEC Storage V Series Driver (iSCSI, FC): complete

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): complete

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): missing

– Nimble Storage Driver (iSCSI, FC): complete

– Open-E JovianDSS Storage Driver (iSCSI): missing

– ProphetStor Flexvisor Driver (iSCSI, NFS): complete

– Pure Storage Driver (iSCSI, FC): complete

– QNAP Storage Driver (iSCSI): missing

– Quobyte Storage Driver (quobyte): missing

– RBD (Ceph) Storage Driver (RBD): missing

– SandStone Storage Driver (iSCSI): missing

3.3. Reference 519

Cinder Documentation, Release 20.3.2.dev3

– Seagate Driver (iSCSI, FC): missing

– StorPool Storage Driver (storpool): missing

– Synology Storage Driver (iSCSI): missing

– TOYOU NetStor Storage Driver (iSCSI, FC): missing

– VMware Storage Driver (vmdk): missing

– Veritas Access iSCSI Driver (iSCSI): missing

– Veritas Cluster NFS Driver (NFS): missing

– Virtuozzo Storage Driver (remotefs): missing

– Windows SMB Driver: missing

– Windows iSCSI Driver: missing

– Zadara Storage Driver (iSCSI, NFS): missing

– infortrend Storage Driver (iSCSI, FC): missing

• Thin Provisioning Status: optional.

Notes: If a volume driver supports thin provisioning it means that it will allow the scheduler
to provision more storage space than physically exists on the backend. This may also be called
oversubscription.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): complete

– Datera Storage Driver (iSCSI): missing

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): complete

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): complete

– Dell EMC PowerStore Storage Driver (iSCSI, FC): complete

– Dell EMC PowerVault ME Series (iSCSI, FC): missing

– Dell EMC SC Series Storage Driver (iSCSI, FC): complete

– Dell EMC Unity Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): complete

– Dell EMC VNX Storage Driver (FC, iSCSI): complete

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): complete

– Fujitsu ETERNUS Driver (FC, iSCSI): complete

– Generic NFS Reference Driver (NFS): complete

– HPE 3PAR Storage Driver (FC, iSCSI): complete

– HPE MSA Driver (iSCSI, FC): missing

– Hitachi VSP Storage Driver (FC, iSCSI): complete

– Huawei 18000 Series Driver (iSCSI, FC): complete

520 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): complete

– Huawei F V3 Series Driver (iSCSI, FC): complete

– Huawei F V5 Series Driver (iSCSI, FC): complete

– Huawei FusionStorage, OceanStor 100D Driver (dsware): missing

– Huawei T Series V1 Driver (iSCSI, FC): missing

– Huawei T Series V2 Driver (iSCSI, FC): missing

– Huawei V3 Series Driver (iSCSI, FC): complete

– Huawei V5 Series Driver (iSCSI, FC): complete

– IBM DS8000 Family Storage Driver (FC): missing

– IBM FlashSystem Driver (iSCSI): missing

– IBM GPFS Storage Driver (gpfs): missing

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): missing

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): complete

– Infinidat Storage Driver (iSCSI, FC): complete

– Inspur AS13000 Storage Driver (iSCSI): complete

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): missing

– Kaminario Storage Driver (iSCSI, FC): complete

– Kioxia Kumoscale Driver (NVMeOF): complete

– LINBIT DRBD/LINSTOR Driver (DRBD): missing

– Lenovo Storage Driver (FC, iSCSI): missing

– Lightbits LightOS Storage Driver (NVMeTCP): complete

– Logical Volume Manager (LVM) Reference Driver (iSCSI): complete

– MacroSAN Storage Driver (iSCSI, FC): complete

– NEC Storage M Series Driver (iSCSI, FC): complete

– NEC Storage V Series Driver (iSCSI, FC): complete

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): complete

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): missing

– Nimble Storage Driver (iSCSI, FC): complete

– Open-E JovianDSS Storage Driver (iSCSI): complete

– ProphetStor Flexvisor Driver (iSCSI, NFS): missing

– Pure Storage Driver (iSCSI, FC): complete

– QNAP Storage Driver (iSCSI): missing

– Quobyte Storage Driver (quobyte): missing

3.3. Reference 521

Cinder Documentation, Release 20.3.2.dev3

– RBD (Ceph) Storage Driver (RBD): complete

– SandStone Storage Driver (iSCSI): complete

– Seagate Driver (iSCSI, FC): missing

– StorPool Storage Driver (storpool): complete

– Synology Storage Driver (iSCSI): missing

– TOYOU NetStor Storage Driver (iSCSI, FC): complete

– VMware Storage Driver (vmdk): missing

– Veritas Access iSCSI Driver (iSCSI): missing

– Veritas Cluster NFS Driver (NFS): missing

– Virtuozzo Storage Driver (remotefs): missing

– Windows SMB Driver: complete

– Windows iSCSI Driver: missing

– Zadara Storage Driver (iSCSI, NFS): missing

– infortrend Storage Driver (iSCSI, FC): complete

• Volume Migration (Storage Assisted) Status: optional.

Notes: Storage assisted volume migration is like host assisted volume migration except that a
volume can be migrated without the assistance of the Cinder host. Vendor drivers that implement
this can migrate volumes completely through the storage backends functionality.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): missing

– Datera Storage Driver (iSCSI): missing

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): complete

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): complete

– Dell EMC PowerStore Storage Driver (iSCSI, FC): missing

– Dell EMC PowerVault ME Series (iSCSI, FC): missing

– Dell EMC SC Series Storage Driver (iSCSI, FC): missing

– Dell EMC Unity Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): complete

– Dell EMC VNX Storage Driver (FC, iSCSI): complete

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): missing

– Fujitsu ETERNUS Driver (FC, iSCSI): missing

– Generic NFS Reference Driver (NFS): missing

– HPE 3PAR Storage Driver (FC, iSCSI): missing

– HPE MSA Driver (iSCSI, FC): missing

522 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– Hitachi VSP Storage Driver (FC, iSCSI): missing

– Huawei 18000 Series Driver (iSCSI, FC): complete

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): complete

– Huawei F V3 Series Driver (iSCSI, FC): complete

– Huawei F V5 Series Driver (iSCSI, FC): complete

– Huawei FusionStorage, OceanStor 100D Driver (dsware): missing

– Huawei T Series V1 Driver (iSCSI, FC): missing

– Huawei T Series V2 Driver (iSCSI, FC): missing

– Huawei V3 Series Driver (iSCSI, FC): complete

– Huawei V5 Series Driver (iSCSI, FC): complete

– IBM DS8000 Family Storage Driver (FC): missing

– IBM FlashSystem Driver (iSCSI): missing

– IBM GPFS Storage Driver (gpfs): missing

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): missing

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): complete

– Infinidat Storage Driver (iSCSI, FC): missing

– Inspur AS13000 Storage Driver (iSCSI): missing

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): missing

– Kaminario Storage Driver (iSCSI, FC): missing

– Kioxia Kumoscale Driver (NVMeOF): missing

– LINBIT DRBD/LINSTOR Driver (DRBD): missing

– Lenovo Storage Driver (FC, iSCSI): missing

– Lightbits LightOS Storage Driver (NVMeTCP): missing

– Logical Volume Manager (LVM) Reference Driver (iSCSI): missing

– MacroSAN Storage Driver (iSCSI, FC): complete

– NEC Storage M Series Driver (iSCSI, FC): complete

– NEC Storage V Series Driver (iSCSI, FC): missing

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): complete

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): missing

– Nimble Storage Driver (iSCSI, FC): missing

– Open-E JovianDSS Storage Driver (iSCSI): missing

– ProphetStor Flexvisor Driver (iSCSI, NFS): missing

– Pure Storage Driver (iSCSI, FC): missing

3.3. Reference 523

Cinder Documentation, Release 20.3.2.dev3

– QNAP Storage Driver (iSCSI): missing

– Quobyte Storage Driver (quobyte): missing

– RBD (Ceph) Storage Driver (RBD): missing

– SandStone Storage Driver (iSCSI): missing

– Seagate Driver (iSCSI, FC): missing

– StorPool Storage Driver (storpool): complete

– Synology Storage Driver (iSCSI): missing

– TOYOU NetStor Storage Driver (iSCSI, FC): complete

– VMware Storage Driver (vmdk): missing

– Veritas Access iSCSI Driver (iSCSI): missing

– Veritas Cluster NFS Driver (NFS): missing

– Virtuozzo Storage Driver (remotefs): missing

– Windows SMB Driver: missing

– Windows iSCSI Driver: missing

– Zadara Storage Driver (iSCSI, NFS): missing

– infortrend Storage Driver (iSCSI, FC): complete

• Multi-Attach Support Status: optional.

Notes: Vendor drivers that report multi-attach support are able to make one volume available to
multiple instances at once. It is important to note that a clustered file system that supports multi-
attach functionality is required to use multi- attach functionality otherwise data corruption may
occur.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): complete

– Datera Storage Driver (iSCSI): missing

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): complete

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): complete

– Dell EMC PowerStore Storage Driver (iSCSI, FC): complete

– Dell EMC PowerVault ME Series (iSCSI, FC): complete

– Dell EMC SC Series Storage Driver (iSCSI, FC): complete

– Dell EMC Unity Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): complete

– Dell EMC VNX Storage Driver (FC, iSCSI): missing

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): complete

– Fujitsu ETERNUS Driver (FC, iSCSI): missing

524 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– Generic NFS Reference Driver (NFS): missing

– HPE 3PAR Storage Driver (FC, iSCSI): complete

– HPE MSA Driver (iSCSI, FC): complete

– Hitachi VSP Storage Driver (FC, iSCSI): complete

– Huawei 18000 Series Driver (iSCSI, FC): missing

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): missing

– Huawei F V3 Series Driver (iSCSI, FC): missing

– Huawei F V5 Series Driver (iSCSI, FC): missing

– Huawei FusionStorage, OceanStor 100D Driver (dsware): missing

– Huawei T Series V1 Driver (iSCSI, FC): missing

– Huawei T Series V2 Driver (iSCSI, FC): missing

– Huawei V3 Series Driver (iSCSI, FC): missing

– Huawei V5 Series Driver (iSCSI, FC): missing

– IBM DS8000 Family Storage Driver (FC): complete

– IBM FlashSystem Driver (iSCSI): missing

– IBM GPFS Storage Driver (gpfs): missing

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): complete

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): complete

– Infinidat Storage Driver (iSCSI, FC): complete

– Inspur AS13000 Storage Driver (iSCSI): complete

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): missing

– Kaminario Storage Driver (iSCSI, FC): missing

– Kioxia Kumoscale Driver (NVMeOF): missing

– LINBIT DRBD/LINSTOR Driver (DRBD): missing

– Lenovo Storage Driver (FC, iSCSI): complete

– Lightbits LightOS Storage Driver (NVMeTCP): complete

– Logical Volume Manager (LVM) Reference Driver (iSCSI): complete

– MacroSAN Storage Driver (iSCSI, FC): missing

– NEC Storage M Series Driver (iSCSI, FC): complete

– NEC Storage V Series Driver (iSCSI, FC): complete

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): complete

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): missing

– Nimble Storage Driver (iSCSI, FC): complete

3.3. Reference 525

Cinder Documentation, Release 20.3.2.dev3

– Open-E JovianDSS Storage Driver (iSCSI): complete

– ProphetStor Flexvisor Driver (iSCSI, NFS): missing

– Pure Storage Driver (iSCSI, FC): complete

– QNAP Storage Driver (iSCSI): missing

– Quobyte Storage Driver (quobyte): missing

– RBD (Ceph) Storage Driver (RBD): complete

– SandStone Storage Driver (iSCSI): complete

– Seagate Driver (iSCSI, FC): complete

– StorPool Storage Driver (storpool): complete

– Synology Storage Driver (iSCSI): missing

– TOYOU NetStor Storage Driver (iSCSI, FC): complete

– VMware Storage Driver (vmdk): missing

– Veritas Access iSCSI Driver (iSCSI): missing

– Veritas Cluster NFS Driver (NFS): missing

– Virtuozzo Storage Driver (remotefs): missing

– Windows SMB Driver: missing

– Windows iSCSI Driver: missing

– Zadara Storage Driver (iSCSI, NFS): complete

– infortrend Storage Driver (iSCSI, FC): complete

• Revert to Snapshot Status: optional.

Notes: Vendor drivers that implement the driver assisted function to revert a volume to the last
snapshot taken.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): complete

– Datera Storage Driver (iSCSI): missing

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): complete

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): complete

– Dell EMC PowerStore Storage Driver (iSCSI, FC): complete

– Dell EMC PowerVault ME Series (iSCSI, FC): missing

– Dell EMC SC Series Storage Driver (iSCSI, FC): missing

– Dell EMC Unity Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): complete

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): complete

– Dell EMC VNX Storage Driver (FC, iSCSI): complete

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): missing

526 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– Fujitsu ETERNUS Driver (FC, iSCSI): missing

– Generic NFS Reference Driver (NFS): missing

– HPE 3PAR Storage Driver (FC, iSCSI): complete

– HPE MSA Driver (iSCSI, FC): missing

– Hitachi VSP Storage Driver (FC, iSCSI): complete

– Huawei 18000 Series Driver (iSCSI, FC): missing

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): missing

– Huawei F V3 Series Driver (iSCSI, FC): missing

– Huawei F V5 Series Driver (iSCSI, FC): missing

– Huawei FusionStorage, OceanStor 100D Driver (dsware): missing

– Huawei T Series V1 Driver (iSCSI, FC): missing

– Huawei T Series V2 Driver (iSCSI, FC): missing

– Huawei V3 Series Driver (iSCSI, FC): missing

– Huawei V5 Series Driver (iSCSI, FC): missing

– IBM DS8000 Family Storage Driver (FC): complete

– IBM FlashSystem Driver (iSCSI): missing

– IBM GPFS Storage Driver (gpfs): missing

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): missing

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): complete

– Infinidat Storage Driver (iSCSI, FC): missing

– Inspur AS13000 Storage Driver (iSCSI): missing

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): missing

– Kaminario Storage Driver (iSCSI, FC): missing

– Kioxia Kumoscale Driver (NVMeOF): missing

– LINBIT DRBD/LINSTOR Driver (DRBD): missing

– Lenovo Storage Driver (FC, iSCSI): missing

– Lightbits LightOS Storage Driver (NVMeTCP): missing

– Logical Volume Manager (LVM) Reference Driver (iSCSI): complete

– MacroSAN Storage Driver (iSCSI, FC): missing

– NEC Storage M Series Driver (iSCSI, FC): complete

– NEC Storage V Series Driver (iSCSI, FC): complete

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): complete

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): missing

3.3. Reference 527

Cinder Documentation, Release 20.3.2.dev3

– Nimble Storage Driver (iSCSI, FC): complete

– Open-E JovianDSS Storage Driver (iSCSI): complete

– ProphetStor Flexvisor Driver (iSCSI, NFS): missing

– Pure Storage Driver (iSCSI, FC): complete

– QNAP Storage Driver (iSCSI): missing

– Quobyte Storage Driver (quobyte): missing

– RBD (Ceph) Storage Driver (RBD): complete

– SandStone Storage Driver (iSCSI): complete

– Seagate Driver (iSCSI, FC): missing

– StorPool Storage Driver (storpool): missing

– Synology Storage Driver (iSCSI): missing

– TOYOU NetStor Storage Driver (iSCSI, FC): complete

– VMware Storage Driver (vmdk): complete

– Veritas Access iSCSI Driver (iSCSI): missing

– Veritas Cluster NFS Driver (NFS): missing

– Virtuozzo Storage Driver (remotefs): missing

– Windows SMB Driver: missing

– Windows iSCSI Driver: missing

– Zadara Storage Driver (iSCSI, NFS): missing

– infortrend Storage Driver (iSCSI, FC): missing

• Active/Active High Availability Support Status: optional.

Notes: Vendor drivers that support running in an active/active high availability mode. Indicating
support for this means that the driver doesnt contain things, such as local locks, that may impact
an active/active configuration and that the driver has been tested to function properly in such a
configuration.

Driver Support:

– (Ceph) iSCSI Storage Driver (iSCSI): complete

– Datera Storage Driver (iSCSI): missing

– Dell EMC PowerFlex (ScaleIO) Storage Driver (ScaleIO): missing

– Dell EMC PowerMax (2000, 8000) Storage Driver (iSCSI, FC): missing

– Dell EMC PowerStore Storage Driver (iSCSI, FC): missing

– Dell EMC PowerVault ME Series (iSCSI, FC): missing

– Dell EMC SC Series Storage Driver (iSCSI, FC): missing

– Dell EMC Unity Storage Driver (FC, iSCSI): missing

– Dell EMC VMAX Af (250F, 450F, 850F, 950F) Storage Driver (FC, iSCSI): missing

528 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– Dell EMC VMAX3 (100K, 200K, 400K) Storage Driver (iSCSI, FC): missing

– Dell EMC VNX Storage Driver (FC, iSCSI): missing

– Dell EMC XtremeIO Storage Driver (FC, iSCSI): missing

– Fujitsu ETERNUS Driver (FC, iSCSI): missing

– Generic NFS Reference Driver (NFS): missing

– HPE 3PAR Storage Driver (FC, iSCSI): missing

– HPE MSA Driver (iSCSI, FC): missing

– Hitachi VSP Storage Driver (FC, iSCSI): missing

– Huawei 18000 Series Driver (iSCSI, FC): missing

– Huawei Dorado V3, V6 Series Driver (iSCSI, FC): missing

– Huawei F V3 Series Driver (iSCSI, FC): missing

– Huawei F V5 Series Driver (iSCSI, FC): missing

– Huawei FusionStorage, OceanStor 100D Driver (dsware): missing

– Huawei T Series V1 Driver (iSCSI, FC): missing

– Huawei T Series V2 Driver (iSCSI, FC): missing

– Huawei V3 Series Driver (iSCSI, FC): missing

– Huawei V5 Series Driver (iSCSI, FC): missing

– IBM DS8000 Family Storage Driver (FC): missing

– IBM FlashSystem Driver (iSCSI): missing

– IBM GPFS Storage Driver (gpfs): missing

– IBM Spectrum Accelerate Family Driver (iSCSI, FC): missing

– IBM Spectrum Virtualize Family Driver (iSCSI, FC): missing

– Infinidat Storage Driver (iSCSI, FC): missing

– Inspur AS13000 Storage Driver (iSCSI): missing

– InspurăAS/HFăSeriesăDriveră(iSCSI,ăFC): missing

– Kaminario Storage Driver (iSCSI, FC): missing

– Kioxia Kumoscale Driver (NVMeOF): missing

– LINBIT DRBD/LINSTOR Driver (DRBD): missing

– Lenovo Storage Driver (FC, iSCSI): missing

– Lightbits LightOS Storage Driver (NVMeTCP): missing

– Logical Volume Manager (LVM) Reference Driver (iSCSI): missing

– MacroSAN Storage Driver (iSCSI, FC): complete

– NEC Storage M Series Driver (iSCSI, FC): missing

– NEC Storage V Series Driver (iSCSI, FC): missing

3.3. Reference 529

Cinder Documentation, Release 20.3.2.dev3

– NetApp Data ONTAP Driver (iSCSI, NFS, FC): missing

– NetApp Solidfire Driver (iSCSI): complete

– Nexenta Driver (iSCSI, NFS): missing

– Nimble Storage Driver (iSCSI, FC): missing

– Open-E JovianDSS Storage Driver (iSCSI): missing

– ProphetStor Flexvisor Driver (iSCSI, NFS): missing

– Pure Storage Driver (iSCSI, FC): complete

– QNAP Storage Driver (iSCSI): missing

– Quobyte Storage Driver (quobyte): missing

– RBD (Ceph) Storage Driver (RBD): complete

– SandStone Storage Driver (iSCSI): complete

– Seagate Driver (iSCSI, FC): missing

– StorPool Storage Driver (storpool): missing

– Synology Storage Driver (iSCSI): missing

– TOYOU NetStor Storage Driver (iSCSI, FC): missing

– VMware Storage Driver (vmdk): missing

– Veritas Access iSCSI Driver (iSCSI): missing

– Veritas Cluster NFS Driver (NFS): missing

– Virtuozzo Storage Driver (remotefs): missing

– Windows SMB Driver: missing

– Windows iSCSI Driver: missing

– Zadara Storage Driver (iSCSI, NFS): missing

– infortrend Storage Driver (iSCSI, FC): missing

Notes:

• This document is a continuous work in progress

Driver Removal History

The section will be used to track driver removal starting from the Rocky release.

• Rocky

– CoprHD Storage Driver (FC, iSCSI, ScaleIO)

• Stein

– DRBDManage Driver

– HGST Flash Storage Suite Driver (vgc)

– ITRI DISCO Driver

530 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

– NetApp E-Series Driver

• Train

– Tintri Storage Driver

– Veritas HyperScale Storage Driver

– Nexenta Edge Storage Driver

• Ussuri

– HPE Lefthand Driver (iSCSI)

– Sheepdog Driver

Available Drivers

Volume Drivers

Supported Drivers

AS13000Driver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.inspur.as13000.as13000_driver.AS13000Driver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Inspur_CI

• Driver Configuration Options:

Table 130: Driver configuration options
Name = Default Value (Type) Description
as13000_ipsan_pools =
[Pool0]

(List of String) The Storage Pools Cinder should use, a comma sep-
arated list.

as13000_meta_pool = None (String) The pool which is used as a meta pool when creating a
volume, and it should be a replication pool at present. If not
set, the driver will choose a replication pool from the value of
as13000_ipsan_pools.

as13000_token_available_time
= 3300

(Integer(min=600, max=3600)) The effective time of token validity
in seconds.

• Description: Driver for Inspur AS13000 storage.

Version history:
1.0.0 - Initial driver

3.3. Reference 531

https://wiki.openstack.org/wiki/ThirdPartySystems/Inspur_CI

Cinder Documentation, Release 20.3.2.dev3

Acs5000FCDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.toyou.acs5000.acs5000_fc.Acs5000FCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/TOYOU_ACS5000_CI

• Driver Configuration Options:

Table 131: Driver configuration options
Name = Default Value (Type) Description
acs5000_copy_interval = 5 (Integer(min=3, max=100)) When volume copy task is going

on,refresh volume status interval
acs5000_multiattach = False (Boolean) Enable to allow volumes attaching to multiple hosts with

no limit.
acs5000_volpool_name =
[pool01]

(List of String) Comma separated list of storage system storage pools
for volumes.

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
san_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use with SAN
ssh_conn_timeout = 30 (Integer) SSH connection timeout in seconds
ssh_max_pool_conn = 5 (Integer) Maximum ssh connections in the pool
ssh_min_pool_conn = 1 (Integer) Minimum ssh connections in the pool

• Description: TOYOU ACS5000 storage FC volume driver.

Version history:
1.0.0 - Initial driver

Acs5000ISCSIDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.toyou.acs5000.acs5000_iscsi.Acs5000ISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/TOYOU_ACS5000_CI

• Driver Configuration Options:

532 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/TOYOU_ACS5000_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/TOYOU_ACS5000_CI

Cinder Documentation, Release 20.3.2.dev3

Table 132: Driver configuration options
Name = Default Value (Type) Description
acs5000_copy_interval = 5 (Integer(min=3, max=100)) When volume copy task is going

on,refresh volume status interval
acs5000_multiattach = False (Boolean) Enable to allow volumes attaching to multiple hosts with

no limit.
acs5000_volpool_name =
[pool01]

(List of String) Comma separated list of storage system storage pools
for volumes.

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
san_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use with SAN
ssh_conn_timeout = 30 (Integer) SSH connection timeout in seconds
ssh_max_pool_conn = 5 (Integer) Maximum ssh connections in the pool
ssh_min_pool_conn = 1 (Integer) Minimum ssh connections in the pool

• Description: TOYOU ACS5000 storage iSCSI volume driver.

Version history:
1.0.0 - Initial driver

DSWAREDriver

• Version: 2.0

• volume_driver=cinder.volume.drivers.fusionstorage.dsware.DSWAREDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Huawei_FusionStorage_CI

• Driver Configuration Options:

Table 133: Driver configuration options
Name = Default Value (Type) Description
clone_volume_timeout = 680 (Integer) Create clone volume timeout
dsware_isthin = False (Boolean) The flag of thin storage allocation.
dsware_manager = (String) Fusionstorage manager ip addr for cinder-volume.
dsware_rest_url = (String) The address of FusionStorage array. For example,

dsware_rest_url=xxx
dsware_storage_pools = (String) The list of pools on the FusionStorage array, the semicolon(;)

was used to split the storage pools, dsware_storage_pools = xxx1;
xxx2; xxx3

fusionstorageagent = (String) Fusionstorage agent ip addr range
manager_ips = {} (Dict of String) This option is to support the FSA to mount across the

different nodes. The parameters takes the standard dict config form,
manager_ips = host1:ip1, host2:ip2

pool_id_filter = [] (List of String) Pool id permit to use
pool_type = default (String) Pool type, like sata-2copy

• Description: <None>

3.3. Reference 533

https://wiki.openstack.org/wiki/ThirdPartySystems/Huawei_FusionStorage_CI

Cinder Documentation, Release 20.3.2.dev3

DateraDriver

• Version: 2019.12.10.0

• volume_driver=cinder.volume.drivers.datera.datera_iscsi.DateraDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/datera-ci

• Driver Configuration Options:

Table 134: Driver configuration options
Name = Default Value (Type) Description
backend_availability_zone =
None

(String) Availability zone for this volume backend. If not set, the
storage_availability_zone option value is used as the default for all
backends.

chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
chiscsi_conf = /etc/chelsio-
iscsi/chiscsi.conf

(String) Chiscsi (CXT) global defaults configuration file

driver_client_cert = None (String) The path to the client certificate for verification, if the driver
supports it.

driver_client_cert_key =
None

(String) The path to the client certificate key for verification, if the
driver supports it.

driver_data_namespace =
None

(String) Namespace for driver private data values to be saved in.

driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE
file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage
if the driver supports it.

enable_unsupported_driver =
False

(Boolean) Set this to True when you want to allow an unsupported
driver to start. Drivers that havent maintained a working CI system
and testing are marked as unsupported until CI is working again. This
also marks a driver as deprecated and may be removed in the next
release.

filter_function = None (String) String representation for an equation that will be used to
filter hosts. Only used when the driver filter is set to be used by the
Cinder scheduler.

goodness_function = None (String) String representation for an equation that will be used to de-
termine the goodness of a host. Only used when using the goodness
weigher is set to be used by the Cinder scheduler.

iet_conf = /etc/iet/ietd.conf (String) DEPRECATED: IET configuration file
iscsi_iotype = fileio (String(choices=[blockio, fileio, auto])) Sets the behavior of the

iSCSI target to either perform blockio or fileio optionally, auto can
be set and Cinder will autodetect type of backing device

iscsi_secondary_ip_addresses
= []

(List of String) The list of secondary IP addresses of the iSCSI dae-
mon

continues on next page

534 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/datera-ci

Cinder Documentation, Release 20.3.2.dev3

Table 134 – continued from previous page
Name = Default Value (Type) Description
iscsi_target_flags = (String) Sets the target-specific flags for the iSCSI target. Only used

for tgtadm to specify backing device flags using bsoflags option. The
specified string is passed as is to the underlying tool.

iscsi_write_cache = on (String(choices=[on, off])) Sets the behavior of the iSCSI target to
either perform write-back(on) or write-through(off). This parameter
is valid if target_helper is set to tgtadm.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

num_shell_tries = 3 (Integer) Number of times to attempt to run flakey shell commands
num_volume_device_scan_tries
= 3

(Integer) The maximum number of times to rescan targets to find
volume

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

report_discard_supported =
False

(Boolean) Report to clients of Cinder that the backend supports dis-
card (aka. trim/unmap). This will not actually change the behavior
of the backend or the client directly, it will only notify that it can be
used.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

storage_protocol = iscsi (String(choices=[iscsi, fc])) Protocol for transferring data between
host and storage back-end.

target_helper = tgtadm (String(choices=[tgtadm, lioadm, scstadmin, iscsictl, ietadm, nvmet,
spdk-nvmeof, fake])) Target user-land tool to use. tgtadm is default,
use lioadm for LIO iSCSI support, scstadmin for SCST target sup-
port, ietadm for iSCSI Enterprise Target, iscsictl for Chelsio iSCSI
Target, nvmet for NVMEoF support, spdk-nvmeof for SPDK NVMe-
oF, or fake for testing. Note: The IET driver is deprecated and will
be removed in the V release.

target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is lis-

tening on
target_prefix = iqn.2010-
10.org.openstack:

(String) Prefix for iSCSI volumes

continues on next page

3.3. Reference 535

Cinder Documentation, Release 20.3.2.dev3

Table 134 – continued from previous page
Name = Default Value (Type) Description
target_protocol = iscsi (String(choices=[iscsi, iser, nvmet_rdma, nvmet_tcp])) Determines

the target protocol for new volumes, created with tgtadm, lioadm
and nvmet target helpers. In order to enable RDMA, this parameter
should be set with the value iser. The supported iSCSI protocol val-
ues are iscsi and iser, in case of nvmet target set to nvmet_rdma or
nvmet_tcp.

trace_flags = None (List of String) List of options that control which trace info is written
to the DEBUG log level to assist developers. Valid values are method
and api.

use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
volume_backend_name =
None

(String) The backend name for a given driver implementation

volume_clear = zero (String(choices=[none, zero])) Method used to wipe old volumes
volume_clear_ionice = None (String) The flag to pass to ionice to alter the i/o priority of the pro-

cess used to zero a volume after deletion, for example -c3 for idle
only priority.

volume_clear_size = 0 (Integer(max=1024)) Size in MiB to wipe at start of old volumes.
1024 MiB at max. 0 => all

vol-
ume_copy_blkio_cgroup_name
= cinder-volume-copy

(String) The blkio cgroup name to be used to limit bandwidth of
volume copy

volume_copy_bps_limit = 0 (Integer) The upper limit of bandwidth of volume copy. 0 => unlim-
ited

volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes
volumes_dir =
$state_path/volumes

(String) Volume configuration file storage directory

• Description: The OpenStack Datera iSCSI volume driver.

Version history:

• 1.0 - Initial driver

• 1.1 - Look for lun-0 instead of lun-1.

• 2.0 - Update For Datera API v2

• 2.1 - Multipath, ACL and reorg

• 2.2 - Capabilites List, Extended Volume-Type Support Naming convention change, Vol-
ume Manage/Unmanage support

• 2.3 - Templates, Tenants, Snapshot Polling, 2.1 Api Version Support, Restructure

• 2.3.1 - Scalability bugfixes

• 2.3.2 - Volume Placement, ACL multi-attach bugfix

• 2.4.0 - Fast Retype Support

• 2.5.0 - Glance Image Caching, retyping/QoS bugfixes

• 2.6.0 - Api 2.2 support

536 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• 2.6.1 - Glance interoperability fix

• 2.7.0 - IOPS/GB and BW/GB settings, driver level overrides (API 2.1+ only)

• 2.7.2 - Allowing DF: QoS Spec prefix, QoS type leak bugfix

• 2.7.3 - Fixed bug in clone_image where size was not set correctly

• 2.7.4 - Fix for create_tenant incorrect API call Temporary fix for DAT-15931

• 2.7.5 - Removed force parameter from /initiators v2.1 API requests

• 2.8.0 - iops_per_gb and bandwidth_per_gb are now limited by total_iops_max and to-
tal_bandwidth_max (API 2.1+ only) Bugfix for cinder retype with online volume

• 2.8.1 - Bugfix for missing default dict during retype

• 2.8.2 - Updated most retype operations to not detach volume

• 2.8.3 - Bugfix for not allowing fast clones for shared/community volumes

• 2.8.4 - Fixed missing API version pinning in _offline_flip

• 2.8.5 - Membership check for fast image cloning. Metadata API pinning

• 2.8.6 - Added LDAP support and CHAP support

• 2.8.7 - Bugfix for missing tenancy calls in offline_flip

• 2.9.0 - Volumes now correctly renamed during backend migration. Implemented
update_migrated_volume (API 2.1+ only), Prevent non-raw image cloning

• 2.9.1 - Added extended metadata attributes during volume creation and attachment.
Added datera_disable_extended_metadata option to disable it.

• 2.9.2 - Made ensure_export a no-op. Removed usage of initiator-groups

• 2018.4.5.0 - Switch to new date-based versioning scheme. Removed v2 API support

• 2018.4.17.1 - Bugfixes to IP Pools, Templates and Initiators

• 2018.4.25.0 - Snapshot Manage. List Manageable Snapshots support

• 2018.4.27.0 - Major driver revamp/restructure, no functionality change

• 2018.5.1.0 - Bugfix for Map tenant auto-creation

• 2018.5.18.0 - Bugfix for None tenant handling

• 2018.6.7.0 - Bugfix for missing project_id during image clone

• 2018.7.13.0 - Massive update porting to use the Datera Python-SDK

• 2018.7.20.0 - Driver now includes display_name in created backend app_instances.

• 2018.9.17.0 - Requirements and doc changes

• 2018.10.8.0 - Added extra_headers to Python-SDK constructor call. This allows for the
SDK to send the type of driver performing each request along with the request. This
functionality existed before the Python-SDK revamp, so this change adds the function-
ality back in.

• 2018.10.8.1 - Adding thread_local to Python-SDK constructor call. This preserves
trace_id in the logs

3.3. Reference 537

Cinder Documentation, Release 20.3.2.dev3

• 2018.10.30.0 - Adding template_override support. Added dat-
era_disable_template_override cfgOpt to disable this feature. Updated required
requests version to >=2.20.0 because of a security vulnerability in <=2.19.X. Added
support for filter_function and goodness_function.

• 2018.11.1.0 - Adding flash and hybrid capacity info to get_volume_stats

• 2018.11.8.0 - Fixing bug that broke 2.2.X support

• 2018.11.14.0 - Bugfixes for v2.1 API support and unicode character support

• 2019.1.24.0 - Python-SDK requirements update, README updates

• 2019.2.25.0 - Scalability fixes and utility script updates

• 2019.6.4.1 - Added Pypi packaging installation support

• 2019.12.10.0 - Python 3.x support, tox tests, CI ready, live migration support, image
cache, bugfixes.

FJDXFCDriver

• Version: 1.3.0

• volume_driver=cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_fc.FJDXFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Fujitsu_ETERNUS_CI

• Driver Configuration Options:

Table 135: Driver configuration options
Name = Default Value (Type) Description
cinder_eternus_config_file =
/etc/cinder/cinder_fujitsu_eternus_dx.xml

(String) Config file for cinder eternus_dx volume driver.

• Description: FC Cinder Volume Driver for Fujitsu ETERNUS DX S3 series.

FJDXISCSIDriver

• Version: 1.3.0

• volume_driver=cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_iscsi.FJDXISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Fujitsu_ETERNUS_CI

• Driver Configuration Options:

Table 136: Driver configuration options
Name = Default Value (Type) Description
cinder_eternus_config_file =
/etc/cinder/cinder_fujitsu_eternus_dx.xml

(String) Config file for cinder eternus_dx volume driver.

• Description: iSCSI Cinder Volume Driver for Fujitsu ETERNUS DX S3 series.

538 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Fujitsu_ETERNUS_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Fujitsu_ETERNUS_CI

Cinder Documentation, Release 20.3.2.dev3

GPFSDriver

• Version: 1.3.1

• volume_driver=cinder.volume.drivers.ibm.gpfs.GPFSDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_GPFS_CI

• Driver Configuration Options:

Table 137: Driver configuration options
Name = Default Value (Type) Description
gpfs_images_dir = None (String) Specifies the path of the Image service repository in GPFS.

Leave undefined if not storing images in GPFS.
gpfs_images_share_mode =
None

(String(choices=[copy, copy_on_write, None])) Specifies the type
of image copy to be used. Set this when the Image service repos-
itory also uses GPFS so that image files can be transferred efficiently
from the Image service to the Block Storage service. There are two
valid values: copy specifies that a full copy of the image is made;
copy_on_write specifies that copy-on-write optimization strategy is
used and unmodified blocks of the image file are shared efficiently.

gpfs_max_clone_depth = 0 (Integer) Specifies an upper limit on the number of indirections re-
quired to reach a specific block due to snapshots or clones. A lengthy
chain of copy-on-write snapshots or clones can have a negative im-
pact on performance, but improves space utilization. 0 indicates un-
limited clone depth.

gpfs_mount_point_base =
None

(String) Specifies the path of the GPFS directory where Block Stor-
age volume and snapshot files are stored.

gpfs_sparse_volumes = True (Boolean) Specifies that volumes are created as sparse files which
initially consume no space. If set to False, the volume is created as
a fully allocated file, in which case, creation may take a significantly
longer time.

gpfs_storage_pool = system (String) Specifies the storage pool that volumes are assigned to. By
default, the system storage pool is used.

• Description: Implements volume functions using GPFS primitives.

Version history:

1.0.0 - Initial driver
1.1.0 - Add volume retype, refactor volume migration
1.2.0 - Add consistency group support
1.3.0 - Add NFS based GPFS storage backend support
1.3.1 - Add GPFS native encryption (encryption of data at rest) support

3.3. Reference 539

https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_GPFS_CI

Cinder Documentation, Release 20.3.2.dev3

GPFSNFSDriver

• Version: 1.0

• volume_driver=cinder.volume.drivers.ibm.gpfs.GPFSNFSDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_GPFS_CI

• Driver Configuration Options:

Table 138: Driver configuration options
Name = Default Value (Type) Description
gpfs_images_dir = None (String) Specifies the path of the Image service repository in GPFS.

Leave undefined if not storing images in GPFS.
gpfs_images_share_mode =
None

(String(choices=[copy, copy_on_write, None])) Specifies the type
of image copy to be used. Set this when the Image service repos-
itory also uses GPFS so that image files can be transferred efficiently
from the Image service to the Block Storage service. There are two
valid values: copy specifies that a full copy of the image is made;
copy_on_write specifies that copy-on-write optimization strategy is
used and unmodified blocks of the image file are shared efficiently.

gpfs_max_clone_depth = 0 (Integer) Specifies an upper limit on the number of indirections re-
quired to reach a specific block due to snapshots or clones. A lengthy
chain of copy-on-write snapshots or clones can have a negative im-
pact on performance, but improves space utilization. 0 indicates un-
limited clone depth.

gpfs_mount_point_base =
None

(String) Specifies the path of the GPFS directory where Block Stor-
age volume and snapshot files are stored.

gpfs_sparse_volumes = True (Boolean) Specifies that volumes are created as sparse files which
initially consume no space. If set to False, the volume is created as
a fully allocated file, in which case, creation may take a significantly
longer time.

gpfs_storage_pool = system (String) Specifies the storage pool that volumes are assigned to. By
default, the system storage pool is used.

• Description: GPFS cinder driver extension.

This extends the capability of existing GPFS cinder driver to be able to create cinder volumes when cinder
volume service is not running on GPFS node.

GPFSRemoteDriver

• Version: 1.0

• volume_driver=cinder.volume.drivers.ibm.gpfs.GPFSRemoteDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_GPFS_CI

• Driver Configuration Options:

540 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_GPFS_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_GPFS_CI

Cinder Documentation, Release 20.3.2.dev3

Table 139: Driver configuration options
Name = Default Value (Type) Description
gpfs_hosts = [] (List of String) Comma-separated list of IP address or hostnames of

GPFS nodes.
gpfs_hosts_key_file =
$state_path/ssh_known_hosts

(String) File containing SSH host keys for the gpfs
nodes with which driver needs to communicate. De-
fault=$state_path/ssh_known_hosts

gpfs_images_dir = None (String) Specifies the path of the Image service repository in GPFS.
Leave undefined if not storing images in GPFS.

gpfs_images_share_mode =
None

(String(choices=[copy, copy_on_write, None])) Specifies the type
of image copy to be used. Set this when the Image service repos-
itory also uses GPFS so that image files can be transferred efficiently
from the Image service to the Block Storage service. There are two
valid values: copy specifies that a full copy of the image is made;
copy_on_write specifies that copy-on-write optimization strategy is
used and unmodified blocks of the image file are shared efficiently.

gpfs_max_clone_depth = 0 (Integer) Specifies an upper limit on the number of indirections re-
quired to reach a specific block due to snapshots or clones. A lengthy
chain of copy-on-write snapshots or clones can have a negative im-
pact on performance, but improves space utilization. 0 indicates un-
limited clone depth.

gpfs_mount_point_base =
None

(String) Specifies the path of the GPFS directory where Block Stor-
age volume and snapshot files are stored.

gpfs_private_key = (String) Filename of private key to use for SSH authentication.
gpfs_sparse_volumes = True (Boolean) Specifies that volumes are created as sparse files which

initially consume no space. If set to False, the volume is created as
a fully allocated file, in which case, creation may take a significantly
longer time.

gpfs_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use.
gpfs_storage_pool = system (String) Specifies the storage pool that volumes are assigned to. By

default, the system storage pool is used.
gpfs_strict_host_key_policy =
False

(Boolean) Option to enable strict gpfs host key checking while con-
necting to gpfs nodes. Default=False

gpfs_user_login = root (String) Username for GPFS nodes.
gpfs_user_password = (String) Password for GPFS node user.

• Description: GPFS cinder driver extension.

This extends the capability of existing GPFS cinder driver to be able to run the driver when cinder volume
service is not running on GPFS node where as Nova Compute is a GPFS client. This deployment is
typically in Container based OpenStack environment.

3.3. Reference 541

Cinder Documentation, Release 20.3.2.dev3

HBSDFCDriver

• Version: 2.2.2

• volume_driver=cinder.volume.drivers.hitachi.hbsd_fc.HBSDFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Hitachi_VSP_CI

• Driver Configuration Options:

Table 140: Driver configuration options
Name = Default Value (Type) Description
chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

en-
force_multipath_for_image_xfer
= False

(Boolean) If this is set to True, attachment of volumes for image
transfer will be aborted when multipathd is not running. Otherwise,
it will fallback to single path. This parameter needs to be config-
ured for each backend section or in [backend_defaults] section as a
common configuration for all backends.

hi-
tachi_async_copy_check_interval
= 10

(Integer(min=1, max=600)) Interval in seconds to check asyn-
chronous copying status during a copy pair deletion or data restora-
tion.

hitachi_compute_target_ports
= []

(List of String) IDs of the storage ports used to attach volumes to
compute nodes. To specify multiple ports, connect them by commas
(e.g. CL1-A,CL2-A).

hitachi_copy_check_interval
= 3

(Integer(min=1, max=600)) Interval in seconds to check copying sta-
tus during a volume copy.

hitachi_copy_speed = 3 (Integer(min=1, max=15)) Copy speed of storage system. 1 or 2 in-
dicates low speed, 3 indicates middle speed, and a value between 4
and 15 indicates high speed.

hitachi_discard_zero_page =
True

(Boolean) Enable or disable zero page reclamation in a DP-VOL.

hitachi_exec_retry_interval =
5

(Integer) Retry interval in seconds for REST API execution.

hitachi_extend_timeout = 600 (Integer) Maximum wait time in seconds for a volume extention to
complete.

hitachi_group_create = False (Boolean) If True, the driver will create host groups or iSCSI targets
on storage ports as needed.

hitachi_group_delete = False (Boolean) If True, the driver will delete host groups or iSCSI targets
on storage ports as needed.

hitachi_host_mode_options =
[]

(List of Integer) Host mode option for host group or iSCSI target.

hitachi_ldev_range = None (String) Range of the LDEV numbers in the format of xxxx-yyyy
that can be used by the driver. Values can be in decimal format (e.g.
1000) or in colon-separated hexadecimal format (e.g. 00:03:E8).

continues on next page

542 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Hitachi_VSP_CI

Cinder Documentation, Release 20.3.2.dev3

Table 140 – continued from previous page
Name = Default Value (Type) Description
hitachi_lock_timeout = 7200 (Integer) Maximum wait time in seconds for storage to be logined or

unlocked.
hitachi_lun_retry_interval = 1 (Integer) Retry interval in seconds for REST API adding a LUN map-

ping to the server.
hitachi_lun_timeout = 50 (Integer) Maximum wait time in seconds for adding a LUN mapping

to the server.
hitachi_pool = None (String) Pool number or pool name of the DP pool.
hi-
tachi_rest_another_ldev_mapped_retry_timeout
= 600

(Integer) Retry time in seconds when new LUN allocation request
fails.

hitachi_rest_connect_timeout
= 30

(Integer) Maximum wait time in seconds for connecting to REST
API session.

hitachi_rest_disable_io_wait
= True

(Boolean) This option will allow detaching volume immediately. If
set False, storage may take few minutes to detach volume after I/O.

hi-
tachi_rest_get_api_response_timeout
= 1800

(Integer) Maximum wait time in seconds for a response against sync
methods, for example GET

hi-
tachi_rest_job_api_response_timeout
= 1800

(Integer) Maximum wait time in seconds for a response against async
methods from REST API, for example PUT and DELETE.

hi-
tachi_rest_keep_session_loop_interval
= 180

(Integer) Loop interval in seconds for keeping REST API session.

hi-
tachi_rest_server_busy_timeout
= 7200

(Integer) Maximum wait time in seconds when REST API returns
busy.

hitachi_rest_tcp_keepalive =
True

(Boolean) Enables or disables use of REST API tcp keepalive

hitachi_rest_tcp_keepcnt = 4 (Integer) Maximum number of transmissions for TCP keepalive
packet.

hitachi_rest_tcp_keepidle =
60

(Integer) Wait time in seconds for sending a first TCP keepalive
packet.

hitachi_rest_tcp_keepintvl =
15

(Integer) Interval of transmissions in seconds for TCP keepalive
packet.

hitachi_rest_timeout = 30 (Integer) Maximum wait time in seconds for each REST API request.
hitachi_restore_timeout =
86400

(Integer) Maximum wait time in seconds for the restore operation to
complete.

hitachi_snap_pool = None (String) Pool number or pool name of the snapshot pool.
hi-
tachi_state_transition_timeout
= 900

(Integer) Maximum wait time in seconds for a volume transition to
complete.

hitachi_storage_id = None (String) Product number of the storage system.
hitachi_target_ports = [] (List of String) IDs of the storage ports used to attach volumes to the

controller node. To specify multiple ports, connect them by commas
(e.g. CL1-A,CL2-A).

hitachi_zoning_request =
False

(Boolean) If True, the driver will configure FC zoning between the
server and the storage system provided that FC zoning manager is
enabled.

continues on next page

3.3. Reference 543

Cinder Documentation, Release 20.3.2.dev3

Table 140 – continued from previous page
Name = Default Value (Type) Description
max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_api_port = None (Port(min=0, max=65535)) Port to use to access the SAN API
san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
use_multipath_for_image_xfer
= False

(Boolean) Do we attach/detach volumes in cinder using multipath
for volume to image and image to volume transfers? This param-
eter needs to be configured for each backend section or in [back-
end_defaults] section as a common configuration for all backends.

volume_backend_name =
None

(String) The backend name for a given driver implementation

volume_driver = cin-
der.volume.drivers.lvm.LVMVolumeDriver

(String) Driver to use for volume creation

• Description: Fibre channel class for Hitachi HBSD Driver.

Version history:

1.0.0 - Initial driver.
1.1.0 - Add manage_existing/manage_existing_get_size/unmanage methods
2.0.0 - Major redesign of the driver. This version requires the REST

API for communication with the storage backend.
2.1.0 - Add Cinder generic volume groups.
2.2.0 - Add maintenance parameters.
2.2.1 - Make the parameters name variable for supporting OEM storages.
2.2.2 - Add Target Port Assignment.

HBSDISCSIDriver

• Version: 2.2.2

• volume_driver=cinder.volume.drivers.hitachi.hbsd_iscsi.HBSDISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Hitachi_VSP_CI

• Driver Configuration Options:

544 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Hitachi_VSP_CI

Cinder Documentation, Release 20.3.2.dev3

Table 141: Driver configuration options
Name = Default Value (Type) Description
chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

en-
force_multipath_for_image_xfer
= False

(Boolean) If this is set to True, attachment of volumes for image
transfer will be aborted when multipathd is not running. Otherwise,
it will fallback to single path. This parameter needs to be config-
ured for each backend section or in [backend_defaults] section as a
common configuration for all backends.

hi-
tachi_async_copy_check_interval
= 10

(Integer(min=1, max=600)) Interval in seconds to check asyn-
chronous copying status during a copy pair deletion or data restora-
tion.

hitachi_compute_target_ports
= []

(List of String) IDs of the storage ports used to attach volumes to
compute nodes. To specify multiple ports, connect them by commas
(e.g. CL1-A,CL2-A).

hitachi_copy_check_interval
= 3

(Integer(min=1, max=600)) Interval in seconds to check copying sta-
tus during a volume copy.

hitachi_copy_speed = 3 (Integer(min=1, max=15)) Copy speed of storage system. 1 or 2 in-
dicates low speed, 3 indicates middle speed, and a value between 4
and 15 indicates high speed.

hitachi_discard_zero_page =
True

(Boolean) Enable or disable zero page reclamation in a DP-VOL.

hitachi_exec_retry_interval =
5

(Integer) Retry interval in seconds for REST API execution.

hitachi_extend_timeout = 600 (Integer) Maximum wait time in seconds for a volume extention to
complete.

hitachi_group_create = False (Boolean) If True, the driver will create host groups or iSCSI targets
on storage ports as needed.

hitachi_group_delete = False (Boolean) If True, the driver will delete host groups or iSCSI targets
on storage ports as needed.

hitachi_host_mode_options =
[]

(List of Integer) Host mode option for host group or iSCSI target.

hitachi_ldev_range = None (String) Range of the LDEV numbers in the format of xxxx-yyyy
that can be used by the driver. Values can be in decimal format (e.g.
1000) or in colon-separated hexadecimal format (e.g. 00:03:E8).

hitachi_lock_timeout = 7200 (Integer) Maximum wait time in seconds for storage to be logined or
unlocked.

hitachi_lun_retry_interval = 1 (Integer) Retry interval in seconds for REST API adding a LUN map-
ping to the server.

hitachi_lun_timeout = 50 (Integer) Maximum wait time in seconds for adding a LUN mapping
to the server.

hitachi_pool = None (String) Pool number or pool name of the DP pool.
continues on next page

3.3. Reference 545

Cinder Documentation, Release 20.3.2.dev3

Table 141 – continued from previous page
Name = Default Value (Type) Description
hi-
tachi_rest_another_ldev_mapped_retry_timeout
= 600

(Integer) Retry time in seconds when new LUN allocation request
fails.

hitachi_rest_connect_timeout
= 30

(Integer) Maximum wait time in seconds for connecting to REST
API session.

hitachi_rest_disable_io_wait
= True

(Boolean) This option will allow detaching volume immediately. If
set False, storage may take few minutes to detach volume after I/O.

hi-
tachi_rest_get_api_response_timeout
= 1800

(Integer) Maximum wait time in seconds for a response against sync
methods, for example GET

hi-
tachi_rest_job_api_response_timeout
= 1800

(Integer) Maximum wait time in seconds for a response against async
methods from REST API, for example PUT and DELETE.

hi-
tachi_rest_keep_session_loop_interval
= 180

(Integer) Loop interval in seconds for keeping REST API session.

hi-
tachi_rest_server_busy_timeout
= 7200

(Integer) Maximum wait time in seconds when REST API returns
busy.

hitachi_rest_tcp_keepalive =
True

(Boolean) Enables or disables use of REST API tcp keepalive

hitachi_rest_tcp_keepcnt = 4 (Integer) Maximum number of transmissions for TCP keepalive
packet.

hitachi_rest_tcp_keepidle =
60

(Integer) Wait time in seconds for sending a first TCP keepalive
packet.

hitachi_rest_tcp_keepintvl =
15

(Integer) Interval of transmissions in seconds for TCP keepalive
packet.

hitachi_rest_timeout = 30 (Integer) Maximum wait time in seconds for each REST API request.
hitachi_restore_timeout =
86400

(Integer) Maximum wait time in seconds for the restore operation to
complete.

hitachi_snap_pool = None (String) Pool number or pool name of the snapshot pool.
hi-
tachi_state_transition_timeout
= 900

(Integer) Maximum wait time in seconds for a volume transition to
complete.

hitachi_storage_id = None (String) Product number of the storage system.
hitachi_target_ports = [] (List of String) IDs of the storage ports used to attach volumes to the

controller node. To specify multiple ports, connect them by commas
(e.g. CL1-A,CL2-A).

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

continues on next page

546 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 141 – continued from previous page
Name = Default Value (Type) Description
reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is

reserved
san_api_port = None (Port(min=0, max=65535)) Port to use to access the SAN API
san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
use_multipath_for_image_xfer
= False

(Boolean) Do we attach/detach volumes in cinder using multipath
for volume to image and image to volume transfers? This param-
eter needs to be configured for each backend section or in [back-
end_defaults] section as a common configuration for all backends.

volume_backend_name =
None

(String) The backend name for a given driver implementation

volume_driver = cin-
der.volume.drivers.lvm.LVMVolumeDriver

(String) Driver to use for volume creation

• Description: iSCSI class for Hitachi HBSD Driver.

Version history:

1.0.0 - Initial driver.
1.1.0 - Add manage_existing/manage_existing_get_size/unmanage methods
2.0.0 - Major redesign of the driver. This version requires the REST

API for communication with the storage backend.
2.1.0 - Add Cinder generic volume groups.
2.2.0 - Add maintenance parameters.
2.2.1 - Make the parameters name variable for supporting OEM storages.
2.2.2 - Add Target Port Assignment.

HPE3PARFCDriver

• Version: 4.0.7

• volume_driver=cinder.volume.drivers.hpe.hpe_3par_fc.HPE3PARFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/HPE_Storage_CI

• Driver Configuration Options:

3.3. Reference 547

https://wiki.openstack.org/wiki/ThirdPartySystems/HPE_Storage_CI

Cinder Documentation, Release 20.3.2.dev3

Table 142: Driver configuration options
Name = Default Value (Type) Description
hpe3par_api_url = (String) WSAPI Server URL. This setting applies to: 3PAR, Primera

and Alletra 9k Example 1: for 3PAR, URL is: https://<3par
ip>:8080/api/v1 Example 2: for Primera/Alletra 9k, URL is: https:
//<primera ip>:443/api/v1

hpe3par_cpg = [OpenStack] (List of String) List of the 3PAR/Primera/Alletra 9k CPG(s) to use
for volume creation

hpe3par_cpg_snap = (String) The 3PAR/Primera/Alletra 9k CPG to use for snapshots of
volumes. If empty the userCPG will be used.

hpe3par_debug = False (Boolean) Enable HTTP debugging to 3PAR/Primera/Alletra 9k
hpe3par_iscsi_chap_enabled
= False

(Boolean) Enable CHAP authentication for iSCSI connections.

hpe3par_iscsi_ips = [] (List of String) List of target iSCSI addresses to use.
hpe3par_password = (String) 3PAR/Primera/Alletra 9k password for the user specified in

hpe3par_username
hpe3par_snapshot_expiration
=

(String) The time in hours when a snapshot expires and is deleted.
This must be larger than expiration

hpe3par_snapshot_retention = (String) The time in hours to retain a snapshot. You cant delete it
before this expires.

hpe3par_target_nsp = (String) The nsp of 3PAR/Primera/Alletra 9k backend to be used
when: (1) multipath is not enabled in cinder.conf. (2) Fiber Channel
Zone Manager is not used. (3) the backend is prezoned with this spe-
cific nsp only. For example if nsp is 2 1 2, the format of the options
value is 2:1:2

hpe3par_username = (String) 3PAR/Primera/Alletra 9k username with the edit role
max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
san_private_key = (String) Filename of private key to use for SSH authentication
san_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use with SAN
ssh_conn_timeout = 30 (Integer) SSH connection timeout in seconds
target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is lis-

tening on
unique_fqdn_network = True (Boolean) Whether or not our private network has unique FQDN on

each initiator or not. For example networks with QA systems usually
have multiple servers/VMs with the same FQDN. When true this will
create host entries on 3PAR using the FQDN, when false it will use
the reversed IQN/WWNN.

548 Chapter 3. For operators

https:/
https:/
https:/

Cinder Documentation, Release 20.3.2.dev3

• Description: OpenStack Fibre Channel driver to enable 3PAR storage array.

Version history:

1.0 - Initial driver
1.1 - QoS, extend volume, multiple iscsi ports, remove domain,

session changes, faster clone, requires 3.1.2 MU2 firmware,
copy volume <--> Image.

1.2.0 - Updated the use of the hp3parclient to 2.0.0 and refactored
the drivers to use the new APIs.

1.2.1 - Synchronized extend_volume method.
1.2.2 - Added try/finally around client login/logout.
1.2.3 - Added ability to add WWNs to host.
1.2.4 - Added metadata during attach/detach bug #1258033.
1.3.0 - Removed all SSH code. We rely on the hp3parclient now.
2.0.0 - Update hp3parclient API uses 3.0.x
2.0.2 - Add back-end assisted volume migrate
2.0.3 - Added initiator-target map for FC Zone Manager
2.0.4 - Added support for managing/unmanaging of volumes
2.0.5 - Only remove FC Zone on last volume detach
2.0.6 - Added support for volume retype
2.0.7 - Only one FC port is used when a single FC path

is present. bug #1360001
2.0.8 - Fixing missing login/logout around attach/detach bug #1367429
2.0.9 - Add support for pools with model update
2.0.10 - Migrate without losing type settings bug #1356608
2.0.11 - Removing locks bug #1381190
2.0.12 - Fix queryHost call to specify wwns bug #1398206
2.0.13 - Fix missing host name during attach bug #1398206
2.0.14 - Removed usage of host name cache #1398914
2.0.15 - Added support for updated detach_volume attachment.
2.0.16 - Added encrypted property to initialize_connection #1439917
2.0.17 - Improved VLUN creation and deletion logic. #1469816
2.0.18 - Changed initialize_connection to use getHostVLUNs. #1475064
2.0.19 - Adds consistency group support
2.0.20 - Update driver to use ABC metaclasses
2.0.21 - Added update_migrated_volume. bug # 1492023
3.0.0 - Rebranded HP to HPE.
3.0.1 - Remove db access for consistency groups
3.0.2 - Adds v2 managed replication support
3.0.3 - Adds v2 unmanaged replication support
3.0.4 - Adding manage/unmanage snapshot support
3.0.5 - Optimize array ID retrieval
3.0.6 - Update replication to version 2.1
3.0.7 - Remove metadata that tracks the instance ID. bug #1572665
3.0.8 - NSP feature, creating FC Vlun as match set instead of

host sees. bug #1577993
3.0.9 - Handling HTTP conflict 409, host WWN/iSCSI name already used

by another host, while creating 3PAR FC Host. bug #1597454
3.0.10 - Added Entry point tracing
3.0.11 - Handle manage and unmanage hosts present. bug #1648067

(continues on next page)

3.3. Reference 549

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

3.0.12 - Adds consistency group capability in generic volume groups.
4.0.0 - Adds base class.
4.0.1 - Added check to remove FC zones. bug #1730720
4.0.2 - Create one vlun in single path configuration. bug #1727176
4.0.3 - Create FC vlun as host sees. bug #1734505
4.0.4 - Handle force detach case. bug #1686745
4.0.5 - Set proper backend on subsequent operation, after group

failover. bug #1773069
4.0.6 - Set NSP for single path attachments. Bug #1809249
4.0.7 - Added Peer Persistence feature

HPE3PARISCSIDriver

• Version: 4.0.6

• volume_driver=cinder.volume.drivers.hpe.hpe_3par_iscsi.HPE3PARISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/HPE_Storage_CI

• Driver Configuration Options:

550 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/HPE_Storage_CI

Cinder Documentation, Release 20.3.2.dev3

Table 143: Driver configuration options
Name = Default Value (Type) Description
hpe3par_api_url = (String) WSAPI Server URL. This setting applies to: 3PAR, Primera

and Alletra 9k Example 1: for 3PAR, URL is: https://<3par
ip>:8080/api/v1 Example 2: for Primera/Alletra 9k, URL is: https:
//<primera ip>:443/api/v1

hpe3par_cpg = [OpenStack] (List of String) List of the 3PAR/Primera/Alletra 9k CPG(s) to use
for volume creation

hpe3par_cpg_snap = (String) The 3PAR/Primera/Alletra 9k CPG to use for snapshots of
volumes. If empty the userCPG will be used.

hpe3par_debug = False (Boolean) Enable HTTP debugging to 3PAR/Primera/Alletra 9k
hpe3par_iscsi_chap_enabled
= False

(Boolean) Enable CHAP authentication for iSCSI connections.

hpe3par_iscsi_ips = [] (List of String) List of target iSCSI addresses to use.
hpe3par_password = (String) 3PAR/Primera/Alletra 9k password for the user specified in

hpe3par_username
hpe3par_snapshot_expiration
=

(String) The time in hours when a snapshot expires and is deleted.
This must be larger than expiration

hpe3par_snapshot_retention = (String) The time in hours to retain a snapshot. You cant delete it
before this expires.

hpe3par_target_nsp = (String) The nsp of 3PAR/Primera/Alletra 9k backend to be used
when: (1) multipath is not enabled in cinder.conf. (2) Fiber Channel
Zone Manager is not used. (3) the backend is prezoned with this spe-
cific nsp only. For example if nsp is 2 1 2, the format of the options
value is 2:1:2

hpe3par_username = (String) 3PAR/Primera/Alletra 9k username with the edit role
max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
san_private_key = (String) Filename of private key to use for SSH authentication
san_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use with SAN
ssh_conn_timeout = 30 (Integer) SSH connection timeout in seconds
target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is lis-

tening on
unique_fqdn_network = True (Boolean) Whether or not our private network has unique FQDN on

each initiator or not. For example networks with QA systems usually
have multiple servers/VMs with the same FQDN. When true this will
create host entries on 3PAR using the FQDN, when false it will use
the reversed IQN/WWNN.

3.3. Reference 551

https:/
https:/
https:/

Cinder Documentation, Release 20.3.2.dev3

• Description: OpenStack iSCSI driver to enable 3PAR storage array.

Version history:

1.0 - Initial driver
1.1 - QoS, extend volume, multiple iscsi ports, remove domain,

session changes, faster clone, requires 3.1.2 MU2 firmware.
1.2.0 - Updated the use of the hp3parclient to 2.0.0 and refactored

the drivers to use the new APIs.
1.2.1 - Synchronized extend_volume method.
1.2.2 - Added try/finally around client login/logout.
1.2.3 - log exceptions before raising
1.2.4 - Fixed iSCSI active path bug #1224594
1.2.5 - Added metadata during attach/detach bug #1258033
1.2.6 - Use least-used iscsi n:s:p for iscsi volume attach bug #1269515

This update now requires 3.1.2 MU3 firmware
1.3.0 - Removed all SSH code. We rely on the hp3parclient now.
2.0.0 - Update hp3parclient API uses 3.0.x
2.0.2 - Add back-end assisted volume migrate
2.0.3 - Added support for managing/unmanaging of volumes
2.0.4 - Added support for volume retype
2.0.5 - Added CHAP support, requires 3.1.3 MU1 firmware

and hp3parclient 3.1.0.
2.0.6 - Fixing missing login/logout around attach/detach bug #1367429
2.0.7 - Add support for pools with model update
2.0.8 - Migrate without losing type settings bug #1356608
2.0.9 - Removing locks bug #1381190
2.0.10 - Add call to queryHost instead SSH based findHost #1398206
2.0.11 - Added missing host name during attach fix #1398206
2.0.12 - Removed usage of host name cache #1398914
2.0.13 - Update LOG usage to fix translations. bug #1384312
2.0.14 - Do not allow a different iSCSI IP (hp3par_iscsi_ips) to be

used during live-migration. bug #1423958
2.0.15 - Added support for updated detach_volume attachment.
2.0.16 - Added encrypted property to initialize_connection #1439917
2.0.17 - Python 3 fixes
2.0.18 - Improved VLUN creation and deletion logic. #1469816
2.0.19 - Changed initialize_connection to use getHostVLUNs. #1475064
2.0.20 - Adding changes to support 3PAR iSCSI multipath.
2.0.21 - Adds consistency group support
2.0.22 - Update driver to use ABC metaclasses
2.0.23 - Added update_migrated_volume. bug # 1492023
3.0.0 - Rebranded HP to HPE.
3.0.1 - Python 3 support
3.0.2 - Remove db access for consistency groups
3.0.3 - Fix multipath dictionary key error. bug #1522062
3.0.4 - Adds v2 managed replication support
3.0.5 - Adds v2 unmanaged replication support
3.0.6 - Adding manage/unmanage snapshot support
3.0.7 - Optimize array ID retrieval
3.0.8 - Update replication to version 2.1

(continues on next page)

552 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

3.0.9 - Use same LUN ID for each VLUN path #1551994
3.0.10 - Remove metadata that tracks the instance ID. bug #1572665
3.0.11 - _create_3par_iscsi_host() now accepts iscsi_iqn as list only.

Bug #1590180
3.0.12 - Added entry point tracing
3.0.13 - Handling HTTP conflict 409, host WWN/iSCSI name already used

by another host, while creating 3PAR iSCSI Host. bug #1642945
3.0.14 - Handle manage and unmanage hosts present. bug #1648067
3.0.15 - Adds consistency group capability in generic volume groups.
3.0.16 - Get host from os-brick connector. bug #1690244
4.0.0 - Adds base class.
4.0.1 - Update CHAP on host record when volume is migrated

to new compute host. bug # 1737181
4.0.2 - Handle force detach case. bug #1686745
4.0.3 - Set proper backend on subsequent operation, after group

failover. bug #1773069
4.0.4 - Added Peer Persistence feature
4.0.5 - Added Primera array check. bug #1849525
4.0.6 - Allow iSCSI support for Primera 4.2 onwards

HPMSAFCDriver

• Version: 2.0

• volume_driver=cinder.volume.drivers.san.hp.hpmsa_fc.HPMSAFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/HPMSA_CI

• Driver Configuration Options:

3.3. Reference 553

https://wiki.openstack.org/wiki/ThirdPartySystems/HPMSA_CI

Cinder Documentation, Release 20.3.2.dev3

Table 144: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage
if the driver supports it.

hpmsa_api_protocol = https (String(choices=[http, https])) HPMSA API interface protocol.
hpmsa_pool_name = A (String) Pool or Vdisk name to use for volume creation.
hpmsa_pool_type = virtual (String(choices=[linear, virtual])) linear (for Vdisk) or virtual (for

Pool).
hpmsa_verify_certificate =
False

(Boolean) Whether to verify HPMSA array SSL certificate.

hpmsa_verify_certificate_path
= None

(String) HPMSA array SSL certificate path.

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller

• Description: OpenStack Fibre Channel cinder drivers for HPMSA arrays.

Version history:
1.0 - Inheriting from DotHill cinder drivers.
1.6 - Add management path redundancy and reduce load placed

on management controller.
2.0 - DotHill driver renamed to Seagate (STX)

HPMSAISCSIDriver

• Version: 2.0

• volume_driver=cinder.volume.drivers.san.hp.hpmsa_iscsi.HPMSAISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/HPMSA_CI

• Driver Configuration Options:

554 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/HPMSA_CI

Cinder Documentation, Release 20.3.2.dev3

Table 145: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage
if the driver supports it.

hpmsa_api_protocol = https (String(choices=[http, https])) HPMSA API interface protocol.
hpmsa_iscsi_ips = [] (List of String) List of comma-separated target iSCSI IP addresses.
hpmsa_pool_name = A (String) Pool or Vdisk name to use for volume creation.
hpmsa_pool_type = virtual (String(choices=[linear, virtual])) linear (for Vdisk) or virtual (for

Pool).
hpmsa_verify_certificate =
False

(Boolean) Whether to verify HPMSA array SSL certificate.

hpmsa_verify_certificate_path
= None

(String) HPMSA array SSL certificate path.

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller

• Description: OpenStack iSCSI cinder drivers for HPMSA arrays.

Version history:
1.0 - Inheriting from DotHill cinder drivers.
1.6 - Add management path redundancy and reduce load placed

on management controller.
2.0 - DotHill driver renamed to Seagate (STX)

HedvigISCSIDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.hedvig.hedvig_cinder.HedvigISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Hedvig_CI

• Description: OpenStack Cinder driver to enable Hedvig storage.

Version history:

1.0 - Initial driver

3.3. Reference 555

https://wiki.openstack.org/wiki/ThirdPartySystems/Hedvig_CI

Cinder Documentation, Release 20.3.2.dev3

HuaweiFCDriver

• Version: 2.0.9

• volume_driver=cinder.volume.drivers.huawei.huawei_driver.HuaweiFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Huawei_volume_CI

• Driver Configuration Options:

Table 146: Driver configuration options
Name = Default Value (Type) Description
cinder_huawei_conf_file =
/etc/cinder/cinder_huawei_conf.xml

(String) The configuration file for the Cinder Huawei driver.

hypermetro_devices = None (String) The remote device hypermetro will use.
metro_domain_name = None (String) The remote metro device domain name.
metro_san_address = None (String) The remote metro device request url.
metro_san_password = None (String) The remote metro device san password.
metro_san_user = None (String) The remote metro device san user.
metro_storage_pools = None (String) The remote metro device pool names.

• Description: FC driver for Huawei OceanStor storage arrays.

Version history:

1.0.0 - Initial driver
1.1.0 - Provide Huawei OceanStor 18000 storage volume driver
1.1.1 - Code refactor

Multiple pools support
SmartX support
Volume migration support
Volume retype support
FC zone enhancement
Volume hypermetro support

2.0.0 - Rename to HuaweiFCDriver
2.0.1 - Manage/unmanage volume support
2.0.2 - Refactor HuaweiFCDriver
2.0.3 - Manage/unmanage snapshot support
2.0.4 - Balanced FC port selection
2.0.5 - Replication V2 support
2.0.7 - Hypermetro support

Hypermetro consistency group support
Consistency group support
Cgsnapshot support

2.0.8 - Backup snapshot optimal path support
2.0.9 - Support reporting disk type of pool

556 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Huawei_volume_CI

Cinder Documentation, Release 20.3.2.dev3

HuaweiISCSIDriver

• Version: 2.0.9

• volume_driver=cinder.volume.drivers.huawei.huawei_driver.HuaweiISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Huawei_volume_CI

• Driver Configuration Options:

Table 147: Driver configuration options
Name = Default Value (Type) Description
cinder_huawei_conf_file =
/etc/cinder/cinder_huawei_conf.xml

(String) The configuration file for the Cinder Huawei driver.

hypermetro_devices = None (String) The remote device hypermetro will use.
metro_domain_name = None (String) The remote metro device domain name.
metro_san_address = None (String) The remote metro device request url.
metro_san_password = None (String) The remote metro device san password.
metro_san_user = None (String) The remote metro device san user.
metro_storage_pools = None (String) The remote metro device pool names.

• Description: ISCSI driver for Huawei storage arrays.

Version history:

1.0.0 - Initial driver
1.1.0 - Provide Huawei OceanStor storage 18000 driver
1.1.1 - Code refactor

CHAP support
Multiple pools support
ISCSI multipath support
SmartX support
Volume migration support
Volume retype support

2.0.0 - Rename to HuaweiISCSIDriver
2.0.1 - Manage/unmanage volume support
2.0.2 - Refactor HuaweiISCSIDriver
2.0.3 - Manage/unmanage snapshot support
2.0.5 - Replication V2 support
2.0.6 - Support iSCSI configuration in Replication
2.0.7 - Hypermetro support

Hypermetro consistency group support
Consistency group support
Cgsnapshot support

2.0.8 - Backup snapshot optimal path support
2.0.9 - Support reporting disk type of pool

3.3. Reference 557

https://wiki.openstack.org/wiki/ThirdPartySystems/Huawei_volume_CI

Cinder Documentation, Release 20.3.2.dev3

IBMStorageDriver

• Version: 2.3.0

• volume_driver=cinder.volume.drivers.ibm.ibm_storage.ibm_storage.IBMStorageDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI

• Driver Configuration Options:

Table 148: Driver configuration options
Name = Default Value (Type) Description
chap = disabled (String(choices=[disabled, enabled])) CHAP authentication mode,

effective only for iscsi (disabled|enabled)
connection_type = iscsi (String(choices=[fibre_channel, iscsi])) Connection type to the IBM

Storage Array
management_ips = (String) List of Management IP addresses (separated by commas)
proxy = cin-
der.volume.drivers.ibm.ibm_storage.proxy.IBMStorageProxy

(String) Proxy driver that connects to the IBM Storage Array

• Description: IBM Storage driver

IBM Storage driver is a unified Volume driver for IBM XIV, Spectrum Accelerate, FlashSystem A9000,
FlashSystem A9000R and DS8000 storage systems.

Version history:

2.0 - First open source driver version
2.1.0 - Support Consistency groups through Generic volume groups

- Support XIV/A9000 Volume independent QoS
- Support Consistency groups replication

2.3.0 - Support Report backend state

InStorageMCSFCDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.inspur.instorage.instorage_fc.InStorageMCSFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Inspur_CI

• Driver Configuration Options:

558 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Inspur_CI

Cinder Documentation, Release 20.3.2.dev3

Table 149: Driver configuration options
Name = Default Value (Type) Description
instor-
age_mcs_allow_tenant_qos =
False

(Boolean) Allow tenants to specify QOS on create

instor-
age_mcs_localcopy_rate
= 50

(Integer(min=1, max=100)) Specifies the InStorage LocalCopy copy
rate to be used when creating a full volume copy. The default rate is
50, and the valid rates are 1-100.

instor-
age_mcs_localcopy_timeout
= 120

(Integer(min=1, max=600)) Maximum number of seconds to wait for
LocalCopy to be prepared.

instor-
age_mcs_vol_autoexpand
= True

(Boolean) Storage system autoexpand parameter for volumes
(True/False)

instor-
age_mcs_vol_compression =
False

(Boolean) Storage system compression option for volumes

instorage_mcs_vol_grainsize
= 256

(Integer(min=32, max=256)) Storage system grain size parameter for
volumes (32/64/128/256)

instorage_mcs_vol_intier =
True

(Boolean) Enable InTier for volumes

instorage_mcs_vol_iogrp = 0 (String) The I/O group in which to allocate volumes. It can be a
comma-separated list in which case the driver will select an io_group
based on least number of volumes associated with the io_group.

instorage_mcs_vol_rsize = 2 (Integer(min=-1, max=100)) Storage system space-efficiency param-
eter for volumes (percentage)

instorage_mcs_vol_warning =
0

(Integer(min=-1, max=100)) Storage system threshold for volume
capacity warnings (percentage)

instorage_mcs_volpool_name
= [volpool]

(List of String) Comma separated list of storage system storage pools
for volumes.

instorage_san_secondary_ip
= None

(String) Specifies secondary management IP or hostname to be used
if san_ip is invalid or becomes inaccessible.

• Description: INSPUR InStorage MCS FC volume driver.

Version history:

1.0 - Initial driver

InStorageMCSISCSIDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.inspur.instorage.instorage_iscsi.InStorageMCSISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Inspur_CI

• Driver Configuration Options:

3.3. Reference 559

https://wiki.openstack.org/wiki/ThirdPartySystems/Inspur_CI

Cinder Documentation, Release 20.3.2.dev3

Table 150: Driver configuration options
Name = Default Value (Type) Description
instor-
age_mcs_allow_tenant_qos =
False

(Boolean) Allow tenants to specify QOS on create

instor-
age_mcs_localcopy_rate
= 50

(Integer(min=1, max=100)) Specifies the InStorage LocalCopy copy
rate to be used when creating a full volume copy. The default rate is
50, and the valid rates are 1-100.

instor-
age_mcs_localcopy_timeout
= 120

(Integer(min=1, max=600)) Maximum number of seconds to wait for
LocalCopy to be prepared.

instor-
age_mcs_vol_autoexpand
= True

(Boolean) Storage system autoexpand parameter for volumes
(True/False)

instor-
age_mcs_vol_compression =
False

(Boolean) Storage system compression option for volumes

instorage_mcs_vol_grainsize
= 256

(Integer(min=32, max=256)) Storage system grain size parameter for
volumes (32/64/128/256)

instorage_mcs_vol_intier =
True

(Boolean) Enable InTier for volumes

instorage_mcs_vol_iogrp = 0 (String) The I/O group in which to allocate volumes. It can be a
comma-separated list in which case the driver will select an io_group
based on least number of volumes associated with the io_group.

instorage_mcs_vol_rsize = 2 (Integer(min=-1, max=100)) Storage system space-efficiency param-
eter for volumes (percentage)

instorage_mcs_vol_warning =
0

(Integer(min=-1, max=100)) Storage system threshold for volume
capacity warnings (percentage)

instorage_mcs_volpool_name
= [volpool]

(List of String) Comma separated list of storage system storage pools
for volumes.

instorage_san_secondary_ip
= None

(String) Specifies secondary management IP or hostname to be used
if san_ip is invalid or becomes inaccessible.

• Description: Inspur InStorage iSCSI volume driver.

Version history:

1.0 - Initial driver

InfiniboxVolumeDriver

• Version: 1.7.1

• volume_driver=cinder.volume.drivers.infinidat.InfiniboxVolumeDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/INFINIDAT_CI

• Driver Configuration Options:

560 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/INFINIDAT_CI

Cinder Documentation, Release 20.3.2.dev3

Table 151: Driver configuration options
Name = Default Value (Type) Description
chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage

if the driver supports it.
en-
force_multipath_for_image_xfer
= False

(Boolean) If this is set to True, attachment of volumes for image
transfer will be aborted when multipathd is not running. Otherwise,
it will fallback to single path. This parameter needs to be config-
ured for each backend section or in [backend_defaults] section as a
common configuration for all backends.

infinidat_iscsi_netspaces = [] (List of String) List of names of network spaces to use for iSCSI
connectivity

infinidat_pool_name = None (String) Name of the pool from which volumes are allocated
infinidat_storage_protocol =
fc

(String(choices=[iscsi, fc])) Protocol for transferring data between
host and storage back-end.

infinidat_use_compression =
False

(Boolean) Specifies whether to turn on compression for newly cre-
ated volumes.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

num_volume_device_scan_tries
= 3

(Integer) The maximum number of times to rescan targets to find
volume

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
san_thin_provision = True (Boolean) Use thin provisioning for SAN volumes?
sup-
press_requests_ssl_warnings
= False

(Boolean) Suppress requests library SSL certificate warnings.

use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
use_multipath_for_image_xfer
= False

(Boolean) Do we attach/detach volumes in cinder using multipath
for volume to image and image to volume transfers? This param-
eter needs to be configured for each backend section or in [back-
end_defaults] section as a common configuration for all backends.

volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes

• Description: INFINIDAT InfiniBox Cinder driver.

Version history:

1.0 - initial release
1.1 - switched to use infinisdk package
1.2 - added support for iSCSI protocol

(continues on next page)

3.3. Reference 561

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

1.3 - added generic volume groups support
1.4 - added support for QoS
1.5 - added support for volume compression
1.6 - added support for volume multi-attach
1.7 - fixed iSCSI to return all portals
1.7.1 - added support for TLS/SSL communication

InfortrendCLIFCDriver

• Version: 2.1.4

• volume_driver=cinder.volume.drivers.infortrend.infortrend_fc_cli.InfortrendCLIFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Infortrend_Storage_CI

• Driver Configuration Options:

Table 152: Driver configuration options
Name = Default Value (Type) Description
infortrend_cli_cache = False (Boolean) The Infortrend CLI cache. While set True, the RAID sta-

tus report will use cache stored in the CLI. Never enable this unless
the RAID is managed only by Openstack and only by one infortrend
cinder-volume backend. Otherwise, CLI might report out-dated sta-
tus to cinder and thus there might be some race condition among all
backend/CLIs.

infortrend_cli_max_retries =
5

(Integer) The maximum retry times if a command fails.

infortrend_cli_path =
/opt/bin/Infortrend/raidcmd_ESDS10.jar

(String) The Infortrend CLI absolute path.

infortrend_cli_timeout = 60 (Integer) The timeout for CLI in seconds.
infortrend_iqn_prefix =
iqn.2002-10.com.infortrend

(String) Infortrend iqn prefix for iSCSI.

infortrend_pools_name = (List of String) The Infortrend logical volumes name list. It is sepa-
rated with comma.

in-
fortrend_slots_a_channels_id
=

(List of String) Infortrend raid channel ID list on Slot A for Open-
Stack usage. It is separated with comma.

in-
fortrend_slots_b_channels_id
=

(List of String) Infortrend raid channel ID list on Slot B for Open-
Stack usage. It is separated with comma.

java_path = /usr/bin/java (String) The Java absolute path.

• Description: <None>

562 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Infortrend_Storage_CI

Cinder Documentation, Release 20.3.2.dev3

InfortrendCLIISCSIDriver

• Version: 2.1.4

• volume_driver=cinder.volume.drivers.infortrend.infortrend_iscsi_cli.InfortrendCLIISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Infortrend_Storage_CI

• Driver Configuration Options:

Table 153: Driver configuration options
Name = Default Value (Type) Description
infortrend_cli_cache = False (Boolean) The Infortrend CLI cache. While set True, the RAID sta-

tus report will use cache stored in the CLI. Never enable this unless
the RAID is managed only by Openstack and only by one infortrend
cinder-volume backend. Otherwise, CLI might report out-dated sta-
tus to cinder and thus there might be some race condition among all
backend/CLIs.

infortrend_cli_max_retries =
5

(Integer) The maximum retry times if a command fails.

infortrend_cli_path =
/opt/bin/Infortrend/raidcmd_ESDS10.jar

(String) The Infortrend CLI absolute path.

infortrend_cli_timeout = 60 (Integer) The timeout for CLI in seconds.
infortrend_iqn_prefix =
iqn.2002-10.com.infortrend

(String) Infortrend iqn prefix for iSCSI.

infortrend_pools_name = (List of String) The Infortrend logical volumes name list. It is sepa-
rated with comma.

in-
fortrend_slots_a_channels_id
=

(List of String) Infortrend raid channel ID list on Slot A for Open-
Stack usage. It is separated with comma.

in-
fortrend_slots_b_channels_id
=

(List of String) Infortrend raid channel ID list on Slot B for Open-
Stack usage. It is separated with comma.

java_path = /usr/bin/java (String) The Java absolute path.

• Description: <None>

JovianISCSIDriver

• Version: 1.0.2

• volume_driver=cinder.volume.drivers.open_e.iscsi.JovianISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Open-E_JovianDSS_CI

• Driver Configuration Options:

3.3. Reference 563

https://wiki.openstack.org/wiki/ThirdPartySystems/Infortrend_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Open-E_JovianDSS_CI

Cinder Documentation, Release 20.3.2.dev3

Table 154: Driver configuration options
Name = Default Value (Type) Description
backend_availability_zone =
None

(String) Availability zone for this volume backend. If not set, the
storage_availability_zone option value is used as the default for all
backends.

chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
chiscsi_conf = /etc/chelsio-
iscsi/chiscsi.conf

(String) Chiscsi (CXT) global defaults configuration file

driver_client_cert = None (String) The path to the client certificate for verification, if the driver
supports it.

driver_client_cert_key =
None

(String) The path to the client certificate key for verification, if the
driver supports it.

driver_data_namespace =
None

(String) Namespace for driver private data values to be saved in.

driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE
file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage
if the driver supports it.

enable_unsupported_driver =
False

(Boolean) Set this to True when you want to allow an unsupported
driver to start. Drivers that havent maintained a working CI system
and testing are marked as unsupported until CI is working again. This
also marks a driver as deprecated and may be removed in the next
release.

filter_function = None (String) String representation for an equation that will be used to
filter hosts. Only used when the driver filter is set to be used by the
Cinder scheduler.

goodness_function = None (String) String representation for an equation that will be used to de-
termine the goodness of a host. Only used when using the goodness
weigher is set to be used by the Cinder scheduler.

iet_conf = /etc/iet/ietd.conf (String) DEPRECATED: IET configuration file
iscsi_iotype = fileio (String(choices=[blockio, fileio, auto])) Sets the behavior of the

iSCSI target to either perform blockio or fileio optionally, auto can
be set and Cinder will autodetect type of backing device

iscsi_secondary_ip_addresses
= []

(List of String) The list of secondary IP addresses of the iSCSI dae-
mon

iscsi_target_flags = (String) Sets the target-specific flags for the iSCSI target. Only used
for tgtadm to specify backing device flags using bsoflags option. The
specified string is passed as is to the underlying tool.

iscsi_write_cache = on (String(choices=[on, off])) Sets the behavior of the iSCSI target to
either perform write-back(on) or write-through(off). This parameter
is valid if target_helper is set to tgtadm.

continues on next page

564 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 154 – continued from previous page
Name = Default Value (Type) Description
max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

num_shell_tries = 3 (Integer) Number of times to attempt to run flakey shell commands
num_volume_device_scan_tries
= 3

(Integer) The maximum number of times to rescan targets to find
volume

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

report_discard_supported =
False

(Boolean) Report to clients of Cinder that the backend supports dis-
card (aka. trim/unmap). This will not actually change the behavior
of the backend or the client directly, it will only notify that it can be
used.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

storage_protocol = iscsi (String(choices=[iscsi, fc])) Protocol for transferring data between
host and storage back-end.

target_helper = tgtadm (String(choices=[tgtadm, lioadm, scstadmin, iscsictl, ietadm, nvmet,
spdk-nvmeof, fake])) Target user-land tool to use. tgtadm is default,
use lioadm for LIO iSCSI support, scstadmin for SCST target sup-
port, ietadm for iSCSI Enterprise Target, iscsictl for Chelsio iSCSI
Target, nvmet for NVMEoF support, spdk-nvmeof for SPDK NVMe-
oF, or fake for testing. Note: The IET driver is deprecated and will
be removed in the V release.

target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is lis-

tening on
target_prefix = iqn.2010-
10.org.openstack:

(String) Prefix for iSCSI volumes

target_protocol = iscsi (String(choices=[iscsi, iser, nvmet_rdma, nvmet_tcp])) Determines
the target protocol for new volumes, created with tgtadm, lioadm
and nvmet target helpers. In order to enable RDMA, this parameter
should be set with the value iser. The supported iSCSI protocol val-
ues are iscsi and iser, in case of nvmet target set to nvmet_rdma or
nvmet_tcp.

trace_flags = None (List of String) List of options that control which trace info is written
to the DEBUG log level to assist developers. Valid values are method
and api.

use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
continues on next page

3.3. Reference 565

Cinder Documentation, Release 20.3.2.dev3

Table 154 – continued from previous page
Name = Default Value (Type) Description
volume_backend_name =
None

(String) The backend name for a given driver implementation

volume_clear = zero (String(choices=[none, zero])) Method used to wipe old volumes
volume_clear_ionice = None (String) The flag to pass to ionice to alter the i/o priority of the pro-

cess used to zero a volume after deletion, for example -c3 for idle
only priority.

volume_clear_size = 0 (Integer(max=1024)) Size in MiB to wipe at start of old volumes.
1024 MiB at max. 0 => all

vol-
ume_copy_blkio_cgroup_name
= cinder-volume-copy

(String) The blkio cgroup name to be used to limit bandwidth of
volume copy

volume_copy_bps_limit = 0 (Integer) The upper limit of bandwidth of volume copy. 0 => unlim-
ited

volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes
volumes_dir =
$state_path/volumes

(String) Volume configuration file storage directory

• Description: Executes volume driver commands on Open-E JovianDSS.

Version history:

1.0.0 - Open-E JovianDSS driver with basic functionality
1.0.1 - Added certificate support

Added revert to snapshot support
1.0.2 - Added multi-attach support

Added 16K block support

KaminarioISCSIDriver

• Version: 1.4

• volume_driver=cinder.volume.drivers.kaminario.kaminario_iscsi.KaminarioISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Kaminario_K2_CI

• Driver Configuration Options:

566 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Kaminario_K2_CI

Cinder Documentation, Release 20.3.2.dev3

Table 155: Driver configuration options
Name = Default Value (Type) Description
auto_calc_max_oversubscription_ratio
= False

(Boolean) K2 driver will calculate max_oversubscription_ratio on
setting this option as True.

disable_discovery = False (Boolean) Disabling iSCSI discovery (sendtargets) for multipath
connections on K2 driver.

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
unique_fqdn_network = True (Boolean) Whether or not our private network has unique FQDN on

each initiator or not. For example networks with QA systems usually
have multiple servers/VMs with the same FQDN. When true this will
create host entries on 3PAR using the FQDN, when false it will use
the reversed IQN/WWNN.

volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes

• Description: Kaminario K2 iSCSI Volume Driver.

Version history:

1.0 - Initial driver
1.1 - Added manage/unmanage and extra-specs support for nodedup
1.2 - Added replication support
1.3 - Added retype support
1.4 - Added replication failback support

KumoScaleBaseVolumeDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.kioxia.kumoscale.KumoScaleBaseVolumeDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/KIOXIA_CI

• Driver Configuration Options:

3.3. Reference 567

https://wiki.openstack.org/wiki/ThirdPartySystems/KIOXIA_CI

Cinder Documentation, Release 20.3.2.dev3

Table 156: Driver configuration options
Name = Default Value (Type) Description
kioxia_block_size = 4096 (Integer) Volume block size in bytes - 512 or 4096 (Default).
kioxia_cafile = None (String) Cert for provisioner REST API SSL
kioxia_desired_bw_per_gb =
0

(Integer) Desired bandwidth in B/s per GB.

kioxia_desired_iops_per_gb
= 0

(Integer) Desired IOPS/GB.

kioxia_max_bw_per_gb = 0 (Integer) Upper limit for bandwidth in B/s per GB.
kioxia_max_iops_per_gb = 0 (Integer) Upper limit for IOPS/GB.
kioxia_max_replica_down_time
= 0

(Integer) Replicated volume max downtime for replica in minutes.

kioxia_num_replicas = 1 (Integer) Number of volume replicas.
kioxia_provisioning_type =
THICK

(String(choices=[THICK, THIN])) Thin or thick volume, Default
thick.

kioxia_same_rack_allowed =
False

(Boolean) Can more than one replica be allocated to same rack.

kioxia_snap_reserved_space_percentage
= 0

(Integer) Percentage of the parent volume to be used for log.

kioxia_snap_vol_reserved_space_percentage
= 0

(Integer) Writable snapshot percentage of parent volume used for log.

kioxia_snap_vol_span_allowed
= True

(Boolean) Allow span in snapshot volume - Default True.

kioxia_span_allowed = True (Boolean) Allow span - Default True.
kioxia_token = None (String) KumoScale Provisioner auth token.
kioxia_url = None (String) KumoScale provisioner REST API URL
kioxia_vol_reserved_space_percentage
= 0

(Integer) Thin volume reserved capacity allocation percentage.

kioxia_writable = False (Boolean) Volumes from snapshot writeable or not.

• Description: Performs volume management on KumoScale Provisioner.

Version history:

1.0.0 - Initial driver version.

LVMVolumeDriver

• Version: 3.0.0

• volume_driver=cinder.volume.drivers.lvm.LVMVolumeDriver

• Driver Configuration Options:

Table 157: Driver configuration options
Name = Default Value (Type) Description
iet_conf = /etc/iet/ietd.conf (String) DEPRECATED: IET configuration file

continues on next page

568 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 157 – continued from previous page
Name = Default Value (Type) Description
iscsi_iotype = fileio (String(choices=[blockio, fileio, auto])) Sets the behavior of the

iSCSI target to either perform blockio or fileio optionally, auto can
be set and Cinder will autodetect type of backing device

iscsi_secondary_ip_addresses
= []

(List of String) The list of secondary IP addresses of the iSCSI dae-
mon

iscsi_target_flags = (String) Sets the target-specific flags for the iSCSI target. Only used
for tgtadm to specify backing device flags using bsoflags option. The
specified string is passed as is to the underlying tool.

iscsi_write_cache = on (String(choices=[on, off])) Sets the behavior of the iSCSI target to
either perform write-back(on) or write-through(off). This parameter
is valid if target_helper is set to tgtadm.

lvm_conf_file =
/etc/cinder/lvm.conf

(String) LVM conf file to use for the LVM driver in Cinder; this set-
ting is ignored if the specified file does not exist (You can also specify
None to not use a conf file even if one exists).

lvm_mirrors = 0 (Integer) If >0, create LVs with multiple mirrors. Note that this re-
quires lvm_mirrors + 2 PVs with available space

lvm_suppress_fd_warnings =
False

(Boolean) Suppress leaked file descriptor warnings in LVM com-
mands.

lvm_type = auto (String(choices=[default, thin, auto])) Type of LVM volumes to de-
ploy; (default, thin, or auto). Auto defaults to thin if thin is supported.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

nvmet_ns_id = 10 (Integer) The namespace id associated with the subsystem that will
be created with the path for the LVM volume.

nvmet_port_id = 1 (Port(min=0, max=65535)) The port that the NVMe target is listen-
ing on.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

scst_target_driver = iscsi (String) SCST target implementation can choose from multiple
SCST target drivers.

scst_target_iqn_name = None (String) Certain ISCSI targets have predefined target names, SCST
target driver uses this name.

spdk_max_queue_depth = 64 (Integer(min=1, max=128)) Queue depth for rdma transport.
spdk_rpc_ip = None (String) The NVMe target remote configuration IP address.
spdk_rpc_password = None (String) The NVMe target remote configuration password.
spdk_rpc_port = 8000 (Port(min=0, max=65535)) The NVMe target remote configuration

port.
spdk_rpc_username = None (String) The NVMe target remote configuration username.

continues on next page

3.3. Reference 569

Cinder Documentation, Release 20.3.2.dev3

Table 157 – continued from previous page
Name = Default Value (Type) Description
target_helper = tgtadm (String(choices=[tgtadm, lioadm, scstadmin, iscsictl, ietadm, nvmet,

spdk-nvmeof, fake])) Target user-land tool to use. tgtadm is default,
use lioadm for LIO iSCSI support, scstadmin for SCST target sup-
port, ietadm for iSCSI Enterprise Target, iscsictl for Chelsio iSCSI
Target, nvmet for NVMEoF support, spdk-nvmeof for SPDK NVMe-
oF, or fake for testing. Note: The IET driver is deprecated and will
be removed in the V release.

target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is lis-

tening on
target_prefix = iqn.2010-
10.org.openstack:

(String) Prefix for iSCSI volumes

target_protocol = iscsi (String(choices=[iscsi, iser, nvmet_rdma, nvmet_tcp])) Determines
the target protocol for new volumes, created with tgtadm, lioadm
and nvmet target helpers. In order to enable RDMA, this parameter
should be set with the value iser. The supported iSCSI protocol val-
ues are iscsi and iser, in case of nvmet target set to nvmet_rdma or
nvmet_tcp.

volume_clear = zero (String(choices=[none, zero])) Method used to wipe old volumes
volume_clear_size = 0 (Integer(max=1024)) Size in MiB to wipe at start of old volumes.

1024 MiB at max. 0 => all
volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes
volume_group = cinder-
volumes

(String) Name for the VG that will contain exported volumes

volumes_dir =
$state_path/volumes

(String) Volume configuration file storage directory

• Description: Executes commands relating to Volumes.

LenovoFCDriver

• Version: 2.0

• volume_driver=cinder.volume.drivers.lenovo.lenovo_fc.LenovoFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Lenovo_Storage_CI

• Driver Configuration Options:

Table 158: Driver configuration options
Name = Default Value (Type) Description
lenovo_api_protocol = https (String(choices=[http, https])) Lenovo api interface protocol.
lenovo_pool_name = A (String) Pool or Vdisk name to use for volume creation.
lenovo_pool_type = virtual (String(choices=[linear, virtual])) linear (for VDisk) or virtual (for

Pool).
lenovo_verify_certificate =
False

(Boolean) Whether to verify Lenovo array SSL certificate.

lenovo_verify_certificate_path
= None

(String) Lenovo array SSL certificate path.

570 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Lenovo_Storage_CI

Cinder Documentation, Release 20.3.2.dev3

• Description: OpenStack Fibre Channel cinder drivers for Lenovo Storage arrays.

Version history:
1.0 - Inheriting from DotHill cinder drivers.
1.6 - Add management path redundancy and reduce load placed

on management controller.
2.0 - DotHill driver renamed to Seagate (STX)

LenovoISCSIDriver

• Version: 2.0

• volume_driver=cinder.volume.drivers.lenovo.lenovo_iscsi.LenovoISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Lenovo_Storage_CI

• Driver Configuration Options:

Table 159: Driver configuration options
Name = Default Value (Type) Description
lenovo_api_protocol = https (String(choices=[http, https])) Lenovo api interface protocol.
lenovo_iscsi_ips = [] (List of String) List of comma-separated target iSCSI IP addresses.
lenovo_pool_name = A (String) Pool or Vdisk name to use for volume creation.
lenovo_pool_type = virtual (String(choices=[linear, virtual])) linear (for VDisk) or virtual (for

Pool).
lenovo_verify_certificate =
False

(Boolean) Whether to verify Lenovo array SSL certificate.

lenovo_verify_certificate_path
= None

(String) Lenovo array SSL certificate path.

• Description: OpenStack iSCSI cinder drivers for Lenovo Storage arrays.

Version history:
1.0 - Inheriting from DotHill cinder drivers.
1.6 - Add management path redundancy and reduce load placed

on management controller.
2.0 - DotHill driver renamed to Seagate (STX)

LightOSVolumeDriver

• Version: 2.3.12

• volume_driver=cinder.volume.drivers.lightos.LightOSVolumeDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/LightbitsLabs_CI

• Driver Configuration Options:

3.3. Reference 571

https://wiki.openstack.org/wiki/ThirdPartySystems/Lenovo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/LightbitsLabs_CI

Cinder Documentation, Release 20.3.2.dev3

Table 160: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate

of the backend endpoint.
lightos_api_address = None (List of IPAddress) The IP addresses of the LightOS API servers sep-

arated by commas.
lightos_api_port = 443 (Port(min=0, max=65535)) The TCP/IP port at which the LightOS

API endpoints listen. Port 443 is used for HTTPS and other values
are used for HTTP.

lightos_api_service_timeout
= 30

(Integer) The default amount of time (in seconds) to wait for an API
endpoint response.

lightos_default_compression_enabled
= False

(Boolean) Set to True to create new volumes compressed assuming
no other compression setting is specified via the volumes type.

lightos_default_num_replicas
= 3

(Integer(min=1, max=3)) The default number of replicas to create
for each volume.

lightos_jwt = None (String) JWT to be used for volume and snapshot operations with the
LightOS cluster. Do not set this parameter if the cluster is installed
with multi-tenancy disabled.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

volume_backend_name =
None

(String) The backend name for a given driver implementation

• Description: OpenStack NVMe/TCP cinder drivers for Lightbits LightOS.

Version history:
2.3.12 - Initial upstream driver version.

LinstorDrbdDriver

• Version: 1.0.1

• volume_driver=cinder.volume.drivers.linstordrv.LinstorDrbdDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/LINBIT_LINSTOR_CI

• Driver Configuration Options:

572 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/LINBIT_LINSTOR_CI

Cinder Documentation, Release 20.3.2.dev3

Table 161: Driver configuration options
Name = Default Value (Type) Description
linstor_autoplace_count = 0 (Integer) Autoplace replication count on volume deployment. 0 =

Full cluster replication without autoplace, 1 = Single node deploy-
ment without replication, 2 or greater = Replicated deployment with
autoplace.

linstor_controller_diskless =
True

(Boolean) True means Cinder node is a diskless LINSTOR node.

linstor_default_blocksize =
4096

(Integer) Default Block size for Image restoration. When using
iSCSI transport, this option specifies the block size.

lin-
stor_default_storage_pool_name
= DfltStorPool

(String) Default Storage Pool name for LINSTOR.

linstor_default_uri = lin-
stor://localhost

(String) Default storage URI for LINSTOR.

lin-
stor_default_volume_group_name
= drbd-vg

(String) Default Volume Group name for LINSTOR. Not Cinder Vol-
ume.

lin-
stor_volume_downsize_factor
= 4096

(Float) Default volume downscale size in KiB = 4 MiB.

• Description: Cinder DRBD driver that uses LINSTOR for storage.

LinstorIscsiDriver

• Version: 1.0.1

• volume_driver=cinder.volume.drivers.linstordrv.LinstorIscsiDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/LINBIT_LINSTOR_CI

• Driver Configuration Options:

3.3. Reference 573

https://wiki.openstack.org/wiki/ThirdPartySystems/LINBIT_LINSTOR_CI

Cinder Documentation, Release 20.3.2.dev3

Table 162: Driver configuration options
Name = Default Value (Type) Description
linstor_autoplace_count = 0 (Integer) Autoplace replication count on volume deployment. 0 =

Full cluster replication without autoplace, 1 = Single node deploy-
ment without replication, 2 or greater = Replicated deployment with
autoplace.

linstor_controller_diskless =
True

(Boolean) True means Cinder node is a diskless LINSTOR node.

linstor_default_blocksize =
4096

(Integer) Default Block size for Image restoration. When using
iSCSI transport, this option specifies the block size.

lin-
stor_default_storage_pool_name
= DfltStorPool

(String) Default Storage Pool name for LINSTOR.

linstor_default_uri = lin-
stor://localhost

(String) Default storage URI for LINSTOR.

lin-
stor_default_volume_group_name
= drbd-vg

(String) Default Volume Group name for LINSTOR. Not Cinder Vol-
ume.

lin-
stor_volume_downsize_factor
= 4096

(Float) Default volume downscale size in KiB = 4 MiB.

• Description: Cinder iSCSI driver that uses LINSTOR for storage.

MStorageFCDriver

• Version: 1.11.1

• volume_driver=cinder.volume.drivers.nec.volume.MStorageFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/NEC_Cinder_CI

• Driver Configuration Options:

574 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/NEC_Cinder_CI

Cinder Documentation, Release 20.3.2.dev3

Table 163: Driver configuration options
Name = Default Value (Type) Description
nec_actual_free_capacity =
False

(Boolean) Return actual free capacity.

nec_auto_accesscontrol =
True

(Boolean) Configure access control automatically.

nec_backend_max_ld_count
= 1024

(Integer) Maximum number of managing sessions.

nec_backup_ldname_format
= LX:%s

(String) M-Series Storage LD name format for snapshots.

nec_backup_pools = [] (List of String) M-Series Storage backup pool number to be used.
nec_cv_ldname_format =
LX:__ControlVolume_%xh

(String) M-Series Storage Control Volume name format.

nec_diskarray_name = (String) Diskarray name of M-Series Storage.
nec_iscsi_portals_per_cont =
0

(Integer) Max number of iSCSI portals per controller. 0 => unlim-
ited. This option is deprecated and may be removed in the next re-
lease.

nec_ismcli_fip = None (IPAddress) FIP address of M-Series Storage iSMCLI.
nec_ismcli_password = (String) Password for M-Series Storage iSMCLI.
nec_ismcli_privkey = (String) Filename of RSA private key for M-Series Storage iSMCLI.
nec_ismcli_user = (String) User name for M-Series Storage iSMCLI.
nec_ismview_alloptimize =
False

(Boolean) Use legacy iSMCLI command with optimization.

nec_ismview_dir =
/tmp/nec/cinder

(String) Output path of iSMview file.

nec_ldname_format = LX:%s (String) M-Series Storage LD name format for volumes.
nec_ldset = (String) M-Series Storage LD Set name for Compute Node.
nec_pools = [] (List of String) M-Series Storage pool numbers list to be used.
nec_queryconfig_view =
False

(Boolean) Use legacy iSMCLI command.

nec_ssh_pool_port_number =
22

(Integer) Port number of ssh pool.

nec_unpairthread_timeout =
3600

(Integer) Timeout value of Unpairthread.

• Description: M-Series Storage Snapshot FC Driver.

Version history:

1.8.1 - First open source driver version.
1.8.2 - Code refactoring.
1.9.1 - Support optimal path for non-disruptive backup.
1.9.2 - Support manage/unmanage and manage/unmanage snapshot.

Delete an unused configuration
parameter (ldset_controller_node_name).
Fixed bug #1705001: driver fails to start.

1.10.1 - Support automatic configuration of SAN access control.
Fixed bug #1753375: SAN access remains permitted on the
source node.

(continues on next page)

3.3. Reference 575

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

1.10.2 - Delete max volumes per pool limit.
1.10.3 - Add faster clone status check.

Fixed bug #1777385: driver removed access permission from
the destination node after live-migraion.
Fixed bug #1778669: LUNs of detached volumes are never reused.

1.11.1 - Add support python 3.
Add support for multi-attach.
Add support of more than 4 iSCSI portals for a node.
Add support to revert a volume to a snapshot.
Add support storage assist retype and fixed bug #1838955:
a volume in NEC Storage was left undeleted when the volume
was retyped to another storage.

MStorageISCSIDriver

• Version: 1.11.1

• volume_driver=cinder.volume.drivers.nec.volume.MStorageISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/NEC_Cinder_CI

• Driver Configuration Options:

576 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/NEC_Cinder_CI

Cinder Documentation, Release 20.3.2.dev3

Table 164: Driver configuration options
Name = Default Value (Type) Description
nec_actual_free_capacity =
False

(Boolean) Return actual free capacity.

nec_auto_accesscontrol =
True

(Boolean) Configure access control automatically.

nec_backend_max_ld_count
= 1024

(Integer) Maximum number of managing sessions.

nec_backup_ldname_format
= LX:%s

(String) M-Series Storage LD name format for snapshots.

nec_backup_pools = [] (List of String) M-Series Storage backup pool number to be used.
nec_cv_ldname_format =
LX:__ControlVolume_%xh

(String) M-Series Storage Control Volume name format.

nec_diskarray_name = (String) Diskarray name of M-Series Storage.
nec_iscsi_portals_per_cont =
0

(Integer) Max number of iSCSI portals per controller. 0 => unlim-
ited. This option is deprecated and may be removed in the next re-
lease.

nec_ismcli_fip = None (IPAddress) FIP address of M-Series Storage iSMCLI.
nec_ismcli_password = (String) Password for M-Series Storage iSMCLI.
nec_ismcli_privkey = (String) Filename of RSA private key for M-Series Storage iSMCLI.
nec_ismcli_user = (String) User name for M-Series Storage iSMCLI.
nec_ismview_alloptimize =
False

(Boolean) Use legacy iSMCLI command with optimization.

nec_ismview_dir =
/tmp/nec/cinder

(String) Output path of iSMview file.

nec_ldname_format = LX:%s (String) M-Series Storage LD name format for volumes.
nec_ldset = (String) M-Series Storage LD Set name for Compute Node.
nec_pools = [] (List of String) M-Series Storage pool numbers list to be used.
nec_queryconfig_view =
False

(Boolean) Use legacy iSMCLI command.

nec_ssh_pool_port_number =
22

(Integer) Port number of ssh pool.

nec_unpairthread_timeout =
3600

(Integer) Timeout value of Unpairthread.

• Description: M-Series Storage Snapshot iSCSI Driver.

Version history:

1.8.1 - First open source driver version.
1.8.2 - Code refactoring.
1.9.1 - Support optimal path for non-disruptive backup.
1.9.2 - Support manage/unmanage and manage/unmanage snapshot.

Delete an unused configuration
parameter (ldset_controller_node_name).
Fixed bug #1705001: driver fails to start.

1.10.1 - Support automatic configuration of SAN access control.
Fixed bug #1753375: SAN access remains permitted on the
source node.

(continues on next page)

3.3. Reference 577

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

1.10.2 - Delete max volumes per pool limit.
1.10.3 - Add faster clone status check.

Fixed bug #1777385: driver removed access permission from
the destination node after live-migraion.
Fixed bug #1778669: LUNs of detached volumes are never reused.

1.11.1 - Add support python 3.
Add support for multi-attach.
Add support of more than 4 iSCSI portals for a node.
Add support to revert a volume to a snapshot.
Add support storage assist retype and fixed bug #1838955:
a volume in NEC Storage was left undeleted when the volume
was retyped to another storage.

MacroSANFCDriver

• Version: 1.0.1

• volume_driver=cinder.volume.drivers.macrosan.driver.MacroSANFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/MacroSAN_Volume_CI

• Driver Configuration Options:

Table 165: Driver configuration options
Name = Default Value (Type) Description
backend_availability_zone =
None

(String) Availability zone for this volume backend. If not set, the
storage_availability_zone option value is used as the default for all
backends.

chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
chiscsi_conf = /etc/chelsio-
iscsi/chiscsi.conf

(String) Chiscsi (CXT) global defaults configuration file

driver_client_cert = None (String) The path to the client certificate for verification, if the driver
supports it.

driver_client_cert_key =
None

(String) The path to the client certificate key for verification, if the
driver supports it.

driver_data_namespace =
None

(String) Namespace for driver private data values to be saved in.

driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE
file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage
if the driver supports it.

continues on next page

578 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/MacroSAN_Volume_CI

Cinder Documentation, Release 20.3.2.dev3

Table 165 – continued from previous page
Name = Default Value (Type) Description
enable_unsupported_driver =
False

(Boolean) Set this to True when you want to allow an unsupported
driver to start. Drivers that havent maintained a working CI system
and testing are marked as unsupported until CI is working again. This
also marks a driver as deprecated and may be removed in the next
release.

filter_function = None (String) String representation for an equation that will be used to
filter hosts. Only used when the driver filter is set to be used by the
Cinder scheduler.

goodness_function = None (String) String representation for an equation that will be used to de-
termine the goodness of a host. Only used when using the goodness
weigher is set to be used by the Cinder scheduler.

iet_conf = /etc/iet/ietd.conf (String) DEPRECATED: IET configuration file
iscsi_iotype = fileio (String(choices=[blockio, fileio, auto])) Sets the behavior of the

iSCSI target to either perform blockio or fileio optionally, auto can
be set and Cinder will autodetect type of backing device

iscsi_secondary_ip_addresses
= []

(List of String) The list of secondary IP addresses of the iSCSI dae-
mon

iscsi_target_flags = (String) Sets the target-specific flags for the iSCSI target. Only used
for tgtadm to specify backing device flags using bsoflags option. The
specified string is passed as is to the underlying tool.

iscsi_write_cache = on (String(choices=[on, off])) Sets the behavior of the iSCSI target to
either perform write-back(on) or write-through(off). This parameter
is valid if target_helper is set to tgtadm.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

num_shell_tries = 3 (Integer) Number of times to attempt to run flakey shell commands
num_volume_device_scan_tries
= 3

(Integer) The maximum number of times to rescan targets to find
volume

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

report_discard_supported =
False

(Boolean) Report to clients of Cinder that the backend supports dis-
card (aka. trim/unmap). This will not actually change the behavior
of the backend or the client directly, it will only notify that it can be
used.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

storage_protocol = iscsi (String(choices=[iscsi, fc])) Protocol for transferring data between
host and storage back-end.

continues on next page

3.3. Reference 579

Cinder Documentation, Release 20.3.2.dev3

Table 165 – continued from previous page
Name = Default Value (Type) Description
target_helper = tgtadm (String(choices=[tgtadm, lioadm, scstadmin, iscsictl, ietadm, nvmet,

spdk-nvmeof, fake])) Target user-land tool to use. tgtadm is default,
use lioadm for LIO iSCSI support, scstadmin for SCST target sup-
port, ietadm for iSCSI Enterprise Target, iscsictl for Chelsio iSCSI
Target, nvmet for NVMEoF support, spdk-nvmeof for SPDK NVMe-
oF, or fake for testing. Note: The IET driver is deprecated and will
be removed in the V release.

target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is lis-

tening on
target_prefix = iqn.2010-
10.org.openstack:

(String) Prefix for iSCSI volumes

target_protocol = iscsi (String(choices=[iscsi, iser, nvmet_rdma, nvmet_tcp])) Determines
the target protocol for new volumes, created with tgtadm, lioadm
and nvmet target helpers. In order to enable RDMA, this parameter
should be set with the value iser. The supported iSCSI protocol val-
ues are iscsi and iser, in case of nvmet target set to nvmet_rdma or
nvmet_tcp.

trace_flags = None (List of String) List of options that control which trace info is written
to the DEBUG log level to assist developers. Valid values are method
and api.

use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
volume_backend_name =
None

(String) The backend name for a given driver implementation

volume_clear = zero (String(choices=[none, zero])) Method used to wipe old volumes
volume_clear_ionice = None (String) The flag to pass to ionice to alter the i/o priority of the pro-

cess used to zero a volume after deletion, for example -c3 for idle
only priority.

volume_clear_size = 0 (Integer(max=1024)) Size in MiB to wipe at start of old volumes.
1024 MiB at max. 0 => all

vol-
ume_copy_blkio_cgroup_name
= cinder-volume-copy

(String) The blkio cgroup name to be used to limit bandwidth of
volume copy

volume_copy_bps_limit = 0 (Integer) The upper limit of bandwidth of volume copy. 0 => unlim-
ited

volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes
volumes_dir =
$state_path/volumes

(String) Volume configuration file storage directory

• Description: FC driver for MacroSan storage arrays.

Version history:

1.0.0 - Initial driver
1.0.1 - Adjust some log level and text prompts; Remove some useless
functions; Add Cinder trace decorator. #1837920

580 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

MacroSANISCSIDriver

• Version: 1.0.1

• volume_driver=cinder.volume.drivers.macrosan.driver.MacroSANISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/MacroSAN_Volume_CI

• Driver Configuration Options:

Table 166: Driver configuration options
Name = Default Value (Type) Description
backend_availability_zone =
None

(String) Availability zone for this volume backend. If not set, the
storage_availability_zone option value is used as the default for all
backends.

chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
chiscsi_conf = /etc/chelsio-
iscsi/chiscsi.conf

(String) Chiscsi (CXT) global defaults configuration file

driver_client_cert = None (String) The path to the client certificate for verification, if the driver
supports it.

driver_client_cert_key =
None

(String) The path to the client certificate key for verification, if the
driver supports it.

driver_data_namespace =
None

(String) Namespace for driver private data values to be saved in.

driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE
file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage
if the driver supports it.

enable_unsupported_driver =
False

(Boolean) Set this to True when you want to allow an unsupported
driver to start. Drivers that havent maintained a working CI system
and testing are marked as unsupported until CI is working again. This
also marks a driver as deprecated and may be removed in the next
release.

filter_function = None (String) String representation for an equation that will be used to
filter hosts. Only used when the driver filter is set to be used by the
Cinder scheduler.

goodness_function = None (String) String representation for an equation that will be used to de-
termine the goodness of a host. Only used when using the goodness
weigher is set to be used by the Cinder scheduler.

iet_conf = /etc/iet/ietd.conf (String) DEPRECATED: IET configuration file
iscsi_iotype = fileio (String(choices=[blockio, fileio, auto])) Sets the behavior of the

iSCSI target to either perform blockio or fileio optionally, auto can
be set and Cinder will autodetect type of backing device

iscsi_secondary_ip_addresses
= []

(List of String) The list of secondary IP addresses of the iSCSI dae-
mon

continues on next page

3.3. Reference 581

https://wiki.openstack.org/wiki/ThirdPartySystems/MacroSAN_Volume_CI

Cinder Documentation, Release 20.3.2.dev3

Table 166 – continued from previous page
Name = Default Value (Type) Description
iscsi_target_flags = (String) Sets the target-specific flags for the iSCSI target. Only used

for tgtadm to specify backing device flags using bsoflags option. The
specified string is passed as is to the underlying tool.

iscsi_write_cache = on (String(choices=[on, off])) Sets the behavior of the iSCSI target to
either perform write-back(on) or write-through(off). This parameter
is valid if target_helper is set to tgtadm.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

num_shell_tries = 3 (Integer) Number of times to attempt to run flakey shell commands
num_volume_device_scan_tries
= 3

(Integer) The maximum number of times to rescan targets to find
volume

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

report_discard_supported =
False

(Boolean) Report to clients of Cinder that the backend supports dis-
card (aka. trim/unmap). This will not actually change the behavior
of the backend or the client directly, it will only notify that it can be
used.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

storage_protocol = iscsi (String(choices=[iscsi, fc])) Protocol for transferring data between
host and storage back-end.

target_helper = tgtadm (String(choices=[tgtadm, lioadm, scstadmin, iscsictl, ietadm, nvmet,
spdk-nvmeof, fake])) Target user-land tool to use. tgtadm is default,
use lioadm for LIO iSCSI support, scstadmin for SCST target sup-
port, ietadm for iSCSI Enterprise Target, iscsictl for Chelsio iSCSI
Target, nvmet for NVMEoF support, spdk-nvmeof for SPDK NVMe-
oF, or fake for testing. Note: The IET driver is deprecated and will
be removed in the V release.

target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is lis-

tening on
target_prefix = iqn.2010-
10.org.openstack:

(String) Prefix for iSCSI volumes

continues on next page

582 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 166 – continued from previous page
Name = Default Value (Type) Description
target_protocol = iscsi (String(choices=[iscsi, iser, nvmet_rdma, nvmet_tcp])) Determines

the target protocol for new volumes, created with tgtadm, lioadm
and nvmet target helpers. In order to enable RDMA, this parameter
should be set with the value iser. The supported iSCSI protocol val-
ues are iscsi and iser, in case of nvmet target set to nvmet_rdma or
nvmet_tcp.

trace_flags = None (List of String) List of options that control which trace info is written
to the DEBUG log level to assist developers. Valid values are method
and api.

use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
volume_backend_name =
None

(String) The backend name for a given driver implementation

volume_clear = zero (String(choices=[none, zero])) Method used to wipe old volumes
volume_clear_ionice = None (String) The flag to pass to ionice to alter the i/o priority of the pro-

cess used to zero a volume after deletion, for example -c3 for idle
only priority.

volume_clear_size = 0 (Integer(max=1024)) Size in MiB to wipe at start of old volumes.
1024 MiB at max. 0 => all

vol-
ume_copy_blkio_cgroup_name
= cinder-volume-copy

(String) The blkio cgroup name to be used to limit bandwidth of
volume copy

volume_copy_bps_limit = 0 (Integer) The upper limit of bandwidth of volume copy. 0 => unlim-
ited

volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes
volumes_dir =
$state_path/volumes

(String) Volume configuration file storage directory

• Description: ISCSI driver for MacroSan storage arrays.

Version history:

1.0.0 - Initial driver
1.0.1 - Adjust some log level and text prompts; Remove some useless
functions; Add Cinder trace decorator. #1837920

NetAppCmodeFibreChannelDriver

• Version: 3.0.0

• volume_driver=cinder.volume.drivers.netapp.dataontap.fc_cmode.NetAppCmodeFibreChannelDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/NetApp_CI

• Driver Configuration Options:

Table 167: Driver configuration options
Name = Default Value (Type) Description
netapp_vserver = None (String) This option specifies the virtual storage server (Vserver)

name on the storage cluster on which provisioning of block storage
volumes should occur.

3.3. Reference 583

https://wiki.openstack.org/wiki/ThirdPartySystems/NetApp_CI

Cinder Documentation, Release 20.3.2.dev3

• Description: NetApp C-mode FibreChannel volume driver.

Version history:

1.0.0 - Driver development before Wallaby
2.0.0 - Wallaby driver version bump
3.0.0 - Add support for Intra-cluster Storage assisted volume migration

Add support for revert to snapshot

NetAppCmodeISCSIDriver

• Version: 3.0.0

• volume_driver=cinder.volume.drivers.netapp.dataontap.iscsi_cmode.NetAppCmodeISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/NetApp_CI

• Driver Configuration Options:

Table 168: Driver configuration options
Name = Default Value (Type) Description
netapp_vserver = None (String) This option specifies the virtual storage server (Vserver)

name on the storage cluster on which provisioning of block storage
volumes should occur.

• Description: NetApp C-mode iSCSI volume driver.

NetAppCmodeNfsDriver

• Version: 3.0.0

• volume_driver=cinder.volume.drivers.netapp.dataontap.nfs_cmode.NetAppCmodeNfsDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/NetApp_CI

• Driver Configuration Options:

584 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/NetApp_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/NetApp_CI

Cinder Documentation, Release 20.3.2.dev3

Table 169: Driver configuration options
Name = Default Value (Type) Description
nas_host = (String) IP address or Hostname of NAS system.
nas_login = admin (String) User name to connect to NAS system.
nas_mount_options = None (String) Options used to mount the storage backend file system where

Cinder volumes are stored.
nas_password = (String) Password to connect to NAS system.
nas_private_key = (String) Filename of private key to use for SSH authentication.
nas_secure_file_operations =
auto

(String) Allow network-attached storage systems to operate in a se-
cure environment where root level access is not permitted. If set to
False, access is as the root user and insecure. If set to True, access
is not as root. If set to auto, a check is done to determine if this is a
new installation: True is used if so, otherwise False. Default is auto.

nas_secure_file_permissions
= auto

(String) Set more secure file permissions on network-attached stor-
age volume files to restrict broad other/world access. If set to False,
volumes are created with open permissions. If set to True, volumes
are created with permissions for the cinder user and group (660). If
set to auto, a check is done to determine if this is a new installation:
True is used if so, otherwise False. Default is auto.

nas_share_path = (String) Path to the share to use for storing Cinder volumes.
For example: /srv/export1 for an NFS server export available at
10.0.5.10:/srv/export1 .

nas_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use to connect to NAS sys-
tem.

nfs_mount_attempts = 3 (Integer) The number of attempts to mount NFS shares before raising
an error. At least one attempt will be made to mount an NFS share,
regardless of the value specified.

nfs_mount_options = None (String) Mount options passed to the NFS client. See the NFS(5)
man page for details.

nfs_mount_point_base =
$state_path/mnt

(String) Base dir containing mount points for NFS shares.

nfs_qcow2_volumes = False (Boolean) Create volumes as QCOW2 files rather than raw files.
nfs_shares_config =
/etc/cinder/nfs_shares

(String) File with the list of available NFS shares.

nfs_snapshot_support = False (Boolean) Enable support for snapshots on the NFS driver. Platforms
using libvirt <1.2.7 will encounter issues with this feature.

nfs_sparsed_volumes = True (Boolean) Create volumes as sparsed files which take no space. If
set to False volume is created as regular file. In such case volume
creation takes a lot of time.

• Description: NetApp NFS driver for Data ONTAP (Cluster-mode).

Version history:

1.0.0 - Driver development before Wallaby
2.0.0 - Add support for QoS minimums specs

Add support for dynamic Adaptive QoS policy group creation
Implement FlexGroup pool

3.0.0 - Add support for Intra-cluster Storage assisted volume migration
Add support for revert to snapshot

3.3. Reference 585

Cinder Documentation, Release 20.3.2.dev3

NexentaISCSIDriver

• Version: 1.3.1

• volume_driver=cinder.volume.drivers.nexenta.iscsi.NexentaISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Nexenta_CI

• Driver Configuration Options:

Table 170: Driver configuration options
Name = Default Value (Type) Description
nexenta_blocksize = 4096 (Integer) Block size for datasets
nexenta_dataset_compression
= on

(String(choices=[on, off, gzip, gzip-1, gzip-2, gzip-3, gzip-4, gzip-5,
gzip-6, gzip-7, gzip-8, gzip-9, lzjb, zle, lz4])) Compression value for
new ZFS folders.

nexenta_dataset_dedup = off (String(choices=[on, off, sha256, verify, sha256, verify])) Dedupli-
cation value for new ZFS folders.

nexenta_dataset_description = (String) Human-readable description for the folder.
nexenta_folder = (String) A folder where cinder created datasets will reside.
nex-
enta_group_snapshot_template
= group-snapshot-%s

(String) Template string to generate group snapshot name

nexenta_host = (String) IP address of NexentaStor Appliance
nexenta_host_group_prefix =
cinder

(String) Prefix for iSCSI host groups on NexentaStor

nex-
enta_iscsi_target_host_group
= all

(String) Group of hosts which are allowed to access volumes

nex-
enta_iscsi_target_portal_groups
=

(String) NexentaStor target portal groups

nex-
enta_iscsi_target_portal_port
= 3260

(Integer) Nexenta appliance iSCSI target portal port

nexenta_iscsi_target_portals
=

(String) Comma separated list of portals for NexentaStor5, in format
of IP1:port1,IP2:port2. Port is optional, default=3260. Example:
10.10.10.1:3267,10.10.1.2

nex-
enta_lu_writebackcache_disabled
= False

(Boolean) Postponed write to backing store or not

nexenta_luns_per_target =
100

(Integer) Amount of LUNs per iSCSI target

nexenta_ns5_blocksize = 32 (Integer) Block size for datasets
nex-
enta_origin_snapshot_template
= origin-snapshot-%s

(String) Template string to generate origin name of clone

nexenta_password = nexenta (String) Password to connect to NexentaStor management REST API
server

nexenta_rest_address = (String) IP address of NexentaStor management REST API endpoint
continues on next page

586 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Nexenta_CI

Cinder Documentation, Release 20.3.2.dev3

Table 170 – continued from previous page
Name = Default Value (Type) Description
nexenta_rest_backoff_factor =
0.5

(Float) Specifies the backoff factor to apply between connection at-
tempts to NexentaStor management REST API server

nex-
enta_rest_connect_timeout =
30

(Float) Specifies the time limit (in seconds), within which the con-
nection to NexentaStor management REST API server must be es-
tablished

nexenta_rest_port = 0 (Integer) HTTP(S) port to connect to NexentaStor management
REST API server. If it is equal zero, 8443 for HTTPS and 8080
for HTTP is used

nexenta_rest_protocol = auto (String(choices=[http, https, auto])) Use http or https for NexentaStor
management REST API connection (default auto)

nexenta_rest_read_timeout =
300

(Float) Specifies the time limit (in seconds), within which NexentaS-
tor management REST API server must send a response

nexenta_rest_retry_count = 3 (Integer) Specifies the number of times to repeat NexentaStor man-
agement REST API call in case of connection errors and NexentaStor
appliance EBUSY or ENOENT errors

nexenta_rrmgr_compression
= 0

(Integer) Enable stream compression, level 1..9. 1 - gives best speed;
9 - gives best compression.

nexenta_rrmgr_connections =
2

(Integer) Number of TCP connections.

nexenta_rrmgr_tcp_buf_size
= 4096

(Integer) TCP Buffer size in KiloBytes.

nexenta_sparse = False (Boolean) Enables or disables the creation of sparse datasets
nexenta_target_group_prefix
= cinder

(String) Prefix for iSCSI target groups on NexentaStor

nexenta_target_prefix
= iqn.1986-
03.com.sun:02:cinder

(String) iqn prefix for NexentaStor iSCSI targets

nexenta_use_https = True (Boolean) Use HTTP secure protocol for NexentaStor management
REST API connections

nexenta_user = admin (String) User name to connect to NexentaStor management REST
API server

nexenta_volume = cinder (String) NexentaStor pool name that holds all volumes
nexenta_volume_group =
iscsi

(String) Volume group for NexentaStor5 iSCSI

• Description: Executes volume driver commands on Nexenta Appliance.

Version history:

1.0.0 - Initial driver version.
1.0.1 - Fixed bug #1236626: catch "does not exist" exception of

lu_exists.
1.1.0 - Changed class name to NexentaISCSIDriver.
1.1.1 - Ignore "does not exist" exception of nms.snapshot.destroy.
1.1.2 - Optimized create_cloned_volume, replaced zfs send recv with zfs

clone.
1.1.3 - Extended volume stats provided by _update_volume_stats method.
1.2.0 - Added volume migration with storage assist method.
1.2.1 - Fixed bug #1263258: now migrate_volume update provider_location

(continues on next page)

3.3. Reference 587

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

of migrated volume; after migrating volume migrate_volume
destroy snapshot on migration destination.

1.3.0 - Added retype method.
1.3.0.1 - Target creation refactor.
1.3.1 - Added ZFS cleanup.

NexentaISCSIDriver

• Version: 1.4.3

• volume_driver=cinder.volume.drivers.nexenta.ns5.iscsi.NexentaISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Nexenta_CI

• Driver Configuration Options:

Table 171: Driver configuration options
Name = Default Value (Type) Description
nexenta_blocksize = 4096 (Integer) Block size for datasets
nexenta_dataset_compression
= on

(String(choices=[on, off, gzip, gzip-1, gzip-2, gzip-3, gzip-4, gzip-5,
gzip-6, gzip-7, gzip-8, gzip-9, lzjb, zle, lz4])) Compression value for
new ZFS folders.

nexenta_dataset_dedup = off (String(choices=[on, off, sha256, verify, sha256, verify])) Dedupli-
cation value for new ZFS folders.

nexenta_dataset_description = (String) Human-readable description for the folder.
nexenta_folder = (String) A folder where cinder created datasets will reside.
nex-
enta_group_snapshot_template
= group-snapshot-%s

(String) Template string to generate group snapshot name

nexenta_host = (String) IP address of NexentaStor Appliance
nexenta_host_group_prefix =
cinder

(String) Prefix for iSCSI host groups on NexentaStor

nex-
enta_iscsi_target_host_group
= all

(String) Group of hosts which are allowed to access volumes

nex-
enta_iscsi_target_portal_groups
=

(String) NexentaStor target portal groups

nex-
enta_iscsi_target_portal_port
= 3260

(Integer) Nexenta appliance iSCSI target portal port

nexenta_iscsi_target_portals
=

(String) Comma separated list of portals for NexentaStor5, in format
of IP1:port1,IP2:port2. Port is optional, default=3260. Example:
10.10.10.1:3267,10.10.1.2

nex-
enta_lu_writebackcache_disabled
= False

(Boolean) Postponed write to backing store or not

continues on next page

588 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Nexenta_CI

Cinder Documentation, Release 20.3.2.dev3

Table 171 – continued from previous page
Name = Default Value (Type) Description
nexenta_luns_per_target =
100

(Integer) Amount of LUNs per iSCSI target

nexenta_ns5_blocksize = 32 (Integer) Block size for datasets
nex-
enta_origin_snapshot_template
= origin-snapshot-%s

(String) Template string to generate origin name of clone

nexenta_password = nexenta (String) Password to connect to NexentaStor management REST API
server

nexenta_rest_address = (String) IP address of NexentaStor management REST API endpoint
nexenta_rest_backoff_factor =
0.5

(Float) Specifies the backoff factor to apply between connection at-
tempts to NexentaStor management REST API server

nex-
enta_rest_connect_timeout =
30

(Float) Specifies the time limit (in seconds), within which the con-
nection to NexentaStor management REST API server must be es-
tablished

nexenta_rest_port = 0 (Integer) HTTP(S) port to connect to NexentaStor management
REST API server. If it is equal zero, 8443 for HTTPS and 8080
for HTTP is used

nexenta_rest_protocol = auto (String(choices=[http, https, auto])) Use http or https for NexentaStor
management REST API connection (default auto)

nexenta_rest_read_timeout =
300

(Float) Specifies the time limit (in seconds), within which NexentaS-
tor management REST API server must send a response

nexenta_rest_retry_count = 3 (Integer) Specifies the number of times to repeat NexentaStor man-
agement REST API call in case of connection errors and NexentaStor
appliance EBUSY or ENOENT errors

nexenta_sparse = False (Boolean) Enables or disables the creation of sparse datasets
nexenta_target_group_prefix
= cinder

(String) Prefix for iSCSI target groups on NexentaStor

nexenta_target_prefix
= iqn.1986-
03.com.sun:02:cinder

(String) iqn prefix for NexentaStor iSCSI targets

nexenta_use_https = True (Boolean) Use HTTP secure protocol for NexentaStor management
REST API connections

nexenta_user = admin (String) User name to connect to NexentaStor management REST
API server

nexenta_volume = cinder (String) NexentaStor pool name that holds all volumes
nexenta_volume_group =
iscsi

(String) Volume group for NexentaStor5 iSCSI

• Description: Executes volume driver commands on Nexenta Appliance.

Version history:

1.0.0 - Initial driver version.
1.1.0 - Added HTTPS support.

- Added use of sessions for REST calls.
- Added abandoned volumes and snapshots cleanup.

1.2.0 - Failover support.
1.2.1 - Configurable luns per parget, target prefix.
1.3.0 - Removed target/TG caching, added support for target portals

(continues on next page)

3.3. Reference 589

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

and host groups.
1.3.1 - Refactored _do_export to query exact lunMapping.
1.3.2 - Revert to snapshot support.
1.3.3 - Refactored LUN creation, use host group for LUN mappings.
1.3.4 - Adapted NexentaException for the latest Cinder.
1.3.5 - Added deferred deletion for snapshots.
1.3.6 - Fixed race between volume/clone deletion.
1.3.7 - Added consistency group support.
1.3.8 - Added volume multi-attach.
1.4.0 - Refactored iSCSI driver.

- Added pagination support.
- Added configuration parameters for REST API connect/read
timeouts, connection retries and backoff factor.

- Fixed HA failover.
- Added retries on EBUSY errors.
- Fixed HTTP authentication.
- Added coordination for dataset operations.

1.4.1 - Support for NexentaStor tenants.
1.4.2 - Added manage/unmanage/manageable-list volume/snapshot support.
1.4.3 - Added consistency group capability to generic volume group.

NexentaNfsDriver

• Version: 1.3.1

• volume_driver=cinder.volume.drivers.nexenta.nfs.NexentaNfsDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Nexenta_CI

• Driver Configuration Options:

590 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Nexenta_CI

Cinder Documentation, Release 20.3.2.dev3

Table 172: Driver configuration options
Name = Default Value (Type) Description
nexenta_blocksize = 4096 (Integer) Block size for datasets
nexenta_dataset_compression
= on

(String(choices=[on, off, gzip, gzip-1, gzip-2, gzip-3, gzip-4, gzip-5,
gzip-6, gzip-7, gzip-8, gzip-9, lzjb, zle, lz4])) Compression value for
new ZFS folders.

nexenta_dataset_dedup = off (String(choices=[on, off, sha256, verify, sha256, verify])) Dedupli-
cation value for new ZFS folders.

nexenta_dataset_description = (String) Human-readable description for the folder.
nexenta_folder = (String) A folder where cinder created datasets will reside.
nex-
enta_group_snapshot_template
= group-snapshot-%s

(String) Template string to generate group snapshot name

nexenta_host = (String) IP address of NexentaStor Appliance
nex-
enta_lu_writebackcache_disabled
= False

(Boolean) Postponed write to backing store or not

nexenta_mount_point_base =
$state_path/mnt

(String) Base directory that contains NFS share mount points

nexenta_nms_cache_volroot
= True

(Boolean) If set True cache NexentaStor appliance volroot option
value.

nexenta_ns5_blocksize = 32 (Integer) Block size for datasets
nex-
enta_origin_snapshot_template
= origin-snapshot-%s

(String) Template string to generate origin name of clone

nexenta_password = nexenta (String) Password to connect to NexentaStor management REST API
server

nexenta_qcow2_volumes =
False

(Boolean) Create volumes as QCOW2 files rather than raw files

nexenta_rest_address = (String) IP address of NexentaStor management REST API endpoint
nexenta_rest_backoff_factor =
0.5

(Float) Specifies the backoff factor to apply between connection at-
tempts to NexentaStor management REST API server

nex-
enta_rest_connect_timeout =
30

(Float) Specifies the time limit (in seconds), within which the con-
nection to NexentaStor management REST API server must be es-
tablished

nexenta_rest_port = 0 (Integer) HTTP(S) port to connect to NexentaStor management
REST API server. If it is equal zero, 8443 for HTTPS and 8080
for HTTP is used

nexenta_rest_protocol = auto (String(choices=[http, https, auto])) Use http or https for NexentaStor
management REST API connection (default auto)

nexenta_rest_read_timeout =
300

(Float) Specifies the time limit (in seconds), within which NexentaS-
tor management REST API server must send a response

nexenta_rest_retry_count = 3 (Integer) Specifies the number of times to repeat NexentaStor man-
agement REST API call in case of connection errors and NexentaStor
appliance EBUSY or ENOENT errors

nexenta_rrmgr_compression
= 0

(Integer) Enable stream compression, level 1..9. 1 - gives best speed;
9 - gives best compression.

nexenta_rrmgr_connections =
2

(Integer) Number of TCP connections.

nexenta_rrmgr_tcp_buf_size
= 4096

(Integer) TCP Buffer size in KiloBytes.

nexenta_shares_config =
/etc/cinder/nfs_shares

(String) File with the list of available nfs shares

nexenta_sparse = False (Boolean) Enables or disables the creation of sparse datasets
nexenta_sparsed_volumes =
True

(Boolean) Enables or disables the creation of volumes as sparsed files
that take no space. If disabled (False), volume is created as a regular
file, which takes a long time.

nexenta_use_https = True (Boolean) Use HTTP secure protocol for NexentaStor management
REST API connections

nexenta_user = admin (String) User name to connect to NexentaStor management REST
API server

3.3. Reference 591

Cinder Documentation, Release 20.3.2.dev3

• Description: Executes volume driver commands on Nexenta Appliance.

Version history:

1.0.0 - Initial driver version.
1.1.0 - Auto sharing for enclosing folder.
1.1.1 - Added caching for NexentaStor appliance 'volroot' value.
1.1.2 - Ignore "folder does not exist" error in delete_volume and

delete_snapshot method.
1.1.3 - Redefined volume_backend_name attribute inherited from

RemoteFsDriver.
1.2.0 - Added migrate and retype methods.
1.3.0 - Extend volume method.
1.3.1 - Cache capacity info and check shared folders on setup.

NexentaNfsDriver

• Version: 1.8.3

• volume_driver=cinder.volume.drivers.nexenta.ns5.nfs.NexentaNfsDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Nexenta_CI

• Driver Configuration Options:

592 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Nexenta_CI

Cinder Documentation, Release 20.3.2.dev3

Table 173: Driver configuration options
Name = Default Value (Type) Description
nexenta_blocksize = 4096 (Integer) Block size for datasets
nexenta_dataset_compression
= on

(String(choices=[on, off, gzip, gzip-1, gzip-2, gzip-3, gzip-4, gzip-5,
gzip-6, gzip-7, gzip-8, gzip-9, lzjb, zle, lz4])) Compression value for
new ZFS folders.

nexenta_dataset_dedup = off (String(choices=[on, off, sha256, verify, sha256, verify])) Dedupli-
cation value for new ZFS folders.

nexenta_dataset_description = (String) Human-readable description for the folder.
nexenta_folder = (String) A folder where cinder created datasets will reside.
nex-
enta_group_snapshot_template
= group-snapshot-%s

(String) Template string to generate group snapshot name

nexenta_host = (String) IP address of NexentaStor Appliance
nex-
enta_lu_writebackcache_disabled
= False

(Boolean) Postponed write to backing store or not

nexenta_mount_point_base =
$state_path/mnt

(String) Base directory that contains NFS share mount points

nexenta_nms_cache_volroot
= True

(Boolean) If set True cache NexentaStor appliance volroot option
value.

nexenta_ns5_blocksize = 32 (Integer) Block size for datasets
nex-
enta_origin_snapshot_template
= origin-snapshot-%s

(String) Template string to generate origin name of clone

nexenta_password = nexenta (String) Password to connect to NexentaStor management REST API
server

nexenta_qcow2_volumes =
False

(Boolean) Create volumes as QCOW2 files rather than raw files

nexenta_rest_address = (String) IP address of NexentaStor management REST API endpoint
nexenta_rest_backoff_factor =
0.5

(Float) Specifies the backoff factor to apply between connection at-
tempts to NexentaStor management REST API server

nex-
enta_rest_connect_timeout =
30

(Float) Specifies the time limit (in seconds), within which the con-
nection to NexentaStor management REST API server must be es-
tablished

nexenta_rest_port = 0 (Integer) HTTP(S) port to connect to NexentaStor management
REST API server. If it is equal zero, 8443 for HTTPS and 8080
for HTTP is used

nexenta_rest_protocol = auto (String(choices=[http, https, auto])) Use http or https for NexentaStor
management REST API connection (default auto)

nexenta_rest_read_timeout =
300

(Float) Specifies the time limit (in seconds), within which NexentaS-
tor management REST API server must send a response

nexenta_rest_retry_count = 3 (Integer) Specifies the number of times to repeat NexentaStor man-
agement REST API call in case of connection errors and NexentaStor
appliance EBUSY or ENOENT errors

nexenta_shares_config =
/etc/cinder/nfs_shares

(String) File with the list of available nfs shares

nexenta_sparse = False (Boolean) Enables or disables the creation of sparse datasets
nexenta_sparsed_volumes =
True

(Boolean) Enables or disables the creation of volumes as sparsed files
that take no space. If disabled (False), volume is created as a regular
file, which takes a long time.

nexenta_use_https = True (Boolean) Use HTTP secure protocol for NexentaStor management
REST API connections

nexenta_user = admin (String) User name to connect to NexentaStor management REST
API server

3.3. Reference 593

Cinder Documentation, Release 20.3.2.dev3

• Description: Executes volume driver commands on Nexenta Appliance.

Version history:

1.0.0 - Initial driver version.
1.1.0 - Support for extend volume.
1.2.0 - Added HTTPS support.

- Added use of sessions for REST calls.
- Added abandoned volumes and snapshots cleanup.

1.3.0 - Failover support.
1.4.0 - Migrate volume support and new NEF API calls.
1.5.0 - Revert to snapshot support.
1.6.0 - Get mountPoint from API to support old style mount points.

- Mount and umount shares on each operation to avoid mass
mounts on controller. Clean up mount folders on delete.

1.6.1 - Fixed volume from image creation.
1.6.2 - Removed redundant share mount from initialize_connection.
1.6.3 - Adapted NexentaException for the latest Cinder.
1.6.4 - Fixed volume mount/unmount.
1.6.5 - Added driver_ssl_cert_verify for HA failover.
1.6.6 - Destroy unused snapshots after deletion of it's last clone.
1.6.7 - Fixed volume migration for HA environment.
1.6.8 - Added deferred deletion for snapshots.
1.6.9 - Fixed race between volume/clone deletion.
1.7.0 - Added consistency group support.
1.7.1 - Removed redundant hpr/activate call from initialize_connection.
1.7.2 - Merged upstream changes for umount.
1.8.0 - Refactored NFS driver.

- Added pagination support.
- Added configuration parameters for REST API connect/read
timeouts, connection retries and backoff factor.

- Fixed HA failover.
- Added retries on EBUSY errors.
- Fixed HTTP authentication.
- Disabled non-blocking mandatory locks.
- Added coordination for dataset operations.

1.8.1 - Support for NexentaStor tenants.
1.8.2 - Added manage/unmanage/manageable-list volume/snapshot support.
1.8.3 - Added consistency group capability to generic volume group.
1.8.4 - Disabled SmartCompression feature.

NfsDriver

• Version: 1.4.0

• volume_driver=cinder.volume.drivers.nfs.NfsDriver

• Driver Configuration Options:

594 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 174: Driver configuration options
Name = Default Value (Type) Description
nas_host = (String) IP address or Hostname of NAS system.
nas_login = admin (String) User name to connect to NAS system.
nas_mount_options = None (String) Options used to mount the storage backend file system where

Cinder volumes are stored.
nas_password = (String) Password to connect to NAS system.
nas_private_key = (String) Filename of private key to use for SSH authentication.
nas_secure_file_operations =
auto

(String) Allow network-attached storage systems to operate in a se-
cure environment where root level access is not permitted. If set to
False, access is as the root user and insecure. If set to True, access
is not as root. If set to auto, a check is done to determine if this is a
new installation: True is used if so, otherwise False. Default is auto.

nas_secure_file_permissions
= auto

(String) Set more secure file permissions on network-attached stor-
age volume files to restrict broad other/world access. If set to False,
volumes are created with open permissions. If set to True, volumes
are created with permissions for the cinder user and group (660). If
set to auto, a check is done to determine if this is a new installation:
True is used if so, otherwise False. Default is auto.

nas_share_path = (String) Path to the share to use for storing Cinder volumes.
For example: /srv/export1 for an NFS server export available at
10.0.5.10:/srv/export1 .

nas_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use to connect to NAS sys-
tem.

nfs_mount_attempts = 3 (Integer) The number of attempts to mount NFS shares before raising
an error. At least one attempt will be made to mount an NFS share,
regardless of the value specified.

nfs_mount_options = None (String) Mount options passed to the NFS client. See the NFS(5)
man page for details.

nfs_mount_point_base =
$state_path/mnt

(String) Base dir containing mount points for NFS shares.

nfs_qcow2_volumes = False (Boolean) Create volumes as QCOW2 files rather than raw files.
nfs_shares_config =
/etc/cinder/nfs_shares

(String) File with the list of available NFS shares.

nfs_snapshot_support = False (Boolean) Enable support for snapshots on the NFS driver. Platforms
using libvirt <1.2.7 will encounter issues with this feature.

nfs_sparsed_volumes = True (Boolean) Create volumes as sparsed files which take no space. If
set to False volume is created as regular file. In such case volume
creation takes a lot of time.

• Description: NFS based cinder driver.

Creates file on NFS share for using it as block device on hypervisor.

3.3. Reference 595

Cinder Documentation, Release 20.3.2.dev3

NimbleFCDriver

• Version: 4.2.0

• volume_driver=cinder.volume.drivers.hpe.nimble.NimbleFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/HPE_Nimble_Storage_CI

• Driver Configuration Options:

Table 175: Driver configuration options
Name = Default Value (Type) Description
nimble_pool_name = default (String) Nimble Controller pool name
nimble_subnet_label = * (String) Nimble Subnet Label
nimble_verify_cert_path =
None

(String) Path to Nimble Array SSL certificate

nimble_verify_certificate =
False

(Boolean) Whether to verify Nimble SSL Certificate

• Description: OpenStack driver to enable Nimble FC Driver Controller.

NimbleISCSIDriver

• Version: 4.2.0

• volume_driver=cinder.volume.drivers.hpe.nimble.NimbleISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/HPE_Nimble_Storage_CI

• Driver Configuration Options:

Table 176: Driver configuration options
Name = Default Value (Type) Description
nimble_pool_name = default (String) Nimble Controller pool name
nimble_subnet_label = * (String) Nimble Subnet Label
nimble_verify_cert_path =
None

(String) Path to Nimble Array SSL certificate

nimble_verify_certificate =
False

(Boolean) Whether to verify Nimble SSL Certificate

• Description: OpenStack driver to enable Nimble ISCSI Controller.

PVMEFCDriver

• Version: 2.0

• volume_driver=cinder.volume.drivers.dell_emc.powervault.fc.PVMEFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerVault_ME_CI

• Driver Configuration Options:

596 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/HPE_Nimble_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/HPE_Nimble_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerVault_ME_CI

Cinder Documentation, Release 20.3.2.dev3

Table 177: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage
if the driver supports it.

pvme_pool_name = A (String) Pool or Vdisk name to use for volume creation.
san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller

• Description: Cinder FC driver for Dell EMC PowerVault ME-Series arrays.

Version history:
1.0 - Inheriting from Seagate Cinder driver.

PVMEISCSIDriver

• Version: 2.0

• volume_driver=cinder.volume.drivers.dell_emc.powervault.iscsi.PVMEISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerVault_ME_CI

• Driver Configuration Options:

Table 178: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage
if the driver supports it.

pvme_iscsi_ips = [] (List of String) List of comma-separated target iSCSI IP addresses.
pvme_pool_name = A (String) Pool or Vdisk name to use for volume creation.
san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller

• Description: Cinder iSCSI driver for Dell EMC PowerVault ME-Series arrays.

Version history:
1.0 - Inheriting from Seagate Cinder driver.

3.3. Reference 597

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerVault_ME_CI

Cinder Documentation, Release 20.3.2.dev3

PowerFlexDriver

• Version: 3.5.7

• volume_driver=cinder.volume.drivers.dell_emc.powerflex.driver.PowerFlexDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerFlex_CI

• Driver Configuration Options:

Table 179: Driver configuration options
Name = Default Value (Type) Description
power-
flex_allow_migration_during_rebuild
= False

(Boolean) Allow volume migration during rebuild.

power-
flex_allow_non_padded_volumes
= False

(Boolean) Allow volumes to be created in Storage Pools when zero
padding is disabled. This option should not be enabled if multiple
tenants will utilize volumes from a shared Storage Pool.

power-
flex_max_over_subscription_ratio
= 10.0

(Float) max_over_subscription_ratio setting for the driver. Maxi-
mum value allowed is 10.0.

powerflex_rest_server_port =
443

(Port(min=0, max=65535)) Gateway REST server port.

power-
flex_round_volume_capacity
= True

(Boolean) Round volume sizes up to 8GB boundaries. Power-
Flex/VxFlex OS requires volumes to be sized in multiples of 8GB. If
set to False, volume creation will fail for volumes not sized properly

powerflex_server_api_version
= None

(String) PowerFlex/ScaleIO API version. This value should be left
as the default value unless otherwise instructed by technical support.

powerflex_storage_pools =
None

(String) Storage Pools. Comma separated list of storage pools used
to provide volumes. Each pool should be specified as a protec-
tion_domain_name:storage_pool_name value

power-
flex_unmap_volume_before_deletion
= False

(Boolean) Unmap volumes before deletion.

vxflexos_allow_migration_during_rebuild
= False

(Boolean) renamed to powerflex_allow_migration_during_rebuild.

vxflexos_allow_non_padded_volumes
= False

(Boolean) renamed to powerflex_allow_non_padded_volumes.

vxflexos_max_over_subscription_ratio
= 10.0

(Float) renamed to powerflex_max_over_subscription_ratio.

vxflexos_rest_server_port =
443

(Port(min=0, max=65535)) renamed to powerflex_rest_server_port.

vxflexos_round_volume_capacity
= True

(Boolean) renamed to powerflex_round_volume_capacity.

vxflexos_server_api_version
= None

(String) renamed to powerflex_server_api_version.

vxflexos_storage_pools =
None

(String) renamed to powerflex_storage_pools.

vxflexos_unmap_volume_before_deletion
= False

(Boolean) renamed to powerflex_round_volume_capacity.

• Description: Cinder PowerFlex(formerly named Dell EMC VxFlex OS) Driver

598 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerFlex_CI

Cinder Documentation, Release 20.3.2.dev3

Version history:
2.0.1 - Added support for SIO 1.3x in addition to 2.0.x
2.0.2 - Added consistency group support to generic volume groups
2.0.3 - Added cache for storage pool and protection domains info
2.0.4 - Added compatibility with os_brick>1.15.3
2.0.5 - Change driver name, rename config file options
3.0.0 - Add support for VxFlex OS 3.0.x and for volumes compression
3.5.0 - Add support for PowerFlex 3.5.x
3.5.1 - Add volume replication v2.1 support for PowerFlex 3.5.x
3.5.2 - Add volume migration support
3.5.3 - Add revert volume to snapshot support
3.5.4 - Fix for Bug #1823200. See OSSN-0086 for details.
3.5.5 - Rebrand VxFlex OS to PowerFlex.
3.5.6 - Fix for Bug #1897598 when volume can be migrated without

conversion of its type.
3.5.7 - Report trim/discard support.

PowerMaxFCDriver

• Version: 4.4.1

• volume_driver=cinder.volume.drivers.dell_emc.powermax.fc.PowerMaxFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerMAX_CI

• Driver Configuration Options:

Table 180: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate

of the backend endpoint.
initiator_check = False (Boolean) Use this value to enable the initiator_check.
interval = 3 (Integer) Use this value to specify length of the interval in seconds.
load_balance = False (Boolean) Enable/disable load balancing for a PowerMax backend.
load_balance_real_time =
False

(Boolean) Enable/disable real-time performance metrics for Port
level load balancing for a PowerMax backend.

load_data_format = Avg (String) Performance data format, not applicable for real-time met-
rics. Available options are avg and max.

load_look_back = 60 (Integer) How far in minutes to look back for diagnostic performance
metrics in load calculation, minimum of 0 maximum of 1440 (24
hours).

load_look_back_real_time =
1

(Integer) How far in minutes to look back for real-time performance
metrics in load calculation, minimum of 1 maximum of 10.

continues on next page

3.3. Reference 599

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerMAX_CI

Cinder Documentation, Release 20.3.2.dev3

Table 180 – continued from previous page
Name = Default Value (Type) Description
max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

port_group_load_metric =
PercentBusy

(String) Metric used for port group load calculation.

port_load_metric = Percent-
Busy

(String) Metric used for port load calculation.

powermax_array = None (String) Serial number of the array to connect to.
powermax_array_tag_list =
None

(List of String) List of user assigned name for storage array.

power-
max_port_group_name_template
= portGroupName

(String) User defined override for port group name.

powermax_port_groups =
None

(List of String) List of port groups containing frontend ports config-
ured prior for server connection.

powermax_service_level =
None

(String) Service level to use for provisioning storage. Setting this as
an extra spec in pool_name is preferable.

power-
max_short_host_name_template
= shortHostName

(String) User defined override for short host name.

powermax_srp = None (String) Storage resource pool on array to use for provisioning.
replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication

target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

retries = 200 (Integer) Use this value to specify number of retries.
san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
u4p_failover_autofailback =
True

(Boolean) If the driver should automatically failback to the pri-
mary instance of Unisphere when a successful connection is re-
established.

u4p_failover_backoff_factor =
1

(Integer) A backoff factor to apply between attempts after the second
try (most errors are resolved immediately by a second try without a
delay). Retries will sleep for: {backoff factor} * (2 ^ ({number of
total retries} - 1)) seconds.

continues on next page

600 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 180 – continued from previous page
Name = Default Value (Type) Description
u4p_failover_retries = 3 (Integer) The maximum number of retries each connection should

attempt. Note, this applies only to failed DNS lookups, socket con-
nections and connection timeouts, never to requests where data has
made it to the server.

u4p_failover_target = None (Dict of String) Dictionary of Unisphere failover target info.
u4p_failover_timeout = 20.0 (Integer) How long to wait for the server to send data before giving

up.
vmax_workload = None (String) Workload, setting this as an extra spec in pool_name is

preferable.

• Description: FC Drivers for PowerMax using REST.

Version history:

1.0.0 - Initial driver
1.1.0 - Multiple pools and thick/thin provisioning,

performance enhancement.
2.0.0 - Add driver requirement functions
2.1.0 - Add consistency group functions
2.1.1 - Fixed issue with mismatched config (bug #1442376)
2.1.2 - Clean up failed clones (bug #1440154)
2.1.3 - Fixed a problem with FAST support (bug #1435069)
2.2.0 - Add manage/unmanage
2.2.1 - Support for SE 8.0.3
2.2.2 - Update Consistency Group
2.2.3 - Pool aware scheduler(multi-pool) support
2.2.4 - Create CG from CG snapshot
2.3.0 - Name change for MV and SG for FAST (bug #1515181)

- Fix for randomly choosing port group. (bug #1501919)
- get_short_host_name needs to be called in find_device_number
(bug #1520635)

- Proper error handling for invalid SLOs (bug #1512795)
- Extend Volume for VMAX3, SE8.1.0.3
https://blueprints.launchpad.net/cinder/+spec/vmax3-extend-volume
- Incorrect SG selected on an attach (#1515176)
- Cleanup Zoning (bug #1501938) NOTE: FC only
- Last volume in SG fix
- _remove_last_vol_and_delete_sg is not being called
for VMAX3 (bug #1520549)

- necessary updates for CG changes (#1534616)
- Changing PercentSynced to CopyState (bug #1517103)
- Getting iscsi ip from port in existing masking view
- Replacement of EMCGetTargetEndpoints api (bug #1512791)
- VMAX3 snapvx improvements (bug #1522821)
- Operations and timeout issues (bug #1538214)

2.4.0 - EMC VMAX - locking SG for concurrent threads (bug #1554634)
- SnapVX licensing checks for VMAX3 (bug #1587017)
- VMAX oversubscription Support (blueprint vmax-oversubscription)
- QoS support (blueprint vmax-qos)

(continues on next page)

3.3. Reference 601

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

2.5.0 - Attach and detach snapshot (blueprint vmax-attach-snapshot)
- MVs and SGs not reflecting correct protocol (bug #1640222)
- Storage assisted volume migration via retype
(bp vmax-volume-migration)

- Support for compression on All Flash
- Volume replication 2.1 (bp add-vmax-replication)
- rename and restructure driver (bp vmax-rename-dell-emc)

3.0.0 - REST based driver
- Retype (storage-assisted migration)
- QoS support
- Support for compression on All Flash
- Support for volume replication
- Support for live migration
- Support for Generic Volume Group

3.1.0 - Support for replication groups (Tiramisu)
- Deprecate backend xml configuration
- Support for async replication (vmax-replication-enhancements)
- Support for SRDF/Metro (vmax-replication-enhancements)
- Support for manage/unmanage snapshots
(vmax-manage-unmanage-snapshot)

- Support for revert to volume snapshot
3.2.0 - Support for retyping replicated volumes (bp

vmax-retype-replicated-volumes)
- Support for multiattach volumes (bp vmax-allow-multi-attach)
- Support for list manageable volumes and snapshots
(bp/vmax-list-manage-existing)

- Fix for SSL verification/cert application (bug #1772924)
- Log VMAX metadata of a volume (bp vmax-metadata)
- Fix for get-pools command (bug #1784856)

4.0.0 - Fix for initiator retrieval and short hostname unmapping
(bugs #1783855 #1783867)

- Fix for HyperMax OS Upgrade Bug (bug #1790141)
- Support for failover to secondary Unisphere
(bp/vmax-unisphere-failover)

- Rebrand from VMAX to PowerMax(bp/vmax-powermax-rebrand)
- Change from 84 to 90 REST endpoints (bug #1808539)
- Fix for PowerMax OS replication settings (bug #1812685)
- Support for storage-assisted in-use retype
(bp/powermax-storage-assisted-inuse-retype)

4.1.0 - Changing from 90 to 91 rest endpoints
- Support for Rapid TDEV Delete (bp powermax-tdev-deallocation)
- PowerMax OS Metro formatted volumes fix (bug #1829876)
- Support for Metro ODE (bp/powermax-metro-ode)
- Removal of san_rest_port from PowerMax cinder.conf config
- SnapVX noCopy mode enabled for all links
- Volume/Snapshot backed metadata inclusion
- Debug metadata compression and service level info fix

4.2.0 - Support of Unisphere storage group and array tags
- User defined override for short host name and port group name

(continues on next page)

602 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

(bp powermax-user-defined-hostname-portgroup)
- Switch to Unisphere REST API public replication endpoints
- Support for multiple replication devices
- Pools bug fix allowing 'None' variants (bug #1873253)

4.3.0 - Changing from 91 to 92 REST endpoints
- Support for Port Group and Port load balancing
(bp powermax-port-load-balance)

- Fix to enable legacy volumes to live migrate (#1867163)
- Use of snap id instead of generation (bp powermax-snapset-ids)
- Support for Failover Abilities (bp/powermax-failover-abilities)

4.4.0 - Early check for status of port
4.4.1 - Report trim/discard support

PowerMaxISCSIDriver

• Version: 4.4.1

• volume_driver=cinder.volume.drivers.dell_emc.powermax.iscsi.PowerMaxISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerMAX_CI

• Driver Configuration Options:

Table 181: Driver configuration options
Name = Default Value (Type) Description
chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate

of the backend endpoint.
initiator_check = False (Boolean) Use this value to enable the initiator_check.
interval = 3 (Integer) Use this value to specify length of the interval in seconds.
load_balance = False (Boolean) Enable/disable load balancing for a PowerMax backend.
load_balance_real_time =
False

(Boolean) Enable/disable real-time performance metrics for Port
level load balancing for a PowerMax backend.

load_data_format = Avg (String) Performance data format, not applicable for real-time met-
rics. Available options are avg and max.

load_look_back = 60 (Integer) How far in minutes to look back for diagnostic performance
metrics in load calculation, minimum of 0 maximum of 1440 (24
hours).

load_look_back_real_time =
1

(Integer) How far in minutes to look back for real-time performance
metrics in load calculation, minimum of 1 maximum of 10.

continues on next page

3.3. Reference 603

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerMAX_CI

Cinder Documentation, Release 20.3.2.dev3

Table 181 – continued from previous page
Name = Default Value (Type) Description
max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

port_group_load_metric =
PercentBusy

(String) Metric used for port group load calculation.

port_load_metric = Percent-
Busy

(String) Metric used for port load calculation.

powermax_array = None (String) Serial number of the array to connect to.
powermax_array_tag_list =
None

(List of String) List of user assigned name for storage array.

power-
max_port_group_name_template
= portGroupName

(String) User defined override for port group name.

powermax_port_groups =
None

(List of String) List of port groups containing frontend ports config-
ured prior for server connection.

powermax_service_level =
None

(String) Service level to use for provisioning storage. Setting this as
an extra spec in pool_name is preferable.

power-
max_short_host_name_template
= shortHostName

(String) User defined override for short host name.

powermax_srp = None (String) Storage resource pool on array to use for provisioning.
replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication

target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

retries = 200 (Integer) Use this value to specify number of retries.
san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
u4p_failover_autofailback =
True

(Boolean) If the driver should automatically failback to the pri-
mary instance of Unisphere when a successful connection is re-
established.

u4p_failover_backoff_factor =
1

(Integer) A backoff factor to apply between attempts after the second
try (most errors are resolved immediately by a second try without a
delay). Retries will sleep for: {backoff factor} * (2 ^ ({number of
total retries} - 1)) seconds.

continues on next page

604 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 181 – continued from previous page
Name = Default Value (Type) Description
u4p_failover_retries = 3 (Integer) The maximum number of retries each connection should

attempt. Note, this applies only to failed DNS lookups, socket con-
nections and connection timeouts, never to requests where data has
made it to the server.

u4p_failover_target = None (Dict of String) Dictionary of Unisphere failover target info.
u4p_failover_timeout = 20.0 (Integer) How long to wait for the server to send data before giving

up.
use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
vmax_workload = None (String) Workload, setting this as an extra spec in pool_name is

preferable.

• Description: ISCSI Drivers for PowerMax using Rest.

Version history:

1.0.0 - Initial driver
1.1.0 - Multiple pools and thick/thin provisioning,

performance enhancement.
2.0.0 - Add driver requirement functions
2.1.0 - Add consistency group functions
2.1.1 - Fixed issue with mismatched config (bug #1442376)
2.1.2 - Clean up failed clones (bug #1440154)
2.1.3 - Fixed a problem with FAST support (bug #1435069)
2.2.0 - Add manage/unmanage
2.2.1 - Support for SE 8.0.3
2.2.2 - Update Consistency Group
2.2.3 - Pool aware scheduler(multi-pool) support
2.2.4 - Create CG from CG snapshot
2.3.0 - Name change for MV and SG for FAST (bug #1515181)

- Fix for randomly choosing port group. (bug #1501919)
- get_short_host_name needs to be called in find_device_number
(bug #1520635)

- Proper error handling for invalid SLOs (bug #1512795)
- Extend Volume for VMAX3, SE8.1.0.3
https://blueprints.launchpad.net/cinder/+spec/vmax3-extend-volume
- Incorrect SG selected on an attach (#1515176)
- Cleanup Zoning (bug #1501938) NOTE: FC only
- Last volume in SG fix
- _remove_last_vol_and_delete_sg is not being called
for VMAX3 (bug #1520549)

- necessary updates for CG changes (#1534616)
- Changing PercentSynced to CopyState (bug #1517103)
- Getting iscsi ip from port in existing masking view
- Replacement of EMCGetTargetEndpoints api (bug #1512791)
- VMAX3 snapvx improvements (bug #1522821)
- Operations and timeout issues (bug #1538214)

2.4.0 - EMC VMAX - locking SG for concurrent threads (bug #1554634)
- SnapVX licensing checks for VMAX3 (bug #1587017)
- VMAX oversubscription Support (blueprint vmax-oversubscription)

(continues on next page)

3.3. Reference 605

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

- QoS support (blueprint vmax-qos)
- VMAX2/VMAX3 iscsi multipath support (iscsi only)
https://blueprints.launchpad.net/cinder/+spec/vmax-iscsi-multipath

2.5.0 - Attach and detach snapshot (blueprint vmax-attach-snapshot)
- MVs and SGs not reflecting correct protocol (bug #1640222)
- Storage assisted volume migration via retype
(bp vmax-volume-migration)

- Support for compression on All Flash
- Volume replication 2.1 (bp add-vmax-replication)
- rename and restructure driver (bp vmax-rename-dell-emc)

3.0.0 - REST based driver
- Retype (storage-assisted migration)
- QoS support
- Support for compression on All Flash
- Support for volume replication
- Support for live migration
- Support for Generic Volume Group

3.1.0 - Support for replication groups (Tiramisu)
- Deprecate backend xml configuration
- Support for async replication (vmax-replication-enhancements)
- Support for SRDF/Metro (vmax-replication-enhancements)
- Support for manage/unmanage snapshots
(vmax-manage-unmanage-snapshot)

- Support for revert to volume snapshot
3.2.0 - Support for retyping replicated volumes (bp

vmax-retype-replicated-volumes)
- Support for multiattach volumes (bp vmax-allow-multi-attach)
- Support for list manageable volumes and snapshots
(bp/vmax-list-manage-existing)

- Fix for SSL verification/cert application (bug #1772924)
- Log VMAX metadata of a volume (bp vmax-metadata)
- Fix for get-pools command (bug #1784856)

4.0.0 - Fix for initiator retrieval and short hostname unmapping
(bugs #1783855 #1783867)

- Fix for HyperMax OS Upgrade Bug (bug #1790141)
- Support for failover to secondary Unisphere
(bp/vmax-unisphere-failover)

- Rebrand from VMAX to PowerMax(bp/vmax-powermax-rebrand)
- Change from 84 to 90 REST endpoints (bug #1808539)
- Fix for PowerMax OS replication settings (bug #1812685)
- Support for storage-assisted in-use retype
(bp/powermax-storage-assisted-inuse-retype)

4.1.0 - Changing from 90 to 91 rest endpoints
- Support for Rapid TDEV Delete (bp powermax-tdev-deallocation)
- PowerMax OS Metro formatted volumes fix (bug #1829876)
- Support for Metro ODE (bp/powermax-metro-ode)
- Removal of san_rest_port from PowerMax cinder.conf config
- SnapVX noCopy mode enabled for all links
- Volume/Snapshot backed metadata inclusion

(continues on next page)

606 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

- Debug metadata compression and service level info fix
4.2.0 - Support of Unisphere storage group and array tags

- User defined override for short host name and port group name
(bp powermax-user-defined-hostname-portgroup)

- Switch to Unisphere REST API public replication endpoints
- Support for multiple replication devices
- Pools bug fix allowing 'None' variants (bug #1873253)

4.3.0 - Changing from 91 to 92 REST endpoints
- Support for Port Group and Port load balancing
(bp powermax-port-load-balance)

- Fix to enable legacy volumes to live migrate (#1867163)
- Use of snap id instead of generation (bp powermax-snapset-ids)
- Support for Failover Abilities (bp/powermax-failover-abilities)

4.4.0 - Early check for status of port
4.4.1 - Report trim/discard support

PowerStoreDriver

• Version: 1.1.3

• volume_driver=cinder.volume.drivers.dell_emc.powerstore.driver.PowerStoreDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerStore_CI

• Driver Configuration Options:

Table 182: Driver configuration options
Name = Default Value (Type) Description
powerstore_appliances = [] (List of String) Appliances names. Comma separated list of Power-

Store appliances names used to provision volumes.
powerstore_ports = [] (List of String) Allowed ports. Comma separated list of PowerStore

iSCSI IPs or FC WWNs (ex. 58:cc:f0:98:49:22:07:02) to be used. If
option is not set all ports are allowed.

• Description: Dell EMC PowerStore Driver.

Version history:
1.0.0 - Initial version
1.0.1 - Add CHAP support
1.1.0 - Add volume replication v2.1 support
1.1.1 - Add Consistency Groups support
1.1.2 - Fix iSCSI targets not being returned from the REST API call if

targets are used for multiple purposes
(iSCSI target, Replication target, etc.)

1.1.3 - Report trim/discard support

3.3. Reference 607

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_PowerStore_CI

Cinder Documentation, Release 20.3.2.dev3

PureFCDriver

• Version: 14.0.fc

• volume_driver=cinder.volume.drivers.pure.PureFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Pure_Storage_CI

• Driver Configuration Options:

608 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Pure_Storage_CI

Cinder Documentation, Release 20.3.2.dev3

Table 183: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

pure_api_token = None (String) REST API authorization token.
pure_automatic_max_oversubscription_ratio
= True

(Boolean) Automatically determine an oversubscription ratio based
on the current total data reduction values. If used this calculated
value will override the max_over_subscription_ratio config option.

pure_eradicate_on_delete =
False

(Boolean) When enabled, all Pure volumes, snapshots, and protec-
tion groups will be eradicated at the time of deletion in Cinder. Data
will NOT be recoverable after a delete with this set to True! When
disabled, volumes and snapshots will go into pending eradication
state and can be recovered.

pure_host_personality = None (String(choices=[aix, esxi, hitachi-vsp, hpux, oracle-vm-server, so-
laris, vms, None])) Determines how the Purity system tunes the pro-
tocol used between the array and the initiator.

pure_iscsi_cidr = 0.0.0.0/0 (String) CIDR of FlashArray iSCSI targets hosts are allowed
to connect to. Default will allow connection to any IPv4 ad-
dress. This parameter now supports IPv6 subnets. Ignored when
pure_iscsi_cidr_list is set.

pure_iscsi_cidr_list = None (List of String) Comma-separated list of CIDR of FlashArray iSCSI
targets hosts are allowed to connect to. It supports IPv4 and IPv6
subnets. This parameter supersedes pure_iscsi_cidr.

pure_replica_interval_default
= 3600

(Integer) Snapshot replication interval in seconds.

pure_replica_retention_long_term_default
= 7

(Integer) Retain snapshots per day on target for this time (in days.)

pure_replica_retention_long_term_per_day_default
= 3

(Integer) Retain how many snapshots for each day.

pure_replica_retention_short_term_default
= 14400

(Integer) Retain all snapshots on target for this time (in seconds.)

pure_replication_pg_name =
cinder-group

(String) Pure Protection Group name to use for async replication
(will be created if it does not exist).

pure_replication_pod_name =
cinder-pod

(String) Pure Pod name to use for sync replication (will be created if
it does not exist).

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_ip = (String) IP address of SAN controller
use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.

3.3. Reference 609

Cinder Documentation, Release 20.3.2.dev3

• Description: OpenStack Volume Driver to support Pure Storage FlashArray.

This version of the driver enables the use of Fibre Channel for the underlying storage connectivity with
the FlashArray. It fully supports the Cinder Fibre Channel Zone Manager.

PureISCSIDriver

• Version: 14.0.iscsi

• volume_driver=cinder.volume.drivers.pure.PureISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Pure_Storage_CI

• Driver Configuration Options:

610 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Pure_Storage_CI

Cinder Documentation, Release 20.3.2.dev3

Table 184: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

pure_api_token = None (String) REST API authorization token.
pure_automatic_max_oversubscription_ratio
= True

(Boolean) Automatically determine an oversubscription ratio based
on the current total data reduction values. If used this calculated
value will override the max_over_subscription_ratio config option.

pure_eradicate_on_delete =
False

(Boolean) When enabled, all Pure volumes, snapshots, and protec-
tion groups will be eradicated at the time of deletion in Cinder. Data
will NOT be recoverable after a delete with this set to True! When
disabled, volumes and snapshots will go into pending eradication
state and can be recovered.

pure_host_personality = None (String(choices=[aix, esxi, hitachi-vsp, hpux, oracle-vm-server, so-
laris, vms, None])) Determines how the Purity system tunes the pro-
tocol used between the array and the initiator.

pure_iscsi_cidr = 0.0.0.0/0 (String) CIDR of FlashArray iSCSI targets hosts are allowed
to connect to. Default will allow connection to any IPv4 ad-
dress. This parameter now supports IPv6 subnets. Ignored when
pure_iscsi_cidr_list is set.

pure_iscsi_cidr_list = None (List of String) Comma-separated list of CIDR of FlashArray iSCSI
targets hosts are allowed to connect to. It supports IPv4 and IPv6
subnets. This parameter supersedes pure_iscsi_cidr.

pure_replica_interval_default
= 3600

(Integer) Snapshot replication interval in seconds.

pure_replica_retention_long_term_default
= 7

(Integer) Retain snapshots per day on target for this time (in days.)

pure_replica_retention_long_term_per_day_default
= 3

(Integer) Retain how many snapshots for each day.

pure_replica_retention_short_term_default
= 14400

(Integer) Retain all snapshots on target for this time (in seconds.)

pure_replication_pg_name =
cinder-group

(String) Pure Protection Group name to use for async replication
(will be created if it does not exist).

pure_replication_pod_name =
cinder-pod

(String) Pure Pod name to use for sync replication (will be created if
it does not exist).

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_ip = (String) IP address of SAN controller
use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.

3.3. Reference 611

Cinder Documentation, Release 20.3.2.dev3

• Description: OpenStack Volume Driver to support Pure Storage FlashArray.

This version of the driver enables the use of iSCSI for the underlying storage connectivity with the
FlashArray.

QuobyteDriver

• Version: 1.1.13

• volume_driver=cinder.volume.drivers.quobyte.QuobyteDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Quobyte_CI

• Driver Configuration Options:

Table 185: Driver configuration options
Name = Default Value (Type) Description
quobyte_client_cfg = None (String) Path to a Quobyte Client configuration file.
quobyte_mount_point_base =
$state_path/mnt

(String) Base dir containing the mount point for the Quobyte volume.

quobyte_overlay_volumes =
False

(Boolean) Create new volumes from the vol-
ume_from_snapshot_cache by creating overlay files instead of
full copies. This speeds up the creation of volumes from this cache.
This feature requires the options quobyte_qcow2_volumes and
quobyte_volume_from_snapshot_cache to be set to True. If one of
these is set to False this option is ignored.

quobyte_qcow2_volumes =
True

(Boolean) Create volumes as QCOW2 files rather than raw files.

quobyte_sparsed_volumes =
True

(Boolean) Create volumes as sparse files which take no space. If set
to False, volume is created as regular file.

quobyte_volume_from_snapshot_cache
= False

(Boolean) Create a cache of volumes from merged snapshots to speed
up creation of multiple volumes from a single snapshot.

quobyte_volume_url = None (String) Quobyte URL to the Quobyte volume using e.g. a DNS SRV
record (preferred) or a host list (alternatively) like quobyte://<DIR
host1>, <DIR host2>/<volume name>

• Description: Cinder driver for Quobyte USP.

Volumes are stored as files on the mounted Quobyte volume. The hypervisor will expose them as block
devices.

Unlike other similar drivers, this driver uses exactly one Quobyte volume because Quobyte USP is a
distributed storage system. To add or remove capacity, administrators can add or remove storage servers
to/from the volume.

For different types of volumes e.g., SSD vs. rotating disks, use multiple backends in Cinder.

Note: To be compliant with the inherited RemoteFSSnapDriver, Quobyte volumes are also re-
ferred to as shares.

Version history:

1.0 - Initial driver.
(continues on next page)

612 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Quobyte_CI

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

1.1 - Adds optional insecure NAS settings
1.1.1 - Removes getfattr calls from driver
1.1.2 - Fixes a bug in the creation of cloned volumes
1.1.3 - Explicitely mounts Quobyte volumes w/o xattrs
1.1.4 - Fixes capability to configure redundancy in quobyte_volume_url
1.1.5 - Enables extension of volumes with snapshots
1.1.6 - Optimizes volume creation
1.1.7 - Support fuse subtype based Quobyte mount validation
1.1.8 - Adds optional snapshot merge caching
1.1.9 - Support for Qemu >= 2.10.0
1.1.10 - Adds overlay based volumes for snapshot merge caching
1.1.11 - NAS secure ownership & permissions are now False by default
1.1.12 - Ensure the currently configured volume url is always used
1.1.13 - Allow creating volumes from snapshots in state 'backing-up'

RBDDriver

• Version: 1.2.0

• volume_driver=cinder.volume.drivers.rbd.RBDDriver

• Driver Configuration Options:

3.3. Reference 613

Cinder Documentation, Release 20.3.2.dev3

Table 186: Driver configuration options
Name = Default Value (Type) Description
deferred_deletion_delay = 0 (Integer) Time delay in seconds before a volume is eligible for per-

manent removal after being tagged for deferred deletion.
de-
ferred_deletion_purge_interval
= 60

(Integer) Number of seconds between runs of the periodic task to
purge volumes tagged for deletion.

enable_deferred_deletion =
False

(Boolean) Enable deferred deletion. Upon deletion, volumes are
tagged for deletion but will only be removed asynchronously at a
later time.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

rados_connect_timeout = -1 (Integer) Timeout value (in seconds) used when connecting to ceph
cluster. If value < 0, no timeout is set and default librados value is
used.

rados_connection_interval = 5 (Integer) Interval value (in seconds) between connection retries to
ceph cluster.

rados_connection_retries = 3 (Integer) Number of retries if connection to ceph cluster failed.
rbd_ceph_conf = (String) Path to the ceph configuration file
rbd_cluster_name = ceph (String) The name of ceph cluster
rbd_exclusive_cinder_pool =
True

(Boolean) Set to False if the pool is shared with other usages. On
exclusive use driver wont query images provisioned size as they
will match the value calculated by the Cinder core code for allo-
cated_capacity_gb. This reduces the load on the Ceph cluster as well
as on the volume service. On non exclusive use driver will query the
Ceph cluster for per image used disk, this is an intensive operation
having an independent request for each image.

rbd_flatten_volume_from_snapshot
= False

(Boolean) Flatten volumes created from snapshots to remove depen-
dency from volume to snapshot

rbd_max_clone_depth = 5 (Integer) Maximum number of nested volume clones that are taken
before a flatten occurs. Set to 0 to disable cloning. Note: lowering
this value will not affect existing volumes whose clone depth exceeds
the new value.

rbd_pool = rbd (String) The RADOS pool where rbd volumes are stored
rbd_secret_uuid = None (String) The libvirt uuid of the secret for the rbd_user volumes
rbd_store_chunk_size = 4 (Integer) Volumes will be chunked into objects of this size (in

megabytes).
rbd_user = None (String) The RADOS client name for accessing rbd volumes - only

set when using cephx authentication
replication_connect_timeout
= 5

(Integer) Timeout value (in seconds) used when connecting to ceph
cluster to do a demotion/promotion of volumes. If value < 0, no
timeout is set and default librados value is used.

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

re-
port_dynamic_total_capacity
= True

(Boolean) Set to True for driver to report total capacity as a dynamic
value (used + current free) and to False to report a static value (quota
max bytes if defined and global size of cluster if not).

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes

614 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Description: Implements RADOS block device (RBD) volume commands.

RBDISCSIDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.ceph.rbd_iscsi.RBDISCSIDriver

• Driver Configuration Options:

3.3. Reference 615

Cinder Documentation, Release 20.3.2.dev3

Table 187: Driver configuration options
Name = Default Value (Type) Description
deferred_deletion_delay = 0 (Integer) Time delay in seconds before a volume is eligible for per-

manent removal after being tagged for deferred deletion.
de-
ferred_deletion_purge_interval
= 60

(Integer) Number of seconds between runs of the periodic task to
purge volumes tagged for deletion.

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

enable_deferred_deletion =
False

(Boolean) Enable deferred deletion. Upon deletion, volumes are
tagged for deletion but will only be removed asynchronously at a
later time.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

rados_connect_timeout = -1 (Integer) Timeout value (in seconds) used when connecting to ceph
cluster. If value < 0, no timeout is set and default librados value is
used.

rados_connection_interval = 5 (Integer) Interval value (in seconds) between connection retries to
ceph cluster.

rados_connection_retries = 3 (Integer) Number of retries if connection to ceph cluster failed.
rbd_ceph_conf = (String) Path to the ceph configuration file
rbd_cluster_name = ceph (String) The name of ceph cluster
rbd_exclusive_cinder_pool =
True

(Boolean) Set to False if the pool is shared with other usages. On
exclusive use driver wont query images provisioned size as they
will match the value calculated by the Cinder core code for allo-
cated_capacity_gb. This reduces the load on the Ceph cluster as well
as on the volume service. On non exclusive use driver will query the
Ceph cluster for per image used disk, this is an intensive operation
having an independent request for each image.

rbd_flatten_volume_from_snapshot
= False

(Boolean) Flatten volumes created from snapshots to remove depen-
dency from volume to snapshot

rbd_iscsi_api_debug = False (Boolean) Enable client request debugging.
rbd_iscsi_api_password = (String) The username for the rbd_target_api service
rbd_iscsi_api_url = (String) The url to the rbd_target_api service
rbd_iscsi_api_user = (String) The username for the rbd_target_api service
rbd_iscsi_target_iqn = None (String) The preconfigured target_iqn on the iscsi gateway.
rbd_max_clone_depth = 5 (Integer) Maximum number of nested volume clones that are taken

before a flatten occurs. Set to 0 to disable cloning. Note: lowering
this value will not affect existing volumes whose clone depth exceeds
the new value.

rbd_pool = rbd (String) The RADOS pool where rbd volumes are stored
rbd_secret_uuid = None (String) The libvirt uuid of the secret for the rbd_user volumes
rbd_store_chunk_size = 4 (Integer) Volumes will be chunked into objects of this size (in

megabytes).
rbd_user = None (String) The RADOS client name for accessing rbd volumes - only

set when using cephx authentication
replication_connect_timeout
= 5

(Integer) Timeout value (in seconds) used when connecting to ceph
cluster to do a demotion/promotion of volumes. If value < 0, no
timeout is set and default librados value is used.

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

re-
port_dynamic_total_capacity
= True

(Boolean) Set to True for driver to report total capacity as a dynamic
value (used + current free) and to False to report a static value (quota
max bytes if defined and global size of cluster if not).

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

sup-
press_requests_ssl_warnings
= False

(Boolean) Suppress requests library SSL certificate warnings.

volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes

616 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Description: Implements RADOS block device (RBD) iSCSI volume commands.

RSDDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.rsd.RSDDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/INTEL-RSD-CI

• Driver Configuration Options:

Table 188: Driver configuration options
Name = Default Value (Type) Description
podm_password = (String) Password of PODM service
podm_url = (String) URL of PODM service
podm_username = (String) Username of PODM service

• Description: Openstack driver to perform NVMe-oF volume management in RSD Solution

Version History: 1.0.0: Initial driver

SCFCDriver

• Version: 4.1.2

• volume_driver=cinder.volume.drivers.dell_emc.sc.storagecenter_fc.SCFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_SC_CI

• Driver Configuration Options:

3.3. Reference 617

https://wiki.openstack.org/wiki/ThirdPartySystems/INTEL-RSD-CI
https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_SC_CI

Cinder Documentation, Release 20.3.2.dev3

Table 189: Driver configuration options
Name = Default Value (Type) Description
dell_api_async_rest_timeout
= 15

(Integer) Dell SC API async call default timeout in seconds.

dell_api_sync_rest_timeout =
30

(Integer) Dell SC API sync call default timeout in seconds.

dell_sc_api_port = 3033 (Port(min=0, max=65535)) Dell API port
dell_sc_server_folder = open-
stack

(String) Name of the server folder to use on the Storage Center

dell_sc_ssn = 64702 (Integer) Storage Center System Serial Number
dell_sc_verify_cert = False (Boolean) Enable HTTPS SC certificate verification
dell_sc_volume_folder =
openstack

(String) Name of the volume folder to use on the Storage Center

dell_server_os = Red Hat
Linux 6.x

(String) Server OS type to use when creating a new server on the
Storage Center.

excluded_domain_ip = None (IPAddress) DEPRECATED: Fault Domain IP to be excluded from
iSCSI returns.

excluded_domain_ips = [] (List of IPAddress) Comma separated Fault Domain IPs to be ex-
cluded from iSCSI returns.

included_domain_ips = [] (List of IPAddress) Comma separated Fault Domain IPs to be in-
cluded from iSCSI returns.

secondary_san_ip = (String) IP address of secondary DSM controller
secondary_san_login = Ad-
min

(String) Secondary DSM user name

secondary_san_password = (String) Secondary DSM user password name
secondary_sc_api_port =
3033

(Port(min=0, max=65535)) Secondary Dell API port

• Description: Implements commands for Dell Storage Center FC management.

To enable the driver add the following line to the cinder configuration: vol-
ume_driver=cinder.volume.drivers.dell_emc.sc.storagecenter_fc. SCFCDriver

Version history:

1.0.0 - Initial driver
1.1.0 - Added extra spec support for Storage Profile selection
1.2.0 - Added consistency group support.
2.0.0 - Switched to inheriting functional objects rather than volume

driver.
2.1.0 - Added support for ManageableVD.
2.2.0 - Driver retype support for switching volume's Storage Profile
2.3.0 - Added Legacy Port Mode Support
2.3.1 - Updated error handling.
2.4.0 - Added Replication V2 support.
2.4.1 - Updated Replication support to V2.1.
2.5.0 - ManageableSnapshotsVD implemented.
3.0.0 - ProviderID utilized.
3.1.0 - Failback supported.
3.2.0 - Live Volume support.
3.3.0 - Support for a secondary DSM.

(continues on next page)

618 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

3.4.0 - Support for excluding a domain.
3.5.0 - Support for AFO.
3.6.0 - Server type support.
3.7.0 - Support for Data Reduction, Group QOS and Volume QOS.
4.0.0 - Driver moved to dell_emc.
4.1.0 - Timeouts added to rest calls.
4.1.1 - excluded_domain_ips support.
4.1.2 - included_domain_ips IP support.

SCISCSIDriver

• Version: 4.1.2

• volume_driver=cinder.volume.drivers.dell_emc.sc.storagecenter_iscsi.SCISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_SC_CI

• Driver Configuration Options:

Table 190: Driver configuration options
Name = Default Value (Type) Description
dell_api_async_rest_timeout
= 15

(Integer) Dell SC API async call default timeout in seconds.

dell_api_sync_rest_timeout =
30

(Integer) Dell SC API sync call default timeout in seconds.

dell_sc_api_port = 3033 (Port(min=0, max=65535)) Dell API port
dell_sc_server_folder = open-
stack

(String) Name of the server folder to use on the Storage Center

dell_sc_ssn = 64702 (Integer) Storage Center System Serial Number
dell_sc_verify_cert = False (Boolean) Enable HTTPS SC certificate verification
dell_sc_volume_folder =
openstack

(String) Name of the volume folder to use on the Storage Center

dell_server_os = Red Hat
Linux 6.x

(String) Server OS type to use when creating a new server on the
Storage Center.

excluded_domain_ip = None (IPAddress) DEPRECATED: Fault Domain IP to be excluded from
iSCSI returns.

excluded_domain_ips = [] (List of IPAddress) Comma separated Fault Domain IPs to be ex-
cluded from iSCSI returns.

included_domain_ips = [] (List of IPAddress) Comma separated Fault Domain IPs to be in-
cluded from iSCSI returns.

secondary_san_ip = (String) IP address of secondary DSM controller
secondary_san_login = Ad-
min

(String) Secondary DSM user name

secondary_san_password = (String) Secondary DSM user password name
secondary_sc_api_port =
3033

(Port(min=0, max=65535)) Secondary Dell API port

• Description: Implements commands for Dell Storage Center ISCSI management.

3.3. Reference 619

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_SC_CI

Cinder Documentation, Release 20.3.2.dev3

To enable the driver add the following line to the cinder configuration: vol-
ume_driver=cinder.volume.drivers.dell_emc.sc. storagecenter_iscsi.SCISCSIDriver

Version history:

1.0.0 - Initial driver
1.1.0 - Added extra spec support for Storage Profile selection
1.2.0 - Added consistency group support.
2.0.0 - Switched to inheriting functional objects rather than volume

driver.
2.1.0 - Added support for ManageableVD.
2.2.0 - Driver retype support for switching volume's Storage Profile.

Added API 2.2 support.
2.3.0 - Added Legacy Port Mode Support
2.3.1 - Updated error handling.
2.4.0 - Added Replication V2 support.
2.4.1 - Updated Replication support to V2.1.
2.5.0 - ManageableSnapshotsVD implemented.
3.0.0 - ProviderID utilized.
3.1.0 - Failback Supported.
3.2.0 - Live Volume support.
3.3.0 - Support for a secondary DSM.
3.4.0 - Support for excluding a domain.
3.5.0 - Support for AFO.
3.6.0 - Server type support.
3.7.0 - Support for Data Reduction, Group QOS and Volume QOS.
4.0.0 - Driver moved to dell_emc.
4.1.0 - Timeouts added to rest calls.
4.1.1 - excluded_domain_ips support.
4.1.2 - included_domain_ips IP support.

SPDKDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.spdk.SPDKDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Mellanox_CI

• Description: Executes commands relating to Volumes.

SdsISCSIDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.sandstone.sds_driver.SdsISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/SandStone_Storage_CI

• Driver Configuration Options:

620 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Mellanox_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/SandStone_Storage_CI

Cinder Documentation, Release 20.3.2.dev3

Table 191: Driver configuration options
Name = Default Value (Type) Description
backend_availability_zone =
None

(String) Availability zone for this volume backend. If not set, the
storage_availability_zone option value is used as the default for all
backends.

chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
chiscsi_conf = /etc/chelsio-
iscsi/chiscsi.conf

(String) Chiscsi (CXT) global defaults configuration file

driver_client_cert = None (String) The path to the client certificate for verification, if the driver
supports it.

driver_client_cert_key =
None

(String) The path to the client certificate key for verification, if the
driver supports it.

driver_data_namespace =
None

(String) Namespace for driver private data values to be saved in.

driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE
file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage
if the driver supports it.

enable_unsupported_driver =
False

(Boolean) Set this to True when you want to allow an unsupported
driver to start. Drivers that havent maintained a working CI system
and testing are marked as unsupported until CI is working again. This
also marks a driver as deprecated and may be removed in the next
release.

filter_function = None (String) String representation for an equation that will be used to
filter hosts. Only used when the driver filter is set to be used by the
Cinder scheduler.

goodness_function = None (String) String representation for an equation that will be used to de-
termine the goodness of a host. Only used when using the goodness
weigher is set to be used by the Cinder scheduler.

iet_conf = /etc/iet/ietd.conf (String) DEPRECATED: IET configuration file
iscsi_iotype = fileio (String(choices=[blockio, fileio, auto])) Sets the behavior of the

iSCSI target to either perform blockio or fileio optionally, auto can
be set and Cinder will autodetect type of backing device

iscsi_secondary_ip_addresses
= []

(List of String) The list of secondary IP addresses of the iSCSI dae-
mon

iscsi_target_flags = (String) Sets the target-specific flags for the iSCSI target. Only used
for tgtadm to specify backing device flags using bsoflags option. The
specified string is passed as is to the underlying tool.

iscsi_write_cache = on (String(choices=[on, off])) Sets the behavior of the iSCSI target to
either perform write-back(on) or write-through(off). This parameter
is valid if target_helper is set to tgtadm.

continues on next page

3.3. Reference 621

Cinder Documentation, Release 20.3.2.dev3

Table 191 – continued from previous page
Name = Default Value (Type) Description
max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

num_shell_tries = 3 (Integer) Number of times to attempt to run flakey shell commands
num_volume_device_scan_tries
= 3

(Integer) The maximum number of times to rescan targets to find
volume

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

report_discard_supported =
False

(Boolean) Report to clients of Cinder that the backend supports dis-
card (aka. trim/unmap). This will not actually change the behavior
of the backend or the client directly, it will only notify that it can be
used.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

storage_protocol = iscsi (String(choices=[iscsi, fc])) Protocol for transferring data between
host and storage back-end.

target_helper = tgtadm (String(choices=[tgtadm, lioadm, scstadmin, iscsictl, ietadm, nvmet,
spdk-nvmeof, fake])) Target user-land tool to use. tgtadm is default,
use lioadm for LIO iSCSI support, scstadmin for SCST target sup-
port, ietadm for iSCSI Enterprise Target, iscsictl for Chelsio iSCSI
Target, nvmet for NVMEoF support, spdk-nvmeof for SPDK NVMe-
oF, or fake for testing. Note: The IET driver is deprecated and will
be removed in the V release.

target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is lis-

tening on
target_prefix = iqn.2010-
10.org.openstack:

(String) Prefix for iSCSI volumes

target_protocol = iscsi (String(choices=[iscsi, iser, nvmet_rdma, nvmet_tcp])) Determines
the target protocol for new volumes, created with tgtadm, lioadm
and nvmet target helpers. In order to enable RDMA, this parameter
should be set with the value iser. The supported iSCSI protocol val-
ues are iscsi and iser, in case of nvmet target set to nvmet_rdma or
nvmet_tcp.

trace_flags = None (List of String) List of options that control which trace info is written
to the DEBUG log level to assist developers. Valid values are method
and api.

use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
continues on next page

622 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 191 – continued from previous page
Name = Default Value (Type) Description
volume_backend_name =
None

(String) The backend name for a given driver implementation

volume_clear = zero (String(choices=[none, zero])) Method used to wipe old volumes
volume_clear_ionice = None (String) The flag to pass to ionice to alter the i/o priority of the pro-

cess used to zero a volume after deletion, for example -c3 for idle
only priority.

volume_clear_size = 0 (Integer(max=1024)) Size in MiB to wipe at start of old volumes.
1024 MiB at max. 0 => all

vol-
ume_copy_blkio_cgroup_name
= cinder-volume-copy

(String) The blkio cgroup name to be used to limit bandwidth of
volume copy

volume_copy_bps_limit = 0 (Integer) The upper limit of bandwidth of volume copy. 0 => unlim-
ited

volume_dd_blocksize = 1M (String) The default block size used when copying/clearing volumes
volumes_dir =
$state_path/volumes

(String) Volume configuration file storage directory

• Description: ISCSI driver for SandStone storage arrays.

Version history:

1.0.0 - Initial driver
Provide SandStone storage
create volume support
delete volume support
create snapshot support
delete snapshot support
extend volume support
create volume from snap support
create cloned volume support
nova volume-attach support
nova volume-detach support

SolidFireDriver

• Version: 2.2.4

• volume_driver=cinder.volume.drivers.solidfire.SolidFireDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/NetApp_SolidFire_CI

• Driver Configuration Options:

3.3. Reference 623

https://wiki.openstack.org/wiki/ThirdPartySystems/NetApp_SolidFire_CI

Cinder Documentation, Release 20.3.2.dev3

Table 192: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate

of the backend endpoint.
max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

replication_device = None (Dict of String) Multi opt of dictionaries to represent a replication
target device. This option may be specified multiple times in a sin-
gle config section to specify multiple replication target devices. Each
entry takes the standard dict config form: replication_device = tar-
get_device_id:<required>,key1:value1,key2:value2

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
sf_account_prefix = None (String) Create SolidFire accounts with this prefix. Any string can

be used here, but the string hostname is special and will create a
prefix using the cinder node hostname (previous default behavior).
The default is NO prefix.

sf_allow_tenant_qos = False (Boolean) Allow tenants to specify QOS on create
sf_api_port = 443 (Port(min=0, max=65535)) SolidFire API port. Useful if the device

api is behind a proxy on a different port.
sf_api_request_timeout = 30 (Integer(min=30)) Sets time in seconds to wait for an api request to

complete.
sf_cluster_pairing_timeout =
60

(Integer(min=3)) Sets time in seconds to wait for clusters to complete
pairing.

sf_emulate_512 = True (Boolean) Set 512 byte emulation on volume creation;
sf_enable_vag = False (Boolean) Utilize volume access groups on a per-tenant basis.
sf_provisioning_calc = max-
ProvisionedSpace

(String(choices=[maxProvisionedSpace, usedSpace])) Change how
SolidFire reports used space and provisioning calculations. If this
parameter is set to usedSpace, the driver will report correct values
as expected by Cinder thin provisioning.

sf_svip = None (String) Overrides default cluster SVIP with the one specified. This
is required or deployments that have implemented the use of VLANs
for iSCSI networks in their cloud.

sf_volume_clone_timeout =
600

(Integer(min=60)) Sets time in seconds to wait for a clone of a vol-
ume or snapshot to complete.

sf_volume_create_timeout =
60

(Integer(min=30)) Sets time in seconds to wait for a create volume
operation to complete.

sf_volume_pairing_timeout =
3600

(Integer(min=30)) Sets time in seconds to wait for a migrating vol-
ume to complete pairing and sync.

sf_volume_prefix = UUID- (String) Create SolidFire volumes with this prefix. Volume names
are of the form <sf_volume_prefix><cinder-volume-id>. The default
is to use a prefix of UUID-.624 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Description: OpenStack driver to enable SolidFire cluster.

Version history:
1.0 - Initial driver
1.1 - Refactor, clone support, qos by type and minor bug fixes
1.2 - Add xfr and retype support
1.2.1 - Add export/import support
1.2.2 - Catch VolumeNotFound on accept xfr
2.0.0 - Move from httplib to requests
2.0.1 - Implement SolidFire Snapshots
2.0.2 - Implement secondary account
2.0.3 - Implement cluster pairing
2.0.4 - Implement volume replication
2.0.5 - Try and deal with the stupid retry/clear issues from objects

and tflow
2.0.6 - Add a lock decorator around the clone_image method
2.0.7 - Add scaled IOPS
2.0.8 - Add active status filter to get volume ops
2.0.9 - Always purge on delete volume
2.0.10 - Add response to debug on retryable errors
2.0.11 - Add ability to failback replicating volumes
2.0.12 - Fix bug #1744005
2.0.14 - Fix bug #1782588 qos settings on extend
2.0.15 - Fix bug #1834013 NetApp SolidFire replication errors
2.0.16 - Add options for replication mode (Async, Sync and

SnapshotsOnly)
2.0.17 - Fix bug #1859653 SolidFire fails to failback when volume

service is restarted
2.1.0 - Add Cinder Active/Active support

- Enable Active/Active support flag
- Implement Active/Active replication support

2.2.0 - Add storage assisted volume migration support
2.2.1 - Fix bug #1891914 fix error on cluster workload rebalancing

by adding xNotPrimary to the retryable exception list
2.2.2 - Fix bug #1896112 SolidFire Driver creates duplicate volume

when API response is lost
2.2.3 - Fix bug #1942090 SolidFire retype fails due to volume status

as retyping.
Fix bug #1932964 SolidFire duplicate volume name exception
on migration and replication.

2.2.4 - Fix bug #1934435 fix driver failing with multiple exceptions
during Element OS upgrade by adding xDBOperationTimeout,
xDBConnectionLoss, xNoHandler, xSnapshotFailed,
xRecvTimeout, xDBNoSuchPath, xPermissionDenied to the
retryable exception list

3.3. Reference 625

Cinder Documentation, Release 20.3.2.dev3

StorPoolDriver

• Version: 1.2.3

• volume_driver=cinder.volume.drivers.storpool.StorPoolDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/StorPool_distributed_storage_CI

• Driver Configuration Options:

Table 193: Driver configuration options
Name = Default Value (Type) Description
storpool_replication = 3 (Integer) The default StorPool chain replication value. Used when

creating a volume with no specified type if storpool_template is not
set. Also used for calculating the apparent free space reported in the
stats.

storpool_template = None (String) The StorPool template for volumes with no type.

• Description: The StorPool block device driver.

Version history:

0.1.0 - Initial driver
0.2.0 - Bring the driver up to date with Kilo and Liberty:

- implement volume retyping and migrations
- use the driver.*VD ABC metaclasses
- bugfix: fall back to the configured StorPool template

1.0.0 - Imported into OpenStack Liberty with minor fixes
1.1.0 - Bring the driver up to date with Liberty and Mitaka:

- drop the CloneableVD and RetypeVD base classes
- enable faster volume copying by specifying
sparse_volume_copy=true in the stats report

1.1.1 - Fix the internal _storpool_client_id() method to
not break on an unknown host name or UUID; thus,
remove the StorPoolConfigurationMissing exception.

1.1.2 - Bring the driver up to date with Pike: do not
translate the error messages

1.2.0 - Inherit from VolumeDriver, implement get_pool()
1.2.1 - Implement interface.volumedriver, add CI_WIKI_NAME,

fix the docstring formatting
1.2.2 - Reintroduce the driver into OpenStack Queens,

add ignore_errors to the internal _detach_volume() method
1.2.3 - Advertise some more driver capabilities.

626 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/StorPool_distributed_storage_CI

Cinder Documentation, Release 20.3.2.dev3

StorwizeSVCFCDriver

• Version: 2.2.6

• volume_driver=cinder.volume.drivers.ibm.storwize_svc.storwize_svc_fc.StorwizeSVCFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI

• Driver Configuration Options:

3.3. Reference 627

https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI

Cinder Documentation, Release 20.3.2.dev3

Table 194: Driver configuration options
Name = Default Value (Type) Description
cycle_period_seconds = 300 (Integer(min=60, max=86400)) This defines an optional cycle period

that applies to Global Mirror relationships with a cycling mode of
multi. A Global Mirror relationship using the multi cycling_mode
performs a complete cycle at most once each period. The default is
300 seconds, and the valid seconds are 60-86400.

storwize_peer_pool = None (String) Specifies the name of the peer pool for hyperswap volume,
the peer pool must exist on the other site.

storwize_portset = None (String) Specifies the name of the portset in which host to be created.
storwize_preferred_host_site
= {}

(Dict of String) Specifies the site information for host. One WWPN
or multi WWPNs used in the host can be specified. For example:
storwize_preferred_host_site=site1:wwpn1,site2:wwpn2&wwpn3
or storwize_preferred_host_site=site1:iqn1,site2:iqn2

storwize_san_secondary_ip =
None

(String) Specifies secondary management IP or hostname to be used
if san_ip is invalid or becomes inaccessible.

stor-
wize_svc_allow_tenant_qos =
False

(Boolean) Allow tenants to specify QOS on create

storwize_svc_clean_rate = 50 (Integer(min=0, max=150)) Specifies the Storwize cleaning rate for
the mapping. The default rate is 50, and the valid rates are 0-150.

storwize_svc_flashcopy_rate
= 50

(Integer(min=1, max=150)) Specifies the Storwize FlashCopy copy
rate to be used when creating a full volume copy. The default is rate
is 50, and the valid rates are 1-150.

stor-
wize_svc_flashcopy_timeout
= 120

(Integer(min=1, max=600)) Maximum number of seconds to wait for
FlashCopy to be prepared.

storwize_svc_mirror_pool =
None

(String) Specifies the name of the pool in which mirrored copy is
stored. Example: pool2

stor-
wize_svc_multihostmap_enabled
= True

(Boolean) This option no longer has any affect. It is deprecated and
will be removed in the next release.

stor-
wize_svc_multipath_enabled
= False

(Boolean) Connect with multipath (FC only; iSCSI multipath is con-
trolled by Nova)

stor-
wize_svc_retain_aux_volume
= False

(Boolean) Enable or disable retaining of aux volume on secondary
storage during delete of the volume on primary storage or moving the
primary volume from mirror to non-mirror with replication enabled.
This option is valid for Spectrum Virtualize Family.

storwize_svc_src_child_pool
= None

(String) Specifies the name of the source child pool in which global
mirror source change volume is stored.

stor-
wize_svc_stretched_cluster_partner
= None

(String) If operating in stretched cluster mode, specify the name of
the pool in which mirrored copies are stored.Example: pool2

stor-
wize_svc_target_child_pool =
None

(String) Specifies the name of the target child pool in which global
mirror auxiliary change volume is stored.

storwize_svc_vol_autoexpand
= True

(Boolean) Storage system autoexpand parameter for volumes
(True/False)

stor-
wize_svc_vol_compression =
False

(Boolean) Storage system compression option for volumes

storwize_svc_vol_easytier =
True

(Boolean) Enable Easy Tier for volumes

storwize_svc_vol_grainsize =
256

(Integer) Storage system grain size parameter for volumes
(8/32/64/128/256)

storwize_svc_vol_iogrp = 0 (String) The I/O group in which to allocate volumes. It can be a
comma-separated list in which case the driver will select an io_group
based on least number of volumes associated with the io_group.

storwize_svc_vol_nofmtdisk
= False

(Boolean) Specifies that the volume not be formatted during creation.

storwize_svc_vol_rsize = 2 (Integer(min=-1, max=100)) Storage system space-efficiency param-
eter for volumes (percentage)

storwize_svc_vol_warning =
0

(Integer(min=-1, max=100)) Storage system threshold for volume
capacity warnings (percentage)

storwize_svc_volpool_name
= [volpool]

(List of String) Comma separated list of storage system storage pools
for volumes.

628 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Description: IBM Storwize V7000 and SVC FC volume driver.

Version history:

1.0 - Initial driver
1.1 - FC support, create_cloned_volume, volume type support,

get_volume_stats, minor bug fixes
1.2.0 - Added retype
1.2.1 - Code refactor, improved exception handling
1.2.2 - Fix bug #1274123 (races in host-related functions)
1.2.3 - Fix Fibre Channel connectivity: bug #1279758 (add delim

to lsfabric, clear unused data from connections, ensure
matching WWPNs by comparing lower case

1.2.4 - Fix bug #1278035 (async migration/retype)
1.2.5 - Added support for manage_existing (unmanage is inherited)
1.2.6 - Added QoS support in terms of I/O throttling rate
1.3.1 - Added support for volume replication
1.3.2 - Added support for consistency group
1.3.3 - Update driver to use ABC metaclasses
2.0 - Code refactor, split init file and placed shared methods

for FC and iSCSI within the StorwizeSVCCommonDriver class
2.0.1 - Added support for multiple pools with model update
2.1 - Added replication V2 support to the global/metro mirror

mode
2.1.1 - Update replication to version 2.1
2.2 - Add CG capability to generic volume groups
2.2.1 - Add vdisk mirror/stretch cluster support
2.2.2 - Add npiv support
2.2.3 - Add replication group support
2.2.4 - Add backup snapshots support
2.2.5 - Add hyperswap support
2.2.6 - Add support for host attachment using portsets

StorwizeSVCISCSIDriver

• Version: 2.2.5

• volume_driver=cinder.volume.drivers.ibm.storwize_svc.storwize_svc_iscsi.StorwizeSVCISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI

• Driver Configuration Options:

3.3. Reference 629

https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI

Cinder Documentation, Release 20.3.2.dev3

Table 195: Driver configuration options
Name = Default Value (Type) Description
cycle_period_seconds = 300 (Integer(min=60, max=86400)) This defines an optional cycle period

that applies to Global Mirror relationships with a cycling mode of
multi. A Global Mirror relationship using the multi cycling_mode
performs a complete cycle at most once each period. The default is
300 seconds, and the valid seconds are 60-86400.

storwize_peer_pool = None (String) Specifies the name of the peer pool for hyperswap volume,
the peer pool must exist on the other site.

storwize_portset = None (String) Specifies the name of the portset in which host to be created.
storwize_preferred_host_site
= {}

(Dict of String) Specifies the site information for host. One WWPN
or multi WWPNs used in the host can be specified. For example:
storwize_preferred_host_site=site1:wwpn1,site2:wwpn2&wwpn3
or storwize_preferred_host_site=site1:iqn1,site2:iqn2

storwize_san_secondary_ip =
None

(String) Specifies secondary management IP or hostname to be used
if san_ip is invalid or becomes inaccessible.

stor-
wize_svc_allow_tenant_qos =
False

(Boolean) Allow tenants to specify QOS on create

storwize_svc_clean_rate = 50 (Integer(min=0, max=150)) Specifies the Storwize cleaning rate for
the mapping. The default rate is 50, and the valid rates are 0-150.

storwize_svc_flashcopy_rate
= 50

(Integer(min=1, max=150)) Specifies the Storwize FlashCopy copy
rate to be used when creating a full volume copy. The default is rate
is 50, and the valid rates are 1-150.

stor-
wize_svc_flashcopy_timeout
= 120

(Integer(min=1, max=600)) Maximum number of seconds to wait for
FlashCopy to be prepared.

stor-
wize_svc_iscsi_chap_enabled
= True

(Boolean) Configure CHAP authentication for iSCSI connections
(Default: Enabled)

storwize_svc_mirror_pool =
None

(String) Specifies the name of the pool in which mirrored copy is
stored. Example: pool2

stor-
wize_svc_multihostmap_enabled
= True

(Boolean) This option no longer has any affect. It is deprecated and
will be removed in the next release.

stor-
wize_svc_retain_aux_volume
= False

(Boolean) Enable or disable retaining of aux volume on secondary
storage during delete of the volume on primary storage or moving the
primary volume from mirror to non-mirror with replication enabled.
This option is valid for Spectrum Virtualize Family.

storwize_svc_src_child_pool
= None

(String) Specifies the name of the source child pool in which global
mirror source change volume is stored.

stor-
wize_svc_stretched_cluster_partner
= None

(String) If operating in stretched cluster mode, specify the name of
the pool in which mirrored copies are stored.Example: pool2

stor-
wize_svc_target_child_pool =
None

(String) Specifies the name of the target child pool in which global
mirror auxiliary change volume is stored.

storwize_svc_vol_autoexpand
= True

(Boolean) Storage system autoexpand parameter for volumes
(True/False)

stor-
wize_svc_vol_compression =
False

(Boolean) Storage system compression option for volumes

storwize_svc_vol_easytier =
True

(Boolean) Enable Easy Tier for volumes

storwize_svc_vol_grainsize =
256

(Integer) Storage system grain size parameter for volumes
(8/32/64/128/256)

storwize_svc_vol_iogrp = 0 (String) The I/O group in which to allocate volumes. It can be a
comma-separated list in which case the driver will select an io_group
based on least number of volumes associated with the io_group.

storwize_svc_vol_nofmtdisk
= False

(Boolean) Specifies that the volume not be formatted during creation.

storwize_svc_vol_rsize = 2 (Integer(min=-1, max=100)) Storage system space-efficiency param-
eter for volumes (percentage)

storwize_svc_vol_warning =
0

(Integer(min=-1, max=100)) Storage system threshold for volume
capacity warnings (percentage)

storwize_svc_volpool_name
= [volpool]

(List of String) Comma separated list of storage system storage pools
for volumes.

630 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

• Description: IBM Storwize V7000 and SVC iSCSI volume driver.

Version history:

1.0 - Initial driver
1.1 - FC support, create_cloned_volume, volume type support,

get_volume_stats, minor bug fixes
1.2.0 - Added retype
1.2.1 - Code refactor, improved exception handling
1.2.2 - Fix bug #1274123 (races in host-related functions)
1.2.3 - Fix Fibre Channel connectivity: bug #1279758 (add delim

to lsfabric, clear unused data from connections, ensure
matching WWPNs by comparing lower case

1.2.4 - Fix bug #1278035 (async migration/retype)
1.2.5 - Added support for manage_existing (unmanage is inherited)
1.2.6 - Added QoS support in terms of I/O throttling rate
1.3.1 - Added support for volume replication
1.3.2 - Added support for consistency group
1.3.3 - Update driver to use ABC metaclasses
2.0 - Code refactor, split init file and placed shared methods

for FC and iSCSI within the StorwizeSVCCommonDriver class
2.0.1 - Added support for multiple pools with model update
2.1 - Added replication V2 support to the global/metro mirror

mode
2.1.1 - Update replication to version 2.1
2.2 - Add CG capability to generic volume groups
2.2.1 - Add vdisk mirror/stretch cluster support
2.2.2 - Add replication group support
2.2.3 - Add backup snapshots support
2.2.4 - Add hyperswap support
2.2.5 - Add support for host attachment using portsets

SynoISCSIDriver

• Version: 1.0.1

• volume_driver=cinder.volume.drivers.synology.synology_iscsi.SynoISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Synology_DSM_CI

• Driver Configuration Options:

3.3. Reference 631

https://wiki.openstack.org/wiki/ThirdPartySystems/Synology_DSM_CI

Cinder Documentation, Release 20.3.2.dev3

Table 196: Driver configuration options
Name = Default Value (Type) Description
chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
driver_use_ssl = False (Boolean) Tell driver to use SSL for connection to backend storage

if the driver supports it.
iscsi_secondary_ip_addresses
= []

(List of String) The list of secondary IP addresses of the iSCSI dae-
mon

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

synology_admin_port = 5000 (Port(min=0, max=65535)) Management port for Synology storage.
synology_device_id = None (String) Device id for skip one time password check for logging in

Synology storage if OTP is enabled.
synology_one_time_pass =
None

(String) One time password of administrator for logging in Synology
storage if OTP is enabled.

synology_password = (String) Password of administrator for logging in Synology storage.
synology_pool_name = (String) Volume on Synology storage to be used for creating lun.
synology_ssl_verify = True (Boolean) Do certificate validation or not if $driver_use_ssl is True
synology_username = admin (String) Administrator of Synology storage.
target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
target_port = 3260 (Port(min=0, max=65535)) The port that the iSCSI daemon is lis-

tening on
target_prefix = iqn.2010-
10.org.openstack:

(String) Prefix for iSCSI volumes

target_protocol = iscsi (String(choices=[iscsi, iser, nvmet_rdma, nvmet_tcp])) Determines
the target protocol for new volumes, created with tgtadm, lioadm
and nvmet target helpers. In order to enable RDMA, this parameter
should be set with the value iser. The supported iSCSI protocol val-
ues are iscsi and iser, in case of nvmet target set to nvmet_rdma or
nvmet_tcp.

use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.

• Description: OpenStack Cinder drivers for Synology storage.

Version history:
1.0.0 - Initial driver. Provide Cinder minimum features
1.0.1 - Add support for UC series model

632 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

UnityDriver

• Version: 07.02.00

• volume_driver=cinder.volume.drivers.dell_emc.unity.driver.UnityDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_Unity_CI

• Driver Configuration Options:

Table 197: Driver configuration options
Name = Default Value (Type) Description
remove_empty_host = False (Boolean) To remove the host from Unity when the last LUN is de-

tached from it. By default, it is False.
unity_io_ports = [] (List of String) A comma-separated list of iSCSI or FC ports to be

used. Each port can be Unix-style glob expressions.
unity_storage_pool_names =
[]

(List of String) A comma-separated list of storage pool names to be
used.

• Description: Unity Driver.

Version history:
1.0.0 - Initial version
2.0.0 - Add thin clone support
3.0.0 - Add IPv6 support
3.1.0 - Support revert to snapshot API
4.0.0 - Support remove empty host
4.2.0 - Support compressed volume
5.0.0 - Support storage assisted volume migration
6.0.0 - Support generic group and consistent group
6.1.0 - Support volume replication
7.0.0 - Support tiering policy
7.1.0 - Support consistency group replication
7.2.0 - Support retype volume

VMwareVStorageObjectDriver

• Version: 1.3.0

• volume_driver=cinder.volume.drivers.vmware.fcd.VMwareVStorageObjectDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/VMware_CI

• Driver Configuration Options:

3.3. Reference 633

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_Unity_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/VMware_CI

Cinder Documentation, Release 20.3.2.dev3

Table 198: Driver configuration options
Name = Default Value (Type) Description
vmware_adapter_type = lsi-
Logic

(String(choices=[lsiLogic, busLogic, lsiLogicsas, paraVirtual, ide]))
Default adapter type to be used for attaching volumes.

vmware_api_retry_count = 10 (Integer) Number of times VMware vCenter server API must be re-
tried upon connection related issues.

vmware_ca_file = None (String) CA bundle file to use in verifying the vCenter server certifi-
cate.

vmware_cluster_name =
None

(String) Name of a vCenter compute cluster where volumes should
be created.

vmware_connection_pool_size
= 10

(Integer) Maximum number of connections in http connection pool.

vmware_datastore_regex =
None

(String) Regular expression pattern to match the name of datastores
where backend volumes are created.

vmware_enable_volume_stats
= False

(Boolean) If true, this enables the fetching of the volume stats from
the backend. This has potential performance issues at scale. When
False, the driver will not collect ANY stats about the backend.

vmware_host_ip = None (String) IP address for connecting to VMware vCenter server.
vmware_host_password =
None

(String) Password for authenticating with VMware vCenter server.

vmware_host_port = 443 (Port(min=0, max=65535)) Port number for connecting to VMware
vCenter server.

vmware_host_username =
None

(String) Username for authenticating with VMware vCenter server.

vmware_host_version = None (String) Optional string specifying the VMware vCenter server ver-
sion. The driver attempts to retrieve the version from VMware vCen-
ter server. Set this configuration only if you want to override the
vCenter server version.

vmware_image_transfer_timeout_secs
= 7200

(Integer) Timeout in seconds for VMDK volume transfer between
Cinder and Glance.

vmware_insecure = False (Boolean) If true, the vCenter server certificate is not verified. If
false, then the default CA truststore is used for verification. This
option is ignored if vmware_ca_file is set.

vmware_lazy_create = True (Boolean) If true, the backend volume in vCenter server is created
lazily when the volume is created without any source. The backend
volume is created when the volume is attached, uploaded to image
service or during backup.

vmware_max_objects_retrieval
= 100

(Integer) Max number of objects to be retrieved per batch. Query
results will be obtained in batches from the server and not in one shot.
Server may still limit the count to something less than the configured
value.

vmware_snapshot_format =
template

(String(choices=[template, COW])) Volume snapshot format in
vCenter server.

vmware_storage_profile =
None

(String) Names of storage profiles to be monitored. Only used when
vmware_enable_volume_stats is True.

vmware_task_poll_interval =
2.0

(Float) The interval (in seconds) for polling remote tasks invoked on
VMware vCenter server.

vmware_tmp_dir = /tmp (String) Directory where virtual disks are stored during volume
backup and restore.

vmware_volume_folder =
Volumes

(String) Name of the vCenter inventory folder that will con-
tain Cinder volumes. This folder will be created under Open-
Stack/<project_folder>, where project_folder is of format Project
(<volume_project_id>).

vmware_wsdl_location =
None

(String) Optional VIM service WSDL Location e.g http:
//<server>/vimService.wsdl. Optional over-ride to default lo-
cation for bug work-arounds.

634 Chapter 3. For operators

http:/
http:/

Cinder Documentation, Release 20.3.2.dev3

• Description: Volume driver based on VMware VStorageObject

VMwareVcVmdkDriver

• Version: 3.4.4

• volume_driver=cinder.volume.drivers.vmware.vmdk.VMwareVcVmdkDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/VMware_CI

• Driver Configuration Options:

3.3. Reference 635

https://wiki.openstack.org/wiki/ThirdPartySystems/VMware_CI

Cinder Documentation, Release 20.3.2.dev3

Table 199: Driver configuration options
Name = Default Value (Type) Description
vmware_adapter_type = lsi-
Logic

(String(choices=[lsiLogic, busLogic, lsiLogicsas, paraVirtual, ide]))
Default adapter type to be used for attaching volumes.

vmware_api_retry_count = 10 (Integer) Number of times VMware vCenter server API must be re-
tried upon connection related issues.

vmware_ca_file = None (String) CA bundle file to use in verifying the vCenter server certifi-
cate.

vmware_cluster_name =
None

(String) Name of a vCenter compute cluster where volumes should
be created.

vmware_connection_pool_size
= 10

(Integer) Maximum number of connections in http connection pool.

vmware_datastore_regex =
None

(String) Regular expression pattern to match the name of datastores
where backend volumes are created.

vmware_enable_volume_stats
= False

(Boolean) If true, this enables the fetching of the volume stats from
the backend. This has potential performance issues at scale. When
False, the driver will not collect ANY stats about the backend.

vmware_host_ip = None (String) IP address for connecting to VMware vCenter server.
vmware_host_password =
None

(String) Password for authenticating with VMware vCenter server.

vmware_host_port = 443 (Port(min=0, max=65535)) Port number for connecting to VMware
vCenter server.

vmware_host_username =
None

(String) Username for authenticating with VMware vCenter server.

vmware_host_version = None (String) Optional string specifying the VMware vCenter server ver-
sion. The driver attempts to retrieve the version from VMware vCen-
ter server. Set this configuration only if you want to override the
vCenter server version.

vmware_image_transfer_timeout_secs
= 7200

(Integer) Timeout in seconds for VMDK volume transfer between
Cinder and Glance.

vmware_insecure = False (Boolean) If true, the vCenter server certificate is not verified. If
false, then the default CA truststore is used for verification. This
option is ignored if vmware_ca_file is set.

vmware_lazy_create = True (Boolean) If true, the backend volume in vCenter server is created
lazily when the volume is created without any source. The backend
volume is created when the volume is attached, uploaded to image
service or during backup.

vmware_max_objects_retrieval
= 100

(Integer) Max number of objects to be retrieved per batch. Query
results will be obtained in batches from the server and not in one shot.
Server may still limit the count to something less than the configured
value.

vmware_snapshot_format =
template

(String(choices=[template, COW])) Volume snapshot format in
vCenter server.

vmware_storage_profile =
None

(String) Names of storage profiles to be monitored. Only used when
vmware_enable_volume_stats is True.

vmware_task_poll_interval =
2.0

(Float) The interval (in seconds) for polling remote tasks invoked on
VMware vCenter server.

vmware_tmp_dir = /tmp (String) Directory where virtual disks are stored during volume
backup and restore.

vmware_volume_folder =
Volumes

(String) Name of the vCenter inventory folder that will con-
tain Cinder volumes. This folder will be created under Open-
Stack/<project_folder>, where project_folder is of format Project
(<volume_project_id>).

vmware_wsdl_location =
None

(String) Optional VIM service WSDL Location e.g http:
//<server>/vimService.wsdl. Optional over-ride to default lo-
cation for bug work-arounds.

636 Chapter 3. For operators

http:/
http:/

Cinder Documentation, Release 20.3.2.dev3

• Description: Manage volumes on VMware vCenter server.

VNXDriver

• Version: 14.00.01

• volume_driver=cinder.volume.drivers.dell_emc.vnx.driver.VNXDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_VNX_CI

• Driver Configuration Options:

3.3. Reference 637

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_VNX_CI

Cinder Documentation, Release 20.3.2.dev3

Table 200: Driver configuration options
Name = Default Value (Type) Description
check_max_pool_luns_threshold
= False

(Boolean) DEPRECATED: Report free_capacity_gb as 0 when the
limit to maximum number of pool LUNs is reached. By default, the
value is False.

default_timeout = 31536000 (Integer) Default timeout for CLI operations in minutes. For exam-
ple, LUN migration is a typical long running operation, which de-
pends on the LUN size and the load of the array. An upper bound in
the specific deployment can be set to avoid unnecessary long wait.
By default, it is 365 days long.

de-
stroy_empty_storage_group =
False

(Boolean) To destroy storage group when the last LUN is removed
from it. By default, the value is False.

force_delete_lun_in_storagegroup
= True

(Boolean) Delete a LUN even if it is in Storage Groups.

ignore_pool_full_threshold =
False

(Boolean) Force LUN creation even if the full threshold of pool is
reached. By default, the value is False.

initiator_auto_deregistration
= False

(Boolean) Automatically deregister initiators after the related storage
group is destroyed. By default, the value is False.

initiator_auto_registration =
False

(Boolean) Automatically register initiators. By default, the value is
False.

io_port_list = None (List of String) Comma separated iSCSI or FC ports to be used in
Nova or Cinder.

iscsi_initiators = None (String) Mapping between hostname and its iSCSI initiator IP ad-
dresses.

max_luns_per_storage_group
= 255

(Integer) Default max number of LUNs in a storage group. By de-
fault, the value is 255.

naviseccli_path = None (String) Naviseccli Path.
stor-
age_vnx_authentication_type
= global

(String) VNX authentication scope type. By default, the value is
global.

storage_vnx_pool_names =
None

(List of String) Comma-separated list of storage pool names to be
used.

storage_vnx_security_file_dir
= None

(String) Directory path that contains the VNX security file. Make
sure the security file is generated first.

vnx_async_migrate = True (Boolean) Always use asynchronous migration during volume
cloning and creating from snapshot. As described in configuration
doc, async migration has some constraints. Besides using metadata,
customers could use this option to disable async migration. Be aware
that async_migrate in metadata overrides this option when both are
set. By default, the value is True.

• Description: Dell EMC Cinder Driver for VNX using CLI.

Version history:
1.0.0 - Initial driver
2.0.0 - Thick/thin provisioning, robust enhancement
3.0.0 - Array-based Backend Support, FC Basic Support,

Target Port Selection for MPIO,
Initiator Auto Registration,

(continues on next page)

638 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

Storage Group Auto Deletion,
Multiple Authentication Type Support,
Storage-Assisted Volume Migration,
SP Toggle for HA

3.0.1 - Security File Support
4.0.0 - Advance LUN Features (Compression Support,

Deduplication Support, FAST VP Support,
FAST Cache Support), Storage-assisted Retype,
External Volume Management, Read-only Volume,
FC Auto Zoning

4.1.0 - Consistency group support
5.0.0 - Performance enhancement, LUN Number Threshold Support,

Initiator Auto Deregistration,
Force Deleting LUN in Storage Groups,
robust enhancement

5.1.0 - iSCSI multipath enhancement
5.2.0 - Pool-aware scheduler support
5.3.0 - Consistency group modification support
6.0.0 - Over subscription support

Create consistency group from cgsnapshot support
Multiple pools support enhancement
Manage/unmanage volume revise
White list target ports support
Snap copy support
Support efficient non-disruptive backup

7.0.0 - Clone consistency group support
Replication v2 support(managed)
Configurable migration rate support

8.0.0 - New VNX Cinder driver
9.0.0 - Use asynchronous migration for cloning
10.0.0 - Extend SMP size before async migration when cloning from an

image cache volume
10.1.0 - Add QoS support
10.2.0 - Add replication group support
11.0.0 - Fix failure of migration during cloning
12.0.0 - Add `volume revert to snapshot` support
12.1.0 - Adjust max_luns_per_storage_group and

check_max_pool_luns_threshold
12.1.1 - Fix perf issue when create/delete volume
13.0.0 - Fix bug https://bugs.launchpad.net/cinder/+bug/1817385 to

make sure sg can be created again after it was destroyed
under `destroy_empty_stroage_group` setting to `True`

14.0.0 - Fix bug 1794646: failed to delete LUNs from backend due to
the temporary snapshots on them wasn't deleted.

14.0.1 - Fix bug 1796825, add an option to set default value for
`async_migrate`.

3.3. Reference 639

Cinder Documentation, Release 20.3.2.dev3

VStorageFCDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.nec.v.nec_v_fc.VStorageFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/NEC_V_Cinder_CI

• Driver Configuration Options:

Table 201: Driver configuration options
Name = Default Value (Type) Description
chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

en-
force_multipath_for_image_xfer
= False

(Boolean) If this is set to True, attachment of volumes for image
transfer will be aborted when multipathd is not running. Otherwise,
it will fallback to single path. This parameter needs to be config-
ured for each backend section or in [backend_defaults] section as a
common configuration for all backends.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

nec_v_async_copy_check_interval
= 10

(Integer(min=1, max=600)) Interval in seconds to check asyn-
chronous copying status during a copy pair deletion or data restora-
tion.

nec_v_compute_target_ports
= []

(List of String) IDs of the storage ports used to attach volumes to
compute nodes. To specify multiple ports, connect them by commas
(e.g. CL1-A,CL2-A).

nec_v_copy_check_interval =
3

(Integer(min=1, max=600)) Interval in seconds to check copying sta-
tus during a volume copy.

nec_v_copy_speed = 3 (Integer(min=1, max=15)) Copy speed of storage system. 1 or 2 in-
dicates low speed, 3 indicates middle speed, and a value between 4
and 15 indicates high speed.

nec_v_discard_zero_page =
True

(Boolean) Enable or disable zero page reclamation in a DP-VOL.

nec_v_exec_retry_interval = 5 (Integer) Retry interval in seconds for REST API execution.
nec_v_extend_timeout = 600 (Integer) Maximum wait time in seconds for a volume extention to

complete.
continues on next page

640 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/NEC_V_Cinder_CI

Cinder Documentation, Release 20.3.2.dev3

Table 201 – continued from previous page
Name = Default Value (Type) Description
nec_v_group_create = False (Boolean) If True, the driver will create host groups or iSCSI targets

on storage ports as needed.
nec_v_group_delete = False (Boolean) If True, the driver will delete host groups or iSCSI targets

on storage ports as needed.
nec_v_host_mode_options =
[]

(List of String) Host mode option for host group or iSCSI target

nec_v_ldev_range = None (String) Range of the LDEV numbers in the format of xxxx-yyyy
that can be used by the driver. Values can be in decimal format (e.g.
1000) or in colon-separated hexadecimal format (e.g. 00:03:E8).

nec_v_lock_timeout = 7200 (Integer) Maximum wait time in seconds for storage to be unlocked.
nec_v_lun_retry_interval = 1 (Integer) Retry interval in seconds for REST API adding a LUN.
nec_v_lun_timeout = 50 (Integer) Maximum wait time in seconds for adding a LUN to com-

plete.
nec_v_pool = None (String) Pool number or pool name of the DP pool.
nec_v_rest_another_ldev_mapped_retry_timeout
= 600

(Integer) Retry time in seconds when new LUN allocation request
fails.

nec_v_rest_connect_timeout
= 30

(Integer) Maximum wait time in seconds for REST API connection
to complete.

nec_v_rest_disable_io_wait =
True

(Boolean) It may take some time to detach volume after I/O. This
option will allow detaching volume to complete immediately.

nec_v_rest_get_api_response_timeout
= 1800

(Integer) Maximum wait time in seconds for a response against GET
method of REST API.

nec_v_rest_job_api_response_timeout
= 1800

(Integer) Maximum wait time in seconds for a response from REST
API.

nec_v_rest_keep_session_loop_interval
= 180

(Integer) Loop interval in seconds for keeping REST API session.

nec_v_rest_server_busy_timeout
= 7200

(Integer) Maximum wait time in seconds when REST API returns
busy.

nec_v_rest_tcp_keepalive =
True

(Boolean) Enables or disables use of REST API tcp keepalive

nec_v_rest_tcp_keepcnt = 4 (Integer) Maximum number of transmissions for TCP keepalive
packet.

nec_v_rest_tcp_keepidle = 60 (Integer) Wait time in seconds for sending a first TCP keepalive
packet.

nec_v_rest_tcp_keepintvl =
15

(Integer) Interval of transmissions in seconds for TCP keepalive
packet.

nec_v_rest_timeout = 30 (Integer) Maximum wait time in seconds for REST API execution to
complete.

nec_v_restore_timeout =
86400

(Integer) Maximum wait time in seconds for the restore operation to
complete.

nec_v_snap_pool = None (String) Pool number or pool name of the snapshot pool.
nec_v_state_transition_timeout
= 900

(Integer) Maximum wait time in seconds for a volume transition to
complete.

nec_v_storage_id = None (String) Product number of the storage system.
nec_v_target_ports = [] (List of String) IDs of the storage ports used to attach volumes to the

controller node. To specify multiple ports, connect them by commas
(e.g. CL1-A,CL2-A).

continues on next page

3.3. Reference 641

Cinder Documentation, Release 20.3.2.dev3

Table 201 – continued from previous page
Name = Default Value (Type) Description
nec_v_zoning_request = False (Boolean) If True, the driver will configure FC zoning between the

server and the storage system provided that FC zoning manager is
enabled.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_api_port = None (Port(min=0, max=65535)) Port to use to access the SAN API
san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
use_multipath_for_image_xfer
= False

(Boolean) Do we attach/detach volumes in cinder using multipath
for volume to image and image to volume transfers? This param-
eter needs to be configured for each backend section or in [back-
end_defaults] section as a common configuration for all backends.

volume_backend_name =
None

(String) The backend name for a given driver implementation

volume_driver = cin-
der.volume.drivers.lvm.LVMVolumeDriver

(String) Driver to use for volume creation

• Description: Fibre channel class for NEC Driver.

Version history:

1.0.0 - Initial driver.

VStorageISCSIDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.nec.v.nec_v_iscsi.VStorageISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/NEC_V_Cinder_CI

• Driver Configuration Options:

Table 202: Driver configuration options
Name = Default Value (Type) Description
chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

continues on next page

642 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/NEC_V_Cinder_CI

Cinder Documentation, Release 20.3.2.dev3

Table 202 – continued from previous page
Name = Default Value (Type) Description
en-
force_multipath_for_image_xfer
= False

(Boolean) If this is set to True, attachment of volumes for image
transfer will be aborted when multipathd is not running. Otherwise,
it will fallback to single path. This parameter needs to be config-
ured for each backend section or in [backend_defaults] section as a
common configuration for all backends.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

nec_v_async_copy_check_interval
= 10

(Integer(min=1, max=600)) Interval in seconds to check asyn-
chronous copying status during a copy pair deletion or data restora-
tion.

nec_v_compute_target_ports
= []

(List of String) IDs of the storage ports used to attach volumes to
compute nodes. To specify multiple ports, connect them by commas
(e.g. CL1-A,CL2-A).

nec_v_copy_check_interval =
3

(Integer(min=1, max=600)) Interval in seconds to check copying sta-
tus during a volume copy.

nec_v_copy_speed = 3 (Integer(min=1, max=15)) Copy speed of storage system. 1 or 2 in-
dicates low speed, 3 indicates middle speed, and a value between 4
and 15 indicates high speed.

nec_v_discard_zero_page =
True

(Boolean) Enable or disable zero page reclamation in a DP-VOL.

nec_v_exec_retry_interval = 5 (Integer) Retry interval in seconds for REST API execution.
nec_v_extend_timeout = 600 (Integer) Maximum wait time in seconds for a volume extention to

complete.
nec_v_group_create = False (Boolean) If True, the driver will create host groups or iSCSI targets

on storage ports as needed.
nec_v_group_delete = False (Boolean) If True, the driver will delete host groups or iSCSI targets

on storage ports as needed.
nec_v_host_mode_options =
[]

(List of String) Host mode option for host group or iSCSI target

nec_v_ldev_range = None (String) Range of the LDEV numbers in the format of xxxx-yyyy
that can be used by the driver. Values can be in decimal format (e.g.
1000) or in colon-separated hexadecimal format (e.g. 00:03:E8).

nec_v_lock_timeout = 7200 (Integer) Maximum wait time in seconds for storage to be unlocked.
nec_v_lun_retry_interval = 1 (Integer) Retry interval in seconds for REST API adding a LUN.
nec_v_lun_timeout = 50 (Integer) Maximum wait time in seconds for adding a LUN to com-

plete.
nec_v_pool = None (String) Pool number or pool name of the DP pool.
nec_v_rest_another_ldev_mapped_retry_timeout
= 600

(Integer) Retry time in seconds when new LUN allocation request
fails.

nec_v_rest_connect_timeout
= 30

(Integer) Maximum wait time in seconds for REST API connection
to complete.

continues on next page

3.3. Reference 643

Cinder Documentation, Release 20.3.2.dev3

Table 202 – continued from previous page
Name = Default Value (Type) Description
nec_v_rest_disable_io_wait =
True

(Boolean) It may take some time to detach volume after I/O. This
option will allow detaching volume to complete immediately.

nec_v_rest_get_api_response_timeout
= 1800

(Integer) Maximum wait time in seconds for a response against GET
method of REST API.

nec_v_rest_job_api_response_timeout
= 1800

(Integer) Maximum wait time in seconds for a response from REST
API.

nec_v_rest_keep_session_loop_interval
= 180

(Integer) Loop interval in seconds for keeping REST API session.

nec_v_rest_server_busy_timeout
= 7200

(Integer) Maximum wait time in seconds when REST API returns
busy.

nec_v_rest_tcp_keepalive =
True

(Boolean) Enables or disables use of REST API tcp keepalive

nec_v_rest_tcp_keepcnt = 4 (Integer) Maximum number of transmissions for TCP keepalive
packet.

nec_v_rest_tcp_keepidle = 60 (Integer) Wait time in seconds for sending a first TCP keepalive
packet.

nec_v_rest_tcp_keepintvl =
15

(Integer) Interval of transmissions in seconds for TCP keepalive
packet.

nec_v_rest_timeout = 30 (Integer) Maximum wait time in seconds for REST API execution to
complete.

nec_v_restore_timeout =
86400

(Integer) Maximum wait time in seconds for the restore operation to
complete.

nec_v_snap_pool = None (String) Pool number or pool name of the snapshot pool.
nec_v_state_transition_timeout
= 900

(Integer) Maximum wait time in seconds for a volume transition to
complete.

nec_v_storage_id = None (String) Product number of the storage system.
nec_v_target_ports = [] (List of String) IDs of the storage ports used to attach volumes to the

controller node. To specify multiple ports, connect them by commas
(e.g. CL1-A,CL2-A).

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_api_port = None (Port(min=0, max=65535)) Port to use to access the SAN API
san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.
use_multipath_for_image_xfer
= False

(Boolean) Do we attach/detach volumes in cinder using multipath
for volume to image and image to volume transfers? This param-
eter needs to be configured for each backend section or in [back-
end_defaults] section as a common configuration for all backends.

volume_backend_name =
None

(String) The backend name for a given driver implementation

volume_driver = cin-
der.volume.drivers.lvm.LVMVolumeDriver

(String) Driver to use for volume creation

• Description: iSCSI class for NEC Driver.

Version history:

644 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

1.0.0 - Initial driver.

WindowsISCSIDriver

• Version: 1.0.0

• volume_driver=cinder.volume.drivers.windows.iscsi.WindowsISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Microsoft_iSCSI_CI

• Driver Configuration Options:

Table 203: Driver configuration options
Name = Default Value (Type) Description
windows_iscsi_lun_path =
C:iSCSIVirtualDisks

(String) Path to store VHD backed volumes

• Description: Executes volume driver commands on Windows Storage server.

WindowsSmbfsDriver

• Version: 1.1.0

• volume_driver=cinder.volume.drivers.windows.smbfs.WindowsSmbfsDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Cloudbase_Cinder_SMB3_CI

• Driver Configuration Options:

Table 204: Driver configuration options
Name = Default Value (Type) Description
smbfs_default_volume_format
= vhd

(String(choices=[vhd, vhdx])) Default format that will be used when
creating volumes if no volume format is specified.

smbfs_mount_point_base =
C:OpenStack_mnt

(String) Base dir containing mount points for smbfs shares.

smbfs_pool_mappings = {} (Dict of String) Mappings between share locations and pool names.
If not specified, the share names will be used as pool names. Exam-
ple: //addr/share:pool_name,//addr/share2:pool_name2

smbfs_shares_config =
C:OpenStacksmbfs_shares.txt

(String) File with the list of available smbfs shares.

• Description: <None>

3.3. Reference 645

https://wiki.openstack.org/wiki/ThirdPartySystems/Microsoft_iSCSI_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Cloudbase_Cinder_SMB3_CI

Cinder Documentation, Release 20.3.2.dev3

XtremIOFCDriver

• Version: 1.0.13

• volume_driver=cinder.volume.drivers.dell_emc.xtremio.XtremIOFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_XtremIO_CI

• Driver Configuration Options:

Table 205: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
xtremio_array_busy_retry_count
= 5

(Integer) Number of retries in case array is busy

xtremio_array_busy_retry_interval
= 5

(Integer) Interval between retries in case array is busy

xtremio_clean_unused_ig =
False

(Boolean) Should the driver remove initiator groups with no volumes
after the last connection was terminated. Since the behavior till now
was to leave the IG be, we default to False (not deleting IGs without
connected volumes); setting this parameter to True will remove any
IG after terminating its connection to the last volume.

xtremio_cluster_name = (String) XMS cluster id in multi-cluster environment
xtremio_ports = [] (List of String) Allowed ports. Comma separated list of XtremIO

iSCSI IPs or FC WWNs (ex. 58:cc:f0:98:49:22:07:02) to be used. If
option is not set all ports are allowed.

xtremio_volumes_per_glance_cache
= 100

(Integer) Number of volumes created from each cached glance image

• Description: <None>

646 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_XtremIO_CI

Cinder Documentation, Release 20.3.2.dev3

XtremIOISCSIDriver

• Version: 1.0.13

• volume_driver=cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_XtremIO_CI

• Driver Configuration Options:

Table 206: Driver configuration options
Name = Default Value (Type) Description
driver_ssl_cert_path = None (String) Can be used to specify a non default path to a CA_BUNDLE

file or directory with certificates of trusted CAs, which will be used
to validate the backend

driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate
of the backend endpoint.

max_over_subscription_ratio
= 20.0

(String(regex=^(auto|\d*\.\d+|\d+)$)) Representation of the over sub-
scription ratio when thin provisioning is enabled. Default ratio is
20.0, meaning provisioned capacity can be 20 times of the total phys-
ical capacity. If the ratio is 10.5, it means provisioned capacity can
be 10.5 times of the total physical capacity. A ratio of 1.0 means
provisioned capacity cannot exceed the total physical capacity. If ra-
tio is auto, Cinder will automatically calculate the ratio based on the
provisioned capacity and the used space. If not set to auto, the ratio
has to be a minimum of 1.0.

reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is
reserved

san_ip = (String) IP address of SAN controller
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
xtremio_array_busy_retry_count
= 5

(Integer) Number of retries in case array is busy

xtremio_array_busy_retry_interval
= 5

(Integer) Interval between retries in case array is busy

xtremio_clean_unused_ig =
False

(Boolean) Should the driver remove initiator groups with no volumes
after the last connection was terminated. Since the behavior till now
was to leave the IG be, we default to False (not deleting IGs without
connected volumes); setting this parameter to True will remove any
IG after terminating its connection to the last volume.

xtremio_cluster_name = (String) XMS cluster id in multi-cluster environment
xtremio_ports = [] (List of String) Allowed ports. Comma separated list of XtremIO

iSCSI IPs or FC WWNs (ex. 58:cc:f0:98:49:22:07:02) to be used. If
option is not set all ports are allowed.

xtremio_volumes_per_glance_cache
= 100

(Integer) Number of volumes created from each cached glance image

• Description: Executes commands relating to ISCSI volumes.

We make use of model provider properties as follows:

provider_location if present, contains the iSCSI target information in the same format as an ietadm
discovery i.e. <ip>:<port>,<portal> <target IQN>

3.3. Reference 647

https://wiki.openstack.org/wiki/ThirdPartySystems/DellEMC_XtremIO_CI

Cinder Documentation, Release 20.3.2.dev3

provider_auth if present, contains a space-separated triple: <auth method> <auth username> <auth
password>. CHAP is the only auth_method in use at the moment.

ZadaraVPSAISCSIDriver

• Version: 20.12-24

• volume_driver=cinder.volume.drivers.zadara.zadara.ZadaraVPSAISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/ZadaraStorage_VPSA_CI

• Driver Configuration Options:

Table 207: Driver configuration options
Name = Default Value (Type) Description
zadara_access_key = None (String) VPSA access key
zadara_default_snap_policy =
False

(Boolean) VPSA - Attach snapshot policy for volumes. If the option
is neither configured nor provided as metadata, the VPSA will inherit
the default value.

zadara_gen3_vol_compress =
False

(Boolean) VPSA - Enable compression for volumes. If the option is
neither configured nor provided as metadata, the VPSA will inherit
the default value.

zadara_gen3_vol_dedupe =
False

(Boolean) VPSA - Enable deduplication for volumes. If the option is
neither configured nor provided as metadata, the VPSA will inherit
the default value.

zadara_ssl_cert_verify = True (Boolean) If set to True the http client will validate the SSL certificate
of the VPSA endpoint.

zadara_use_iser = True (Boolean) VPSA - Use ISER instead of iSCSI
zadara_vol_encrypt = False (Boolean) VPSA - Default encryption policy for volumes. If the op-

tion is neither configured nor provided as metadata, the VPSA will
inherit the default value.

zadara_vol_name_template =
OS_%s

(String) VPSA - Default template for VPSA volume names

zadara_vpsa_host = None (HostAddress) VPSA - Management Host name or IP address
zadara_vpsa_poolname =
None

(String) VPSA - Storage Pool assigned for volumes

zadara_vpsa_port = None (Port(min=0, max=65535)) VPSA - Port number
zadara_vpsa_use_ssl = False (Boolean) VPSA - Use SSL connection

• Description: Zadara VPSA iSCSI/iSER volume driver.

Version history:
15.07 - Initial driver
16.05 - Move from httplib to requests
19.08 - Add API access key authentication option
20.01 - Move to json format from xml. Provide manage/unmanage

volume/snapshot feature
20.12-01 - Merging with the common code for all the openstack drivers
20.12-02 - Common code changed as part of fixing

Zadara github issue #18723
20.12-03 - Adding the metadata support while creating volume to

(continues on next page)

648 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/ZadaraStorage_VPSA_CI

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

configure vpsa.
20.12-20 - IPv6 connectivity support for Cinder driver
20.12-24 - Optimizing get manageable volumes and snapshots

Unsupported Drivers

ACCESSIscsiDriver (unsupported)

• Version: 1.0

• volume_driver=cinder.volume.drivers.veritas_access.veritas_iscsi.ACCESSIscsiDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Veritas_Access_CI

• Driver Configuration Options:

Table 208: Driver configuration options
Name = Default Value (Type) Description
vrts_lun_sparse = True (Boolean) Create sparse Lun.
vrts_target_config =
/etc/cinder/vrts_target.xml

(String) VA config file.

• Description: ACCESS Share Driver.

Executes commands relating to ACCESS ISCSI. Supports creation of volumes on ACCESS.

API version history:

1.0 - Initial version.

DPLFCDriver (unsupported)

• Version: 2.0.5

• volume_driver=cinder.volume.drivers.prophetstor.dpl_fc.DPLFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/ProphetStor_CI

• Driver Configuration Options:

Table 209: Driver configuration options
Name = Default Value (Type) Description
dpl_pool = (String) DPL pool uuid in which DPL volumes are stored.
dpl_port = 8357 (Port(min=0, max=65535)) DPL port number.

• Description: <None>

3.3. Reference 649

https://wiki.openstack.org/wiki/ThirdPartySystems/Veritas_Access_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/ProphetStor_CI

Cinder Documentation, Release 20.3.2.dev3

DPLISCSIDriver (unsupported)

• Version: 2.0.5

• volume_driver=cinder.volume.drivers.prophetstor.dpl_iscsi.DPLISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/ProphetStor_CI

• Driver Configuration Options:

Table 210: Driver configuration options
Name = Default Value (Type) Description
dpl_pool = (String) DPL pool uuid in which DPL volumes are stored.
dpl_port = 8357 (Port(min=0, max=65535)) DPL port number.

• Description: <None>

FlashSystemFCDriver (unsupported)

• Version: 1.0.12

• volume_driver=cinder.volume.drivers.ibm.flashsystem_fc.FlashSystemFCDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI

• Driver Configuration Options:

Table 211: Driver configuration options
Name = Default Value (Type) Description
flashsys-
tem_connection_protocol
= FC

(String) Connection protocol should be FC. (Default is FC.)

flashsys-
tem_multihostmap_enabled =
True

(Boolean) Allows vdisk to multi host mapping. (Default is True)

• Description: IBM FlashSystem FC volume driver.

Version history:

1.0.0 - Initial driver
1.0.1 - Code clean up
1.0.2 - Add lock into vdisk map/unmap, connection

initialize/terminate
1.0.3 - Initial driver for iSCSI
1.0.4 - Split Flashsystem driver into common and FC
1.0.5 - Report capability of volume multiattach
1.0.6 - Fix bug #1469581, add I/T mapping check in

terminate_connection
1.0.7 - Fix bug #1505477, add host name check in

_find_host_exhaustive for FC
1.0.8 - Fix bug #1572743, multi-attach attribute

(continues on next page)

650 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/ProphetStor_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

should not be hardcoded, only in iSCSI
1.0.9 - Fix bug #1570574, Cleanup host resource

leaking, changes only in iSCSI
1.0.10 - Fix bug #1585085, add host name check in

_find_host_exhaustive for iSCSI
1.0.11 - Update driver to use ABC metaclasses
1.0.12 - Update driver to support Manage/Unmanage

existing volume

FlashSystemISCSIDriver (unsupported)

• Version: 1.0.12

• volume_driver=cinder.volume.drivers.ibm.flashsystem_iscsi.FlashSystemISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI

• Driver Configuration Options:

Table 212: Driver configuration options
Name = Default Value (Type) Description
flashsys-
tem_connection_protocol
= FC

(String) Connection protocol should be FC. (Default is FC.)

flashsys-
tem_multihostmap_enabled =
True

(Boolean) Allows vdisk to multi host mapping. (Default is True)

• Description: IBM FlashSystem iSCSI volume driver.

Version history:

1.0.0 - Initial driver
1.0.1 - Code clean up
1.0.2 - Add lock into vdisk map/unmap, connection

initialize/terminate
1.0.3 - Initial driver for iSCSI
1.0.4 - Split Flashsystem driver into common and FC
1.0.5 - Report capability of volume multiattach
1.0.6 - Fix bug #1469581, add I/T mapping check in

terminate_connection
1.0.7 - Fix bug #1505477, add host name check in

_find_host_exhaustive for FC
1.0.8 - Fix bug #1572743, multi-attach attribute

should not be hardcoded, only in iSCSI
1.0.9 - Fix bug #1570574, Cleanup host resource

leaking, changes only in iSCSI
1.0.10 - Fix bug #1585085, add host name check in

_find_host_exhaustive for iSCSI
1.0.11 - Update driver to use ABC metaclasses

(continues on next page)

3.3. Reference 651

https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_STORAGE_CI

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

1.0.12 - Update driver to support Manage/Unmanage
existing volume

QnapISCSIDriver (unsupported)

• Version: 1.2.005

• volume_driver=cinder.volume.drivers.qnap.QnapISCSIDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/QNAP_CI

• Driver Configuration Options:

Table 213: Driver configuration options
Name = Default Value (Type) Description
chap_password = (String) Password for specified CHAP account name.
chap_username = (String) CHAP user name.
driver_ssl_cert_verify = False (Boolean) If set to True the http client will validate the SSL certificate

of the backend endpoint.
qnap_management_url =
None

(URI) The URL to management QNAP Storage. Driver does not
support IPv6 address in URL.

qnap_poolname = None (String) The pool name in the QNAP Storage
qnap_storage_protocol = iscsi (String) Communication protocol to access QNAP storage
reserved_percentage = 0 (Integer(min=0, max=100)) The percentage of backend capacity is

reserved
san_login = admin (String) Username for SAN controller
san_password = (String) Password for SAN controller
target_ip_address = $my_ip (String) The IP address that the iSCSI daemon is listening on
use_chap_auth = False (Boolean) Option to enable/disable CHAP authentication for targets.

• Description: QNAP iSCSI based cinder driver

Version History:
1.0.0:

Initial driver (Only iSCSI).
1.2.001:

Add supports for Thin Provisioning, SSD Cache, Deduplication,
Compression and CHAP.

1.2.002:
Add support for QES fw 2.0.0.

1.2.003:
Add support for QES fw 2.1.0.

1.2.004:
Add support for QES fw on TDS series NAS model.

1.2.005:
Add support for QTS fw 4.4.0.

NOTE: Set driver_ssl_cert_verify as True under backend section to enable SSL verification.

652 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/QNAP_CI

Cinder Documentation, Release 20.3.2.dev3

VZStorageDriver (unsupported)

• Version: 1.1

• volume_driver=cinder.volume.drivers.vzstorage.VZStorageDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI

• Driver Configuration Options:

Table 214: Driver configuration options
Name = Default Value (Type) Description
vzstor-
age_default_volume_format =
raw

(String) Default format that will be used when creating volumes if
no volume format is specified.

vzstorage_mount_options =
None

(List of String) Mount options passed to the vzstorage client. See
section of the pstorage-mount man page for details.

vzstorage_mount_point_base
= $state_path/mnt

(String) Base dir containing mount points for vzstorage shares.

vzstorage_shares_config =
/etc/cinder/vzstorage_shares

(String) File with the list of available vzstorage shares.

vzstorage_sparsed_volumes =
True

(Boolean) Create volumes as sparsed files which take no space rather
than regular files when using raw format, in which case volume cre-
ation takes lot of time.

vzstorage_used_ratio = 0.95 (Float) Percent of ACTUAL usage of the underlying volume before
no new volumes can be allocated to the volume destination.

• Description: Cinder driver for Virtuozzo Storage.

Creates volumes as files on the mounted vzstorage cluster.

Version history:
1.0 - Initial driver.
1.1 - Supports vz:volume_format in vendor properties.

VeritasCNFSDriver (unsupported)

• Version: 1.0.3

• volume_driver=cinder.volume.drivers.veritas_cnfs.VeritasCNFSDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Veritas_Access_CI

• Driver Configuration Options:

3.3. Reference 653

https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Veritas_Access_CI

Cinder Documentation, Release 20.3.2.dev3

Table 215: Driver configuration options
Name = Default Value (Type) Description
nas_host = (String) IP address or Hostname of NAS system.
nas_login = admin (String) User name to connect to NAS system.
nas_mount_options = None (String) Options used to mount the storage backend file system where

Cinder volumes are stored.
nas_password = (String) Password to connect to NAS system.
nas_private_key = (String) Filename of private key to use for SSH authentication.
nas_secure_file_operations =
auto

(String) Allow network-attached storage systems to operate in a se-
cure environment where root level access is not permitted. If set to
False, access is as the root user and insecure. If set to True, access
is not as root. If set to auto, a check is done to determine if this is a
new installation: True is used if so, otherwise False. Default is auto.

nas_secure_file_permissions
= auto

(String) Set more secure file permissions on network-attached stor-
age volume files to restrict broad other/world access. If set to False,
volumes are created with open permissions. If set to True, volumes
are created with permissions for the cinder user and group (660). If
set to auto, a check is done to determine if this is a new installation:
True is used if so, otherwise False. Default is auto.

nas_share_path = (String) Path to the share to use for storing Cinder volumes.
For example: /srv/export1 for an NFS server export available at
10.0.5.10:/srv/export1 .

nas_ssh_port = 22 (Port(min=0, max=65535)) SSH port to use to connect to NAS sys-
tem.

nfs_mount_attempts = 3 (Integer) The number of attempts to mount NFS shares before raising
an error. At least one attempt will be made to mount an NFS share,
regardless of the value specified.

nfs_mount_options = None (String) Mount options passed to the NFS client. See the NFS(5)
man page for details.

nfs_mount_point_base =
$state_path/mnt

(String) Base dir containing mount points for NFS shares.

nfs_qcow2_volumes = False (Boolean) Create volumes as QCOW2 files rather than raw files.
nfs_shares_config =
/etc/cinder/nfs_shares

(String) File with the list of available NFS shares.

nfs_snapshot_support = False (Boolean) Enable support for snapshots on the NFS driver. Platforms
using libvirt <1.2.7 will encounter issues with this feature.

nfs_sparsed_volumes = True (Boolean) Create volumes as sparsed files which take no space. If
set to False volume is created as regular file. In such case volume
creation takes a lot of time.

• Description: Veritas Clustered NFS based cinder driver

Version History:

1.0.0 - Initial driver implementations for Kilo.
1.0.1 - Liberty release driver not implemented.

Place holder for Liberty release in case we
need to support.

1.0.2 - cinder.interface.volumedriver decorator.
(continues on next page)

654 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

Mitaka/Newton/Okata Release
1.0.3 - Separate create_cloned_volume() and

create_volume_from_snapshot () functionality.
Pike Release

Executes commands relating to Volumes.

Backup Drivers

CephBackupDriver

• backup_driver=cinder.backup.drivers.ceph.CephBackupDriver

• Driver Configuration Options:

Table 216: Driver configuration options
Name = Default Value (Type) Description
backup_ceph_chunk_size =
134217728

(Integer) The chunk size, in bytes, that a backup is broken into before
transfer to the Ceph object store.

backup_ceph_conf =
/etc/ceph/ceph.conf

(String) Ceph configuration file to use.

backup_ceph_image_journals
= False

(Boolean) If True, apply JOURNALING and EXCLUSIVE_LOCK
feature bits to the backup RBD objects to allow mirroring

backup_ceph_pool = backups (String) The Ceph pool where volume backups are stored.
backup_ceph_stripe_count =
0

(Integer) RBD stripe count to use when creating a backup image.

backup_ceph_stripe_unit = 0 (Integer) RBD stripe unit to use when creating a backup image.
backup_ceph_user = cinder (String) The Ceph user to connect with. Default here is to use the

same user as for Cinder volumes. If not using cephx this should be
set to None.

restore_discard_excess_bytes
= True

(Boolean) If True, always discard excess bytes when restoring vol-
umes i.e. pad with zeroes.

• Description: Backup Cinder volumes to Ceph Object Store.

This class enables backing up Cinder volumes to a Ceph object store. Backups may be stored in their own
pool or even cluster. Store location is defined by the Ceph conf file and service config options supplied.

If the source volume is itself an RBD volume, the backup will be performed using incremental differential
backups which should give a performance gain.

3.3. Reference 655

Cinder Documentation, Release 20.3.2.dev3

GlusterfsBackupDriver

• backup_driver=cinder.backup.drivers.glusterfs.GlusterfsBackupDriver

• Driver Configuration Options:

Table 217: Driver configuration options
Name = Default Value (Type) Description
glus-
terfs_backup_mount_point =
$state_path/backup_mount

(String) Base dir containing mount point for gluster share.

glusterfs_backup_share =
None

(String) GlusterFS share in <host-
name|ipv4addr|ipv6addr>:<gluster_vol_name> format. Eg:
1.2.3.4:backup_vol

• Description: Provides backup, restore and delete using GlusterFS repository.

GoogleBackupDriver

• backup_driver=cinder.backup.drivers.gcs.GoogleBackupDriver

• Driver Configuration Options:

656 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 218: Driver configuration options
Name = Default Value (Type) Description
backup_gcs_block_size =
32768

(Integer) The size in bytes that changes are tracked for incre-
mental backups. backup_gcs_object_size has to be multiple of
backup_gcs_block_size.

backup_gcs_bucket = None (String) The GCS bucket to use.
backup_gcs_bucket_location
= US

(String) Location of GCS bucket.

backup_gcs_credential_file =
None

(String) Absolute path of GCS service account credential file.

backup_gcs_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress
notifications to Ceilometer when backing up the volume to the GCS
backend storage. The default value is True to enable the timer.

backup_gcs_num_retries = 3 (Integer) Number of times to retry.
backup_gcs_object_size =
52428800

(Integer) The size in bytes of GCS backup objects.

backup_gcs_project_id =
None

(String) Owner project id for GCS bucket.

backup_gcs_proxy_url =
None

(URI) URL for http proxy access.

backup_gcs_reader_chunk_size
= 2097152

(Integer) GCS object will be downloaded in chunks of bytes.

backup_gcs_retry_error_codes
= [429]

(List of String) List of GCS error codes.

backup_gcs_storage_class =
NEARLINE

(String) Storage class of GCS bucket.

backup_gcs_user_agent = gc-
scinder

(String) Http user-agent string for gcs api.

backup_gcs_writer_chunk_size
= 2097152

(Integer) GCS object will be uploaded in chunks of bytes. Pass in a
value of -1 if the file is to be uploaded as a single chunk.

• Description: Provides backup, restore and delete of backup objects within GCS.

NFSBackupDriver

• backup_driver=cinder.backup.drivers.nfs.NFSBackupDriver

• Driver Configuration Options:

3.3. Reference 657

Cinder Documentation, Release 20.3.2.dev3

Table 219: Driver configuration options
Name = Default Value (Type) Description
backup_container = None (String) Custom directory to use for backups.
backup_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress
notifications to Ceilometer when backing up the volume to the back-
end storage. The default value is True to enable the timer.

backup_file_size =
1999994880

(Integer) The maximum size in bytes of the files used to hold back-
ups. If the volume being backed up exceeds this size, then it will be
backed up into multiple files.backup_file_size must be a multiple of
backup_sha_block_size_bytes.

backup_posix_path =
$state_path/backup

(String) Path specifying where to store backups.

backup_sha_block_size_bytes
= 32768

(Integer) The size in bytes that changes are tracked for in-
cremental backups. backup_file_size has to be multiple of
backup_sha_block_size_bytes.

• Description: Provides backup, restore and delete using NFS supplied repository.

PosixBackupDriver

• backup_driver=cinder.backup.drivers.posix.PosixBackupDriver

• Driver Configuration Options:

Table 220: Driver configuration options
Name = Default Value (Type) Description
backup_container = None (String) Custom directory to use for backups.
backup_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress
notifications to Ceilometer when backing up the volume to the back-
end storage. The default value is True to enable the timer.

backup_file_size =
1999994880

(Integer) The maximum size in bytes of the files used to hold back-
ups. If the volume being backed up exceeds this size, then it will be
backed up into multiple files.backup_file_size must be a multiple of
backup_sha_block_size_bytes.

backup_posix_path =
$state_path/backup

(String) Path specifying where to store backups.

backup_sha_block_size_bytes
= 32768

(Integer) The size in bytes that changes are tracked for in-
cremental backups. backup_file_size has to be multiple of
backup_sha_block_size_bytes.

• Description: Provides backup, restore and delete using a Posix file system.

658 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

S3BackupDriver

• backup_driver=cinder.backup.drivers.s3.S3BackupDriver

• Driver Configuration Options:

Table 221: Driver configuration options
Name = Default Value (Type) Description
backup_compression_algorithm
= zlib

(String(choices=[none, off, no, zlib, gzip, bz2, bzip2, zstd])) Com-
pression algorithm for backups (none to disable)

backup_s3_block_size =
32768

(Integer) The size in bytes that changes are tracked for incre-
mental backups. backup_s3_object_size has to be multiple of
backup_s3_block_size.

backup_s3_ca_cert_file =
None

(String) path/to/cert/bundle.pem - A filename of the CA cert bundle
to use.

backup_s3_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress
notifications to Ceilometer when backing up the volume to the S3
backend storage. The default value is True to enable the timer.

backup_s3_endpoint_url =
None

(String) The url where the S3 server is listening.

backup_s3_http_proxy = (String) Address or host for the http proxy server.
backup_s3_https_proxy = (String) Address or host for the https proxy server.
backup_s3_max_pool_connections
= 10

(Integer) The maximum number of connections to keep in a connec-
tion pool.

backup_s3_md5_validation =
True

(Boolean) Enable or Disable md5 validation in the s3 backend.

backup_s3_object_size =
52428800

(Integer) The size in bytes of S3 backup objects

backup_s3_retry_max_attempts
= 4

(Integer) An integer representing the maximum number of retry at-
tempts that will be made on a single request.

backup_s3_retry_mode =
legacy

(String) A string representing the type of retry mode. e.g: legacy,
standard, adaptive

backup_s3_sse_customer_algorithm
= None

(String) The SSECustomerAlgorithm.
backup_s3_sse_customer_key must be set at the same time to
enable SSE.

backup_s3_sse_customer_key
= None

(String) The SSECustomerKey. backup_s3_sse_customer_algorithm
must be set at the same time to enable SSE.

backup_s3_store_access_key
= None

(String) The S3 query token access key.

backup_s3_store_bucket =
volumebackups

(String) The S3 bucket to be used to store the Cinder backup data.

backup_s3_store_secret_key
= None

(String) The S3 query token secret key.

backup_s3_timeout = 60 (Float) The time in seconds till a timeout exception is thrown.
backup_s3_verify_ssl = True (Boolean) Enable or Disable ssl verify.

• Description: Provides backup, restore and delete of backup objects within S3.

3.3. Reference 659

Cinder Documentation, Release 20.3.2.dev3

SwiftBackupDriver

• backup_driver=cinder.backup.drivers.swift.SwiftBackupDriver

• Driver Configuration Options:

660 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Table 222: Driver configuration options
Name = Default Value (Type) Description
backup_swift_auth = per_user (String(choices=[per_user, single_user])) Swift authentication

mechanism (per_user or single_user).
backup_swift_auth_insecure
= False

(Boolean) Bypass verification of server certificate when making SSL
connection to Swift.

backup_swift_auth_url =
None

(URI) The URL of the Keystone endpoint

backup_swift_auth_version =
1

(String) Swift authentication version. Specify 1 for auth 1.0, or 2 for
auth 2.0 or 3 for auth 3.0

backup_swift_block_size =
32768

(Integer) The size in bytes that changes are tracked for incre-
mental backups. backup_swift_object_size has to be multiple of
backup_swift_block_size.

backup_swift_ca_cert_file =
None

(String) Location of the CA certificate file to use for swift client re-
quests.

backup_swift_container =
volumebackups

(String) The default Swift container to use

backup_swift_create_storage_policy
= None

(String) The storage policy to use when creating the Swift container.
If the container already exists the storage policy cannot be enforced

backup_swift_enable_progress_timer
= True

(Boolean) Enable or Disable the timer to send the periodic progress
notifications to Ceilometer when backing up the volume to the Swift
backend storage. The default value is True to enable the timer.

backup_swift_key = None (String) Swift key for authentication
backup_swift_object_size =
52428800

(Integer) The size in bytes of Swift backup objects

backup_swift_project = None (String) Swift project/account name. Required when connecting to
an auth 3.0 system

backup_swift_project_domain
= None

(String) Swift project domain name. Required when connecting to
an auth 3.0 system

backup_swift_retry_attempts
= 3

(Integer) The number of retries to make for Swift operations

backup_swift_retry_backoff =
2

(Integer) The backoff time in seconds between Swift retries

backup_swift_tenant = None (String) Swift tenant/account name. Required when connecting to
an auth 2.0 system

backup_swift_url = None (URI) The URL of the Swift endpoint
backup_swift_user = None (String) Swift user name
backup_swift_user_domain =
None

(String) Swift user domain name. Required when connecting to an
auth 3.0 system

keystone_catalog_info
= identity:Identity Ser-
vice:publicURL

(String) Info to match when looking for keystone in the ser-
vice catalog. Format is: separated values of the form:
<service_type>:<service_name>:<endpoint_type> - Only used if
backup_swift_auth_url is unset

swift_catalog_info = object-
store:swift:publicURL

(String) Info to match when looking for swift in the ser-
vice catalog. Format is: separated values of the form:
<service_type>:<service_name>:<endpoint_type> - Only used if
backup_swift_url is unset

• Description: Provides backup, restore and delete of backup objects within Swift.

3.3. Reference 661

Cinder Documentation, Release 20.3.2.dev3

FC Zone Manager Drivers

BrcdFCZoneDriver (unsupported)

• Version: 1.6

• zone_driver=cinder.zonemanager.drivers.brocade.brcd_fc_zone_driver.BrcdFCZoneDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Brocade_OpenStack_CI

• Driver Configuration Options:

Table 223: Driver configuration options
Name = Default Value (Type) Description
brcd_sb_connector = HTTP (String) South bound connector for zoning operation
fc_fabric_address = (String) Management IP of fabric.
fc_fabric_password = (String) Password for user.
fc_fabric_port = 22 (Port(min=0, max=65535)) Connecting port
fc_fabric_ssh_cert_path = (String) Local SSH certificate Path.
fc_fabric_user = (String) Fabric user ID.
fc_southbound_protocol =
REST_HTTP

(String(choices=[SSH, HTTP, HTTPS, REST_HTTP,
REST_HTTPS])) South bound connector for the fabric.

fc_virtual_fabric_id = None (String) Virtual Fabric ID.
zone_activate = True (Boolean) Overridden zoning activation state.
zone_name_prefix = open-
stack

(String) Overridden zone name prefix.

zoning_policy = initiator-
target

(String) Overridden zoning policy.

• Description: Brocade FC zone driver implementation.

OpenStack Fibre Channel zone driver to manage FC zoning in Brocade SAN fabrics.

Version history:
1.0 - Initial Brocade FC zone driver
1.1 - Implements performance enhancements
1.2 - Added support for friendly zone name
1.3 - Added HTTP connector support
1.4 - Adds support to zone in Virtual Fabrics
1.5 - Initiator zoning updates through zoneadd/zoneremove
1.6 - Add REST connector

662 Chapter 3. For operators

https://wiki.openstack.org/wiki/ThirdPartySystems/Brocade_OpenStack_CI

Cinder Documentation, Release 20.3.2.dev3

CiscoFCZoneDriver

• Version: 1.1.0

• zone_driver=cinder.zonemanager.drivers.cisco.cisco_fc_zone_driver.CiscoFCZoneDriver

• CI info: https://wiki.openstack.org/wiki/ThirdPartySystems/Cisco_ZM_CI

• Driver Configuration Options:

Table 224: Driver configuration options
Name = Default Value (Type) Description
cisco_sb_connector = cin-
der.zonemanager.drivers.cisco.cisco_fc_zone_client_cli.CiscoFCZoneClientCLI

(String) Southbound connector for zoning operation

• Description: Cisco FC zone driver implementation.

OpenStack Fibre Channel zone driver to manage FC zoning in Cisco SAN fabrics.

Version history:
1.0 - Initial Cisco FC zone driver
1.1 - Added friendly zone name support

General Considerations

Cinder allows you to integrate various storage solutions into your OpenStack cloud. It does this by
providing a stable interface for hardware providers to write drivers that allow you to take advantage of
the various features that their solutions offer.

Supported drivers

In order to make it easier for you to assess the stability and quality of a particular vendors driver, The
Cinder team has introduced the concept of a supported driver. These are drivers that:

• have an identifiable driver maintainer

• are included in the Cinder source code repository

• use the upstream Cinder bug tracking mechanism

• support the Cinder Required Driver Functions

• maintain a third-party Continuous Integration system that runs the OpenStack Tempest test suite
against their storage devices

– this must be done for every Cinder commit, and the results must be reported to the OpenStack
Gerrit code review interface

– for details, see Driver Testing

In summary, there are two important aspects to a driver being considered as supported:

• the code meets the Cinder driver specifications (so you know it should integrate properly with
Cinder)

3.3. Reference 663

https://wiki.openstack.org/wiki/ThirdPartySystems/Cisco_ZM_CI
https://wiki.openstack.org/wiki/Cinder/tested-3rdParty-drivers

Cinder Documentation, Release 20.3.2.dev3

• the driver code is continually tested against changes to Cinder (so you know that the code actually
does integrate properly with Cinder)

The second point is particularly important because changes to Cinder can impact the drivers in two ways:

• A Cinder change may introduce a bug that only affects a particular driver or drivers (this could be
because many drivers implement functionality well beyond the Required Driver Functions). With
a properly running and reporting third-party CI system, such a bug can be detected at the code
review stage.

• A Cinder change may exercise a new code path that exposes a driver bug that had previously gone
undetected. A properly running third-party CI system will detect this and alert the driver maintainer
that there is a problem.

Driver Compliance

The current policy for CI compliance is:

• CIs must report on every patch, whether the code change is in their own driver code or not

• The CI comments must be properly formatted to show up in the CI summary in Gerrit

Non-compliant drivers will be tagged as unsupported if:

• No CI success reporting occurs within a two week span

• The CI is found to not be testing the expected driver (CI runs using the default LVM driver, etc.)

• Other issues are found but failed to be addressed in a timely manner

CI results are reviewed on a regular basis and if found non-compliant, a driver patch is submitted flagging
it as unsupported. This can occur at any time during the development cycle. A driver can be returned to
supported status as soon as the CI problem is corrected.

We do a final compliance check around the third milestone of each release. If a driver is marked as
unsupported, vendors have until the time of the first Release Candidate tag (two weeks after the third
milestone) to become compliant, in which case the patch flagging the driver as unsupported can be re-
verted. Otherwise, the driver will be considered unsupported in the release.

The CI results are currently posted here: http://cinderstats.ivehearditbothways.com/cireport.txt

Unsupported drivers

A driver is marked as unsupported when it is out of compliance.

Such a driver will log a warning message to be logged in the cinder-volume log stating that it is unsup-
ported and deprecated for removal.

In order to use an unsupported driver, an operator must set the configuration option
enable_unsupported_driver=True in the drivers configuration section of cinder.conf or
the Cinder service will fail to load.

If the issue is not corrected before the next release, the driver will be eligible for removal from the Cinder
code repository per the standard OpenStack deprecation policy.

664 Chapter 3. For operators

http://cinderstats.ivehearditbothways.com/cireport.txt

Cinder Documentation, Release 20.3.2.dev3

If the issue is corrected before the next release and the team maintaining the driver in question submits
a patch marking the driver as supported, that patch is eligible (at the discretion of the cinder stable
maintenance team) for backport to the most recent stable branch.

Note: The idea behind backporting supported status is that reinstatement should happen very early
in the next development cycle after the driver has been marked unsupported. For example, a driver is
marked unsupported in the Victoria release but CI issues are addressed early in the Wallaby development
cycle; the patch marking the driver may then be proposed to stable/victoria. Thus the patch will be
included in the first stable release of Victoria, and operators upgrading from Ussuri to this release will
not have to change their configuration files.

Note the at the discretion of the cinder stable maintenance team qualification. One reason for this is that
the third party CI systems typically run only on changes to the development branch. Thus if a drivers
CI is restored early in the development cycle when there have not been many code changes yet, the CI
passing in the development branch can be interpreted as a proxy for CI in the most recent stable branch.
Obviously, this interpretation becomes increasingly invalid as the development cycle progresses. Further,
this interpretation does not extend to older stable branches.

Driver Removal

(Added January 2020)

As stated above, an unsupported driver is eligible for removal during the development cycle following the
release in which it was marked unsupported. (For example, a driver marked unsupported in the Ussuri
release is eligible for removal during the development cycle leading up to the Victoria release.)

During the Ussuri development cycle, the Cinder team decided that drivers eligible for removal, at the
discretion of the team, may remain in the code repository as long as they continue to pass OpenStack CI
testing. When such a driver blocks the CI check or gate, it will be removed immediately. (This does not
violate the OpenStack deprecation policy because such a drivers deprecation period began when it was
marked as unsupported.)

Note: Why the at the discretion of the team qualification? Some vendors may announce that they have
no intention of continuing to support a driver. In that case, the Cinder team reserves the right to remove
the driver as soon as the deprecation period has passed.

Thus, unsupported drivers may remain in the code repository for multiple releases following their decla-
ration as unsupported. Operators should therefore take into account the length of time a driver has been
marked unsupported when deciding to deploy an unsupported driver. This is because as an unmaintained
driver ages, updates and bugfixes to libraries and other software it depends on may cause the driver to
fail unit and functional tests, making it subject to immediate removal.

The intent of this policy revision is twofold. First, it gives vendors a longer grace period in which to make
the necessary changes to have their drivers reinstated as supported. Second, keeping these drivers in-tree
longer should make life easier for operators who have deployed storage backends with drivers that have
been marked as unsupported. Operators should keep the above points in mind, however, when deploying
such a driver.

3.3. Reference 665

Cinder Documentation, Release 20.3.2.dev3

Current Cinder Drivers

The Cinder team maintains a page of the current drivers and what exactly they support in the Driver
Support Matrix.

You may find more details about the current drivers on the Available Drivers page.

Additionally, the configuration reference for each driver provides even more information. See Volume
drivers.

3.3.3 Command-Line Interface Reference

In this section you will find information on Cinders command line utilities.

Cinder Management Commands

These commands are used to manage existing installations. They are designed to be run by operators in
an environment where they have direct access to the Cinder database.

cinder-manage

Control and manage OpenStack block storage

Author openstack-discuss@lists.openstack.org

Copyright OpenStack Foundation

Manual section 1

Manual group cloud computing

SYNOPSIS

cinder-manage <category> <action> [<args>]

DESCRIPTION

cinder-manage provides control of cinder database migration, and provides an interface to get informa-
tion about the current state of cinder. More information about OpenStack Cinder is available at OpenStack
Cinder.

666 Chapter 3. For operators

mailto:openstack-discuss@lists.openstack.org
https://docs.openstack.org/cinder/latest/
https://docs.openstack.org/cinder/latest/

Cinder Documentation, Release 20.3.2.dev3

OPTIONS

The standard pattern for executing a cinder-manage command is: cinder-manage <category>
<command> [<args>]

For example, to obtain a list of the cinder services currently running: cinder-manage service list

Run without arguments to see a list of available command categories: cinder-manage

The categories are listed below, along with detailed descriptions.

You can also run with a category argument such as db to see a list of all commands in that category:
cinder-manage db

These sections describe the available categories and arguments for cinder-manage.

Cinder Quota

Cinder quotas sometimes run out of sync, and while there are some mechanisms in place in Cinder that,
with the proper configuration, try to do a resync of the quotas, they are not perfect and are susceptible to
race conditions, so they may result in less than perfect accuracy in refreshed quotas.

The cinder-manage quota commands are meant to help manage these issues while allowing a finer control
of when and what quotas are fixed.

Checking if quotas and reservations are correct.

cinder-manage quota check [-h] [--project-id PROJECT_ID] [--use-locks]

Accepted arguments are:

--project-id PROJECT_ID
The ID of the project where we want to sync the quotas
(defaults to all projects).

--use-locks For precise results tables in the DB need to be
locked.

This command checks quotas and reservations, for a specific project (passing --project-id) or for all
projects, to see if they are out of sync.

The check will also look for duplicated entries.

By default it runs in the least accurate mode (where races have a higher chance of happening) to minimize
the impact on running cinder services. This means that false errors are more likely to be reported due to
race conditions when Cinder services are running.

Accurate mode is also supported, but it will lock many tables (affecting all tenants) and is not recom-
mended with services that are being used.

One way to use this action in combination with the sync action is to run the check for all projects, take
note of those that are out of sync, and the sync them one by one at intervals to allow cinder to operate
semi-normally.

Fixing quotas and reservations

cinder-manage quota sync [-h] [--project-id PROJECT_ID] [--no-locks]

Accepted arguments are:

3.3. Reference 667

Cinder Documentation, Release 20.3.2.dev3

--project-id PROJECT_ID
The ID of the project where we want to sync the quotas
(defaults to all projects).

--no-locks For less precise results, but also less intrusive.

This command refreshes existing quota usage and reservation count for a specific project or for all
projects.

The refresh will also remove duplicated entries.

This operation is best executed when Cinder is not running, as it requires locking many tables (affecting
all tenants) to make sure that then sync is accurate.

If accuracy is not our top priority, or we know that a specific project is not in use, we can disable the
locking.

A different transaction is used for each projects quota sync, so an action failure will only rollback the
current projects changes.

Cinder Db

cinder-manage db version

Print the current database version.

cinder-manage db sync [--bump-versions] [version]

Sync the database up to the most recent version. This is the standard way to create the db as well.

This command interprets the following options when it is invoked:

version Database version

--bump-versions Update RPC and Objects versions when doing offline upgrades, with
this we no longer need to restart the services twice after the upgrade to
prevent ServiceTooOld exceptions.

cinder-manage db purge [<number of days>]

Purge database entries that are marked as deleted, that are older than the number of days specified.

cinder-manage db online_data_migrations [--max_count <n>]

Perform online data migrations for database upgrade between releases in batches.

This command interprets the following options when it is invoked:

--max_count Maximum number of objects to migrate. If not specified, all
possible migrations will be completed, in batches of 50 at a
time.

Returns exit status 0 if no (further) updates are possible, 1 if the --max_count option was used and
some updates were completed successfully (even if others generated errors), 2 if some updates generated
errors and no other migrations were able to take effect in the last batch attempted, or 127 if invalid input
is provided (e.g. non-numeric max-count).

This command should be run after upgrading the database schema. If it exits with partial updates (exit
status 1) it should be called again, even if some updates initially generated errors, because some updates

668 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

may depend on others having completed. If it exits with status 2, intervention is required to resolve the
issue causing remaining updates to fail. It should be considered successfully completed only when the
exit status is 0.

Cinder Logs

cinder-manage logs errors

Displays cinder errors from log files.

cinder-manage logs syslog [<number>]

Displays cinder the most recent entries from syslog. The optional number argument specifies the number
of entries to display (default 10).

Cinder Volume

cinder-manage volume delete <volume_id>

Delete a volume without first checking that the volume is available.

cinder-manage volume update_host --currenthost <current host> --newhost <new
host>

Updates the host name of all volumes currently associated with a specified host.

Cinder Host

cinder-manage host list [<zone>]

Displays a list of all physical hosts and their zone. The optional zone argument allows the list to be filtered
on the requested zone.

Cinder Service

cinder-manage service list

Displays a list of all cinder services and their host, zone, status, state and when the information was last
updated.

cinder-manage service remove <service> <host>

Removes a specified cinder service from a specified host.

3.3. Reference 669

Cinder Documentation, Release 20.3.2.dev3

Cinder Backup

cinder-manage backup list

Displays a list of all backups (including ones in progress) and the host on which the backup operation is
running.

cinder-manage backup update_backup_host --currenthost <current host> --newhost
<new host>

Updates the host name of all backups currently associated with a specified host.

Cinder Version

cinder-manage version list

Displays the codebase version cinder is running upon.

Cinder Config

cinder-manage config list [<param>]

Displays the current configuration parameters (options) for Cinder. The optional flag parameter may be
used to display the configuration of one parameter.

Cinder Util

cinder-manage util clean_locks [-h] [--services-offline]

Clean file locks on the current host that were created and are used by drivers and cinder services for
volumes, snapshots, and the backup service on the current host.

Should be run on any host where we are running a Cinder service (API, Scheduler, Volume, Backup) and
can be run with the Cinder services running or stopped.

If the services are running it will check existing resources in the Cinder database in order to only remove
resources that are no longer present (its safe to delete the files).

For backups, the way to know if we can remove the startup lock is by checking if the PGRP in the file
name is currently running cinder-backup.

Deleting locks while the services are offline is faster as theres no need to check the database or the running
processes.

Default assumes that services are online, must pass --services-offline to specify that they are offline.

The common use case for running the command with --services-offline is to be called on startup
as a service unit before any cinder service is started. Command will be usually called without the
--services-offline parameter manually or from a cron job.

Warning: Passing --services-offline when the Cinder services are still running breaks the
locking mechanism and can lead to undesired behavior in ongoing Cinder operations.

670 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Note: This command doesnt clean DLM locks (except when using file locks), as those dont leave lock
leftovers.

FILES

The cinder.conf file contains configuration information in the form of python-gflags.

The cinder-manage.log file logs output from cinder-manage.

SEE ALSO

• OpenStack Cinder

BUGS

• Cinder is hosted on Launchpad so you can view current bugs at Bugs : Cinder

cinder-status

CLI interface for cinder status commands

Author openstack-discuss@lists.openstack.org

Copyright OpenStack Foundation

Manual section 1

Manual group cloud computing

Synopsis

cinder-status <category> <command> [<args>]

Description

cinder-status is a tool that provides routines for checking the status of a Cinder deployment.

3.3. Reference 671

https://docs.openstack.org/cinder/latest/
https://bugs.launchpad.net/cinder/
mailto:openstack-discuss@lists.openstack.org

Cinder Documentation, Release 20.3.2.dev3

Options

The standard pattern for executing a cinder-status command is:

cinder-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

cinder-status

Categories are:

• upgrade

Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that category:

cinder-status upgrade

These sections describe the available categories and arguments for cinder-status.

Upgrade

cinder-status upgrade check Performs a release-specific readiness check before restarting ser-
vices with new code. This command expects to have complete configuration and access to the
database. It may also make requests to other services REST API via the Keystone service catalog.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This

should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

14.0.0 (Stein)

• Check added to ensure the backup_driver setting is using the full driver class path and not
just the module path.

• Checks for the presence of a policy.json file have been added to warn if policy changes should
be present in a policy.yaml file.

• Ensure that correct volume_driver path is used for Windows iSCSI driver.

• Ensure that none of the volume drivers removed in Stein are enabled. Please note that if a
driver is in cinder.conf but not in the enabled_drivers config option this check will not
catch the problem. If you have used the CoprHD, ITRI Disco or HGST drivers in the past you
should ensure that any data from these backends is transferred to a supported storage array
before upgrade.

672 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

15.0.0 (Train)

• Check added to make operators aware of new finer-grained configuration options affecting
the periodicity of various Cinder tasks. Triggered when the periodic_interval option is
not set to its default value.

• Added check for use of deprecated cinder.quota.NestedDbQuotaDriver.

See Also

• OpenStack Cinder

Bugs

• Cinder bugs are managed at Launchpad

Additional Tools and Information

Manage volumes

A volume is a detachable block storage device, similar to a USB hard drive. You can attach a volume to
only one instance. Use the openstack client commands to create and manage volumes.

Create a volume

This example creates a my-new-volume volume based on an image.

1. List images, and note the ID of the image that you want to use for your volume:

$ openstack image list
+--------------------------------------+---------------------------------+
| ID | Name |
+--------------------------------------+---------------------------------+
8bf4dc2a-bf78-4dd1-aefa-f3347cf638c8	cirros-0.3.5-x86_64-uec
9ff9bb2e-3a1d-4d98-acb5-b1d3225aca6c	cirros-0.3.5-x86_64-uec-kernel
4b227119-68a1-4b28-8505-f94c6ea4c6dc	cirros-0.3.5-x86_64-uec-ramdisk
+--------------------------------------+---------------------------------+

2. List the availability zones, and note the ID of the availability zone in which you want to create your
volume:

$ openstack availability zone list
+-----------+-------------+
| Zone Name | Zone Status |
+-----------+-------------+
| nova | available |
+-----------+-------------+

3. Create a volume with 8 gibibytes (GiB) of space, and specify the availability zone and image:

3.3. Reference 673

https://docs.openstack.org/cinder/
https://bugs.launchpad.net/cinder

Cinder Documentation, Release 20.3.2.dev3

$ openstack volume create --image 8bf4dc2a-bf78-4dd1-aefa-f3347cf638c8 \
--size 8 --availability-zone nova my-new-volume

+------------------------------+--------------------------------------+
| Property | Value |
+------------------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2016-09-23T07:52:42.000000
description	None
encrypted	False
id	bab4b0e0-ce3d-4d57-bf57-3c51319f5202
metadata	{}
multiattach	False
name	my-new-volume
os-vol-tenant-attr:tenant_id	3f670abbe9b34ca5b81db6e7b540b8d8
replication_status	disabled
size	8
snapshot_id	None
source_volid	None
status	creating
updated_at	None
user_id	fe19e3a9f63f4a14bd4697789247bbc5
volume_type	lvmdriver-1
+------------------------------+--------------------------------------+

4. To verify that your volume was created successfully, list the available volumes:

$ openstack volume list
+--------------------------------------+---------------+-----------+------
↪→+-------------+
| ID | Name | Status | Size␣
↪→| Attached to |
+--------------------------------------+---------------+-----------+------
↪→+-------------+
| bab4b0e0-ce3d-4d57-bf57-3c51319f5202 | my-new-volume | available | 8 ␣
↪→| |
+--------------------------------------+---------------+-----------+------
↪→+-------------+

If your volume was created successfully, its status is available. If its status is error, you might
have exceeded your quota.

674 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Volume Types

Cinder supports these three ways to specify volume type during volume creation.

1. volume_type

2. cinder_img_volume_type (via glance image metadata)

3. default volume type (via project defaults or cinder.conf)

volume-type

User can specify volume type when creating a volume.

$ openstack volume create -h -f {json,shell,table,value,yaml}
-c COLUMN --max-width <integer>
--noindent --prefix PREFIX --size <size>
--type <volume-type> --image <image>
--snapshot <snapshot> --source <volume>
--description <description> --user <user>
--project <project>
--availability-zone <availability-zone>
--property <key=value>
<name>

cinder_img_volume_type

If glance image has cinder_img_volume_type property, Cinder uses this parameter to specify volume
type when creating a volume.

Choose glance image which has cinder_img_volume_type property and create a volume from the
image.

$ openstack image list
+----------------------------------+---------------------------------+--------
↪→+
| ID | Name | Status␣
↪→|
+----------------------------------+---------------------------------+--------
↪→+
| 376bd633-c9c9-4c5d-a588-342f4f66 | cirros-0.3.5-x86_64-uec | active␣
↪→|
| d086 | | ␣
↪→|
| 2c20fce7-2e68-45ee-ba8d- | cirros-0.3.5-x86_64-uec-ramdisk | active␣
↪→|
| beba27a91ab5 | | ␣
↪→|
| a5752de4-9faf-4c47-acbc- | cirros-0.3.5-x86_64-uec-kernel | active␣
↪→|

(continues on next page)

3.3. Reference 675

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| 78a5efa7cc6e | | ␣
↪→|
+----------------------------------+---------------------------------+--------
↪→+

$ openstack image show 376bd633-c9c9-4c5d-a588-342f4f66d086
+------------------------+--
↪→--+
| Field | Value ␣
↪→ |
+------------------------+--
↪→--+
| checksum | eb9139e4942121f22bbc2afc0400b2a ␣
↪→ |
| cinder_img_volume_type | nfstype ␣
↪→ |
| container_format | ami ␣
↪→ |
| created_at | 2016-10-13T03:28:55Z ␣
↪→ |
| disk_format | ami ␣
↪→ |
| file | /v2/images/376bd633-c9c9-4c5d-a588-342f4f66d086/
↪→file |
| id | 376bd633-c9c9-4c5d-a588-342f4f66d086 ␣
↪→ |
| min_disk | 0 ␣
↪→ |
| min_ram | 0 ␣
↪→ |
| name | cirros-0.3.5-x86_64-uec ␣
↪→ |
| owner | 88ba456e3a884c318394737765e0ef4d ␣
↪→ |
| properties | kernel_id='a5752de4-9faf-4c47-acbc-78a5efa7cc6e', ␣
↪→ |
| | ramdisk_id='2c20fce7-2e68-45ee-ba8d-beba27a91ab5' ␣
↪→ |
| protected | False ␣
↪→ |
| schema | /v2/schemas/image ␣
↪→ |
| size | 25165824 ␣
↪→ |
| status | active ␣
↪→ |
| tags | ␣
↪→ |

(continues on next page)

676 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| updated_at | 2016-10-13T03:28:55Z ␣
↪→ |
| virtual_size | None ␣
↪→ |
| visibility | public ␣
↪→ |
+------------------------+--
↪→--+

$ openstack volume create --image 376bd633-c9c9-4c5d-a588-342f4f66d086 \
--size 1 --availability-zone nova test

+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2016-10-13T06:29:53.688599
description	None
encrypted	False
id	e6e6a72d-cda7-442c-830f-f306ea6a03d5
multiattach	False
name	test
properties	
replication_status	disabled
size	1
snapshot_id	None
source_volid	None
status	creating
type	nfstype
updated_at	None
user_id	33fdc37314914796883706b33e587d51
+---------------------+--------------------------------------+

default volume type

If above parameters are not set, cinder uses default volume type during volume creation.

The effective default volume type (whether it be project default or default_volume_type) can be checked
with the following command:

$ cinder type-default

There are 2 ways to set the default volume type:

1) Project specific defaults

2) default_volume_type defined in cinder.conf

3.3. Reference 677

Cinder Documentation, Release 20.3.2.dev3

Project specific defaults (available since mv 3.62 or higher)

Project specific defaults can be managed using the Default Volume Types API It is set on a per project
basis and has a higher priority over default_volume_type defined in cinder.conf

default_volume_type

If the project specific default is not set then default_volume_type configured in cinder.conf is used to
create volumes.

Example cinder.conf file configuration.

[default]
default_volume_type = lvmdriver-1

Attach a volume to an instance

1. Attach your volume to a server, specifying the server ID and the volume ID:

$ openstack server add volume 84c6e57d-a6b1-44b6-81eb-fcb36afd31b5 \
573e024d-5235-49ce-8332-be1576d323f8 --device /dev/vdb

2. Show information for your volume:

$ openstack volume show 573e024d-5235-49ce-8332-be1576d323f8

The output shows that the volume is attached to the server with ID
84c6e57d-a6b1-44b6-81eb-fcb36afd31b5, is in the nova availability zone, and is bootable.

+------------------------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------------------------+--
↪→-----+
| attachments | [{u'device': u'/dev/vdb', ␣
↪→ |
| | u'server_id': u'84c6e57d-a ␣
↪→ |
| | u'id': u'573e024d-... ␣
↪→ |
| | u'volume_id': u'573e024d... ␣
↪→ |
| availability_zone | nova ␣
↪→ |
| bootable | true ␣
↪→ |
| consistencygroup_id | None ␣
↪→ |

(continues on next page)

678 Chapter 3. For operators

https://docs.openstack.org/api-ref/block-storage/v3/#default-volume-types-default-types

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

| created_at | 2016-10-13T06:08:07.000000 ␣
↪→ |
| description | None ␣
↪→ |
| encrypted | False ␣
↪→ |
| id | 573e024d-5235-49ce-8332-be1576d323f8 ␣
↪→ |
| multiattach | False ␣
↪→ |
| name | my-new-volume ␣
↪→ |
| properties | ␣
↪→ |
| replication_status | disabled ␣
↪→ |
| size | 8 ␣
↪→ |
| snapshot_id | None ␣
↪→ |
| source_volid | None ␣
↪→ |
| status | in-use ␣
↪→ |
| type | lvmdriver-1 ␣
↪→ |
| updated_at | 2016-10-13T06:08:11.000000 ␣
↪→ |
| user_id | 33fdc37314914796883706b33e587d51 ␣
↪→ |
+------------------------------+--
↪→-----+

Detach a volume from an instance

1. Detach your volume from a server, specifying the server ID and the volume ID:

$ openstack server remove volume 84c6e57d-a6b1-44b6-81eb-fcb36afd31b5 \
573e024d-5235-49ce-8332-be1576d323f8

2. Show information for your volume:

$ openstack volume show 573e024d-5235-49ce-8332-be1576d323f8

The output shows that the volume is no longer attached to the server:

+------------------------------+--
↪→-----+
| Field | Value ␣
↪→ | (continues on next page)

3.3. Reference 679

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

+------------------------------+--
↪→-----+
| attachments | [] ␣
↪→ |
| availability_zone | nova ␣
↪→ |
| bootable | true ␣
↪→ |
| consistencygroup_id | None ␣
↪→ |
| created_at | 2016-10-13T06:08:07.000000 ␣
↪→ |
| description | None ␣
↪→ |
| encrypted | False ␣
↪→ |
| id | 573e024d-5235-49ce-8332-be1576d323f8 ␣
↪→ |
| multiattach | False ␣
↪→ |
| name | my-new-volume ␣
↪→ |
| properties | ␣
↪→ |
| replication_status | disabled ␣
↪→ |
| size | 8 ␣
↪→ |
| snapshot_id | None ␣
↪→ |
| source_volid | None ␣
↪→ |
| status | in-use ␣
↪→ |
| type | lvmdriver-1 ␣
↪→ |
| updated_at | 2016-10-13T06:08:11.000000 ␣
↪→ |
| user_id | 33fdc37314914796883706b33e587d51 ␣
↪→ |
+------------------------------+--
↪→-----+

680 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Delete a volume

1. To delete your volume, you must first detach it from the server. To detach the volume from your
server and check for the list of existing volumes, see steps 1 and 2 in Resize_a_volume.

Delete the volume using either the volume name or ID:

$ openstack volume delete my-new-volume

This command does not provide any output.

2. List the volumes again, and note that the status of your volume is deleting:

$ openstack volume list
+----------------+-----------------+-----------+------+-------------+
| ID | Name | Status | Size | Attached to |
+----------------+-----------------+-----------+------+-------------+
| 573e024d-52... | my-new-volume | deleting | 8 | |
| bd7cf584-45... | my-bootable-vol | available | 8 | |
+----------------+-----------------+-----------+------+-------------+

When the volume is fully deleted, it disappears from the list of volumes:

$ openstack volume list
+----------------+-----------------+-----------+------+-------------+
| ID | Name | Status | Size | Attached to |
+----------------+-----------------+-----------+------+-------------+
| bd7cf584-45... | my-bootable-vol | available | 8 | |
+----------------+-----------------+-----------+------+-------------+

Resize a volume

1. To resize your volume, you must first detach it from the server if the volume driver does not support
in-use extend. (See Extend_attached_volume.) To detach the volume from your server, pass the
server ID and volume ID to the following command:

$ openstack server remove volume 84c6e57d-a6b1-44b6-81eb-fcb36afd31b5␣
↪→573e024d-5235-49ce-8332-be1576d323f8

This command does not provide any output.

2. List volumes:

$ openstack volume list
+----------------+-----------------+-----------+------+-------------+
| ID | Name | Status | Size | Attached to |
+----------------+-----------------+-----------+------+-------------+
| 573e024d-52... | my-new-volume | available | 8 | |
| bd7cf584-45... | my-bootable-vol | available | 8 | |
+----------------+-----------------+-----------+------+-------------+

Note that the volume is now available.

3.3. Reference 681

Cinder Documentation, Release 20.3.2.dev3

3. Resize the volume by passing the volume ID and the new size (a value greater than the old one) as
parameters:

$ openstack volume set 573e024d-5235-49ce-8332-be1576d323f8 --size 10

This command does not provide any output. Note: The volume status reserved is not a valid
state for an extend operation.

Note: When extending an LVM volume with a snapshot, the volume will be deactivated. The
reactivation is automatic unless auto_activation_volume_list is defined in lvm.conf. See
lvm.conf for more information.

Extend attached volume

Starting from microversion 3.42, it is also possible to extend an attached volume with status in-use,
depending upon policy settings and the capabilities of the backend storage. Sufficient amount of storage
must exist to extend the volume.

1. Resize the volume by passing the microversion,the volume ID, and the new size (a value greater
than the old one) as parameters:

$ openstack --os-volume-api-version 3.42 volume set 573e024d-5235-49ce-
↪→8332-be1576d323f8 --size 10

This command does not provide any output.

Migrate a volume

As an administrator, you can migrate a volume with its data from one location to another in a manner
that is transparent to users and workloads. You can migrate only detached volumes with no snapshots.

Possible use cases for data migration include:

• Bring down a physical storage device for maintenance without disrupting workloads.

• Modify the properties of a volume.

• Free up space in a thinly-provisioned back end.

Migrate a volume with the openstack volume migrate command, as shown in the following example:

$ openstack volume migrate [-h] --host <host> [--force-host-copy]
[--lock-volume] <volume>

The arguments for this command are:

host The destination host in the format host@backend-name#pool.

volume The ID of the volume to migrate.

force-host-copy Disables any driver optimizations and forces the data to be copied by the host.

lock-volume Prevents other processes from aborting the migration.

682 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Note: If the volume has snapshots, the specified host destination cannot accept the volume. If the user
is not an administrator, the migration fails.

Transfer a volume

You can transfer a volume from one owner to another by using the openstack volume transfer
request create command. The volume donor, or original owner, creates a transfer request and sends
the created transfer ID and authorization key to the volume recipient. The volume recipient, or new
owner, accepts the transfer by using the ID and key.

Starting with the Rocky release, Cinder changes the API behavior for the v2 and v3 API up to microver-
sion 3.55. Snapshots will be transferred with the volume by default. That means if the volume has
some snapshots, when a user transfers a volume from one owner to another, then those snapshots will be
transferred with the volume as well.

Starting with microversion 3.55 and later, Cinder supports the ability to transfer volume without snap-
shots. If users dont want to transfer snapshots, they need to specify the new optional argument no-
snapshots.

Note: The procedure for volume transfer is intended for projects (both the volume donor and recipient)
within the same cloud.

Use cases include:

• Create a custom bootable volume or a volume with a large data set and transfer it to a customer.

• For bulk import of data to the cloud, the data ingress system creates a new Block Storage volume,
copies data from the physical device, and transfers device ownership to the end user.

Create a volume transfer request

1. While logged in as the volume donor, list the available volumes:

$ openstack volume list
+-----------------+-----------------+-----------+------+-------------+
| ID | Name | Status | Size | Attached to |
+-----------------+-----------------+-----------+------+-------------+
| 72bfce9f-cac... | None | error | 1 | |
| a1cdace0-08e... | None | available | 1 | |
+-----------------+-----------------+-----------+------+-------------+

2. As the volume donor, request a volume transfer authorization code for a specific volume:

$ openstack volume transfer request create [--no-snapshots] <volume>

The arguments to be passed are:

<volume> Name or ID of volume to transfer.

--no-snapshots Transfer the volume without snapshots.

3.3. Reference 683

Cinder Documentation, Release 20.3.2.dev3

The volume must be in an available state or the request will be denied. If the transfer request is valid in
the database (that is, it has not expired or been deleted), the volume is placed in an awaiting-transfer
state. For example:

$ openstack volume transfer request create a1cdace0-08e4-4dc7-b9dc-
↪→457e9bcfe25f

The output shows the volume transfer ID in the id row and the authorization key.

+------------+--------------------------------------+
| Field | Value |
+------------+--------------------------------------+
auth_key	0a59e53630f051e2
created_at	2016-11-03T11:49:40.346181
id	34e29364-142b-4c7b-8d98-88f765bf176f
name	None
volume_id	a1cdace0-08e4-4dc7-b9dc-457e9bcfe25f
+------------+--------------------------------------+

Note: Optionally, you can specify a name for the transfer by using the --name transferName param-
eter.

Note: While the auth_key property is visible in the output of openstack volume transfer
request create VOLUME_ID, it will not be available in subsequent openstack volume transfer
request show TRANSFER_ID command.

1. Send the volume transfer ID and authorization key to the new owner (for example, by email).

2. View pending transfers:

$ openstack volume transfer request list
+--------------------------------------+----------------------------------
↪→----+------+
| ID | Volume ␣
↪→ | Name |
+--------------------------------------+----------------------------------
↪→----+------+
| 6e4e9aa4-bed5-4f94-8f76-df43232f44dc | a1cdace0-08e4-4dc7-b9dc-
↪→457e9bcfe25f | None |
+--------------------------------------+----------------------------------
↪→----+------+

3. After the volume recipient, or new owner, accepts the transfer, you can see that the transfer is no
longer available:

$ openstack volume transfer request list
+----+-----------+------+
| ID | Volume ID | Name |

(continues on next page)

684 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

+----+-----------+------+
+----+-----------+------+

Accept a volume transfer request

1. As the volume recipient, you must first obtain the transfer ID and authorization key from the orig-
inal owner.

2. Accept the request:

$ openstack volume transfer request accept transferID authKey

For example:

$ openstack volume transfer request accept 6e4e9aa4-bed5-4f94-8f76-
↪→df43232f44dc b2c8e585cbc68a80
+-----------+--------------------------------------+
| Property | Value |
+-----------+--------------------------------------+
id	6e4e9aa4-bed5-4f94-8f76-df43232f44dc
name	None
volume_id	a1cdace0-08e4-4dc7-b9dc-457e9bcfe25f
+-----------+--------------------------------------+

Note: If you do not have a sufficient quota for the transfer, the transfer is refused.

Delete a volume transfer

1. List available volumes and their statuses:

$ openstack volume list
+-----------------+-----------------+-----------------+------+------------
↪→-+
| ID | Name | Status | Size | Attached␣
↪→to |
+-----------------+-----------------+-----------------+------+------------
↪→-+
| 72bfce9f-cac... | None | error | 1 | ␣
↪→ |
| a1cdace0-08e... | None |awaiting-transfer| 1 | ␣
↪→ |
+-----------------+-----------------+-----------------+------+------------
↪→-+

2. Find the matching transfer ID:

3.3. Reference 685

Cinder Documentation, Release 20.3.2.dev3

$ openstack volume transfer request list
+--------------------------------------+----------------------------------
↪→----+------+
| ID | VolumeID ␣
↪→ | Name |
+--------------------------------------+----------------------------------
↪→----+------+
| a6da6888-7cdf-4291-9c08-8c1f22426b8a | a1cdace0-08e4-4dc7-b9dc-
↪→457e9bcfe25f | None |
+--------------------------------------+----------------------------------
↪→----+------+

3. Delete the volume:

$ openstack volume transfer request delete <transfer>

<transfer> Name or ID of transfer to delete.

For example:

$ openstack volume transfer request delete a6da6888-7cdf-4291-9c08-
↪→8c1f22426b8a

4. Verify that transfer list is now empty and that the volume is again available for transfer:

$ openstack volume transfer request list
+----+-----------+------+
| ID | Volume ID | Name |
+----+-----------+------+
+----+-----------+------+

$ openstack volume list
+-----------------+-----------------+-----------------+------+------------
↪→-+
| ID | Name | Status | Size | Attached␣
↪→to |
+-----------------+-----------------+-----------------+------+------------
↪→-+
| 72bfce9f-cac... | None | error | 1 | ␣
↪→ |
| a1cdace0-08e... | None | available | 1 | ␣
↪→ |
+-----------------+-----------------+-----------------+------+------------
↪→-+

686 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

Manage and unmanage a snapshot

A snapshot is a point in time version of a volume. As an administrator, you can manage and unmanage
snapshots.

Manage a snapshot

Manage a snapshot with the openstack volume snapshot set command:

$ openstack volume snapshot set [-h]
[--name <name>]
[--description <description>]
[--no-property]
[--property <key=value>]
[--state <state>]
<snapshot>

The arguments to be passed are:

--name <name> New snapshot name

--description <description> New snapshot description

--no-property Remove all properties from <snapshot> (specify both no-property and property to re-
move the current properties before setting new properties.)

--property <key=value> Property to add or modify for this snapshot (repeat option to set multiple
properties)

--state <state> New snapshot state. (available, error, creating, deleting, or error_deleting) (admin
only) (This option simply changes the state of the snapshot in the database with no regard to actual
status, exercise caution when using)

<snapshot> Snapshot to modify (name or ID)

$ openstack volume snapshot set my-snapshot-id

Unmanage a snapshot

Unmanage a snapshot with the openstack volume snapshot unset command:

$ openstack volume snapshot unset [-h]
[--property <key>]
<snapshot>

The arguments to be passed are:

--property <key> Property to remove from snapshot (repeat option to remove multiple properties)

<snapshot> Snapshot to modify (name or ID).

The following example unmanages the my-snapshot-id image:

3.3. Reference 687

Cinder Documentation, Release 20.3.2.dev3

$ openstack volume snapshot unset my-snapshot-id

Report backend state in service list

Each of the Cinder services report a Status and a State. These are the administrative state and the runtime
state, respectively.

To get a listing of all Cinder services and their states, run the command:

$ openstack volume service list
+------------------+-------------------+------+---------+-------+-------------
↪→---------------+
| Binary | Host | Zone | Status | State | Updated At ␣
↪→ |
+------------------+-------------------+------+---------+-------+-------------
↪→---------------+
| cinder-scheduler | tower | nova | enabled | up | 2018-03-
↪→30T21:16:11.000000 |
| cinder-volume | tower@lvmdriver-1 | nova | enabled | up | 2018-03-
↪→30T21:16:15.000000 |
| cinder-backup | tower | nova | enabled | up | 2018-03-
↪→30T21:16:14.000000 |
+------------------+-------------------+------+---------+-------+-------------
↪→---------------+

Manage quotas

To prevent system capacities from being exhausted without notification, you can set up quotas. Quotas
are operational limits. For example, the number of gigabytes allowed for each project can be controlled
so that cloud resources are optimized. Quotas can be enforced at both the project and the project-user
level.

Using the command-line interface, you can manage quotas for the OpenStack Compute service, the Open-
Stack Block Storage service, and the OpenStack Networking service.

The cloud operator typically changes default values because a project requires more than ten volumes or
1 TB on a compute node.

Note: To view all projects, run:

$ openstack project list
+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
e66d97ac1b704897853412fc8450f7b9	admin
bf4a37b885fe46bd86e999e50adad1d3	services
21bd1c7c95234fd28f589b60903606fa	tenant01
f599c5cd1cba4125ae3d7caed08e288c	tenant02
+----------------------------------+----------+

688 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

To display all current users for a project, run:

$ openstack user list --project PROJECT_NAME
+----------------------------------+--------+
| ID | Name |
+----------------------------------+--------+
| ea30aa434ab24a139b0e85125ec8a217 | demo00 |
| 4f8113c1d838467cad0c2f337b3dfded | demo01 |
+----------------------------------+--------+

Use openstack quota show PROJECT_NAME to list all quotas for a project.

Use openstack quota set PROJECT_NAME --parameters to set quota values.

Manage Block Storage service quotas

As an administrative user, you can update the OpenStack Block Storage service quotas for a project. You
can also update the quota defaults for a new project.

Block Storage quotas

Property name Defines the number of
gigabytes Volume gigabytes allowed for each project.
snapshots Volume snapshots allowed for each project.
volumes Volumes allowed for each project.

View Block Storage quotas

Administrative users can view Block Storage service quotas.

1. Obtain the project ID:

$ PROJECT_ID=$(openstack project show -f value -c id PROJECT_NAME)

2. List the default quotas for a project:

$ openstack quota show --default $PROJECT_ID
+-----------------------+-------+
| Field | Value |
+-----------------------+-------+
backup-gigabytes	1000
backups	10
cores	20
fixed-ips	-1
floating-ips	50
gigabytes	1000
gigabytes_lvmdriver-1	-1
health_monitors	None
injected-file-size	10240

(continues on next page)

3.3. Reference 689

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

injected-files	5
injected-path-size	255
instances	10
key-pairs	100
l7_policies	None
listeners	None
load_balancers	None
location	None
name	None
networks	10
per-volume-gigabytes	-1
pools	None
ports	50
project	None
project_id	None
properties	128
ram	51200
rbac_policies	10
routers	10
secgroup-rules	100
secgroups	10
server-group-members	10
server-groups	10
snapshots	10
snapshots_lvmdriver-1	-1
subnet_pools	-1
subnets	10
volumes	10
volumes_lvmdriver-1	-1
+-----------------------+-------+

Note: Listing default quotas with the OpenStack command line client will provide all quotas for stor-
age and network services. Previously, the cinder quota-defaults command would list only storage
quotas. You can use $PROJECT_ID or $PROJECT_NAME arguments to show Block Storage service
quotas. If the $PROJECT_ID argument returns errors in locating resources, use $PROJECT_NAME.

1. View Block Storage service quotas for a project:

$ openstack quota show $PROJECT_ID
+-----------------------+-------+
| Field | Value |
+-----------------------+-------+
backup-gigabytes	1000
backups	10
cores	20
fixed-ips	-1
floating-ips	50
gigabytes	1000

(continues on next page)

690 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

gigabytes_lvmdriver-1	-1
health_monitors	None
injected-file-size	10240
injected-files	5
injected-path-size	255
instances	10
key-pairs	100
l7_policies	None
listeners	None
load_balancers	None
location	None
name	None
networks	10
per-volume-gigabytes	-1
pools	None
ports	50
project	None
project_id	None
properties	128
ram	51200
rbac_policies	10
routers	10
secgroup-rules	100
secgroups	10
server-group-members	10
server-groups	10
snapshots	10
snapshots_lvmdriver-1	-1
subnet_pools	-1
subnets	10
volumes	10
volumes_lvmdriver-1	-1
+-----------------------+-------+

2. Show the current usage of a per-project quota:

$ cinder quota-usage $PROJECT_ID
+-----------------------+--------+----------+-------+
| Type | In_use | Reserved | Limit |
+-----------------------+--------+----------+-------+
backup_gigabytes	0	0	1000
backups	0	0	10
gigabytes	0	0	1000
gigabytes_lvmdriver-1	0	0	-1
per_volume_gigabytes	0	0	-1
snapshots	0	0	10
snapshots_lvmdriver-1	0	0	-1
volumes	0	0	10
volumes_lvmdriver-1	0	0	-1
+-----------------------+--------+----------+-------+

3.3. Reference 691

Cinder Documentation, Release 20.3.2.dev3

Edit and update Block Storage service quotas

Administrative users can edit and update Block Storage service quotas.

1. To update a default value for a new project, update the property in the cinder.quota section of the
/etc/cinder/cinder.conf file. For more information, see the Block Storage service configu-
ration.

2. To update Block Storage service quotas for an existing project

$ openstack quota set --QUOTA_NAME QUOTA_VALUE PROJECT_ID

Replace QUOTA_NAME with the quota that is to be updated, QUOTA_VALUE with the required new
value. Use the openstack quota show command with PROJECT_ID, which is the required
project ID.

For example:

$ openstack quota set --volumes 15 $PROJECT_ID
$ openstack quota show $PROJECT_ID
+-----------------------+----------------------------------+
| Field | Value |
+-----------------------+----------------------------------+
backup-gigabytes	1000
backups	10
cores	20
fixed-ips	-1
floating-ips	29
gigabytes	1000
gigabytes_lvmdriver-1	-1
health_monitors	None
injected-file-size	10240
injected-files	5
injected-path-size	255
instances	10
key-pairs	100
l7_policies	None
listeners	None
load_balancers	None
location	None
name	None
networks	10
per-volume-gigabytes	-1
pools	None
ports	50
project	e436339c7f9c476cb3120cf3b9667377
project_id	None
properties	128
ram	51200
rbac_policies	10
routers	10
secgroup-rules	100

(continues on next page)

692 Chapter 3. For operators

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

secgroups	10
server-group-members	10
server-groups	10
snapshots	10
snapshots_lvmdriver-1	-1
subnet_pools	-1
subnets	10
volumes	15
volumes_lvmdriver-1	-1
+-----------------------+----------------------------------+

3. To clear per-project quota limits:

$ cinder quota-delete $PROJECT_ID

Manage Block Storage scheduling

As an administrative user, you have some control over which volume back end your volumes reside on.
You can specify affinity or anti-affinity between two volumes. Affinity between volumes means that they
are stored on the same back end, whereas anti-affinity means that they are stored on different back ends.

For information on how to set up multiple back ends for Cinder, refer to Configure multiple-storage back
ends.

Example Usages

1. Create a new volume on the same back end as Volume_A:

$ openstack volume create --hint same_host=Volume_A-UUID \
--size SIZE VOLUME_NAME

2. Create a new volume on a different back end than Volume_A:

$ openstack volume create --hint different_host=Volume_A-UUID \
--size SIZE VOLUME_NAME

3. Create a new volume on the same back end as Volume_A and Volume_B:

$ openstack volume create --hint same_host=Volume_A-UUID \
--hint same_host=Volume_B-UUID --size SIZE VOLUME_NAME

Or:

$ openstack volume create --hint same_host="[Volume_A-UUID, \
Volume_B-UUID]" --size SIZE VOLUME_NAME

4. Create a new volume on a different back end than both Volume_A and Volume_B:

3.3. Reference 693

Cinder Documentation, Release 20.3.2.dev3

$ openstack volume create --hint different_host=Volume_A-UUID \
--hint different_host=Volume_B-UUID --size SIZE VOLUME_NAME

Or:

$ openstack volume create --hint different_host="[Volume_A-UUID, \
Volume_B-UUID]" --size SIZE VOLUME_NAME

3.4 Additional resources

• Cinder release notes

694 Chapter 3. For operators

https://docs.openstack.org/releasenotes/cinder/

CHAPTER

FOUR

FOR CONTRIBUTORS

Contributions to Cinder are welcome. There can be a lot of background information needed to get started.
This section should help get you started. Please feel free to also ask any questions in the #openstack-
cinder IRC channel.

4.1 Contributing to Cinder

Contents:

4.1.1 Contributor Guide

In this section you will find information on how to contribute to Cinder. Content includes architectural
overviews, tips and tricks for setting up a development environment, and information on Cinders lower
level programming APIs.

Getting Started

So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with the Cinder project,
which is responsible for the following OpenStack deliverables:

cinder

The OpenStack Block Storage service.
code: https://opendev.org/openstack/cinder
docs: https://cinder.openstack.org
api-ref: https://docs.openstack.org/api-ref/block-storage
Launchpad: https://launchpad.net/cinder

os-brick

Shared library for managing local volume attaches.
code: https://opendev.org/openstack/os-brick
docs: https://docs.openstack.org/os-brick

695

https://docs.openstack.org/contributors/
https://opendev.org/openstack/cinder
https://cinder.openstack.org
https://docs.openstack.org/api-ref/block-storage
https://launchpad.net/cinder
https://opendev.org/openstack/os-brick
https://docs.openstack.org/os-brick

Cinder Documentation, Release 20.3.2.dev3

Launchpad: https://launchpad.net/os-brick

python-cinderclient

Python client library for the OpenStack Block Storage API; includes a CLI shell.
code: https://opendev.org/openstack/python-cinderclient
docs: https://docs.openstack.org/python-cinderclient
Launchpad: https://launchpad.net/python-cinderclient

python-brick-cinderclient-ext

Extends the python-cinderclient library so that it can handle local volume attaches.
code: https://opendev.org/openstack/python-brick-cinderclient-ext
docs: https://docs.openstack.org/python-brick-cinderclient-ext
Launchpad: (doesnt have its own space, uses python-cinderclients)

cinderlib

Library that allows direct usage of Cinder backend drivers without cinder services.
code: https://opendev.org/openstack/cinderlib
docs: https://docs.openstack.org/cinderlib
Launchpad: https://launchpad.net/cinderlib

rbd-iscsi-client

Library that provides a REST client that talks to ceph-iscis rbd-target-api to export rbd
images/volumes to an iSCSI initiator.
code: https://opendev.org/openstack/rbd-iscsi-client
docs: https://docs.openstack.org/rbd-iscsi-client
Launchpad: https://launchpad.net/rbd-iscsi-client

cinder-tempest-plugin

Contains additional Cinder tempest-based tests beyond those in the main OpenStack Integration
Test Suite (tempest).
code: https://opendev.org/openstack/cinder-tempest-plugin
Launchpad: https://launchpad.net/cinder-tempest-plugin

See the CONTRIBUTING.rst file in each code repository for more information about contributing to that
specific deliverable. Additionally, you should look over the docs links above; most components have
helpful developer information specific to that deliverable. (The main cinder documentation is especially
thorough in this regard and you should read through it, particularly Background Concepts for Cinder and
Programming HowTos and Tutorials.)

Communication

IRC We use IRC a lot. You will, too. You can find infomation about what IRC network OpenStack
uses for communication (and tips for using IRC) in the Setup IRC section of the main OpenStack
Contributor Guide.

People working on the Cinder project may be found in the #openstack-cinder IRC channel
during working hours in their timezone. The channel is logged, so if you ask a question when no
one is around, you can check the log to see if its been answered: http://eavesdrop.openstack.org/
irclogs/%23openstack-cinder/

696 Chapter 4. For contributors

https://launchpad.net/os-brick
https://opendev.org/openstack/python-cinderclient
https://docs.openstack.org/python-cinderclient
https://launchpad.net/python-cinderclient
https://opendev.org/openstack/python-brick-cinderclient-ext
https://docs.openstack.org/python-brick-cinderclient-ext
https://opendev.org/openstack/cinderlib
https://docs.openstack.org/cinderlib
https://launchpad.net/cinderlib
https://opendev.org/openstack/rbd-iscsi-client
https://docs.openstack.org/rbd-iscsi-client
https://launchpad.net/rbd-iscsi-client
https://opendev.org/openstack/cinder-tempest-plugin
https://launchpad.net/cinder-tempest-plugin
https://docs.openstack.org/contributors/common/irc.html
http://eavesdrop.openstack.org/irclogs/%23openstack-cinder/
http://eavesdrop.openstack.org/irclogs/%23openstack-cinder/

Cinder Documentation, Release 20.3.2.dev3

weekly meeting Wednesdays at 14:00 UTC in the #openstack-meeting-alt IRC channel. Meetings
are logged: http://eavesdrop.openstack.org/meetings/cinder/

More information (including some pointers on meeting etiquette and an ICS file to put the meeting
on your calendar) can be found at: http://eavesdrop.openstack.org/#Cinder_Team_Meeting

The meeting agenda for a particular development cycle is kept on an etherpad. You can find a
link to the current agenda from the Cinder Meetings wiki page: https://wiki.openstack.org/wiki/
CinderMeetings

The last meeting of each month is held simultaneously in videoconference and IRC. Connection
information is posted on the meeting agenda.

weekly bug squad meeting This is a half-hour meeting on Wednesdays at 15:00 UTC (right after
the Cinder weekly meeting) in the #openstack-cinder IRC channel. At this meeting, led
by the Cinder Bug Deputy, we discuss new bugs that have been filed against Cinder project
deliverables (and, if theres time, discuss the relevance of old bugs that havent seen any ac-
tion recently). Info about the meeting is here: http://eavesdrop.openstack.org/#Cinder_Bug_
Squad_Meeting

mailing list We use the openstack-discuss@lists.openstack.org mailing list for asynchronous discussions
or to communicate with other OpenStack teams. Use the prefix [cinder] in your subject line (its
a high-volume list, so most people use email filters).

More information about the mailing list, including how to subscribe and read the archives, can be
found at: http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

virtual meet-ups From time to time, the Cinder project will have video meetings to address topics not
easily covered by the above methods. These are announced well in advance at the weekly meeting
and on the mailing list.

Additionally, the Cinder project has been holding two virtual mid-cycle meetings during each de-
velopment cycle, roughly at weeks R-18 and R-9. These are used to discuss follow-up issues from
the PTG before the spec freeze, and to assess the development status of features and priorities
roughly one month before the feature freeze. The exact dates of these are announced at the weekly
meeting and on the mailing list.

cinder festival of XS reviews This is a standing video meeting held the third Friday of each month
from 14:00-16:00 UTC in meetpad to review very small patches that havent yet been merged.
Its held in video so we can quickly discuss issues and hand reviews back and forth. It is not
recorded. Info about the meeting is here: http://eavesdrop.openstack.org/#Cinder_Festival_
of_XS_Reviews

physical meet-ups The Cinder project usually has a presence at the OpenDev/OpenStack Project Team
Gathering that takes place at the beginning of each development cycle. Planning happens on an
etherpad whose URL is announced at the weekly meetings and on the mailing list.

4.1. Contributing to Cinder 697

http://eavesdrop.openstack.org/meetings/cinder/
http://eavesdrop.openstack.org/#Cinder_Team_Meeting
https://wiki.openstack.org/wiki/CinderMeetings
https://wiki.openstack.org/wiki/CinderMeetings
http://eavesdrop.openstack.org/#Cinder_Bug_Squad_Meeting
http://eavesdrop.openstack.org/#Cinder_Bug_Squad_Meeting
mailto:openstack-discuss@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
http://eavesdrop.openstack.org/#Cinder_Festival_of_XS_Reviews
http://eavesdrop.openstack.org/#Cinder_Festival_of_XS_Reviews

Cinder Documentation, Release 20.3.2.dev3

Contacting the Core Team

The cinder-core team is an active group of contributors who are responsible for directing and maintaining
the Cinder project. As a new contributor, your interaction with this group will be mostly through code
reviews, because only members of cinder-core can approve a code change to be merged into the code
repository.

You can learn more about the role of core reviewers in the OpenStack governance documentation: https:
//docs.openstack.org/contributors/common/governance.html#core-reviewer

The membership list of cinder-core is maintained in gerrit: https://review.opendev.org/#/admin/groups/
83,members

You can also find the members of the cinder-core team at the Cinder weekly meetings.

New Feature Planning

The Cinder project uses both specs and blueprints to track new features. Heres a quick rundown of what
they are and how the Cinder project uses them.

specs

Exist in the cinder-specs repository. Each spec must have a Launchpad blueprint (see below)
associated with it for tracking purposes.

A spec is required for any new Cinder core feature, anything that changes the Block Storage API,
or anything that entails a mass change to existing drivers.

The specs repository is: https://opendev.org/openstack/cinder-specs
It contains a README.rst file explaining how to file a spec.

You can read rendered specs docs at:
https://specs.openstack.org/openstack/cinder-specs/

blueprints

Exist in Launchpad, where they can be targeted to release milestones.
You file one at https://blueprints.launchpad.net/cinder

Examples of changes that can be covered by a blueprint only are:

• adding a new volume, backup, or target driver; or

• adding support for a defined capability that already exists in the base volume, backup, or
target drivers

Feel free to ask in #openstack-cinder or at the weekly meeting if you have an idea you want to develop
and youre not sure whether it requires a blueprint and a spec or simply a blueprint.

698 Chapter 4. For contributors

https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://review.opendev.org/#/admin/groups/83,members
https://review.opendev.org/#/admin/groups/83,members
https://opendev.org/openstack/cinder-specs
https://specs.openstack.org/openstack/cinder-specs/
https://blueprints.launchpad.net/cinder

Cinder Documentation, Release 20.3.2.dev3

The Cinder project observes the following deadlines. For the current development cycle, the dates of
each (and a more detailed description) may be found on the release schedule, which you can find from:
https://releases.openstack.org/

• spec freeze (all specs must be approved by this date)

• new driver merge deadline

• new target driver merge deadline

• new feature status checkpoint

• driver features declaration

• third-party CI compliance checkpoint

Additionally, the Cinder project observes the OpenStack-wide deadlines, for example, final release of
non-client libraries (os-brick), final release for client libraries (python-cinderclient), feature freeze, etc.
These are also noted and explained on the release schedule for the current development cycle.

Task Tracking

We track our tasks in Launchpad. See the top of the page for the URL of each Cinder project deliverable.

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag in the Bugs section.

When you start working on a bug, make sure you assign it to yourself. Otherwise someone else may also
start working on it, and we dont want to duplicate efforts. Also, if you find a bug in the code and want
to post a fix, make sure you file a bug (and assign it to yourself!) just in case someone else comes across
the problem in the meantime.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so in the Launchpad space for
the affected deliverable:

• cinder: https://bugs.launchpad.net/cinder

• os-brick: https://bugs.launchpad.net/os-brick

• python-cinderclient: https://bugs.launchpad.net/python-cinderclient

• python-brick-cinderclient-ext: same as for python-cinderclient, but tag the bug with brick-
cinderclient-ext

• cinderlib: https://bugs.launchpad.net/cinderlib

• cinder-tempest-plugin: https://bugs.launchpad.net/cinder-tempest-plugin

4.1. Contributing to Cinder 699

https://releases.openstack.org/
https://bugs.launchpad.net/cinder
https://bugs.launchpad.net/os-brick
https://bugs.launchpad.net/python-cinderclient
https://bugs.launchpad.net/cinderlib
https://bugs.launchpad.net/cinder-tempest-plugin

Cinder Documentation, Release 20.3.2.dev3

Getting Your Patch Merged

Before your patch can be merged, it must be reviewed and approved.

The Cinder project policy is that a patch must have two +2s before it can be merged. (Exceptions are
documentation changes, which require only a single +2, and specs, for which the PTL may require more
than two +2s, depending on the complexity of the proposal.) Only members of the cinder-core team can
vote +2 (or -2) on a patch, or approve it.

Note: Although your contribution will require reviews by members of cinder-core, these arent the only
people whose reviews matter. Anyone with a gerrit account can post reviews, so you can ask other
developers you know to review your code and you can review theirs. (A good way to learn your way
around the codebase is to review other peoples patches.)

If youre thinking, Im new at this, how can I possibly provide a helpful review?, take a look at How to
Review Changes the OpenStack Way.

There are also some Cinder project specific reviewing guidelines in the Code Reviews section of the
Cinder Contributor Guide.

Patches lacking unit tests are unlikely to be approved. Check out the Testing section of the Cinder Con-
tributors Guide for a discussion of the kinds of testing we do with cinder.

In addition, some changes may require a release note. Any patch that changes functionality, adds func-
tionality, or addresses a significant bug should have a release note. You can find more information about
how to write a release note in the Release notes section of the Cinder Contributors Guide.

Keep in mind that the best way to make sure your patches are reviewed in a timely manner
is to review other peoples patches. Were engaged in a cooperative enterprise here.

If your patch has a -1 from Zuul, you should fix it right away, because people are unlikely to review a
patch that is failing the CI system.

• If its a pep8 issue, the job leaves sufficient information for you to fix the problems yourself.

• If you are failing unit or functional tests, you should look at the failures carefully. These tests guard
against regressions, so if your patch causing failures, you need to figure out exactly what is going
on.

• The unit, functional, and pep8 tests can all be run locally before you submit your patch for review.
By doing so, you can help conserve gate resources.

How long it may take for your review to get attention will depend on the current project priorities.
For example, the feature freeze is at the third milestone of each development cycle, so feature patches
have the highest priority just before M-3. Likewise, once the new driver freeze is in effect, new driver
patches are unlikely to receive timely reviews until after the stable branch has been cut (this happens
three weeks before release). Similarly, os-brick patches have review priority before the nonclient li-
brary release deadline, and cinderclient patches have priority before the client library release each cycle.
These dates are clearly noted on the release schedule for the current release, which you can find from
https://releases.openstack.org/

You can see whos been doing what with Cinder recently in Stackalytics: https://www.stackalytics.io/
report/activity?module=cinder-group

700 Chapter 4. For contributors

https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://releases.openstack.org/
https://www.stackalytics.io/report/activity?module=cinder-group
https://www.stackalytics.io/report/activity?module=cinder-group

Cinder Documentation, Release 20.3.2.dev3

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

Additional responsibilities for the Cinder PTL can be found by reading through the Managing the Devel-
opment Cycle section of the Cinder documentation.

Writing Release Notes

Please follow the format, it will make everyones life easier. Theres even a special section on writing
release notes for Cinder drivers.

Release notes

The release notes for a patch should be included in the patch.

If the following applies to the patch, a release note is required:

• Upgrades

– The deployer needs to take an action when upgrading

– A new config option is added that the deployer should consider changing from the default

– A configuration option is deprecated or removed

• Features

– A new feature or driver is implemented

– Feature is deprecated or removed

– Current behavior is changed

• Bugs

– A security bug is fixed

– A long-standing or important bug is fixed

• APIs

– REST API changes

Reviewing release note content

Release notes are user facing. We expect operators to read them (and other people interested in seeing
whats in a new release may read them, too). This makes a release note different from a commit message,
which is aimed at other developers.

Keep this in mind as you review a release note. Also, since its user facing, something you would think
of as a nit in a code comment (for example, bad punctuation or a misspelled word) is not really a nit in a
release noteits something that needs to be corrected. This also applies to the format of the release note,
which should follow the standards set out later in this document.

In summary, dont feel bad about giving a -1 for a nit in a release note. We dont want to have to go back
and fix typos later, especially for a bugfix thats likely to be backported, which would require squashing

4.1. Contributing to Cinder 701

https://docs.openstack.org/project-team-guide/ptl.html

Cinder Documentation, Release 20.3.2.dev3

the typo fix into the backport patch (which is something thats easy to forget). Thus we really want to get
release notes right the first time.

Fixing a release note

Of course, even with careful writing and reviewing, a mistake can slip through that isnt noticed until
after a release. If that happens, the patch to correct a release note must be proposed directly to the stable
branch in which the release note was introduced. (Yes, this is completely different from how we handle
bugs.)

This is because of how reno scans release notes and determines what release they go with. See Updating
Stable Branch Release Notes in the reno User Guide for more information.

Bugs

For bug fixes, release notes must include the bug number in Launchpad with a link to it as a RST link
like in the following example:

fixes:

- |
`Bug #1889758 <https://bugs.launchpad.net/cinder/+bug/1889758>`_: Fixed
revert to snapshot not working for non admin users when using the
snapshot's name.

Note the use of the past tense (Fixed) instead of the present tense (Fix). This is because although you are
fixing the bug right now in the present, operators will be reading the release notes in the future (at the
time of the release), at which time your bug fix will be a thing of the past.

Additionally, keep in mind that when your release note is published, it is mixed in with all the other
release notes and wont obviously be connected to your patch. Thus, in order for it to make sense, you
may need to repeat information that you already have in your commit message. Thats OK.

Drivers

For release notes related to a specific driver -be it volume, backup, or zone manager- the release note line
must start with <driver-name> driver:. For example:

features:

- |
RBD driver: Added support for volume manage and unmanage operations.

When fixing a driver bug we must not only have the driver name prefix but also the bug number and link:

fixes:

- |
Brocade driver `bug #1866860

(continues on next page)

702 Chapter 4. For contributors

https://docs.openstack.org/reno/latest/user/usage.html#updating-stable-branch-release-notes
https://docs.openstack.org/reno/latest/user/usage.html#updating-stable-branch-release-notes

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

<https://bugs.launchpad.net/cinder/+bug/1889758>`_: Fixed
``AttributeError`` when using ``REST_HTTP`` or ``REST_HTTPS`` as the
``fc_southbound_protocol`` option and an exception is raised by the
client.

There are times when a bug affects multiple drivers. In such a cases we must list each of the driver as an
independent item following above rules:

fixes:

- |
Unity driver `bug #1881108
<https://bugs.launchpad.net/cinder/+bug/1881108>`_: Fixed leaving
leftover devices on the host when validation of the attached volume
fails on some cloning cases and create volume from snapshot.

- |
Kaminario driver `bug #1881108
<https://bugs.launchpad.net/cinder/+bug/1881108>`_: Fixed leaving
leftover devices on the host when validation of the attached volume
fails on some cloning cases and create volume from snapshot.

Creating the note

Cinder uses reno to generate release notes. Please read the docs for details. In summary, use

$ tox -e venv -- reno new <bug-,bp-,whatever>

Then edit the sample file that was created and push it with your change.

To see the results:

$ git commit # Commit the change because reno scans git log.

$ tox -e releasenotes

Then look at the generated release notes files in releasenotes/build/html in your favorite browser.

Programming HowTos and Tutorials

Setting Up a Development Environment

This page describes how to setup a working Python development environment that can be used in devel-
oping cinder on Ubuntu, Fedora or macOS. These instructions assume youre already familiar with git.
Refer to GettingTheCode for additional information.

Following these instructions will allow you to run the cinder unit tests. Running cinder is currently only
supported on Linux. Some jobs can be run on macOS, but unfortunately due to some differences in
system packages there are known issues with running unit tests.

4.1. Contributing to Cinder 703

https://docs.openstack.org/reno/latest/
https://wiki.openstack.org/wiki/Getting_The_Code

Cinder Documentation, Release 20.3.2.dev3

Virtual environments

Cinder development uses virtualenv to track and manage Python dependencies while in development
and testing. This allows you to install all of the Python package dependencies in a virtual environment
or virtualenv (a special subdirectory of your cinder directory), instead of installing the packages at the
system level.

Note: Virtualenv is useful for running the unit tests, but is not typically used for full integration testing
or production usage.

Linux Systems

Note: If you have Ansible and git installed on your system, you may be able to get a working development
environment quickly set up by running the following:

sudo ansible-pull -U https://github.com/stmcginnis/cinder-dev-setup

If that does not work for your system, continue on with the manual steps below.

Install the prerequisite packages.

On Ubuntu20.04-64:

sudo apt-get install libssl-dev python3-pip libmysqlclient-dev libpq-dev␣
↪→libffi-dev

To get a full python3 development environment, the two python3 packages need to be added to the list
above:

python3-dev python3-pip

On Red Hat-based distributions e.g., Fedora/RHEL/CentOS/Scientific Linux (tested on CentOS 6.5 and
CentOS 7.3):

sudo yum install python-virtualenv openssl-devel python-pip git gcc libffi-
↪→devel libxslt-devel mysql-devel postgresql-devel

On openSUSE-based distributions (SLES 12, openSUSE 13.1, Factory or Tumbleweed):

sudo zypper install gcc git libmysqlclient-devel libopenssl-devel postgresql-
↪→devel python-devel python-pip

704 Chapter 4. For contributors

https://pypi.org/project/virtualenv

Cinder Documentation, Release 20.3.2.dev3

macOS Systems

Install virtualenv:

sudo pip install virtualenv

Check the version of OpenSSL you have installed:

openssl version

If you have installed OpenSSL 1.0.0a, which can happen when installing a MacPorts package for
OpenSSL, you will see an error when running cinder.tests.auth_unittest.AuthTestCase.
test_209_can_generate_x509.

The stock version of OpenSSL that ships with Mac OS X 10.6 (OpenSSL 0.9.8l) or later should work
fine with cinder.

Getting the code

Grab the code:

git clone https://opendev.org/openstack/cinder.git
cd cinder

Running unit tests

The preferred way to run the unit tests is using tox. It executes tests in isolated environ-
ment, by creating separate virtualenv and installing dependencies from the requirements.txt and
test-requirements.txt files, so the only package you install is tox itself:

sudo pip install tox

Run the unit tests by doing:

tox -e py3

See Testing for more details.

Manually installing and using the virtualenv

You can also manually install the virtual environment:

tox -e py3 --notest

This will install all of the Python packages listed in the requirements.txt file into your virtualenv.

To activate the Cinder virtualenv you can run:

$ source .tox/py3/bin/activate

4.1. Contributing to Cinder 705

Cinder Documentation, Release 20.3.2.dev3

To exit your virtualenv, just type:

$ deactivate

Or, if you prefer, you can run commands in the virtualenv on a case by case basis by running:

$ tox -e venv -- <your command>

Contributing Your Work

Once your work is complete you may wish to contribute it to the project. Cinder uses the Gerrit code
review system. For information on how to submit your branch to Gerrit, see GerritWorkflow.

Testing

Cinder contains a few different test suites in the cinder/tests/ directory. The different test suites are Unit
Tests, Functional Tests, and Tempest Tests.

Test Types

Unit Tests

Unit tests are tests for individual methods, with at most a small handful of modules involved. Mock
should be used to remove any external dependencies.

All significant code changes should have unit test coverage validating the code happy path and any failure
paths.

Any proposed code change will be automatically rejected by the OpenDev Zuul project gating system1

if the change causes unit test failures.

Functional Tests

Functional tests validate a code path within Cinder. These tests should validate the interaction of various
modules within the project to verify the code is logically correct.

Functional tests run with a database present and may start Cinder services to accept requests. These tests
should not need to access an other OpenStack non-Cinder services.

1 See Continuous Integration with Zuul.

706 Chapter 4. For contributors

https://docs.openstack.org/infra/manual/developers.html#development-workflow

Cinder Documentation, Release 20.3.2.dev3

Tempest Tests

The tempest tests in the Cinder tree validate the operational correctness between Cinder and external
components such as Nova, Glance, etc. These are integration tests driven via public APIs to verify actual
end user usage scenarios.

Running the tests

There are a number of ways to run tests currently, and theres a combination of frameworks used depending
on what commands you use. The preferred method is to use tox, which calls ostestr via the tox.ini file.

Unit Tests

To run all unit tests simply run:

tox

This will create a virtual environment, load all the packages from test-requirements.txt and run all unit
tests as well as run flake8 and hacking checks against the code.

You may run individual test targets, for example only py37 tests, by running:

tox -e py37

Note that you can inspect the tox.ini file to get more details on the available options and what the test run
does by default.

Functional Tests

To run all functional tests, run:

tox -e functional

Tempest Tests

Tempest tests in the Cinder tree are plugged in to the normal tempest test execution. To ensure the Cinder
tests are picked up when running tempest, run:

cd /opt/stack/tempest
tox -e all-plugin

More information about tempest can be found in the Tempest Documentation.

4.1. Contributing to Cinder 707

https://docs.openstack.org/tempest/latest/

Cinder Documentation, Release 20.3.2.dev3

Database Setup

Some unit and functional tests will use a local database. You can use tools/test-setup.sh to set up
your local system the same way as its setup in the CI environment.

Running a subset of tests using tox

One common activity is to just run a single test, you can do this with tox simply by specifying to just run
py37 tests against a single test:

tox -epy37 -- cinder.tests.unit.volume.test_availability_zone.
↪→AvailabilityZoneTestCase.test_list_availability_zones_cached

Or all tests in the test_volume.py file:

tox -epy37 -- cinder.tests.unit.volume.test_volume

You may also use regular expressions to run any matching tests:

tox -epy37 -- test_volume

For more information on these options and details about stestr, please see the stestr documentation.

Gotchas

Running Tests from Shared Folders

If you are running the unit tests from a shared folder, you may see tests start to fail or stop completely as
a result of Python lockfile issues. You can get around this by manually setting or updating the following
line in cinder/tests/conf_fixture.py:

CONF['lock_path'].SetDefault('/tmp')

Note that you may use any location (not just /tmp!) as long as it is not a shared folder.

Assertion types in unit tests

In general, it is best to use the most specific assertion possible in a unit test, to have the strongest validation
of code behavior.

For example:

self.assertEqual("in-use", volume.status)

is preferred over

self.assertIsNotNone(volume.status)

or

Test methods that implement comparison checks are also generally preferred over writing code into as-
sertEqual() or assertTrue().

708 Chapter 4. For contributors

http://stestr.readthedocs.io/en/latest/MANUAL.html

Cinder Documentation, Release 20.3.2.dev3

self.assertGreater(2, volume.size)

is preferred over

self.assertTrue(2 > volume.size)

However, assertFalse() behavior is not obvious in this regard. Since None evaluates to False in Python,
the following check will pass when x is False or None.

self.assertFalse(x)

Therefore, it is preferable to use:

self.assertEqual(x, False)

Debugging

Debugging unit tests

It is possible to attach a debugger to unit tests.

First, modify the test you want to debug by adding the following to the test code itself:

import pdb
pdb.set_trace()

Then run the unit test with pdb enabled:

source .tox/py36/bin/activate

stestr run -n cinder.tests.unit.test_volume_utils

Or to get a list of tests to run

stestr list test_volume_utils > tests_to_run.txt
stestr run --load-list tests_to_run.txt

API Microversions

Background

Cinder uses a framework we called API Microversions for allowing changes to the API while preserving
backward compatibility. The basic idea is that a user has to explicitly ask for their request to be treated
with a particular version of the API. So breaking changes can be added to the API without breaking users
who dont specifically ask for it. This is done with an HTTP header OpenStack-API-Version which is
a monotonically increasing semantic version number starting from 3.0.

Each OpenStack service that uses microversions will share this header, so the Volume service will need
to prefix the semantic version number with the word volume:

4.1. Contributing to Cinder 709

Cinder Documentation, Release 20.3.2.dev3

OpenStack-API-Version: volume 3.0

If a user makes a request without specifying a version, they will get the _MIN_API_VERSION as defined
in cinder/api/openstack/api_version_request.py. This value is currently 3.0 and is expected
to remain so for quite a long time.

The Nova project was the first to implement microversions. For full details please read Novas Kilo spec
for microversions

When do I need a new Microversion?

A microversion is needed when the contract to the user is changed. The user contract covers many kinds
of information such as:

• the Request

– the list of resource URLs which exist on the server

Example: adding a new shares/{ID}/foo which didnt exist in a previous version of the code

– the list of query parameters that are valid on URLs

Example: adding a new parameter is_yellow servers/{ID}?is_yellow=True

– the list of query parameter values for non free form fields

Example: parameter filter_by takes a small set of constants/enums A, B, C. Adding support
for new enum D.

– new headers accepted on a request

• the Response

– the list of attributes and data structures returned

Example: adding a new attribute locked: True/False to the output of shares/{ID}

– the allowed values of non free form fields

Example: adding a new allowed status to shares/{ID}

– the list of status codes allowed for a particular request

Example: an API previously could return 200, 400, 403, 404 and the change would make the
API now also be allowed to return 409.

– changing a status code on a particular response

Example: changing the return code of an API from 501 to 400.

– new headers returned on a response

The following flow chart attempts to walk through the process of do we need a microversion.

710 Chapter 4. For contributors

https://specs.openstack.org/openstack/nova-specs/specs/kilo/implemented/api-microversions.html
https://specs.openstack.org/openstack/nova-specs/specs/kilo/implemented/api-microversions.html

Cinder Documentation, Release 20.3.2.dev3

Do I need a microversion?

Did we silently
fail to do what is asked?

Did we return a 500
before?

no

No microversion needed, it's
a bug

yes

Are we changing what
 status code is returned?

no

yes [1]

Did we add or remove an
 attribute to a payload?

no

Yes, you need a microversion

yes

Did we add or remove
 an accepted query string parameter or value?

no

yes

Did we add or remove a
resource URL?

no

yes

No microversion needed

no

yes

If a patch that will require a microversion increment is proposed having similar intention and code with a
previously merged patch given the previous merged patch hasnt been released, then the previously merged
patch could be modified to include the new patch code under the same microversion.

Footnotes

[1] - When fixing 500 errors that previously caused stack traces, try to map the new error into the existing
set of errors that API call could previously return (400 if nothing else is appropriate). Changing the set
of allowed status codes from a request is changing the contract, and should be part of a microversion.

The reason why we are so strict on contract is that wed like application writers to be able to know, for sure,
what the contract is at every microversion in Cinder. If they do not, they will need to write conditional
code in their application to handle ambiguities.

When in doubt, consider application authors. If it would work with no client side changes on both
Cinder versions, you probably dont need a microversion. If, on the other hand, there is any ambiguity, a
microversion is probably needed.

4.1. Contributing to Cinder 711

Cinder Documentation, Release 20.3.2.dev3

In Code

In cinder/api/openstack/wsgi.py we define an @api_version decorator which is intended to be
used on top-level Controller methods. It is not appropriate for lower-level methods. Some examples:

Adding a new API method

In the controller class:

@wsgi.Controller.api_version("3.4")
def my_api_method(self, req, id):

....

This method would only be available if the caller had specified an OpenStack-API-Version of >= 3.4.
If they had specified a lower version (or not specified it and received the default of 3.1) the server would
respond with HTTP/404.

Removing an API method

In the controller class:

@wsgi.Controller.api_version("3.1", "3.4")
def my_api_method(self, req, id):

....

This method would only be available if the caller had specified an OpenStack-API-Version of <= 3.4,
and >= 3.1. If 3.5 or later is specified or if 3.0 or earlier (/v2 or /v1 endpoint), the server will respond
with HTTP/404

Changing a methods behaviour

In the controller class:

@wsgi.Controller.api_version("3.1", "3.3")
def my_api_method(self, req, id):

.... method_1 ...

@my_api_method.api_version("3.4")
def my_api_method(self, req, id):

.... method_2 ...

If a caller specified 3.1, 3.2 or 3.3 (or received the default of 3.1) they would see the result from
method_1, 3.4 or later method_2.

We could use wsgi.Controller.api_version decorator on the second my_api_method as well, but
then we would have to add # noqa to that line to avoid failing flake8s F811 rule. So the recommended
approach is to use the api_version decorator from the first method that is defined, as illustrated by the
example above, and then use my_api_method decorator for subsequent api versions of the same method.

712 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

The two methods may be different in any kind of semantics (schema validation, return values, response
codes, etc.).

A method with only small changes between versions

A method may have only small changes between microversions, in which case you can decorate a private
method:

@wsgi.Controller.api_version("3.1", "3.4")
def _version_specific_func(self, req, arg1):

pass

@_version_specific_func.api_version(min_ver="3.5")
def _version_specific_func(self, req, arg1):

pass

def show(self, req, id):
.... common stuff
self._version_specific_func(req, "foo")
.... common stuff

When not using decorators

When you dont want to use the @api_version decorator on a method or you want to change behaviour
within a method (say it leads to simpler or simply a lot less code) you can directly test for the requested
version with a method as long as you have access to the api request object (commonly called req). Every
API method has an api_version_request object attached to the req object and that can be used to modify
behaviour based on its value:

def index(self, req):
<common code>

req_version = req.api_version_request
if req_version.matches("3.1", "3.5"):

....stuff....
elif req_version.matches("3.6", "3.10"):

....other stuff....
elif req_version > api_version_request.APIVersionRequest("3.10"):

....more stuff.....

<common code>

The first argument to the matches method is the minimum acceptable version and the second is maximum
acceptable version. A specified version can be null:

null_version = APIVersionRequest()

If the minimum version specified is null then there is no restriction on the minimum version, and likewise
if the maximum version is null there is no restriction the maximum version. Alternatively an one sided
comparison can be used as in the example above.

4.1. Contributing to Cinder 713

Cinder Documentation, Release 20.3.2.dev3

Other necessary changes

If you are adding a patch which adds a new microversion, it is necessary to add changes to other places
which describe your change:

• Update REST_API_VERSION_HISTORY in cinder/api/openstack/api_version_request.
py

• Update _MAX_API_VERSION in cinder/api/openstack/api_version_request.py

• Add a verbose description to cinder/api/openstack/rest_api_version_history.rst.
There should be enough information that it could be used by the docs team for release notes.

• Constants should be used in the code to minimize errors on microversion merge conflicts. Define
a constant for the new microversion in the cinder/api/microversions.py file and use that in
the rest of the code.

• Update the expected versions in affected tests.

• API changes should almost always include a release note announcing the availability of the new API
functionality. The description of the API change should indicate which microversion is required
for the change, and it should refer to the numerical value of the microversion and not its constant
name.

• Update the version parameter in api-ref responses here cinder/api-ref/ source/v3/
samples/versions/version-show-response.json and here cinder/api-ref/source/
v3/samples/versions/versions-response.json to the latest microversion to avoid func-
tional test failure.

• If the API microversion has changed an endpoint accepted parameters or the values it returns,
we need to create the appropriate API samples within the api-ref/source/v3/samples tree
creating a new vX.Y directory with our request and/or response json.

• Update the functional API tests in the cinder/tests/functional/api_sample_tests tree
to make requests and validate responses with the new microversion. There are multiple con-
venience methods provided for testing, such as use_versions class decorator that allows us
to run the same tests with different microversions (each will use their respective json and tem-
plates), the override_mv method decorator to change the microversion in a single test, and the
common_api_sample context manager to use the base sample instead of a microversion specific
one.

• Update the documentation adding any new parameter to api-ref/source/v3/parameters.
yaml (remember to add the min_version) and then making appropriate changes to the .inc
file in api-ref/source/v3/ to reflect new possible return codes, new accepted parameters and
their Request Example (vX.Y) title and include file, and returned values and their Response
Example (vX.Y) title and include file.

The Cinder projects policy is that the sample requests and responses should always reflect the most recent
microversion.

714 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Allocating a microversion

If you are adding a patch which adds a new microversion, it is necessary to allocate the next microversion
number. Except under extremely unusual circumstances and this would have been mentioned in the
blueprint for the change, the minor number of _MAX_API_VERSION will be incremented. This will also
be the new microversion number for the API change.

It is possible that multiple microversion patches would be proposed in parallel and the microversions
would conflict between patches. This will cause a merge conflict. We dont reserve a microversion for each
patch in advance as we dont know the final merge order. Developers may need over time to rebase their
patch calculating a new version number as above based on the updated value of _MAX_API_VERSION.

Testing Microversioned API Methods

Unit tests for microversions should be put in cinder/tests/unit/api/v3/ . Since all existing functionality
is tested in cinder/tests/unit/api/v2, these unit tests are not replicated in /v3, and only new functionality
needs to be place in the /v3/directory.

Testing a microversioned API method is very similar to a normal controller method test, you just need to
add the OpenStack-API-Version header, for example:

req = fakes.HTTPRequest.blank('/testable/url/endpoint')
req.headers['OpenStack-API-Version'] = 'volume 3.6'
req.api_version_request = api_version.APIVersionRequest('3.6')

controller = controller.TestableController()

res = controller.index(req)
... assertions about the response ...

REST API Version History

Details for each existing microversion change can be found in the REST API Version History documen-
tation.

REST API Version History

This documents the changes made to the REST API with every microversion change. The description
for each version should be a verbose one which has enough information to be suitable for use in user
documentation.

4.1. Contributing to Cinder 715

Cinder Documentation, Release 20.3.2.dev3

3.0 (Maximum in Mitaka)

The 3.0 Cinder API includes all v2 core APIs existing prior to the introduction of microversions. The /v3
URL is used to call 3.0 APIs. This is the initial version of the Cinder API which supports microversions.

A user can specify a header in the API request:

OpenStack-API-Version: volume <version>

where <version> is any valid api version for this API.

If no version is specified then the API will behave as if version 3.0 was requested.

The only API change in version 3.0 is versions, i.e. GET http://localhost:8786/, which now returns
information about 3.0 and later versions and their respective /v3 endpoints.

All other 3.0 APIs are functionally identical to version 2.0.

3.1

Added the parameters protected and visibility to _volume_upload_image requests.

3.2

Change in return value of GET API request for fetching cinder volume list on the basis of bootable status
of volume as filter.

Before V3.2, GET API request to fetch volume list returns non-bootable volumes if bootable filter value
is any of the false or False. For any other value provided to this filter, it always returns bootable volume
list.

But in V3.2, this behavior is updated. In V3.2, bootable volume list will be returned for any of
the T/True/1/true bootable filter values only. Non-bootable volume list will be returned for any of
F/False/0/false bootable filter values. But for any other values passed for bootable filter, it will return
Invalid input received: bootable={filter value} error.

3.3

Added /messages API.

3.4

Added the filter parameters glance_metadata to list/detail volumes requests.

716 Chapter 4. For contributors

http://localhost:8786/

Cinder Documentation, Release 20.3.2.dev3

3.5

Added pagination support to /messages API

3.6

Allowed to set empty description and empty name for consistency group in consisgroup-update operation.

3.7

Added cluster_name field to service list/detail.

Added /clusters endpoint to list/show/update clusters.

Show endpoint requires the cluster name and optionally the binary as a URL parameter (default is cinder-
volume). Returns:

{
"cluster": {

"created_at": "",
"disabled_reason": null,
"last_heartbeat": "",
"name": "cluster_name",
"num_down_hosts": 4,
"num_hosts": 2,
"state": "up",
"status": "enabled",
"updated_at": ""

}
}

Update endpoint allows enabling and disabling a cluster in a similar way to services update endpoint, but
in the body we must specify the name and optionally the binary (cinder-volume is the default) and the
disabled reason. Returns:

{
"cluster": {

"name": "cluster_name",
"state": "up",
"status": "enabled",
"disabled_reason": null

}
}

Index and detail accept filtering by name, binary, disabled, num_hosts , num_down_hosts, and up/down
status (is_up) as URL parameters.

Index endpoint returns:

4.1. Contributing to Cinder 717

Cinder Documentation, Release 20.3.2.dev3

{
"clusters": [

{
"name": "cluster_name",
"state": "up",
"status": "enabled"

}
]

}

Detail endpoint returns:

{
"clusters": [

{
"created_at": "",
"disabled_reason": null,
"last_heartbeat": "",
"name": "cluster_name",
"num_down_hosts": 4,
"num_hosts": 2,
"state": "up",
"status": "enabled",
"updated_at": ""

}
]

}

3.8

Adds the following resources that were previously in extensions:

• os-volume-manage => /v3/<project_id>/manageable_volumes

• os-snapshot-manage => /v3/<project_id>/manageable_snapshots

3.9

Added backup update interface to change name and description. Returns:

{
"backup": {

"id": "backup_id",
"name": "backup_name",
"links": "backup_link"

}
}

718 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

3.10

Added the filter parameters group_id to list/detail volumes requests.

3.11

Added group types and group specs APIs.

3.12

Added volumes/summary API.

3.13

Added create/delete/update/list/show APIs for generic volume groups.

3.14

Added group snapshots and create group from src APIs.

3.15 (Maximum in Newton)

Added injecting the responses Etag header to avoid the lost update problem with volume metadata.

3.16

os-migrate_volume now accepts cluster parameter when we want to migrate a volume to a cluster. If
we pass the host parameter for a volume that is in a cluster, the request will be sent to the cluster as if
we had requested that specific cluster. Only host or cluster can be provided.

Creating a managed volume also supports the cluster parameter.

3.17

os-snapshot-manage and os-volume-manage now support cluster parameter on listings (summary and
detailed). Both location parameters, cluster and host are exclusive and only one should be provided.

4.1. Contributing to Cinder 719

Cinder Documentation, Release 20.3.2.dev3

3.18

Added backup project attribute.

3.19

Added reset status actions reset_status to group snapshot.

3.20

Added reset status actions reset_status to generic volume group.

3.21

Show provider_id in detailed view of a volume for admin.

3.22

Added support to filter snapshot list based on metadata of snapshot.

3.23

Allow passing force parameter to volume delete.

3.24

New API endpoint /workers/cleanup allows triggering cleanup for cinder-volume services. Meant for
cleaning ongoing operations from failed nodes.

The cleanup will be performed by other services belonging to the same cluster, so at least one of them
must be up to be able to do the cleanup.

Cleanup cannot be triggered during a cloud upgrade.

If no arguments are provided cleanup will try to issue a clean message for all nodes that are down, but we
can restrict which nodes we want to be cleaned using parameters service_id, cluster_name, host,
binary, and disabled.

Cleaning specific resources is also possible using resource_type and resource_id parameters.

We can even force cleanup on nodes that are up with is_up, but thats not recommended and should only
used if you know what you are doing. For example if you know a specific cinder-volume is down even
though its still not being reported as down when listing the services and you know the cluster has at least
another service to do the cleanup.

API will return a dictionary with 2 lists, one with services that have been issued a cleanup request
(cleaning key) and the other with services that cannot be cleaned right now because there is no al-
ternative service to do the cleanup in that cluster (unavailable key).

720 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Data returned for each service element in these two lists consist of the id, host, binary, and
cluster_name. These are not the services that will be performing the cleanup, but the services that
will be cleaned up or couldnt be cleaned up.

3.25

Add volumes field to group list/detail and group show.

3.26

• New failover action equivalent to failover_host, but accepting cluster parameter as well
as the host cluster that failover_host accepts.

• freeze and thaw actions accept cluster parameter.

• Cluster listing accepts replication_status, frozen and active_backend_id as filters, and
returns additional fields for each cluster: replication_status, frozen, active_backend_id.

3.27 (Maximum in Ocata)

Added new attachment APIs. See the API reference for details.

3.28

Add filters support to get_pools

3.29

Add filter, sorter and pagination support in group snapshot.

3.30

Support sort snapshots with name.

3.31

Add support for configure resource query filters.

4.1. Contributing to Cinder 721

https://docs.openstack.org/api-ref/block-storage/v3/index.html#attachments-attachments

Cinder Documentation, Release 20.3.2.dev3

3.32

Added set-log and get-log service actions.

3.33

Add resource_filters API to retrieve configured resource filters.

3.34

Add like filter support in volume, backup, snapshot, message, attachment, group and
group-snapshot list APIs.

3.35

Add volume-type filter to Get-Pools API.

3.36

Add metadata to volumes/summary response body.

3.37

Support sort backup by name.

3.38

Added enable_replication/disable_replication/failover_replication/ list_replication_targets for replica-
tion groups (Tiramisu).

3.39

Add project_id admin filters support to limits.

3.40

Add volume revert to its latest snapshot support.

722 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

3.41

Add user_id field to snapshot list/detail and snapshot show.

3.42

Add ability to extend in-use volume. User should be aware of the whole environment before using this
feature because its dependent on several external factors below:

1. nova-compute version - needs to be the latest for Pike.

2. only the libvirt compute driver supports this currently.

3. only iscsi and fibre channel volume types are supported on the nova side currently.

Administrator can disable this ability by updating the volume:extend_attached_volume policy rule.
Extend of a reserved Volume is NOT allowed.

3.43 (Maximum in Pike)

Support backup CRUD with metadata.

3.44

Support attachment completion. See the API reference for details.

3.45

Add count field to volume, backup and snapshot list and detail APIs.

3.46

Support create volume by Nova specific image (0 size image).

3.47

Support create volume from backup.

4.1. Contributing to Cinder 723

https://docs.openstack.org/api-ref/block-storage/v3/index.html#complete-attachment

Cinder Documentation, Release 20.3.2.dev3

3.48

Add shared_targets and service_uuid fields to volume.

3.49

Support report backend storage state in service list.

3.50 (Maximum in Queens)

Services supporting this microversion are capable of volume multiattach. This version does not need to
be requested when creating the volume, but can be used as a way to query if the capability exists in the
Cinder service.

3.51

Add support for cross AZ backups.

3.52

RESKEY:availability_zones is a reserved spec key for AZ volume type, and filter volume type by
extra_specs is supported now.

3.53

Schema validation support has been added using jsonschema for V2/V3 volume APIs.

• Create volume API Before 3.53, create volume API used to accept any invalid parameters in the
request body like the ones below were passed by python-cinderclient.

1. user_id

2. project_id

3. status

4. attach_status

But in 3.53, this behavior is updated. If user passes any invalid parameters to the API which
are not documented in api-ref, then it will raise badRequest error.

• Update volume API Before 3.53, even if user doesnt pass any valid parameters in the request
body, the volume was updated. But in 3.53, user will need to pass at least one valid parameter
in the request body otherwise it will return 400 error.

724 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

3.54

Add mode argument to attachment-create.

3.55 (Maximum in Rocky)

Support ability to transfer snapshots along with their parent volume.

3.56

Add user_id attribute to response body of list backup with detail and show backup detail APIs.

3.57

Expanded volume transfer record details by adding source_project_id, destination_project_id
and accepted fields to transfer table and related api (create/show/list detail transfer APIs) responses.

3.58

Add project_id attribute to response body of list groups with detail, list group snapshots with detail,
show group detail and show group snapshot detail APIs.

3.59 (Maximum in Stein and Train)

Support volume transfer pagination.

3.60 (Maximum in Ussuri)

Users may apply time comparison filters to the volume summary list and volume detail list requests by
using the created_at or updated_at fields. Time must be expressed in ISO 8601 format.

3.61

Add cluster_name attribute to response body of volume details for admin in Active/Active HA mode.

4.1. Contributing to Cinder 725

Cinder Documentation, Release 20.3.2.dev3

3.62 (Maximum in Victoria)

Add support for set, get, and unset a default volume type for a specific project. Setting this default
overrides the configured default_volume_type value.

3.63

Includes volume type ID in the volume-show and volume-detail-list JSON responses. Before this mi-
croversion, Cinder returns only the volume type name in the volume details.

3.64 (Maximum in Wallaby)

Include the encryption_key_id in volume and backup details when the associated volume is encrypted.

3.65

Include a consumes_quota field in volume and snapshot details to indicate whether the resource is
consuming quota or not. Also, accept a consumes_quota filter, which takes a boolean value, in the
volume and snapshot list requests. (The default listing behavior is not to use this filter.)

3.66 (Maximum in Xena)

Volume snapshots of in-use volumes can be created without the force flag. Although the force flag is
now considered invalid when passed in a volume snapshot request, for backward compatibility, the force
flag with a value evaluating to True is silently ignored.

3.67

API URLs no longer need a project_id argument in them. For example, the API route:
https://$(controller)s/volume/v3/$(project_id)s/volumes is equivalent to https://
$(controller)s/volume/v3/volumes. When interacting with the cinder service as system or domain
scoped users, a project_id should not be specified in the API path.

3.68 (Maximum in Yoga)

Support ability to re-image a volume with a specific image. Specify the os-reimage action in the request
body.

726 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

API Races - Conditional Updates

Background

On Cinder API nodes we have to check that requested action can be performed by checking request
arguments and involved resources, and only if everything matches required criteria we will proceed with
the RPC call to any of the other nodes.

Checking the conditions must be done in a non racy way to ensure that already checked requirements
dont change while we check remaining conditions. This is of utter importance, as Cinder uses resource
status as a lock to prevent concurrent operations on a resource.

An simple example of this would be extending a volume, where we first check the status:

if volume['status'] != 'available':

Then update the status:

self.update(context, volume, {'status': 'extending'})

And finally make the RPC call:

self.volume_rpcapi.extend_volume(context, volume, new_size,
reservations)

The problem is that this code would allow races, as other request could have already changed the volume
status between us getting the value and updating the DB.

There are multiple ways to fix this, such as:

• Using a Distributed Locking Mechanism

• Using DB isolation level

• Using SQL SELECT FOR UPDATE

• USING compare and swap mechanism in SQL query

Our tests showed that the best alternative was compare and swap and we decided to call this mechanism
Conditional Update as it seemed more appropriate.

Conditional Update

Conditional Update is the mechanism we use in Cinder to prevent races when updating the DB. In essence
it is the SQL equivalent of an UPDATE ... FROM ... WHERE; clause.

It is implemented as an abstraction layer on top of SQLAlchemy ORM engine in our DB api layer and
exposed for consumption in Cinders Persistent Versioned Objects through the conditional_update
method so it can be used from any Versioned Object instance that has persistence (Volume, Snapshot,
Backup).

Method signature is:

4.1. Contributing to Cinder 727

Cinder Documentation, Release 20.3.2.dev3

def conditional_update(self, values, expected_values=None, filters=(),
save_all=False, session=None, reflect_changes=True,
order=None):

values Dictionary of key-value pairs with changes that we want to make to the resource in
the DB.

expected_values Dictionary with conditions that must be met for the update to be executed.

Condition field.id == resource.id is implicit and there is no need to add it to
the conditions.

If no expected_values argument is provided update will only go through if no field
in the DB has changed. Dirty fields from the Versioned Object are excluded as we dont
know their original value.

filters Additional SQLAlchemy filters can be provided for more complex conditions.

save_all By default we will only be updating the DB with values provided in the values
argument, but we can explicitly say that we also want to save objects current dirty
fields.

session A SQLAlchemy session can be provided, although it is unlikely to be needed.

reflect_changes On a successful update we will also update Versioned Object instance to
reflect these changes, but we can prevent this instance update passing False on this
argument.

order Specific order of fields in which to update the values.

Return Value Well return the number of changed rows. So well get a 0 value if the condi-
tional update has not been successful instead of an exception.

Basic Usage

• Simple match

The most basic example is doing a simple match, for example for a volume variable that contains
a Versioned Object Volume class instance we may want to change the status to deleting and
update the terminated_at field with current UTC time only if current status is available and
the volume is not in a consistency group.

values={'status': 'deleting',
'terminated_at': timeutils.utcnow()}

expected_values = {'status': 'available',
'consistencygroup_id': None}

volume.conditional_update(values, expected_values)

• Iterable match

Conditions can contain not only single values, but also iterables, and the conditional update mech-
anism will correctly handle the presence of None values in the range, unlike SQL IN clause that
doesnt support NULL values.

728 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

values={'status': 'deleting',
'terminated_at': timeutils.utcnow()}

expected_values={
'status': ('available', 'error', 'error_restoring' 'error_extending'),
'migration_status': (None, 'deleting', 'error', 'success'),
'consistencygroup_id': None

}

volume.conditional_update(values, expected_values)

• Exclusion

In some cases well need to set conditions on what is not in the DB record instead of what is in, for
that we will use the exclusion mechanism provided by the Not class in all persistent objects. This
class accepts single values as well as iterables.

values={'status': 'deleting',
'terminated_at': timeutils.utcnow()}

expected_values={
'attach_status': volume.Not('attached'),
'status': ('available', 'error', 'error_restoring' 'error_extending'),
'migration_status': (None, 'deleting', 'error', 'success'),
'consistencygroup_id': None

}

volume.conditional_update(values, expected_values)

• Filters

We can use complex filters in the conditions, but these must be SQLAlchemy queries/conditions
and as the rest of the DB methods must be properly abstracted from the API.

Therefore we will create the method in cinder/db/sqlalchemy/api.py:

def volume_has_snapshots_filter():
return sql.exists().where(

and_(models.Volume.id == models.Snapshot.volume_id,
~models.Snapshot.deleted))

Then expose this filter through the cinder/db/api.py:

def volume_has_snapshots_filter():
return IMPL.volume_has_snapshots_filter()

And finally used in the API (notice how we are negating the filter at the API):

filters = [~db.volume_has_snapshots_filter()]
values={'status': 'deleting',

'terminated_at': timeutils.utcnow()}
expected_values={

'attach_status': volume.Not('attached'),
'status': ('available', 'error', 'error_restoring' 'error_extending'),

(continues on next page)

4.1. Contributing to Cinder 729

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

'migration_status': (None, 'deleting', 'error', 'success'),
'consistencygroup_id': None

}

volume.conditional_update(values, expected_values, filters)

Returning Errors

The most important downside of using conditional updates to remove API races is the inherent uncertainty
of the cause of failure resulting in more generic error messages.

When we use the conditional_update method well use returned value to determine the success of the
operation, as a value of 0 indicates that no rows have been updated and the conditions were not met. But
we dont know which one, or which ones, were the cause of the failure.

There are 2 approaches to this issue:

• On failure we go one by one checking the conditions and return the first one that fails.

• We return a generic error message indicating all conditions that must be met for the operation to
succeed.

It was decided that we would go with the second approach, because even though the first approach was
closer to what we already had and would give a better user experience, it had considerable implications
such as:

• More code was needed to do individual checks making operations considerable longer and less
readable. This was greatly alleviated using helper methods to return the errors.

• Higher number of DB queries required to determine failure cause.

• Since there could be races because DB contents could be changed between the failed update and
the follow up queries that checked the values for the specific error, a loop would be needed to make
sure that either the conditional update succeeds or one of the condition checks fails.

• Having such a loop means that a small error in the code could lead to an endless loop in a production
environment. This coding error could be an incorrect conditional update filter that would always
fail or a missing or incorrect condition that checked for the specific issue to return the error.

A simple example of a generic error can be found in begin_detaching code:

@wrap_check_policy
def begin_detaching(self, context, volume):

If we are in the middle of a volume migration, we don't want the
user to see that the volume is 'detaching'. Having
'migration_status' set will have the same effect internally.
expected = {'status': 'in-use',

'attach_status': 'attached',
'migration_status': self.AVAILABLE_MIGRATION_STATUS}

result = volume.conditional_update({'status': 'detaching'}, expected)

if not (result or self._is_volume_migrating(volume)):
(continues on next page)

730 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

msg = _("Unable to detach volume. Volume status must be 'in-use' "
"and attach_status must be 'attached' to detach.")

LOG.error(msg)
raise exception.InvalidVolume(reason=msg)

Building filters on the API

SQLAlchemy filters created as mentioned above can create very powerful and complex conditions, but
sometimes we may require a condition that, while more complex than the basic match and not match on
the resource fields, its still quite simple. For those cases we can create filters directly on the API using
the model field provided in Versioned Objects.

This model field is a reference to the ORM model that allows us to reference ORM fields.

Well use as an example changing the status field of a backup to restoring if the backup status is available
and the volume where we are going to restore the backup is also in available state.

Joining of tables is implicit when using a model different from the one used for the Versioned Object
instance.

• As expected_values

Since this is a matching case we can use expected_values argument to make the condition:

values = {'status': 'restoring'}
expected_values={'status': 'available',

objects.Volume.model.id: volume.id,
objects.Volume.model.status: 'available'}

• As filters

We can also use the filters argument to achieve the same results:

filters = [objects.Volume.model.id == volume.id,
objects.Volume.model.status == 'available']

• Other filters

If we are not doing a match for the condition the only available option will be to use filters
argument. For example if we want to do a check on the volume size against the backup size:

filters = [objects.Volume.model.id == volume.id,
objects.Volume.model.size >= backup.model.size]

4.1. Contributing to Cinder 731

Cinder Documentation, Release 20.3.2.dev3

Using DB fields for assignment

• Using non modified fields

Similar to the way we use the fields to specify conditions, we can also use them to set values in the
DB.

For example when we disable a service we want to keep existing updated_at field value:

values = {'disabled': True,
'updated_at': service.model.updated_at}

• Using modified field

In some cases we may need to use a DB field that we are also updating, for example when we are
updating the status but we also want to keep the old value in the previous_status field.

values = {'status': 'retyping',
'previous_status': volume.model.status}

Conditional update mechanism takes into account that MySQL does not follow SQL language
specs and adjusts the query creation accordingly.

• Together with filters

Using DB fields for assignment together with using them for values can give us advanced func-
tionality like for example increasing a quota value based on current value and making sure we dont
exceed our quota limits.

values = {'in_use': quota.model.in_use + volume.size}
filters = [quota.model.in_use <= max_usage - volume.size]

Conditional value setting

Under certain circumstances you may not know what value should be set in the DB because it depends on
another field or on another condition. For those cases we can use the Case class present in our persistent
Versioned Objects which implements the SQL CASE clause.

The idea is simple, using Case class we can say which values to set in a field based on conditions and
also set a default value if none of the conditions are True.

Conditions must be SQLAlchemy conditions, so well need to use fields from the model attribute.

For example setting the status to maintenance during migration if current status is available and leaving
it as it was if its not can be done using the following:

values = {
'status': volume.Case(

[
(volume.model.status == 'available', 'maintenance')

],
else_=volume.model.status)

}

732 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

reflect_changes considerations

As weve already mentioned conditional_update method will update Versioned Object instance with
provided values if the row in the DB has been updated, and in most cases this is OK since we can set the
values directly because we are using simple values, but there are cases where we dont know what value
we should set in the instance, and is in those cases where the default reflect_changes value of True
has performance implications.

There are 2 cases where Versioned Object conditional_update method doesnt know the value it has
to set on the Versioned Object instance, and they are when we use a field for assignment and when we
are using the Case class, since in both cases the DB is the one deciding the value that will be set.

In those cases conditional_update will have to retrieve the value from the DB using get_by_id
method, and this has a performance impact and therefore should be avoided when possible.

So the recommendation is to set reflect_changes to False when using Case class or using fields in
the values argument if we dont care about the stored value.

Limitations

We can only use functionality that works on all supported DBs, and thats why we dont allow multi table
updates and will raise ProgrammingError exception even when the code is running against a DB engine
that supports this functionality.

This way we make sure that we dont inadvertently add a multi table update that works on MySQL but
will surely fail on PostgreSQL.

MySQL DB engine also has some limitations that we should be aware of when creating our filters.

One that is very common is when we are trying to check if there is a row that matches a specific criteria in
the same table that we are updating. For example, when deleting a Consistency Group we want to check
that it is not being used as the source for a Consistency Group that is in the process of being created.

The straightforward way of doing this is using the core exists expression and use an alias to differentiate
general query fields and the exists subquery. Code would look like this:

def cg_creating_from_src(cg_id):
model = aliased(models.ConsistencyGroup)
return sql.exists().where(and_(

~model.deleted,
model.status == 'creating',
conditions.append(model.source_cgid == cg_id)))

While this will work in SQLite and PostgreSQL, it will not work on MySQL and an error will be raised
when the query is executed: You cant specify target table consistencygroups for update in FROM clause.

To solve this we have 2 options:

• Create a specific query for MySQL engines using an update with a left self join, which is a feature
only available in MySQL.

• Use a trick -using a select subquery- that will work on all DBs.

Considering that its always better to have only 1 way of doing things and that SQLAlchemy doesnt support
MySQLs non standard behavior we should generate these filters using the select subquery method like
this:

4.1. Contributing to Cinder 733

Cinder Documentation, Release 20.3.2.dev3

def cg_creating_from_src(cg_id):
subq = sql.select([models.ConsistencyGroup]).where(and_(

~model.deleted,
model.status == 'creating')).alias('cg2')

return sql.exists([subq]).where(subq.c.source_cgid == cgid)

Considerations for new ORM & Versioned Objects

Conditional update mechanism works using generic methods for getting an object from the DB as well
as determining the model for a specific Versioned Object instance for field binding.

These generic methods rely on some naming rules for Versioned Object classes, ORM classes, and get
methods, so when we are creating a new ORM class and adding the matching Versioned Object and
access methods we must be careful to follow these rules or at least specify exceptions if we have a good
reason not to follow these conventions.

Rules:

• Versioned Object class name must be the same as the ORM class

• Get method name must be ORM class converted to snake format with postfix _get. For example,
for Volume ORM class expected method is volume_get, and for an imaginary MyORMClass it
would be my_orm_class_get.

• Get method must receive the context as the first argument and the id as the second one, although
it may accept more optional arguments.

We should avoid diverging from these rules whenever is possible, but there are cases where this is not
possible, for example BackupImport Versioned Object that really uses Backup ORM class. For cases
such as this we have a way to set exceptions both for the generic get method and the model for a Versioned
Object.

To add exceptions for the get method we have to add a new entry to GET_EXCEPTIONS dictionary mapping
in cinder.db.sqlalchemy.api._get_get_method.

And for determining the model for the Versioned Object we have to add a new en-
try to VO_TO_MODEL_EXCEPTIONS dictionary mapping in cinder.db.sqlalchemy.api.
get_model_for_versioned_object.

Adding a Method to the OpenStack API

The interface is a mostly RESTful API. REST stands for Representational State Transfer and provides
an architecture style for distributed systems using HTTP for transport. Figure out a way to express your
request and response in terms of resources that are being created, modified, read, or destroyed.

734 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Routing

To map URLs to controllers+actions, OpenStack uses the Routes package, a clone of Rails routes for
Python implementations. See http://routes.groovie.org/ for more information.

URLs are mapped to action methods on controller classes in cinder/api/openstack/__init__/
ApiRouter.__init__ .

See http://routes.readthedocs.io/en/latest/ for all syntax, but youll probably just need these two:

• mapper.connect() lets you map a single URL to a single action on a controller.

• mapper.resource() connects many standard URLs to actions on a controller.

Controllers and actions

Controllers live in cinder/api/openstack, and inherit from cinder.wsgi.Controller.

See cinder/api/v3/volumes.py for an example.

Action methods take parameters that are sucked out of the URL by mapper.connect() or .resource(). The
first two parameters are self and the WebOb request, from which you can get the req.environ, req.body,
req.headers, etc.

Serialization

Actions return a dictionary, and wsgi.Controller serializes that to JSON or XML based on the requests
content-type.

Errors

There will be occasions when you will want to return a REST error response to the caller and there are
multiple valid ways to do this:

• If you are at the controller level you can use a faults.Fault instance to indicate the error. You
can either return the Fault instance as the result of the action, or raise it, depending on whats more
convenient: raise faults.Fault(webob.exc.HTTPBadRequest(explanation=msg)).

• If you are raising an exception our WSGI middleware exception handler is smart enough
to recognize webob exceptions as well, so you dont really need to wrap the exceptions in
a Fault class and you can just let the middleware add it for you: raise webob.exc.
HTTPBadRequest(explanation=msg).

• While most errors require an explicit webob exception there are some Cinder exceptions
(NotFound and Invalid) that are so common that they are directly handled by the middleware
and dont need us to convert them, we can just raise them at any point in the API service and they
will return the appropriate REST error to the caller. So any NotFound exception, or child class,
will return a 404 error, and any Invalid exception, or child class, will return a 400 error.

4.1. Contributing to Cinder 735

http://routes.groovie.org/
http://routes.readthedocs.io/en/latest/

Cinder Documentation, Release 20.3.2.dev3

Drivers

Cinder exposes an API to users to interact with different storage backend solutions. The following are
standards across all drivers for Cinder services to properly interact with a driver.

Basic attributes

There are some basic attributes that all drivers classes should have:

• VERSION: Driver version in string format. No naming convention is imposed, although semantic
versioning is recommended.

• CI_WIKI_NAME: Must be the exact name of the ThirdPartySystems wiki page. This is used by
our tooling system to associate jobs to drivers and track their CI reporting status correctly.

The tooling system will also use the name and docstring of the driver class.

Configuration options

Each driver requires different configuration options set in the cinder.conf file to operate, and due to the
complexities of the Object Oriented programming mechanisms (inheritance, composition, overwriting,
etc.) once your driver defines its parameters in the code Cinder has no automated way of telling which
configuration options are relevant to your driver.

In order to assist operators and installation tools we recommend reporting the relevant options:

• For operators: In the documentation under doc/source/configuration/block-storage.

• For operators and installers: Through the get_driver_options static method returning that re-
turns a list of all the Oslo Config parameters.

Minimum Features

Minimum features are enforced to avoid having a grid of what features are supported by which drivers
and which releases. Cinder Core requires that all drivers implement the following minimum features.

Core Functionality

• Volume Create/Delete

• Volume Attach/Detach

• Snapshot Create/Delete

• Create Volume from Snapshot

• Get Volume Stats

• Copy Image to Volume

• Copy Volume to Image

• Clone Volume

736 Chapter 4. For contributors

https://wiki.openstack.org/wiki/ThirdPartySystems

Cinder Documentation, Release 20.3.2.dev3

• Extend Volume

Security Requirements

• Drivers must delete volumes in a way where volumes deleted from the backend will not leak data
into new volumes when they are created. Cinder operates in multi-tenant environments and this is
critical to ensure data safety.

• Drivers should support secure TLS/SSL communication between the cinder volume service and
the backend as configured by the driver_ssl_cert_verify and driver_ssl_cert_path options in cin-
der.conf.

• Drivers should use standard Python libraries to handle encryption-related functionality, and not
contain custom implementations of encryption code.

Volume Stats

Volume stats are used by the different schedulers for the drivers to provide a report on their current state
of the backend. The following should be provided by a driver.

• driver_version

• free_capacity_gb

• storage_protocol

• total_capacity_gb

• vendor_name

• volume_backend_name

NOTE: If the driver is unable to provide a value for free_capacity_gb or total_capacity_gb, keywords
can be provided instead. Please use unknown if the backend cannot report the value or infinite if the
backend has no upper limit. But, it is recommended to report real values as the Cinder scheduler assigns
lowest weight to any storage backend reporting unknown or infinite.

NOTE: By default, Cinder assumes that the driver supports attached volume extending. If it doesnt, it
should report online_extend_support=False. Otherwise the scheduler will attempt to perform the opera-
tion, and may leave the volume in error_extending state.

Feature Enforcement

All concrete driver implementations should use the cinder.interface.volumedriver decorator on
the driver class:

@interface.volumedriver
class LVMVolumeDriver(driver.VolumeDriver):

This will register the driver and allow automated compliance tests to run against and verify the compliance
of the driver against the required interface to support the Core Functionality listed above.

4.1. Contributing to Cinder 737

Cinder Documentation, Release 20.3.2.dev3

Running tox -e compliancewill verify all registered drivers comply to this interface. This can be used
during development to perform self checks along the way. Any missing method calls will be identified
by the compliance tests.

The details for the required volume driver interfaces can be found in the cinder/interface/
volume_*_driver.py source.

New Driver Review Checklist

There are some common issues caught during the review of new driver patches that can easily be avoided.
New driver maintainers should review the New Driver Review Checklist for some things to watch out for.

New Driver Review Checklist

Reviewers can use this list for some common things to watch for when doing new driver reviews. This list
is by no means exhaustive, but does try to capture some of things that have been found in past reviews.

Note: Feel free to propose additional items to help make this a more complete list.

Review Checklist

• Driver Code

– Passing all gate tests

– Driver keeps all configuration in cinder.conf and not in separate vendor specific config
file.

∗ xml files for configs are forbidden

• Common gotchas

– Handles detach where connector == None for force detach

– Create from snapshot and clone properly account for new volume size being larger than orig-
inal volume size

– Volume not found in delete calls should return success

– Ensure proper code format w/ pep8 (tox -e pep8), but start here first: https://docs.
openstack.org/hacking/latest/user/hacking.html

∗ tox -e fast8 can be used as a quick check only against modified files

– Unit tests included for all but trivial code in driver

– All source code files contain Apache 2 copyright header

∗ Stating copyright for vendor is optional

∗ Dont attribute copyright to the OpenStack Foundation

– Run tox -e compliance to make sure all required interfaces are implemented.

– Required in driver:

738 Chapter 4. For contributors

https://docs.openstack.org/hacking/latest/user/hacking.html
https://docs.openstack.org/hacking/latest/user/hacking.html

Cinder Documentation, Release 20.3.2.dev3

∗ Concrete driver implementation has decorator @interface.volumedriver

∗ VERSION constant defined in driver class

∗ CI_WIKI_NAME constant defined in driver class

∗ well documented version history in the comment block for the main driver class.

∗ Support minimum driver features.

∗ Meet release deadline(s)

· By Milestone 2 of the current development cycle, the driver should have working
third party CI and no code review issues.

· You can find the exact date on the current release schedule, which you can find from
https://releases.openstack.org/index.html

– Driver does not add unnecessary new config options

∗ For example, adding vendor_username instead of using the common san_login

– Driver specific exceptions inherit from VolumeDriverException or
VolumeBackendAPIException

∗ Exceptions should be defined with driver code

– Logging level is appropriate for content

∗ General tracing should be at debug level

∗ Things operators should be aware of should be at Info level

∗ Issues that are of concern but may not have an impact on actual operation should be
warning

∗ Issues operators need to take action on or should definitely know about should be ER-
ROR

∗ Messages about a failure should include the snapshot or volume in question.

– All exception messages that could be raised to users should be marked for translation with
_()

– Any additional libraries needed for a driver must be added to the global requirements.

∗ https://wiki.openstack.org/wiki/Requirements#Adding_a_Requirement_to_an_
OpenStack_Project

∗ Pypi installable libraries should be added to driver section in setup.cfg

∗ Binary dependencies need to be OSI licensed and added to bindep.txt

– Third Party CI checks

∗ Responds correctly to recheck from run-<CI Name>

∗ Tempest run console log available

∗ cinder.conf and all cinder service logs available

∗ LVM driver is not being configured in local.conf/cinder.conf

∗ Only the driver in question should be in cinder.conf and enabled

· default_volume_type and enabled_backends in cinder.conf, OR

4.1. Contributing to Cinder 739

https://releases.openstack.org/index.html
https://wiki.openstack.org/wiki/Requirements#Adding_a_Requirement_to_an_OpenStack_Project
https://wiki.openstack.org/wiki/Requirements#Adding_a_Requirement_to_an_OpenStack_Project

Cinder Documentation, Release 20.3.2.dev3

· CINDER_DEFAULT_VOLUME_TYPE and CINDER_ENABLED_BACKENDS in local.
conf, OR

· TEMPEST_VOLUME_DRIVER and TEMPEST_VOLUME_VENDER in local.conf

∗ specify correct patch for each CI run

· CINDER_BRANCH in local.conf, OR

· git fetch https://review.opendev.org/openstack/cinder refs/
changes/56/657856/2 && git checkout cherry-pick (https://wiki.
openstack.org/wiki/Cinder/tested-3rdParty-drivers)

– CI runs tox -e all -- *volume*

∗ Any skipped tests need to be clearly documented why they are being skipped including
the plan for getting rid of the need to skip them.

∗ https://opendev.org/openstack/cinder-tempest-plugin needs to be installed so those tem-
pest tests run as well.

∗ tox | tempest with --subunit helps generate HTML output (https://docs.openstack.
org/os-testr/latest/user/subunit2html.html)

∗ tox | tempest with --concurrency=<n> for specifying <n> number of test runners

– CI must run Cinder services using Python 3.7.

– CI does not report failures or exception due to the CI operation and not due to test failures
due to code changes.

– optional, but highly recommended: CI only runs on third party CI recheck trigger or on
successful +1 from Zuul.

– CI only runs on patches to the master branch unless they are intentionally set up to be able to
properly run stable branch testing.

• Included with driver patch

– Release note stating something like New volume driver added for Blah blah blah storage

∗ See Reno usage information here: https://docs.openstack.org/reno/latest/user/usage.
html

∗ Make sure that the release note is in the correct subdirectory, namely, releasenotes/
notes/ in the repository root directory. It should not be located in the drivers section
of the code tree.

– Driver added to doc/source/reference/support-matrix.ini and doc/source/
reference/support-matrix.rst

– Driver configuration information added under doc/source/configuration/
block-storage/drivers

– Update cinder/opts.py including the new driver library options using the command tox
-e genopts

740 Chapter 4. For contributors

https://wiki.openstack.org/wiki/Cinder/tested-3rdParty-drivers
https://wiki.openstack.org/wiki/Cinder/tested-3rdParty-drivers
https://opendev.org/openstack/cinder-tempest-plugin
https://docs.openstack.org/os-testr/latest/user/subunit2html.html
https://docs.openstack.org/os-testr/latest/user/subunit2html.html
https://docs.openstack.org/reno/latest/user/usage.html
https://docs.openstack.org/reno/latest/user/usage.html

Cinder Documentation, Release 20.3.2.dev3

Driver Development Documentations

The LVM driver is our reference for all new driver implementations. The information below can provide
additional documentation for the methods that volume drivers need to implement.

Base Driver Interface

The methods documented below are the minimum required interface for a volume driver to support. All
methods from this interface must be implemented in order to be an official Cinder volume driver.

Core backend volume driver interface.

All backend drivers should support this interface as a bare minimum.

class VolumeDriverCore
Core backend driver required interface.

check_for_setup_error()
Validate there are no issues with the driver configuration.

Called after do_setup(). Driver initialization can occur there or in this call, but must be
complete by the time this returns.

If this method raises an exception, the driver will be left in an uninitialized state by the volume
manager, which means that it will not be sent requests for volume operations.

This method typically checks things like whether the configured credentials can be used to
log in the storage backend, and whether any external dependencies are present and working.

Raises VolumeBackendAPIException in case of setup error.

clone_image(volume, image_location, image_id, image_metadata, image_service)
Clone an image to a volume.

Parameters

• volume The volume to create.

• image_location Where to pull the image from.

• image_id The image identifier.

• image_metadata Information about the image.

• image_service The image service to use.

Returns Model updates.

copy_image_to_volume(context, volume, image_service, image_id)
Fetch the image from image_service and write it to the volume.

Parameters

• context Security/policy info for the request.

• volume The volume to create.

• image_service The image service to use.

• image_id The image identifier.

4.1. Contributing to Cinder 741

Cinder Documentation, Release 20.3.2.dev3

Returns Model updates.

copy_volume_to_image(context, volume, image_service, image_meta)
Copy the volume to the specified image.

Parameters

• context Security/policy info for the request.

• volume The volume to copy.

• image_service The image service to use.

• image_meta Information about the image.

Returns Model updates.

create_snapshot(snapshot)
Creates a snapshot.

Parameters snapshot Information for the snapshot to be created.

create_volume(volume)
Create a new volume on the backend.

This method is responsible only for storage allocation on the backend. It should not export a
LUN or actually make this storage available for use, this is done in a later call.

TODO(smcginnis): Add example data structure of volume object.

Parameters volume Volume object containing specifics to create.

Returns (Optional) dict of database updates for the new volume.

Raises VolumeBackendAPIException if creation failed.

create_volume_from_snapshot(volume, snapshot)
Creates a volume from a snapshot.

If volume_type extra specs includes replication: <is> True the driver needs to create a vol-
ume replica (secondary), and setup replication between the newly created volume and the
secondary volume.

An optional larger size for the new volume can be specified. Drivers should check this value
and create or expand the new volume to match.

Parameters

• volume The volume to be created.

• snapshot The snapshot from which to create the volume.

Returns A dict of database updates for the new volume.

delete_snapshot(snapshot)
Deletes a snapshot.

Parameters snapshot The snapshot to delete.

delete_volume(volume)
Delete a volume from the backend.

If the driver can talk to the backend and detects that the volume is no longer present, this call
should succeed and allow Cinder to complete the process of deleting the volume.

742 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

It is imperative that this operation ensures that the data from the deleted volume cannot leak
into new volumes when they are created, as new volumes are likely to belong to a different
tenant/project.

Parameters volume The volume to delete.

Raises VolumeIsBusy if the volume is still attached or has snapshots. Volume-
BackendAPIException on error.

do_setup(context)
Any initialization the volume driver needs to do while starting.

Called once by the manager after the driver is loaded. Can be used to set up clients, check
licenses, set up protocol specific helpers, etc.

Parameters context The admin context.

extend_volume(volume, new_size)
Extend the size of a volume.

Parameters

• volume The volume to extend.

• new_size The new desired size of the volume.

Note that if the volume backend doesnt support extending an in-use volume, the driver should
report online_extend_support=False.

get_volume_stats(refresh=False)
Collects volume backend stats.

The get_volume_stats method is used by the volume manager to collect information from
the driver instance related to information about the driver, available and used space, and
driver/backend capabilities.

stats are stored in self._stats field, which could be updated in _update_volume_stats method.

It returns a dict with the following required fields:

• volume_backend_name This is an identifier for the backend taken from cinder.conf.
Useful when using multi-backend.

• vendor_name Vendor/author of the driver who serves as the contact for the drivers
development and support.

• driver_version The driver version is logged at cinder-volume startup and is useful
for tying volume service logs to a specific release of the code. There are cur-
rently no rules for how or when this is updated, but it tends to follow typical ma-
jor.minor.revision ideas.

• storage_protocol The protocol used to connect to the storage, this should be a short
string such as: iSCSI, FC, nfs, ceph, etc.

• total_capacity_gb The total capacity in gigabytes (GiB) of the storage backend being
used to store Cinder volumes. Use keyword unknown if the backend cannot report
the value or infinite if there is no upper limit. But, it is recommended to report
real values as the Cinder scheduler assigns lowest weight to any storage backend
reporting unknown or infinite.

4.1. Contributing to Cinder 743

Cinder Documentation, Release 20.3.2.dev3

• free_capacity_gb The free capacity in gigabytes (GiB). Use keyword unknown if the
backend cannot report the value or infinite if there is no upper limit. But, it is rec-
ommended to report real values as the Cinder scheduler assigns lowest weight to
any storage backend reporting unknown or infinite.

And the following optional fields:

• reserved_percentage (integer) Percentage of backend capacity which is not used by
the scheduler.

• location_info (string) Driver-specific information used by the driver and storage back-
end to correlate Cinder volumes and backend LUNs/files.

• QoS_support (Boolean) Whether the backend supports quality of service.

• provisioned_capacity_gb The total provisioned capacity on the storage backend, in
gigabytes (GiB), including space consumed by any user other than Cinder itself.

• max_over_subscription_ratio The maximum amount a backend can be over sub-
scribed.

• thin_provisioning_support (Boolean) Whether the backend is capable of allocating
thinly provisioned volumes.

• thick_provisioning_support (Boolean) Whether the backend is capable of allocating
thick provisioned volumes. (Typically True.)

• total_volumes (integer) Total number of volumes on the storage backend. This can be
used in custom driver filter functions.

• filter_function (string) A custom function used by the scheduler to determine whether
a volume should be allocated to this backend or not. Example:

capabilities.total_volumes < 10

• goodness_function (string) Similar to filter_function, but used to weigh multiple vol-
ume backends. Example:

capabilities.capacity_utilization < 0.6 ? 100 : 25

• multiattach (Boolean) Whether the backend supports multiattach or not. Defaults to
False.

• sparse_copy_volume (Boolean) Whether copies performed by the volume manager for
operations such as migration should attempt to preserve sparseness.

• online_extend_support (Boolean) Whether the backend supports in-use volume ex-
tend or not. Defaults to True.

The returned dict may also contain a list, pools, which has a similar dict for each pool being
used with the backend.

Parameters refresh Whether to discard any cached values and force a full re-
fresh of stats.

Returns dict of appropriate values (see above).

initialize_connection(volume, connector, initiator_data=None)
Allow connection to connector and return connection info.

Parameters

744 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• volume The volume to be attached.

• connector Dictionary containing information about what is being con-
nected to.

• initiator_data (Optional) A dictionary of driver_initiator_data objects
with key-value pairs that have been saved for this initiator by a driver in pre-
vious initialize_connection calls.

Returns A dictionary of connection information. This can optionally include a
initiator_updates field.

The initiator_updates field must be a dictionary containing a set_values and/or remove_values
field. The set_values field must be a dictionary of key-value pairs to be set/updated in the db.
The remove_values field must be a list of keys, previously set with set_values, that will be
deleted from the db.

May be called multiple times to get connection information after a volume has already been
attached.

terminate_connection(volume, connector)
Remove access to a volume.

Note: If connector is None, then all connections to the volume should be terminated.

Parameters

• volume The volume to remove.

• connector The Dictionary containing information about the connection.
This is optional when doing a force-detach and can be None.

Manage/Unmanage Support

An optional feature a volume backend can support is the ability to manage existing volumes or unmanage
volumes - keep the volume on the storage backend but no longer manage it through Cinder.

To support this functionality, volume drivers must implement these methods:

Manage/unmanage existing volume driver interface.

class VolumeListManageableDriver
Interface to support listing manageable snapshots and volumes.

get_manageable_snapshots(cinder_snapshots, marker, limit, offset, sort_keys, sort_dirs)
List snapshots on the backend available for management by Cinder.

Returns a list of dictionaries, each specifying a snapshot in the host, with the following keys:

• reference (dictionary): The reference for a snapshot, which can be passed to man-
age_existing_snapshot.

• size (int): The size of the snapshot according to the storage backend, rounded up to the
nearest GB.

• safe_to_manage (boolean): Whether or not this snapshot is safe to manage according to
the storage backend. For example, is the snapshot in use or invalid for any reason.

• reason_not_safe (string): If safe_to_manage is False, the reason why.

4.1. Contributing to Cinder 745

Cinder Documentation, Release 20.3.2.dev3

• cinder_id (string): If already managed, provide the Cinder ID.

• extra_info (string): Any extra information to return to the user

• source_reference (string): Similar to reference, but for the snapshots source volume.

Parameters

• cinder_snapshots A list of snapshots in this host that Cinder currently
manages, used to determine if a snapshot is manageable or not.

• marker The last item of the previous page; we return the next results after
this value (after sorting)

• limit Maximum number of items to return

• offset Number of items to skip after marker

• sort_keys List of keys to sort results by (valid keys are identifier and size)

• sort_dirs List of directions to sort by, corresponding to sort_keys (valid
directions are asc and desc)

get_manageable_volumes(cinder_volumes, marker, limit, offset, sort_keys, sort_dirs)
List volumes on the backend available for management by Cinder.

Returns a list of dictionaries, each specifying a volume in the host, with the following keys:

• reference (dictionary): The reference for a volume, which can be passed to man-
age_existing.

• size (int): The size of the volume according to the storage backend, rounded up to the
nearest GB.

• safe_to_manage (boolean): Whether or not this volume is safe to manage according to
the storage backend. For example, is the volume in use or invalid for any reason.

• reason_not_safe (string): If safe_to_manage is False, the reason why.

• cinder_id (string): If already managed, provide the Cinder ID.

• extra_info (string): Any extra information to return to the user

Parameters

• cinder_volumes A list of volumes in this host that Cinder currently man-
ages, used to determine if a volume is manageable or not.

• marker The last item of the previous page; we return the next results after
this value (after sorting)

• limit Maximum number of items to return

• offset Number of items to skip after marker

• sort_keys List of keys to sort results by (valid keys are identifier and size)

• sort_dirs List of directions to sort by, corresponding to sort_keys (valid
directions are asc and desc)

class VolumeManagementDriver
Interface for drivers that support managing existing volumes.

746 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

manage_existing(volume, existing_ref)
Brings an existing backend storage object under Cinder management.

existing_ref is passed straight through from the API requests manage_existing_ref value, and
it is up to the driver how this should be interpreted. It should be sufficient to identify a
storage object that the driver should somehow associate with the newly-created cinder volume
structure.

There are two ways to do this:

1. Rename the backend storage object so that it matches the, volume[name] which is how
drivers traditionally map between a cinder volume and the associated backend storage
object.

2. Place some metadata on the volume, or somewhere in the backend, that allows other
driver requests (e.g. delete, clone, attach, detach) to locate the backend storage object
when required.

If the existing_ref doesnt make sense, or doesnt refer to an existing backend storage object,
raise a ManageExistingInvalidReference exception.

The volume may have a volume_type, and the driver can inspect that and compare against
the properties of the referenced backend storage object. If they are incompatible, raise a
ManageExistingVolumeTypeMismatch, specifying a reason for the failure.

Parameters

• volume Cinder volume to manage

• existing_ref Dictionary with keys source-id, source-name with driver-
specific values to identify a backend storage object.

Raises

• ManageExistingInvalidReference If the existing_ref doesnt make
sense, or doesnt refer to an existing backend storage object.

• ManageExistingVolumeTypeMismatch If there is a mismatch between
the volume type and the properties of the existing backend storage object.

manage_existing_get_size(volume, existing_ref)
Return size of volume to be managed by manage_existing.

When calculating the size, round up to the next GB.

Parameters

• volume Cinder volume to manage

• existing_ref Dictionary with keys source-id, source-name with driver-
specific values to identify a backend storage object.

Raises ManageExistingInvalidReference If the existing_ref doesnt make
sense, or doesnt refer to an existing backend storage object.

unmanage(volume)
Removes the specified volume from Cinder management.

Does not delete the underlying backend storage object.

4.1. Contributing to Cinder 747

Cinder Documentation, Release 20.3.2.dev3

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Cinder-specific configuration that they have associated
with the backend storage object.

Parameters volume Cinder volume to unmanage

Manage/Unmanage Snapshot Support

In addition to the ability to manage and unmanage volumes, Cinder backend drivers may also support
managing and unmanaging volume snapshots. These additional methods must be implemented to support
these operations.

Manage/unmanage existing volume snapshots driver interface.

class VolumeSnapshotManagementDriver
Interface for drivers that support managing existing snapshots.

manage_existing_snapshot(snapshot, existing_ref)
Brings an existing backend storage object under Cinder management.

existing_ref is passed straight through from the API requests manage_existing_ref value, and
it is up to the driver how this should be interpreted. It should be sufficient to identify a stor-
age object that the driver should somehow associate with the newly-created cinder snapshot
structure.

There are two ways to do this:

1. Rename the backend storage object so that it matches the snapshot[name] which is how
drivers traditionally map between a cinder snapshot and the associated backend storage
object.

2. Place some metadata on the snapshot, or somewhere in the backend, that allows other
driver requests (e.g. delete) to locate the backend storage object when required.

Parameters

• snapshot The snapshot to manage.

• existing_ref Dictionary with keys source-id, source-name with driver-
specific values to identify a backend storage object.

Raises ManageExistingInvalidReference If the existing_ref doesnt make
sense, or doesnt refer to an existing backend storage object.

manage_existing_snapshot_get_size(snapshot, existing_ref)
Return size of snapshot to be managed by manage_existing.

When calculating the size, round up to the next GB.

Parameters

• snapshot The snapshot to manage.

• existing_ref Dictionary with keys source-id, source-name with driver-
specific values to identify a backend storage object.

Raises ManageExistingInvalidReference If the existing_ref doesnt make
sense, or doesnt refer to an existing backend storage object.

748 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

unmanage_snapshot(snapshot)
Removes the specified snapshot from Cinder management.

Does not delete the underlying backend storage object.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Cinder-specific configuration that they have associated
with the backend storage object.

Parameters snapshot The snapshot to unmanage.

Volume Consistency Groups

Some storage backends support the ability to group volumes and create write consistent snapshots across
the group. In order to support these operations, the following interface must be implemented by the
driver.

Consistency group volume driver interface.

class VolumeConsistencyGroupDriver
Interface for drivers that support consistency groups.

create_cgsnapshot(context, cgsnapshot, snapshots)
Creates a cgsnapshot.

Parameters

• context the context of the caller.

• cgsnapshot the dictionary of the cgsnapshot to be created.

• snapshots a list of snapshot dictionaries in the cgsnapshot.

Returns model_update, snapshots_model_update

param snapshots is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Snapshot to be precise. It cannot be assigned to snap-
shots_model_update. snapshots_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error, the status in model_update will
be set to the same if it is not already error.

If the status in model_update is error, the manager will raise an exception and the status of
cgsnapshot will be set to error in the db. If snapshots_model_update is not returned by the
driver, the manager will set the status of every snapshot to error in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of cgsnapshot and all snapshots will be set to error.

4.1. Contributing to Cinder 749

Cinder Documentation, Release 20.3.2.dev3

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of cgsnapshot and
all snapshots will be set to available at the end of the manager function.

create_consistencygroup(context, group)
Creates a consistencygroup.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be created.

Returns model_update

model_update will be in this format: {status: xxx, }.

If the status in model_update is error, the manager will throw an exception and it will be
caught in the try-except block in the manager. If the driver throws an exception, the manager
will also catch it in the try-except block. The group status in the db will be changed to error.

For a successful operation, the driver can either build the model_update and return it or return
None. The group status will be set to available.

create_consistencygroup_from_src(context, group, volumes, cgsnapshot=None,
snapshots=None, source_cg=None,
source_vols=None)

Creates a consistencygroup from source.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be created.

• volumes a list of volume dictionaries in the group.

• cgsnapshot the dictionary of the cgsnapshot as source.

• snapshots a list of snapshot dictionaries in the cgsnapshot.

• source_cg the dictionary of a consistency group as source.

• source_vols a list of volume dictionaries in the source_cg.

Returns model_update, volumes_model_update

The source can be cgsnapshot or a source cg.

param volumes is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Volume to be precise. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

To be consistent with other volume operations, the manager will assume the operation is
successful if no exception is thrown by the driver. For a successful operation, the driver can
either build the model_update and volumes_model_update and return them or return None,
None.

delete_cgsnapshot(context, cgsnapshot, snapshots)
Deletes a cgsnapshot.

750 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Parameters

• context the context of the caller.

• cgsnapshot the dictionary of the cgsnapshot to be deleted.

• snapshots a list of snapshot dictionaries in the cgsnapshot.

Returns model_update, snapshots_model_update

param snapshots is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Snapshot to be precise. It cannot be assigned to snap-
shots_model_update. snapshots_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of cgsnapshot will be set to error in the db. If snapshots_model_update is not
returned by the driver, the manager will set the status of every snapshot to error in the except
block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of cgsnapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of cgsnapshot and
all snapshots will be set to deleted after the manager deletes them from db.

delete_consistencygroup(context, group, volumes)
Deletes a consistency group.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be deleted.

• volumes a list of volume dictionaries in the group.

Returns model_update, volumes_model_update

param volumes is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Volume to be precise. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

The driver should populate volumes_model_update and model_update and return them.

The manager will check volumes_model_update and update db accordingly for each volume.
If the driver successfully deleted some volumes but failed to delete others, it should set sta-
tuses of the volumes accordingly so that the manager can update db correctly.

4.1. Contributing to Cinder 751

Cinder Documentation, Release 20.3.2.dev3

If the status in any entry of volumes_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of the group will be set to error in the db. If volumes_model_update is not
returned by the driver, the manager will set the status of every volume in the group to error
in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager. The statuses of the group and all volumes in it will be set to error.

For a successful operation, the driver can either build the model_update and vol-
umes_model_update and return them or return None, None. The statuses of the group and
all volumes will be set to deleted after the manager deletes them from db.

update_consistencygroup(context, group, add_volumes=None, remove_volumes=None)
Updates a consistency group.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be updated.

• add_volumes a list of volume dictionaries to be added.

• remove_volumes a list of volume dictionaries to be removed.

Returns model_update, add_volumes_update, remove_volumes_update

model_update is a dictionary that the driver wants the manager to update upon a successful
return. If None is returned, the manager will set the status to available.

add_volumes_update and remove_volumes_update are lists of dictionaries that the driver
wants the manager to update upon a successful return. Note that each entry requires a {id:
xxx} so that the correct volume entry can be updated. If None is returned, the volume
will remain its original status. Also note that you cannot directly assign add_volumes to
add_volumes_update as add_volumes is a list of cinder.db.sqlalchemy.models.Volume ob-
jects and cannot be used for db update directly. Same with remove_volumes.

If the driver throws an exception, the status of the group as well as those of the volumes to be
added/removed will be set to error.

Generic Volume Groups

The generic volume groups feature provides the ability to manage a group of volumes together. Because
this feature is implemented at the manager level, every driver gets this feature by default. If a driver wants
to override the default behavior to support additional functionalities such as consistent group snapshot, the
following interface must be implemented by the driver. Once every driver supporting volume consistency
groups has added the consistent group snapshot capability to generic volume groups, we no longer need
the volume consistency groups interface listed above.

Generic volume group volume driver interface.

class VolumeGroupDriver
Interface for drivers that support groups.

752 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

create_group(context, group)
Creates a group.

Parameters

• context the context of the caller.

• group the Group object to be created.

Returns model_update

model_update will be in this format: {status: xxx, }.

If the status in model_update is error, the manager will throw an exception and it will be
caught in the try-except block in the manager. If the driver throws an exception, the manager
will also catch it in the try-except block. The group status in the db will be changed to error.

For a successful operation, the driver can either build the model_update and return it or return
None. The group status will be set to available.

create_group_from_src(context, group, volumes, group_snapshot=None, snapshots=None,
source_group=None, source_vols=None)

Creates a group from source.

Parameters

• context the context of the caller.

• group the Group object to be created.

• volumes a list of Volume objects in the group.

• group_snapshot the GroupSnapshot object as source.

• snapshots a list of Snapshot objects in the group_snapshot.

• source_group a Group object as source.

• source_vols a list of Volume objects in the source_group.

Returns model_update, volumes_model_update

The source can be group_snapshot or a source group.

param volumes is a list of objects retrieved from the db. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be built by
the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update will be in
this format: {status: xxx, }.

To be consistent with other volume operations, the manager will assume the operation is
successful if no exception is thrown by the driver. For a successful operation, the driver can
either build the model_update and volumes_model_update and return them or return None,
None.

create_group_snapshot(context, group_snapshot, snapshots)
Creates a group_snapshot.

Parameters

• context the context of the caller.

• group_snapshot the GroupSnapshot object to be created.

• snapshots a list of Snapshot objects in the group_snapshot.

4.1. Contributing to Cinder 753

Cinder Documentation, Release 20.3.2.dev3

Returns model_update, snapshots_model_update

param snapshots is a list of Snapshot objects. It cannot be assigned to snap-
shots_model_update. snapshots_model_update is a list of dictionaries. It has to be built
by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update will be
in this format: {status: xxx, }.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error, the status in model_update will
be set to the same if it is not already error.

If the status in model_update is error, the manager will raise an exception and the status of
group_snapshot will be set to error in the db. If snapshots_model_update is not returned by
the driver, the manager will set the status of every snapshot to error in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of group_snapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of group_snapshot
and all snapshots will be set to available at the end of the manager function.

delete_group(context, group, volumes)
Deletes a group.

Parameters

• context the context of the caller.

• group the Group object to be deleted.

• volumes a list of Volume objects in the group.

Returns model_update, volumes_model_update

param volumes is a list of objects retrieved from the db. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be built by
the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update will be in
this format: {status: xxx, }.

The driver should populate volumes_model_update and model_update and return them.

The manager will check volumes_model_update and update db accordingly for each volume.
If the driver successfully deleted some volumes but failed to delete others, it should set sta-
tuses of the volumes accordingly so that the manager can update db correctly.

If the status in any entry of volumes_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of the group will be set to error in the db. If volumes_model_update is not
returned by the driver, the manager will set the status of every volume in the group to error
in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager. The statuses of the group and all volumes in it will be set to error.

754 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

For a successful operation, the driver can either build the model_update and vol-
umes_model_update and return them or return None, None. The statuses of the group and
all volumes will be set to deleted after the manager deletes them from db.

delete_group_snapshot(context, group_snapshot, snapshots)
Deletes a group_snapshot.

Parameters

• context the context of the caller.

• group_snapshot the GroupSnapshot object to be deleted.

• snapshots a list of Snapshot objects in the group_snapshot.

Returns model_update, snapshots_model_update

param snapshots is a list of objects. It cannot be assigned to snapshots_model_update. snap-
shots_model_update is a list of of dictionaries. It has to be built by the driver. An entry will
be in this format: {id: xxx, status: xxx, }. model_update will be in this format: {status: xxx,
}.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of group_snapshot will be set to error in the db. If snapshots_model_update
is not returned by the driver, the manager will set the status of every snapshot to error in the
except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of group_snapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of group_snapshot
and all snapshots will be set to deleted after the manager deletes them from db.

update_group(context, group, add_volumes=None, remove_volumes=None)
Updates a group.

Parameters

• context the context of the caller.

• group the Group object to be updated.

• add_volumes a list of Volume objects to be added.

• remove_volumes a list of Volume objects to be removed.

Returns model_update, add_volumes_update, remove_volumes_update

model_update is a dictionary that the driver wants the manager to update upon a successful
return. If None is returned, the manager will set the status to available.

4.1. Contributing to Cinder 755

Cinder Documentation, Release 20.3.2.dev3

add_volumes_update and remove_volumes_update are lists of dictionaries that the driver
wants the manager to update upon a successful return. Note that each entry requires a {id:
xxx} so that the correct volume entry can be updated. If None is returned, the volume
will remain its original status. Also note that you cannot directly assign add_volumes to
add_volumes_update as add_volumes is a list of volume objects and cannot be used for db
update directly. Same with remove_volumes.

If the driver throws an exception, the status of the group as well as those of the volumes to be
added/removed will be set to error.

Revert To Snapshot

Some storage backends support the ability to revert a volume to the last snapshot. To support snapshot
revert, the following interface must be implemented by the driver.

Revert to snapshot capable volume driver interface.

class VolumeSnapshotRevertDriver
Interface for drivers that support revert to snapshot.

revert_to_snapshot(context, volume, snapshot)
Revert volume to snapshot.

Note: the revert process should not change the volumes current size, that means if the driver
shrank the volume during the process, it should extend the volume internally.

Parameters

• context the context of the caller.

• volume The volume to be reverted.

• snapshot The snapshot used for reverting.

High Availability

In this guide well go over design and programming considerations related to high availability in Cinder.

The document aims to provide a single point of truth in all matters related to Cinders high availability.

Cinder developers must always have these aspects present during the design and programming of the
Cinder core code, as well as the drivers code.

Most topics will focus on Active-Active deployments. Some topics covering node and process concur-
rency will also apply to Active-Passive deployments.

756 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Overview

There are 4 services that must be considered when looking at a highly available Cinder deployment: API,
Scheduler, Volume, Backup.

Each of these services has its own challenges and mechanisms to support concurrent and multi node code
execution.

This document provides a general overview of Cinder aspects related to high availability, together with
implementation details. Given the breadth and depth required to properly explain them all, it will fall
short in some places. It will provide external references to expand on some of the topics hoping to help
better understand them.

Some of the topics that will be covered are:

• Job distribution.

• Message queues.

• Threading model.

• Versioned Objects used for rolling upgrades.

• Heartbeat system.

• Mechanism used to clean up out of service cluster nodes.

• Mutual exclusion mechanisms used in Cinder.

Its good to keep in mind that Cinder threading model is based on eventlets green threads. Some Cinder
and driver code may use native threads to prevent thread blocking, but thats not the general rule.

Throughout the document well be referring to clustered and non clustered Volume services. This dis-
tinction is not based on the number of services running, but on their configurations.

A non clustered Volume service is one that will be deployed as Active-Passive and has not been included
in a Cinder cluster.

On the other hand, a clustered Volume service is one that can be deployed as Active-Active because it is
part of a Cinder cluster. We consider a Volume service to be clustered even when there is only one node
in the cluster.

Job distribution

Cinder uses RPC calls to pass jobs to Scheduler, Volume, and Backup services. A message broker is
used for the transport layer on the RPC calls and parameters.

Job distribution is handled by the message broker using message queues. The different services, except
the API, listen on specific message queues for RPC calls.

Based on the maximum number of nodes that will connect, we can differentiate two types of message
queues: those with a single listener and those with multiple listeners.

We use single listener queues to send RPC calls to a specific service in a node. For example, when the
API calls a non clustered Volume service to create a snapshot.

Message queues having multiple listeners are used in operations such as:

• Creating any volume. Call made from the API to the Scheduler.

4.1. Contributing to Cinder 757

Cinder Documentation, Release 20.3.2.dev3

• Creating a volume in a clustered Volume service. Call made from the Scheduler to the Volume
service.

• Attaching a volume in a clustered Volume service. Call made from the API to the Volume service.

Regardless of the number of listeners, all the above mentioned RPC calls are unicast calls. The caller
will place the request in a queue in the message broker and a single node will retrieve it and execute the
call.

There are other kinds of RPC calls, those where we broadcast a single RPC call to multiple nodes. The
best example of this type of call is the Volume service capabilities report sent to all the Schedulers.

Message queues are fair queues and are used to distribute jobs in a round robin fashion. Single target
RPC calls made to message queues with multiple listeners are distributed in round robin. So sending
three request to a cluster of 3 Schedulers will send one request to each one.

Distribution is content and workload agnostic. A node could be receiving all the quick and easy jobs
while another one gets all the heavy lifting and its ongoing workload keeps increasing.

Cinders job distribution mechanism allows fine grained control over who to send RPC calls. Even on
clustered Volume services we can still access individual nodes within the cluster. So developers must
pay attention to where they want to send RPC calls and ask themselves: Is the target a clustered service?
Is the RPC call intended for any node running the service? Is it for a specific node? For all nodes?

The code in charge of deciding the target message queue, therefore the recipient, is in the rpcapi.py
files. Each service has its own file with the RPC calls: volume/rpcapi.py, scheduler/rpcapi.py, and
backup/rpcapi.py.

For RPC calls the different rcpapi.py files ultimately use the _get_cctxt method from the cin-
der.rpc.RPCAPI class.

For a detailed description on the issue, ramifications, and solutions, please refer to the Cinder Volume
Job Distribution.

The RabbitMQ tutorials are a good way to understand message brokers general topics.

Heartbeats

Cinder services, with the exception of API services, have a periodic heartbeat to indicate they are up and
running.

When services are having health issues, they may decide to stop reporting heartbeats, even if they are
running. This happens during initialization if the driver cannot be setup correctly.

The database is used to report service heartbeats. Fields report_count and updated_at, in the services
table, keep a heartbeat counter and the last time the counter was updated.

There will be multiple database entries for Cinder Volume services running multiple backends. One per
backend.

Using a date-time to mark the moment of the last heartbeat makes the system time relevant for Cinders
operation. A significant difference in system times on our nodes could cause issues in a Cinder deploy-
ment.

All services report and expect the updated_at field to be UTC.

To determine if a service is up, we check the time of the last heartbeat to confirm that its not older than
service_down_time seconds. Default value for service_down_time configuration option is 60 seconds.

758 Chapter 4. For contributors

https://specs.openstack.org/openstack/cinder-specs/specs/ocata/ha-aa-job-distribution.html
https://specs.openstack.org/openstack/cinder-specs/specs/ocata/ha-aa-job-distribution.html
https://www.rabbitmq.com/getstarted.html

Cinder Documentation, Release 20.3.2.dev3

Cinder uses method is_up, from the Service and Cluster Versioned Object, to ensure consistency in the
calculations across the whole code base.

Heartbeat frequency in Cinder services is determined by the report_interval configuration option. The
default is 10 seconds, allowing network and database interruptions.

Cinder protects itself against some incorrect configurations. If report_interval is greater or equal than
service_down_time, Cinder will log a warning and use a service down time of two and a half times the
configured report_interval.

Note: It is of utter importance having the same service_down_time and report_interval configuration
options in all your nodes.

In each services section well expand this topic with specific information only relevant to that service.

Cleanup

Power outages, hardware failures, unintended reboots, and software errors. These are all events that could
make a Cinder service unexpectedly halt its execution.

A running Cinder service is usually carrying out actions on resources. So when the service dies un-
expectedly, it will abruptly stop those operations. Stopped operations in this way leaves resources in
transitioning states. For example a volume could be left in a deleting or creating status. If left alone
resources will remain in this state forever, as the service in charge of transitioning them to a rest status
(available, error, deleted) is no longer running.

Existing reset-status operations allow operators to forcefully change the state of a resource. But these
state resets are not recommended except in very specific cases and when we really know what we are
doing.

Cleanup mechanisms are tasked with services recovery after an abrupt stop of the service. They are the
recommended way to resolve stuck transitioning states caused by sudden service stop.

There are multiple cleanup mechanisms in Cinder, but in essence they all follow the same logic. Based
on the resource type and its status the mechanism determines the best cleanup action that will transition
the state to a rest state.

Some actions require a resource going through several services. In this case deciding the cleanup action
may also require taking into account where the resource was being processed.

Cinder has two types of cleanup mechanisms:

• On node startup: Happen on Scheduler, Volume, and Backup services.

• Upon user request. User requested cleanups can only be triggered on Scheduler and Volume nodes.

When a node starts it will do a cleanup, but only for the resources that were left in a transitioning state
when the service stopped. It will never touch resources from other services in the cluster.

Node startup cleanup is slightly different on services supporting user requested cleanups -Scheduler and
Volume- than on Backup services. Backup cleanups will be covered in the services section.

For services supporting user requested cleanups we can differentiate the following tasks:

• Tracking transitioning resources: Using workers table and Cleanable Versioned Objects methods.

• Defining when a resource must be cleaned if service dies: Done in Cleanable Versioned Objects.

4.1. Contributing to Cinder 759

Cinder Documentation, Release 20.3.2.dev3

• Defining how a resource must be cleaned: Done in the service manager.

Note: All Volume services can accept cleanup requests, doesnt matter if they are clustered or not. This
will provide a better alternative to the reset-state mechanism to handle resources stuck in a transitioning
state.

Workers table

For Cinder Volume managed resources -Volumes and Snapshots- we used to establish a one-to-one rela-
tionship between a resource and the volume service managing it. A resource would belong to a node if
the resources host field matched that of the running Cinder Volume service.

Snapshots must always be managed by the same service as the volume they originate from, so they dont
have a host field in the database. In this case the parent volumes host is used to determine who owns the
resource.

Cinder-Volume services can be clustered, so we no longer have a one-to-one owner relationship. On
clustered services we use the cluster_name database field instead of the host to determine ownership.
Now we have a one-to-many ownership relationship.

When a clustered service abruptly stops running, any of the nodes from the same cluster can cleanup the
resources it was working on. There is no longer a need to restart the service to get the resources cleaned
by the node startup cleanup process.

We keep track of the resources our Cinder services are working on in the workers table. Only resources
that can be cleaned are tracked. This table stores the resource type and id, the status that should be cleared
on service failure, the service that is working on it, etc. And well be updating this table as the resources
move from service to service.

Worker entries are not passed as RPC parameters, so we dont need a Versioned Object class to represent
them. We only have the Worker ORM class to represent database entries.

Following subsections will cover implementation details required to develop new cleanup resources and
states. For a detailed description on the issue, ramifications, and overall solution, please refer to the
Cleanup spec.

Tracking resources

Resources supporting cleanup using the workers table must inherit from the CinderCleanableObject
Versioned Object class.

This class provides helper methods and the general interface used by Cinder for the cleanup mechanism.
This interface is conceptually split in three tasks:

• Manage workers table on the database.

• Defining what states must be cleaned.

• Defining how to clean resources.

Among methods provided by the CinderCleanableObject class the most important ones are:

• is_cleanable: Checks if the resource, given its current status, is cleanable.

760 Chapter 4. For contributors

https://specs.openstack.org/openstack/cinder-specs/specs/newton/ha-aa-cleanup.html

Cinder Documentation, Release 20.3.2.dev3

• create_worker: Create a worker entry on the API service.

• set_worker: Create or update worker entry.

• unset_worker: Remove an entry from the database. This is a real delete, not a soft-delete.

• set_workers: Function decorator to create or update worker entries.

Inheriting classes must define _is_cleanable method to define which resource states can be cleaned up.

Earlier we mentioned how cleanup depends on a resources current state. But it also depends under
what version the services are running. With rolling updates we can have a service running under an
earlier pinned version for compatibility purposes. A version X service could have a resource that it
would consider cleanable, but its pinned to version X-1, where it was not considered cleanable. To avoid
breaking things, the resource should be considered as non cleanable until the service version is unpinned.

Implementation of _is_cleanable method must take them both into account. The state, and the version.

Volumes implementation is a good example, as workers table was not supported before version 1.6:

@staticmethod
def _is_cleanable(status, obj_version):

if obj_version and obj_version < 1.6:
return False

return status in ('creating', 'deleting', 'uploading', 'downloading')

Tracking states in the workers table starts by calling the create_worker method on the API node. This is
best done on the different rpcapi.py files.

For example, a create volume operation will go from the API service to the Scheduler service, so well
add it in cinder/scheduler/rpcapi.py:

def create_volume(self, ctxt, volume, snapshot_id=None, image_id=None,
request_spec=None, filter_properties=None,
backup_id=None):

volume.create_worker()

But if we are deleting a volume or creating a snapshot the API will call the Volume service directly, so
changes should go in cinder/scheduler/rpcapi.py:

def delete_volume(self, ctxt, volume, unmanage_only=False, cascade=False):
volume.create_worker()

Once we receive the call on the other sides manager we have to call the set_worker method. To facilitate
this task we have the set_workers decorator that will automatically call set_worker for any cleanable
versioned object that is in a cleanable state.

For the create volume on the Scheduler service:

@objects.Volume.set_workers
@append_operation_type()
def create_volume(self, context, volume, snapshot_id=None, image_id=None,

request_spec=None, filter_properties=None,
backup_id=None):

And then again for the create volume on the Volume service:

4.1. Contributing to Cinder 761

Cinder Documentation, Release 20.3.2.dev3

@objects.Volume.set_workers
def create_volume(self, context, volume, request_spec=None,

filter_properties=None, allow_reschedule=True):

In these examples we are using the set_workers method from the Volume Versioned Object class. But we
could be using it from any other class as it is a staticmethod that is not overwritten by any of the classes.

Using the set_workers decorator will cover most of our use cases, but sometimes we may have to call
the set_worker method ourselves. Thats the case when transitioning from creating state to downloading.
The worker database entry was created with the creating state and the working service was updated when
the Volume service received the RPC call. But once we change the status to creating the worker and the
resource status dont match, so the cleanup mechanism will ignore the resource.

To solve this we add another worker update in the save method from the Volume Versioned Object class:

def save(self):

...

if updates.get('status') == 'downloading':
self.set_worker()

Actions on resource cleanup

Weve seen how to track cleanable resources in the workers table. Now well cover how to define the
actions used to cleanup a resource.

Services using the workers table inherit from the CleanableManager class and must implement the
_do_cleanup method.

This method receives a versioned object to clean and indicates whether we should keep the workers table
entry. On asynchronous cleanup tasks method must return True and take care of removing the worker
entry on completion.

Simplified version of the cleanup of the Volume service, illustrating synchronous and asynchronous
cleanups and how we can do a synchronous cleanup and take care ourselves of the workers entry:

def _do_cleanup(self, ctxt, vo_resource):
if isinstance(vo_resource, objects.Volume):

if vo_resource.status == 'downloading':
self.driver.clear_download(ctxt, vo_resource)

elif vo_resource.status == 'deleting':
if CONF.volume_service_inithost_offload:

self._add_to_threadpool(self.delete_volume, ctxt,
vo_resource, cascade=True)

else:
self.delete_volume(ctxt, vo_resource, cascade=True)

return True

if vo_resource.status in ('creating', 'downloading'):
(continues on next page)

762 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

vo_resource.status = 'error'
vo_resource.save()

When the volume is downloading we dont return anything, so the caller receives None, which evaluates
to not keep the row entry. When the status is deleting we call delete_volume synchronously or asyn-
chronously. The delete_volume has the set_workers decorator, that calls unset_worker once the decorated
method has successfully finished. So when calling delete_volume we must ask the caller of _do_cleanup
to not try to remove the workers entry.

Cleaning resources

We may not have a Worker Versioned Object because we didnt need it, but we have a CleanupRequest
Versioned Object to specify resources for cleanup.

Resources will be cleaned when a node starts up and on user request. In both cases well use the
CleanupRequest that contains a filtering of what needs to be cleaned up.

The CleanupRequest can be considered as a filter on the workers table to determine what needs to be
cleaned.

Managers for services using the workers table must support the startup cleanup mechanism. Support
for this mechanism is provided via the init_host method in the CleanableManager class. So managers
inheriting from CleanableManager must make sure they call this init_host method. This can be done
using CleanableManager as the first inherited class and using super to call the parents init_host method,
or by calling the class method directly: cleanableManager.init_host(self,).

CleanableManagers init_host method will create a CleanupRequest for the current service before calling
its do_cleanup method with it before returning. Thus cleaning up all transitioning resources from the
service.

For user requested cleanups, the API generates a CleanupRequest object using the requests parameters
and calls the schedulers work_cleanup RPC with it.

The Scheduler receives the work_cleanup RPC call and uses the CleanupRequest to filter services that
match the request. With this list of services the Scheduler sends an individual cleanup request for each
of the services. This way we can spread the cleanup work if we have multiple services to cleanup.

The Scheduler checks the service to clean to know where it must send the clean request. Scheduler service
cleanup can be performed by any Scheduler, so we send it to the scheduler queue where all Schedulers
are listening. In the worst case it will come back to us if there is no other Scheduler running at the time.

For the Volume service well be sending it to the cluster message queue if its a clustered service, or to a
single node if its non clustered. But unlike with the Scheduler, we cant be sure that there is a service to
do the cleanup, so we check if the service or cluster is up before sending the request.

After sending all the cleanup requests, the Scheduler will return a list of services that have received a
cleanup request, and all the services that didnt because they were down.

4.1. Contributing to Cinder 763

Cinder Documentation, Release 20.3.2.dev3

Mutual exclusion

In Cinder, as many other concurrent and parallel systems, there are critical sections. Code sections that
share a common resource that can only be accessed by one of them at a time.

Resources can be anything, not only Cinder resources such as Volumes and Snapshots, and they can be
local or remote. Examples of resources are libraries, command line tools, storage target groups, etc.

Exclusion scopes can be per process, per node, or global.

We have four mutual exclusion mechanisms available during Cinder development:

• Database locking using resource states.

• Process locks.

• Node locks.

• Global locks.

For performance reasons we must always try to avoid using any mutual exclusion mechanism. If avoiding
them is not possible, we should try to use the narrowest scope possible and reduce the critical section as
much as possible. Locks by decreasing order of preference are: process locks, node locks, global locks,
database locks.

Status based locking

Many Cinder operations are inherently exclusive and the Cinder core code ensures that drivers will not
receive contradictory or incompatible calls. For example, you cannot clone a volume if its being created.
And you shouldnt delete the source volume of an ongoing snapshot.

To prevent these from happening Cinder API services use resource status fields to check for incompati-
bilities preventing operations from getting through.

There are exceptions to this rule, for example the force delete operation that ignores the status of a re-
source.

We should also be aware that administrators can forcefully change the status of a resource and then call
the API, bypassing the check that prevents multiple operations from being requested to the drivers.

Resource locking using states is expanded upon in the Race prevention subsection in the Cinder-API
section.

Process locks

Cinder services are multi-threaded -not really since we use greenthreads-, so the narrowest possible scope
of locking is among the threads of a single process.

Some cases where we may want to use this type of locking are when we share arrays or dictionaries
between the different threads within the process, and when we use a Python or C library that doesnt
properly handle concurrency and we have to be careful with how we call its methods.

To use this locking in Cinder we must use the synchronized method in cinder.utils. This method in turn
uses the synchronized method from oslo_concurrency.lockutils with the cinder- prefix for all the locks to
avoid conflict with other OpenStack services.

764 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

The only required parameter for this usage is the name of the lock. The name parameter provided for
these locks must be a literal string value. There is no kind of templating support.

Example from cinder/volume/throttling.py:

@utils.synchronized('BlkioCgroup')
def _inc_device(self, srcdev, dstdev):

Note: When developing a driver, and considering which type of lock to use, we must remember that
Cinder is a multi backend service. So the same driver can be running multiple times on different processes
in the same node.

Node locks

Sometimes we want to define the whole node as the scope of the lock. Our critical section requires that
only one thread in the whole node is using the resource. This inter process lock ensures that no matter
how many processes and backends want to access the same resource, only one will access it at a time.
All others will have to wait.

These locks are useful when:

• We want to ensure theres only one ongoing call to a command line program. Thats the case of
the cinder-rtstool command in cinder/volume/targets/lio.py, and the nvmetcli command in cin-
der/volume/targets/nvmet.py.

• Common initialization in all processes in the node. This is the case of the backup service cleanup
code. The backup service can run multiple processes simultaneously for the same backend, but
only one of them can run the cleanup code on start.

• Drivers not supporting Active-Active configurations. Any operation that should only be performed
by one driver at a time. For example creating target groups for a node.

This type of lock use the same method as the Process locks, synchronized method from cinder.utils. Here
we need to pass two parameters, the name of the lock, and external=True to make sure that file locks are
being used.

The name parameter provided for these locks must be a literal string value. There is no kind of templating
support.

Example from cinder/volume/targest/lio.py:

@staticmethod
@utils.synchronized('lioadm', external=True)
def _execute(*args, **kwargs):

Example from cinder/backup/manager.py:

@utils.synchronized('backup-pgid-%s' % os.getpgrp(),
external=True, delay=0.1)

def _cleanup_incomplete_backup_operations(self, ctxt):

4.1. Contributing to Cinder 765

Cinder Documentation, Release 20.3.2.dev3

Warning: These are not fair locks. Order in which the lock is acquired by callers may differ from
request order. Starvation is possible, so dont choose a generic lock name for all your locks and try to
create a unique name for each locking domain.

Drivers that use node locks based on volumes should implement method clean_volume_file_locks
and if they use locks based on the snapshots they should also implement clean_snapshot_file_locks
and use method synchronized_remove from cinder.utils.

Example for a driver that used cinder.utils.synchronized:

def my_operation(self, volume):
@utils.synchronized('my-driver-lock' + volume.id)
def method():

pass

method()

@classmethod
def clean_volume_file_locks(cls, volume_id):

utils.synchronized_remove('my-driver-lock-' + volume_id)

Global locks

Global locks, also known as distributed locks in Cinder, provide mutual exclusion in the global scope of
the Cinder services.

They allow you to have a lock regardless of the backend, for example to prevent deleting a volume that
is being cloned, or making sure that your driver is only creating a Target group at a time, in the whole
Cinder deployment, to avoid race conditions.

Global locking functionality is provided by the synchronized decorator from cinder.coordination.

This method is more advanced than the one used for the Process locks and the Node locks, as the name
supports templates. For the template we have all the method parameters as well as f_name that rep-
resents that name of the method being decorated. Templates must use Pythons Format Specification
Mini-Language.

Using brackets we can access the function name {f_name}, an attribute of a parameter {volume.id}, a key
in a dictonary {snapshot[name]}, etc.

Up to date information on the method can be found in the synchronized methods documentation.

Example from the delete volume operation in cinder/volume/manager.py. We use the id attribute of the
volume parameter, and the function name to form the lock name:

@coordination.synchronized('{volume.id}-{f_name}')
@objects.Volume.set_workers
def delete_volume(self, context, volume, unmanage_only=False,

cascade=False):

Example from create snapshot in cinder/volume/drivers/nfs.py, where we use an attribute from self, and
a recursive reference in the snapshot parameter.

766 Chapter 4. For contributors

https://docs.python.org/2.7/library/string.html#formatspec
https://docs.python.org/2.7/library/string.html#formatspec
https://docs.openstack.org/cinder/latest/contributor/api/cinder.coordination.html#module-cinder.coordination

Cinder Documentation, Release 20.3.2.dev3

@coordination.synchronized('{self.driver_prefix}-{snapshot.volume.id}')
def create_snapshot(self, snapshot):

Internally Cinder uses the Tooz library to provide the distributed locking. By default, this library is
configured for Active-Passive deployments, where it uses file locks equivalent to those used for Node
locks.

To support Active-Active deployments a specific driver will need to be configured using the backend_url
configuration option in the coordination section.

For a detailed description of the requirement for global locks in cinder please refer to the replacing local
locks with Tooz and manager local locks specs.

Drivers that use global locks based on volumes should implement method clean_volume_file_locks
and if they use locks based on the snapshots they should also implement clean_snapshot_file_locks
and use method synchronized_remove from cinder.coordination.

Example for the 3PAR driver:

@classmethod
def clean_volume_file_locks(cls, volume_id):

coordination.synchronized_remove('3par-' + volume_id)

Cinder locking

Cinder uses the different locking mechanisms covered in this section to assure mutual exclusion on some
actions. Heres an incomplete list:

Barbican keys

• Lock scope: Global.

• Critical section: Migrate Barbican encryption keys.

• Lock name: {id}-_migrate_encryption_key.

• Where: _migrate_encryption_key method.

• File: cinder/keymgr/migration.py.

Backup service

• Lock scope: Node.

• Critical section: Cleaning up resources at startup.

• Lock name: backup-pgid-{process-group-id}.

• Where: _cleanup_incomplete_backup_operations method.

• File: cinder/backup/manager.py.

Image cache

• Lock scope: Global.

• Critical section: Create a new image cache entry.

• Lock name: {image_id}.

4.1. Contributing to Cinder 767

https://opendev.org/openstack/tooz
https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/ha-aa-tooz-locks.html
https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/ha-aa-tooz-locks.html
https://specs.openstack.org/openstack/cinder-specs/specs/newton/ha-aa-manager_locks.html

Cinder Documentation, Release 20.3.2.dev3

• Where: _prepare_image_cache_entry method.

• File: cinder/volume/flows/manager/create_volume.py.

Throttling:

• Lock scope: Process.

• Critical section: Set parameters of a cgroup using cgset CLI.

• Lock name: BlkioCgroup.

• Where: _inc_device and _dec_device methods.

• File: cinder/volume/throttling.py.

Volume deletion:

• Lock scope: Global.

• Critical section: Volume deletion operation.

• Lock name: {volume.id}-delete_volume.

• Where: delete_volume method.

• File: cinder/volume/manager.py.

Volume deletion request:

• Lock scope: Status based.

• Critical section: Volume delete RPC call.

• Status requirements: attach_status != attached && not migrating

• Where: delete method.

• File: cinder/volume/api.py.

Snapshot deletion:

• Lock scope: Global.

• Critical section: Snapshot deletion operation.

• Lock name: {snapshot.id}-delete_snapshot.

• Where: delete_snapshot method.

• File: cinder/volume/manager.py.

Volume creation:

• Lock scope: Global.

• Critical section: Protect source of volume creation from deletion. Volume or Snapshot.

• Lock name: {snapshot-id}-delete_snapshot or {volume-id}-delete_volume}.

• Where: Inside create_volume method as context manager for calling _fun_flow.

• File: cinder/volume/manager.py.

Attach volume:

• Lock scope: Global.

768 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• Critical section: Updating DB to show volume is attached.

• Lock name: {volume_id}.

• Where: attach_volume method.

• File: cinder/volume/manager.py.

Detach volume:

• Lock scope: Global.

• Critical section: Updating DB to show volume is detached.

• Lock name: {volume_id}-detach_volume.

• Where: detach_volume method.

• File: cinder/volume/manager.py.

Volume upload image:

• Lock scope: Status based.

• Critical section: copy_volume_to_image RPC call.

• Status requirements: status = available or (force && status = in-use)

• Where: copy_volume_to_image method.

• File: cinder/volume/api.py.

Volume extend:

• Lock scope: Status based.

• Critical section: extend_volume RPC call.

• Status requirements: status in (in-use, available)

• Where: _extend method.

• File: cinder/volume/api.py.

Volume migration:

• Lock scope: Status based.

• Critical section: migrate_volume RPC call.

• Status requirements: status in (in-use, available) && not migrating

• Where: migrate_volume method.

• File: cinder/volume/api.py.

Volume retype:

• Lock scope: Status based.

• Critical section: retype RPC call.

• Status requirements: status in (in-use, available) && not migrating

• Where: retype method.

• File: cinder/volume/api.py.

4.1. Contributing to Cinder 769

Cinder Documentation, Release 20.3.2.dev3

Driver locking

There is no general rule on where drivers should use locks. Each driver has its own requirements and
limitations determined by the storage backend and the tools and mechanisms used to manage it.

Even if they are all different, commonalities may exist between drivers. Providing a list of where some
drivers are using locks, even if the list is incomplete, may prove useful to other developers.

To contain the length of this document and keep it readable, the list with the drivers_locking_examples
has its own document.

Cinder-API

The API service is the public face of Cinder. Its REST API makes it possible for anyone to manage
and consume block storage resources. So requests from clients can, and usually do, come from multiple
sources.

Each Cinder API service by default will run multiple workers. Each worker is run in a separate subprocess
and will run a predefined maximum number of green threads.

The number of API workers is defined by the osapi_volume_workers configuration option. Defaults to
the number of CPUs available.

Number of green threads per worker is defined by the wsgi_default_pool_size configuration option. De-
faults to 100 green threads.

The service takes care of validating request parameters. Any detected error is reported immediately to
the user.

Once the request has been validated, the database is changed to reflect the request. This can result in
adding a new entry to the database and/or modifying an existing entry.

For create volume and create snapshot operations the API service will create a new database entry for
the new resource. And the new information for the resource will be returned to the caller right after the
service passes the request to the next Cinder service via RPC.

Operations like retype and delete will change the database entry referenced by the request, before making
the RPC call to the next Cinder service.

Create backup and restore backup are two of the operations that will create a new entry in the database,
and modify an existing one.

These database changes are very relevant to the high availability operation. Cinder core code uses re-
source states extensively to control exclusive access to resources.

Race prevention

The API service checks that resources referenced in requests are in a valid state. Unlike allowed resource
states, valid states are those that allow an operation to proceed.

Validation usually requires checking multiple conditions. Careless coding leaves Cinder open to race
conditions. Patterns in the form of DB data read, data check, and database entry modification, must be
avoided in the Cinder API service.

770 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Cinder has implemented a custom mechanism, called conditional updates, to prevent race conditions.
Leverages the SQLAlchemy ORM library to abstract the equivalent UPDATE ... FROM ... WHERE;
SQL query.

Complete reference information on the conditional updates mechanism is available on the API Races -
Conditional Updates development document.

For a detailed description on the issue, ramifications, and solution, please refer to the API Race removal
spec.

Cinder-Volume

The most common deployment option for Cinder-Volume is as Active-Passive. This requires a common
storage backend, the same Cinder backend configuration in all nodes, having the backend_host set on the
backend sections, and using a high-availability cluster resource manager like Pacemaker.

Attention: Having the same host value configured on more than one Cinder node is highly dis-
couraged. Using backend_host in the backend section is the recommended way to set Active-Passive
configurations. Setting the same host field will make Scheduler and Backup services report using the
same database entry in the services table. This may create a good number of issues: We cannot tell
when the service in a node is down, backups services will break other running services operation on
start, etc.

For Active-Active configurations we need to include the Volume services that will be managing the same
backends on the cluster. To include a node in a cluster, we need to define its name in the [DEFAULT]
section using the cluster configuration option, and start or restart the service.

Note: We can create a cluster with a single volume node. Having a single node cluster allows us to later
on add new nodes to the cluster without restarting the existing node.

Warning: The name of the cluster must be unique and cannot match any of the host or backend_host
values. Non unique values will generate duplicated names for message queues.

When a Volume service is configured to be part of a cluster, and the service is restarted, the manager
detects the change in configuration and moves existing resources to the cluster.

Resources are added to the cluster in the _include_resources_in_cluster method setting the cluster_name
field in the database. Volumes, groups, consistency groups, and image cache elements are added to the
cluster.

Clustered Volume services are different than normal services. To determine if a backend is up, it is
no longer enough checking service.is_up, as that will only give us the status of a specific service. In a
clustered deployment there could be other services that are able to service the same backend. Thats why
well have to check if a service is clustered using cinder.is_clustered and if it is, check the clusters is_up
property instead: service.cluster.is_up.

In the code, to detect if a cluster is up, the is_up property from the Cluster Versioned Object uses
the last_heartbeat field from the same object. The last_heartbeat is a column property from the

4.1. Contributing to Cinder 771

https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/cinder-volume-active-active-support.html
https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/cinder-volume-active-active-support.html

Cinder Documentation, Release 20.3.2.dev3

SQLAlchemy ORM model resulting from getting the latest updated_at field from all the services in
the same cluster.

RPC calls

When we discussed the Job distribution we mentioned message queues having multiple listeners and how
they were used to distribute jobs in a round robin fashion to multiple nodes.

For clustered Volume services we have the same queues used for broadcasting and to address a specific
node, but we also have queues to broadcast to the cluster and to send jobs to the cluster.

Volume services will be listening in all these queues and they can receive request from any of them.
Which theyll have to do to process RPC calls addressed to the cluster or to themselves.

Deciding the target message queue for request to the Volume service is done in the volume/rpcapi.py file.

We use method _get_cctxt, from the VolumeAPI class, to prepare the client context to make RPC calls.
This method accepts a host parameter to indicate where we want to make the RPC. This host parameter
refers to both hosts and clusters, and is used to determine the server and the topic.

When calling the _get_cctx method, we would need to pass the resources host field if its not clustered, and
cluster_name if it is. To facilitate this, clustered resources implement the service_topic_queue property
that automatically gives you the right value to pass to _get_cctx.

An example for the create volume:

def create_volume(self, ctxt, volume, request_spec, filter_properties,
allow_reschedule=True):

cctxt = self._get_cctxt(volume.service_topic_queue)
cctxt.cast(ctxt, 'create_volume',

request_spec=request_spec,
filter_properties=filter_properties,
allow_reschedule=allow_reschedule,
volume=volume)

As we know, snapshots dont have a host or cluseter_name fields, but we can still use the ser-
vice_topic_queue property from the Snapshot Versioned Object to get the right value. The Snapshot
internally checks these values from the Volume Versioned Object linked to that Snapshot to determine
the right value. Heres an example for deleting a snapshot:

def delete_snapshot(self, ctxt, snapshot, unmanage_only=False):
cctxt = self._get_cctxt(snapshot.service_topic_queue)
cctxt.cast(ctxt, 'delete_snapshot', snapshot=snapshot,

unmanage_only=unmanage_only)

772 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Replication

Replication v2.1 failover is requested on a per node basis, so when a failover request is received by the
API it is then redirected to a specific Volume service. Only one of the services that form the cluster
for the storage backend will receive the request, and the others will be oblivious to this change and will
continue using the same replication site they had been using before.

To support the replication feature on clustered Volume services, drivers need to implement the
Active-Active replication spec. In this spec the failover_host method is split in two, failover and
failover_completed.

On a backend supporting replication on Active-Active deployments, failover_host would end up being a
call to failover followed by a call to failover_completed.

Code extract from the RBD driver:

def failover_host(self, context, volumes, secondary_id=None, groups=None):
active_backend_id, volume_update_list, group_update_list = (

self.failover(context, volumes, secondary_id, groups))
self.failover_completed(context, secondary_id)
return active_backend_id, volume_update_list, group_update_list

Enabling Active-Active on Drivers

Supporting Active-Active configurations is driver dependent, so they have to opt in. By default drivers
are not expected to support Active-Active configurations and will fail on startup if we try to deploy them
as such.

Drivers can indicate they support Active-Active setting the class attribute SUPPORTS_ACTIVE_ACTIVE
to True. If a single driver supports multiple storage solutions, it can leave the class attribute as it is, and
set it as an overriding instance attribute on __init__.

There is no well defined procedure required to allow driver maintainers to set SUP-
PORTS_ACTIVE_ACTIVE to True. Though there is an ongoing effort to write a spec on testing
Active-Active.

So for now, we could say that its self-certification. Vendors must do their own testing until they are
satisfied with their testing.

Real testing of Active-Active deployments requires multiple Cinder Volume nodes on different hosts, as
well as a properly configured Tooz DLM.

Driver maintainers can use Devstack to catch the rough edges on their initial testing. Running 2 Cinder
Volume services on an All-In-One DevStack installation makes it easy to deploy and debug.

Running 2 Cinder Volume services on the same node simulating different nodes can be easily done:

• Creating a new directory for local locks: Since we are running both services on the same node, a
file lock could make us believe that the code would work on different nodes. Having a different
lock directory, default is /opt/stack/data/cinder, will prevent this.

• Creating a layover cinder configuration file: Cinder supports having different configurations files
where each new files overrides the common parts of the old ones. We can use the same base
cinder configuration provided by DevStack and write a different file with a [DEFAULT] section

4.1. Contributing to Cinder 773

https://specs.openstack.org/openstack/cinder-specs/specs/ocata/ha-aa-replication.html
https://review.openstack.org/#/c/443504
https://review.openstack.org/#/c/443504

Cinder Documentation, Release 20.3.2.dev3

that configures host (to anything different than the one used in the first service), and lock_path (to
the new directory we created). For example we could create /etc/cinder/cinder2.conf.

• Create a new service unit: This service unit should be identical to the existing devstack@c-vol
except replace the ExecStart that should have the postfix config-file /etc/cinder/cinder2.conf.

Once we have tested it in DevStack way we should deploy Cinder in a new Node, and continue with the
testings.

It is not necessary to do the DevStack step first, we can jump to having Cinder in multiple nodes right
from the start.

Whatever way we decide to test this, well have to change cinder.conf and add the cluster configura-
tion option and restart the Cinder service. We also need to modify the driver under test to include the
SUPPORTS_ACTIVE_ACTIVE = True class attribute.

Cinder-Scheduler

Unlike the Volume service, the Cinder Scheduler has supported Active-Active deployments for a long
time.

Unfortunately, current support is not perfect, scheduling on Active-Active deployments has some issues.

The root cause of these issues is that the scheduler services dont have a reliable single source of truth for
the information they rely on to make the scheduling.

Volume nodes periodically send a broadcast with the backend stats to all the schedulers. The stats include
total storage space, free space, configured maximum over provisioning, etc. All the backends information
is stored in memory at the Schedulers, and used to decide where to create new volumes, migrate them on
a retype, and so on.

For additional information on the stats, please refer to the volume stats section of the Contribu-
tor/Developer docs.

Trying to keep updated stats, schedulers reduce available free space on backends in their internal dictio-
nary. These updates are not shared between schedulers, so there is not a single source of truth, and other
schedulers dont operate with the same information.

Until the next stat reports is sent, schedulers will not get in sync. This may create unexpected behavior
on scheduling.

There are ongoing efforts to fix this problem. Multiple solutions are being discussed: using the database
as a single source of truth, or using an external placement service.

When we added Active-Active support to the Cinder Volume service we had to update the scheduler to
understand it. This mostly entailed 3 things:

• Setting the cluster_name field on Versioned Objects once a backend has been chosen.

• Grouping stats for all clustered hosts. We dont want to have individual entries for the stats of each
host that manages a cluster, as there should be only one up to date value. We stopped using the host
field as the id for each host, and created a new property called backend_id that takes into account
if the service is clustered and returns the host or the cluster as the identifier.

• Prevent race conditions on stats reports. Due to the concurrency on the multiple Volume services
in a cluster, and the threading in the Schedulers, we could receive stat reports out of order (more
up to date stats last). To prevent this we started time stamping the stats on the Volume services.
Using the timestamps schedulers can discard older stats.

774 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Heartbeats

Like any other non API service, schedulers also send heartbeats using the database.

The difference is that, unlike other services, the purpose of these heartbeats is merely informative. Ad-
mins can easily know whether schedulers are running or not with a Cinder command.

Using the same host configuration in all nodes defeats the whole purpose of reporting heartbeats in the
schedulers, as they will all report on the same database entry.

Cinder-Backups

Originally, the Backup service was not only limited to Active-Passive deployments, but it was also tightly
coupled to the Volume service. This coupling meant that the Backup service could only backup volumes
created by the Volume service running on the same node.

In the Mitaka cycle, the Scalable Backup Service spec was implemented. This added support for Active-
Active deployments to the backup service.

The Active-Active implementation for the backup service is different than the one we explained for the
Volume Service. The reason lays not only on the fact that the Backup service supported it first, but also
on it not supporting multiple backends, and not using the Scheduler for any operations.

Scheduling

For backups, its the API the one selecting the host that will do the backup, us-
ing methods _get_available_backup_service_host, _is_backup_service_enabled, and
_get_any_available_backup_service.

These methods use the Backup services heartbeats to determine which hosts are up to handle requests.

Cleaning

Cleanup on Backup services is only performed on start up.

To know what resources each node is working on, they set the host field in the backup Versioned Object
when they receive the RPC call. That way they can select them for cleanup on start.

The method in charge of doing the cleanup for the backups is called
_cleanup_incomplete_backup_operations.

Unlike with the Volume service we cannot have a backup node clean up after another nodes.

4.1. Contributing to Cinder 775

https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/scalable-backup-service.html

Cinder Documentation, Release 20.3.2.dev3

Guru Meditation Reports

Cinder contains a mechanism whereby developers and system administrators can generate a report about
the state of a running Cinder executable. This report is called a Guru Meditation Report (GMR for short).

Generating a GMR

A GMR can be generated by sending the USR2 signal to any Cinder process with support (see below).
The GMR will then output to standard error for that particular process.

For example, suppose that cinder-api has process id 8675, and was run with 2>/var/log/cinder/
cinder-api-err.log. Then, kill -USR2 8675 will trigger the Guru Meditation report to be printed
to /var/log/cinder/cinder-api-err.log.

There is other way to trigger a generation of report, user should add a configuration in Cinders conf file:

[oslo_reports]
file_event_handler=['The path to a file to watch for changes to trigger '

'the reports, instead of signals. Setting this option '
'disables the signal trigger for the reports.']

file_event_handler_interval=['How many seconds to wait between polls when '
'file_event_handler is set, default value '
'is 1']

a GMR can be generated by touching the file which was specified in file_event_handler. The GMR will
then output to standard error for that particular process.

For example, suppose that cinder-api was run with 2>/var/log/cinder/cinder-api-err.log,
and the file path is /tmp/guru_report. Then, touch /tmp/guru_report will trigger the Guru Med-
itation report to be printed to /var/log/cinder/cinder-api-err.log.

Structure of a GMR

The GMR is designed to be extensible; any particular executable may add its own sections. However, the
base GMR consists of several sections:

Package Shows information about the package to which this process belongs, including version infor-
mation

Threads Shows stack traces and thread ids for each of the threads within this process

Green Threads Shows stack traces for each of the green threads within this process (green threads dont
have thread ids)

Configuration Lists all the configuration options currently accessible via the CONF object for the cur-
rent process

776 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Adding Support for GMRs to New Executables

Adding support for a GMR to a given executable is fairly easy.

First import the module (currently residing in oslo-incubator), as well as the Cinder version module:

from oslo_reports import guru_meditation_report as gmr
from cinder import version

Then, register any additional sections (optional):

TextGuruMeditation.register_section('Some Special Section',
some_section_generator)

Finally (under main), before running the main loop of the executable (usually service.
server(server) or something similar), register the GMR hook:

TextGuruMeditation.setup_autorun(version)

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the inline documentation about oslo.reports: oslo.reports

Replication

For backend devices that offer replication features, Cinder provides a common mechanism for exposing
that functionality on a per volume basis while still trying to allow flexibility for the varying implementa-
tion and requirements of all the different backend devices.

There are 2 sides to Cinders replication feature, the core mechanism and the driver specific functionality,
and in this document well only be covering the driver side of things aimed at helping vendors implement
this functionality in their drivers in a way consistent with all other drivers.

Although well be focusing on the driver implementation there will also be some mentions on deploy-
ment configurations to provide a clear picture to developers and help them avoid implementing custom
solutions to solve things that were meant to be done via the cloud configuration.

Overview

As a general rule replication is enabled and configured via the cinder.conf file under the drivers section,
and volume replication is requested through the use of volume types.

NOTE: Current replication implementation is v2.1 and its meant to solve a very specific use case, the
smoking hole scenario. Its critical that you read the Use Cases section of the spec here: https://specs.
openstack.org/openstack/cinder-specs/specs/mitaka/cheesecake.html

From a users perspective volumes will be created using specific volume types, even if it is the default vol-
ume type, and they will either be replicated or not, which will be reflected on the replication_status
field of the volume. So in order to know if a snapshot is replicated well have to check its volume.

4.1. Contributing to Cinder 777

https://docs.openstack.org/oslo.reports/latest/
https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/cheesecake.html
https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/cheesecake.html

Cinder Documentation, Release 20.3.2.dev3

After the loss of the primary storage site all operations on the resources will fail and VMs will no longer
have access to the data. It is then when the Cloud Administrator will issue the failover-host command
to make the cinder-volume service perform the failover.

After the failover is completed, the Cinder volume service will start using the failed-over secondary
storage site for all operations and the user will once again be able to perform actions on all resources that
were replicated, while all other resources will be in error status since they are no longer available.

Storage Device configuration

Most storage devices will require configuration changes to enable the replication functionality, and this
configuration process is vendor and storage device specific so it is not contemplated by the Cinder core
replication functionality.

It is up to the vendors whether they want to handle this device configuration in the Cinder driver or as a
manual process, but the most common approach is to avoid including this configuration logic into Cinder
and having the Cloud Administrators do a manual process following a specific guide to enable replication
on the storage device before configuring the cinder volume service.

Service configuration

The way to enable and configure replication is common to all drivers and it is done via the
replication_device configuration option that goes in the drivers specific section in the cinder.conf
configuration file.

replication_device is a multi dictionary option, that should be specified for each replication target
device the admin wants to configure.

While it is true that all drivers use the same replication_device configuration option this doesnt
mean that they will all have the same data, as there is only one standardized and REQUIRED key in the
configuration entry, all others are vendor specific:

• backend_id:<vendor-identifier-for-rep-target>

Values of backend_id keys are used to uniquely identify within the driver each of the secondary sites,
although they can be reused on different driver sections.

These unique identifiers will be used by the failover mechanism as well as in the driver initialization
process, and the only requirement is that is must never have the value default.

An example driver configuration for a device with multiple replication targets is show below:

.....
[driver-biz]
volume_driver=xxxx
volume_backend_name=biz

[driver-baz]
volume_driver=xxxx
volume_backend_name=baz

[driver-foo]
volume_driver=xxxx

(continues on next page)

778 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

volume_backend_name=foo
replication_device = backend_id:vendor-id-1,unique_key:val....
replication_device = backend_id:vendor-id-2,unique_key:val....

In this example the result of calling self.configuration.safe_get('replication_device')
within the driver is the following list:

[{backend_id: vendor-id-1, unique_key: val1},
{backend_id: vendor-id-2, unique_key: val2}]

It is expected that if a driver is configured with multiple replication targets, that replicated volumes are
actually replicated on all targets.

Besides specific replication device keys defined in the replication_device, a driver may also have
additional normal configuration options in the driver section related with the replication to allow Cloud
Administrators to configure things like timeouts.

Capabilities reporting

There are 2 new replication stats/capability keys that drivers supporting replication v2.1 should be re-
porting: replication_enabled and replication_targets:

stats["replication_enabled"] = True|False
stats["replication_targets"] = [<backend-id_1, <backend-id_2>...]

If a driver is behaving correctly we can expect the replication_targets field to be populated when-
ever replication_enabled is set to True, and it is expected to either be set to [] or be missing alto-
gether when replication_enabled is set to False.

The purpose of the replication_enabled field is to be used by the scheduler in volume types for
creation and migrations.

As for the replication_targets field it is only provided for informational purposes so it can be re-
trieved through the get_capabilities using the admin REST API, but it will not be used for validation
at the API layer. That way Cloud Administrators will be able to know available secondary sites where
they can failover.

Volume Types / Extra Specs

The way to control the creation of volumes on a cloud with backends that have replication enabled is,
like with many other features, through the use of volume types.

We wont go into the details of volume type creation, but suffice to say that you will most likely want to
use volume types to discriminate between replicated and non replicated volumes and be explicit about it
so that non replicated volumes wont end up in a replicated backend.

Since the driver is reporting the replication_enabled key, we just need to require it for replication
volume types adding replication_enabled='<is> True' and also specifying it for all non replicated
volume types replication_enabled='<is> False'.

4.1. Contributing to Cinder 779

Cinder Documentation, Release 20.3.2.dev3

Its up to the driver to parse the volume type info on create and set things up as requested. While the
scoping key can be anything, its strongly recommended that all backends utilize the same key (replication)
for consistency and to make things easier for the Cloud Administrator.

Additional replication parameters can be supplied to the driver using vendor specific properties through
the volume types extra-specs so they can be used by the driver at volume creation time, or retype.

It is up to the driver to parse the volume type info on create and retype to set things up as requested. A
good pattern to get a custom parameter from a given volume instance is this:

extra_specs = getattr(volume.volume_type, 'extra_specs', {})
custom_param = extra_specs.get('custom_param', 'default_value')

It may seem convoluted, but we must be careful when retrieving the extra_specs from the
volume_type field as it could be None.

Vendors should try to avoid obfuscating their custom properties and expose them using the
_init_vendor_properties method so they can be checked by the Cloud Administrator using the
get_capabilities REST API.

NOTE: For storage devices doing per backend/pool replication the use of volume types is also recom-
mended.

Volume creation

Drivers are expected to honor the replication parameters set in the volume type during creation, retyping,
or migration.

When implementing the replication feature there are some driver methods that will most likely need
modifications -if they are implemented in the driver (since some are optional)- to make sure that the
backend is replicating volumes that need to be replicated and not replicating those that dont need to be:

• create_volume

• create_volume_from_snapshot

• create_cloned_volume

• retype

• clone_image

• migrate_volume

In these methods the driver will have to check the volume type to see if the volumes need to be replicated,
we could use the same pattern described in the Volume Types / Extra Specs section:

def _is_replicated(self, volume):
specs = getattr(volume.volume_type, 'extra_specs', {})
return specs.get('replication_enabled') == '<is> True'

But it is not the recommended mechanism, and the is_replicated method available in volumes and
volume types versioned objects instances should be used instead.

Drivers are expected to keep the replication_status field up to date and in sync with reality, usually
as specified in the volume type. To do so in above mentioned methods implementation they should use

780 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

the update model mechanism provided for each one of those methods. One must be careful since the
update mechanism may be different from one method to another.

What this means is that most of these methods should be returning a replication_status key with
the value set to enabled in the model update dictionary if the volume type is enabling replication. There
is no need to return the key with the value of disabled if it is not enabled since that is the default value.

In the case of the create_volume, and retype method there is no need to return the
replication_status in the model update since it has already been set by the scheduler on creation
using the extra spec from the volume type. And on migrate_volume there is no need either since there
is no change to the replication_status.

NOTE: For storage devices doing per backend/pool replication it is not necessary to check the volume type
for the replication_enabled key since all created volumes will be replicated, but they are expected
to return the replication_status in all those methods, including the create_volume method since
the driver may receive a volume creation request without the replication enabled extra spec and therefore
the driver will not have set the right replication_status and the driver needs to correct this.

Besides the replication_status field that drivers need to update there are other fields in the database
related to the replication mechanism that the drivers can use:

• replication_extended_status

• replication_driver_data

These fields are string type fields with a maximum size of 255 characters and they are available for drivers
to use internally as they see fit for their normal replication operation. So they can be assigned in the model
update and later on used by the driver, for example during the failover.

To avoid using magic strings drivers must use values defined by the ReplicationStatus class in
cinder/objects/fields.py file and these are:

• ERROR: When setting the replication failed on creation, retype, or migrate. This should be accom-
panied by the volume status error.

• ENABLED: When the volume is being replicated.

• DISABLED: When the volume is not being replicated.

• FAILED_OVER: After a volume has been successfully failed over.

• FAILOVER_ERROR: When there was an error during the failover of this volume.

• NOT_CAPABLE: When we failed-over but the volume was not replicated.

The first 3 statuses revolve around the volume creation and the last 3 around the failover mechanism.

The only status that should not be used for the volumes replication_status is the FAILING_OVER
status.

Whenever we are referring to values of the replication_status in this document we will be refer-
ring to the ReplicationStatus attributes and not a literal string, so ERROR means cinder.objects.
field.ReplicationStatus.ERROR and not the string ERROR.

4.1. Contributing to Cinder 781

Cinder Documentation, Release 20.3.2.dev3

Failover

This is the mechanism used to instruct the cinder volume service to fail over to a secondary/target device.

Keep in mind the use case is that the primary backend has died a horrible death and is no longer valid,
so any volumes that were on the primary and were not being replicated will no longer be available.

The method definition required from the driver to implement the failback mechanism is as follows:

def failover_host(self, context, volumes, secondary_id=None):

There are several things that are expected of this method:

• Promotion of a secondary storage device to primary

• Generating the model updates

• Changing internally to access the secondary storage device for all future requests.

If no secondary storage device is provided to the driver via the backend_id argument (it is equal to
None), then it is up to the driver to choose which storage device to failover to. In this regard it is important
that the driver takes into consideration that it could be failing over from a secondary (there was a prior
failover request), so it should discard current target from the selection.

If the secondary_id is not a valid one the driver is expected to raise InvalidReplicationTarget,
for any other non recoverable errors during a failover the driver should raise UnableToFailOver or any
child of VolumeDriverException class and revert to a state where the previous backend is in use.

The failover method in the driver will receive a list of replicated volumes that need to be failed over.
Replicated volumes passed to the driver may have diverse replication_status values, but they will
always be one of: ENABLED, FAILED_OVER, or FAILOVER_ERROR.

The driver must return a 2-tuple with the new storage device target id as the first element and a list of
dictionaries with the model updates required for the volumes so that the driver can perform future actions
on those volumes now that they need to be accessed on a different location.

Its not a requirement for the driver to return model updates for all the volumes, or for any for that matter as
it can return None or an empty list if theres no update necessary. But if elements are returned in the model
update list then it is a requirement that each of the dictionaries contains 2 key-value pairs, volume_id
and updates like this:

[{
'volume_id': volumes[0].id,
'updates': {

'provider_id': new_provider_id1,
...

},
'volume_id': volumes[1].id,
'updates': {

'provider_id': new_provider_id2,
'replication_status': fields.ReplicationStatus.FAILOVER_ERROR,
...

},
}]

782 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

In these updates there is no need to set the replication_status to FAILED_OVER if the failover was
successful, as this will be performed by the manager by default, but it wont create additional DB queries
if it is returned. It is however necessary to set it to FAILOVER_ERROR for those volumes that had errors
during the failover.

Drivers dont have to worry about snapshots or non replicated volumes, since the manager will take care
of those in the following manner:

• All non replicated volumes will have their current status field saved in the previous_status
field, the status field changed to error, and their replication_status set to NOT_CAPABLE.

• All snapshots from non replicated volumes will have their statuses changed to error.

• All replicated volumes that failed on the failover will get their status changed to error,
their current status preserved in previous_status, and their replication_status set to
FAILOVER_ERROR .

• All snapshots from volumes that had errors during the failover will have their statuses set to error.

Any model update request from the driver that changes the status field will trigger a change in the
previous_status field to preserve the current status.

Once the failover is completed the driver should be pointing to the secondary and should be able to create
and destroy volumes and snapshots as usual, and it is left to the Cloud Administrators discretion whether
resource modifying operations are allowed or not.

Failback

Drivers are not required to support failback, but they are required to raise a
InvalidReplicationTarget exception if the failback is requested but not supported.

The way to request the failback is quite simple, the driver will receive the argument secondary_id with
the value of default. That is why it was forbidden to use the default on the target configuration in
the cinder configuration file.

Expected driver behavior is the same as the one explained in the Failover section:

• Promotion of the original primary to primary

• Generating the model updates

• Changing internally to access the original primary storage device for all future requests.

If the failback of any of the volumes fail the driver must return replication_status set to
ERROR in the volume updates for those volumes. If they succeed it is not necessary to change the
replication_status since the default behavior will be to set them to ENABLED, but it wont create
additional DB queries if it is set.

The manager will update resources in a slightly different way than in the failover case:

• All non replicated volumes will not have any model modifications.

• All snapshots from non replicated volumes will not have any model modifications.

• All replicated volumes that failed on the failback will get their status changed to error, have
their current status preserved in the previous_status field, and their replication_status
set to FAILOVER_ERROR.

• All snapshots from volumes that had errors during the failover will have their statuses set to error.

4.1. Contributing to Cinder 783

Cinder Documentation, Release 20.3.2.dev3

We can avoid using the default magic string by using the FAILBACK_SENTINEL class attribute from the
VolumeManager class.

Initialization

It stands to reason that a failed over Cinder volume service may be restarted, so there needs to be a way
for a driver to know on start which storage device should be used to access the resources.

So, to let drivers know which storage device they should use the manager passes drivers the
active_backend_id argument to their __init__ method during the initialization phase of the driver.
Default value is None when the default (primary) storage device should be used.

Drivers should store this value if they will need it, as the base driver is not storing it, for example to
determine the current storage device when a failover is requested and we are already in a failover state,
as mentioned above.

Freeze / Thaw

In many cases, after a failover has been completed well want to allow changes to the data in the volumes as
well as some operations like attach and detach while other operations that modify the number of existing
resources, like delete or create, are not allowed.

And that is where the freezing mechanism comes in; freezing a backend puts the control plane of the
specific Cinder volume service into a read only state, or at least most of it, while allowing the data plane
to proceed as usual.

While this will mostly be handled by the Cinder core code, drivers are informed when the freezing mech-
anism is enabled or disabled via these 2 calls:

freeze_backend(self, context)
thaw_backend(self, context)

In most cases the driver may not need to do anything, and then it doesnt need to define any of these
methods as long as its a child class of the BaseVD class that already implements them as noops.

Raising a VolumeDriverException exception in any of these methods will result in a 500 status code
response being returned to the caller and the manager will not log the exception, so its up to the driver to
log the error if it is appropriate.

If the driver wants to give a more meaningful error response, then it can raise other exceptions that have
different status codes.

When creating the freeze_backend and thaw_backend driver methods we must remember that this is a
Cloud Administrator operation, so we can return errors that reveal internals of the cloud, for example the
type of storage device, and we must use the appropriate internationalization translation methods when
raising exceptions; for VolumeDriverException no translation is necessary since the manager doesnt log
it or return to the user in any way, but any other exception should use the _() translation method since it
will be returned to the REST API caller.

For example, if a storage device doesnt support the thaw operation when failed over, then it should raise
an Invalid exception:

784 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

def thaw_backend(self, context):
if self.failed_over:

msg = _('Thaw is not supported by driver XYZ.')
raise exception.Invalid(msg)

User Messages

General information

User messages are a way to inform users about the state of asynchronous operations. One example would
be notifying the user of why a volume provisioning request failed. End users can request these messages
via the Volume v3 REST API under the /messages resource. The REST API allows only GET and
DELETE verbs for this resource.

Internally, you use the cinder.message.api to work with messages. In order to prevent leakage of sen-
sitive information or breaking the volume service abstraction layer, free-form messages are not allowed.
Instead, all messages must be defined using a combination of pre-defined fields in the cinder.message.
message_field module.

The message ultimately displayed to end users is combined from an Action field and a Detail field.

• The Action field describes what was taking place when the message was created, for example,
Action.COPY_IMAGE_TO_VOLUME.

• The Detail field is used to provide more information, for example, Detail.
NOT_ENOUGH_SPACE_FOR_IMAGE or Detail.QUOTA_EXCEED.

Example

Example message generation:

from cinder import context
from cinder.message import api as message_api
from cinder.message import message_field

self.message_api = message_api.API()

context = context.RequestContext()
volume_id = 'f292cc0c-54a7-4b3b-8174-d2ff82d87008'

self.message_api.create(
context,
message_field.Action.UNMANAGE_VOLUME,
resource_uuid=volume_id,
detail=message_field.Detail.UNMANAGE_ENC_NOT_SUPPORTED)

Will produce roughly the following:

GET /v3/6c430ede-9476-4128-8838-8d3929ced223/messages
{

(continues on next page)

4.1. Contributing to Cinder 785

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

"messages": [
{
"id": "5429fffa-5c76-4d68-a671-37a8e24f37cf",
"event_id": "VOLUME_VOLUME_006_008",
"user_message": "unmanage volume: Unmanaging encrypted volumes is not␣

↪→supported.",
"message_level": "ERROR",
"resource_type": "VOLUME",
"resource_uuid": "f292cc0c-54a7-4b3b-8174-d2ff82d87008",
"created_at": 2018-08-27T09:49:58-05:00,
"guaranteed_until": 2018-09-27T09:49:58-05:00,
"request_id": "req-936666d2-4c8f-4e41-9ac9-237b43f8b848",
}

]
}

Adding user messages

If you are creating a message in the code but find that the predefined fields are insufficient, just add what
you need to cinder.message.message_field. The key thing to keep in mind is that all defined fields
should be appropriate for any API user to see and not contain any sensitive information. A good rule-
of-thumb is to be very general in error messages unless the issue is due to a bad user action, then be
specific.

As a convenience to developers, the Detail class contains a EXCEPTION_DETAIL_MAPPINGS dict. This
maps Detail fields to particular Cinder exceptions, and allows you to create messages in a context
where youve caught an Exception that could be any of several possibilities. Instead of having to sort
through them where youve caught the exception, you can call message_api.create and pass it both
the exception and a general detail field like Detail.SOMETHING_BAD_HAPPENED (thats not a real field,
but you get the idea). If the passed exception is in the mapping, the resulting message will have the
mapped Detail field instead of the generic one.

Usage patterns

These are taken from the Cinder code. The exact code may have changed by the time you read this, but
the general idea should hold.

No exception in context

From cinder/compute/nova.py:

def extend_volume(self, context, server_ids, volume_id):
api_version = '2.51'
events = [self._get_volume_extended_event(server_id, volume_id)

for server_id in server_ids]
result = self._send_events(context, events, api_version=api_version)
if not result:

(continues on next page)

786 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

self.message_api.create(
context,
message_field.Action.EXTEND_VOLUME,
resource_uuid=volume_id,
detail=message_field.Detail.NOTIFY_COMPUTE_SERVICE_FAILED)

return result

• You must always pass the context object and an action.

• Were working with an existing volume, so pass its ID as the resource_uuid.

• You need to fill in some detail, or else the code will supply an UNKNOWN_ERROR, which isnt very
helpful.

Cinder exception in context

From cinder/scheduler/manager.py:

except exception.NoValidBackend as ex:
QUOTAS.rollback(context, reservations,

project_id=volume.project_id)
_extend_volume_set_error(self, context, ex, request_spec)
self.message_api.create(

context,
message_field.Action.EXTEND_VOLUME,
resource_uuid=volume.id,
exception=ex)

• You must always pass the context object and an action.

• Since we have it available, pass the volume ID as the resource_uuid.

• Its a Cinder exception. Check to see if its in the mapping.

– If its there, we can pass it, and the detail will be supplied by the code.

– It its not, consider adding it and mapping it to an existing Detail field. If theres no current
Detail field for that exception, go ahead and add that, too.

– On the other hand, maybe its in the mapping, but you have more information in this code
context than is available in the mapped Detail field. In that case, you may want to use a
different Detail field (creating it if necessary).

– Remember, if you pass both a mapped exception and a detail, the passed detail will be ignored
and the mapped Detail field will be used instead.

4.1. Contributing to Cinder 787

Cinder Documentation, Release 20.3.2.dev3

General Exception in context

Not passing the Exception to message_api.create()

From cinder/volume/manager.py:

try:
self.driver.extend_volume(volume, new_size)

except exception.TargetUpdateFailed:
We just want to log this but continue on with quota commit
LOG.warning('Volume extended but failed to update target.')

except Exception:
LOG.exception("Extend volume failed.",

resource=volume)
self.message_api.create(

context,
message_field.Action.EXTEND_VOLUME,
resource_uuid=volume.id,
detail=message_field.Detail.DRIVER_FAILED_EXTEND)

• Pass the context object and an action; pass a resource_uuid since we have it.

• Were not passing the exception, so the detail we pass is guaranteed to be used.

Passing the Exception to message_api.create()

From cinder/volume/manager.py:

try:
if volume_metadata.get('readonly') == 'True' and mode != 'ro':

raise exception.InvalidVolumeAttachMode(mode=mode,
volume_id=volume.id)

utils.require_driver_initialized(self.driver)

LOG.info('Attaching volume %(volume_id)s to instance '
'%(instance)s at mountpoint %(mount)s on host '
'%(host)s.',
{'volume_id': volume_id, 'instance': instance_uuid,
'mount': mountpoint, 'host': host_name_sanitized},

resource=volume)
self.driver.attach_volume(context,

volume,
instance_uuid,
host_name_sanitized,
mountpoint)

except Exception as excep:
with excutils.save_and_reraise_exception():

self.message_api.create(
context,
message_field.Action.ATTACH_VOLUME,

(continues on next page)

788 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

resource_uuid=volume_id,
exception=excep)

attachment.attach_status = (
fields.VolumeAttachStatus.ERROR_ATTACHING)

attachment.save()

• Pass the context object and an action; pass a resource_uuid since we have it.

• Were passing an exception, which could be a Cinder InvalidVolumeAttachMode, which is in
the mapping. In that case, the mapped Detail will be used; otherwise, the code will supply a
Detail.UNKNOWN_ERROR.

This is appropriate if we really have no idea what happened. If its possible to provide more infor-
mation, we can pass a different, generic Detail field (creating it if necessary). The passed detail
would be used for any exception thats not in the mapping. If its a mapped exception, then the
mapped Detail field will be used.

Module documentation

The Message API Module

Handles all requests related to user facing messages.

class API
API for handling user messages.

Cinder Messages describe the outcome of a user action using predefined fields that are members
of objects defined in the cinder.message.message_field package. They are intended to be exposed
to end users. Their primary purpose is to provide end users with a means of discovering what went
wrong when an asynchronous action in the Volume REST API (for which theyve already received
a 2xx response) fails.

Messages contain an expires_at field based on the creation time plus the value of the message_ttl
configuration option. They are periodically reaped by a task of the SchedulerManager class whose
periodicity is given by the message_reap_interval configuration option.

cleanup_expired_messages(context)

create(context, action, resource_type=’VOLUME’, resource_uuid=None, exception=None,
detail=None, level=’ERROR’)

Create a message record with the specified information.

Parameters

• context current context object

• action a message_field.Action field describing what was taking place when
this message was created

• resource_type a message_field.Resource field describing the resource this
message applies to. Default is message_field.Resource.VOLUME

• resource_uuid the resource ID if this message applies to an existing re-
source. Default is None

4.1. Contributing to Cinder 789

Cinder Documentation, Release 20.3.2.dev3

• exception if an exception has occurred, you can pass it in and it
will be translated into an appropriate message detail ID (possibly mes-
sage_field.Detail.UNKNOWN_ERROR). The message in the exception it-
self is ignored in order not to expose sensitive information to end users. De-
fault is None

• detail a message_field.Detail field describing the event
the message is about. Default is None, in which case mes-
sage_field.Detail.UNKNOWN_ERROR will be used for the message unless
an exception in the message_field.EXCEPTION_DETAIL_MAPPINGS
is passed; in that case the message_field.Detail field thats mapped to the
exception is used.

• level a string describing the severity of the message. Suggested values are
INFO, ERROR, WARNING. Default is ERROR.

create_from_request_context(context, exception=None, detail=None, level=’ERROR’)
Create a message record with the specified information.

Parameters

• context current context object which we must have populated with the
message_action, message_resource_type and message_resource_id fields

• exception if an exception has occurred, you can pass it in and it
will be translated into an appropriate message detail ID (possibly mes-
sage_field.Detail.UNKNOWN_ERROR). The message in the exception it-
self is ignored in order not to expose sensitive information to end users. De-
fault is None

• detail a message_field.Detail field describing the event
the message is about. Default is None, in which case mes-
sage_field.Detail.UNKNOWN_ERROR will be used for the message unless
an exception in the message_field.EXCEPTION_DETAIL_MAPPINGS
is passed; in that case the message_field.Detail field thats mapped to the
exception is used.

• level a string describing the severity of the message. Suggested values are
INFO, ERROR, WARNING. Default is ERROR.

delete(context, id)
Delete message with the specified id.

get(context, id)
Return message with the specified id.

get_all(context, filters=None, marker=None, limit=None, offset=None, sort_keys=None,
sort_dirs=None)

Return all messages for the given context.

790 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

The Message Field Module

Message Resource, Action, Detail and user visible message.

Use Resource, Action and Details combination to indicate the Event in the format of:

EVENT: VOLUME_RESOURCE_ACTION_DETAIL

Also, use exception-to-detail mapping to decrease the workload of classifying event in cinders task code.

The Defined Messages Module

This module is DEPRECATED and is currently only used by cinder.api.v3.messages to handle
pre-Pike message database objects. (Editorial comment:: With the default message_ttl of 2592000
seconds (30 days), its probably safe to remove this module during the Train development cycle.)

Event ID and user visible message mapping.

Event IDs are used to look up the message to be displayed for an API Message object. All defined
messages should be appropriate for any API user to see and not contain any sensitive information. A
good rule-of-thumb is to be very general in error messages unless the issue is due to a bad user action,
then be specific.

class EventIds
Bases: object

ATTACH_READONLY_VOLUME = 'VOLUME_000003'

IMAGE_FROM_VOLUME_OVER_QUOTA = 'VOLUME_000004'

UNABLE_TO_ALLOCATE = 'VOLUME_000002'

UNKNOWN_ERROR = 'VOLUME_000001'

UNMANAGE_ENCRYPTED_VOLUME_UNSUPPORTED = 'VOLUME_000005'

get_message_text(event_id)

Migration

Introduction to volume migration

Cinder provides the volume migration support within the same deployment, which means the node of
cinder volume service, c-vol node where the source volume is located, is able to access the c-vol node
where the destination volume is located, and both of them share the same Cinder API service, scheduler
service, message queue service, etc.

As a general rule migration is possible for volumes in available or in-use status, for the driver which
has implemented volume migration. So far, we are confident that migration will succeed for available
volumes, whose drivers implement the migration routines. However, the migration of in-use volumes is
driver dependent. It depends on different drivers involved in the operation. It may fail depending on the
source or destination driver of the volume.

For example, from RBD to LVM, the migration of in-use volume will succeed, but from LVM to RBD,
it will fail.

4.1. Contributing to Cinder 791

Cinder Documentation, Release 20.3.2.dev3

There are two major scenarios, which volume migration supports in Cinder:

Scenario 1: Migration between two back-ends with the same volume type, regardless if they are located
on the same c-vol node or not.

Scenario 2: Migration between two back-ends with different volume types, regardless if the back-ends
are located on the same c-vol node or not.

Note: Retyping an unencrypted volume to the same size encrypted volume will most likely fail. Even
though the volume is the same size as the source volume, the encrypted volume needs to store additional
encryption information overhead. This results in the new volume not being large enough to hold all data.
Please do not try this in older releases.

How to do volume migration via CLI

Scenario 1 of volume migration is done via the following command from the CLI:

cinder migrate [--force-host-copy [<True|False>]]
[--lock-volume [<True|False>]]
<volume> <host>

Mandatory arguments:
<volume> ID of volume to migrate.
<host> Destination host. The format of host is

host@backend#POOL, while 'host' is the host
name of the volume node, 'backend' is the back-end
name and 'POOL' is a logical concept to describe
a set of storage resource, residing in the
back-end. If the back-end does not have specified
pools, 'POOL' needs to be set with the same name
as 'backend'.

Optional arguments:
--force-host-copy [<True|False>]

Enables or disables generic host-based force-
migration, which bypasses the driver optimization.
Default=False.

--lock-volume [<True|False>]
Enables or disables the termination of volume
migration caused by other commands. This option
applies to the available volume. True means it locks
the volume state and does not allow the migration to
be aborted. The volume status will be in maintenance
during the migration. False means it allows the volume
migration to be aborted. The volume status is still in
the original status. Default=False.

Important note: Currently, error handling for failed migration operations is under development in Cinder.
If we would like the volume migration to finish without any interruption, please set lock-volume to True.
If it is set to False, we cannot predict what will happen, if other actions like attach, detach, extend, etc,

792 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

are issued on the volume during the migration. It all depends on which stage the volume migration has
reached and when the request of another action comes.

Scenario 2 of volume migration can be done via the following command from the CLI:

cinder retype --migration-policy on-demand
<volume> <volume-type>

Mandatory arguments:
<volume> Name or ID of volume for which to modify type.
<volume-type> New volume type.

Source volume type and destination volume type must be different and they must refer to different back-
ends.

Configurations

To set up an environment to try the volume migration, we need to configure at least two different back-
ends on the same node of cinder volume service, c-vol node or two back-ends on two different volume
nodes of cinder volume service, c-vol nodes. Which command to use, cinder migrate or cinder retype,
depends on which type of volume we would like to test.

Scenario 1 for migration

To configure the environment for Scenario 1 migration, e.g. a volume is migrated from back-end <driver-
backend> on Node 1 to back-end <driver-backend> on Node 2, cinder.conf needs to contains the following
entries for the same back-end on both of source and the destination nodes:

For Node 1: [<driver-backend>] volume_driver=xxxx volume_backend_name=<driver-backend>

For Node 2: [<driver-backend>] volume_driver=xxxx volume_backend_name=<driver-backend>

If a volume with a predefined volume type is going to migrate, the back-end drivers from Node 1
and Node 2 should have the same value for volume_backend_name, which means <driver-backend>
should be the same for Node 1 and Node 2. The volume type can be created with the extra specs {vol-
ume_backend_name: driver-biz}.

If we are going to migrate a volume with a volume type of none, it is not necessary to set the same value
to volume_backend_name for both Node 1 and Node 2.

Scenario 2 for migration

To configure the environment for Scenario 2 migration: For example, a volume is migrated from driver-
biz back-end on Node 1 to driver-net back-end on Node 2, cinder.conf needs to contains the following
entries:

For Node 1: [driver-biz] volume_driver=xxxx volume_backend_name=driver-biz

For Node 2: [driver-net] volume_driver=xxxx volume_backend_name=driver-net

For example, a volume is migrated from driver-biz back-end on Node 1 to driver-biz back-net on the same
node, cinder.conf needs to contains the following entries:

[driver-biz] volume_driver=xxxx volume_backend_name=driver-biz

[driver-net] volume_driver=xxxx volume_backend_name=driver-net

Two volume types need to be created. One is with the extra specs: {volume_backend_name: driver-biz}.
The other is with the extra specs: {volume_backend_name: driver-net}.

4.1. Contributing to Cinder 793

Cinder Documentation, Release 20.3.2.dev3

What can be tracked during volume migration

The volume migration is an administrator only action and it may take a relatively long time to finish. The
property migration status will indicate the stage of the migration process for the volume. The administra-
tor can check the migration status via the cinder list or cinder show <volume-id> command. The cinder
list command presents a list of all the volumes with some properties displayed, including the migration
status, only to the administrator. However, the migration status is not included if cinder list is issued by
an ordinary user. The cinder show <volume-id> will present all the detailed information of a specific
volume, including the migration status, only to the administrator.

If the migration status of a volume shows starting, migrating or completing, it means the volume is in
the process of a migration. If the migration status is success, it means the migration has finished and the
previous migration of this volume succeeded. If the migration status is error, it means the migration has
finished and the previous migration of this volume failed.

How to implement volume migration for a back-end driver

There are two kinds of implementations for the volume migration currently in Cinder.

The first is the generic host-assisted migration, which consists of two different transfer modes, block-
based and file-based. This implementation is based on the volume attachment to the node of cinder
volume service, c-vol node. Any back-end driver supporting iSCSI will be able to support the generic
host-assisted migration for sure. The back-end driver without iSCSI supported needs to be tested to decide
if it supports this kind of migration. The block-based transfer mode is done by dd command, applying to
drivers like LVM, Storwize, etc, and the file-based transfer mode is done by file copy, typically applying
to the RBD driver.

The second is the driver specific migration. Since some storage back-ends have their special commands
to copy the volume, Cinder also provides a way for them to implement in terms of their own internal
commands to migrate.

If the volume is migrated between two nodes configured with the same storage back-end, the migration
will be optimized by calling the method migrate_volume in the driver, if the driver provides an implemen-
tation for it to migrate the volume within the same back-end, and will fallback to the generic host-assisted
migration provided in the manager, if no such implementation is found or this implementation is not ap-
plicable for this migration.

If your storage driver in Cinder provides iSCSI support, it should naturally work under the generic host-
assisted migration, when force-host-copy is set to True from the API request. Normally you do not need
to change any code, unless you need to transfer the volume from your driver via a different way from the
block-based transfer or the file-based transfer.

If your driver uses a network connection to communicate the block data itself, you can use file I/O to
participate in migration. Please take the RBD driver as a reference for this implementation.

If you would like to implement a driver specific volume migration for your driver, the API method asso-
ciated with the driver specific migration is the following admin only method:

migrate_volume(self, ctxt, volume, host)

If your driver is taken as the destination back-end for a generic host-assisted migration and your driver
needs to update the volume model after a successful migration, you need to implement the following
method for your driver:

794 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

update_migrated_volume(self, ctxt, volume, new_volume, original_volume_status)

Required methods

There is one mandatory method that needs to be implemented for the driver to implement the driver
specific volume migration.

migrate_volume

Used to migrate the volume directly if source and destination are managed by same storage.

There is one optional method that could be implemented for the driver to implement the generic host-
assisted migration.

update_migrated_volume

Used to return the key-value pairs to update the volume model after a successful migration. The key-
value pairs returned are supposed to be the final values your driver would like to be in the volume model,
if a migration is completed.

This method can be used in a generally wide range, but the most common use case covered in this method
is to rename the back-end name to the original volume id in your driver to make sure that the back-end
still keeps the same id or name as it is before the volume migration. For this use case, there are two
important fields: _name_id and provider_location.

The field _name_id is used to map the cinder volume id and the back-end id or name. The default value
is None, which means the cinder volume id is the same to the back-end id or name. If they are different,
_name_id is used to saved the back-end id or name.

The field provider_location is used to save the export information, created by the volume attach. This field
is optional, since some drivers support the export creation and some do not. It is the driver maintainers
responsibility to decide what this field needs to be.

If the back-end id or name is renamed successfully, this method can return {_name_id: None,
provider_location: None}. It is the choice for your driver to implement this method and decide what
use cases should be covered.

Running Cinder API under Apache

Files

Copy the file etc/cinder/api-httpd.conf to the appropriate location for your Apache server, most likely:

/etc/httpd/conf.d/cinder_wsgi.conf

Update this file to match your system configuration (for example, some distributions put httpd logs in
the apache2 directory and some in the httpd directory). Create the directory /var/www/cgi-bin/cinder/.
You can either hard or soft link the file cinder/wsgi/wsgi.py to be osapi_volume under the /var/www/cgi-
bin/cinder/ directory. For a distribution appropriate place, it should probably be copied to:

/usr/share/openstack/cinder/httpd/cinder.py

Cinders primary configuration file (etc/cinder.conf) and the PasteDeploy configuration file (etc/cinder-
paste.ini) must be readable to httpd in one of the default locations described in Configuring Cinder.

4.1. Contributing to Cinder 795

Cinder Documentation, Release 20.3.2.dev3

Access Control

If you are running with Linux kernel security module enabled (for example SELinux or AppArmor),
make sure that the configuration file has the appropriate context to access the linked file.

Upgrades

Starting from Mitaka release Cinder gained the ability to be upgraded without introducing downtime of
control plane services. Operator can simply upgrade Cinder services instances one-by-one. To achieve
that, developers need to make sure that any introduced change doesnt break older services running in the
same Cinder deployment.

In general there is a requirement that release N will keep backward compatibility with release N-1 and in
a deployment Ns and N-1s services can safely coexist. This means that when performing a live upgrade
you cannot skip any release (e.g. you cannot upgrade N to N+2 without upgrading it to N+1 first). Further
in the document N will denote the current release, N-1 a previous one, N+1 the next one, etc.

Having in mind that we only support compatibility with N-1, most of the compatibility code written in
N needs to exist just for one release and can be removed in the beginning of N+1. A good practice here
is to mark them with TODO or FIXME comments to make them easy to find in the future.

Please note that proper upgrades solution should support both release-to-release upgrades as well as
upgrades of deployments following the Cinder master more closely. We cannot just merge patches im-
plementing compatibility at the end of the release - we should keep things compatible through the whole
release.

To achieve compatibility, discipline is required from the developers. There are several planes on which
incompatibility may occur:

• REST API changes - these are prohibited by definition and this document will not describe the
subject. For further information one may use API Working Group guidelines for reference.

• Database schema migrations - e.g. if N-1 was relying on some column in the DB being present,
Ns migrations cannot remove it. N+1s however can (assuming N has no notion of the column).

• Database data migrations - if a migration requires big amount of data to be transferred between
columns or tables or converted, it will most likely lock the tables. This may cause services to be
unresponsive, causing the downtime.

• RPC API changes - adding or removing RPC method parameter, or the method itself, may lead
to incompatibilities.

• RPC payload changes - adding, renaming or removing a field from the dict passed over RPC may
lead to incompatibilities.

Next sections of this document will focus on explaining last four points and provide means to tackle
required changes in these matters while maintaining backward compatibility.

796 Chapter 4. For contributors

https://specs.openstack.org/openstack/api-wg/guidelines/evaluating_api_changes.html

Cinder Documentation, Release 20.3.2.dev3

Database schema and data migrations

In general incompatible database schema migrations can be tracked to ALTER and DROP SQL com-
mands instruction issued either against a column or table. This is why a unit test that blocks such migra-
tions was introduced. We should try to keep our DB modifications additive. Moreover we should aim
not to introduce migrations that cause the database tables to lock for a long period. Long lock on whole
table can block other queries and may make real requests to fail.

Adding a column

This is the simplest case - we dont have any requirements when adding a new column apart from the fact
that it should be added as the last one in the table. If thats covered, the DB engine will make sure the
migration wont be disruptive.

Dropping a column not referenced in SQLAlchemy code

When we want to remove a column that wasnt present in any SQLAlchemy model or it was in the model,
but model was not referenced in any SQLAlchemy API function (this basically means that N-1 wasnt
depending on the presence of that column in the DB), then the situation is simple. We should be able to
safely drop the column in N release.

Removal of unnecessary column

When we want to remove a used column without migrating any data out of it (for example because whats
kept in the column is obsolete), then we just need to remove it from the SQLAlchemy model and API in
N release. In N+1 or as a post-upgrade migration in N we can merge a migration issuing DROP for this
column (we cannot do that earlier because N-1 will depend on the presence of that column).

ALTER on a column

A rule of thumb to judge which ALTER or DROP migrations should be allowed is to look in the MySQL
documentation. If operation has yes in all 4 columns besides Copies Table?, then it probably can be
allowed. If operation doesnt allow concurrent DML it means that table row modifications or additions
will be blocked during the migration. This sometimes isnt a problem - for example its not the end of
the world if a service wont be able to report its status one or two times (and services table is normally
small). Please note that even if this does apply to rename a column operation, we cannot simply do such
ALTER, as N-1 will depend on the older name.

If an operation on column or table cannot be allowed, then it is required to create a new column with
desired properties and start moving the data (in a live manner). In worst case old column can be removed
in N+2. Whole procedure is described in more details below.

In aforementioned case we need to make more complicated steps stretching through 3 releases - always
keeping the backwards compatibility. In short when we want to start to move data inside the DB, then in
N we should:

• Add a new column for the data.

• Write data in both places (N-1 needs to read it).

4.1. Contributing to Cinder 797

https://dev.mysql.com/doc/refman/5.7/en/innodb-create-index-overview.html#innodb-online-ddl-summary-grid
https://dev.mysql.com/doc/refman/5.7/en/innodb-create-index-overview.html#innodb-online-ddl-summary-grid

Cinder Documentation, Release 20.3.2.dev3

• Read data from the old place (N-1 writes there).

• Prepare online data migration cinder-manage command to be run before upgrading to N+1 (because
N+1 will read from new place, so we need to make sure all the records have new place populated).

In N+1 we should:

• Write data to both places (N reads from old one).

• Read data from the new place (N saves there).

In N+2

• Remove old place from SQLAlchemy.

• Read and write only to the new place.

• Remove the column as the post-upgrade migration (or as first migration in N+3).

Please note that this is the most complicated case. If data in the column cannot actually change (for
example host in services table), in N we can read from new place and fallback to the old place if data
is missing. This way we can skip one release from the process.

Of course real-world examples may be different. E.g. sometimes it may be required to write some
more compatibility code in the oslo.versionedobjects layer to compensate for different versions of objects
passed over RPC. This is explained more in RPC payload changes (oslo.versionedobjects) section.

More details about that can be found in the online-schema-upgrades spec.

RPC API changes

It can obviously break service communication if RPC interface changes. In particular this applies to
changes of the RPC method definitions. To avoid that we assume Ns RPC API compatibility with N-1
version (both ways - rpcapi module should be able to downgrade the message if needed and manager
module should be able to tolerate receiving messages in older version.

Below is an example RPC compatibility shim from Mitakas cinder.volume.manager. This code al-
lows us to tolerate older versions of the messages:

def create_volume(self, context, volume_id, request_spec=None,
filter_properties=None, allow_reschedule=True,
volume=None):

"""Creates the volume."""
FIXME(thangp): Remove this in v2.0 of RPC API.
if volume is None:

For older clients, mimic the old behavior and look up the volume
by its volume_id.
volume = objects.Volume.get_by_id(context, volume_id)

And heres a contrary shim in cinder.volume.rpcapi (RPC client) that downgrades the message to make
sure it will be understood by older instances of the service:

def create_volume(self, ctxt, volume, host, request_spec,
filter_properties, allow_reschedule=True):

request_spec_p = jsonutils.to_primitive(request_spec)
(continues on next page)

798 Chapter 4. For contributors

https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/online-schema-upgrades.html

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

msg_args = {'volume_id': volume.id, 'request_spec': request_spec_p,
'filter_properties': filter_properties,
'allow_reschedule': allow_reschedule}

if self.client.can_send_version('1.32'):
version = '1.32'
msg_args['volume'] = volume

else:
version = '1.24'

new_host = utils.extract_host(host)
cctxt = self.client.prepare(server=new_host, version=version)
request_spec_p = jsonutils.to_primitive(request_spec)
cctxt.cast(ctxt, 'create_volume', **msg_args)

As can be seen theres this magic self.client.can_send_version() method which detects if were
running in a version-heterogeneous environment and need to downgrade the message. Detection is based
on dynamic RPC version pinning. In general all the services (managers) report supported RPC API
version. RPC API client gets all the versions from the DB, chooses the lowest one and starts to downgrade
messages to it.

To limit impact on the DB the pinned version of certain RPC API is cached. After all the services in the
deployment are updated, operator should restart all the services or send them a SIGHUP signal to force
reload of version pins.

As we need to support only N RPC API in N+1 release, we should be able to drop all the compatibility
shims in N+1. To be technically correct when doing so we should also bump the major RPC API version.
We do not need to do that in every release (it may happen that through the release nothing will change in
RPC API or cost of technical debt of compatibility code is lower than the cost of complicated procedure
of increasing major version of RPC APIs).

The process of increasing the major version is explained in details in Novas documentation. Please note
that in case of Cinder were accessing the DB from all of the services, so we should follow the more
complicated Mixed version environments process for every of our services.

In case of removing whole RPC method we need to leave it there in Ns manager and can remove it in N+1
(because N-1 will be talking with N). When adding a new one we need to make sure that when the RPC
client is pinned to a too low version any attempt to send new message should fail (because client will not
know if manager receiving the message will understand it) or ensure the manager will get updated before
clients by stating the recommended order of upgrades for that release.

RPC payload changes (oslo.versionedobjects)

oslo.versionedobjects is a library that helps us to maintain compatibility of the payload sent over RPC.
As during the process of upgrades it is possible that a newer version of the service will send an object to
an older one, it may happen that newer object is incompatible with older service.

Version of an object should be bumped every time we make a change that will result in an incompatible
change of the serialized object. Tests will inform you when you need to bump the version of a versioned
object, but rule of thumb is that we should never bump the version when we modify/adding/removing a
method to the versioned object (unlike Nova we dont use remotable methods), and should always bump
it when we modify the fields dictionary.

4.1. Contributing to Cinder 799

https://wiki.openstack.org/wiki/RpcMajorVersionUpdates
https://docs.openstack.org/oslo.versionedobjects/latest/

Cinder Documentation, Release 20.3.2.dev3

There are exceptions to this rule, for example when we change a fields.StringField by a custom
fields.BaseEnumField. The reason why a version bump is not required in this case its because the
actual data doesnt change, we are just removing magic string by an enumerate, but the strings used are
exactly the same.

As mentioned before, you dont have to know all the rules, as we have a test that calculates the hash of
all objects taking all these rules into consideration and will tell you exactly when you need to bump the
version of a versioned object.

You can run this test with tox -epy35 -- --path cinder/tests/unit/objects/
test_objects.py. But you may need to run it multiple times until it passes since it may not
detect all required bumps at once.

Then youll see which versioned object requires a bump and you need to bump that version and update
the object_data dictionary in the test file to reflect the new version as well as the new hash.

There is a very common false positive on the version bump test, and that is when we have modified a
versioned object that is being used by other objects using the fields.ObjectField class. Due to the
backporting mechanism implemented in Cinder we dont require bumping the version for these cases and
well just need to update the hash used in the test.

For example if we were to add a new field to the Volume object and then run the test we may think that we
need to bump Volume, Snapshot, Backup, RequestSpec, and VolumeAttachment objects, but we really
only need to bump the version of the Volume object and update the hash for all the other objects.

Imagine that we (finally!) decide that request_spec sent in create_volume RPC cast is duplicating
data and we want to start to remove redundant occurrences. When running in version-mixed environ-
ment older services will still expect this redundant data. We need a way to somehow downgrade the
request_spec before sending it over RPC. And this is were o.vo come in handy. o.vo provide us the
infrastructure to keep the changes in object versioned and to be able to downgrade them to a particular
version.

Lets take a step back - similarly to the RPC API situation we need a way to tell if we need to send a
backward-compatible version of the message. In this case we need to know to what version to downgrade
the object. Were using a similar solution to the one used for RPC API for that. A problem here is that we
need a single identifier (that we will be reported to services DB table) to denote whole set of versions
of all the objects. To do that weve introduced a concept of CinderObjectVersionHistory object,
where we keep sets of individual object versions aggregated into a single version string. When making
an incompatible change in a single object you need to bump its version (we have a unit test enforcing
that) and add a new version to cinder.objects.base.CinderObjectVersionsHistory (theres a
unit test as well). Example code doing that is below:

OBJ_VERSIONS.add('1.1', {'Service': '1.2', 'ServiceList': '1.1'})

This line adds a new 1.1 aggregated object version that is different from 1.0 by two objects - Service
in 1.2 and ServiceList in 1.1. This means that the commit which added this line bumped versions of
these two objects.

Now if we know that a service were talking to is running 1.1 aggregated version - we need to downgrade
Service and ServiceList to 1.2 and 1.1 respectively before sending. Please note that of course other
objects are included in the 1.1 aggregated version, but you just need to specify what changed (all the
other versions of individual objects will be taken from the last version - 1.0 in this case).

Getting back to request_spec example. So lets assume we want to remove volume_properties from
there (most of data in there is already somewhere else inside the request_spec object). Weve made a

800 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

change in the object fields, weve bumped its version (from 1.0 to 1.1), weve updated hash in the cinder.
tests.unit.test_objects to synchronize it with the current state of the object, making the unit test
pass and weve added a new aggregated object history version in cinder.objects.base.

What else is required? We need to provide code that actually downgrades RequestSpec object from
1.1 to 1.0 - to be used when sending the object to older services. This is done by implementing
obj_make_compatible method in the object:

from oslo_utils import versionutils

def obj_make_compatible(self, primitive, target_version):
super(RequestSpec, self).obj_make_compatible(primitive, target_version)
target_version = versionutils.convert_version_to_tuple(target_version)
if target_version < (1, 1) and not 'volume_properties' in primitive:

volume_properties = {}
TODO: Aggregate all the required information from primitive.
primitive['volume_properties'] = volume_properties

Please note that primitive is a dictionary representation of the object and not an object itself. This is
because o.vo are of course sent over RPC as dicts.

With these pieces in place Cinder will take care of sending request_spec with volume_properties
when running in mixed environment and without when all services are upgraded and will understand
request_spec without volume_properties element.

Note that o.vo layer is able to recursively downgrade all of its fields, so when request_spec will be used
as a field in other object, it will be correctly downgraded.

A more common case where we need backporting code is when we add new fields. In such case the
backporting consist on removing the newly added fields. For example if we add 3 new fields to the Group
object in version 1.1, then we need to remove them if backporting to earlier versions:

from oslo_utils import versionutils

def obj_make_compatible(self, primitive, target_version):
super(Group, self).obj_make_compatible(primitive, target_version)
target_version = versionutils.convert_version_to_tuple(target_version)
if target_version < (1, 1):

for key in ('group_snapshot_id', 'source_group_id',
'group_snapshots'):

primitive.pop(key, None)

As time goes on we will be adding more and more new fields to our objects, so we may end up with a
long series of if and for statements like in the Volume object:

from oslo_utils import versionutils

def obj_make_compatible(self, primitive, target_version):
super(Volume, self).obj_make_compatible(primitive, target_version)
target_version = versionutils.convert_version_to_tuple(target_version)
if target_version < (1, 4):

for key in ('cluster', 'cluster_name'):
primitive.pop(key, None)

(continues on next page)

4.1. Contributing to Cinder 801

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

if target_version < (1, 5):
for key in ('group', 'group_id'):

primitive.pop(key, None)

So a different pattern would be preferable as it will make the backporting easier for future additions:

from oslo_utils import versionutils

def obj_make_compatible(self, primitive, target_version):
added_fields = (((1, 4), ('cluster', 'cluster_name')),

((1, 5), ('group', 'group_id')))
super(Volume, self).obj_make_compatible(primitive, target_version)
target_version = versionutils.convert_version_to_tuple(target_version)
for version, remove_fields in added_fields:

if target_version < version:
for obj_field in remove_fields:

primitive.pop(obj_field, None)

Upgrade Checks

Starting with the Stein release of OpenStack, Cinder has added support for Upgrade Checks. Upgrade
checks provide a release-specific readiness check before restarting services with new code. Details
on how to run an Upgrade Check can be seen in the CLI interface for :doc:‘cinder status commands
</cli/cinder-status> page.

Upgrade checks are intended to help identify changes between releases that may impact the deployment
environment. As a result, developers should take time to consider if the operator would benefit from
having an Upgrade Check added along with changes they are proposing. The following are a few examples
of changes that would require an Upgrade Check:

• Changes to Configuration Options * Removal * Change in Behavior

• Driver Removal

• Changes to Configuration File Locations

• Deprecations

To add an Upgrade Check edit the cinder/cmd/status.py file. Add a new function that contains the check
you wish to implement. Functions need to return either a uc.Result where the result can be one of:

• SUCCESS

• FAILURE, <Failure explanation>

• WARNING, <Warning explanation>

Your new function should then be added to the _upgrade_checks tuple. For your check give the name
of the Upgrade Check to be displayed to end users upon success or failure as well as the name of the
function used to implement your check. Upgrade Checks should be submitted with Unit Tests.

The doc/source/cli/cinder-status.rst documentation should be updated to indicate the release for which
your Upgrade Check was released and to explain the reason or limitations of your check, if appropriate.
A release note should also be created with an explanation of the Upgrade Check in the upgrade section.

802 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

It is preferable to have Upgrade Checks submitted as part of the patch that is making the change in
question. The checks, however, can be submitted as a separate patch and are appropriate for backport if
they are being created after a release has been cut.

For additional details on Upgrade Checks please see Novas Upgrade Checks Documentation .

What can be checked?

The cinder-status CLI tool is assumed to be run from a place where it can read cinder.conf for the services,
and that it can access the Cinder database to query information.

It cannot be assumed to have network access to a storage backend a backend may only be accessible
from the Cinder Volume service and not reachable directly from where this tool is run.

Generic Volume Groups

Introduction to generic volume groups

Generic volume group support was added in cinder in the Newton release. There is support for creating
group types and group specs, creating groups of volumes, and creating snapshots of groups. Detailed
information on how to create a group type, a group, and a group snapshot can be found in block storage
admin guide.

How is generic volume groups different from consistency groups in cinder? The consistency group
feature was introduced in cinder in Juno and are supported by a few drivers. Currently consistency groups
in cinder only support consistent group snapshot. It cannot be extended easily to serve other purposes.
A tenant may want to put volumes used in the same application together in a group so that it is easier
to manage them together, and this group of volumes may or may not support consistent group snapshot.
Generic volume group is introduced to solve this problem. By decoupling the tight relationship between
the group construct and the consistency concept, generic volume groups can be extended to support other
features in the future.

Action items for drivers supporting consistency groups

Drivers currently supporting consistency groups are in the following:

• Juno: EMC VNX

• Kilo: EMC VMAX, IBM (GPFS, Storwize, SVC, and XIV), ProphetStor, Pure

• Liberty: Dell Storage Center, EMC XtremIO, HPE 3Par and LeftHand

• Mitaka: EMC ScaleIO, NetApp Data ONTAP, SolidFire

• Newton: CoprHD, FalconStor, Huawei

Since the addition of generic volume groups, there is plan to migrate consistency groups to generic
volume groups. A migration command and changes in CG APIs to support migrating CGs to groups
are developed and merged in Ocata [1][2]. In order to support rolling upgrade, it will take a couple of
releases before consistency groups can be deprecated.

For drivers planning to add consistency groups support, the new generic volume group driver interfaces
should be implemented instead of the CG interfaces.

4.1. Contributing to Cinder 803

https://docs.openstack.org/nova/latest/reference/upgrade-checks.html

Cinder Documentation, Release 20.3.2.dev3

For drivers already supporting consistency groups, the new generic volume group driver interfaces should
be implemented to include the CG support.

For drivers wanting generic volume groups but not consistent group snapshot support, no code changes
are necessary. By default, every cinder volume driver already supports generic volume groups since
Newton because the support was added to the common code. Testing should be done for every driver to
make sure this feature works properly.

Drivers already supporting CG are expected to add CG support to generic volume groups by Pike-1. This
is a deadline discussed and agreed upon at the Ocata summit in Barcelona.

Group Type and Group Specs / Volume Types and Extra Specs

The driver interfaces for consistency groups and generic volume groups are very similar. One new con-
cept introduced for generic volume groups is the group type. Group type is used to categorize a group
just like a volume type is used to describe a volume. Similar to extra specs for a volume type, group
specs are also introduced to be associated with a group type. Group types allow a user to create different
types of groups.

A group can support multiple volume types and volume types are required as input parameters when
creating a group. In addition to volume types, a group type is also required when creating a group.

Group types and volume types are created by the Cloud Administrator. A tenant uses the group types
and volume types to create groups and volumes.

A driver can support both consistent group snapshot and a group of snapshots that do not maintain the
write order consistency by using different group types. In other words, a group supporting consistent
group snapshot is a special type of generic volume group.

For a group to support consistent group snapshot, the group specs in the corresponding group type should
have the following entry:

{'consistent_group_snapshot_enabled': <is> True}

Similarly, for a volume to be in a group that supports consistent group snapshots, the volume type extra
specs would also have the following entry:

{'consistent_group_snapshot_enabled': <is> True}

By requiring the above entry to be in both group specs and volume type extra specs, we can make sure
the scheduler will choose a backend that supports the group type and volume types for a group. It is up to
the driver to parse the group type info when creating a group, parse the volume type info when creating
a volume, and set things up as requested.

804 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Capabilities reporting

The following entry is expected to be added to the stats/capabilities update for drivers supporting consis-
tent group snapshot:

stats["consistent_group_snapshot_enabled"] = True

Driver methods

The following driver methods should to be implemented for the driver to support consistent group snap-
shot:

• create_group(context, group)

• delete_group(context, group, volumes)

• update_group(context, group, add_volumes=None, remove_volumes=None)

• create_group_from_src(context, group, volumes, group_snapshot=None, snapshots=None,
source_group=None, source_vols=None)

• create_group_snapshot(context, group_snapshot, snapshots)

• delete_group_snapshot(context, group_snapshot, snapshots)

Here is an example that add CG capability to generic volume groups [3]. Details of driver interfaces are
as follows.

create_group

This method creates a group. It has context and group object as input parameters. A group object has
volume_types and group_type_id that can be used by the driver.

create_group returns model_update. model_update will be in this format: {status: xxx, }.

If the status in model_update is error, the manager will throw an exception and it will be caught in the
try-except block in the manager. If the driver throws an exception, the manager will also catch it in the
try-except block. The group status in the db will be changed to error.

For a successful operation, the driver can either build the model_update and return it or return None. The
group status will be set to available.

delete_group

This method deletes a group. It has context, group object, and a list of volume objects as input parameters.
It returns model_update and volumes_model_update.

volumes_model_update is a list of volume dictionaries. It has to be built by the driver. An entry will be
in this format: {id: xxx, status: xxx, }. model_update will be in this format: {status: xxx, }. The driver
should populate volumes_model_update and model_update and return them.

The manager will check volumes_model_update and update db accordingly for each volume. If the
driver successfully deleted some volumes but failed to delete others, it should set statuses of the volumes
accordingly so that the manager can update db correctly.

If the status in any entry of volumes_model_update is error_deleting or error, the status in model_update
will be set to the same if it is not already error_deleting or error.

4.1. Contributing to Cinder 805

Cinder Documentation, Release 20.3.2.dev3

If the status in model_update is error_deleting or error, the manager will raise an exception and the status
of the group will be set to error in the db. If volumes_model_update is not returned by the driver, the
manager will set the status of every volume in the group to error in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block in the
manager. The statuses of the group and all volumes in it will be set to error.

For a successful operation, the driver can either build the model_update and volumes_model_update and
return them or return None, None. The statuses of the group and all volumes will be set to deleted after
the manager deletes them from db.

update_group

This method adds existing volumes to a group or removes volumes from a group. It has context, group
object, a list of volume objects to be added to the group, and a list of a volume objects to be removed
from the group. It returns model_update, add_volumes_update, and remove_volumes_update.

model_update is a dictionary that the driver wants the manager to update upon a successful return. If
None is returned, the manager will set the status to available.

add_volumes_update and remove_volumes_update are lists of dictionaries that the driver wants the man-
ager to update upon a successful return. Note that each entry requires a {id: xxx} so that the correct
volume entry can be updated. If None is returned, the volume will remain its original status.

If the driver throws an exception, the status of the group as well as those of the volumes to be
added/removed will be set to error.

create_group_from_src

This method creates a group from source. The source can be a group_snapshot or a source group. cre-
ate_group_from_src has context, group object, a list of volume objects, group_snapshot object, a list of
snapshot objects, source group object, and a list of source volume objects as input parameters. It returns
model_update and volumes_model_update.

volumes_model_update is a list of dictionaries. It has to be built by the driver. An entry will be in this
format: {id: xxx, status: xxx, }. model_update will be in this format: {status: xxx, }.

To be consistent with other volume operations, the manager will assume the operation is successful if no
exception is thrown by the driver. For a successful operation, the driver can either build the model_update
and volumes_model_update and return them or return None, None.

create_group_snapshot

This method creates a group_snapshot. It has context, group_snapshot object, and a list of snapshot
objects as input parameters. It returns model_update and snapshots_model_update.

snapshots_model_update is a list of dictionaries. It has to be built by the driver. An entry will be in this
format: {id: xxx, status: xxx, }. model_update will be in this format: {status: xxx, }. The driver should
populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snapshot. If the
driver successfully created some snapshots but failed to create others, it should set statuses of the snap-
shots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error, the status in model_update will be set to
the same if it is not already error.

If the status in model_update is error, the manager will raise an exception and the status of group_snapshot
will be set to error in the db. If snapshots_model_update is not returned by the driver, the manager will
set the status of every snapshot to error in the except block.

806 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

If the driver raises an exception during the operation, it will be caught by the try-except block in the
manager and the statuses of group_snapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snapshots_model_update
and return them or return None, None. The statuses of group_snapshot and all snapshots will be set to
available at the end of the manager function.

delete_group_snapshot

This method deletes a group_snapshot. It has context, group_snapshot object, and a list of snapshot
objects. It returns model_update and snapshots_model_update.

snapshots_model_update is a list of dictionaries. It has to be built by the driver. An entry will be in this
format: {id: xxx, status: xxx, }. model_update will be in this format: {status: xxx, }. The driver should
populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snapshot. If the
driver successfully deleted some snapshots but failed to delete others, it should set statuses of the snap-
shots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error_deleting or error, the status in model_update
will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception and the status
of group_snapshot will be set to error in the db. If snapshots_model_update is not returned by the driver,
the manager will set the status of every snapshot to error in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block in the
manager and the statuses of group_snapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snapshots_model_update
and return them or return None, None. The statuses of group_snapshot and all snapshots will be set to
deleted after the manager deletes them from db.

Migrate CGs to Generic Volume Groups

This section only affects drivers already supporting CGs by the Newton release. Drivers planning to add
CG support after Newton are not affected.

A group type named default_cgsnapshot_type will be created by the migration script. The following
command needs to be run to migrate migrate data and copy data from consistency groups to groups and
from cgsnapshots to group_snapshots. Migrated consistency groups and cgsnapshots will be removed
from the database:

cinder-manage db online_data_migrations
--max_count <max>

max_count is optional. Default is 50.

After running the above migration command to migrate CGs to generic volume groups, CG and group
APIs work as follows:

• Create CG only creates in the groups table.

• Modify CG modifies in the CG table if the CG is in the CG table, otherwise it modifies in the
groups table.

• Delete CG deletes from the CG or the groups table depending on where the CG is.

4.1. Contributing to Cinder 807

Cinder Documentation, Release 20.3.2.dev3

• List CG checks both CG and groups tables.

• List CG Snapshots checks both the CG and the groups tables.

• Show CG checks both tables.

• Show CG Snapshot checks both tables.

• Create CG Snapshot creates either in the CG or the groups table depending on where the CG is.

• Create CG from Source creates in either the CG or the groups table depending on the source.

• Create Volume adds the volume either to the CG or the group.

• default_cgsnapshot_type is reserved for migrating CGs.

• Group APIs will only write/read in/from the groups table.

• Group APIs will not work on groups with default_cgsnapshot_type.

• Groups with default_cgsnapshot_type can only be operated by CG APIs.

• After CG tables are removed, we will allow default_cgsnapshot_type to be used by group APIs.

References

[1] Migration script https://review.openstack.org/#/c/350350/

[2] CG APIs changes for migrating CGs https://review.openstack.org/#/c/401839/

[3] Example adding CG capability to generic volume groups https://review.openstack.org/#/c/
413927/

Database migrations

Note: This document details how to generate database migrations as part of a new feature or bugfix. For
info on how to apply existing database migrations, refer to the documentation for the cinder-manage
db sync command in cinder-manage. For info on the general upgrade process for a cinder deployment,
refer to Upgrades.

Occasionally the databases used in cinder will require schema or data migrations.

Schema migrations

Changed in version 24.0.0: (Xena)

The database migration engine was changed from sqlalchemy-migrate to alembic.

The alembic database migration tool is used to manage schema migrations in cinder. The migration files
and related metadata can be found in cinder/db/migrations. As discussed in Upgrades, these can be
run by end users using the cinder-manage db sync command.

808 Chapter 4. For contributors

https://review.openstack.org/#/c/350350/
https://review.openstack.org/#/c/401839/
https://review.openstack.org/#/c/413927/
https://review.openstack.org/#/c/413927/
https://alembic.sqlalchemy.org/en/latest/

Cinder Documentation, Release 20.3.2.dev3

Note: There are also legacy migrations provided in the cinder/db/legacy_migrations directory .
These are provided to facilitate upgrades from pre-Xena (24.0.0) deployments and will be removed in a
future release. They should not be modified or extended.

The best reference for alembic is the alembic documentation, but a small example is provided here. You
can create the migration either manually or automatically. Manual generation might be necessary for
some corner cases such as renamed tables but auto-generation will typically handle your issues. Examples
of both are provided below. In both examples, were going to demonstrate how you could add a new model,
Foo, to the main database.

diff --git cinder/db/sqlalchemy/models.py cinder/db/sqlalchemy/models.py
index 7eab643e14..8f70bcdaca 100644
--- cinder/db/sqlalchemy/models.py
+++ cinder/db/sqlalchemy/models.py
@@ -73,6 +73,16 @@ def MediumText():

sqlalchemy.dialects.mysql.MEDIUMTEXT(), 'mysql')

+class Foo(BASE, models.SoftDeleteMixin):
+ """A test-only model."""
+
+ __tablename__ = 'foo'
+
+ id = sa.Column(sa.Integer, primary_key=True)
+ uuid = sa.Column(sa.String(36), nullable=True)
+ bar = sa.Column(sa.String(255))
+
+
class Service(BASE, models.SoftDeleteMixin):

"""Represents a running service on a host."""

(you might not be able to apply the diff above cleanly - this is just a demo).

Auto-generating migration scripts

In order for alembic to compare the migrations with the underlying models, it require a database that it
can inspect and compare the models against. As such, we first need to create a working database. Well
bypass cinder-manage for this and go straight to the alembic CLI. The alembic.ini file provided
in the cinder/db directory is helpfully configured to use an SQLite database by default (cinder.db).
Create this database and apply the current schema, as dictated by the current migration scripts:

$ tox -e venv -- alembic -c cinder/db/alembic.ini \
upgrade head

Once done, you should notice the new cinder.db file in the root of the repo. Now, lets generate the new
revision:

$ tox -e venv -- alembic -c cinder/db/alembic.ini \
revision -m "Add foo model" --autogenerate

4.1. Contributing to Cinder 809

https://alembic.sqlalchemy.org/en/latest/

Cinder Documentation, Release 20.3.2.dev3

This will create a new file in cinder/db/migrations/versions with add_foo_model in the name
including (hopefully!) the necessary changes to add the new Foo model. You must inspect this file once
created, since theres a chance youll be missing imports or something else which will need to be manually
corrected. Once youve inspected this file and made any required changes, you can apply the migration
and make sure it works:

$ tox -e venv -- alembic -c cinder/db/alembic.ini \
upgrade head

Manually generating migration scripts

For trickier migrations or things that alembic doesnt understand, you may need to manually create a
migration script. This is very similar to the auto-generation step, with the exception being that you dont
need to have a database in place beforehand. As such, you can simply run:

$ tox -e venv -- alembic -c cinder/db/alembic.ini \
revision -m "Add foo model"

As before, this will create a new file in cinder/db/migrations/versions with add_foo_model in
the name. You can simply modify this to make whatever changes are necessary. Once done, you can
apply the migration and make sure it works:

$ tox -e venv -- alembic -c cinder/db/alembic.ini \
upgrade head

Data migrations

Managing the Development Cycle

Release Cycle Tasks

This document describes the relative ordering and rough timeline for all of the steps related to tasks that
need to be completed during a release cycle for Cinder.

Before PTG (after closing previous release)

1. Collect topics and prepare notes for PTG discussions in an etherpad. The PTGbot will generate a
list of etherpads at some point that will be named according to the convention:

https://etherpad.openstack.org/p/<release-name>-ptg-cinder

(You can use a different name, but following the convention makes it easy to locate the etherpad for
any project for any release. Something weve done in the past is to do the planning on an etherpad
named:

https://etherpad.openstack.org/p/<release-name>-ptg-cinder-planning

810 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

and then move the topics over to the real etherpad when the team has decided on what to include
and the ordering. Do whatever works for you. Just make sure the team knows where the planning
etherpad is and give everyone plenty of reminders to add topics.

2. Add any Cinder-specific schedule information to the release calendar as soon as its available. Ex-
ample patch: https://review.opendev.org/c/openstack/releases/+/754484

• We used to wait to do this until after proposed deadlines were discussed at the PTG, but
recently people have been getting antsy about what the deadlines are as soon as the stable
branch for the previous release is cut (which is roughly a month before the PTG). So you may
want to go ahead and post the patch early and announce the dates at a Cinder meeting so that
people can point out conflicts. Or do it the old-fashioned way and work it out at the PTG.
Either way, the point is to make sure you dont forget to add Cinder-specific dates to the main
release schedule.

3. Review the Cinder Groups in Gerrit and Launchpad.

Between Summit and Milestone-1

1. Review output from the PTG and set Review-Priority on any high priority items identified from
those discussions. Send out recap to the mailing list.

2. Focus on spec reviews to get them approved and updated early in the cycle to allow enough time
for implementation.

3. Review new driver submissions and give early feedback so there isnt a rush at the new driver
deadline. Check for status of third party CI and any missing steps they need to know about.

4. Review community-wide goals and decide a plan or response to them.

Milestone-1

1. Propose library releases for os-brick or python-cinderclient if there are merged commits ready to
be released. Watch for any releases proposed by the release team.

2. Check progress on new drivers and specs and warn contributors if it looks like they are at risk for
making it in this cycle.

Between Milestone-1 and Milestone-2

1. cinderlib is a trailing deliverable type on a cycle-with-intermediary release model. That means
that its release for the previous cycle hasnt happened yet. The release must happen no later than
3 months after the main release, which will put it roughly one week before Milestone-2 (check
the current release schedule for the exact deadline). Example patch: https://review.opendev.org/c/
openstack/releases/+/742503

2. Review stable backports and release status.

3. The Cinder Spec Freeze usually occurs sometime within this window. After all the approved specs
have merged, propose a patch that adds a directory for the next release. (You may have to wait until
the release name has been determined by the TC.) Example patch: https://review.opendev.org/c/
openstack/cinder-specs/+/778436

4. Watch for and respond to updates to new driver patches.

4.1. Contributing to Cinder 811

https://review.opendev.org/c/openstack/releases/+/754484
https://review.opendev.org/c/openstack/releases/+/742503
https://review.opendev.org/c/openstack/releases/+/742503
https://review.opendev.org/c/openstack/cinder-specs/+/778436
https://review.opendev.org/c/openstack/cinder-specs/+/778436

Cinder Documentation, Release 20.3.2.dev3

Milestone-2

1. Propose library releases for os-brick or python-cinderclient if there are merged commits ready to
be released. Watch for any releases proposed by the release team.

Between Milestone-2 and Milestone-3

1. Review stable backports and release status.

2. Set Review-Priority for any os-brick changes that are needed for feature work to make sure they
are ready by the library freeze prior to Milestone-3.

3. Make sure any new feature work that needs client changes are proposed and on track to land be-
fore the client library freeze at Milestone-3. Ensure microversion bumps are reflected in cinder-
client/api_versions.py MAX_VERSION.

4. The week before Milestone-3, propose releases for unreleased changes in os-brick. (The release
team may have already proposed an auto- generated patch 1-2 weeks earlier; make sure you -1 it if
there are still changes that need to land in os-brick before release.) Include branch request for sta-
ble/$series creation. Example patch: https://review.opendev.org/c/openstack/releases/+/804670

Milestone-3

1. Propose releases for unreleased changes in python-cinderclient and python-brick-cinderclient-ext.
These will be the official cycle releases for these deliverables. Watch for a release patch proposed by
the release team; it may need to be updated to include all the appropriate changes. Include branch
request for stable/$series creation. Example patches: | https://review.opendev.org/c/openstack/
releases/+/806583 | https://review.opendev.org/c/openstack/releases/+/807167

2. Set Review-Priority -1 for any feature work not complete in time for inclusion in this cycle. Remind
contributors that FFE will need to be requested to still allow it in this cycle.

3. Complete the responses to community-wide goals if not already done.

4. Add cycle-highlights in the releases deliverable file. The deadline for this has been moved up (since
wallaby) to the Friday of M-3 week. (There should be an entry on the cycle release schedule, and
a reminder email with subject [PTLs][release] xxx Cycle Highlights to the ML.)

The Foundation people use the info to start preparing press releases for the cycle coordinated re-
lease, so its good to have key features mentioned. (If something has an FFE and youre not sure if
it will land, you can always update the cycle-highlights later and shoot an email to whoever sent
out the reminder so they know to look for it.)

Example patch: https://review.opendev.org/c/openstack/releases/+/807398

812 Chapter 4. For contributors

https://review.opendev.org/c/openstack/releases/+/804670
https://review.opendev.org/c/openstack/releases/+/806583
https://review.opendev.org/c/openstack/releases/+/806583
https://review.opendev.org/c/openstack/releases/+/807167
https://review.opendev.org/c/openstack/releases/+/807398

Cinder Documentation, Release 20.3.2.dev3

Between Milestone-3 and RC1

1. Make sure the maximum microversion is up-to-date in the version history file cinder/api/
openstack/rest_api_version_history.rst

• Any patch that bumped the microversion should have already included an entry in this file;
you need to add (Maximum in <release-name>) to the last (highest) entry.

• This file is pulled into the api-ref by the documentation build process.

2. Prepare prelude release notes as summaries of the content of the release so that those are merged
before their first release candidate.

3. Check the Driver Removal History section (bottom) of doc/source/reference/
support-matrix.rst to make sure any drivers removed during the cycle are mentioned
there.

4. Check the upgrade check tool cmd/status.py to make sure the removed drivers list is up to date.

RC1 week

1. Propose RC1 release for cinder or watch for proposal from the release team. Include stable/
$series branching request with the release.

2. Update any cycle-highlights for the release cycle if there was something you werent sure about at
M-3.

3. Remind contributors that master is now the next cycle but focus should be on wrapping up the
current cycle.

4. Watch for translation and new stable branch patches and merge them quickly.

Between RC1 and Final

1. The release team has started adding a release-notes field to the deliverables yaml files. You can
watch for the patch and vote on it if you see it. Example patch: https://review.opendev.org/c/
openstack/releases/+/810236

2. Related to the previous point: at this time in the cycle, the release notes for all the cinder cycle
deliverables (cinder, os-brick, python-cinderclient, and python-brick-cinderclient-ext) should have
been published automatically at https://docs.openstack.org/releasenotes/. Sometimes the promo-
tion job fails, though, so its good to check that the release notes for the current cycle are actually
there.

3. Propose additional RC releases as needed.

Note: Try to avoid creating more than 3 release candidates so we are not creating candidates that
consumers are then trained to ignore. Each release candidate should be kept for at least 1 day, so if
there is a proposal to create RCx but clearly a reason to create another one, delay RCX to include
the additional patches.

4. Watch for translation patches and merge them quickly.

5. Make sure final RC request is done one week before the final release date.

4.1. Contributing to Cinder 813

https://review.opendev.org/c/openstack/releases/+/810236
https://review.opendev.org/c/openstack/releases/+/810236
https://docs.openstack.org/releasenotes/

Cinder Documentation, Release 20.3.2.dev3

6. Watch for the final release proposal from the release team to review and +1 so team approval is
included in the metadata that goes onto the signed tag. Example patch:
https://review.opendev.org/c/openstack/releases/+/785754
Heres what it looks like when people forget to check for this patch:
https://review.opendev.org/c/openstack/releases/+/812251

Final Release

1. Start planning for next release cycle.

2. Check for bugfixes that would be good to backport to older stable branches.

3. Propose any bugfix releases for things that did not make the freeze for final library or service
releases.

Post-Final Release

1. Make sure at least three SQLAlchemy-Migrate migrations are reserved for potential backports.
Example patch: https://review.opendev.org/c/openstack/cinder/+/649436

2. Unblock any new driver submission patches that missed the previous release cycles deadline.

3. Review approved cinder-specs that were merged to the previous cycle folder that did not get im-
plemented. Revert or move those specs to the next cycless folder.

4. The oldest active stable branch (that is, the oldest one you can still release from) will go to Extended
Maintenance mode shortly after the coordinated release. Watch for an email notification from the
release team about the projected date, which you can also find in the Next Phase column for that
release series on https://releases.openstack.org

• Prioritize any open reviews that should get into the final stable release from this branch for
all relevant cinder deliverables and motivate the cinder-stable-maint cores to review them.

• Propose a final release for any deliverable that needs one. Example patch: https://review.
opendev.org/c/openstack/releases/+/761929

• The release team will probably propose a placeholder patch to tag the stable branch for each
deliverable as <release>-em (or if they havent gotten around to it yet, you can propose it
yourself). Verify that the hash is at the current HEAD for each deliverable (it may have
changed if some last-minute stuff was merged). Example patch: https://review.opendev.org/
c/openstack/releases/+/762372

• After the transition to EM patch has merged, update the zuul jobs for the cinder-tempest-
plugin. We always have 3 jobs for the active stable branches plus jobs for master. Add a new
job for the most recent release and remove the job for the stable branch that just went to EM.
Example patch: https://review.opendev.org/c/openstack/cinder-tempest-plugin/+/756330

814 Chapter 4. For contributors

https://review.opendev.org/c/openstack/releases/+/785754
https://review.opendev.org/c/openstack/releases/+/812251
https://review.opendev.org/c/openstack/cinder/+/649436
https://releases.openstack.org
https://review.opendev.org/c/openstack/releases/+/761929
https://review.opendev.org/c/openstack/releases/+/761929
https://review.opendev.org/c/openstack/releases/+/762372
https://review.opendev.org/c/openstack/releases/+/762372
https://review.opendev.org/c/openstack/cinder-tempest-plugin/+/756330

Cinder Documentation, Release 20.3.2.dev3

Cinder Groups in Gerrit and Launchpad

Cinder-related groups in Launchpad

group what who where
Cinder
team

not sure, exactly an open team, anyone with a Launchpad ac-
count can join

https://
launchpad.
net/
~cinder

Cinder
Bug
Team
team

can triage (change status
fields) on bugs

an open team, people self-nominate https://
launchpad.
net/
~cinder-bugs

Cinder
Drivers
team

Maintains the Launch-
pad space for Cinder,
os-brick, cinderlib, python-
cinderclient, and cinder-
tempest-plugin

Anyone who is interested in doing some work,
has a Launchpad account, and is approved by
the current members

https://
launchpad.
net/
~cinder-drivers

Cinder
Core
security
contacts
team

can see and work on private
security bugs while they
are under embargo

subset of cinder-core (the OpenStack Vulnera-
blity Management Team likes to keep this team
small), so even though the PTL can add people,
you should propose them on the mailing list first

https://
launchpad.
net/
~cinder-coresec

Cinder-related groups in Gerrit

The Cinder project has total control over the membership of these groups.

group what who where
cinder-
core

+2 powers in Cin-
der project code
repositories

cinder core reviewers https://review.opendev.org/#/admin/
groups/83,members

cinder-
specs-
core

+2 powers in
cinder-specs
repository

cinder-core plus other
appropriate people

https://review.opendev.org/#/admin/
groups/344,members

cinder-
tempest-
plugin-
core

+2 powers on the
cinder-tempest-
plugin repository

cinder-core plus other
appropriate people

https://review.opendev.org/#/admin/
groups/2088,members

rbd-iscsi-
client-
core

+2 powers on the
rbd-iscsi-client
repository

cinder-core (plus others
if appropriate; currently
only cinder-core)

https://review.opendev.
org/admin/groups/
b25813f5baef62b9449371c91f7dbacbcf7bc6d6,
members

The Cinder project shares control over the membership of these groups. If you want to add someone
to one of these groups who doesnt already have membership by being in an included group, be sure to
include the other groups or individual members in your proposal email.

4.1. Contributing to Cinder 815

https://launchpad.net/~cinder
https://launchpad.net/~cinder
https://launchpad.net/~cinder
https://launchpad.net/~cinder
https://launchpad.net/~cinder-bugs
https://launchpad.net/~cinder-bugs
https://launchpad.net/~cinder-bugs
https://launchpad.net/~cinder-bugs
https://launchpad.net/~cinder-drivers
https://launchpad.net/~cinder-drivers
https://launchpad.net/~cinder-drivers
https://launchpad.net/~cinder-drivers
https://launchpad.net/~cinder-coresec
https://launchpad.net/~cinder-coresec
https://launchpad.net/~cinder-coresec
https://launchpad.net/~cinder-coresec
https://review.opendev.org/#/admin/groups/83,members
https://review.opendev.org/#/admin/groups/83,members
https://review.opendev.org/#/admin/groups/344,members
https://review.opendev.org/#/admin/groups/344,members
https://review.opendev.org/#/admin/groups/2088,members
https://review.opendev.org/#/admin/groups/2088,members
https://review.opendev.org/admin/groups/b25813f5baef62b9449371c91f7dbacbcf7bc6d6,members
https://review.opendev.org/admin/groups/b25813f5baef62b9449371c91f7dbacbcf7bc6d6,members
https://review.opendev.org/admin/groups/b25813f5baef62b9449371c91f7dbacbcf7bc6d6,members
https://review.opendev.org/admin/groups/b25813f5baef62b9449371c91f7dbacbcf7bc6d6,members

Cinder Documentation, Release 20.3.2.dev3

group what who where
cinder-
stable-
maint

+2 powers on backports
to stable branches

subset of cinder-core (subject to ap-
proval by stable-maint-core) plus
the stable-maint-core team

https://review.
opendev.org/#/
admin/groups/534,
members

devstack-
plugin-
ceph-core

+2 powers on the code
repo for the Ceph devs-
tack plugin

cinder-core, devstack-core, manila-
core, qa-release, other appropriate
people

https://review.
opendev.org/#/
admin/groups/1196,
members

devstack-
plugin-nfs-
core

+2 powers on the code
repo for the NFS devs-
tack plugin

cinder-core, devstack-core, other
appropriate people

https://review.
opendev.org/#/
admin/groups/1330,
members

devstack-
plugin-
open-cas-
core

+2 powers on the code
repo for the Open CAS
devstack plugin

cinder-core, devstack-core, other
appropriate people

https://review.
opendev.org/#/
admin/groups/2082,
members

NOTE: The following groups exist, but I dont think they are used for anything anymore.

group where
cinder-ci https://review.opendev.org/#/admin/groups/508,members
cinder-milestone https://review.opendev.org/#/admin/groups/82,members
cinder-release https://review.opendev.org/#/admin/groups/144,members
cinder-release-branch https://review.opendev.org/#/admin/groups/1507,members

How Gerrit groups are connected to project repositories

The connection between the groups defined in gerrit and what they can do is defined in the project-config
repository: https://opendev.org/openstack/project-config

• gerrit/projects.yaml sets the config file for a project

• gerrit/acls contains the config files

Documentation Contribution

Contributing Documentation to Cinder

Starting with the Pike release, Cinders documentation has been moved from the openstack-manuals repos-
itory to the docs directory in the Cinder repository. This makes it even more important that Cinder add
and maintain good documentation.

Note: Documentation for python-cinderclient and os-brick has undergone the same transition. The
information here can be applied for those projects as well.

This page provides guidance on how to provide documentation for those who may not have previously
been active writing documentation for OpenStack.

816 Chapter 4. For contributors

https://review.opendev.org/#/admin/groups/534,members
https://review.opendev.org/#/admin/groups/534,members
https://review.opendev.org/#/admin/groups/534,members
https://review.opendev.org/#/admin/groups/534,members
https://review.opendev.org/#/admin/groups/1196,members
https://review.opendev.org/#/admin/groups/1196,members
https://review.opendev.org/#/admin/groups/1196,members
https://review.opendev.org/#/admin/groups/1196,members
https://review.opendev.org/#/admin/groups/1330,members
https://review.opendev.org/#/admin/groups/1330,members
https://review.opendev.org/#/admin/groups/1330,members
https://review.opendev.org/#/admin/groups/1330,members
https://review.opendev.org/#/admin/groups/2082,members
https://review.opendev.org/#/admin/groups/2082,members
https://review.opendev.org/#/admin/groups/2082,members
https://review.opendev.org/#/admin/groups/2082,members
https://review.opendev.org/#/admin/groups/508,members
https://review.opendev.org/#/admin/groups/82,members
https://review.opendev.org/#/admin/groups/144,members
https://review.opendev.org/#/admin/groups/1507,members
https://opendev.org/openstack/project-config

Cinder Documentation, Release 20.3.2.dev3

Documentation Content

To keep the documentation consistent across projects, and to maintain quality, please follow the Open-
Stack Writing style guide.

Using RST

OpenStack documentation uses reStructuredText to write documentation. The files end with a .rst
extension. The .rst files are then processed by Sphinx to build HTML based on the RST files.

Note: Files that are to be included using the .. include:: directive in an RST file should use the
.inc extension. If you instead use the .rst this will result in the RST file being processed twice during
the build and cause Sphinx to generate a warning during the build.

reStructuredText is a powerful language for generating web pages. The documentation team has put
together an RST conventions page with information and links related to RST.

Building Cinders Documentation

To build documentation the following command should be used:

tox -e docs,pep8

When building documentation it is important to also run pep8 as it is easy to introduce pep8 failures
when adding documentation. (The tox pep8 job also runs doc8, but currently we do not run doc8 as part
of the tox docs job.)

Note: The tox documentation jobs (docs, releasenotes, api-ref) are set up to treat Sphinx warnings as
errors. This is because many Sphinx warnings result in improperly formatted pages being generated, so
we prefer to fix those right now, instead of waiting for someone to report a docs bug.

During the documentation build a number of things happen:

• All of the RST files under doc/source are processed and built.

– The openstackdocs theme is applied to all of the files so that they will look consistent with
all the other OpenStack documentation.

– The resulting HTML is put into doc/build/html.

• Sample files like cinder.conf.sample are generated and put into doc/source/_static.

• All of Cinders .py files are processed and the docstrings are used to generate the files under doc/
source/contributor/api

After the build completes the results may be accessed via a web browser in the doc/build/html direc-
tory structure.

4.1. Contributing to Cinder 817

https://docs.openstack.org/doc-contrib-guide/writing-style.html
https://docs.openstack.org/doc-contrib-guide/rst-conv.html

Cinder Documentation, Release 20.3.2.dev3

Review and Release Process

Documentation changes go through the same review process as all other changes.

Note: Reviewers can see the resulting web page output by clicking on openstack-tox-docs in the
Zuul check table on the review, and then look for Artifacts > Docs preview site.

This is also true for the build-openstack-api-ref and build-openstack-releasenotes check
jobs.

Once a patch is approved it is immediately released to the docs.openstack.org website and can be seen un-
der Cinders Documentation Page at https://docs.openstack.org/cinder/latest. When a new release is cut a
snapshot of that documentation will be kept at https://docs.openstack.org/cinder/<release>.
Changes from master can be backported to previous branches if necessary.

Doc Directory Structure

The main location for Cinders documentation is the doc/source directory. The top level index file that
is seen at https://docs.openstack/org/cinder/latest resides here as well as the conf.py file which is used
to set a number of parameters for the build of OpenStacks documentation.

Each of the directories under source are for specific kinds of documentation as is documented in the
README in each directory:

Cinder Administration Documentation (source/admin)

Introduction:

This directory is intended to hold any documentation that relates to how to run or operate Cinder. Previ-
ously, this content was in the admin-guide section of openstack-manuals.

The full spec for organization of documentation may be seen in the OS Manuals Migration Spec
<https://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html>.

Cinder CLI Documentation (source/cli)

Introduction:

This directory is intended to hold any documentation that relates to Cinders Command Line Interface.
Note that this directory is intended for basic descriptions of the commands supported, similar to what
you would find with a man page. Tutorials or step-by-step guides should go into doc/source/admin or
doc/source/user depending on the target audience.

The full spec for organization of documentation may be seen in the OS Manuals Migration Spec
<https://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html>.

818 Chapter 4. For contributors

https://docs.openstack.org/cinder/latest
https://docs.openstack/org/cinder/latest

Cinder Documentation, Release 20.3.2.dev3

Cinder Configuration Documentation (source/configuration)

Introduction:

This directory is intended to hold any documentation that relates to how to configure Cinder. It is intended
that some of this content be automatically generated in the future. At the moment, however, it is not. If
you would like to work on this, please use Launchpad Bug #1847600 for tracking purposes. Changes to
configuration options for Cinder or its drivers needs to be put under this directory.

The full spec for organization of documentation may be seen in the OS Manuals Migration Spec.

Cinder Contributor Documentation (source/contributor)

Introduction:

This directory is intended to hold any documentation that relates to how to contribute to Cinder or how
the project is managed. Some of this content was previous under developer in openstack-manuals. The
content of the documentation, however, goes beyond just developers to anyone contributing to the project,
thus the change in naming.

The full spec for organization of documentation may be seen in the OS Manuals Migration Spec
<https://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html>.

Cinder Installation Documentation (source/install)

Introduction:

This directory is intended to hold any installation documentation for Cinder. Documentation that explains
how to bring Cinder up to the point that it is ready to use in an OpenStack or standalone environment
should be put in this directory.

The full spec for organization of documentation may be seen in the OS Manuals Migration Spec
<https://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html>.

Cinder Reference Documentation (source/reference)

Introduction:

This directory is intended to hold any reference documentation for Cinder that doesnt fit into install,
contributor, configuration, cli, admin, or user categories.

The full spec for organization of documentation may be seen in the OS Manuals Migration Spec
<https://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html>.

4.1. Contributing to Cinder 819

https://bugs.launchpad.net/cinder/+bug/1847600
https://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html

Cinder Documentation, Release 20.3.2.dev3

Cinder User Documentation (source/user)

Introduction:

This directory is intended to hold any documentation that helps Cinder end-users. This can include
concept guides, tutorials, step-by-step guides for using the CLI, etc. Note that documentation this is
focused on administrative actions should go into doc/source/admin.

The full spec for organization of documentation may be seen in the OS Manuals Migration Spec
<https://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html>.

Finding something to contribute

If you are reading the documentation and notice something incorrect or undocumented, you can directly
submit a patch following the advice set out below.

There are also documentation bugs that other people have noticed that you could address:

• https://bugs.launchpad.net/cinder/+bugs?field.tag=doc

• https://bugs.launchpad.net/python-cinderclient/+bugs?field.tag=doc

• https://bugs.launchpad.net/os-brick/+bugs?field.tag=doc

• https://bugs.launchpad.net/cinderlib/+bugs?field.tag=doc

Note: If you dont see a bug listed, you can also try the tag docs or documentation. We tend to use doc
as the appropriate tag, but occasionally a bug gets tagged with a variant.

Background Concepts for Cinder

Cinder System Architecture

The Cinder Block Storage Service is intended to be ran on one or more nodes.

Cinder uses a sql-based central database that is shared by all Cinder services in the system. The amount
and depth of the data fits into a sql database quite well. For small deployments this seems like an optimal
solution. For larger deployments, and especially if security is a concern, cinder will be moving towards
multiple data stores with some kind of aggregation system.

Components

Below you will find a brief explanation of the different components.

• DB: sql database for data storage. Used by all components (LINKS NOT SHOWN).

• Web Dashboard: potential external component that talks to the api.

• api: component that receives http requests, converts commands and communicates with other com-
ponents via the queue or http.

820 Chapter 4. For contributors

https://bugs.launchpad.net/cinder/+bugs?field.tag=doc
https://bugs.launchpad.net/python-cinderclient/+bugs?field.tag=doc
https://bugs.launchpad.net/os-brick/+bugs?field.tag=doc
https://bugs.launchpad.net/cinderlib/+bugs?field.tag=doc

Cinder Documentation, Release 20.3.2.dev3

• Auth Manager: component responsible for users/projects/and roles. Can backend to DB or LDAP.
This is not a separate binary, but rather a python class that is used by most components in the
system.

• scheduler: decides which host gets each volume.

• volume: manages dynamically attachable block devices.

• backup: manages backups of block storage devices.

Volume Attach/Detach workflow

There are six API calls associated with attach/detach of volumes in Cinder (3 calls for each operation).
This can lead to some confusion for developers trying to work on Cinder. The convention is actually
quite simple, although it may be difficult to decipher from the code.

4.1. Contributing to Cinder 821

Cinder Documentation, Release 20.3.2.dev3

Attach/Detach Operations are multi-part commands

There are three things that happen in the workflow for an attach or detach call.

1. Update the status of the volume in the DB (ie attaching/detaching)

• For Attach, this is the cinder.volume.api.reserve_volume method

• For Detach, the analogous call is cinder.volume.api.begin_detaching

2. Handle the connection operations that need to be done on the Volume

• For Attach, this is the cinder.volume.api.initialize_connection method

• For Detach, the analogous call is cinder.volume.api.terminate_connection

3. Finalize the status of the volume and release the resource

• For attach, this is the cinder.volume.api.attach method

• For detach, the analogous call is cinder.volume.api.detach

Attach workflow

reserve_volume(self, context, volume)

Probably the most simple call in to Cinder. This method simply checks that the specified volume is in an
available state and can be attached. Any other state results in an Error response notifying Nova that the
volume is NOT available. The only valid state for this call to succeed is available.

NOTE: multi-attach will add in-use to the above acceptable states.

If the volume is in fact available, we immediately issue an update to the Cinder database and mark the
status of the volume to attaching thereby reserving the volume so that it wont be used by another API
call anywhere else.

initialize_connection(self, context, volume, connector)

This is the only attach related API call that should be doing any significant work. This method is respon-
sible for building and returning all of the info needed by the caller (Nova) to actually attach the specified
volume to the remote node. This method returns vital information to the caller that includes things like
CHAP credential, iqn and lun information. An example response is shown here:

{
'driver_volume_type': 'iscsi',
'data': {

'auth_password': 'YZ2Hceyh7VySh5HY',
'target_discovered': False,
'encrypted': False,
'qos_specs': None,
'target_iqn': 'iqn.2010-10.org.openstack:volume-8b1ec3fe-8c57-45ca-

↪→a1cf-a481bfc8fce2',
'target_portal': '11.0.0.8:3260',
'volume_id': '8b1ec3fe-8c57-45ca-a1cf-a481bfc8fce2',

(continues on next page)

822 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

'target_lun': 1,
'access_mode': 'rw',
'auth_username': 'nE9PY8juynmmZ95F7Xb7',
'auth_method': 'CHAP'

}
}

In the process of building this data structure, the Cinder Volume Manager makes a number of calls to the
backend driver, and builds a volume_attachment entry in the database to store the connection information
passed in via the connector object.

driver.validate_connector

Simply verifies that the initiator data is included in the passed in connector (there are some drivers that
utilize pieces of this connector data, but in the case of the reference, it just verifies its there).

driver.create_export

This is the target specific, persistent data associated with a volume. This method is responsible for build-
ing an actual iSCSI target, and providing the location and auth information which will be used to form
the response data in the parent request. We call this infor the model_update and its used to update vital
target information associated with the volume in the Cinder database.

driver.initialize_connection

Now that weve actually built a target and persisted the important bits of information associated with it,
were ready to actually assign the target to a volume and form the needed info to pass back out to our
caller. This is where we finally put everything together and form the example data structure response
shown earlier.

This method is sort of deceptive, it does a whole lot of formatting of the data weve put together in the
create_export call, but it doesnt really offer any new info. Its completely dependent on the information
that was gathered in the create_export call and put into the database. At this point, all were doing is
taking all the various entries from the database and putting it together into the desired format/structure.

The key method call for updating and obtaining all of this info was done by the create_export call. This
formatted data is then passed back up to the API and returned as the response back out to Nova.

At this point, we return attach info to the caller that provides everything needed to make the remote iSCSI
connection.

4.1. Contributing to Cinder 823

Cinder Documentation, Release 20.3.2.dev3

attach(self, context, volume, instance_uuid, host_name, mountpoint, mode)

This is the last call that should be pretty simple. The intent is that this is simply used to finalize the
attach process. In other words, we simply update the status on the Volume in the database, and provide
a mechanism to notify the driver that the attachment has completed successfully.

Theres some additional information that has been added to this finalize call over time like instance_uuid,
host_name etc. Some of these are only provided during the actual attach call and may be desired for some
drivers for one reason or another.

Detach workflow

begin_detaching(self, context, volume)

Analogous to the Attach workflows reserve_volume method. Performs a simple conditional update of
Volume status to detaching.

terminate_connection(self, context, volume, connector, force=False)

Analogous to the Attach workflows initialize_connection method.

Used to send calls down to drivers/target-drivers to do any sort of cleanup they might require.

For most this is a noop, as connections and iscsi session management is the responsibility of the ini-
tiator. HOWEVER, there are a number of special cases here, particularly for target-drivers like LIO that
use access-groups, in those cases they remove the initiator from the access list during this call which
effectively closes sessions from the target side.

detach(self, context, volume, attachment_id)

The final update to the DB and yet another opportunity to pass something down to the volume-driver.
Initially a simple call-back that now has quite a bit of cruft built up in the volume-manager.

For drivers like LVM this again is a noop and just updates the db entry to mark things as complete and
set the volume to available again.

Volume Attach/Detach workflow - V2

Previously there were six API calls associated with attach/detach of volumes in Cinder (3 calls for each
operation). As the projects grew and the functionality of simple things like attach/detach evolved things
have become a bit vague and we have a number of race issues during the calls that continually cause us
some problems.

Additionally, the existing code path makes things like multi-attach extremely difficult to implement due
to no real good tracking mechanism of attachment info.

To try and improve this weve proposed a new Attachments Object and API. Now we keep an Attachment
record for each attachment that we want to perform as opposed to trying to infer the information from
the Volume Object.

824 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Attachment Object

We actually already had a VolumeAttachment Table in the db, however we werent really using it, or at
least using it efficiently. For V2 of attach implementation (V3 API) flow well use the Attachment Table
(object) as the primary handle for managing attachment(s) for a volume.

In addition, we also introduce the AttachmentSpecs Table which will store the connector information for
an Attachment so we no longer have the problem of lost connector info, or trying to reassemble it.

New API and Flow

attachment-create

` cinder --os-volume-api-version 3.27 attachment-create <volume-id>
<instance-uuid> `

The attachment_create call simply creates an empty Attachment record for the specified Volume with an
Instance UUID field set. This is particularly useful for cases like Nova Boot from Volume where Nova
hasnt sent the job to the actual Compute host yet, but needs to make initial preparations to reserve the
volume for use, so here we can reserve the volume and indicate that we will be attaching it to <Instance-
UUID> in the future.

Alternatively, the caller may provide a connector in which case the Cinder API will create the attachment
and perform the update on the attachment to set the connector info and return the connection data needed
to make a connection.

The attachment_create call can be used in one of two ways:

1. Create an empty Attachment object (reserve). In this case the attachment_create call requires an
instance_uuid and a volume_uuid, and just creates an empty Attachment object and returns the
UUID of Attachment to the caller.

2. Create and complete the Attachment process in one call. The reserve process is only needed in
certain cases, in many cases Nova actually has enough information to do everything in a single
call. Also, non-nova consumers typically dont require the granularity of a separate reserve at all.

To perform the complete operation, include the connector data in the attachment_create call and
the Cinder API will perform the reserve and initialize the connection in the single request.

This full usage of attachment-create would be:

usage: cinder --os-volume-api-version 3.27 attachment-create
<volume> <instance_uuid> ...

Positional arguments:
<volume> Name or ID of volume or volumes to attach.
<instance_uuid> ID of instance attaching to.

Optional arguments:
--connect <connect> Make an active connection using provided connector␣
↪→info (True or False).
--initiator <initiator> iqn of the initiator attaching to. Default=None.
--ip <ip> ip of the system attaching to. Default=None.

(continues on next page)

4.1. Contributing to Cinder 825

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

--host <host> Name of the host attaching to. Default=None.
--platform <platform> Platform type. Default=x86_64.
--ostype <ostype> OS type. Default=linux2.
--multipath <multipath> Use multipath. Default=False.
--mountpoint <mountpoint> Mountpoint volume will be attached at. Default=None.

Returns the connection information for the attachment:

+-------------------+---
↪→--------------+
| Property | Value ␣
↪→ |
+-------------------+---
↪→--------------+
| access_mode | rw ␣
↪→ |
| attachment_id | 6ab061ad-5c45-48f3-ad9c-bbd3b6275bf2 ␣
↪→ |
| auth_method | CHAP ␣
↪→ |
| auth_password | kystSioDKHSV2j9y ␣
↪→ |
| auth_username | hxGUgiWvsS4GqAQcfA78 ␣
↪→ |
| encrypted | False ␣
↪→ |
| qos_specs | None ␣
↪→ |
| target_discovered | False ␣
↪→ |
| target_iqn | iqn.2010-10.org.openstack:volume-23212c97-5ed7-42d7-
↪→b433-dbf8fc38ec35 |
| target_lun | 0 ␣
↪→ |
| target_portal | 192.168.0.9:3260 ␣
↪→ |
| volume_id | 23212c97-5ed7-42d7-b433-dbf8fc38ec35 ␣
↪→ |
+-------------------+---
↪→--------------+

826 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

attachment-update

` cinder --os-volume-api-version 3.27 attachment-update <attachment-id> `

Once we have a reserved volume, this CLI can be used to update an attachment for a cinder volume.
This call is designed to be more of an attachment completion than anything else. It expects the value
of a connector object to notify the driver that the volume is going to be connected and where its being
connected to. The usage is the following:

usage: cinder --os-volume-api-version 3.27 attachment-update
<attachment-id> ...

Positional arguments:
<attachment-id> ID of attachment.

Optional arguments:
--initiator <initiator> iqn of the initiator attaching to. Default=None.
--ip <ip> ip of the system attaching to. Default=None.
--host <host> Name of the host attaching to. Default=None.
--platform <platform> Platform type. Default=x86_64.
--ostype <ostype> OS type. Default=linux2.
--multipath <multipath> Use multipath. Default=False.
--mountpoint <mountpoint> Mountpoint volume will be attached at.␣

↪→Default=None.

attachment-delete

` cinder --os-volume-api-version 3.27 attachment-delete <attachment-id> `

Cinder Thin provisioning and Oversubscription

Background

After the support on Cinder for Thin provisioning, driver maintainers have been struggling to understand
what is the expected behavior of their drivers and what exactly each value reported means. This document
summarizes the concepts, definitions and terminology from all specs related to the subject and should be
used as reference for new drivers implementing support for thin provisioning.

Core concepts and terminology

In order to maintain the same behavior among all drivers, we first need to define some concepts used
throughout drivers. This terminology is discussed and defined in this spec[1] and should be used as
reference in further implementations.

4.1. Contributing to Cinder 827

Cinder Documentation, Release 20.3.2.dev3

Stats to be reported

The following fields should be reported by drivers supporting thin provisioning on the get_volume_stats()
function:

Mandatory Fields

thin_provisioning_support = True (or False)

Optional Fields

thick_provisioning_support = True (or False)
provisioned_capacity_gb = PROVISIONED_CAPACITY
max_over_subscription_ratio = MAX_RATIO

Note: If provisioned_capacity_gb is not reported, the value used in the scheduler calculations and
filtering is allocated_capacity_gb.

Note: If max_over_subscription_ratio is not reported, the scheduler will use the value defined on the
[DEFAULT] section. This falls back to the default value (20.0) if not set by the user.

[1] https://specs.openstack.org/openstack/cinder-specs/specs/queens/provisioning-improvements.html

Threading model

All OpenStack services use green thread model of threading, implemented through using the Python
eventlet and greenlet libraries.

Green threads use a cooperative model of threading: thread context switches can only occur when specific
eventlet or greenlet library calls are made (e.g., sleep, certain I/O calls). From the operating systems point
of view, each OpenStack service runs in a single thread.

The use of green threads reduces the likelihood of race conditions, but does not completely eliminate
them. In some cases, you may need to use the @utils.synchronized(...) decorator to avoid races.

In addition, since there is only one operating system thread, a call that blocks that main thread will block
the entire process.

828 Chapter 4. For contributors

https://specs.openstack.org/openstack/cinder-specs/specs/queens/provisioning-improvements.html
http://eventlet.net/
http://greenlet.readthedocs.io/en/latest/

Cinder Documentation, Release 20.3.2.dev3

Yielding the thread in long-running tasks

If a code path takes a long time to execute and does not contain any methods that trigger an eventlet
context switch, the long-running thread will block any pending threads.

This scenario can be avoided by adding calls to the eventlet sleep method in the long-running code path.
The sleep call will trigger a context switch if there are pending threads, and using an argument of 0 will
avoid introducing delays in the case that there is only a single green thread:

from eventlet import greenthread
...
greenthread.sleep(0)

In current code, time.sleep(0) does the same thing as greenthread.sleep(0) if time module is patched
through eventlet.monkey_patch(). To be explicit, we recommend contributors use greenthread.
sleep() instead of time.sleep().

MySQL access and eventlet

There are some MySQL DB API drivers for oslo.db, like PyMySQL, MySQL-python etc. PyMySQL
is the default MySQL DB API driver for oslo.db, and it works well with eventlet. MySQL-python uses
an external C library for accessing the MySQL database. Since eventlet cannot use monkey-patching to
intercept blocking calls in a C library, queries to the MySQL database using libraries like MySQL-python
will block the main thread of a service.

The Diablo release contained a thread-pooling implementation that did not block, but this implementation
resulted in a bug and was removed.

See this mailing list thread for a discussion of this issue, including a discussion of the impact on perfor-
mance.

Internationalization

For internationalization guidelines, see the oslo.i18n documentation. The information below can be used
to get started.

Cinder uses gettext so that user-facing strings such as log messages appear in the appropriate language
in different locales.

To use gettext, make sure that the strings passed to the logger are wrapped in a _Lx() function call. For
example:

LOG.info(_LI("block_device_mapping %s"), block_device_mapping)

There are a few different _() translation markers, depending on the logging level of the text:

• _LI() - Used for INFO level log messages

• _LW() - Used for WARNING level log messages

• _LE() - Used for ERROR level log messages (this includes LOG.exception)

• _() - Used for any exception messages, including strings used for both logging and exceptions.

4.1. Contributing to Cinder 829

https://wiki.openstack.org/wiki/PyMySQL_evaluation
https://bugs.launchpad.net/cinder/+bug/838581
https://lists.launchpad.net/openstack/msg08118.html
https://lists.launchpad.net/openstack/msg08217.html
https://lists.launchpad.net/openstack/msg08217.html
https://docs.openstack.org/oslo.i18n/latest/
https://docs.python.org/3/library/gettext.html

Cinder Documentation, Release 20.3.2.dev3

Note: Starting with the Pike series, OpenStack no longer supports log translation markers like _Lx(),
only _() should still be used for exceptions that could be user facing. It is not necessary to add _Lx()
translation instructions to new code, and the instructions can be removed from old code. Refer to the
email thread understanding log domain change on the openstack-dev mailing list for more details.

Do not use locals() for formatting messages because:

1. It is not as clear as using explicit dicts.

2. It could produce hidden errors during refactoring.

3. Changing the name of a variable causes a change in the message.

4. It creates a lot of otherwise unused variables.

If you do not follow the project conventions, your code may cause pep8 hacking check failures.

For translation to work properly, the top level scripts for Cinder need to first do the following before any
Cinder modules are imported:

from cinder import i18n
i18n.enable_lazy()

Note: this should only be called from top level scripts - no library code or common modules should call
this method.

Any files that use the _() for translation then must have the following lines:

from cinder.i18n import _

If the above code is missing, it may result in an error that looks like:

NameError: name '_' is not defined

AMQP and Cinder

AMQP is the messaging technology chosen by the OpenStack cloud. The AMQP broker, either Rab-
bitMQ or Qpid, sits between any two Cinder components and allows them to communicate in a loosely
coupled fashion. More precisely, Cinder components (the compute fabric of OpenStack) use Remote
Procedure Calls (RPC hereinafter) to communicate to one another; however such a paradigm is built
atop the publish/subscribe paradigm so that the following benefits can be achieved:

• Decoupling between client and servant (such as the client does not need to know where the servants
reference is).

• Full a-synchronism between client and servant (such as the client does not need the servant to run
at the same time of the remote call).

• Random balancing of remote calls (such as if more servants are up and running, one-way calls are
transparently dispatched to the first available servant).

Cinder uses direct, fanout, and topic-based exchanges. The architecture looks like the one depicted in
the figure below:

830 Chapter 4. For contributors

http://lists.openstack.org/pipermail/openstack-dev/2017-March/thread.html#113365

Cinder Documentation, Release 20.3.2.dev3

Cinder implements RPC (both request+response, and one-way, respectively nicknamed rpc.call and
rpc.cast) over AMQP by providing an adapter class which take cares of marshaling and unmarshaling
of messages into function calls. Each Cinder service (for example Scheduler, Volume, etc.) create two
queues at the initialization time, one which accepts messages with routing keys NODE-TYPE.NODE-
ID (for example cinder-volume.hostname) and another, which accepts messages with routing keys as
generic NODE-TYPE (for example cinder-volume). The API acts as a consumer when RPC calls are
request/response, otherwise is acts as publisher only.

Cinder RPC Mappings

The figure below shows the internals of a message broker node (referred to as a RabbitMQ node in the
diagrams) when a single instance is deployed and shared in an OpenStack cloud. Every Cinder component
connects to the message broker and, depending on its personality, may use the queue either as an Invoker
(such as API or Scheduler) or a Worker (such as Volume). Invokers and Workers do not actually exist in
the Cinder object model, but we are going to use them as an abstraction for sake of clarity. An Invoker is
a component that sends messages in the queuing system via two operations: 1) rpc.call and ii) rpc.cast; a
Worker is a component that receives messages from the queuing system and reply accordingly to rpc.call
operations.

Figure 2 shows the following internal elements:

• Topic Publisher: a Topic Publisher comes to life when an rpc.call or an rpc.cast operation is exe-
cuted; this object is instantiated and used to push a message to the queuing system. Every publisher
connects always to the same topic-based exchange; its life-cycle is limited to the message delivery.

• Direct Consumer: a Direct Consumer comes to life if (an only if) a rpc.call operation is executed;
this object is instantiated and used to receive a response message from the queuing system; Every
consumer connects to a unique direct-based exchange via a unique exclusive queue; its life-cycle
is limited to the message delivery; the exchange and queue identifiers are determined by a UUID
generator, and are marshaled in the message sent by the Topic Publisher (only rpc.call operations).

• Topic Consumer: a Topic Consumer comes to life as soon as a Worker is instantiated and exists
throughout its life-cycle; this object is used to receive messages from the queue and it invokes the
appropriate action as defined by the Worker role. A Topic Consumer connects to the same topic-
based exchange either via a shared queue or via a unique exclusive queue. Every Worker has two
topic consumers, one that is addressed only during rpc.cast operations (and it connects to a shared

4.1. Contributing to Cinder 831

Cinder Documentation, Release 20.3.2.dev3

queue whose exchange key is topic) and the other that is addressed only during rpc.call operations
(and it connects to a unique queue whose exchange key is topic.host).

• Direct Publisher: a Direct Publisher comes to life only during rpc.call operations and it is instan-
tiated to return the message required by the request/response operation. The object connects to a
direct-based exchange whose identity is dictated by the incoming message.

• Topic Exchange: The Exchange is a routing table that exists in the context of a virtual host (the
multi-tenancy mechanism provided by Qpid or RabbitMQ); its type (such as topic vs. direct)
determines the routing policy; a message broker node will have only one topic-based exchange for
every topic in Cinder.

• Direct Exchange: this is a routing table that is created during rpc.call operations; there are many
instances of this kind of exchange throughout the life-cycle of a message broker node, one for each
rpc.call invoked.

• Queue Element: A Queue is a message bucket. Messages are kept in the queue until a Consumer
(either Topic or Direct Consumer) connects to the queue and fetch it. Queues can be shared or
can be exclusive. Queues whose routing key is topic are shared amongst Workers of the same
personality.

RPC Calls

The diagram below shows the message flow during an rpc.call operation:

1. a Topic Publisher is instantiated to send the message request to the queuing system; immediately
before the publishing operation, a Direct Consumer is instantiated to wait for the response message.

2. once the message is dispatched by the exchange, it is fetched by the Topic Consumer dictated by
the routing key (such as topic.host) and passed to the Worker in charge of the task.

3. once the task is completed, a Direct Publisher is allocated to send the response message to the
queuing system.

4. once the message is dispatched by the exchange, it is fetched by the Direct Consumer dictated by
the routing key (such as msg_id) and passed to the Invoker.

832 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

RPC Casts

The diagram below the message flow during an rpc.cast operation:

1. A Topic Publisher is instantiated to send the message request to the queuing system.

2. Once the message is dispatched by the exchange, it is fetched by the Topic Consumer dictated by
the routing key (such as topic) and passed to the Worker in charge of the task.

AMQP Broker Load

At any given time the load of a message broker node running either Qpid or RabbitMQ is function of the
following parameters:

• Throughput of API calls: the number of API calls (more precisely rpc.call ops) being served by
the OpenStack cloud dictates the number of direct-based exchanges, related queues and direct
consumers connected to them.

• Number of Workers: there is one queue shared amongst workers with the same personality; how-
ever there are as many exclusive queues as the number of workers; the number of workers dictates
also the number of routing keys within the topic-based exchange, which is shared amongst all
workers.

The figure below shows the status of a RabbitMQ node after Cinder components bootstrap in a test
environment (phantom is hostname). Exchanges and queues being created by Cinder components are:

• Exchanges

1. cinder-scheduler_fanout (fanout exchange)

2. cinder-volume.phantom@lvm_fanout (fanout exchange)

3. cinder-volume_fanout (fanout exchange)

4. openstack (topic exchange)

• Queues

1. cinder-scheduler

2. cinder-scheduler.phantom

3. cinder-scheduler_fanout_572c35c0fbf94560b4c49572d5868ea5

4. cinder-volume

5. cinder-volume.phantom@lvm

6. cinder-volume.phantom@lvm.phantom

7. cinder-volume.phantom@lvm_fanout_cb3387f7a7684b1c9ee5f2f88325b7d5

4.1. Contributing to Cinder 833

mailto:cinder-volume.phantom@lvm_fanout
mailto:cinder-volume.phantom@lvm
mailto:cinder-volume.phantom@lvm.phantom
mailto:cinder-volume.phantom@lvm_fanout_cb3387f7a7684b1c9ee5f2f88325b7d5

Cinder Documentation, Release 20.3.2.dev3

8. cinder-volume_fanout_9017a1a7f4b44867983dcddfb56531a2

RabbitMQ Gotchas

Cinder uses Kombu to connect to the RabbitMQ environment. Kombu is a Python library that in turn
uses AMQPLib, a library that implements the standard AMQP 0.8 at the time of writing. When using
Kombu, Invokers and Workers need the following parameters in order to instantiate a Connection object
that connects to the RabbitMQ server (please note that most of the following material can be also found
in the Kombu documentation; it has been summarized and revised here for sake of clarity):

• Hostname: The hostname to the AMQP server.

• Userid: A valid username used to authenticate to the server.

• Password: The password used to authenticate to the server.

• Virtual_host: The name of the virtual host to work with. This virtual host must exist on the server,
and the user must have access to it. Default is /.

• Port: The port of the AMQP server. Default is 5672 (amqp).

The following parameters are default:

• Insist: insist on connecting to a server. In a configuration with multiple load-sharing servers, the
Insist option tells the server that the client is insisting on a connection to the specified server.
Default is False.

• Connect_timeout: the timeout in seconds before the client gives up connecting to the server. The
default is no timeout.

• SSL: use SSL to connect to the server. The default is False.

More precisely Consumers need the following parameters:

• Connection: the above mentioned Connection object.

• Queue: name of the queue.

834 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• Exchange: name of the exchange the queue binds to.

• Routing_key: the interpretation of the routing key depends on the value of the exchange_type
attribute.

– Direct exchange: if the routing key property of the message and the routing_key attribute of
the queue are identical, then the message is forwarded to the queue.

– Fanout exchange: messages are forwarded to the queues bound the exchange, even if the
binding does not have a key.

– Topic exchange: if the routing key property of the message matches the routing key of the
key according to a primitive pattern matching scheme, then the message is forwarded to the
queue. The message routing key then consists of words separated by dots (., like domain
names), and two special characters are available; star (*) and hash (#). The star matches any
word, and the hash matches zero or more words. For example .stock.# matches the routing
keys usd.stock and eur.stock.db but not stock.nasdaq.

• Durable: this flag determines the durability of both exchanges and queues; durable exchanges and
queues remain active when a RabbitMQ server restarts. Non-durable exchanges/queues (transient
exchanges/queues) are purged when a server restarts. It is worth noting that AMQP specifies that
durable queues cannot bind to transient exchanges. Default is True.

• Auto_delete: if set, the exchange is deleted when all queues have finished using it. Default is False.

• Exclusive: exclusive queues (such as non-shared) may only be consumed from by the current
connection. When exclusive is on, this also implies auto_delete. Default is False.

• Exchange_type: AMQP defines several default exchange types (routing algorithms) that covers
most of the common messaging use cases.

• Auto_ack: acknowledgement is handled automatically once messages are received. By default
auto_ack is set to False, and the receiver is required to manually handle acknowledgment.

• No_ack: it disable acknowledgement on the server-side. This is different from auto_ack in that
acknowledgement is turned off altogether. This functionality increases performance but at the cost
of reliability. Messages can get lost if a client dies before it can deliver them to the application.

• Auto_declare: if this is True and the exchange name is set, the exchange will be automatically
declared at instantiation. Auto declare is on by default. Publishers specify most the parameters of
Consumers (such as they do not specify a queue name), but they can also specify the following:

• Delivery_mode: the default delivery mode used for messages. The value is an integer. The fol-
lowing delivery modes are supported by RabbitMQ:

– 1 or transient: the message is transient. Which means it is stored in memory only, and is lost
if the server dies or restarts.

– 2 or persistent: the message is persistent. Which means the message is stored both in-memory,
and on disk, and therefore preserved if the server dies or restarts.

The default value is 2 (persistent). During a send operation, Publishers can override the delivery mode
of messages so that, for example, transient messages can be sent over a durable queue.

4.1. Contributing to Cinder 835

Cinder Documentation, Release 20.3.2.dev3

Other Resources

Project hosting with Launchpad

Launchpad hosts the Cinder project. The Cinder project homepage on Launchpad is https://launchpad.
net/cinder.

Launchpad credentials

Creating a login on Launchpad is important even if you dont use the Launchpad site itself, since Launch-
pad credentials are used for logging in on several OpenStack-related sites. These sites include:

• Wiki

• Gerrit (see Code Reviews)

• Zuul (see Continuous Integration with Zuul)

Mailing list

The mailing list email is openstack-discuss@lists.openstack.org. This is a common mailing list
across the OpenStack projects. To participate in the mailing list:

1. Subscribe to the list at https://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

The mailing list archives are at https://lists.openstack.org/pipermail/openstack-discuss/.

Bug tracking

Report Cinder bugs at https://bugs.launchpad.net/cinder

Feature requests (Blueprints)

Cinder uses Launchpad Blueprints to track feature requests. Blueprints are at https://blueprints.
launchpad.net/cinder.

Technical support (Answers)

Cinder no longer uses Launchpad Answers to track Cinder technical support questions.

Note that Ask OpenStack (which is not hosted on Launchpad) can be used for technical support requests.

836 Chapter 4. For contributors

https://launchpad.net
https://launchpad.net/cinder
https://launchpad.net/cinder
https://wiki.openstack.org/wiki/Main_Page
https://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://lists.openstack.org/pipermail/openstack-discuss/
https://bugs.launchpad.net/cinder
https://blueprints.launchpad.net/cinder
https://blueprints.launchpad.net/cinder
https://ask.openstack.org

Cinder Documentation, Release 20.3.2.dev3

Code Reviews

Cinder follows the same Review guidelines outlined by the OpenStack community. This page provides
additional information that is helpful for reviewers of patches to Cinder.

Gerrit

Cinder uses the Gerrit tool to review proposed code changes. The review site is https://review.opendev.org

Gerrit is a complete replacement for Github pull requests. All Github pull requests to the Cinder reposi-
tory will be ignored.

See Quick Reference for information on quick reference for developers. See Getting Started for infor-
mation on how to get started using Gerrit. See Development Workflow for more detailed information on
how to work with Gerrit.

The Great Change

With the demise of Python 2.7 in January 2020, beginning with the Ussuri development cycle, Cinder
only needs to support Python 3 runtimes (in particular, 3.6 and 3.7). Thus we can begin to incorporate
Python 3 language features and remove Python 2 compatibility code. At the same time, however, we
are still supporting stable branches that must support Python 2. Our biggest interaction with the stable
branches is backporting bugfixes, where in the ideal case, were just doing a simple cherry-pick of a
commit from master to the stable branches. You can see that theres some tension here.

With that in mind, here are some guidelines for reviewers and developers that the Cinder community has
agreed on during this phase where we want to write pure Python 3 but still must support Python 2 code.

Python 2 to Python 3 transition guidelines

• We need to be checking the code coverage of test cases very carefully so that new code has excellent
coverage. The idea is that we want these tests to fail when a backport is proposed to a stable branch
and the tests are run under Python 2 (if the code is using any Python-3-only language features).

• New features can use Python-3-only language constructs, but bugfixes likely to be backported
should be more conservative and write for Python 2 compatibilty.

• The code for drivers may continue to use the six compatibility library at their discretion.

• We will not remove six from mainline Cinder code that impacts the drivers (for example, classes
they inherit from).

• We can remove six from code that doesnt impact drivers, keeping in mind that backports may be
more problematic, and hence making sure that we have really good test coverage.

4.1. Contributing to Cinder 837

https://docs.openstack.org/doc-contrib-guide/docs-review-guidelines.html
https://review.opendev.org/#/q/project:openstack/cinder+status:open
https://review.opendev.org
https://docs.openstack.org/infra/manual/developers.html#quick-reference
https://docs.openstack.org/infra/manual/developers.html#getting-started
https://docs.openstack.org/infra/manual/developers.html#development-workflow

Cinder Documentation, Release 20.3.2.dev3

Targeting Milestones

In an effort to guide team review priorities the Cinder team has adopted the process of adding comments
to reviews to target a milestone for a particular patch. This process is not required for all patches but is
beneficial for patches that may be time sensitive. For example patches that need to land earlier in the
release cycle so as to get additional test time or because later development activities are dependent upon
that functionality merging.

To target a patch to a milestone a reviewer should add a comment using the following format:

target-<release>-<milestone>

Release should be used to indicate the release to which the patch should be targeted, all lower case. The
milestone is a single number, 1 to 3, indicating the milestone number. So, to target a patch to land in
Milestone 2 of the Rocky release a comment like the following would be added:

target-rocky-2

Adding this tag allows reviewers to search for these tags and use them as a guide in review priorities.

Targeting patches should be done by Cinder Core Review Team members. If a patch developer feels that
a patch should be targeted to a milestone the developer should bring the request up to the Cinder team in
a weekly meeting or on the #openstack-cinder IRC channel.

Reviewing Vendor Patches

It is important to consider, when reviewing patches to a vendors Cinder driver, whether the patch passes
the vendors CI process. CI reports are the only tool we have to ensure that a patch works with the Vendors
driver. A patch to a vendors driver that does not pass that vendors CI should not be merged. If a patch is
submitted by a person that does not work with the vendor that owns the driver, a +1 review from someone
at that vendor is also required. Finally, a patch should not be merged before the Vendors CI has run against
the patch.

Note: Patches which have passed vendor CI and have merged in master are exempt from this require-
ment upon backport to stable and/or driverfixes branches as vendors are not required to run CI on those
branches. If the vendor, however, is running CI on stable and/or driverfix branches failures should not be
ignored unless otherwise verified by a developer from the vendor.

Unit Tests

Cinder requires unit tests with all patches that introduce a new branch or function in the code. Changes
that do not come with a unit test change should be considered closely and usually returned to the submitter
with a request for the addition of unit test.

Note: Unit test changes are not validated in any way by vendors CI. Vendor CIs run the tempest volume
tests against a change which does not include a unit test execution.

838 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

CI Job rechecks

CI job runs may result in false negatives for a considerable number of causes:

• Network failures.

• Not enough resources on the job runner.

• Storage timeouts caused by the array running nightly maintenance jobs.

• External service failure: pypi, package repositories, etc.

• Non cinder components spurious bugs.

And the list goes on and on.

When we detect one of these cases the normal procedure is to run a recheck writing a comment with
recheck for core Zuul jobs, or the specific third party CI recheck command, for example run-DellEMC
PowerStore CI.

These false negative have periods of time where they spike, for example when there are spurious failures,
and a lot of rechecks are necessary until a valid result is posted by the CI job. And its in these periods of
time where people acquire the tendency to blindly issue rechecks without locking at the errors reported
by the jobs.

When these blind checks happen on real patch failures or with external services that are going to be out
for a while, they lead to wasted resources as well as longer result times for patches in other projects.

The Cinder community has noticed this tendency and wants to fix it, so now it is strongly encouraged to
avoid issuing naked rechecks and instead issue them with additional information to indicate that we have
looked at the failure and confirmed it is unrelated to the patch.

Here are some real examples of proper rechecks:

• Spurious issue in other component: recheck tempest-integrated-storage :
intermittent failure nova bug #1836754

• Deployment issue on the job: recheck cinder-plugin-ceph-tempest timed out,
errors all over the place

• External service failure: Third party recheck grenade : Failed to retrieve .deb
packages

Another common case for blindly rechecking a patch is when it is only changing a specific driver but
there are failures on jobs that dont use that driver. In such cases we still have to look at the failures,
because they can be failures that are going to take a while to fix, and issuing a recheck will be futile at
that time and we should wait for a couple of hours, or maybe even a day, before issuing a recheck that
can yield the desired result.

4.1. Contributing to Cinder 839

Cinder Documentation, Release 20.3.2.dev3

Continuous Integration with Zuul

Cinder uses Zuul as project gating system. The Zuul web front-end is at https://status.opendev.org.

Zuul ensures that only tested code gets merged. The configuration is mainly done in cinders .zuul.yaml
file.

The following is a partial list of jobs that are configured to run on changes. Test jobs run initially on
proposed changes and get run again after review and approval. Note that for each job run the code gets
rebased to current HEAD to test exactly the state that gets merged.

openstack-tox-pep8 Run linters like PEP8 checks.

openstack-tox-pylint Run Pylint checks.

openstack-tox-python27 Run unit tests using python2.7.

openstack-tox-python36 Run unit tests using python3.6.

openstack-tox-docs Build this documentation for review.

The following jobs are some of the jobs that run after a change is merged:

publish-openstack-tox-docs Build this documentation and publish to OpenStack Cinder.

publish-openstack-python-branch-tarball Do python setup.py sdist to create a tarball of the
cinder code and upload it to http://tarballs.openstack.org/cinder.

cinder

cinder package

Subpackages

cinder.api package

Subpackages

cinder.api.contrib package

Submodules

cinder.api.contrib.admin_actions module

class AdminController(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

Abstract base class for AdminControllers.

authorize(context, action_name, target_obj=None)

collection = None

validate_update(req, body)

840 Chapter 4. For contributors

https://zuul-ci.org
https://status.opendev.org
https://opendev.org/openstack/cinder/src/.zuul.yaml
https://docs.openstack.org/cinder/latest/
http://tarballs.openstack.org/cinder

Cinder Documentation, Release 20.3.2.dev3

wsgi_actions = {'os-force_delete': '_force_delete', 'os-reset_status':
'_reset_status'}

wsgi_extensions = []

class Admin_actions(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Enable admin actions.

alias = 'os-admin-actions'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'AdminActions'

updated = '2012-08-25T00:00:00+00:00'

class BackupAdminController(*args, **kwargs)
Bases: cinder.api.contrib.admin_actions.AdminController

AdminController for Backups.

collection = 'backups'

wsgi_actions = {'os-force_delete': '_force_delete', 'os-reset_status':
'_reset_status'}

wsgi_extensions = []

class SnapshotAdminController(*args, **kwargs)
Bases: cinder.api.contrib.admin_actions.AdminController

AdminController for Snapshots.

collection = 'snapshots'

validate_update(req, body)

wsgi_actions = {'os-force_delete': '_force_delete', 'os-reset_status':
'_reset_status'}

wsgi_extensions = []

class VolumeAdminController(*args, **kwargs)
Bases: cinder.api.contrib.admin_actions.AdminController

AdminController for Volumes.

collection = 'volumes'

validate_update(req, body)

wsgi_actions = {'os-force_delete': '_force_delete', 'os-force_detach':
'_force_detach', 'os-migrate_volume': '_migrate_volume',
'os-migrate_volume_completion': '_migrate_volume_completion',
'os-reset_status': '_reset_status'}

wsgi_extensions = []

4.1. Contributing to Cinder 841

Cinder Documentation, Release 20.3.2.dev3

cinder.api.contrib.availability_zones module

class Availability_zones(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Describe Availability Zones.

alias = 'os-availability-zone'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'AvailabilityZones'

updated = '2013-06-27T00:00:00+00:00'

class Controller(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

index(req)
Describe all known availability zones.

wsgi_actions = {}

wsgi_extensions = []

cinder.api.contrib.backups module

The backups api.

class Backups(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Backups support.

alias = 'backups'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'Backups'

updated = '2012-12-12T00:00:00+00:00'

class BackupsController
Bases: cinder.api.openstack.wsgi.Controller

The Backups API controller for the OpenStack API.

create(req, body)
Create a new backup.

delete(req, id)
Delete a backup.

detail(req)
Returns a detailed list of backups.

842 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

export_record(req, id)
Export a backup.

import_record(req, body)
Import a backup.

index(req)
Returns a summary list of backups.

restore(req, id, body)
Restore an existing backup to a volume.

show(req, id)
Return data about the given backup.

wsgi_actions = {}

wsgi_extensions = []

cinder.api.contrib.capabilities module

class Capabilities(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Capabilities support.

alias = 'capabilities'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'Capabilities'

updated = '2015-08-31T00:00:00+00:00'

class CapabilitiesController
Bases: cinder.api.openstack.wsgi.Controller

The Capabilities controller for the OpenStack API.

show(req, id)
Return capabilities list of given backend.

wsgi_actions = {}

wsgi_extensions = []

4.1. Contributing to Cinder 843

Cinder Documentation, Release 20.3.2.dev3

cinder.api.contrib.cgsnapshots module

The cgsnapshots api.

class Cgsnapshots(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

cgsnapshots support.

alias = 'cgsnapshots'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'Cgsnapshots'

updated = '2014-08-18T00:00:00+00:00'

class CgsnapshotsController
Bases: cinder.api.openstack.wsgi.Controller

The cgsnapshots API controller for the OpenStack API.

create(req, body)
Create a new cgsnapshot.

delete(req, id)
Delete a cgsnapshot.

detail(req)
Returns a detailed list of cgsnapshots.

index(req)
Returns a summary list of cgsnapshots.

show(req, id)
Return data about the given cgsnapshot.

wsgi_actions = {}

wsgi_extensions = []

cinder.api.contrib.consistencygroups module

The consistencygroups api.

class ConsistencyGroupsController
Bases: cinder.api.openstack.wsgi.Controller

The ConsistencyGroups API controller for the OpenStack API.

create(req, body)
Create a new consistency group.

create_from_src(req, body)
Create a new consistency group from a source.

The source can be a CG snapshot or a CG. Note that this does not require volume_types as
the create API above.

844 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

delete(req, id, body)
Delete a consistency group.

detail(req)
Returns a detailed list of consistency groups.

index(req)
Returns a summary list of consistency groups.

show(req, id)
Return data about the given consistency group.

update(req, id, body)
Update the consistency group.

Expected format of the input parameter body:

{
"consistencygroup":
{

"name": "my_cg",
"description": "My consistency group",
"add_volumes": "volume-uuid-1,volume-uuid-2,...",
"remove_volumes": "volume-uuid-8,volume-uuid-9,..."

}
}

wsgi_actions = {}

wsgi_extensions = []

class Consistencygroups(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

consistency groups support.

alias = 'consistencygroups'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'Consistencygroups'

updated = '2014-08-18T00:00:00+00:00'

cinder.api.contrib.extended_services module

class Extended_services(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Extended services support.

alias = 'os-extended-services'

name = 'ExtendedServices'

updated = '2014-01-10T00:00:00-00:00'

4.1. Contributing to Cinder 845

Cinder Documentation, Release 20.3.2.dev3

cinder.api.contrib.extended_snapshot_attributes module

The Extended Snapshot Attributes API extension.

class ExtendedSnapshotAttributesController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

detail(req, resp_obj)

show(req, resp_obj, id)

wsgi_actions = {}

wsgi_extensions = [('show', None), ('detail', None)]

class Extended_snapshot_attributes(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Extended SnapshotAttributes support.

alias = 'os-extended-snapshot-attributes'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'ExtendedSnapshotAttributes'

updated = '2012-06-19T00:00:00+00:00'

cinder.api.contrib.hosts module

The hosts admin extension.

class HostController
Bases: cinder.api.openstack.wsgi.Controller

The Hosts API controller for the OpenStack API.

index(req)

show(req, id)
Shows the volume usage info given by hosts.

Parameters

• req security context

• id hostname

Returns

dict the host resources dictionary. ex.:

{'host': [{'resource': D},..]}
D: {'host': 'hostname','project': 'admin',

'volume_count': 1, 'total_volume_gb': 2048}

update(req, id, service=None, *args, **kwargs)

846 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

wsgi_actions = {}

wsgi_extensions = []

class Hosts(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Admin-only host administration.

alias = 'os-hosts'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'Hosts'

updated = '2011-06-29T00:00:00+00:00'

check_host(fn)
Makes sure that the host exists.

cinder.api.contrib.qos_specs_manage module

The QoS specs extension

class QoSSpecsController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The volume type extra specs API controller for the OpenStack API.

associate(req, id)
Associate a qos specs with a volume type.

associations(req, id)
List all associations of given qos specs.

create(req, body=None)

delete(req, id)
Deletes an existing qos specs.

delete_keys(req, id, body)
Deletes specified keys in qos specs.

disassociate(req, id)
Disassociate a qos specs from a volume type.

disassociate_all(req, id)
Disassociate a qos specs from all volume types.

index(req)
Returns the list of qos_specs.

show(req, id)
Return a single qos spec item.

update(req, id, body=None)

wsgi_actions = {}

4.1. Contributing to Cinder 847

Cinder Documentation, Release 20.3.2.dev3

wsgi_extensions = []

class Qos_specs_manage(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

QoS specs support.

alias = 'qos-specs'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'Qos_specs_manage'

updated = '2013-08-02T00:00:00+00:00'

cinder.api.contrib.quota_classes module

class QuotaClassSetsController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

show(req, id)

update(req, id, body)

wsgi_actions = {}

wsgi_extensions = []

class Quota_classes(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Quota classes management support.

alias = 'os-quota-class-sets'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'QuotaClasses'

updated = '2012-03-12T00:00:00+00:00'

cinder.api.contrib.quotas module

class QuotaSetsController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

defaults(req, id)

delete(req, id)
Delete Quota for a particular tenant.

Parameters

• req request

848 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• id target project id that needs to be deleted

show(req, id)
Show quota for a particular tenant

Parameters

• req request

• id target project id that needs to be shown

update(req, id, body)
Update Quota for a particular tenant

Parameters

• req request

• id target project id that needs to be updated

• body key, value pair that will be applied to the resources if the update suc-
ceeds

wsgi_actions = {}

wsgi_extensions = []

class Quotas(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Quota management support.

alias = 'os-quota-sets'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'Quotas'

updated = '2011-08-08T00:00:00+00:00'

cinder.api.contrib.resource_common_manage module

get_manageable_resources(req, is_detail, function_get_manageable, view_builder)

cinder.api.contrib.scheduler_hints module

class Scheduler_hints(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Pass arbitrary key/value pairs to the scheduler.

alias = 'OS-SCH-HNT'

name = 'SchedulerHints'

updated = '2013-04-18T00:00:00+00:00'

create(req, body)

4.1. Contributing to Cinder 849

Cinder Documentation, Release 20.3.2.dev3

cinder.api.contrib.scheduler_stats module

The Scheduler Stats extension

class SchedulerStatsController
Bases: cinder.api.openstack.wsgi.Controller

The Scheduler Stats controller for the OpenStack API.

get_pools(req)
List all active pools in scheduler.

wsgi_actions = {}

wsgi_extensions = []

class Scheduler_stats(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Scheduler stats support.

alias = 'scheduler-stats'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'Scheduler_stats'

updated = '2014-09-07T00:00:00+00:00'

cinder.api.contrib.services module

class ServiceController(ext_mgr=None)
Bases: cinder.api.openstack.wsgi.Controller

index(req)
Return a list of all running services.

Filter by host & service name.

update(req, id, body)
Enable/Disable scheduling for a service.

Includes Freeze/Thaw which sends call down to drivers and allows volume.manager for the
specified host to disable the service rather than accessing the service directly in this API layer.

wsgi_actions = {}

wsgi_extensions = []

class Services(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Services support.

alias = 'os-services'

850 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'Services'

updated = '2012-10-28T00:00:00-00:00'

cinder.api.contrib.snapshot_actions module

class SnapshotActionsController(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

wsgi_actions = {'os-update_snapshot_status': '_update_snapshot_status'}

wsgi_extensions = []

class Snapshot_actions(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Enable snapshot manager actions.

alias = 'os-snapshot-actions'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'SnapshotActions'

updated = '2013-07-16T00:00:00+00:00'

cinder.api.contrib.snapshot_manage module

class SnapshotManageController(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

The /os-snapshot-manage controller for the OpenStack API.

create(req, body)
Instruct Cinder to manage a storage snapshot object.

Manages an existing backend storage snapshot object (e.g. a Linux logical volume or a SAN
disk) by creating the Cinder objects required to manage it, and possibly renaming the backend
storage snapshot object (driver dependent).

From an API perspective, this operation behaves very much like a snapshot creation opera-
tion.

Required HTTP Body:

{
"snapshot":
{
"volume_id": "<Cinder volume already exists in volume backend>",

(continues on next page)

4.1. Contributing to Cinder 851

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

"ref":
"<Driver-specific reference to the existing storage object>"

}
}

See the appropriate Cinder drivers implementations of the manage_snapshot method to find
out the accepted format of ref. For example,in LVM driver, it will be the logic volume name
of snapshot which you want to manage.

This API call will return with an error if any of the above elements are missing from the
request, or if the volume_id element refers to a cinder volume that could not be found.

The snapshot will later enter the error state if it is discovered that ref is bad.

Optional elements to snapshot are:

name A name for the new snapshot.
description A description for the new snapshot.
metadata Key/value pairs to be associated with the new␣
↪→snapshot.

detail(req)
Returns a detailed list of snapshots available to manage.

index(req)
Returns a summary list of snapshots available to manage.

wsgi_actions = {}

wsgi_extensions = [('index', None), ('detail', None)]

class Snapshot_manage(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Allows existing backend storage to be managed by Cinder.

alias = 'os-snapshot-manage'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'SnapshotManage'

updated = '2014-12-31T00:00:00+00:00'

852 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.api.contrib.snapshot_unmanage module

class SnapshotUnmanageController(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

unmanage(req, id, body)
Stop managing a snapshot.

This action is very much like a delete, except that a different method (unmanage) is called
on the Cinder driver. This has the effect of removing the snapshot from Cinder management
without actually removing the backend storage object associated with it.

There are no required parameters.

A Not Found error is returned if the specified snapshot does not exist.

wsgi_actions = {'os-unmanage': 'unmanage'}

wsgi_extensions = []

class Snapshot_unmanage(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Enable volume unmanage operation.

alias = 'os-snapshot-unmanage'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'SnapshotUnmanage'

updated = '2014-12-31T00:00:00+00:00'

cinder.api.contrib.types_extra_specs module

The volume types extra specs extension

class Types_extra_specs(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Type extra specs support.

alias = 'os-types-extra-specs'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'TypesExtraSpecs'

updated = '2011-08-24T00:00:00+00:00'

class VolumeTypeExtraSpecsController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The volume type extra specs API controller for the OpenStack API.

4.1. Contributing to Cinder 853

Cinder Documentation, Release 20.3.2.dev3

create(req, type_id, body)

delete(req, type_id, id)
Deletes an existing extra spec.

index(req, type_id)
Returns the list of extra specs for a given volume type.

show(req, type_id, id)
Return a single extra spec item.

update(req, type_id, id, body)

wsgi_actions = {}

wsgi_extensions = []

cinder.api.contrib.types_manage module

The volume types manage extension.

class Types_manage(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Types manage support.

alias = 'os-types-manage'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'TypesManage'

updated = '2011-08-24T00:00:00+00:00'

class VolumeTypesManageController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The volume types API controller for the OpenStack API.

wsgi_actions = {'create': '_create', 'delete': '_delete', 'update':
'_update'}

wsgi_extensions = []

cinder.api.contrib.used_limits module

class UsedLimitsController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

index(req, resp_obj)

wsgi_actions = {}

wsgi_extensions = [('index', None)]

854 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

class Used_limits(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Provide data on limited resources that are being used.

alias = 'os-used-limits'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'UsedLimits'

updated = '2013-10-03T00:00:00+00:00'

cinder.api.contrib.volume_actions module

class VolumeActionsController(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

versioned_methods = {'_reimage':
[<cinder.api.openstack.versioned_method.VersionedMethod object>]}

wsgi_actions = {'os-attach': '_attach', 'os-begin_detaching':
'_begin_detaching', 'os-detach': '_detach', 'os-extend': '_extend',
'os-initialize_connection': '_initialize_connection', 'os-reimage':
'_reimage', 'os-reserve': '_reserve', 'os-retype': '_retype',
'os-roll_detaching': '_roll_detaching', 'os-set_bootable':
'_set_bootable', 'os-terminate_connection': '_terminate_connection',
'os-unreserve': '_unreserve', 'os-update_readonly_flag':
'_volume_readonly_update', 'os-volume_upload_image':
'_volume_upload_image'}

wsgi_extensions = []

class Volume_actions(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Enable volume actions.

alias = 'os-volume-actions'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'VolumeActions'

updated = '2012-05-31T00:00:00+00:00'

4.1. Contributing to Cinder 855

Cinder Documentation, Release 20.3.2.dev3

cinder.api.contrib.volume_encryption_metadata module

The volume encryption metadata extension.

class VolumeEncryptionMetadataController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The volume encryption metadata API extension.

index(req, volume_id)
Returns the encryption metadata for a given volume.

show(req, volume_id, id)
Return a single encryption item.

wsgi_actions = {}

wsgi_extensions = []

class Volume_encryption_metadata(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Volume encryption metadata retrieval support.

alias = 'os-volume-encryption-metadata'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'VolumeEncryptionMetadata'

updated = '2013-07-10T00:00:00+00:00'

cinder.api.contrib.volume_host_attribute module

class VolumeHostAttributeController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

detail(req, resp_obj)

show(req, resp_obj, id)

wsgi_actions = {}

wsgi_extensions = [('show', None), ('detail', None)]

class Volume_host_attribute(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Expose host as an attribute of a volume.

alias = 'os-vol-host-attr'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'VolumeHostAttribute'

856 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

updated = '2011-11-03T00:00:00+00:00'

cinder.api.contrib.volume_image_metadata module

The Volume Image Metadata API extension.

class VolumeImageMetadataController(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

create(req, id, body)

delete(req, id, body)
Deletes an existing image metadata.

detail(req, resp_obj)

index(req, id, body)

show(req, resp_obj, id)

wsgi_actions = {'os-set_image_metadata': 'create',
'os-show_image_metadata': 'index', 'os-unset_image_metadata': 'delete'}

wsgi_extensions = [('show', None), ('detail', None)]

class Volume_image_metadata(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Show image metadata associated with the volume.

alias = 'os-vol-image-meta'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'VolumeImageMetadata'

updated = '2012-12-07T00:00:00+00:00'

cinder.api.contrib.volume_manage module

class VolumeManageController(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

The /os-volume-manage controller for the OpenStack API.

create(req, body)
Instruct Cinder to manage a storage object.

Manages an existing backend storage object (e.g. a Linux logical volume or a SAN disk) by
creating the Cinder objects required to manage it, and possibly renaming the backend storage
object (driver dependent)

From an API perspective, this operation behaves very much like a volume creation opera-
tion, except that properties such as image, snapshot and volume references dont make sense,
because we are taking an existing storage object into Cinder management.

4.1. Contributing to Cinder 857

Cinder Documentation, Release 20.3.2.dev3

Required HTTP Body:

{
"volume": {
"host": "<Cinder host on which the existing storage resides>",
"cluster": "<Cinder cluster on which the storage resides>",
"ref": "<Driver-specific reference to existing storage object>"

}
}

See the appropriate Cinder drivers implementations of the manage_volume method to find
out the accepted format of ref.

This API call will return with an error if any of the above elements are missing from the
request, or if the host element refers to a cinder host that is not registered.

The volume will later enter the error state if it is discovered that ref is bad.

Optional elements to volume are:

name A name for the new volume.
description A description for the new volume.
volume_type ID or name of a volume type to associate with

the new Cinder volume. Does not necessarily
guarantee that the managed volume will have the
properties described in the volume_type. The
driver may choose to fail if it identifies that
the specified volume_type is not compatible with
the backend storage object.

metadata Key/value pairs to be associated with the new
volume.

availability_zone The availability zone to associate with the new
volume.

bootable If set to True, marks the volume as bootable.

detail(req)
Returns a detailed list of volumes available to manage.

index(req)
Returns a summary list of volumes available to manage.

wsgi_actions = {}

wsgi_extensions = [('index', None), ('detail', None)]

class Volume_manage(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Allows existing backend storage to be managed by Cinder.

alias = 'os-volume-manage'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'VolumeManage'

858 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

updated = '2014-02-10T00:00:00+00:00'

cinder.api.contrib.volume_mig_status_attribute module

class VolumeMigStatusAttributeController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

detail(req, resp_obj)

show(req, resp_obj, id)

wsgi_actions = {}

wsgi_extensions = [('show', None), ('detail', None)]

class Volume_mig_status_attribute(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Expose migration_status as an attribute of a volume.

alias = 'os-vol-mig-status-attr'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'VolumeMigStatusAttribute'

updated = '2013-08-08T00:00:00+00:00'

cinder.api.contrib.volume_tenant_attribute module

class VolumeTenantAttributeController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

detail(req, resp_obj)

show(req, resp_obj, id)

wsgi_actions = {}

wsgi_extensions = [('show', None), ('detail', None)]

class Volume_tenant_attribute(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Expose the internal project_id as an attribute of a volume.

alias = 'os-vol-tenant-attr'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'VolumeTenantAttribute'

updated = '2011-11-03T00:00:00+00:00'

4.1. Contributing to Cinder 859

Cinder Documentation, Release 20.3.2.dev3

cinder.api.contrib.volume_transfer module

class VolumeTransferController
Bases: cinder.api.openstack.wsgi.Controller

The Volume Transfer API controller for the OpenStack API.

accept(req, id, body)
Accept a new volume transfer.

create(req, body)
Create a new volume transfer.

delete(req, id)
Delete a transfer.

detail(req)
Returns a detailed list of transfers.

index(req)
Returns a summary list of transfers.

show(req, id)
Return data about active transfers.

wsgi_actions = {}

wsgi_extensions = []

class Volume_transfer(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Volume transfer management support.

alias = 'os-volume-transfer'

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'VolumeTransfer'

updated = '2013-05-29T00:00:00+00:00'

cinder.api.contrib.volume_type_access module

The volume type access extension.

class VolumeTypeAccessController
Bases: object

The volume type access API controller for the OpenStack API.

index(req, type_id)

class VolumeTypeActionController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The volume type access API controller for the OpenStack API.

860 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

create(req, body, resp_obj)

detail(req, resp_obj)

index(req, resp_obj)

show(req, resp_obj, id)

wsgi_actions = {'addProjectAccess': '_addProjectAccess',
'removeProjectAccess': '_removeProjectAccess'}

wsgi_extensions = [('show', None), ('index', None), ('detail', None),
('create', 'create')]

class Volume_type_access(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Volume type access support.

alias = 'os-volume-type-access'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'VolumeTypeAccess'

updated = '2014-06-26T00:00:00Z'

cinder.api.contrib.volume_type_encryption module

The volume types encryption extension.

class VolumeTypeEncryptionController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The volume type encryption API controller for the OpenStack API.

create(req, type_id, body)
Create encryption specs for an existing volume type.

delete(req, type_id, id)
Delete encryption specs for a given volume type.

index(req, type_id)
Returns the encryption specs for a given volume type.

show(req, type_id, id)
Return a single encryption item.

update(req, type_id, id, body)
Update encryption specs for a given volume type.

wsgi_actions = {}

wsgi_extensions = []

4.1. Contributing to Cinder 861

Cinder Documentation, Release 20.3.2.dev3

class Volume_type_encryption(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Encryption support for volume types.

alias = 'encryption'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = 'VolumeTypeEncryption'

updated = '2013-07-01T00:00:00+00:00'

cinder.api.contrib.volume_unmanage module

class VolumeUnmanageController(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

unmanage(req, id, body)
Stop managing a volume.

This action is very much like a delete, except that a different method (unmanage) is called
on the Cinder driver. This has the effect of removing the volume from Cinder management
without actually removing the backend storage object associated with it.

There are no required parameters.

A Not Found error is returned if the specified volume does not exist.

A Bad Request error is returned if the specified volume is still attached to an instance.

wsgi_actions = {'os-unmanage': 'unmanage'}

wsgi_extensions = []

class Volume_unmanage(ext_mgr)
Bases: cinder.api.extensions.ExtensionDescriptor

Enable volume unmanage operation.

alias = 'os-volume-unmanage'

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

name = 'VolumeUnmanage'

updated = '2012-05-31T00:00:00+00:00'

862 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Module contents

Contrib contains extensions that are shipped with cinder.

It cant be called extensions because that causes namespacing problems.

select_extensions(ext_mgr)

standard_extensions(ext_mgr)

cinder.api.middleware package

Submodules

cinder.api.middleware.auth module

Common Auth Middleware.

class CinderKeystoneContext(application)
Bases: cinder.wsgi.common.Middleware

Make a request context from keystone headers.

ENV_OVERWRITES = {'X_PROJECT_DOMAIN_ID': 'project_domain_id',
'X_PROJECT_DOMAIN_NAME': 'project_domain_name', 'X_USER_DOMAIN_ID':
'user_domain_id', 'X_USER_DOMAIN_NAME': 'user_domain_name'}

class InjectContext(context, *args, **kwargs)
Bases: cinder.wsgi.common.Middleware

Add a cinder.context to WSGI environ.

class NoAuthMiddleware(application)
Bases: cinder.api.middleware.auth.NoAuthMiddlewareBase

Return a fake token if one isnt specified.

Sets project_id in URLs.

class NoAuthMiddlewareBase(application)
Bases: cinder.wsgi.common.Middleware

Return a fake token if one isnt specified.

base_call(req, project_id_in_path=False)

class NoAuthMiddlewareIncludeProjectID(application)
Bases: cinder.api.middleware.auth.NoAuthMiddlewareBase

Return a fake token if one isnt specified.

Does not set project_id in URLs.

pipeline_factory(loader, global_conf, **local_conf)
A paste pipeline replica that keys off of auth_strategy.

4.1. Contributing to Cinder 863

Cinder Documentation, Release 20.3.2.dev3

cinder.api.middleware.fault module

class FaultWrapper(application)
Bases: cinder.wsgi.common.Middleware

Calls down the middleware stack, making exceptions into faults.

static status_to_type(status)

cinder.api.middleware.request_id module

class RequestId(*args, **kwargs)
Bases: oslo_middleware.request_id.RequestId

Module contents

cinder.api.openstack package

Submodules

cinder.api.openstack.api_version_request module

class APIVersionRequest(version_string=None, experimental=False)
Bases: cinder.utils.ComparableMixin

This class represents an API Version Request.

This class includes convenience methods for manipulation and comparison of version numbers as
needed to implement API microversions.

get_string()
Returns a string representation of this object.

If this method is used to create an APIVersionRequest, the resulting object will be an equiv-
alent request.

matches(min_version, max_version=None, experimental=False)
Compares this version to the specified min/max range.

Returns whether the version object represents a version greater than or equal to the minimum
version and less than or equal to the maximum version.

If min_version is null then there is no minimum limit. If max_version is null then there is no
maximum limit. If self is null then raise ValueError.

Parameters

• min_version Minimum acceptable version.

• max_version Maximum acceptable version.

• experimental Whether to match experimental APIs.

Returns boolean

864 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

matches_versioned_method(method)
Compares this version to that of a versioned method.

max_api_version()

min_api_version()

cinder.api.openstack.versioned_method module

class VersionedMethod(name, start_version, end_version, experimental, func)
Bases: cinder.utils.ComparableMixin

cinder.api.openstack.wsgi module

class ActionDispatcher
Bases: object

Maps method name to local methods through action name.

default(data)

dispatch(*args, **kwargs)
Find and call local method.

class Controller(view_builder=None)
Bases: object

Default controller.

classmethod api_version(min_ver, max_ver=None, experimental=False)
Decorator for versioning API methods.

Add the decorator to any method which takes a request object as the first parameter and
belongs to a class which inherits from wsgi.Controller.

Parameters

• min_ver string representing minimum version

• max_ver optional string representing maximum version

static assert_valid_body(body, entity_name)

static validate_name_and_description(body, check_length=True)

static validate_string_length(value, entity_name, min_length=0, max_length=None,
remove_whitespaces=False)

Check the length of specified string.

Parameters

• value the value of the string

• entity_name the name of the string

• min_length the min_length of the string

• max_length the max_length of the string

• remove_whitespaces True if trimming whitespaces is needed else False

4.1. Contributing to Cinder 865

Cinder Documentation, Release 20.3.2.dev3

wsgi_actions = {}

wsgi_extensions = []

class ControllerMetaclass(name, bases, cls_dict)
Bases: type

Controller metaclass.

This metaclass automates the task of assembling a dictionary mapping action keys to method
names.

static consolidate_vers(versioned_methods)
Consolidates a list of versioned methods dictionaries.

class DictSerializer
Bases: cinder.api.openstack.wsgi.ActionDispatcher

Default request body serialization.

default(data)

serialize(data, action=’default’)

exception Fault(exception)
Bases: webob.exc.HTTPException

Wrap webob.exc.HTTPException to provide API friendly response.

class JSONDeserializer
Bases: cinder.api.openstack.wsgi.TextDeserializer

default(datastring)

class JSONDictSerializer
Bases: cinder.api.openstack.wsgi.DictSerializer

Default JSON request body serialization.

default(data)

exception OverLimitFault(message, details, retry_time)
Bases: webob.exc.HTTPException

Rate-limited request response.

class Request(*args, **kwargs)
Bases: webob.request.Request

Add some OpenStack API-specific logic to the base webob.Request.

best_match_content_type()
Determine the requested response content-type.

best_match_language()
Determines best available locale from the Accept-Language header.

Returns the best language match or None if the Accept-Language header was not
available in the request.

cache_db_backup(backup)

cache_db_backups(backups)

866 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cache_db_items(key, items, item_key=’id’)
Get cached database items.

Allow API methods to store objects from a DB query to be used by API extensions within
the same API request.

An instance of this class only lives for the lifetime of a single API request, so theres no need
to implement full cache management.

cache_db_snapshot(snapshot)

cache_db_snapshots(snapshots)

cache_db_volume(volume)

cache_db_volume_type(volume_type)

cache_db_volume_types(volume_types)

cache_db_volumes(volumes)

cache_resource(resource_to_cache, id_attribute=’id’, name=None)
Cache the given resource.

Allow API methods to cache objects, such as results from a DB query, to be used by API
extensions within the same API request.

The resource_to_cache can be a list or an individual resource, but ultimately resources are
cached individually using the given id_attribute.

Different resources types might need to be cached during the same request, they can be cached
using the name parameter. For example:

Controller 1: request.cache_resource(db_volumes, volumes) re-
quest.cache_resource(db_volume_types, types)

Controller 2: db_volumes = request.cached_resource(volumes) db_type_1 = re-
quest.cached_resource_by_id(1, types)

If no name is given, a default name will be used for the resource.

An instance of this class only lives for the lifetime of a single API request, so theres no need
to implement full cache management.

cached_resource(name=None)
Get the cached resources cached under the given resource name.

Allow an API extension to get previously stored objects within the same API request.

Note that the object data will be slightly stale.

Returns a dict of id_attribute to the resource from the cached resources, an empty
map if an empty collection was cached, or None if nothing has been cached yet
under this name

cached_resource_by_id(resource_id, name=None)
Get a resource by ID cached under the given resource name.

Allow an API extension to get a previously stored object within the same API request. This
is basically a convenience method to lookup by ID on the dictionary of all cached resources.

Note that the object data will be slightly stale.

4.1. Contributing to Cinder 867

Cinder Documentation, Release 20.3.2.dev3

Returns the cached resource or None if the item is not in the cache

get_content_type()
Determine content type of the request body.

Does not do any body introspection, only checks header

get_db_backup(backup_id)

get_db_backups()

get_db_item(key, item_key)
Get database item.

Allow an API extension to get a previously stored object within the same API request.

Note that the object data will be slightly stale.

get_db_items(key)
Get database items.

Allow an API extension to get previously stored objects within the same API request.

Note that the object data will be slightly stale.

get_db_snapshot(snapshot_id)

get_db_snapshots()

get_db_volume(volume_id)

get_db_volume_type(volume_type_id)

get_db_volume_types()

get_db_volumes()

set_api_version_request(url)
Set API version request based on the request header information.

class Resource(controller, action_peek=None, **deserializers)
Bases: cinder.wsgi.common.Application

WSGI app that handles (de)serialization and controller dispatch.

WSGI app that reads routing information supplied by RoutesMiddleware and calls the requested
action method upon its controller. All controller action methods must accept a req argument, which
is the incoming wsgi.Request. If the operation is a PUT or POST, the controller method must also
accept a body argument (the deserialized request body). They may raise a webob.exc exception or
return a dict, which will be serialized by requested content type.

Exceptions derived from webob.exc.HTTPException will be automatically wrapped in Fault() to
provide API friendly error responses.

deserialize(meth, content_type, body)

dispatch(method, request, action_args)
Dispatch a call to the action-specific method.

get_action_args(request_environment)
Parse dictionary created by routes library.

get_body(request)

868 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_method(request, action, content_type, body)
Look up the action-specific method and its extensions.

post_process_extensions(extensions, resp_obj, request, action_args)

pre_process_extensions(extensions, request, action_args)

register_actions(controller)
Registers controller actions with this resource.

register_extensions(controller)
Registers controller extensions with this resource.

support_api_request_version = True

class ResourceExceptionHandler
Bases: object

Context manager to handle Resource exceptions.

Used when processing exceptions generated by API implementation methods (or their extensions).
Converts most exceptions to Fault exceptions, with the appropriate logging.

class ResponseObject(obj, code=None, headers=None, **serializers)
Bases: object

Bundles a response object with appropriate serializers.

Object that app methods may return in order to bind alternate serializers with a response object to
be serialized. Its use is optional.

attach(**kwargs)
Attach slave templates to serializers.

property code
Retrieve the response status.

get_serializer(content_type, default_serializers=None)
Returns the serializer for the wrapped object.

Returns the serializer for the wrapped object subject to the indicated content type. If no seri-
alizer matching the content type is attached, an appropriate serializer drawn from the default
serializers will be used. If no appropriate serializer is available, raises InvalidContentType.

property headers
Retrieve the headers.

preserialize(content_type, default_serializers=None)
Prepares the serializer that will be used to serialize.

Determines the serializer that will be used and prepares an instance of it for later call. This
allows the serializer to be accessed by extensions for, e.g., template extension.

serialize(request, content_type, default_serializers=None)
Serializes the wrapped object.

Utility method for serializing the wrapped object. Returns a webob.Response object.

class TextDeserializer
Bases: cinder.api.openstack.wsgi.ActionDispatcher

Default request body deserialization.

4.1. Contributing to Cinder 869

Cinder Documentation, Release 20.3.2.dev3

default(datastring)

deserialize(datastring, action=’default’)

action(name)
Mark a function as an action.

The given name will be taken as the action key in the body.

This is also overloaded to allow extensions to provide non-extending definitions of create and delete
operations.

action_peek_json(body)
Determine action to invoke.

deserializers(**deserializers)
Attaches deserializers to a method.

This decorator associates a dictionary of deserializers with a method. Note that the function at-
tributes are directly manipulated; the method is not wrapped.

extends(*args, **kwargs)
Indicate a function extends an operation.

Can be used as either:

@extends
def index(...):

pass

or as:

@extends(action='resize')
def _action_resize(...):

pass

response(code)
Attaches response code to a method.

This decorator associates a response code with a method. Note that the function attributes are
directly manipulated; the method is not wrapped.

serializers(**serializers)
Attaches serializers to a method.

This decorator associates a dictionary of serializers with a method. Note that the function attributes
are directly manipulated; the method is not wrapped.

870 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Module contents

WSGI middleware for OpenStack API controllers.

class APIMapper(controller_scan=<function controller_scan>, directory=None,
always_scan=False, register=True, explicit=True)

Bases: routes.mapper.Mapper

connect(*args, **kwargs)
Create and connect a new Route to the Mapper.

Usage:

m = Mapper()
m.connect(':controller/:action/:id')
m.connect('date/:year/:month/:day', controller="blog",

action="view")
m.connect('archives/:page', controller="blog", action="by_page",
requirements = { 'page':'\d{1,2}' })
m.connect('category_list', 'archives/category/:section',

controller='blog', action='category',
section='home', type='list')

m.connect('home', '', controller='blog', action='view',
section='home')

routematch(url=None, environ=None)
Match a URL against against one of the routes contained.

Will return None if no valid match is found, otherwise a result dict and a route object is
returned.

resultdict, route_obj = m.match('/joe/sixpack')

class APIRouter(ext_mgr=None)
Bases: oslo_service.wsgi.Router

Routes requests on the API to the appropriate controller and method.

ExtensionManager = None

classmethod factory(global_config, **local_config)
Simple paste factory, cinder.wsgi.Router doesnt have.

class ProjectMapper(controller_scan=<function controller_scan>, directory=None,
always_scan=False, register=True, explicit=True)

Bases: cinder.api.openstack.APIMapper

resource(member_name, collection_name, **kwargs)
Base resource path handler

This method is compatible with resource paths that include a project_id and those that dont.
Including project_id in the URLs was a legacy API requirement; and making API requests
against such endpoints wont work for users that dont belong to a particular project.

4.1. Contributing to Cinder 871

Cinder Documentation, Release 20.3.2.dev3

cinder.api.schemas package

Submodules

cinder.api.schemas.admin_actions module

Schema for V3 admin_actions API.

cinder.api.schemas.attachments module

Schema for V3 Attachments API.

cinder.api.schemas.backups module

Schema for V3 Backups API.

cinder.api.schemas.clusters module

Schema for V3 Clusters API.

cinder.api.schemas.default_types module

Schema for V3 Default types API.

cinder.api.schemas.group_snapshots module

Schema for V3 Group Snapshots API.

cinder.api.schemas.group_specs module

cinder.api.schemas.group_types module

Schema for V3 Group types API.

cinder.api.schemas.groups module

Schema for V3 Generic Volume Groups API.

872 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.api.schemas.qos_specs module

cinder.api.schemas.quota_classes module

Schema for V3 Quota classes API.

cinder.api.schemas.quotas module

Schema for V3 Quotas API.

cinder.api.schemas.scheduler_hints module

Schema for V3 scheduler_hints API.

cinder.api.schemas.services module

cinder.api.schemas.snapshot_actions module

Schema for V3 snapshot actions API.

cinder.api.schemas.snapshot_manage module

Schema for V3 snapshot_manage API.

cinder.api.schemas.snapshots module

Schema for V3 Snapshots API.

cinder.api.schemas.types_extra_specs module

Schema for V3 types_extra_specs API.

cinder.api.schemas.volume_actions module

Schema for V3 volume_actions API.

4.1. Contributing to Cinder 873

Cinder Documentation, Release 20.3.2.dev3

cinder.api.schemas.volume_image_metadata module

Schema for V3 volume image metadata API.

cinder.api.schemas.volume_manage module

Schema for V3 volume manage API.

cinder.api.schemas.volume_metadata module

Schema for V3 Volume metadata API.

cinder.api.schemas.volume_transfer module

Schema for V3 volume transfer API.

cinder.api.schemas.volume_type_access module

Schema for V3 volume type access API.

cinder.api.schemas.volume_type_encryption module

Schema for V3 volume type encryption API.

cinder.api.schemas.volume_types module

cinder.api.schemas.volumes module

Schema for V3 Volumes API.

cinder.api.schemas.workers module

Schema for V3 Workers API.

Module contents

cinder.api.v2 package

Subpackages

cinder.api.v2.views package

874 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Submodules

cinder.api.v2.views.volumes module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model a server API response as a python dictionary.

detail(request, volume)
Detailed view of a single volume.

detail_list(request, volumes, volume_count=None)
Detailed view of a list of volumes.

summary(request, volume)
Generic, non-detailed view of a volume.

summary_list(request, volumes, volume_count=None)
Show a list of volumes without many details.

Module contents

Submodules

cinder.api.v2.limits module

Module dedicated functions/classes dealing with rate limiting requests.

class Limit(verb, uri, regex, value, unit)
Bases: object

Stores information about a limit for HTTP requests.

UNITS = {1: 'SECOND', 60: 'MINUTE', 3600: 'HOUR', 86400: 'DAY'}

UNIT_MAP = {'DAY': 86400, 'HOUR': 3600, 'MINUTE': 60, 'SECOND': 1}

display()
Return a useful representation of this class.

display_unit()
Display the string name of the unit.

class Limiter(limits, **kwargs)
Bases: object

Rate-limit checking class which handles limits in memory.

check_for_delay(verb, url, username=None)
Check the given verb/user/user triplet for limit.

@return: Tuple of delay (in seconds) and error message (or None, None)

get_limits(username=None)
Return the limits for a given user.

4.1. Contributing to Cinder 875

Cinder Documentation, Release 20.3.2.dev3

static parse_limits(limits)
Convert a string into a list of Limit instances.

This implementation expects a semicolon-separated sequence of parenthesized groups, where
each group contains a comma-separated sequence consisting of HTTP method, user-readable
URI, a URI reg-exp, an integer number of requests which can be made, and a unit of measure.
Valid values for the latter are SECOND, MINUTE, HOUR, and DAY.

@return: List of Limit instances.

class LimitsController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

Controller for accessing limits in the OpenStack API.

index(req)
Return all global and rate limit information.

wsgi_actions = {}

wsgi_extensions = []

class RateLimitingMiddleware(application, limits=None, limiter=None, **kwargs)
Bases: cinder.wsgi.common.Middleware

Rate-limits requests passing through this middleware.

All limit information is stored in memory for this implementation.

class WsgiLimiter(limits=None)
Bases: object

Rate-limit checking from a WSGI application.

Uses an in-memory Limiter.

To use, POST /<username> with JSON data such as:

{
"verb" : GET,
"path" : "/servers"

}

and receive a 204 No Content, or a 403 Forbidden with an X-Wait-Seconds header containing the
number of seconds to wait before the action would succeed.

class WsgiLimiterProxy(limiter_address)
Bases: object

Rate-limit requests based on answers from a remote source.

check_for_delay(verb, path, username=None)

static parse_limits(limits)
Ignore a limits stringsimply doesnt apply for the limit proxy.

@return: Empty list.

create_resource()

876 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v2.snapshots module

The volumes snapshots api.

class SnapshotsController(ext_mgr=None)
Bases: cinder.api.openstack.wsgi.Controller

The Snapshots API controller for the OpenStack API.

create(req, body)
Creates a new snapshot.

delete(req, id)
Delete a snapshot.

detail(req)
Returns a detailed list of snapshots.

index(req)
Returns a summary list of snapshots.

show(req, id)
Return data about the given snapshot.

update(req, id, body)
Update a snapshot.

wsgi_actions = {}

wsgi_extensions = []

create_resource(ext_mgr)

cinder.api.v2.volume_metadata module

class Controller
Bases: cinder.api.openstack.wsgi.Controller

The volume metadata API controller for the OpenStack API.

create(req, volume_id, body)

delete(req, volume_id, id)
Deletes an existing metadata.

index(req, volume_id)
Returns the list of metadata for a given volume.

show(req, volume_id, id)
Return a single metadata item.

update(req, volume_id, id, body)

update_all(req, volume_id, body)

wsgi_actions = {}

wsgi_extensions = []

create_resource()

4.1. Contributing to Cinder 877

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v2.volumes module

The volumes api.

class VolumeController(ext_mgr)
Bases: cinder.api.openstack.wsgi.Controller

The Volumes API controller for the OpenStack API.

create(req, body)
Creates a new volume.

delete(req, id)
Delete a volume.

detail(req)
Returns a detailed list of volumes.

index(req)
Returns a summary list of volumes.

show(req, id)
Return data about the given volume.

update(req, id, body)
Update a volume.

wsgi_actions = {}

wsgi_extensions = []

create_resource(ext_mgr)

Module contents

cinder.api.v3 package

Subpackages

cinder.api.v3.views package

Submodules

cinder.api.v3.views.attachments module

class ViewBuilder
Bases: object

Model an attachment API response as a python dictionary.

classmethod detail(attachment, flat=False)
Detailed view of an attachment.

classmethod list(attachments, detail=False)
Build a view of a list of attachments.

878 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

static summary(attachment, flat=False)
Non detailed view of an attachment.

cinder.api.v3.views.backups module

class ViewBuilder
Bases: cinder.api.views.backups.ViewBuilder

Model a backups API V3 response as a python dictionary.

detail(request, backup)
Detailed view of a single backup.

cinder.api.v3.views.clusters module

class ViewBuilder
Bases: object

Map Cluster into dicts for API responses.

classmethod detail(cluster, replication_data=False, flat=False)
Detailed view of a cluster.

classmethod list(clusters, detail=False, replication_data=False)

static summary(cluster, replication_data=False, flat=False)
Generic, non-detailed view of a cluster.

cinder.api.v3.views.default_types module

class ViewBuilder
Bases: object

Model default type API response as a python dictionary.

create(default_type)
Detailed view of a default type when set.

detail(default_type)
Build a view of a default type.

{"default_type":
{
"project_id": "248592b4-a6da-4c4c-abe0-9d8dbe0b74b4",
"volume_type_id": "6bd1de9a-b8b5-4c43-a597-00170ab06b50"

}
}

index(default_types)
Build a view of a list of default types.

4.1. Contributing to Cinder 879

Cinder Documentation, Release 20.3.2.dev3

{"default_types":
[
{
"project_id": "248592b4-a6da-4c4c-abe0-9d8dbe0b74b4",
"volume_type_id": "7152eb1e-aef0-4bcd-a3ab-46b7ef17e2e6"

},
{
"project_id": "1234567-4c4c-abcd-abe0-1a2b3c4d5e6ff",
"volume_type_id": "5e3b298a-f1fc-4d32-9828-0d720da81ddd"

}
]
}

cinder.api.v3.views.group_snapshots module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model group_snapshot API responses as a python dictionary.

detail(request, group_snapshot)
Detailed view of a single group_snapshot.

detail_list(request, group_snapshots)
Detailed view of a list of group_snapshots .

summary(request, group_snapshot)
Generic, non-detailed view of a group_snapshot.

summary_list(request, group_snapshots)
Show a list of group_snapshots without many details.

cinder.api.v3.views.group_types module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

index(request, group_types)
Index over trimmed group types.

show(request, group_type, brief=False)
Trim away extraneous group type attributes.

880 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.views.groups module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model group API responses as a python dictionary.

detail(request, group)
Detailed view of a single group.

detail_list(request, groups)
Detailed view of a list of groups .

summary(request, group)
Generic, non-detailed view of a group.

summary_list(request, groups)
Show a list of groups without many details.

cinder.api.v3.views.messages module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model a server API response as a python dictionary.

detail(request, message)
Detailed view of a single message.

index(request, messages, message_count=None)
Show a list of messages.

cinder.api.v3.views.resource_filters module

class ViewBuilder
Bases: object

Model an resource filters API response as a python dictionary.

classmethod list(filters)
Build a view of a list of resource filters.

{
"resource_filters": [{

"resource": "resource_1",
"filters": ["filter1", "filter2", "filter3"]

}]
}

4.1. Contributing to Cinder 881

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.views.snapshots module

class ViewBuilder
Bases: cinder.api.views.snapshots.ViewBuilder

Model a snapshots API V3 response as a python dictionary.

detail(request, snapshot)
Detailed view of a single snapshot.

cinder.api.v3.views.types module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

index(request, volume_types)
Index over trimmed volume types.

show(request, volume_type, brief=False)
Trim away extraneous volume type attributes.

cinder.api.v3.views.volumes module

class ViewBuilder
Bases: cinder.api.v2.views.volumes.ViewBuilder

Model a volumes API V3 response as a python dictionary.

detail(request, volume)
Detailed view of a single volume.

quick_summary(volume_count, volume_size, all_distinct_metadata=None)
View of volumes summary.

It includes number of volumes, size of volumes and all distinct metadata of volumes.

cinder.api.v3.views.workers module

class ViewBuilder
Bases: object

Map Cluster into dicts for API responses.

classmethod service_list(services)

882 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Module contents

Submodules

cinder.api.v3.attachments module

The volumes attachments API.

class AttachmentsController(ext_mgr=None)
Bases: cinder.api.openstack.wsgi.Controller

The Attachments API controller for the OpenStack API.

allowed_filters = {'attach_status', 'instance_id', 'status', 'volume_id'}

complete(req, id, body)
Mark a volume attachment process as completed (in-use).

create(req, body)
Create an attachment.

This method can be used to create an empty attachment (reserve) or to create and initialize a
volume attachment based on the provided input parameters.

If the caller does not yet have the connector information but needs to reserve an attachment
for the volume (ie Nova BootFromVolume) the create can be called with just the volume-uuid
and the server identifier. This will reserve an attachment, mark the volume as reserved and
prevent any new attachment_create calls from being made until the attachment is updated
(completed).

The alternative is that the connection can be reserved and initialized all at once with a single
call if the caller has all of the required information (connector data) at the time of the call.

NOTE: In Nova terms server == instance, the server_id parameter referenced below is the
UUID of the Instance, for non-nova consumers this can be a server UUID or some other
arbitrary unique identifier.

Starting from microversion 3.54, we can pass the attach mode as argument in the request
body.

Expected format of the input parameter body:

{
"attachment":
{

"volume_uuid": "volume-uuid",
"instance_uuid": "null|nova-server-uuid",
"connector": "null|<connector-object>",
"mode": "null|rw|ro"

}
}

Example connector:

4.1. Contributing to Cinder 883

Cinder Documentation, Release 20.3.2.dev3

{
"connector":
{

"initiator": "iqn.1993-08.org.debian:01:cad181614cec",
"ip": "192.168.1.20",
"platform": "x86_64",
"host": "tempest-1",
"os_type": "linux2",
"multipath": false,
"mountpoint": "/dev/vdb",
"mode": "null|rw|ro"

}
}

NOTE all thats required for a reserve is volume_uuid and an instance_uuid.

returns: A summary view of the attachment object

delete(req, id)
Delete an attachment.

Disconnects/Deletes the specified attachment, returns a list of any known shared attachment-
ids for the effected backend device.

returns: A summary list of any attachments sharing this connection

detail(req)
Return a detailed list of attachments.

index(req)
Return a summary list of attachments.

show(req, id)
Return data about the given attachment.

update(req, id, body)
Update an attachment record.

Update a reserved attachment record with connector information and set up the appropriate
connection_info from the driver.

Expected format of the input parameter body:

{
"attachment":
{

"connector":
{

"initiator": "iqn.1993-08.org.debian:01:cad181614cec",
"ip": "192.168.1.20",
"platform": "x86_64",
"host": "tempest-1",
"os_type": "linux2",
"multipath": false,
"mountpoint": "/dev/vdb",

(continues on next page)

884 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

"mode": "None|rw|ro"
}

}
}

versioned_methods = {'complete':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'create': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'delete':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'detail': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'show':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'update': [<cinder.api.openstack.versioned_method.VersionedMethod
object>]}

wsgi_actions = {'os-complete': 'complete'}

wsgi_extensions = []

create_resource(ext_mgr)
Create the wsgi resource for this controller.

cinder.api.v3.backups module

The backups V3 API.

class BackupsController
Bases: cinder.api.contrib.backups.BackupsController

The backups API controller for the OpenStack API V3.

detail(req)
Returns a detailed list of backups.

show(req, id)
Return data about the given backup.

update(req, id, body)
Update a backup.

versioned_methods = {'update':
[<cinder.api.openstack.versioned_method.VersionedMethod object>]}

wsgi_actions = {}

wsgi_extensions = []

create_resource()

4.1. Contributing to Cinder 885

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.clusters module

class ClusterController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

allowed_list_keys = {'active_backend_id', 'binary', 'disabled', 'frozen',
'is_up', 'name', 'num_down_hosts', 'num_hosts', 'replication_status'}

detail(req)
Return a detailed list of all existing clusters.

Filter by is_up, disabled, num_hosts, and num_down_hosts.

index(req)
Return a non detailed list of all existing clusters.

Filter by is_up, disabled, num_hosts, and num_down_hosts.

replication_fields = {'active_backend_id', 'frozen', 'replication_status'}

show(req, id, binary=’cinder-volume’)
Return data for a given cluster name with optional binary.

update(req, id, body)
Enable/Disable scheduling for a cluster.

versioned_methods = {'detail':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'show':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'update': [<cinder.api.openstack.versioned_method.VersionedMethod
object>]}

wsgi_actions = {}

wsgi_extensions = []

create_resource()

cinder.api.v3.consistencygroups module

The consistencygroups V3 API.

class ConsistencyGroupsController
Bases: cinder.api.contrib.consistencygroups.ConsistencyGroupsController

The ConsistencyGroups API controller for the OpenStack API V3.

update(req, id, body)
Update the consistency group.

Expected format of the input parameter body:

{
"consistencygroup":
{

"name": "my_cg",
(continues on next page)

886 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

"description": "My consistency group",
"add_volumes": "volume-uuid-1,volume-uuid-2,...",
"remove_volumes": "volume-uuid-8,volume-uuid-9,..."

}
}

wsgi_actions = {}

wsgi_extensions = []

create_resource()

cinder.api.v3.default_types module

The resource filters api.

class DefaultTypesController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The Default types API controller for the OpenStack API.

create_update(req, id, body)
Set a default volume type for the specified project.

delete(req, id)
Unset a default volume type for a project.

detail(req, id)
Return detail of a default type.

index(req)
Return a list of default types.

versioned_methods = {'create_update':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'delete': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'detail':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>]}

wsgi_actions = {}

wsgi_extensions = []

create_resource()
Create the wsgi resource for this controller.

4.1. Contributing to Cinder 887

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.group_snapshots module

The group_snapshots API.

class GroupSnapshotsController
Bases: cinder.api.openstack.wsgi.Controller

The group_snapshots API controller for the OpenStack API.

create(req, body)
Create a new group_snapshot.

delete(req, id)
Delete a group_snapshot.

detail(req)
Returns a detailed list of group_snapshots.

index(req)
Returns a summary list of group_snapshots.

reset_status(req, id, body)

show(req, id)
Return data about the given group_snapshot.

versioned_methods = {'create':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'delete': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'detail':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'reset_status': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'show': [<cinder.api.openstack.versioned_method.VersionedMethod
object>]}

wsgi_actions = {'reset_status': 'reset_status'}

wsgi_extensions = []

create_resource()

cinder.api.v3.group_specs module

The group types specs controller

class GroupTypeSpecsController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The group type specs API controller for the OpenStack API.

create(req, group_type_id, body)

delete(req, group_type_id, id)
Deletes an existing group spec.

index(req, group_type_id)
Returns the list of group specs for a given group type.

888 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

show(req, group_type_id, id)
Return a single extra spec item.

update(req, group_type_id, id, body)

versioned_methods = {'create':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'delete': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'show':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'update': [<cinder.api.openstack.versioned_method.VersionedMethod
object>]}

wsgi_actions = {}

wsgi_extensions = []

create_resource()

cinder.api.v3.group_types module

The group type & group type specs controller.

class GroupTypesController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The group types API controller for the OpenStack API.

create(req, body)
Creates a new group type.

delete(req, id)
Deletes an existing group type.

index(req)
Returns the list of group types.

show(req, id)
Return a single group type item.

update(req, id, body)

versioned_methods = {'create':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'delete': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'show':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'update': [<cinder.api.openstack.versioned_method.VersionedMethod
object>]}

wsgi_actions = {}

wsgi_extensions = []

create_resource()

4.1. Contributing to Cinder 889

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.groups module

The groups controller.

class GroupsController
Bases: cinder.api.openstack.wsgi.Controller

The groups API controller for the OpenStack API.

create(req, body)
Create a new group.

create_from_src(req, body)
Create a new group from a source.

The source can be a group snapshot or a group. Note that this does not require group_type
and volume_types as the create API above.

delete_group(req, id, body)

detail(req)
Returns a detailed list of groups.

disable_replication(req, id, body)
Disables replications for a group.

enable_replication(req, id, body)
Enables replications for a group.

failover_replication(req, id, body)
Fails over replications for a group.

index(req)
Returns a summary list of groups.

list_replication_targets(req, id, body)
List replication targets for a group.

reset_status(req, id, body)

show(req, id)
Return data about the given group.

update(req, id, body)
Update the group.

Expected format of the input parameter body:

{
"group":
{

"name": "my_group",
"description": "My group",
"add_volumes": "volume-uuid-1,volume-uuid-2,...",
"remove_volumes": "volume-uuid-8,volume-uuid-9,..."

}
}

890 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

versioned_methods = {'create':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'create_from_src':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'delete_group': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'detail':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'disable_replication':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'enable_replication':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'failover_replication':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'list_replication_targets':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'reset_status': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'show': [<cinder.api.openstack.versioned_method.VersionedMethod
object>], 'update':
[<cinder.api.openstack.versioned_method.VersionedMethod object>]}

wsgi_actions = {'create-from-src': 'create_from_src', 'delete':
'delete_group', 'disable_replication': 'disable_replication',
'enable_replication': 'enable_replication', 'failover_replication':
'failover_replication', 'list_replication_targets':
'list_replication_targets', 'reset_status': 'reset_status'}

wsgi_extensions = []

create_resource()

cinder.api.v3.limits module

The limits V3 api.

class LimitsController(view_builder=None)
Bases: cinder.api.v2.limits.LimitsController

Controller for accessing limits in the OpenStack API.

index(req)
Return all global and rate limit information.

wsgi_actions = {}

wsgi_extensions = []

create_resource()

4.1. Contributing to Cinder 891

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.messages module

The messages API.

class MessagesController(ext_mgr)
Bases: cinder.api.openstack.wsgi.Controller

The User Messages API controller for the OpenStack API.

delete(req, id)
Delete a message.

index(req)
Returns a list of messages, transformed through view builder.

show(req, id)
Return the given message.

versioned_methods = {'delete':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>], 'show':
[<cinder.api.openstack.versioned_method.VersionedMethod object>]}

wsgi_actions = {}

wsgi_extensions = []

create_resource(ext_mgr)

cinder.api.v3.resource_common_manage module

class ManageResource
Bases: object

Mixin class for v3 of ManageVolume and ManageSnapshot.

It requires that any class inheriting from this one has volume_api and _list_manageable_view at-
tributes.

VALID_SORT_DIRS = {'asc', 'desc'}

VALID_SORT_KEYS = {'reference', 'size'}

detail(req)
Returns a detailed list of volumes available to manage.

index(req)
Returns a summary list of volumes available to manage.

892 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.resource_filters module

The resource filters api.

class ResourceFiltersController(ext_mgr=None)
Bases: cinder.api.openstack.wsgi.Controller

The resource filter API controller for the OpenStack API.

index(req)
Return a list of resource filters.

versioned_methods = {'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>]}

wsgi_actions = {}

wsgi_extensions = []

create_resource(ext_mgr)
Create the wsgi resource for this controller.

cinder.api.v3.router module

WSGI middleware for OpenStack Volume API.

class APIRouter(ext_mgr=None)
Bases: cinder.api.openstack.APIRouter

Routes requests on the API to the appropriate controller and method.

class ExtensionManager
Bases: object

Load extensions from the configured extension path.

See cinder/tests/api/extensions/foxinsocks/extension.py for an example extension implemen-
tation.

get_controller_extensions()
Returns a list of ControllerExtension objects.

get_resources()
Returns a list of ResourceExtension objects.

is_loaded(alias)

load_extension(ext_factory)
Execute an extension factory.

Loads an extension. The ext_factory is the name of a callable that will be imported and
called with one argumentthe extension manager. The factory callable is expected to call
the register() method at least once.

register(ext)

4.1. Contributing to Cinder 893

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.snapshot_manage module

class SnapshotManageController(*args, **kwargs)
Bases: cinder.api.v3.resource_common_manage.ManageResource, cinder.api.
contrib.snapshot_manage.SnapshotManageController

create(req, body)
Instruct Cinder to manage a storage snapshot object.

Manages an existing backend storage snapshot object (e.g. a Linux logical volume or a SAN
disk) by creating the Cinder objects required to manage it, and possibly renaming the backend
storage snapshot object (driver dependent).

From an API perspective, this operation behaves very much like a snapshot creation opera-
tion.

Required HTTP Body:

{
"snapshot":
{
"volume_id": "<Cinder volume already exists in volume backend>",
"ref":

"<Driver-specific reference to the existing storage object>"
}

}

See the appropriate Cinder drivers implementations of the manage_snapshot method to find
out the accepted format of ref. For example,in LVM driver, it will be the logic volume name
of snapshot which you want to manage.

This API call will return with an error if any of the above elements are missing from the
request, or if the volume_id element refers to a cinder volume that could not be found.

The snapshot will later enter the error state if it is discovered that ref is bad.

Optional elements to snapshot are:

name A name for the new snapshot.
description A description for the new snapshot.
metadata Key/value pairs to be associated with the new␣
↪→snapshot.

wsgi_actions = {}

wsgi_extensions = []

create_resource()

894 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.snapshot_metadata module

class Controller
Bases: cinder.api.openstack.wsgi.Controller

The snapshot metadata API controller for the OpenStack API.

create(req, snapshot_id, body)

delete(req, snapshot_id, id)
Deletes an existing metadata.

index(req, snapshot_id)
Returns the list of metadata for a given snapshot.

show(req, snapshot_id, id)
Return a single metadata item.

update(req, snapshot_id, id, body)

update_all(req, snapshot_id, body)

wsgi_actions = {}

wsgi_extensions = []

create_resource()

cinder.api.v3.snapshots module

The volumes snapshots V3 API.

class SnapshotsController(ext_mgr=None)
Bases: cinder.api.v2.snapshots.SnapshotsController

The Snapshots API controller for the OpenStack API.

MV_ADDED_FILTERS = (('3.21', 'metadata'), ('3.64', 'use_quota'))

create(req, body)
Creates a new snapshot.

wsgi_actions = {}

wsgi_extensions = []

create_resource(ext_mgr)

cinder.api.v3.types module

The volume type & volume types extra specs extension.

class VolumeTypesController(view_builder=None)
Bases: cinder.api.openstack.wsgi.Controller

The volume types API controller for the OpenStack API.

index(req)
Returns the list of volume types.

4.1. Contributing to Cinder 895

Cinder Documentation, Release 20.3.2.dev3

show(req, id)
Return a single volume type item.

wsgi_actions = {}

wsgi_extensions = []

create_resource()

cinder.api.v3.volume_manage module

class VolumeManageController(*args, **kwargs)
Bases: cinder.api.v3.resource_common_manage.ManageResource, cinder.api.
contrib.volume_manage.VolumeManageController

create(req, body)
Instruct Cinder to manage a storage object.

Manages an existing backend storage object (e.g. a Linux logical volume or a SAN disk) by
creating the Cinder objects required to manage it, and possibly renaming the backend storage
object (driver dependent)

From an API perspective, this operation behaves very much like a volume creation opera-
tion, except that properties such as image, snapshot and volume references dont make sense,
because we are taking an existing storage object into Cinder management.

Required HTTP Body:

{
"volume": {
"host": "<Cinder host on which the existing storage resides>",
"cluster": "<Cinder cluster on which the storage resides>",
"ref": "<Driver-specific reference to existing storage object>"

}
}

See the appropriate Cinder drivers implementations of the manage_volume method to find
out the accepted format of ref.

This API call will return with an error if any of the above elements are missing from the
request, or if the host element refers to a cinder host that is not registered.

The volume will later enter the error state if it is discovered that ref is bad.

Optional elements to volume are:

name A name for the new volume.
description A description for the new volume.
volume_type ID or name of a volume type to associate with

the new Cinder volume. Does not necessarily
guarantee that the managed volume will have the
properties described in the volume_type. The
driver may choose to fail if it identifies that
the specified volume_type is not compatible with
the backend storage object.

(continues on next page)

896 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

metadata Key/value pairs to be associated with the new
volume.

availability_zone The availability zone to associate with the new
volume.

bootable If set to True, marks the volume as bootable.

wsgi_actions = {}

wsgi_extensions = []

create_resource()

cinder.api.v3.volume_metadata module

The volume metadata V3 api.

class Controller
Bases: cinder.api.v2.volume_metadata.Controller

The volume metadata API controller for the OpenStack API.

index(req, volume_id)
Returns the list of metadata for a given volume.

update(req, volume_id, id, body)

update_all(req, volume_id, body)

wsgi_actions = {}

wsgi_extensions = [('index', None), ('update', None), ('update_all',
None)]

create_resource()

cinder.api.v3.volume_transfer module

class VolumeTransferController
Bases: cinder.api.contrib.volume_transfer.VolumeTransferController

The transfer API controller for the OpenStack API V3.

create(req, body)
Create a new volume transfer.

detail(req)
Returns a detailed list of transfers.

index(req)
Returns a summary list of transfers.

wsgi_actions = {}

wsgi_extensions = []

create_resource()

4.1. Contributing to Cinder 897

Cinder Documentation, Release 20.3.2.dev3

cinder.api.v3.volumes module

The volumes V3 api.

class VolumeController(ext_mgr)
Bases: cinder.api.v2.volumes.VolumeController

The Volumes API controller for the OpenStack API V3.

MV_ADDED_FILTERS = (('3.3', 'glance_metadata'), ('3.9', 'group_id'),
('3.59', 'created_at'), ('3.59', 'updated_at'), ('3.64', 'use_quota'))

create(req, body)
Creates a new volume.

Parameters

• req the request

• body the request body

Returns dict the new volume dictionary

Raises HTTPNotFound, HTTPBadRequest

delete(req, id)
Delete a volume.

revert(req, id, body)
revert a volume to a snapshot

summary(req)
Return summary of volumes.

versioned_methods = {'revert':
[<cinder.api.openstack.versioned_method.VersionedMethod object>],
'summary': [<cinder.api.openstack.versioned_method.VersionedMethod
object>]}

wsgi_actions = {'revert': 'revert'}

wsgi_extensions = []

create_resource(ext_mgr)

cinder.api.v3.workers module

class WorkerController(*args, **kwargs)
Bases: cinder.api.openstack.wsgi.Controller

cleanup(req, body=None)
Do the cleanup on resources from a specific service/host/node.

versioned_methods = {'cleanup':
[<cinder.api.openstack.versioned_method.VersionedMethod object>]}

wsgi_actions = {}

wsgi_extensions = []

898 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

create_resource()

Module contents

cinder.api.validation package

Submodules

cinder.api.validation.parameter_types module

Common parameter types for validating request Body.

cinder.api.validation.validators module

Internal implementation of request Body validating middleware.

class FormatChecker(formats=None)
Bases: jsonschema._format.FormatChecker

A FormatChecker can output the message from cause exception

We need understandable validation errors messages for users. When a custom checker has an
exception, the FormatChecker will output a readable message provided by the checker.

check(param_value, format)
Check whether the param_value conforms to the given format.

Parameters

• param_value the param_value to check

• format (str) the format that param_value should conform to

Type any primitive type (str, number, bool)

Raises FormatError if param_value does not conform to format

Module contents

Request Body validating middleware.

schema(request_body_schema, min_version=None, max_version=None)
Register a schema to validate request body.

Registered schema will be used for validating request body just before API method executing.

Parameters

• request_body_schema (dict) a schema to validate request body

• min_version A string of two numerals. X.Y indicating the minimum version
of the JSON-Schema to validate against.

• max_version A string of two numerals. X.Y indicating the maximum version
of the JSON-Schema to validate against.

4.1. Contributing to Cinder 899

Cinder Documentation, Release 20.3.2.dev3

cinder.api.views package

Submodules

cinder.api.views.availability_zones module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Map cinder.volumes.api list_availability_zones response into dicts.

list(request, availability_zones)

cinder.api.views.backups module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model backup API responses as a python dictionary.

detail(request, backup)
Detailed view of a single backup.

detail_list(request, backups, backup_count=None)
Detailed view of a list of backups .

export_summary(request, export)
Generic view of an export.

restore_summary(request, restore)
Generic, non-detailed view of a restore.

summary(request, backup)
Generic, non-detailed view of a backup.

summary_list(request, backups, backup_count=None)
Show a list of backups without many details.

cinder.api.views.capabilities module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model capabilities API responses as a python dictionary.

summary(request, capabilities, id)
Summary view of a backend capabilities.

900 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.api.views.cgsnapshots module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model cgsnapshot API responses as a python dictionary.

detail(request, cgsnapshot)
Detailed view of a single cgsnapshot.

detail_list(request, cgsnapshots)
Detailed view of a list of cgsnapshots .

summary(request, cgsnapshot)
Generic, non-detailed view of a cgsnapshot.

summary_list(request, cgsnapshots)
Show a list of cgsnapshots without many details.

cinder.api.views.consistencygroups module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model consistencygroup API responses as a python dictionary.

detail(request, consistencygroup)
Detailed view of a single consistency group.

detail_list(request, consistencygroups)
Detailed view of a list of consistency groups .

summary(request, consistencygroup)
Generic, non-detailed view of a consistency group.

summary_list(request, consistencygroups)
Show a list of consistency groups without many details.

cinder.api.views.limits module

class ViewBuilder
Bases: object

OpenStack API base limits view builder.

build(rate_limits, absolute_limits)

4.1. Contributing to Cinder 901

Cinder Documentation, Release 20.3.2.dev3

cinder.api.views.manageable_snapshots module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model manageable snapshot responses as a python dictionary.

detail(request, snapshot)
Detailed view of a manageable snapshot description.

detail_list(request, snapshots, count)
Detailed view of a list of manageable snapshots.

summary(request, snapshot)
Generic, non-detailed view of a manageable snapshot description.

summary_list(request, snapshots, count)
Show a list of manageable snapshots without many details.

cinder.api.views.manageable_volumes module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model manageable volume responses as a python dictionary.

detail(request, volume)
Detailed view of a manageable volume description.

detail_list(request, volumes, count)
Detailed view of a list of manageable volumes.

summary(request, volume)
Generic, non-detailed view of a manageable volume description.

summary_list(request, volumes, count)
Show a list of manageable volumes without many details.

cinder.api.views.qos_specs module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model QoS specs API responses as a python dictionary.

associations(request, associates)
View of qos specs associations.

detail(request, qos_spec)
Detailed view of a single qos_spec.

summary(request, qos_spec)
Generic, non-detailed view of a qos_specs.

summary_list(request, qos_specs, qos_count=None)
Show a list of qos_specs without many details.

902 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.api.views.scheduler_stats module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model scheduler-stats API responses as a python dictionary.

detail(request, pool)
Detailed view of a single pool.

pools(request, pools, detail)
Detailed/Summary view of a list of pools seen by scheduler.

summary(request, pool)
Summary view of a single pool.

cinder.api.views.snapshots module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model snapshot API responses as a python dictionary.

detail(request, snapshot)
Detailed view of a single snapshot.

detail_list(request, snapshots, snapshot_count=None)
Detailed view of a list of snapshots.

summary(request, snapshot)
Generic, non-detailed view of a snapshot.

summary_list(request, snapshots, snapshot_count=None)
Show a list of snapshots without many details.

cinder.api.views.transfers module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

Model transfer API responses as a python dictionary.

create(request, transfer)
Detailed view of a single transfer when created.

detail(request, transfer)
Detailed view of a single transfer.

detail_list(request, transfers, origin_transfer_count)
Detailed view of a list of transfers .

summary(request, transfer)
Generic, non-detailed view of a transfer.

summary_list(request, transfers, origin_transfer_count)
Show a list of transfers without many details.

4.1. Contributing to Cinder 903

Cinder Documentation, Release 20.3.2.dev3

cinder.api.views.types module

class ViewBuilder
Bases: cinder.api.common.ViewBuilder

index(request, volume_types)
Index over trimmed volume types.

show(request, volume_type, brief=False)
Trim away extraneous volume type attributes.

cinder.api.views.versions module

class ViewBuilder(base_url)
Bases: object

build_versions(versions)

get_view_builder(req)

Module contents

Submodules

cinder.api.api_utils module

class GenericProjectInfo(project_id, project_keystone_api_version, domain_id=None,
name=None, description=None)

Bases: object

Abstraction layer for Keystone V2 and V3 project objects

add_visible_admin_metadata(volume)
Add user-visible admin metadata to regular metadata.

Extracts the admin metadata keys that are to be made visible to non-administrators, and adds them
to the regular metadata structure for the passed-in volume.

get_project(context, project_id)
Method to verify project exists in keystone

is_none_string(val)
Check if a string represents a None value.

remove_invalid_filter_options(context, filters, allowed_search_options)
Remove search options that are not valid for non-admin API/context.

validate_integer(value, name, min_value=None, max_value=None)
Make sure that value is a valid integer, potentially within range.

Parameters

• value the value of the integer

• name the name of the integer

904 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• min_length the min_length of the integer

• max_length the max_length of the integer

Returns integer

validate_project_and_authorize(context, project_id, policy_check=None, validate_only=False)

walk_class_hierarchy(clazz, encountered=None)
Walk class hierarchy, yielding most derived classes first.

cinder.api.common module

class METADATA_TYPES(value)
Bases: enum.Enum

An enumeration.

image = 2

user = 1

class ViewBuilder
Bases: object

Model API responses as dictionaries.

convert_filter_attributes(filters, resource)

get_cluster_host(req, params, cluster_version=None)
Get cluster and host from the parameters.

This method checks the presence of cluster and host parameters and returns them depending on
the cluster_version.

If cluster_version is False we will never return the cluster_name and we will require the presence
of the host parameter.

If cluster_version is None we will always check for the presence of the cluster parameter, and if
cluster_version is a string with a version we will only check for the presence of the parameter if the
version of the request is not less than it. In both cases we will require one and only one parameter,
host or cluster.

get_enabled_resource_filters(resource=None)
Get list of configured/allowed filters for the specified resource.

This method checks resource_query_filters_file and returns dictionary which contains the specified
resource and its allowed filters:

{
"resource": ["filter1", "filter2", "filter3"]

}

if resource is not specified, all of the configuration will be returned, and if the resource is not found,
empty dict will be returned.

get_pagination_params(params, max_limit=None)
Return marker, limit, offset tuple from request.

4.1. Contributing to Cinder 905

Cinder Documentation, Release 20.3.2.dev3

Parameters params wsgi.Requests GET dictionary, possibly containing marker,
limit, and offset variables. marker is the id of the last element the client has seen,
limit is the maximum number of items to return and offset is the number of items
to skip from the marker or from the first element. If limit is not specified, or >
max_limit, we default to max_limit. Negative values for either offset or limit will
cause exc.HTTPBadRequest() exceptions to be raised. If no offset is present well
default to 0 and if no marker is present well default to None.

Max_limit Max value limit return value can take

Returns Tuple (marker, limit, offset)

get_request_url(request)

get_sort_params(params, default_key=’created_at’, default_dir=’desc’)
Retrieves sort keys/directions parameters.

Processes the parameters to create a list of sort keys and sort directions that correspond to either
the sort parameter or the sort_key and sort_dir parameter values. The value of the sort parameter
is a comma- separated list of sort keys, each key is optionally appended with :<sort_direction>.

Note that the sort_key and sort_dir parameters are deprecated in kilo and an exception is raised if
they are supplied with the sort parameter.

The sort parameters are removed from the request parameters by this function.

Parameters

• params webob.multidict of request parameters (from cin-
der.api.openstack.wsgi.Request.params)

• default_key default sort key value, added to the list if no sort keys are sup-
plied

• default_dir default sort dir value, added to the list if the corresponding key
does not have a direction specified

Returns list of sort keys, list of sort dirs

Raises webob.exc.HTTPBadRequest If both sort and either sort_key or sort_dir are
supplied parameters

get_time_comparison_operators()
Get list of time comparison operators.

This method returns list which contains the allowed comparison operators.

limited(items, request, max_limit=None)
Return a slice of items according to requested offset and limit.

Parameters

• items A sliceable entity

• request wsgi.Request possibly containing offset and limit GET variables.
offset is where to start in the list, and limit is the maximum number of items
to return. If limit is not specified, 0, or > max_limit, we default to max_limit.
Negative values for either offset or limit will cause exc.HTTPBadRequest()
exceptions to be raised.

• max_limit The maximum number of items to return from items

906 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

process_general_filtering(resource)

reject_invalid_filters(context, filters, resource, enable_like_filter=False)

remove_version_from_href(href)
Removes the first API version from the href.

Given: http://cinder.example.com/v1.1/123 Returns: http://cinder.example.com/123

Given: http://cinder.example.com/v1.1 Returns: http://cinder.example.com

Given: http://cinder.example.com/volume/drivers/v1.1/flashsystem Returns: http://cinder.
example.com/volume/drivers/flashsystem

cinder.api.extensions module

class ControllerExtension(extension, collection, controller)
Bases: object

Extend core controllers of cinder OpenStack API.

Provide a way to extend existing cinder OpenStack API core controllers.

class ExtensionDescriptor(ext_mgr)
Bases: object

Base class that defines the contract for extensions.

Note that you dont have to derive from this class to have a valid extension; it is purely a convenience.

alias = None

get_controller_extensions()
List of extensions.ControllerExtension extension objects.

Controller extensions are used to extend existing controllers.

get_resources()
List of extensions.ResourceExtension extension objects.

Resources define new nouns, and are accessible through URLs.

name = None

updated = None

class ExtensionManager
Bases: object

Load extensions from the configured extension path.

See cinder/tests/api/extensions/foxinsocks/extension.py for an example extension implementation.

get_controller_extensions()
Returns a list of ControllerExtension objects.

get_resources()
Returns a list of ResourceExtension objects.

is_loaded(alias)

4.1. Contributing to Cinder 907

http://cinder.example.com/v1.1/123
http://cinder.example.com/123
http://cinder.example.com/v1.1
http://cinder.example.com
http://cinder.example.com/volume/drivers/v1.1/flashsystem
http://cinder.example.com/volume/drivers/flashsystem
http://cinder.example.com/volume/drivers/flashsystem

Cinder Documentation, Release 20.3.2.dev3

load_extension(ext_factory)
Execute an extension factory.

Loads an extension. The ext_factory is the name of a callable that will be imported and
called with one argumentthe extension manager. The factory callable is expected to call the
register() method at least once.

register(ext)

class ExtensionsResource(extension_manager)
Bases: cinder.api.openstack.wsgi.Resource

create(req)

delete(req, id)

index(req)

show(req, id)

class ResourceExtension(collection, controller, parent=None, collection_actions=None,
member_actions=None, custom_routes_fn=None)

Bases: object

Add top level resources to the OpenStack API in cinder.

extension_authorizer(api_name, extension_name)

load_standard_extensions(ext_mgr, logger, path, package, ext_list=None)
Registers all standard API extensions.

cinder.api.microversions module

API Microversion definitions.

All new microversions should have a constant added here to be used throughout the code instead of
the specific version number. Until patches land, its common to end up with merge conflicts with other
microversion changes. Merge conflicts will be easier to handle via the microversion constants defined
here as the version number will only need to be changed in a single location.

Actual version numbers should be used:

• In this file

• In cinder/api/openstack/rest_api_version_history.rst

• In cinder/api/openstack/api_version_request.py

• In release notes describing the new functionality

• In updates to api-ref

Nearly all microversion changes should include changes to all of those locations. Make sure to add
relevant documentation, and make sure that documentation includes the final version number used.

get_api_version(version)
Gets a APIVersionRequest instance.

Parameters version The microversion needed.

Returns The APIVersionRequest instance.

908 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_mv_header(version)
Gets a formatted HTTP microversion header.

Parameters version The microversion needed.

Returns A tuple containing the microversion header with the requested version value.

get_prior_version(version)
Gets the microversion before the given version.

Mostly useful for testing boundaries. This gets the microversion defined just prior to the given
version.

Parameters version The version of interest.

Returns The version just prior to the given version.

cinder.api.urlmap module

class Accept(value)
Bases: object

best_match(supported_content_types)

content_type_params(best_content_type)
Find parameters in Accept header for given content type.

class URLMap(not_found_app=None)
Bases: paste.urlmap.URLMap

parse_list_header(value)
Parse lists as described by RFC 2068 Section 2.

In particular, parse comma-separated lists where the elements of the list may include quoted-
strings. A quoted-string could contain a comma. A non-quoted string could have quotes in the
middle. Quotes are removed automatically after parsing.

The return value is a standard list:

>>> parse_list_header('token, "quoted value"')
['token', 'quoted value']

Parameters value a string with a list header.

Returns list

parse_options_header(value)
Parse Content-Type-like header into a tuple.

Parse a Content-Type like header into a tuple with the content type and the options:

>>> parse_options_header('Content-Type: text/html; mimetype=text/html')
('Content-Type:', {'mimetype': 'text/html'})

Parameters value the header to parse.

Returns (str, options)

4.1. Contributing to Cinder 909

Cinder Documentation, Release 20.3.2.dev3

unquote_header_value(value)
Unquotes a header value.

This does not use the real unquoting but what browsers are actually using for quoting.

Parameters value the header value to unquote.

urlmap_factory(loader, global_conf, **local_conf)

cinder.api.versions module

class Versions(ext_mgr=None)
Bases: cinder.api.openstack.APIRouter

Route versions requests.

class ExtensionManager
Bases: object

Load extensions from the configured extension path.

See cinder/tests/api/extensions/foxinsocks/extension.py for an example extension implemen-
tation.

get_controller_extensions()
Returns a list of ControllerExtension objects.

get_resources()
Returns a list of ResourceExtension objects.

is_loaded(alias)

load_extension(ext_factory)
Execute an extension factory.

Loads an extension. The ext_factory is the name of a callable that will be imported and
called with one argumentthe extension manager. The factory callable is expected to call
the register() method at least once.

register(ext)

class VersionsController
Bases: cinder.api.openstack.wsgi.Controller

all(req)
Return all known and enabled versions.

index(req)
Return versions supported after the start of microversions.

versioned_methods = {'index':
[<cinder.api.openstack.versioned_method.VersionedMethod object>]}

wsgi_actions = {}

wsgi_extensions = []

create_resource()

910 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Module contents

root_app_factory(loader, global_conf, **local_conf)

cinder.backup package

Submodules

cinder.backup.api module

Handles all requests relating to the volume backups service.

class API
Bases: cinder.db.base.Base

API for interacting with the volume backup manager.

create(context: cinder.context.RequestContext, name: Optional[str], description:
Optional[str], volume_id: str, container: str, incremental: bool = False,
availability_zone: Optional[str] = None, force: bool = False, snapshot_id:
Optional[str] = None, metadata: Optional[dict] = None)→
cinder.objects.backup.Backup

Make the RPC call to create a volume backup.

delete(context: cinder.context.RequestContext, backup: cinder.objects.backup.Backup, force:
bool = False)→ None

Make the RPC call to delete a volume backup.

Call backup manager to execute backup delete or force delete operation. :param context:
running context :param backup: the dict of backup that is got from DB. :param force: indi-
cate force delete or not :raises InvalidBackup: :raises BackupDriverException: :raises Ser-
viceNotFound:

export_record(context: cinder.context.RequestContext, backup_id: str)→ dict
Make the RPC call to export a volume backup.

Call backup manager to execute backup export.

Parameters

• context running context

• backup_id backup id to export

Returns dictionary a description of how to import the backup

Returns contains backup_url and backup_service

Raises InvalidBackup

get(context: cinder.context.RequestContext, backup_id: str)→ cinder.objects.backup.Backup

get_all(context: cinder.context.RequestContext, search_opts: Optional[dict] = None, marker:
Optional[str] = None, limit: Optional[int] = None, offset: Optional[int] = None,
sort_keys: Optional[List[str]] = None, sort_dirs: Optional[List[str]] = None)→
cinder.objects.backup.BackupList

4.1. Contributing to Cinder 911

Cinder Documentation, Release 20.3.2.dev3

get_available_backup_service_host(host: str, az: str)→ str

import_record(context: cinder.context.RequestContext, backup_service: str, backup_url: str)
→ cinder.objects.backup.Backup

Make the RPC call to import a volume backup.

Parameters

• context running context

• backup_service backup service name

• backup_url backup description to be used by the backup driver

Raises

• InvalidBackup

• ServiceNotFound

• InvalidInput

reset_status(context: cinder.context.RequestContext, backup_id: str, status: str)→ None
Make the RPC call to reset a volume backups status.

Call backup manager to execute backup status reset operation. :param context: running con-
text :param backup_id: which backups status to be reset :param status: backups status to be
reset :raises InvalidBackup:

restore(context: cinder.context.RequestContext, backup_id: str, volume_id: Optional[str] =
None, name: Optional[str] = None)→ dict

Make the RPC call to restore a volume backup.

update(context: cinder.context.RequestContext, backup_id: str, fields: list)→
cinder.objects.service.Service

cinder.backup.chunkeddriver module

Generic base class to implement metadata, compression and chunked data operations

class ChunkedBackupDriver(context, chunk_size_bytes, sha_block_size_bytes,
backup_default_container, enable_progress_timer)

Bases: cinder.backup.driver.BackupDriver

Abstract chunked backup driver.

Implements common functionality for backup drivers that store volume data in multiple chunks in
a backup repository when the size of the backed up cinder volume exceeds the size of a backup
repository chunk.

Provides abstract methods to be implemented in concrete chunking drivers.

DRIVER_VERSION = '1.0.0'

DRIVER_VERSION_MAPPING = {'1.0.0': '_restore_v1'}

backup(backup, volume_file, backup_metadata=True)
Backup the given volume.

If backup[parent_id] is given, then an incremental backup is performed.

912 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

delete_backup(backup)
Delete the given backup.

abstract delete_object(container, object_name)
Delete object from container.

abstract get_container_entries(container, prefix)
Get container entry names.

abstract get_extra_metadata(backup, volume)
Return extra metadata to use in prepare_backup.

This method allows for collection of extra metadata in prepare_backup() which will be passed
to get_object_reader() and get_object_writer(). Subclass extensions can use this extra infor-
mation to optimize data transfers. Return a json serializable object.

abstract get_object_reader(container, object_name, extra_metadata=None)
Returns a reader object for the backed up chunk.

The object reader methods must not have any logging calls, as eventlet has a bug (https:
//github.com/eventlet/eventlet/issues/432) that would result in failures.

abstract get_object_writer(container, object_name, extra_metadata=None)
Returns a writer object which stores the chunk data.

The object returned should be a context handler that can be used in a with context.

The object writer methods must not have any logging calls, as eventlet has a bug (https:
//github.com/eventlet/eventlet/issues/432) that would result in failures.

abstract put_container(container)
Create the container if needed. No failure if it pre-exists.

restore(backup, volume_id, volume_file)
Restore the given volume backup from backup repository.

Raises BackupRestoreCancel on any backup status change.

abstract update_container_name(backup, container)
Allow sub-classes to override container name.

This method exists so that sub-classes can override the container name as it comes in to the
driver in the backup object. Implementations should return None if no change to the container
name is desired.

cinder.backup.driver module

Base class for all backup drivers.

class BackupDriver(context)
Bases: cinder.db.base.Base

abstract backup(backup, volume_file, backup_metadata=False)
Start a backup of a specified volume.

Some I/O operations may block greenthreads, so in order to prevent starvation parameter
volume_file will be a proxy that will execute all methods in native threads, so the method
implementation doesnt need to worry about that..

4.1. Contributing to Cinder 913

https://github.com/eventlet/eventlet/issues/432
https://github.com/eventlet/eventlet/issues/432
https://github.com/eventlet/eventlet/issues/432
https://github.com/eventlet/eventlet/issues/432

Cinder Documentation, Release 20.3.2.dev3

check_for_setup_error()
Method for checking if backup backend is successfully installed.

abstract delete_backup(backup)
Delete a saved backup.

export_record(backup)
Export driver specific backup record information.

If backup backend needs additional driver specific information to import backup record back
into the system it must overwrite this method and return it here as a dictionary so it can be
serialized into a string.

Default backup driver implementation has no extra information.

Parameters backup backup object to export

Returns driver_info - dictionary with extra information

get_metadata(volume_id)

import_record(backup, driver_info)
Import driver specific backup record information.

If backup backend needs additional driver specific information to import backup record back
into the system it must overwrite this method since it will be called with the extra information
that was provided by export_record when exporting the backup.

Default backup driver implementation does nothing since it didnt export any specific data in
export_record.

Parameters

• backup backup object to export

• driver_info dictionary with driver specific backup record information

Returns nothing

put_metadata(volume_id, json_metadata)

abstract restore(backup, volume_id, volume_file)
Restore a saved backup.

Some I/O operations may block greenthreads, so in order to prevent starvation parameter
volume_file will be a proxy that will execute all methods in native threads, so the method
implementation doesnt need to worry about that..

May raise BackupRestoreCancel to indicate that the restoration of a volume has been aborted
by changing the backup status.

class BackupMetadataAPI(context)
Bases: cinder.db.base.Base

TYPE_TAG_VOL_BASE_META = 'volume-base-metadata'

TYPE_TAG_VOL_GLANCE_META = 'volume-glance-metadata'

TYPE_TAG_VOL_META = 'volume-metadata'

get(volume_id)
Get volume metadata.

914 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Returns a json-encoded dict containing all metadata and the restore version i.e. the version
used to decide what actually gets restored from this container when doing a backup restore.

put(volume_id, json_metadata)
Restore volume metadata to a volume.

The json container should contain a version that is supported here.

cinder.backup.manager module

Backup manager manages volume backups.

Volume Backups are full copies of persistent volumes stored in a backup store e.g. an object store or
any other backup store if and when support is added. They are usable without the original object being
available. A volume backup can be restored to the original volume it was created from or any other
available volume with a minimum size of the original volume. Volume backups can be created, restored,
deleted and listed.

Related Flags

backup_manager The module name of a class derived from manager.Manager (default:
cinder.backup.manager.Manager).

class BackupManager(*args, **kwargs)
Bases: cinder.manager.SchedulerDependentManager

Manages backup of block storage devices.

RPC_API_VERSION = '2.3'

check_support_to_force_delete(context)
Check if the backup driver supports force delete operation.

Parameters context running context

continue_backup(context, backup, backup_device)
This is the callback from the volume manager to continue.

create_backup(context, backup)
Create volume backups using configured backup service.

delete_backup(context, backup)
Delete volume backup from configured backup service.

export_record(context, backup)
Export all volume backup metadata details to allow clean import.

Export backup metadata so it could be re-imported into the database without any prerequisite
in the backup database.

Parameters

• context running context

• backup backup object to export

Returns backup_record - a description of how to import the backup

Returns contains backup_url - how to import the backup, and

Returns backup_service describing the needed driver.

4.1. Contributing to Cinder 915

Cinder Documentation, Release 20.3.2.dev3

Raises InvalidBackup

import_record(context, backup, backup_service, backup_url, backup_hosts)
Import all volume backup metadata details to the backup db.

Parameters

• context running context

• backup The new backup object for the import

• backup_service The needed backup driver for import

• backup_url An identifier string to locate the backup

• backup_hosts Potential hosts to execute the import

Raises

• InvalidBackup

• ServiceNotFound

init_host(**kwargs)
Run initialization needed for a standalone service.

is_working()
Method indicating if service is working correctly.

This method is supposed to be overridden by subclasses and return if manager is working
correctly.

publish_service_capabilities(context)
Collect driver status and then publish.

reset()
Method executed when SIGHUP is caught by the process.

Were utilizing it to reset RPC API version pins to avoid restart of the service when rolling
upgrade is completed.

reset_status(context, backup, status)
Reset volume backup status.

Parameters

• context running context

• backup The backup object for reset status operation

• status The status to be set

Raises

• InvalidBackup

• AttributeError

restore_backup(context, backup, volume_id)
Restore volume backups from configured backup service.

setup_backup_backend(ctxt)

target = <Target version=2.3>

916 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.backup.rpcapi module

Client side of the volume backup RPC API.

class BackupAPI
Bases: cinder.rpc.RPCAPI

Client side of the volume rpc API.

API version history:

1.0 - Initial version.
1.1 - Changed methods to accept backup objects instead of IDs.
1.2 - A version that got in by mistake (without breaking anything).
1.3 - Dummy version bump to mark start of having cinder-backup service

decoupled from cinder-volume.

... Mitaka supports messaging 1.3. Any changes to existing methods in
1.x after this point should be done so that they can handle version cap
set to 1.3.

2.0 - Remove 1.x compatibility
2.1 - Adds set_log_levels and get_log_levels
2.2 - Adds publish_service_capabilities
2.3 - Adds continue_backup call

BINARY = 'cinder-backup'

RPC_API_VERSION = '2.3'

RPC_DEFAULT_VERSION = '2.0'

TOPIC = 'cinder-backup'

check_support_to_force_delete(ctxt, host)→ bool

continue_backup(ctxt, backup, backup_device)

create_backup(ctxt, backup)

delete_backup(ctxt, backup)

export_record(ctxt, backup)→ dict

get_log_levels(context, service, log_request)

import_record(ctxt, host, backup, backup_service, backup_url, backup_hosts)→ None

publish_service_capabilities(ctxt)

reset_status(ctxt, backup, status)

restore_backup(ctxt, backup_host, backup, volume_id)

set_log_levels(context, service, log_request)

4.1. Contributing to Cinder 917

Cinder Documentation, Release 20.3.2.dev3

Module contents

API(*args, **kwargs)

cinder.brick package

Subpackages

cinder.brick.local_dev package

Submodules

cinder.brick.local_dev.lvm module

LVM class for performing LVM operations.

class LVM(vg_name, root_helper, create_vg=False, physical_volumes=None, lvm_type=’default’,
executor=<function execute>, lvm_conf=None, suppress_fd_warn=False)

Bases: os_brick.executor.Executor

LVM object to enable various LVM related operations.

LVM_CMD_PREFIX = ['env', 'LC_ALL=C']

activate_lv(name, is_snapshot=False, permanent=False)
Ensure that logical volume/snapshot logical volume is activated.

Parameters

• name Name of LV to activate

• is_snapshot whether LV is a snapshot

• permanent whether we should drop skipactivation flag

Raises putils.ProcessExecutionError

create_lv_snapshot(name, source_lv_name, lv_type=’default’)
Creates a snapshot of a logical volume.

Parameters

• name Name to assign to new snapshot

• source_lv_name Name of Logical Volume to snapshot

• lv_type Type of LV (default or thin)

create_thin_pool(name=None, size_str=None)
Creates a thin provisioning pool for this VG.

The syntax here is slightly different than the default lvcreate -T, so well just write a custom
cmd here and do it.

Parameters

• name Name to use for pool, default is <vg-name>-pool

918 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• size_str Size to allocate for pool, default is entire VG

Returns The size string passed to the lvcreate command

create_volume(name, size_str, lv_type=’default’, mirror_count=0)
Creates a logical volume on the objects VG.

Parameters

• name Name to use when creating Logical Volume

• size_str Size to use when creating Logical Volume

• lv_type Type of Volume (default or thin)

• mirror_count Use LVM mirroring with specified count

deactivate_lv(name)

delete(name)
Delete logical volume or snapshot.

Parameters name Name of LV to delete

extend_volume(lv_name, new_size)
Extend the size of an existing volume.

static get_all_physical_volumes(root_helper, vg_name=None)
Static method to get all PVs on a system.

Parameters

• root_helper root_helper to use for execute

• vg_name optional, gathers info for only the specified VG

Returns List of Dictionaries with PV info

static get_all_volume_groups(root_helper, vg_name=None)
Static method to get all VGs on a system.

Parameters

• root_helper root_helper to use for execute

• vg_name optional, gathers info for only the specified VG

Returns List of Dictionaries with VG info

static get_lv_info(root_helper, vg_name=None, lv_name=None)
Retrieve info about LVs (all, in a VG, or a single LV).

Parameters

• root_helper root_helper to use for execute

• vg_name optional, gathers info for only the specified VG

• lv_name optional, gathers info for only the specified LV

Returns List of Dictionaries with LV info

static get_lvm_version(root_helper)
Static method to get LVM version from system.

Parameters root_helper root_helper to use for execute

4.1. Contributing to Cinder 919

Cinder Documentation, Release 20.3.2.dev3

Returns version 3-tuple

get_volume(name)
Get reference object of volume specified by name.

Returns dict representation of Logical Volume if exists

get_volumes(lv_name=None)
Get all LVs associated with this instantiation (VG).

Returns List of Dictionaries with LV info

lv_get_origin(name)
Return the origin of an LV that is a snapshot, None otherwise.

lv_has_snapshot(name)

lv_is_open(name)
Return True if LV is currently open, False otherwise.

lv_is_snapshot(name)
Return True if LV is a snapshot, False otherwise.

rename_volume(lv_name, new_name)
Change the name of an existing volume.

revert(snapshot_name)
Revert an LV to snapshot.

Parameters snapshot_name Name of snapshot to revert

property supports_lvchange_ignoreskipactivation
Property indicating whether lvchange can ignore skip activation.

Check for LVM version >= 2.02.99. (LVM2 git: ab789c1bc add ignoreactivationskip to
lvchange)

static supports_pvs_ignoreskippedcluster(root_helper)
Property indicating whether pvs supports ignoreskippedcluster

Check for LVM version >= 2.02.103. (LVM2 git: baf95bbff cmdline: Add ignoreskipped-
cluster.

property supports_snapshot_lv_activation
Property indicating whether snap activation changes are supported.

Check for LVM version >= 2.02.91. (LVM2 git: e8a40f6 Allow to activate snapshot)

Returns True/False indicating support

static supports_thin_provisioning(root_helper)
Static method to check for thin LVM support on a system.

Parameters root_helper root_helper to use for execute

Returns True if supported, False otherwise

update_volume_group_info()
Update VG info for this instantiation.

Used to update member fields of object and provide a dict of info for caller.

Returns Dictionaries of VG info

920 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

vg_mirror_free_space(mirror_count)

vg_mirror_size(mirror_count)

Module contents

Module contents

cinder.cmd package

Submodules

cinder.cmd.api module

Starter script for Cinder OS API.

main()

cinder.cmd.backup module

Starter script for Cinder Volume Backup.

main()

cinder.cmd.manage module

CLI interface for cinder management.

class BackupCommands
Bases: object

Methods for managing backups.

list()
List all backups.

List all backups (including ones in progress) and the host on which the backup operation is
running.

update_backup_host(currenthost, newhost)
Modify the host name associated with a backup.

Particularly to recover from cases where one has moved their Cinder Backup node, and not
set backup_use_same_backend.

class BaseCommand
Bases: object

class ClusterCommands
Bases: cinder.cmd.manage.BaseCommand

Methods for managing clusters.

4.1. Contributing to Cinder 921

Cinder Documentation, Release 20.3.2.dev3

list()
Show a list of all cinder services.

remove(recursive, binary, cluster_name)
Completely removes a cluster.

rename(partial, current, new)
Rename cluster name for Volumes and Consistency Groups.

Useful when you want to rename a cluster, particularly when the backend_name has been
modified in a multi-backend config or we have moved from a single backend to multi-backend.

class ConfigCommands
Bases: object

Class for exposing the flags defined by flag_file(s).

list(param=None)
List parameters configured for cinder.

Lists all parameters configured for cinder unless an optional argument is specified. If the
parameter is specified we only print the requested parameter. If the parameter is not found
an appropriate error is produced by .get*().

class ConsistencyGroupCommands
Bases: object

Methods for managing consistency groups.

update_cg_host(currenthost, newhost)
Modify the host name associated with a Consistency Group.

Particularly to recover from cases where one has moved a host from single backend to multi-
backend, or changed the host configuration option, or modified the backend_name in a multi-
backend config.

class DbCommands
Bases: object

Class for managing the database.

online_data_migrations(max_count=None)
Perform online data migrations for the release in batches.

online_migrations = (<function volume_use_quota_online_data_migration>,
<function snapshot_use_quota_online_data_migration>)

purge(age_in_days)
Purge deleted rows older than a given age from cinder tables.

reset_active_backend(enable_replication, active_backend_id, backend_host)
Reset the active backend for a host.

sync(version=None, bump_versions=False)
Sync the database up to the most recent version.

version()
Print the current database version.

class HostCommands
Bases: object

922 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

List hosts.

list(zone=None)
Show a list of all physical hosts.

Can be filtered by zone. args: [zone]

class QuotaCommands
Bases: object

Class for managing quota issues.

check(project_id)
Check if quotas and reservations are correct

This action checks quotas and reservations, for a specific project or for all projects, to see if
they are out of sync.

The check will also look for duplicated entries.

One way to use this check in combination with the sync action is to run the check for all
projects, take note of those that are out of sync, and then sync them one by one at intervals
to reduce stress on the DB.

sync(project_id)
Fix quotas and reservations

This action refreshes existing quota usage and reservation count for a specific project or for
all projects.

The refresh will also remove duplicated entries.

This operation is best executed when Cinder is not running, but it can be run with cinder
services running as well.

A different transaction is used for each projects quota sync, so an action failure will only
rollback the current projects changes.

class ServiceCommands
Bases: cinder.cmd.manage.BaseCommand

Methods for managing services.

list()
Show a list of all cinder services.

remove(binary, host_name)
Completely removes a service.

class UtilCommands
Bases: object

Generic utils.

clean_locks(online)
Clean file locks for vols, snaps, and backups on the current host.

Should be run on any host where we are running a Cinder service (API, Scheduler, Volume,
Backup) and can be run with the Cinder services running or stopped.

If the services are running it will check existing resources in the Cinder database in order to
know which resources are still available (its not safe to remove their file locks) and will only

4.1. Contributing to Cinder 923

Cinder Documentation, Release 20.3.2.dev3

remove the file locks for the resources that are no longer present. Deleting locks while the
services are offline is faster as theres no need to check the database.

For backups, the way to know if we can remove the startup lock is by checking if the PGRP
in the file name is currently running cinder-backup.

Default assumes that services are online, must pass --services-offline to specify that
they are offline.

Doesnt clean DLM locks (except when using file locks), as those dont leave lock leftovers.

class VersionCommands
Bases: object

Class for exposing the codebase version.

list()

class VolumeCommands
Bases: object

Methods for dealing with a cloud in an odd state.

delete(volume_id)
Delete a volume, bypassing the check that it must be available.

update_host(currenthost, newhost)
Modify the host name associated with a volume.

Particularly to recover from cases where one has moved their Cinder Volume node, or modi-
fied their backend_name in a multi-backend config.

add_command_parsers(subparsers)

args(*args, **kwargs)

fetch_func_args(func)

get_arg_string(args)

main()

methods_of(obj)
Return non-private methods from an object.

Get all callable methods of an object that dont start with underscore :return: a list of tuples of the
form (method_name, method)

missing_action(help_func)

cinder.cmd.rtstool module

exception RtstoolError
Bases: Exception

exception RtstoolImportError
Bases: cinder.cmd.rtstool.RtstoolError

add_initiator(target_iqn, initiator_iqn, userid, password)

924 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

create(backing_device, name, userid, password, iser_enabled, initiator_iqns=None,
portals_ips=None, portals_port=3260)

delete(iqn)

delete_initiator(target_iqn, initiator_iqn)

get_targets()

main(argv=None)

parse_optional_create(argv)

restore_from_file(configuration_file)

save_to_file(destination_file)

usage()

verify_rtslib()

cinder.cmd.scheduler module

Starter script for Cinder Scheduler.

main()

cinder.cmd.status module

CLI interface for cinder status commands.

class Checks(*args, **kwargs)
Bases: oslo_upgradecheck.upgradecheck.UpgradeCommands

Upgrade checks to run.

main()

cinder.cmd.volume module

Starter script for Cinder Volume.

main()

cinder.cmd.volume_usage_audit module

Cron script to generate usage notifications for volumes existing during the audit period.

Together with the notifications generated by volumes create/delete/resize, over that time period, this al-
lows an external system consuming usage notification feeds to calculate volume usage for each tenant.

Time periods are specified as hour, month, day or year

• hour - previous hour. If run at 9:07am, will generate usage for 8-9am.

• month - previous month. If the script is run April 1, it will generate usages for March 1 through
March 31.

4.1. Contributing to Cinder 925

Cinder Documentation, Release 20.3.2.dev3

• day - previous day. if run on July 4th, it generates usages for July 3rd.

• year - previous year. If run on Jan 1, it generates usages for Jan 1 through Dec 31 of the previous
year.

main()

Module contents

cinder.common package

Submodules

cinder.common.config module

Command-line flag library.

Emulates gflags by wrapping cfg.ConfigOpts.

The idea is to move fully to cfg eventually, and this wrapper is a stepping stone.

set_external_library_defaults()
Set default configuration options for external openstack libraries.

set_middleware_defaults()
Update default configuration options for oslo.middleware.

cinder.common.constants module

cinder.common.sqlalchemyutils module

Implementation of paginate query.

paginate_query(query, model, limit, sort_keys, marker=None, sort_dir=None, sort_dirs=None,
offset=None)

Returns a query with sorting / pagination criteria added.

Pagination works by requiring a unique sort_key, specified by sort_keys. (If sort_keys is not unique,
then we risk looping through values.) We use the last row in the previous page as the marker for
pagination. So we must return values that follow the passed marker in the order. With a single-
valued sort_key, this would be easy: sort_key > X. With a compound-values sort_key, (k1, k2, k3)
we must do this to repeat the lexicographical ordering: (k1 > X1) or (k1 == X1 && k2 > X2) or
(k1 == X1 && k2 == X2 && k3 > X3)

We also have to cope with different sort_directions.

Typically, the id of the last row is used as the client-facing pagination marker, then the actual marker
object must be fetched from the db and passed in to us as marker.

Parameters

• query the query object to which we should add paging/sorting

• model the ORM model class

926 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• limit maximum number of items to return

• sort_keys array of attributes by which results should be sorted

• marker the last item of the previous page; we returns the next results after
this value.

• sort_dir direction in which results should be sorted (asc, desc)

• sort_dirs per-column array of sort_dirs, corresponding to sort_keys

• offset the number of items to skip from the marker or from the first element.

Return type sqlalchemy.orm.query.Query

Returns The query with sorting/pagination added.

Module contents

cinder.compute package

Submodules

cinder.compute.nova module

Handles all requests to Nova.

class API
Bases: cinder.db.base.Base

API for interacting with novaclient.

exception NotFound(code, message=None, details=None, request_id=None, url=None,
method=None)

Bases: novaclient.exceptions.ClientException

HTTP 404 - Not found

http_status = 404

message = 'Not found'

create_volume_snapshot(context, volume_id, create_info)

delete_volume_snapshot(context, snapshot_id, delete_info)

extend_volume(context, server_ids, volume_id)

get_server(context, server_id, privileged_user=False, timeout=None)

static get_server_volume(context, server_id, volume_id)

reimage_volume(context, server_ids, volume_id)

update_server_volume(context, server_id, src_volid, new_volume_id)

novaclient(context, privileged_user=False, timeout=None, api_version=None)
Returns a Nova client

4.1. Contributing to Cinder 927

Cinder Documentation, Release 20.3.2.dev3

@param privileged_user: If True, use the account from configuration (requires auth_type and
the other usual Keystone authentication options to be set in the [nova] section)

@param timeout: Number of seconds to wait for an answer before raising a Timeout exception
(None to disable)

@param api_version: api version of nova

Module contents

API()

cinder.db package

Submodules

cinder.db.api module

Defines interface for DB access.

Functions in this module are imported into the cinder.db namespace. Call these functions from cinder.db
namespace, not the cinder.db.api namespace.

All functions in this module return objects that implement a dictionary-like interface. Currently, many
of these objects are sqlalchemy objects that implement a dictionary interface. However, a future goal is
to have all of these objects be simple dictionaries.

Related Flags

connection string specifying the sqlalchemy connection to use, like:
sqlite:///var/lib/cinder/cinder.sqlite.

enable_new_services when adding a new service to the database, is it in the pool of avail-
able hardware (Default: True)

class Case(whens, value=None, else_=None)
Bases: object

Class for conditional value selection for conditional_update.

class Condition(value, field=None)
Bases: object

Class for normal condition values for conditional_update.

get_filter(model, field=None)

class Not(value, field=None, auto_none=True)
Bases: cinder.db.api.Condition

Class for negated condition values for conditional_update.

By default NULL values will be treated like Python treats None instead of how SQL treats it.

So for example when values are (1, 2) it will evaluate to True when we have value 3 or NULL,
instead of only with 3 like SQL does.

928 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_filter(model, field=None)

attachment_destroy(context, attachment_id)
Destroy the attachment or raise if it does not exist.

attachment_specs_delete(context, attachment_id, key)
DEPRECATED: Delete the given attachment specs item.

attachment_specs_exist(context)
Check if there are attachment specs left.

attachment_specs_get(context, attachment_id)
DEPRECATED: Get all specs for an attachment.

attachment_specs_update_or_create(context, attachment_id, specs)
DEPRECATED: Create or update attachment specs.

This adds or modifies the key/value pairs specified in the attachment specs dict argument.

backup_create(context, values)
Create a backup from the values dictionary.

backup_destroy(context, backup_id)
Destroy the backup or raise if it does not exist.

backup_get(context, backup_id, read_deleted=None, project_only=True)
Get a backup or raise if it does not exist.

backup_get_all(context, filters=None, marker=None, limit=None, offset=None, sort_keys=None,
sort_dirs=None)

Get all backups.

backup_get_all_active_by_window(context, begin, end=None, project_id=None)
Get all the backups inside the window.

Specifying a project_id will filter for a certain project.

backup_get_all_by_host(context, host)
Get all backups belonging to a host.

backup_get_all_by_project(context, project_id, filters=None, marker=None, limit=None,
offset=None, sort_keys=None, sort_dirs=None)

Get all backups belonging to a project.

backup_get_all_by_volume(context, volume_id, vol_project_id, filters=None)
Get all backups belonging to a volume.

backup_metadata_get(context, backup_id)

backup_metadata_update(context, backup_id, metadata, delete)

backup_update(context, backup_id, values)
Set the given properties on a backup and update it.

Raises NotFound if backup does not exist.

calculate_resource_count(context, resource_type, filters)

cg_creating_from_src(cg_id=None, cgsnapshot_id=None)
Return a filter to check if a CG is being used as creation source.

4.1. Contributing to Cinder 929

Cinder Documentation, Release 20.3.2.dev3

Returned filter is meant to be used in the Conditional Update mechanism and checks if provided
CG ID or CG Snapshot ID is currently being used to create another CG.

This filter will not include CGs that have used the ID but have already finished their creation (status
is no longer creating).

Filter uses a subquery that allows it to be used on updates to the consistencygroups table.

cg_has_cgsnapshot_filter()
Return a filter that checks if a CG has CG Snapshots.

cg_has_volumes_filter(attached_or_with_snapshots=False)
Return a filter to check if a CG has volumes.

When attached_or_with_snapshots parameter is given a True value only attached volumes or those
with snapshots will be considered.

cgsnapshot_create(context, values)
Create a cgsnapshot from the values dictionary.

cgsnapshot_creating_from_src()
Get a filter that checks if a CGSnapshot is being created from a CG.

cgsnapshot_destroy(context, cgsnapshot_id)
Destroy the cgsnapshot or raise if it does not exist.

cgsnapshot_get(context, cgsnapshot_id)
Get a cgsnapshot or raise if it does not exist.

cgsnapshot_get_all(context, filters=None)
Get all cgsnapshots.

cgsnapshot_get_all_by_group(context, group_id, filters=None)
Get all cgsnapshots belonging to a consistency group.

cgsnapshot_get_all_by_project(context, project_id, filters=None)
Get all cgsnapshots belonging to a project.

cgsnapshot_update(context, cgsnapshot_id, values)
Set the given properties on a cgsnapshot and update it.

Raises NotFound if cgsnapshot does not exist.

cleanup_expired_messages(context)
Soft delete expired messages

cluster_create(context, values)
Create a cluster from the values dictionary.

cluster_destroy(context, id)
Destroy the cluster or raise if it does not exist or has hosts.

Raises ClusterNotFound If cluster doesnt exist.

cluster_get(context, id=None, is_up=None, get_services=False, services_summary=False,
read_deleted=’no’, name_match_level=None, **filters)

Get a cluster that matches the criteria.

Parameters

• id Id of the cluster.

930 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• is_up Boolean value to filter based on the clusters up status.

• get_services If we want to load all services from this cluster.

• services_summary If we want to load num_hosts and num_down_hosts
fields.

• read_deleted Filtering based on delete status. Default value is no.

• name_match_level pool, backend, or host for name filter (as defined in _fil-
ter_host method)

• filters Field based filters in the form of key/value.

Raises ClusterNotFound If cluster doesnt exist.

cluster_get_all(context, is_up=None, get_services=False, services_summary=False,
read_deleted=’no’, name_match_level=None, **filters)

Get all clusters that match the criteria.

Parameters

• is_up Boolean value to filter based on the clusters up status.

• get_services If we want to load all services from this cluster.

• services_summary If we want to load num_hosts and num_down_hosts
fields.

• read_deleted Filtering based on delete status. Default value is no.

• name_match_level pool, backend, or host for name filter (as defined in _fil-
ter_host method)

• filters Field based filters in the form of key/value.

cluster_update(context, id, values)
Set the given properties on an cluster and update it.

Raises ClusterNotFound if cluster does not exist.

conditional_update(context, model, values, expected_values, filters=(), include_deleted=’no’,
project_only=False, order=None)

Compare-and-swap conditional update.

Update will only occur in the DB if conditions are met.

We have 4 different condition types we can use in expected_values:

• Equality: {status: available}

• Inequality: {status: vol_obj.Not(deleting)}

• In range: {status: [available, error]

• Not in range: {status: vol_obj.Not([in-use, attaching])

Method accepts additional filters, which are basically anything that can be passed to a sqlalchemy
querys filter method, for example:

[~sql.exists().where(models.Volume.id == models.Snapshot.volume_id)]

We can select values based on conditions using Case objects in the values argument. For example:

4.1. Contributing to Cinder 931

Cinder Documentation, Release 20.3.2.dev3

has_snapshot_filter = sql.exists().where(
models.Snapshot.volume_id == models.Volume.id

)
case_values = db.Case(

[(has_snapshot_filter, 'has-snapshot')],
else_='no-snapshot'

)
db.conditional_update(

context,
models.Volume,
{'status': case_values},
{'status': 'available'},

)

And we can use DB fields for example to store previous status in the corresponding field even
though we dont know which value is in the db from those we allowed:

db.conditional_update(
context,
models.Volume,
{'status': 'deleting', 'previous_status': models.Volume.status},
{'status': ('available', 'error')},

)

Parameters

• values Dictionary of key-values to update in the DB.

• expected_values Dictionary of conditions that must be met for the update
to be executed.

• filters Iterable with additional filters.

• include_deleted Should the update include deleted items, this is equivalent
to read_deleted.

• project_only Should the query be limited to contexts project.

• order Specific order of fields in which to update the values

Returns Boolean indicating whether db rows were updated.

consistencygroup_create(context, values, cg_snap_id=None, cg_id=None)
Create a consistencygroup from the values dictionary.

consistencygroup_destroy(context, consistencygroup_id)
Destroy the consistencygroup or raise if it does not exist.

consistencygroup_get(context, consistencygroup_id)
Get a consistencygroup or raise if it does not exist.

consistencygroup_get_all(context, filters=None, marker=None, limit=None, offset=None,
sort_keys=None, sort_dirs=None)

Get all consistencygroups.

932 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

consistencygroup_get_all_by_project(context, project_id, filters=None, marker=None,
limit=None, offset=None, sort_keys=None,
sort_dirs=None)

Get all consistencygroups belonging to a project.

consistencygroup_include_in_cluster(context, cluster, partial_rename=True, **filters)
Include all consistency groups matching the filters into a cluster.

When partial_rename is set we will not set the cluster_name with cluster parameter value directly,
well replace provided cluster_name or host filter value with cluster instead.

This is useful when we want to replace just the cluster name but leave the backend and pool infor-
mation as it is. If we are using cluster_name to filter, well use that same DB field to replace the
cluster value and leave the rest as it is. Likewise if we use the host to filter.

Returns the number of consistency groups that have been changed.

consistencygroup_update(context, consistencygroup_id, values)
Set the given properties on a consistencygroup and update it.

Raises NotFound if consistencygroup does not exist.

dispose_engine()
Force the engine to establish new connections.

driver_initiator_data_get(context, initiator, namespace)
Query for an DriverInitiatorData that has the specified key

driver_initiator_data_insert_by_key(context, initiator, namespace, key, value)
Updates DriverInitiatorData entry.

Sets the value for the specified key within the namespace.

If the entry already exists return False, if it inserted successfully return True.

get_all_projects_with_default_type(context, volume_type_id)
Get all the projects associated with a default type

get_booleans_for_table(table_name)

get_by_id(context, model, id, *args, **kwargs)

get_model_for_versioned_object(versioned_object)

get_snapshot_summary(context, project_only, filters=None)
Get snapshot summary.

get_volume_summary(context, project_only, filters=None)
Get volume summary.

group_create(context, values, group_snapshot_id=None, group_id=None)
Create a group from the values dictionary.

group_creating_from_src(group_id=None, group_snapshot_id=None)
Return a filter to check if a Group is being used as creation source.

Returned filter is meant to be used in the Conditional Update mechanism and checks if provided
Group ID or Group Snapshot ID is currently being used to create another Group.

This filter will not include Groups that have used the ID but have already finished their creation
(status is no longer creating).

4.1. Contributing to Cinder 933

Cinder Documentation, Release 20.3.2.dev3

Filter uses a subquery that allows it to be used on updates to the groups table.

group_destroy(context, group_id)
Destroy the group or raise if it does not exist.

group_get(context, group_id)
Get a group or raise if it does not exist.

group_get_all(context, filters=None, marker=None, limit=None, offset=None, sort_keys=None,
sort_dirs=None)

Get all groups.

group_get_all_by_project(context, project_id, filters=None, marker=None, limit=None,
offset=None, sort_keys=None, sort_dirs=None)

Get all groups belonging to a project.

group_has_group_snapshot_filter()
Return a filter that checks if a Group has Group Snapshots.

group_has_volumes_filter(attached_or_with_snapshots=False)
Return a filter to check if a Group has volumes.

When attached_or_with_snapshots parameter is given a True value only attached volumes or those
with snapshots will be considered.

group_include_in_cluster(context, cluster, partial_rename=True, **filters)
Include all generic groups matching the filters into a cluster.

When partial_rename is set we will not set the cluster_name with cluster parameter value directly,
well replace provided cluster_name or host filter value with cluster instead.

This is useful when we want to replace just the cluster name but leave the backend and pool infor-
mation as it is. If we are using cluster_name to filter, well use that same DB field to replace the
cluster value and leave the rest as it is. Likewise if we use the host to filter.

Returns the number of generic groups that have been changed.

group_snapshot_create(context, values)
Create a group snapshot from the values dictionary.

group_snapshot_creating_from_src()
Get a filter to check if a grp snapshot is being created from a grp.

group_snapshot_destroy(context, group_snapshot_id)
Destroy the group snapshot or raise if it does not exist.

group_snapshot_get(context, group_snapshot_id)
Get a group snapshot or raise if it does not exist.

group_snapshot_get_all(context, filters=None, marker=None, limit=None, offset=None,
sort_keys=None, sort_dirs=None)

Get all group snapshots.

group_snapshot_get_all_by_group(context, group_id, filters=None, marker=None, limit=None,
offset=None, sort_keys=None, sort_dirs=None)

Get all group snapshots belonging to a group.

934 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

group_snapshot_get_all_by_project(context, project_id, filters=None, marker=None,
limit=None, offset=None, sort_keys=None,
sort_dirs=None)

Get all group snapshots belonging to a project.

group_snapshot_update(context, group_snapshot_id, values)
Set the given properties on a group snapshot and update it.

Raises NotFound if group snapshot does not exist.

group_type_access_add(context, type_id, project_id)
Add group type access for project.

group_type_access_get_all(context, type_id)
Get all group type access of a group type.

group_type_access_remove(context, type_id, project_id)
Remove group type access for project.

group_type_create(context, values, projects=None)
Create a new group type.

group_type_destroy(context, id)
Delete a group type.

group_type_get(context, id, inactive=False, expected_fields=None)
Get group type by id.

Parameters

• context context to query under

• id Group type id to get.

• inactive Consider inactive group types when searching

• expected_fields Return those additional fields. Supported fields are:
projects.

Returns group type

group_type_get_all(context, inactive=False, filters=None, marker=None, limit=None,
sort_keys=None, sort_dirs=None, offset=None, list_result=False)

Get all group types.

Parameters

• context context to query under

• inactive Include inactive group types to the result set

• filters Filters for the query in the form of key/value.

• marker the last item of the previous page, used to determine the next page of
results to return

• limit maximum number of items to return

• sort_keys list of attributes by which results should be sorted, paired with
corresponding item in sort_dirs

• sort_dirs list of directions in which results should be sorted, paired with
corresponding item in sort_keys

4.1. Contributing to Cinder 935

Cinder Documentation, Release 20.3.2.dev3

• list_result

For compatibility, if list_result = True, return a list instead of dict.

is_public Filter group types based on visibility:

– True: List public group types only

– False: List private group types only

– None: List both public and private group types

Returns list/dict of matching group types

group_type_get_by_name(context, name)
Get group type by name.

group_type_specs_delete(context, group_type_id, key)
Delete the given group specs item.

group_type_specs_get(context, group_type_id)
Get all group specs for a group type.

group_type_specs_update_or_create(context, group_type_id, group_specs)
Create or update group type specs.

This adds or modifies the key/value pairs specified in the group specs dict argument.

group_type_update(context, group_type_id, values)

group_types_get_by_name_or_id(context, group_type_list)
Get group types by name or id.

group_update(context, group_id, values)
Set the given properties on a group and update it.

Raises NotFound if group does not exist.

group_volume_type_mapping_create(context, group_id, volume_type_id)
Create a group volume_type mapping entry.

image_volume_cache_create(context, host, cluster_name, image_id, image_updated_at,
volume_id, size)

Create a new image volume cache entry.

image_volume_cache_delete(context, volume_id)
Delete an image volume cache entry specified by volume id.

image_volume_cache_get_all(context, **filters)
Query for all image volume cache entry for a host.

image_volume_cache_get_and_update_last_used(context, image_id, **filters)
Query for an image volume cache entry.

image_volume_cache_get_by_volume_id(context, volume_id)
Query to see if a volume id is an image-volume contained in the cache

image_volume_cache_include_in_cluster(context, cluster, partial_rename=True, **filters)
Include in cluster image volume cache entries matching the filters.

When partial_rename is set we will not set the cluster_name with cluster parameter value directly,
well replace provided cluster_name or host filter value with cluster instead.

936 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

This is useful when we want to replace just the cluster name but leave the backend and pool infor-
mation as it is. If we are using cluster_name to filter, well use that same DB field to replace the
cluster value and leave the rest as it is. Likewise if we use the host to filter.

Returns the number of volumes that have been changed.

is_backend_frozen(context, host, cluster_name)
Check if a storage backend is frozen based on host and cluster_name.

is_orm_value(obj)
Check if object is an ORM field.

message_create(context, values)
Creates a new message with the specified values.

message_destroy(context, message_id)
Deletes message with the specified ID.

message_get(context, message_id)
Return a message with the specified ID.

message_get_all(context, filters=None, marker=None, limit=None, offset=None, sort_keys=None,
sort_dirs=None)

project_default_volume_type_get(context, project_id=None)
Get default volume type for a project

project_default_volume_type_set(context, volume_type_id, project_id)
Set default volume type for a project

project_default_volume_type_unset(context, project_id)
Unset default volume type for a project (hard delete)

purge_deleted_rows(context, age_in_days)
Purge deleted rows older than given age from cinder tables

Raises InvalidParameterValue if age_in_days is incorrect. :returns: number of deleted rows

qos_specs_associate(context, qos_specs_id, type_id)
Associate qos_specs from volume type.

qos_specs_associations_get(context, qos_specs_id)
Get all associated volume types for a given qos_specs.

qos_specs_create(context, values)
Create a qos_specs.

qos_specs_delete(context, qos_specs_id)
Delete the qos_specs.

qos_specs_disassociate(context, qos_specs_id, type_id)
Disassociate qos_specs from volume type.

qos_specs_disassociate_all(context, qos_specs_id)
Disassociate qos_specs from all entities.

qos_specs_get(context, qos_specs_id)
Get all specification for a given qos_specs.

4.1. Contributing to Cinder 937

Cinder Documentation, Release 20.3.2.dev3

qos_specs_get_all(context, filters=None, marker=None, limit=None, offset=None,
sort_keys=None, sort_dirs=None)

Get all qos_specs.

qos_specs_get_by_name(context, name)
Get all specification for a given qos_specs.

qos_specs_item_delete(context, qos_specs_id, key)
Delete specified key in the qos_specs.

qos_specs_update(context, qos_specs_id, specs)
Update qos specs.

This adds or modifies the key/value pairs specified in the specs dict argument for a given qos_specs.

quota_class_create(context, class_name, resource, limit)
Create a quota class for the given name and resource.

quota_class_destroy(context, class_name, resource)
Destroy the quota class or raise if it does not exist.

quota_class_destroy_all_by_name(context, class_name)
Destroy all quotas associated with a given quota class.

quota_class_get(context, class_name, resource)
Retrieve a quota class or raise if it does not exist.

quota_class_get_all_by_name(context, class_name)
Retrieve all quotas associated with a given quota class.

quota_class_get_defaults(context)
Retrieve all default quotas.

quota_class_update(context, class_name, resource, limit)
Update a quota class or raise if it does not exist.

quota_class_update_resource(context, resource, new_resource)
Update resource name in quota_class.

quota_create(context, project_id, resource, limit)
Create a quota for the given project and resource.

quota_destroy(context, project_id, resource)
Destroy the quota or raise if it does not exist.

quota_destroy_by_project(context, project_id)
Destroy all quotas associated with a given project.

quota_get(context, project_id, resource)
Retrieve a quota or raise if it does not exist.

quota_get_all_by_project(context, project_id)
Retrieve all quotas associated with a given project.

quota_reserve(context, resources, quotas, deltas, expire, until_refresh, max_age, project_id=None)
Check quotas and create appropriate reservations.

quota_update(context, project_id, resource, limit)
Update a quota or raise if it does not exist.

938 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

quota_update_resource(context, old_res, new_res)
Update resource of quotas.

quota_usage_get(context, project_id, resource)
Retrieve a quota usage or raise if it does not exist.

quota_usage_get_all_by_project(context, project_id)
Retrieve all usage associated with a given resource.

quota_usage_update_resource(context, old_res, new_res)
Update resource field in quota_usages.

reservation_commit(context, reservations, project_id=None)
Commit quota reservations.

reservation_expire(context)
Roll back any expired reservations.

reservation_rollback(context, reservations, project_id=None)
Roll back quota reservations.

reset_active_backend(context, enable_replication, active_backend_id, backend_host)
Reset the active backend for a host.

resource_exists(context, model, resource_id)

service_create(context, values)
Create a service from the values dictionary.

service_destroy(context, service_id)
Destroy the service or raise if it does not exist.

service_get(context, service_id=None, backend_match_level=None, **filters)
Get a service that matches the criteria.

A possible filter is is_up=True and it will filter nodes that are down.

Parameters

• service_id Id of the service.

• filters Filters for the query in the form of key/value.

• backend_match_level pool, backend, or host for host and cluster filters (as
defined in _filter_host method)

Raises ServiceNotFound If service doesnt exist.

service_get_all(context, backend_match_level=None, **filters)
Get all services that match the criteria.

A possible filter is is_up=True and it will filter nodes that are down, as well as host_or_cluster, that
lets you look for services using both of these properties.

Parameters

• filters Filters for the query in the form of key/value arguments.

• backend_match_level pool, backend, or host for host and cluster filters (as
defined in _filter_host method)

4.1. Contributing to Cinder 939

Cinder Documentation, Release 20.3.2.dev3

service_get_by_uuid(context, service_uuid)
Get a service by its uuid.

Return Service ref or raise if it does not exist.

service_update(context, service_id, values)
Set the given properties on an service and update it.

Raises NotFound if service does not exist.

snapshot_create(context, values)
Create a snapshot from the values dictionary.

snapshot_data_get_for_project(context, project_id, volume_type_id=None, host=None)
Get count and gigabytes used for snapshots for specified project.

snapshot_destroy(context, snapshot_id)
Destroy the snapshot or raise if it does not exist.

snapshot_get(context, snapshot_id)
Get a snapshot or raise if it does not exist.

snapshot_get_all(context, filters=None, marker=None, limit=None, sort_keys=None,
sort_dirs=None, offset=None)

Get all snapshots.

snapshot_get_all_active_by_window(context, begin, end=None, project_id=None)
Get all the snapshots inside the window.

Specifying a project_id will filter for a certain project.

snapshot_get_all_by_host(context, host, filters=None)
Get all snapshots belonging to a host.

Parameters

• host Include include snapshots only for specified host.

• filters Filters for the query in the form of key/value.

snapshot_get_all_by_project(context, project_id, filters=None, marker=None, limit=None,
sort_keys=None, sort_dirs=None, offset=None)

Get all snapshots belonging to a project.

snapshot_get_all_for_cgsnapshot(context, project_id)
Get all snapshots belonging to a cgsnapshot.

snapshot_get_all_for_group_snapshot(context, group_snapshot_id)
Get all snapshots belonging to a group snapshot.

snapshot_get_all_for_volume(context, volume_id)
Get all snapshots for a volume.

snapshot_get_latest_for_volume(context, volume_id)
Get latest snapshot for a volume

snapshot_metadata_delete(context, snapshot_id, key)
Delete the given metadata item.

snapshot_metadata_get(context, snapshot_id)
Get all metadata for a snapshot.

940 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

snapshot_metadata_update(context, snapshot_id, metadata, delete)
Update metadata if it exists, otherwise create it.

snapshot_update(context, snapshot_id, values)
Set the given properties on an snapshot and update it.

Raises NotFound if snapshot does not exist.

snapshot_use_quota_online_data_migration(context, max_count)

transfer_accept(context, transfer_id, user_id, project_id, no_snapshots=False)
Accept a volume transfer.

transfer_create(context, values)
Create an entry in the transfers table.

transfer_destroy(context, transfer_id)
Destroy a record in the volume transfer table.

transfer_get(context, transfer_id)
Get a volume transfer record or raise if it does not exist.

transfer_get_all(context, marker=None, limit=None, sort_keys=None, sort_dirs=None,
filters=None, offset=None)

Get all volume transfer records.

transfer_get_all_by_project(context, project_id, marker=None, limit=None, sort_keys=None,
sort_dirs=None, filters=None, offset=None)

Get all volume transfer records for specified project.

volume_admin_metadata_delete(context, volume_id, key)
Delete the given metadata item.

volume_admin_metadata_get(context, volume_id)
Get all administration metadata for a volume.

volume_admin_metadata_update(context, volume_id, metadata, delete, add=True, update=True)
Update metadata if it exists, otherwise create it.

volume_attach(context, values)
Attach a volume.

volume_attached(context, volume_id, instance_id, host_name, mountpoint, attach_mode=’rw’,
mark_attached=True)

Ensure that a volume is set as attached.

volume_attachment_get(context, attachment_id)

volume_attachment_get_all(context, filters=None, marker=None, limit=None, offset=None,
sort_keys=None, sort_dirs=None)

volume_attachment_get_all_by_host(context, host, filters=None)

volume_attachment_get_all_by_instance_uuid(context, instance_uuid, filters=None)

volume_attachment_get_all_by_project(context, project_id, filters=None, marker=None,
limit=None, offset=None, sort_keys=None,
sort_dirs=None)

volume_attachment_get_all_by_volume_id(context, volume_id, session=None)

volume_attachment_update(context, attachment_id, values)

4.1. Contributing to Cinder 941

Cinder Documentation, Release 20.3.2.dev3

volume_create(context, values)
Create a volume from the values dictionary.

volume_data_get_for_host(context, host, count_only=False)
Get (volume_count, gigabytes) for project.

volume_data_get_for_project(context, project_id, host=None)
Get (volume_count, gigabytes) for project.

volume_destroy(context, volume_id)
Destroy the volume or raise if it does not exist.

volume_detached(context, volume_id, attachment_id)
Ensure that a volume is set as detached.

volume_encryption_metadata_get(context, volume_id, session=None)

volume_get(context, volume_id)
Get a volume or raise if it does not exist.

volume_get_all(context, marker=None, limit=None, sort_keys=None, sort_dirs=None,
filters=None, offset=None)

Get all volumes.

volume_get_all_active_by_window(context, begin, end=None, project_id=None)
Get all the volumes inside the window.

Specifying a project_id will filter for a certain project.

volume_get_all_by_generic_group(context, group_id, filters=None)
Get all volumes belonging to a generic volume group.

volume_get_all_by_group(context, group_id, filters=None)
Get all volumes belonging to a consistency group.

volume_get_all_by_host(context, host, filters=None)
Get all volumes belonging to a host.

volume_get_all_by_project(context, project_id, marker, limit, sort_keys=None, sort_dirs=None,
filters=None, offset=None)

Get all volumes belonging to a project.

volume_glance_metadata_bulk_create(context, volume_id, metadata)
Add Glance metadata for specified volume (multiple pairs).

volume_glance_metadata_copy_from_volume_to_volume(context, src_volume_id, volume_id)
Update the Glance metadata for a volume.

Update the Glance metadata for a volume by copying all of the key:value pairs from the originating
volume.

This is so that a volume created from the volume (clone) will retain the original metadata.

volume_glance_metadata_copy_to_snapshot(context, snapshot_id, volume_id)
Update the Glance metadata for a snapshot.

This will copy all of the key:value pairs from the originating volume, to ensure that a volume
created from the snapshot will retain the original metadata.

volume_glance_metadata_copy_to_volume(context, volume_id, snapshot_id)
Update the Glance metadata from a volume (created from a snapshot).

942 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

This will copy all of the key:value pairs from the originating snapshot, to ensure that the Glance
metadata from the original volume is retained.

volume_glance_metadata_create(context, volume_id, key, value)
Update the Glance metadata for the specified volume.

volume_glance_metadata_delete_by_snapshot(context, snapshot_id)
Delete the glance metadata for a snapshot.

volume_glance_metadata_delete_by_volume(context, volume_id)
Delete the glance metadata for a volume.

volume_glance_metadata_get(context, volume_id)
Return the glance metadata for a volume.

volume_glance_metadata_get_all(context)
Return the glance metadata for all volumes.

volume_glance_metadata_list_get(context, volume_id_list)
Return the glance metadata for a volume list.

volume_has_attachments_filter()

volume_has_other_project_snp_filter()

volume_has_snapshots_filter()

volume_has_snapshots_in_a_cgsnapshot_filter()

volume_has_undeletable_snapshots_filter()

volume_include_in_cluster(context, cluster, partial_rename=True, **filters)
Include all volumes matching the filters into a cluster.

When partial_rename is set we will not set the cluster_name with cluster parameter value directly,
well replace provided cluster_name or host filter value with cluster instead.

This is useful when we want to replace just the cluster name but leave the backend and pool infor-
mation as it is. If we are using cluster_name to filter, well use that same DB field to replace the
cluster value and leave the rest as it is. Likewise if we use the host to filter.

Returns the number of volumes that have been changed.

volume_metadata_delete(context, volume_id, key, meta_type=METADATA_TYPES.user)
Delete the given metadata item.

volume_metadata_get(context, volume_id)
Get all metadata for a volume.

volume_metadata_update(context, volume_id, metadata, delete,
meta_type=METADATA_TYPES.user)

Update metadata if it exists, otherwise create it.

volume_qos_allows_retype(new_vol_type)

volume_snapshot_glance_metadata_get(context, snapshot_id)
Return the Glance metadata for the specified snapshot.

volume_type_access_add(context, type_id, project_id)
Add volume type access for project.

4.1. Contributing to Cinder 943

Cinder Documentation, Release 20.3.2.dev3

volume_type_access_get_all(context, type_id)
Get all volume type access of a volume type.

volume_type_access_remove(context, type_id, project_id)
Remove volume type access for project.

volume_type_create(context, values, projects=None)
Create a new volume type.

volume_type_destroy(context, id)
Delete a volume type.

volume_type_encryption_create(context, volume_type_id, encryption_specs)

volume_type_encryption_delete(context, volume_type_id)

volume_type_encryption_get(context, volume_type_id, session=None)

volume_type_encryption_update(context, volume_type_id, encryption_specs)

volume_type_encryption_volume_get(context, volume_type_id, session=None)

volume_type_extra_specs_delete(context, volume_type_id, key)
Delete the given extra specs item.

volume_type_extra_specs_get(context, volume_type_id)
Get all extra specs for a volume type.

volume_type_extra_specs_update_or_create(context, volume_type_id, extra_specs)
Create or update volume type extra specs.

This adds or modifies the key/value pairs specified in the extra specs dict argument.

volume_type_get(context, id, inactive=False, expected_fields=None)
Get volume type by id.

Parameters

• context context to query under

• id Volume type id to get.

• inactive Consider inactive volume types when searching

• expected_fields Return those additional fields. Supported fields are:
projects.

Returns volume type

volume_type_get_all(context, inactive=False, filters=None, marker=None, limit=None,
sort_keys=None, sort_dirs=None, offset=None, list_result=False)

Get all volume types.

Parameters

• context context to query under

• inactive Include inactive volume types to the result set

• filters Filters for the query in the form of key/value.

• marker the last item of the previous page, used to determine the next page of
results to return

944 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• limit maximum number of items to return

• sort_keys list of attributes by which results should be sorted, paired with
corresponding item in sort_dirs

• sort_dirs list of directions in which results should be sorted, paired with
corresponding item in sort_keys

• list_result

For compatibility, if list_result = True, return a list instead of dict.

is_public Filter volume types based on visibility:

– True: List public volume types only

– False: List private volume types only

– None: List both public and private volume types

Returns list/dict of matching volume types

volume_type_get_all_by_group(context, group_id)
Get all volumes in a group.

volume_type_get_by_name(context, name)
Get volume type by name.

volume_type_qos_associate(context, type_id, qos_specs_id)
Associate a volume type with specific qos specs.

volume_type_qos_associations_get(context, qos_specs_id, inactive=False)
Get volume types that are associated with specific qos specs.

volume_type_qos_disassociate(context, qos_specs_id, type_id)
Disassociate a volume type from specific qos specs.

volume_type_qos_disassociate_all(context, qos_specs_id)
Disassociate all volume types from specific qos specs.

volume_type_qos_specs_get(context, type_id)
Get all qos specs for given volume type.

volume_type_update(context, volume_type_id, values)

volume_types_get_by_name_or_id(context, volume_type_list)
Get volume types by name or id.

volume_update(context, volume_id, values)
Set the given properties on a volume and update it.

Raises NotFound if volume does not exist.

volume_update_status_based_on_attachment(context, volume_id)
Update volume status according to attached instance id

volume_use_quota_online_data_migration(context, max_count)

volumes_update(context, values_list)
Set the given properties on a list of volumes and update them.

Raises NotFound if a volume does not exist.

4.1. Contributing to Cinder 945

Cinder Documentation, Release 20.3.2.dev3

worker_claim_for_cleanup(context, claimer_id, orm_worker)
Soft delete a worker, change the service_id and update the worker.

worker_create(context, **values)
Create a worker entry from optional arguments.

worker_destroy(context, **filters)
Delete a worker (no soft delete).

worker_get(context, **filters)
Get a worker or raise exception if it does not exist.

worker_get_all(context, until=None, db_filters=None, **filters)
Get all workers that match given criteria.

worker_update(context, id, filters=None, orm_worker=None, **values)
Update a worker with given values.

workers_init()
Check if DB supports subsecond resolution and set global flag.

MySQL 5.5 doesnt support subsecond resolution in datetime fields, so we have to take it into
account when working with the workers table.

Once we drop support for MySQL 5.5 we can remove this method.

cinder.db.base module

Base class for classes that need modular database access.

class Base
Bases: object

DB driver is injected in the init method.

cinder.db.migration module

Database setup and migration commands.

db_sync(version=None, engine=None)
Migrate the database to version or the most recent version.

Were currently straddling two migration systems, sqlalchemy-migrate and alembic. This handles
both by ensuring we switch from one to the other at the appropriate moment.

db_version()
Get database version.

946 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Module contents

DB abstraction for Cinder

cinder.group package

Submodules

cinder.group.api module

Handles all requests relating to groups.

class API
Bases: cinder.db.base.Base

API for interacting with the volume manager for groups.

create(context, name, description, group_type, volume_types, availability_zone=None)

create_from_src(context, name, description=None, group_snapshot_id=None,
source_group_id=None)

create_group_snapshot(context, group, name, description)

delete(context, group, delete_volumes=False)

delete_group_snapshot(context, group_snapshot, force=False)

disable_replication(context, group)

enable_replication(context, group)

failover_replication(context, group, allow_attached_volume=False,
secondary_backend_id=None)

get(context, group_id)

get_all(context, filters=None, marker=None, limit=None, offset=None, sort_keys=None,
sort_dirs=None)

get_all_group_snapshots(context, filters=None, marker=None, limit=None, offset=None,
sort_keys=None, sort_dirs=None)

get_group_snapshot(context, group_snapshot_id)

list_replication_targets(context, group)

reset_group_snapshot_status(context, gsnapshot, status)
Reset status of group snapshot

reset_status(context, group, status)
Reset status of generic group

update(context, group, name, description, add_volumes, remove_volumes)
Update group.

update_group_snapshot(context, group_snapshot, fields)

update_quota(context, group, num, project_id=None)

4.1. Contributing to Cinder 947

Cinder Documentation, Release 20.3.2.dev3

Module contents

cinder.image package

Subpackages

cinder.image.accelerators package

Submodules

cinder.image.accelerators.gzip module

class AccelGZIP
Bases: cinder.image.accelerator.AccelBase

compress_img(src, dest, run_as_root)

decompress_img(src, dest, run_as_root)

is_accel_exist()

cinder.image.accelerators.qat module

class AccelQAT
Bases: cinder.image.accelerator.AccelBase

compress_img(src, dest, run_as_root)

decompress_img(src, dest, run_as_root)

is_accel_exist()

Module contents

Submodules

cinder.image.accelerator module

class AccelBase
Bases: object

abstract compress_img(src, dest, run_as_root)

abstract decompress_img(src, dest, run_as_root)

abstract is_accel_exist()

class ImageAccel(src, dest)
Bases: object

compress_img(run_as_root)

decompress_img(run_as_root)

948 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

is_engine_ready()

is_gzip_compressed(image_file)

cinder.image.cache module

class ImageVolumeCache(db, volume_api, max_cache_size_gb: int = 0, max_cache_size_count:
int = 0)

Bases: object

create_cache_entry(context: cinder.context.RequestContext, volume_ref:
cinder.objects.volume.Volume, image_id: str, image_meta: dict)→
dict

Create a new cache entry for an image.

This assumes that the volume described by volume_ref has already been created and is in an
available state.

ensure_space(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume)→ bool

Makes room for a volume cache entry.

Returns True if successful, false otherwise.

evict(context: cinder.context.RequestContext, cache_entry: dict)→ None

get_by_image_volume(context: cinder.context.RequestContext, volume_id: str)

get_entry(context: cinder.context.RequestContext, volume_ref:
cinder.objects.volume.Volume, image_id: str, image_meta: dict)→ Optional[dict]

cinder.image.glance module

Implementation of an image service that uses Glance as the backend

class GlanceClientWrapper(context=None, netloc=None, use_ssl=False)
Bases: object

Glance client wrapper class that implements retries.

call(context, method, *args, **kwargs)
Call a glance client method.

If we get a connection error, retry the request according to CONF.glance_num_retries.

class GlanceImageService(client=None)
Bases: object

Provides storage and retrieval of disk image objects within Glance.

add_location(context, image_id, url, metadata)
Add a backend location url to an image.

Returns a dict containing image metadata on success.

create(context, image_meta, data=None)
Store the image data and return the new image object.

4.1. Contributing to Cinder 949

Cinder Documentation, Release 20.3.2.dev3

delete(context, image_id)
Delete the given image.

Raises

• ImageNotFound if the image does not exist.

• NotAuthorized if the user is not an owner.

detail(context, **kwargs)
Calls out to Glance for a list of detailed image information.

download(context, image_id, data=None)
Calls out to Glance for data and writes data.

get_location(context, image_id)
Get backend storage location url.

Returns a tuple containing the direct url and locations representing the backend storage loca-
tion, or (None, None) if these attributes are not shown by Glance.

get_stores(context)
Returns a list of dicts with stores information.

list_members(context, image_id)
Returns a list of dicts with image member data.

show(context: cinder.context.RequestContext, image_id: str)→ Dict[str, Any]
Returns a dict with image data for the given opaque image id.

update(context, image_id, image_meta, data=None, purge_props=True, store_id=None,
base_image_ref=None)

Modify the given image with the new data.

get_api_servers(context)
Return Iterable over shuffled api servers.

Shuffle a list of glance_api_servers and return an iterator that will cycle through the list, loop-
ing around to the beginning if necessary. If CONF.glance_api_servers is None then they will be
retrieved from the catalog.

get_default_image_service()

get_remote_image_service(context: cinder.context.RequestContext, image_href)→
Tuple[cinder.image.glance.GlanceImageService, str]

Create an image_service and parse the id from the given image_href.

The image_href param can be an href of the form http://example.com:9292/v1/images/
b8b2c6f7-7345-4e2f-afa2-eedaba9cbbe3, or just an id such as b8b2c6f7-7345-4e2f-afa2-
eedaba9cbbe3. If the image_href is a standalone id, then the default image service is returned.

Parameters image_href href that describes the location of an image

Returns a tuple of the form (image_service, image_id)

950 Chapter 4. For contributors

http://example.com:9292/v1/images/b8b2c6f7-7345-4e2f-afa2-eedaba9cbbe3
http://example.com:9292/v1/images/b8b2c6f7-7345-4e2f-afa2-eedaba9cbbe3

Cinder Documentation, Release 20.3.2.dev3

cinder.image.image_utils module

Helper methods to deal with images.

This is essentially a copy from nova.virt.images.py Some slight modifications, but at some point we
should look at maybe pushing this up to Oslo

class TemporaryImages(image_service: cinder.image.glance.GlanceImageService)
Bases: object

Manage temporarily downloaded images to avoid downloading it twice.

In the with TemporaryImages.fetch(image_service, ctx, image_id) as tmp clause, tmp can be used
as the downloaded image path. In addition, image_utils.fetch() will use the pre-fetched image by
the TemporaryImages. This is useful to inspect image contents before conversion.

classmethod fetch(image_service: cinder.image.glance.GlanceImageService, context:
cinder.context.RequestContext, image_id: str, suffix: Optional[str] = ”)
→ Generator[str, None, None]

static for_image_service(image_service: cinder.image.glance.GlanceImageService)→
cinder.image.image_utils.TemporaryImages

get(context: cinder.context.RequestContext, image_id: str)

check_available_space(dest: str, image_size: int, image_id: str)→ None

check_image_format(source: str, src_format: Optional[str] = None, image_id: Optional[str] =
None, data: Optional[oslo_utils.imageutils.QemuImgInfo] = None,
run_as_root: bool = True)→ None

Do some image format checks.

Verifies that the src_format matches what qemu-img thinks the image format is, and does some
vmdk subformat checks. See Bug #1996188.

• Does not check for a qcow2 backing file.

• Will make a call out to qemu_img if data is None.

Parameters

• source filename of the image to check

• src_format source image format recognized by qemu_img, or None

• image_id the image ID if this is a Glance image, or None

• data a imageutils.QemuImgInfo object from this image, or None

• run_as_root when data is None, call qemu-img info as root

Raises

• ImageUnacceptable when the image fails some format checks

• ProcessExecutionError if qemu-img info fails

check_qemu_img_version(minimum_version: str)→ None

check_virtual_size(virtual_size: float, volume_size: int, image_id: str)→ int

4.1. Contributing to Cinder 951

Cinder Documentation, Release 20.3.2.dev3

check_vmdk_image(image_id: str, data: oslo_utils.imageutils.QemuImgInfo)→ None
Check some rules about VMDK images.

Make sure the VMDK subformat (the createType in vmware docs) is one that we allow as deter-
mined by the vmdk_allowed_types configuration option. The default set includes only types that
do not reference files outside the VMDK file, which can otherwise be used in exploits to expose
host information.

Parameters

• image_id the image id

• data an imageutils.QemuImgInfo object

Raises ImageUnacceptable when the VMDK createType is not in the allowed list

cleanup_temporary_file(backend_name: str)→ None

coalesce_chain(vhd_chain: List[str])→ str

coalesce_vhd(vhd_path: str)→ None

convert_image(source: str, dest: str, out_format: str, out_subformat: Optional[str] = None,
src_format: Optional[str] = None, run_as_root: bool = True, throttle=None,
cipher_spec: Optional[dict] = None, passphrase_file: Optional[str] = None,
compress: bool = False, src_passphrase_file: Optional[str] = None, image_id:
Optional[str] = None, data: Optional[oslo_utils.imageutils.QemuImgInfo] = None)
→ None

Convert image to other format.

NOTE: If the qemu-img convert command fails and this function raises an exception, a non-empty
dest file may be left in the filesystem. It is the responsibility of the caller to decide what to do with
this file.

Parameters

• source source filename

• dest destination filename

• out_format output image format of qemu-img

• out_subformat output image subformat

• src_format source image format (use image_utils.fixup_disk_format() to
translate from a Glance format to one recognizable by qemu_img)

• run_as_root run qemu-img as root

• throttle a cinder.throttling.Throttle object, or None

• cipher_spec encryption details

• passphrase_file filename containing luks passphrase

• compress compress w/ qemu-img when possible (best effort)

• src_passphrase_file filename containing source volumes luks passphrase

• image_id the image ID if this is a Glance image, or None

• data a imageutils.QemuImgInfo object from this image, or None

Raises

952 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• ImageUnacceptable when the image fails some format checks

• ProcessExecutionError when something goes wrong during conversion

create_temporary_file(*args: str, **kwargs: str)→ str

decode_cipher(cipher_spec: str, key_size: int)→ Dict[str, str]
Decode a dm-crypt style cipher specification string

The assumed format being cipher-chainmode-ivmode, similar to that documented under
linux/Documentation/admin-guide/device-mapper/dm-crypt.txt in the kernel source tree. Cinder
does not support the [:keycount] or [:ivopts] options.

discover_vhd_chain(directory: str)→ List[str]

extract_targz(archive_name: str, target: str)→ None

fetch(context: cinder.context.RequestContext, image_service:
cinder.image.glance.GlanceImageService, image_id: str, path: str, _user_id, _project_id)→
None

fetch_to_raw(context: cinder.context.RequestContext, image_service:
cinder.image.glance.GlanceImageService, image_id: str, dest: str, blocksize: int,
user_id: Optional[str] = None, project_id: Optional[str] = None, size: Optional[int]
= None, run_as_root: bool = True)→ None

fetch_to_vhd(context: cinder.context.RequestContext, image_service:
cinder.image.glance.GlanceImageService, image_id: str, dest: str, blocksize: int,
volume_subformat: Optional[str] = None, user_id: Optional[str] = None, project_id:
Optional[str] = None, run_as_root: bool = True)→ None

fetch_to_volume_format(context: cinder.context.RequestContext, image_service:
cinder.image.glance.GlanceImageService, image_id: str, dest: str,
volume_format: str, blocksize: int, volume_subformat: Optional[str] =
None, user_id: Optional[str] = None, project_id: Optional[str] = None,
size: Optional[int] = None, run_as_root: bool = True)→ None

fetch_verify_image(context: cinder.context.RequestContext, image_service:
cinder.image.glance.GlanceImageService, image_id: str, dest: str)→ None

filter_out_reserved_namespaces_metadata(metadata: Optional[Dict[str, str]])→ Dict[str,
str]

fix_vhd_chain(vhd_chain: List[str])→ None

fixup_disk_format(disk_format: str)→ str
Return the format to be provided to qemu-img convert.

from_qemu_img_disk_format(disk_format: str)→ str
Return the conventional format derived from qemu-img format.

get_qemu_data(image_id: str, has_meta: bool, disk_format_raw: bool, dest: str, run_as_root: bool,
force_share: bool = False)→ oslo_utils.imageutils.QemuImgInfo

get_qemu_img_version()→ Optional[List[int]]
The qemu-img version will be cached until the process is restarted.

get_vhd_size(vhd_path: str)→ int

is_xenserver_format(image_meta: dict)→ bool

4.1. Contributing to Cinder 953

Cinder Documentation, Release 20.3.2.dev3

qemu_img_info(path: str, run_as_root: bool = True, force_share: bool = False)→
oslo_utils.imageutils.QemuImgInfo

Return an object containing the parsed output from qemu-img info.

qemu_img_supports_force_share()→ bool

replace_xenserver_image_with_coalesced_vhd(image_file: str)→ None

resize_image(source: str, size: int, run_as_root: bool = False, file_format: Optional[str] = None)
→ None

Changes the virtual size of the image.

resize_vhd(vhd_path: str, size: int, journal: str)→ None

set_vhd_parent(vhd_path: str, parentpath: str)→ None

temporary_dir()→ AbstractContextManager[str]

temporary_file(*args: str, **kwargs)→ Generator[str, None, None]

upload_volume(context: cinder.context.RequestContext, image_service:
cinder.image.glance.GlanceImageService, image_meta: dict, volume_path: str,
volume_format: str = ’raw’, run_as_root: bool = True, compress: bool = True,
store_id: Optional[str] = None, base_image_ref: Optional[str] = None)→ None

validate_stores_id(context: cinder.context.RequestContext, image_service_store_id: str)→
None

verify_glance_image_signature(context: cinder.context.RequestContext, image_service:
cinder.image.glance.GlanceImageService, image_id: str, path:
str)→ bool

Module contents

cinder.interface package

Submodules

cinder.interface.backup_chunked_driver module

Backup driver with chunked backup operations.

class BackupChunkedDriver
Bases: cinder.interface.backup_driver.BackupDriver

Backup driver that supports chunked backups.

delete_object(container, object_name)
Delete object from container.

Parameters

• container The container to modify.

• object_name The object name to delete.

get_container_entries(container, prefix)
Get container entry names.

954 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Parameters

• container The container from which to get entries.

• prefix The prefix used to match entries.

get_extra_metadata(backup, volume)
Return extra metadata to use in prepare_backup.

This method allows for collection of extra metadata in prepare_backup() which will be passed
to get_object_reader() and get_object_writer(). Subclass extensions can use this extra infor-
mation to optimize data transfers.

returns json serializable object

get_object_reader(container, object_name, extra_metadata=None)
Returns a reader object for the backed up chunk.

Parameters

• container The container to read from.

• object_name The object name to read.

• extra_metadata Extra metadata to be included.

get_object_writer(container, object_name, extra_metadata=None)
Returns a writer which stores the chunk data in backup repository.

Parameters

• container The container to write to.

• object_name The object name to write.

• extra_metadata Extra metadata to be included.

Returns A context handler that can be used in a with context.

put_container(container)
Create the container if needed. No failure if it pre-exists.

Parameters container The container to write into.

update_container_name(backup, container)
Allows sub-classes to override container name.

This method exists so that sub-classes can override the container name as it comes in to the
driver in the backup object. Implementations should return None if no change to the container
name is desired.

cinder.interface.backup_driver module

Core backup driver interface.

All backup drivers should support this interface as a bare minimum.

class BackupDriver
Bases: cinder.interface.base.CinderInterface

Backup driver required interface.

4.1. Contributing to Cinder 955

Cinder Documentation, Release 20.3.2.dev3

backup(backup, volume_file, backup_metadata=False)
Start a backup of a specified volume.

If backup[parent_id] is given, then an incremental backup should be performed.

If the parent backup is of different size, a full backup should be performed to ensure all data
is included.

Parameters

• backup The backup information.

• volume_file The volume or file to write the backup to.

• backup_metadata Whether to include volume metadata in the backup.

The variable structure of backup in the following format:

{
'id': id,
'availability_zone': availability_zone,
'service': driver_name,
'user_id': context.user_id,
'project_id': context.project_id,
'display_name': name,
'display_description': description,
'volume_id': volume_id,
'status': fields.BackupStatus.CREATING,
'container': container,
'parent_id': parent_id,
'size': size,
'host': host,
'snapshot_id': snapshot_id,
'data_timestamp': data_timestamp,

}

service: backup driver parent_id: parent backup id size: equal to volume size
data_timestamp: backup creation time

check_for_setup_error()
Method for checking if backup backend is successfully installed.

Depends on storage backend limitations and driver implementation this method could check
if all needed config options are configurated well or try to connect to the storage to verify
driver can do it without any issues.

Returns None

delete_backup(backup)
Delete a backup from the backup store.

Parameters backup The backup to be deleted.

export_record(backup)
Export driver specific backup record information.

If backup backend needs additional driver specific information to import backup record back
into the system it must override this method and return it as a dictionary so it can be serialized

956 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

into a string.

Default backup driver implementation has no extra information.

Parameters backup backup object to export

Returns driver_info - dictionary with extra information

get_metadata(volume_id)
Get volume metadata.

Returns a json-encoded dict containing all metadata and the restore version i.e. the version
used to decide what actually gets restored from this container when doing a backup restore.

Typically best to use py:class:BackupMetadataAPI for this.

Parameters volume_id The ID of the volume.

Returns json-encoded dict of metadata.

import_record(backup, driver_info)
Import driver specific backup record information.

If backup backend needs additional driver specific information to import backup record back
into the system it must override this method since it will be called with the extra information
that was provided by export_record when exporting the backup.

Default backup driver implementation does nothing since it didnt export any specific data in
export_record.

Parameters

• backup backup object to export

• driver_info dictionary with driver specific backup record information

Returns None

put_metadata(volume_id, json_metadata)
Set volume metadata.

Typically best to use py:class:BackupMetadataAPI for this.

Parameters

• volume_id The ID of the volume.

• json_metadata The json-encoded dict of metadata.

restore(backup, volume_id, volume_file)
Restore volume from a backup.

Parameters

• backup The backup information.

• volume_id The volume to be restored.

• volume_file The volume or file to read the data from.

4.1. Contributing to Cinder 957

Cinder Documentation, Release 20.3.2.dev3

cinder.interface.base module

class CinderInterface
Bases: object

Interface base class for Cinder.

Cinder interfaces should inherit from this class to support indirect inheritance evaluation.

This can be used to validate compliance to an interface without requiring that the class actually be
inherited from the same base class.

cinder.interface.fczm_driver module

Core fibre channel zone manager driver interface.

All fczm drivers should support this interface as a bare minimum.

class FibreChannelZoneManagerDriver
Bases: cinder.interface.base.CinderInterface

FCZM driver required interface.

add_connection(fabric, initiator_target_map, host_name=None, storage_system=None)
Add a new initiator<>target connection.

All implementing drivers should provide concrete implementation for this API.

Parameters

• fabric Fabric name from cinder.conf file

• initiator_target_map Mapping of initiator to list of targets

Example initiator_target_map:

{
'10008c7cff523b01': ['20240002ac000a50', '20240002ac000a40']

}

Note that WWPN can be in lower or upper case and can be : separated strings.

delete_connection(fabric, initiator_target_map, host_name=None, storage_system=None)
Delete an initiator<>target connection.

Parameters

• fabric Fabric name from cinder.conf file

• initiator_target_map Mapping of initiator to list of targets

Example initiator_target_map:

{
'10008c7cff523b01': ['20240002ac000a50', '20240002ac000a40']

}

Note that WWPN can be in lower or upper case and can be : separated strings.

958 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_san_context(target_wwn_list)
Get SAN context for end devices.

Parameters target_wwn_list Mapping of initiator to list of targets

Example initiator_target_map: [20240002ac000a50, 20240002ac000a40] Note that WWPN
can be in lower or upper case and can be : separated strings.

cinder.interface.util module

class DriverInfo(cls)
Bases: object

Information about driver implementations.

get_backup_drivers()
Get a list of all backup drivers.

get_fczm_drivers()
Get a list of all fczm drivers.

get_volume_drivers()
Get a list of all volume drivers.

cinder.interface.volume_consistencygroup_driver module

Consistency group volume driver interface.

class VolumeConsistencyGroupDriver
Bases: cinder.interface.base.CinderInterface

Interface for drivers that support consistency groups.

create_cgsnapshot(context, cgsnapshot, snapshots)
Creates a cgsnapshot.

Parameters

• context the context of the caller.

• cgsnapshot the dictionary of the cgsnapshot to be created.

• snapshots a list of snapshot dictionaries in the cgsnapshot.

Returns model_update, snapshots_model_update

param snapshots is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Snapshot to be precise. It cannot be assigned to snap-
shots_model_update. snapshots_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

4.1. Contributing to Cinder 959

Cinder Documentation, Release 20.3.2.dev3

If the status in any entry of snapshots_model_update is error, the status in model_update will
be set to the same if it is not already error.

If the status in model_update is error, the manager will raise an exception and the status of
cgsnapshot will be set to error in the db. If snapshots_model_update is not returned by the
driver, the manager will set the status of every snapshot to error in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of cgsnapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of cgsnapshot and
all snapshots will be set to available at the end of the manager function.

create_consistencygroup(context, group)
Creates a consistencygroup.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be created.

Returns model_update

model_update will be in this format: {status: xxx, }.

If the status in model_update is error, the manager will throw an exception and it will be
caught in the try-except block in the manager. If the driver throws an exception, the manager
will also catch it in the try-except block. The group status in the db will be changed to error.

For a successful operation, the driver can either build the model_update and return it or return
None. The group status will be set to available.

create_consistencygroup_from_src(context, group, volumes, cgsnapshot=None,
snapshots=None, source_cg=None,
source_vols=None)

Creates a consistencygroup from source.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be created.

• volumes a list of volume dictionaries in the group.

• cgsnapshot the dictionary of the cgsnapshot as source.

• snapshots a list of snapshot dictionaries in the cgsnapshot.

• source_cg the dictionary of a consistency group as source.

• source_vols a list of volume dictionaries in the source_cg.

Returns model_update, volumes_model_update

The source can be cgsnapshot or a source cg.

param volumes is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Volume to be precise. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be

960 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

To be consistent with other volume operations, the manager will assume the operation is
successful if no exception is thrown by the driver. For a successful operation, the driver can
either build the model_update and volumes_model_update and return them or return None,
None.

delete_cgsnapshot(context, cgsnapshot, snapshots)
Deletes a cgsnapshot.

Parameters

• context the context of the caller.

• cgsnapshot the dictionary of the cgsnapshot to be deleted.

• snapshots a list of snapshot dictionaries in the cgsnapshot.

Returns model_update, snapshots_model_update

param snapshots is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Snapshot to be precise. It cannot be assigned to snap-
shots_model_update. snapshots_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of cgsnapshot will be set to error in the db. If snapshots_model_update is not
returned by the driver, the manager will set the status of every snapshot to error in the except
block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of cgsnapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of cgsnapshot and
all snapshots will be set to deleted after the manager deletes them from db.

delete_consistencygroup(context, group, volumes)
Deletes a consistency group.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be deleted.

• volumes a list of volume dictionaries in the group.

Returns model_update, volumes_model_update

4.1. Contributing to Cinder 961

Cinder Documentation, Release 20.3.2.dev3

param volumes is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Volume to be precise. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

The driver should populate volumes_model_update and model_update and return them.

The manager will check volumes_model_update and update db accordingly for each volume.
If the driver successfully deleted some volumes but failed to delete others, it should set sta-
tuses of the volumes accordingly so that the manager can update db correctly.

If the status in any entry of volumes_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of the group will be set to error in the db. If volumes_model_update is not
returned by the driver, the manager will set the status of every volume in the group to error
in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager. The statuses of the group and all volumes in it will be set to error.

For a successful operation, the driver can either build the model_update and vol-
umes_model_update and return them or return None, None. The statuses of the group and
all volumes will be set to deleted after the manager deletes them from db.

update_consistencygroup(context, group, add_volumes=None, remove_volumes=None)
Updates a consistency group.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be updated.

• add_volumes a list of volume dictionaries to be added.

• remove_volumes a list of volume dictionaries to be removed.

Returns model_update, add_volumes_update, remove_volumes_update

model_update is a dictionary that the driver wants the manager to update upon a successful
return. If None is returned, the manager will set the status to available.

add_volumes_update and remove_volumes_update are lists of dictionaries that the driver
wants the manager to update upon a successful return. Note that each entry requires a {id:
xxx} so that the correct volume entry can be updated. If None is returned, the volume
will remain its original status. Also note that you cannot directly assign add_volumes to
add_volumes_update as add_volumes is a list of cinder.db.sqlalchemy.models.Volume ob-
jects and cannot be used for db update directly. Same with remove_volumes.

If the driver throws an exception, the status of the group as well as those of the volumes to be
added/removed will be set to error.

962 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.interface.volume_driver module

Core backend volume driver interface.

All backend drivers should support this interface as a bare minimum.

class VolumeDriverCore
Bases: cinder.interface.base.CinderInterface

Core backend driver required interface.

check_for_setup_error()
Validate there are no issues with the driver configuration.

Called after do_setup(). Driver initialization can occur there or in this call, but must be
complete by the time this returns.

If this method raises an exception, the driver will be left in an uninitialized state by the volume
manager, which means that it will not be sent requests for volume operations.

This method typically checks things like whether the configured credentials can be used to
log in the storage backend, and whether any external dependencies are present and working.

Raises VolumeBackendAPIException in case of setup error.

clone_image(volume, image_location, image_id, image_metadata, image_service)
Clone an image to a volume.

Parameters

• volume The volume to create.

• image_location Where to pull the image from.

• image_id The image identifier.

• image_metadata Information about the image.

• image_service The image service to use.

Returns Model updates.

copy_image_to_volume(context, volume, image_service, image_id)
Fetch the image from image_service and write it to the volume.

Parameters

• context Security/policy info for the request.

• volume The volume to create.

• image_service The image service to use.

• image_id The image identifier.

Returns Model updates.

copy_volume_to_image(context, volume, image_service, image_meta)
Copy the volume to the specified image.

Parameters

• context Security/policy info for the request.

4.1. Contributing to Cinder 963

Cinder Documentation, Release 20.3.2.dev3

• volume The volume to copy.

• image_service The image service to use.

• image_meta Information about the image.

Returns Model updates.

create_snapshot(snapshot)
Creates a snapshot.

Parameters snapshot Information for the snapshot to be created.

create_volume(volume)
Create a new volume on the backend.

This method is responsible only for storage allocation on the backend. It should not export a
LUN or actually make this storage available for use, this is done in a later call.

TODO(smcginnis): Add example data structure of volume object.

Parameters volume Volume object containing specifics to create.

Returns (Optional) dict of database updates for the new volume.

Raises VolumeBackendAPIException if creation failed.

create_volume_from_snapshot(volume, snapshot)
Creates a volume from a snapshot.

If volume_type extra specs includes replication: <is> True the driver needs to create a vol-
ume replica (secondary), and setup replication between the newly created volume and the
secondary volume.

An optional larger size for the new volume can be specified. Drivers should check this value
and create or expand the new volume to match.

Parameters

• volume The volume to be created.

• snapshot The snapshot from which to create the volume.

Returns A dict of database updates for the new volume.

delete_snapshot(snapshot)
Deletes a snapshot.

Parameters snapshot The snapshot to delete.

delete_volume(volume)
Delete a volume from the backend.

If the driver can talk to the backend and detects that the volume is no longer present, this call
should succeed and allow Cinder to complete the process of deleting the volume.

It is imperative that this operation ensures that the data from the deleted volume cannot leak
into new volumes when they are created, as new volumes are likely to belong to a different
tenant/project.

Parameters volume The volume to delete.

Raises VolumeIsBusy if the volume is still attached or has snapshots. Volume-
BackendAPIException on error.

964 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

do_setup(context)
Any initialization the volume driver needs to do while starting.

Called once by the manager after the driver is loaded. Can be used to set up clients, check
licenses, set up protocol specific helpers, etc.

Parameters context The admin context.

extend_volume(volume, new_size)
Extend the size of a volume.

Parameters

• volume The volume to extend.

• new_size The new desired size of the volume.

Note that if the volume backend doesnt support extending an in-use volume, the driver should
report online_extend_support=False.

get_volume_stats(refresh=False)
Collects volume backend stats.

The get_volume_stats method is used by the volume manager to collect information from
the driver instance related to information about the driver, available and used space, and
driver/backend capabilities.

stats are stored in self._stats field, which could be updated in _update_volume_stats method.

It returns a dict with the following required fields:

• volume_backend_name This is an identifier for the backend taken from cinder.conf.
Useful when using multi-backend.

• vendor_name Vendor/author of the driver who serves as the contact for the drivers
development and support.

• driver_version The driver version is logged at cinder-volume startup and is useful
for tying volume service logs to a specific release of the code. There are cur-
rently no rules for how or when this is updated, but it tends to follow typical ma-
jor.minor.revision ideas.

• storage_protocol The protocol used to connect to the storage, this should be a short
string such as: iSCSI, FC, nfs, ceph, etc.

• total_capacity_gb The total capacity in gigabytes (GiB) of the storage backend being
used to store Cinder volumes. Use keyword unknown if the backend cannot report
the value or infinite if there is no upper limit. But, it is recommended to report
real values as the Cinder scheduler assigns lowest weight to any storage backend
reporting unknown or infinite.

• free_capacity_gb The free capacity in gigabytes (GiB). Use keyword unknown if the
backend cannot report the value or infinite if there is no upper limit. But, it is rec-
ommended to report real values as the Cinder scheduler assigns lowest weight to
any storage backend reporting unknown or infinite.

And the following optional fields:

• reserved_percentage (integer) Percentage of backend capacity which is not used by
the scheduler.

4.1. Contributing to Cinder 965

Cinder Documentation, Release 20.3.2.dev3

• location_info (string) Driver-specific information used by the driver and storage back-
end to correlate Cinder volumes and backend LUNs/files.

• QoS_support (Boolean) Whether the backend supports quality of service.

• provisioned_capacity_gb The total provisioned capacity on the storage backend, in
gigabytes (GiB), including space consumed by any user other than Cinder itself.

• max_over_subscription_ratio The maximum amount a backend can be over sub-
scribed.

• thin_provisioning_support (Boolean) Whether the backend is capable of allocating
thinly provisioned volumes.

• thick_provisioning_support (Boolean) Whether the backend is capable of allocating
thick provisioned volumes. (Typically True.)

• total_volumes (integer) Total number of volumes on the storage backend. This can be
used in custom driver filter functions.

• filter_function (string) A custom function used by the scheduler to determine whether
a volume should be allocated to this backend or not. Example:

capabilities.total_volumes < 10

• goodness_function (string) Similar to filter_function, but used to weigh multiple vol-
ume backends. Example:

capabilities.capacity_utilization < 0.6 ? 100 : 25

• multiattach (Boolean) Whether the backend supports multiattach or not. Defaults to
False.

• sparse_copy_volume (Boolean) Whether copies performed by the volume manager for
operations such as migration should attempt to preserve sparseness.

• online_extend_support (Boolean) Whether the backend supports in-use volume ex-
tend or not. Defaults to True.

The returned dict may also contain a list, pools, which has a similar dict for each pool being
used with the backend.

Parameters refresh Whether to discard any cached values and force a full re-
fresh of stats.

Returns dict of appropriate values (see above).

initialize_connection(volume, connector, initiator_data=None)
Allow connection to connector and return connection info.

Parameters

• volume The volume to be attached.

• connector Dictionary containing information about what is being con-
nected to.

• initiator_data (Optional) A dictionary of driver_initiator_data objects
with key-value pairs that have been saved for this initiator by a driver in pre-
vious initialize_connection calls.

966 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Returns A dictionary of connection information. This can optionally include a
initiator_updates field.

The initiator_updates field must be a dictionary containing a set_values and/or remove_values
field. The set_values field must be a dictionary of key-value pairs to be set/updated in the db.
The remove_values field must be a list of keys, previously set with set_values, that will be
deleted from the db.

May be called multiple times to get connection information after a volume has already been
attached.

terminate_connection(volume, connector)
Remove access to a volume.

Note: If connector is None, then all connections to the volume should be terminated.

Parameters

• volume The volume to remove.

• connector The Dictionary containing information about the connection.
This is optional when doing a force-detach and can be None.

cinder.interface.volume_group_driver module

Generic volume group volume driver interface.

class VolumeGroupDriver
Bases: cinder.interface.base.CinderInterface

Interface for drivers that support groups.

create_group(context, group)
Creates a group.

Parameters

• context the context of the caller.

• group the Group object to be created.

Returns model_update

model_update will be in this format: {status: xxx, }.

If the status in model_update is error, the manager will throw an exception and it will be
caught in the try-except block in the manager. If the driver throws an exception, the manager
will also catch it in the try-except block. The group status in the db will be changed to error.

For a successful operation, the driver can either build the model_update and return it or return
None. The group status will be set to available.

create_group_from_src(context, group, volumes, group_snapshot=None, snapshots=None,
source_group=None, source_vols=None)

Creates a group from source.

Parameters

• context the context of the caller.

• group the Group object to be created.

4.1. Contributing to Cinder 967

Cinder Documentation, Release 20.3.2.dev3

• volumes a list of Volume objects in the group.

• group_snapshot the GroupSnapshot object as source.

• snapshots a list of Snapshot objects in the group_snapshot.

• source_group a Group object as source.

• source_vols a list of Volume objects in the source_group.

Returns model_update, volumes_model_update

The source can be group_snapshot or a source group.

param volumes is a list of objects retrieved from the db. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be built by
the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update will be in
this format: {status: xxx, }.

To be consistent with other volume operations, the manager will assume the operation is
successful if no exception is thrown by the driver. For a successful operation, the driver can
either build the model_update and volumes_model_update and return them or return None,
None.

create_group_snapshot(context, group_snapshot, snapshots)
Creates a group_snapshot.

Parameters

• context the context of the caller.

• group_snapshot the GroupSnapshot object to be created.

• snapshots a list of Snapshot objects in the group_snapshot.

Returns model_update, snapshots_model_update

param snapshots is a list of Snapshot objects. It cannot be assigned to snap-
shots_model_update. snapshots_model_update is a list of dictionaries. It has to be built
by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update will be
in this format: {status: xxx, }.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error, the status in model_update will
be set to the same if it is not already error.

If the status in model_update is error, the manager will raise an exception and the status of
group_snapshot will be set to error in the db. If snapshots_model_update is not returned by
the driver, the manager will set the status of every snapshot to error in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of group_snapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of group_snapshot
and all snapshots will be set to available at the end of the manager function.

968 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

delete_group(context, group, volumes)
Deletes a group.

Parameters

• context the context of the caller.

• group the Group object to be deleted.

• volumes a list of Volume objects in the group.

Returns model_update, volumes_model_update

param volumes is a list of objects retrieved from the db. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be built by
the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update will be in
this format: {status: xxx, }.

The driver should populate volumes_model_update and model_update and return them.

The manager will check volumes_model_update and update db accordingly for each volume.
If the driver successfully deleted some volumes but failed to delete others, it should set sta-
tuses of the volumes accordingly so that the manager can update db correctly.

If the status in any entry of volumes_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of the group will be set to error in the db. If volumes_model_update is not
returned by the driver, the manager will set the status of every volume in the group to error
in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager. The statuses of the group and all volumes in it will be set to error.

For a successful operation, the driver can either build the model_update and vol-
umes_model_update and return them or return None, None. The statuses of the group and
all volumes will be set to deleted after the manager deletes them from db.

delete_group_snapshot(context, group_snapshot, snapshots)
Deletes a group_snapshot.

Parameters

• context the context of the caller.

• group_snapshot the GroupSnapshot object to be deleted.

• snapshots a list of Snapshot objects in the group_snapshot.

Returns model_update, snapshots_model_update

param snapshots is a list of objects. It cannot be assigned to snapshots_model_update. snap-
shots_model_update is a list of of dictionaries. It has to be built by the driver. An entry will
be in this format: {id: xxx, status: xxx, }. model_update will be in this format: {status: xxx,
}.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

4.1. Contributing to Cinder 969

Cinder Documentation, Release 20.3.2.dev3

If the status in any entry of snapshots_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of group_snapshot will be set to error in the db. If snapshots_model_update
is not returned by the driver, the manager will set the status of every snapshot to error in the
except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of group_snapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of group_snapshot
and all snapshots will be set to deleted after the manager deletes them from db.

update_group(context, group, add_volumes=None, remove_volumes=None)
Updates a group.

Parameters

• context the context of the caller.

• group the Group object to be updated.

• add_volumes a list of Volume objects to be added.

• remove_volumes a list of Volume objects to be removed.

Returns model_update, add_volumes_update, remove_volumes_update

model_update is a dictionary that the driver wants the manager to update upon a successful
return. If None is returned, the manager will set the status to available.

add_volumes_update and remove_volumes_update are lists of dictionaries that the driver
wants the manager to update upon a successful return. Note that each entry requires a {id:
xxx} so that the correct volume entry can be updated. If None is returned, the volume
will remain its original status. Also note that you cannot directly assign add_volumes to
add_volumes_update as add_volumes is a list of volume objects and cannot be used for db
update directly. Same with remove_volumes.

If the driver throws an exception, the status of the group as well as those of the volumes to be
added/removed will be set to error.

cinder.interface.volume_manageable_driver module

Manage/unmanage existing volume driver interface.

class VolumeListManageableDriver
Bases: cinder.interface.volume_manageable_driver.VolumeManagementDriver

Interface to support listing manageable snapshots and volumes.

get_manageable_snapshots(cinder_snapshots, marker, limit, offset, sort_keys, sort_dirs)
List snapshots on the backend available for management by Cinder.

Returns a list of dictionaries, each specifying a snapshot in the host, with the following keys:

• reference (dictionary): The reference for a snapshot, which can be passed to man-
age_existing_snapshot.

970 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• size (int): The size of the snapshot according to the storage backend, rounded up to the
nearest GB.

• safe_to_manage (boolean): Whether or not this snapshot is safe to manage according to
the storage backend. For example, is the snapshot in use or invalid for any reason.

• reason_not_safe (string): If safe_to_manage is False, the reason why.

• cinder_id (string): If already managed, provide the Cinder ID.

• extra_info (string): Any extra information to return to the user

• source_reference (string): Similar to reference, but for the snapshots source volume.

Parameters

• cinder_snapshots A list of snapshots in this host that Cinder currently
manages, used to determine if a snapshot is manageable or not.

• marker The last item of the previous page; we return the next results after
this value (after sorting)

• limit Maximum number of items to return

• offset Number of items to skip after marker

• sort_keys List of keys to sort results by (valid keys are identifier and size)

• sort_dirs List of directions to sort by, corresponding to sort_keys (valid
directions are asc and desc)

get_manageable_volumes(cinder_volumes, marker, limit, offset, sort_keys, sort_dirs)
List volumes on the backend available for management by Cinder.

Returns a list of dictionaries, each specifying a volume in the host, with the following keys:

• reference (dictionary): The reference for a volume, which can be passed to man-
age_existing.

• size (int): The size of the volume according to the storage backend, rounded up to the
nearest GB.

• safe_to_manage (boolean): Whether or not this volume is safe to manage according to
the storage backend. For example, is the volume in use or invalid for any reason.

• reason_not_safe (string): If safe_to_manage is False, the reason why.

• cinder_id (string): If already managed, provide the Cinder ID.

• extra_info (string): Any extra information to return to the user

Parameters

• cinder_volumes A list of volumes in this host that Cinder currently man-
ages, used to determine if a volume is manageable or not.

• marker The last item of the previous page; we return the next results after
this value (after sorting)

• limit Maximum number of items to return

• offset Number of items to skip after marker

4.1. Contributing to Cinder 971

Cinder Documentation, Release 20.3.2.dev3

• sort_keys List of keys to sort results by (valid keys are identifier and size)

• sort_dirs List of directions to sort by, corresponding to sort_keys (valid
directions are asc and desc)

class VolumeManagementDriver
Bases: cinder.interface.base.CinderInterface

Interface for drivers that support managing existing volumes.

manage_existing(volume, existing_ref)
Brings an existing backend storage object under Cinder management.

existing_ref is passed straight through from the API requests manage_existing_ref value, and
it is up to the driver how this should be interpreted. It should be sufficient to identify a
storage object that the driver should somehow associate with the newly-created cinder volume
structure.

There are two ways to do this:

1. Rename the backend storage object so that it matches the, volume[name] which is how
drivers traditionally map between a cinder volume and the associated backend storage
object.

2. Place some metadata on the volume, or somewhere in the backend, that allows other
driver requests (e.g. delete, clone, attach, detach) to locate the backend storage object
when required.

If the existing_ref doesnt make sense, or doesnt refer to an existing backend storage object,
raise a ManageExistingInvalidReference exception.

The volume may have a volume_type, and the driver can inspect that and compare against
the properties of the referenced backend storage object. If they are incompatible, raise a
ManageExistingVolumeTypeMismatch, specifying a reason for the failure.

Parameters

• volume Cinder volume to manage

• existing_ref Dictionary with keys source-id, source-name with driver-
specific values to identify a backend storage object.

Raises

• ManageExistingInvalidReference If the existing_ref doesnt make
sense, or doesnt refer to an existing backend storage object.

• ManageExistingVolumeTypeMismatch If there is a mismatch between
the volume type and the properties of the existing backend storage object.

manage_existing_get_size(volume, existing_ref)
Return size of volume to be managed by manage_existing.

When calculating the size, round up to the next GB.

Parameters

• volume Cinder volume to manage

• existing_ref Dictionary with keys source-id, source-name with driver-
specific values to identify a backend storage object.

972 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Raises ManageExistingInvalidReference If the existing_ref doesnt make
sense, or doesnt refer to an existing backend storage object.

unmanage(volume)
Removes the specified volume from Cinder management.

Does not delete the underlying backend storage object.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Cinder-specific configuration that they have associated
with the backend storage object.

Parameters volume Cinder volume to unmanage

cinder.interface.volume_snapshot_revert module

Revert to snapshot capable volume driver interface.

class VolumeSnapshotRevertDriver
Bases: cinder.interface.base.CinderInterface

Interface for drivers that support revert to snapshot.

revert_to_snapshot(context, volume, snapshot)
Revert volume to snapshot.

Note: the revert process should not change the volumes current size, that means if the driver
shrank the volume during the process, it should extend the volume internally.

Parameters

• context the context of the caller.

• volume The volume to be reverted.

• snapshot The snapshot used for reverting.

cinder.interface.volume_snapshotmanagement_driver module

Manage/unmanage existing volume snapshots driver interface.

class VolumeSnapshotManagementDriver
Bases: cinder.interface.base.CinderInterface

Interface for drivers that support managing existing snapshots.

manage_existing_snapshot(snapshot, existing_ref)
Brings an existing backend storage object under Cinder management.

existing_ref is passed straight through from the API requests manage_existing_ref value, and
it is up to the driver how this should be interpreted. It should be sufficient to identify a stor-
age object that the driver should somehow associate with the newly-created cinder snapshot
structure.

There are two ways to do this:

4.1. Contributing to Cinder 973

Cinder Documentation, Release 20.3.2.dev3

1. Rename the backend storage object so that it matches the snapshot[name] which is how
drivers traditionally map between a cinder snapshot and the associated backend storage
object.

2. Place some metadata on the snapshot, or somewhere in the backend, that allows other
driver requests (e.g. delete) to locate the backend storage object when required.

Parameters

• snapshot The snapshot to manage.

• existing_ref Dictionary with keys source-id, source-name with driver-
specific values to identify a backend storage object.

Raises ManageExistingInvalidReference If the existing_ref doesnt make
sense, or doesnt refer to an existing backend storage object.

manage_existing_snapshot_get_size(snapshot, existing_ref)
Return size of snapshot to be managed by manage_existing.

When calculating the size, round up to the next GB.

Parameters

• snapshot The snapshot to manage.

• existing_ref Dictionary with keys source-id, source-name with driver-
specific values to identify a backend storage object.

Raises ManageExistingInvalidReference If the existing_ref doesnt make
sense, or doesnt refer to an existing backend storage object.

unmanage_snapshot(snapshot)
Removes the specified snapshot from Cinder management.

Does not delete the underlying backend storage object.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Cinder-specific configuration that they have associated
with the backend storage object.

Parameters snapshot The snapshot to unmanage.

Module contents

backupdriver(cls)
Decorator for concrete backup driver implementations.

fczmdriver(cls)
Decorator for concrete fibre channel zone manager drivers.

volumedriver(cls)
Decorator for concrete volume driver implementations.

974 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.keymgr package

Submodules

cinder.keymgr.conf_key_mgr module

An implementation of a key manager that reads its key from the projects configuration options.

This key manager implementation provides limited security, assuming that the key remains secret. Using
the volume encryption feature as an example, encryption provides protection against a lost or stolen
disk, assuming that the configuration file that contains the key is not stored on the disk. Encryption also
protects the confidentiality of data as it is transmitted via iSCSI from the compute host to the storage host
(again assuming that an attacker who intercepts the data does not know the secret key).

Because this implementation uses a single, fixed key, it proffers no protection once that key is compro-
mised. In particular, different volumes encrypted with a key provided by this key manager actually share
the same encryption key so any volume can be decrypted once the fixed key is known.

class ConfKeyManager(configuration)
Bases: castellan.key_manager.key_manager.KeyManager

Key Manager that supports one key defined by the fixed_key conf option.

This key manager implementation supports all the methods specified by the key manager interface.
This implementation creates a single key in response to all invocations of create_key. Side effects
(e.g., raising exceptions) for each method are handled as specified by the key manager interface.

create_key(context, **kwargs)
Creates a symmetric key.

This implementation returns a UUID for the key read from the configuration file. A NotAu-
thorized exception is raised if the specified context is None.

create_key_pair(context, **kwargs)
Creates an asymmetric key pair.

This method creates an asymmetric key pair and returns the pair of key UUIDs. If the speci-
fied context does not permit the creation of keys, then a NotAuthorized exception should be
raised. The order of the UUIDs will be (private, public).

delete(context, managed_object_id)
Represents deleting the key.

Because the ConfKeyManager has only one key, which is read from the configuration file,
the key is not actually deleted when this is called.

get(context, managed_object_id)
Retrieves the key identified by the specified id.

This implementation returns the key that is associated with the specified UUID. A NotAu-
thorized exception is raised if the specified context is None; a KeyError is raised if the UUID
is invalid.

list(context, object_type=None, metadata_only=False)
Retrieves a list of managed objects that match the criteria.

Note: Required abstract method starting with Castellan 0.13.0

4.1. Contributing to Cinder 975

Cinder Documentation, Release 20.3.2.dev3

Parameters

• context Contains information of the user and the environment for the re-
quest.

• object_type The type of object to retrieve.

• metadata_only Whether secret data should be included.

Raises NotAuthorized If no user context.

store(context, managed_object, **kwargs)
Stores (i.e., registers) a key with the key manager.

warning_logged = False

cinder.keymgr.migration module

class KeyMigrator(conf)
Bases: object

handle_key_migration(volumes, backups)

migrate_fixed_key(volumes=None, backups=None, conf=<oslo_config.cfg.ConfigOpts object>)

Module contents

cinder.message package

Submodules

cinder.message.api module

Handles all requests related to user facing messages.

class API
Bases: cinder.db.base.Base

API for handling user messages.

Cinder Messages describe the outcome of a user action using predefined fields that are members
of objects defined in the cinder.message.message_field package. They are intended to be exposed
to end users. Their primary purpose is to provide end users with a means of discovering what went
wrong when an asynchronous action in the Volume REST API (for which theyve already received
a 2xx response) fails.

Messages contain an expires_at field based on the creation time plus the value of the message_ttl
configuration option. They are periodically reaped by a task of the SchedulerManager class whose
periodicity is given by the message_reap_interval configuration option.

cleanup_expired_messages(context)

create(context, action, resource_type=’VOLUME’, resource_uuid=None, exception=None,
detail=None, level=’ERROR’)

Create a message record with the specified information.

976 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Parameters

• context current context object

• action a message_field.Action field describing what was taking place when
this message was created

• resource_type a message_field.Resource field describing the resource this
message applies to. Default is message_field.Resource.VOLUME

• resource_uuid the resource ID if this message applies to an existing re-
source. Default is None

• exception if an exception has occurred, you can pass it in and it
will be translated into an appropriate message detail ID (possibly mes-
sage_field.Detail.UNKNOWN_ERROR). The message in the exception it-
self is ignored in order not to expose sensitive information to end users. De-
fault is None

• detail a message_field.Detail field describing the event
the message is about. Default is None, in which case mes-
sage_field.Detail.UNKNOWN_ERROR will be used for the message unless
an exception in the message_field.EXCEPTION_DETAIL_MAPPINGS
is passed; in that case the message_field.Detail field thats mapped to the
exception is used.

• level a string describing the severity of the message. Suggested values are
INFO, ERROR, WARNING. Default is ERROR.

create_from_request_context(context, exception=None, detail=None, level=’ERROR’)
Create a message record with the specified information.

Parameters

• context current context object which we must have populated with the
message_action, message_resource_type and message_resource_id fields

• exception if an exception has occurred, you can pass it in and it
will be translated into an appropriate message detail ID (possibly mes-
sage_field.Detail.UNKNOWN_ERROR). The message in the exception it-
self is ignored in order not to expose sensitive information to end users. De-
fault is None

• detail a message_field.Detail field describing the event
the message is about. Default is None, in which case mes-
sage_field.Detail.UNKNOWN_ERROR will be used for the message unless
an exception in the message_field.EXCEPTION_DETAIL_MAPPINGS
is passed; in that case the message_field.Detail field thats mapped to the
exception is used.

• level a string describing the severity of the message. Suggested values are
INFO, ERROR, WARNING. Default is ERROR.

delete(context, id)
Delete message with the specified id.

get(context, id)
Return message with the specified id.

4.1. Contributing to Cinder 977

Cinder Documentation, Release 20.3.2.dev3

get_all(context, filters=None, marker=None, limit=None, offset=None, sort_keys=None,
sort_dirs=None)

Return all messages for the given context.

cinder.message.defined_messages module

Event ID and user visible message mapping.

Event IDs are used to look up the message to be displayed for an API Message object. All defined
messages should be appropriate for any API user to see and not contain any sensitive information. A
good rule-of-thumb is to be very general in error messages unless the issue is due to a bad user action,
then be specific.

class EventIds
Bases: object

ATTACH_READONLY_VOLUME = 'VOLUME_000003'

IMAGE_FROM_VOLUME_OVER_QUOTA = 'VOLUME_000004'

UNABLE_TO_ALLOCATE = 'VOLUME_000002'

UNKNOWN_ERROR = 'VOLUME_000001'

UNMANAGE_ENCRYPTED_VOLUME_UNSUPPORTED = 'VOLUME_000005'

get_message_text(event_id)

cinder.message.message_field module

Message Resource, Action, Detail and user visible message.

Use Resource, Action and Details combination to indicate the Event in the format of:

EVENT: VOLUME_RESOURCE_ACTION_DETAIL

Also, use exception-to-detail mapping to decrease the workload of classifying event in cinders task code.

class Action
Bases: object

ALL = (('001', 'schedule allocate volume'), ('002', 'attach volume'),
('003', 'copy volume to image'), ('004', 'update attachment'), ('005',
'copy image to volume'), ('006', 'unmanage volume'), ('007', 'extend
volume'), ('008', 'create volume from backend storage'), ('009', 'create
snapshot'), ('010', 'delete snapshot'), ('011', 'update snapshot'),
('012', 'update snapshot metadata'), ('013', 'create backup'), ('014',
'delete backup'), ('015', 'restore backup'))

ATTACH_VOLUME = ('002', 'attach volume')

BACKUP_CREATE = ('013', 'create backup')

BACKUP_DELETE = ('014', 'delete backup')

BACKUP_RESTORE = ('015', 'restore backup')

COPY_IMAGE_TO_VOLUME = ('005', 'copy image to volume')

978 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

COPY_VOLUME_TO_IMAGE = ('003', 'copy volume to image')

CREATE_VOLUME_FROM_BACKEND = ('008', 'create volume from backend storage')

EXTEND_VOLUME = ('007', 'extend volume')

SCHEDULE_ALLOCATE_VOLUME = ('001', 'schedule allocate volume')

SNAPSHOT_CREATE = ('009', 'create snapshot')

SNAPSHOT_DELETE = ('010', 'delete snapshot')

SNAPSHOT_METADATA_UPDATE = ('012', 'update snapshot metadata')

SNAPSHOT_UPDATE = ('011', 'update snapshot')

UNMANAGE_VOLUME = ('006', 'unmanage volume')

UPDATE_ATTACHMENT = ('004', 'update attachment')

class Detail
Bases: object

ALL = (('001', 'An unknown error occurred.'), ('002', 'Driver is not
initialized at present.'), ('003', 'Could not find any available weighted
backend.'), ('004', 'Failed to upload volume to image at backend.'),
('005', "Volume's attach mode is invalid."), ('006', 'Not enough quota
resource for operation.'), ('007', 'Image used for creating volume exceeds
available space.'), ('008', 'Unmanaging encrypted volumes is not
supported.'), ('009', 'Compute service failed to extend volume.'), ('010',
'Volume Driver failed to extend volume.'), ('011', 'Image signature
verification failed.'), ('012', 'Driver failed to create the volume.'),
('013', 'Snapshot failed to create.'), ('014', 'Volume snapshot update
metadata failed.'), ('015', 'Snapshot is busy.'), ('016', 'Snapshot failed
to delete.'), ('017', 'Backup status is invalid.'), ('018', 'Backup
service is down.'), ('019', 'Failed to get backup device from the volume
service.'), ('020', 'Backup driver failed to create backup.'), ('021',
'Failed to attach volume.'), ('022', 'Failed to detach volume.'), ('023',
'Cleanup of temporary volume/snapshot failed.'), ('024', 'Backup failed to
schedule. Service not found for creating backup.'), ('025', 'Backup driver
failed to delete backup.'), ('026', 'Backup driver failed to restore
backup.'), ('027', 'Volume status is invalid.'))

ATTACH_ERROR = ('021', 'Failed to attach volume.')

BACKUP_CREATE_CLEANUP_ERROR = ('023', 'Cleanup of temporary
volume/snapshot failed.')

BACKUP_CREATE_DEVICE_ERROR = ('019', 'Failed to get backup device from the
volume service.')

BACKUP_CREATE_DRIVER_ERROR = ('020', 'Backup driver failed to create
backup.')

BACKUP_DELETE_DRIVER_ERROR = ('025', 'Backup driver failed to delete
backup.')

BACKUP_INVALID_STATE = ('017', 'Backup status is invalid.')

BACKUP_RESTORE_ERROR = ('026', 'Backup driver failed to restore backup.')

4.1. Contributing to Cinder 979

Cinder Documentation, Release 20.3.2.dev3

BACKUP_SCHEDULE_ERROR = ('024', 'Backup failed to schedule. Service not
found for creating backup.')

BACKUP_SERVICE_DOWN = ('018', 'Backup service is down.')

DETACH_ERROR = ('022', 'Failed to detach volume.')

DRIVER_FAILED_CREATE = ('012', 'Driver failed to create the volume.')

DRIVER_FAILED_EXTEND = ('010', 'Volume Driver failed to extend volume.')

DRIVER_NOT_INITIALIZED = ('002', 'Driver is not initialized at present.')

EXCEPTION_DETAIL_MAPPINGS = {('002', 'Driver is not initialized at
present.'): ['DriverNotInitialized'], ('003', 'Could not find any
available weighted backend.'): ['NoValidBackend'], ('005', "Volume's
attach mode is invalid."): ['InvalidVolumeAttachMode'], ('006', 'Not
enough quota resource for operation.'): ['ImageLimitExceeded',
'BackupLimitExceeded', 'SnapshotLimitExceeded'], ('007', 'Image used for
creating volume exceeds available space.'): ['ImageTooBig'], ('015',
'Snapshot is busy.'): ['SnapshotIsBusy']}

FAILED_TO_UPLOAD_VOLUME = ('004', 'Failed to upload volume to image at
backend.')

NOTIFY_COMPUTE_SERVICE_FAILED = ('009', 'Compute service failed to extend
volume.')

NOT_ENOUGH_SPACE_FOR_IMAGE = ('007', 'Image used for creating volume
exceeds available space.')

NO_BACKEND_AVAILABLE = ('003', 'Could not find any available weighted
backend.')

QUOTA_EXCEED = ('006', 'Not enough quota resource for operation.')

SIGNATURE_VERIFICATION_FAILED = ('011', 'Image signature verification
failed.')

SNAPSHOT_CREATE_ERROR = ('013', 'Snapshot failed to create.')

SNAPSHOT_DELETE_ERROR = ('016', 'Snapshot failed to delete.')

SNAPSHOT_IS_BUSY = ('015', 'Snapshot is busy.')

SNAPSHOT_UPDATE_METADATA_FAILED = ('014', 'Volume snapshot update metadata
failed.')

UNKNOWN_ERROR = ('001', 'An unknown error occurred.')

UNMANAGE_ENC_NOT_SUPPORTED = ('008', 'Unmanaging encrypted volumes is not
supported.')

VOLUME_ATTACH_MODE_INVALID = ('005', "Volume's attach mode is invalid.")

VOLUME_INVALID_STATE = ('027', 'Volume status is invalid.')

class Resource
Bases: object

VOLUME = 'VOLUME'

VOLUME_BACKUP = 'VOLUME_BACKUP'

980 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

VOLUME_SNAPSHOT = 'VOLUME_SNAPSHOT'

translate_action(action_id)

translate_detail(detail_id)

translate_detail_id(exception, detail)
Get a detail_id to use for a message.

If exception is in the EXCEPTION_DETAIL_MAPPINGS, returns the detail_id of the mapped
Detail field. If exception is not in the mapping or is None, returns the detail_id of the passed-in
Detail field. Otherwise, returns the detail_id of Detail.UNKNOWN_ERROR.

Parameters

• exception an Exception (or None)

• detail a message_field.Detail field (or None)

Returns string

Returns the detail_id of a message_field.Detail field

Module contents

cinder.objects package

Submodules

cinder.objects.backup module

class Backup(*args, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.CinderComparableObject

OPTIONAL_FIELDS = ('metadata', 'parent')

VERSION = '1.7'

property availability_zone

property container

create()→ None

property created_at

property data_timestamp

static decode_record(backup_url)→ dict
Deserialize backup metadata from string into a dictionary.

Raises InvalidInput

property deleted

property deleted_at

destroy()→ None

4.1. Contributing to Cinder 981

Cinder Documentation, Release 20.3.2.dev3

property display_description

property display_name

encode_record(**kwargs)→ str
Serialize backup object, with optional extra info, into a string.

property encryption_key_id

property fail_reason

982 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

fields = {'availability_zone': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'container': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'data_timestamp': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'encryption_key_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'fail_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'host':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'metadata': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'num_dependent_backups': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'object_count': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'parent': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'parent_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'project_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'restore_volume_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'service': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'service_metadata': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'size':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'snapshot_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'status': BackupStatus(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=True,valid_values=('error',
'error_deleting', 'creating', 'available', 'deleting', 'deleted',
'restoring')), 'temp_snapshot_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'temp_volume_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'user_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'volume_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

4.1. Contributing to Cinder 983

Cinder Documentation, Release 20.3.2.dev3

property has_dependent_backups: bool

property host

property id

property is_incremental: bool

property metadata

model
alias of cinder.db.sqlalchemy.models.Backup

property name

property num_dependent_backups

obj_extra_fields = ['name', 'is_incremental', 'has_dependent_backups']

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

obj_reset_changes(fields=None)
Reset the list of fields that have been changed.

Parameters

• fields List of fields to reset, or all if None.

• recursive Call obj_reset_changes(recursive=True) on any sub-objects
within the list of fields being reset.

This is NOT revert to previous values.

Specifying fields on recursive resets will only be honored at the top level. Everything below
the top will reset all.

obj_what_changed()
Returns a set of fields that have been modified.

property object_count

property parent

property parent_id

property project_id

property restore_volume_id

save()→ None
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property service

property service_metadata

property size

984 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property snapshot_id

property status

property temp_snapshot_id

property temp_volume_id

property updated_at

property user_id

property volume_id

class BackupDeviceInfo(context=None, **kwargs)
Bases: cinder.objects.base.CinderObject, cinder.objects.base.
CinderObjectDictCompat, cinder.objects.base.CinderComparableObject

VERSION = '1.0'

property device_obj

fields = {'secure_enabled': Boolean(default=False,nullable=False),
'snapshot': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod from_primitive(primitive, context, expected_attrs=None)

property is_snapshot

obj_extra_fields = ['is_snapshot', 'device_obj']

property secure_enabled

property snapshot

to_primitive(context)

property volume

class BackupImport(*args, **kwargs)
Bases: cinder.objects.backup.Backup

Special object for Backup Imports.

This class should not be used for anything but Backup creation when importing backups to the DB.

On creation it allows to specify the ID for the backup, since its the reference used in parent_id it is
imperative that this is preserved.

Backup Import objects get promoted to standard Backups when the import is completed.

property availability_zone

property container

create()

property created_at

property data_timestamp

property deleted

4.1. Contributing to Cinder 985

Cinder Documentation, Release 20.3.2.dev3

property deleted_at

property display_description

property display_name

property encryption_key_id

property fail_reason

986 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

fields = {'availability_zone': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'container': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'data_timestamp': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'encryption_key_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'fail_reason': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'host':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'metadata': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'num_dependent_backups': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'object_count': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'parent': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'parent_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'project_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'restore_volume_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'service': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'service_metadata': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'size':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'snapshot_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'status': BackupStatus(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=True,valid_values=('error',
'error_deleting', 'creating', 'available', 'deleting', 'deleted',
'restoring')), 'temp_snapshot_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'temp_volume_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'user_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'volume_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

4.1. Contributing to Cinder 987

Cinder Documentation, Release 20.3.2.dev3

property host

property id

property metadata

model
alias of cinder.db.sqlalchemy.models.Backup

property num_dependent_backups

property object_count

property parent

property parent_id

property project_id

property restore_volume_id

property service

property service_metadata

property size

property snapshot_id

property status

property temp_snapshot_id

property temp_volume_id

property updated_at

property user_id

property volume_id

class BackupList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context: cinder.context.RequestContext, filters=None, marker=None,
limit=None, offset=None, sort_keys=None, sort_dirs=None)→
cinder.objects.backup.BackupList

classmethod get_all_active_by_window(context, begin, end)

classmethod get_all_by_host(context: cinder.context.RequestContext, host: str)→
cinder.objects.backup.BackupList

classmethod get_all_by_project(context, project_id, filters=None, marker=None,
limit=None, offset=None, sort_keys=None,
sort_dirs=None)

classmethod get_all_by_volume(context: cinder.context.RequestContext, volume_id: str,
vol_project_id: str, filters=None)→
cinder.objects.backup.BackupList

988 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property objects

cinder.objects.base module

Cinder common internal object model

class CinderComparableObject
Bases: oslo_versionedobjects.base.ComparableVersionedObject

class CinderObject(context=None, **kwargs)
Bases: oslo_versionedobjects.base.VersionedObject

OBJ_PROJECT_NAMESPACE = 'cinder'

cinder_obj_get_changes()
Returns a dict of changed fields with tz unaware datetimes.

Any timezone aware datetime field will be converted to UTC timezone and returned as time-
zone unaware datetime.

This will allow us to pass these fields directly to a db update method as they cant have time-
zone information.

obj_make_compatible(primitive, target_version)
Make an object representation compatible with a target version.

This is responsible for taking the primitive representation of an object and making it suit-
able for the given target_version. This may mean converting the format of object attributes,
removing attributes that have been added since the target version, etc. In general:

• If a new version of an object adds a field, this routine should remove it for older versions.

• If a new version changed or restricted the format of a field, this should convert it back to
something a client knowing only of the older version will tolerate.

• If an object that this object depends on is bumped, then this object should also take a
version bump. Then, this routine should backlevel the dependent object (by calling its
obj_make_compatible()) if the requested version of this object is older than the version
where the new dependent object was added.

Parameters

• primitive The result of obj_to_primitive()

• target_version The version string requested by the recipient of the object

Raises oslo_versionedobjects.exception.UnsupportedObjectError if
conversion is not possible for some reason

class CinderObjectDictCompat
Bases: oslo_versionedobjects.base.VersionedObjectDictCompat

Mix-in to provide dictionary key access compat.

If an object needs to support attribute access using dictionary items instead of object attributes,
inherit from this class. This should only be used as a temporary measure until all callers are
converted to use modern attribute access.

NOTE(berrange) This class will eventually be deleted.

4.1. Contributing to Cinder 989

Cinder Documentation, Release 20.3.2.dev3

get(key, value=<class ’oslo_versionedobjects.base._NotSpecifiedSentinel’>)
For backwards-compatibility with dict-based objects.

NOTE(danms): May be removed in the future.

class CinderObjectRegistry(*args, **kwargs)
Bases: oslo_versionedobjects.base.VersionedObjectRegistry

registration_hook(cls, index)
Hook called when registering a class.

This method takes care of adding the class to cinder.objects namespace.

Should registering class have a method called cinder_ovo_cls_init it will be called to support
class initialization. This is convenient for all persistent classes that need to register their
models.

class CinderObjectSerializer(version_cap=None)
Bases: oslo_versionedobjects.base.VersionedObjectSerializer

OBJ_BASE_CLASS
alias of cinder.objects.base.CinderObject

serialize_entity(context, entity)
Serialize something to primitive form.

Parameters

• ctxt Request context, in deserialized form

• entity Entity to be serialized

Returns Serialized form of entity

class CinderObjectVersionsHistory
Bases: dict

Helper class that maintains objects version history.

Current state of object versions is aggregated in a single version number that explicitly identifies a
set of object versions. That way a service is able to report what objects it supports using a single
string and all the newer services will know exactly what that mean for a single object.

add(ver, updates)

get_current()

get_current_versions()

class CinderPersistentObject
Bases: object

Mixin class for Persistent objects.

This adds the fields that we use in common for all persistent objects.

class Case(whens, value=None, else_=None)
Bases: object

Class for conditional value selection for conditional_update.

class Not(value, field=None, auto_none=True)
Bases: cinder.db.api.Condition

990 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Class for negated condition values for conditional_update.

By default NULL values will be treated like Python treats None instead of how SQL treats it.

So for example when values are (1, 2) it will evaluate to True when we have value 3 or NULL,
instead of only with 3 like SQL does.

get_filter(model, field=None)

OPTIONAL_FIELDS = []

as_read_deleted(mode=’yes’)
Context manager to make OVO with modified read deleted context.

This temporarily modifies the context embedded in an object to have a different read_deleted
parameter.

Parameter mode accepts most of the same parameters as our model_query DB method. We
support yes, no, and only.

usage:

with obj.as_read_deleted(): obj.refresh()

if obj.status = deleted:

classmethod cinder_ovo_cls_init()
This method is called on OVO registration and sets the DB model.

conditional_update(values, expected_values=None, filters=(), save_all=False,
session=None, reflect_changes=True, order=None)

Compare-and-swap update.

A conditional object update that, unlike normal update, will SAVE the contents of the update
to the DB.

Update will only occur in the DB and the object if conditions are met.

If no expected_values are passed in we will default to make sure that all fields have not been
changed in the DB. Since we cannot know the original value in the DB for dirty fields in the
object those will be excluded.

We have 4 different condition types we can use in expected_values:

• Equality: {status: available}

• Inequality: {status: vol_obj.Not(deleting)}

• In range: {status: [available, error]

• Not in range: {status: vol_obj.Not([in-use, attaching])

Method accepts additional filters, which are basically anything that can be passed to a
sqlalchemy querys filter method, for example:

[~sql.exists().where(models.Volume.id == models.Snapshot.volume_id)]

We can select values based on conditions using Case objects in the values argument. For
example:

4.1. Contributing to Cinder 991

Cinder Documentation, Release 20.3.2.dev3

has_snapshot_filter = sql.exists().where(
models.Snapshot.volume_id == models.Volume.id)

case_values = volume.Case([(has_snapshot_filter, 'has-snapshot')],
else_='no-snapshot')

volume.conditional_update({'status': case_values},
{'status': 'available'}))

And we can use DB fields using model class attribute for example to store previous status in
the corresponding field even though we dont know which value is in the db from those we
allowed:

volume.conditional_update({'status': 'deleting',
'previous_status': volume.model.status},

{'status': ('available', 'error')})

Parameters

• values Dictionary of key-values to update in the DB.

• expected_values Dictionary of conditions that must be met for the update
to be executed.

• filters Iterable with additional filters

• save_all Object may have changes that are not in the DB, this will say
whether we want those changes saved as well.

• session Session to use for the update

• reflect_changes If we want changes made in the database to be reflected
in the versioned object. This may mean in some cases that we have to reload
the object from the database.

• order Specific order of fields in which to update the values

Returns Boolean indicating whether db rows were updated. It will be False if we
couldnt update the DB and True if we could.

classmethod exists(context, id_)

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_by_id(context, id, *args, **kwargs)

obj_as_admin()
Context manager to make an object call as an admin.

This temporarily modifies the context embedded in an object to be elevated() and restores it
after the call completes. Example usage:

with obj.obj_as_admin(): obj.save()

992 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

refresh()

update_single_status_where(new_status, expected_status, filters=())

class ClusteredObject
Bases: object

assert_not_frozen()

property is_clustered

property resource_backend

property service_topic_queue

class ObjectListBase(*args, **kwargs)
Bases: oslo_versionedobjects.base.ObjectListBase

obj_make_compatible(primitive, target_version)

cinder.objects.cgsnapshot module

class CGSnapshot(context=None, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.ClusteredObject

OPTIONAL_FIELDS = ['consistencygroup', 'snapshots']

VERSION = '1.1'

property cluster_name

property consistencygroup

property consistencygroup_id

create()

property created_at

property deleted

property deleted_at

property description

destroy()

4.1. Contributing to Cinder 993

Cinder Documentation, Release 20.3.2.dev3

fields = {'consistencygroup': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'consistencygroup_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'project_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'snapshots': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'status': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'user_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

from_group_snapshot(group_snapshot)
Convert a generic volume group object to a cg object.

property host

property id

model
alias of cinder.db.sqlalchemy.models.CGSnapshot

property name

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

property project_id

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property snapshots

property status

property updated_at

994 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property user_id

class CGSnapshotList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, filters=None)

classmethod get_all_by_group(context, group_id, filters=None)

classmethod get_all_by_project(context, project_id, filters=None)

property objects

cinder.objects.cleanable module

class CinderCleanableObject
Bases: cinder.objects.base.CinderPersistentObject

Base class for cleanable OVO resources.

All cleanable objects must have a host property/attribute.

classmethod cinder_ovo_cls_init()
Called on OVO registration, sets set of cleanable resources.

cleanable_resource_types = {'Snapshot', 'Volume'}

create_worker(pinned=True)
Create a worker entry at the API.

static decorate(func, caller, extras=(), kwsyntax=False)
Decorates a function/generator/coroutine using a caller. If kwsyntax is True calling the deco-
rated functions with keyword syntax will pass the named arguments inside the kw dictionary,
even if such argument are positional, similarly to what functools.wraps does. By default
kwsyntax is False and the the arguments are untouched.

classmethod get_pinned_version()

classmethod get_rpc_api()

is_cleanable(pinned=False)
Check if cleanable VO status is cleanable.

Parameters pinned (bool) If we should check against pinned version or current
version.

Returns Whether this needs a workers DB entry or not

refresh()

set_worker()

static set_workers(*decorator_args)
Decorator that adds worker DB rows for cleanable versioned objects.

4.1. Contributing to Cinder 995

Cinder Documentation, Release 20.3.2.dev3

By default will take care of all cleanable objects, but we can limit which objects we want by
passing the name of the arguments we want to be added.

unset_worker()

worker = None

cinder.objects.cleanup_request module

class CleanupRequest(context=None, **kwargs)
Bases: cinder.objects.base.CinderObject, cinder.objects.base.ClusteredObject

Versioned Object to send cleanup requests.

VERSION = '1.0'

property binary

property cluster_name

property disabled

fields = {'binary': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cluster_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'disabled': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'host':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'is_up': Boolean(default=False,nullable=True), 'resource_id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_type': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'service_id': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'until': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property host

property is_up

property resource_id

property resource_type

property service_id

property until

996 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.objects.cluster module

class Cluster(context=None, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderComparableObject

Cluster Versioned Object.

Method get_by_id supports as additional named arguments:

• get_services: If we want to load all services from this cluster.

• services_summary: If we want to load num_nodes and num_down_nodes fields.

• is_up: Boolean value to filter based on the clusters up status.

• read_deleted: Filtering based on delete status. Default value no.

• Any other cluster field will be used as a filter.

OPTIONAL_FIELDS = ('num_hosts', 'num_down_hosts', 'services')

VERSION = '1.1'

property active_backend_id

property binary

create()

property created_at

property deleted

property deleted_at

destroy()

property disabled

property disabled_reason

4.1. Contributing to Cinder 997

Cinder Documentation, Release 20.3.2.dev3

fields = {'active_backend_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'binary': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'disabled': Boolean(default=False,nullable=True), 'disabled_reason':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'frozen': Boolean(default=False,nullable=False), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'last_heartbeat': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'num_down_hosts': Integer(default=0,nullable=False), 'num_hosts':
Integer(default=0,nullable=False), 'replication_status':
ReplicationStatus(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=True,valid_values=('error', 'enabled',
'disabled', 'not-capable', 'failover-error', 'failing-over',
'failed-over', 'enabling', 'disabling')), 'services':
Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property frozen

property id

property is_up

property last_heartbeat

model
alias of cinder.db.sqlalchemy.models.Cluster

property name

property num_down_hosts

property num_hosts

obj_load_attr(attrname)
Lazy load services attribute.

property replication_status

reset_service_replication()
Reset service replication flags on promotion.

When an admin promotes a cluster, each service member requires an update to maintain
database consistency.

998 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property services

property updated_at

class ClusterList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, is_up=None, get_services=False, services_summary=False,
read_deleted=’no’, **filters)

Get all clusters that match the criteria.

Parameters

• is_up Boolean value to filter based on the clusters up status.

• get_services If we want to load all services from this cluster.

• services_summary If we want to load num_nodes and num_down_nodes
fields.

• read_deleted Filtering based on delete status. Default value is no.

• filters Field based filters in the form of key/value.

property objects

cinder.objects.consistencygroup module

class ConsistencyGroup(context=None, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.ClusteredObject

OPTIONAL_FIELDS = ('cgsnapshots', 'volumes', 'cluster')

VERSION = '1.4'

property availability_zone

property cgsnapshot_id

property cgsnapshots

property cluster

property cluster_name

create(cg_snap_id=None, cg_id=None)
Create a consistency group.

4.1. Contributing to Cinder 999

Cinder Documentation, Release 20.3.2.dev3

If cg_snap_id or cg_id are specified then volume_type_id, availability_zone, and host will
be taken from the source Consistency Group.

property created_at

property deleted

property deleted_at

property description

destroy()

fields = {'availability_zone': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cgsnapshot_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cgsnapshots': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cluster': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cluster_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'host':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'project_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'source_cgid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'status': ConsistencyGroupStatus(default=<class 'oslo_versionedobjects.
fields.UnspecifiedDefault'>,nullable=True,valid_values=('error',
'available', 'creating', 'deleting', 'deleted', 'updating',
'error_deleting')), 'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'user_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'volume_type_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volumes': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

from_group(group)
Convert a generic volume group object to a cg object.

1000 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property host

property id

model
alias of cinder.db.sqlalchemy.models.ConsistencyGroup

property name

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

property project_id

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property source_cgid

property status

property updated_at

property user_id

property volume_type_id

property volumes

class ConsistencyGroupList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.1'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, filters=None, marker=None, limit=None, offset=None,
sort_keys=None, sort_dirs=None)

classmethod get_all_by_project(context, project_id, filters=None, marker=None,
limit=None, offset=None, sort_keys=None,
sort_dirs=None)

static include_in_cluster(context, cluster, partial_rename=True, **filters)
Include all consistency groups matching the filters into a cluster.

When partial_rename is set we will not set the cluster_name with cluster parameter value
directly, well replace provided cluster_name or host filter value with cluster instead.

This is useful when we want to replace just the cluster name but leave the backend and pool
information as it is. If we are using cluster_name to filter, well use that same DB field to
replace the cluster value and leave the rest as it is. Likewise if we use the host to filter.

Returns the number of consistency groups that have been changed.

property objects

4.1. Contributing to Cinder 1001

Cinder Documentation, Release 20.3.2.dev3

cinder.objects.dynamic_log module

class LogLevel(context=None, **kwargs)
Bases: cinder.objects.base.CinderObject

Versioned Object to send log change requests.

VERSION = '1.0'

fields = {'level': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'prefix': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property level

property prefix

class LogLevelList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property objects

cinder.objects.fields module

Custom fields for Cinder objects.

class BackupStatus
Bases: cinder.objects.fields.BaseCinderEnum

ALL = ('error', 'error_deleting', 'creating', 'available', 'deleting',
'deleted', 'restoring')

AVAILABLE = 'available'

CREATING = 'creating'

DELETED = 'deleted'

DELETING = 'deleting'

ERROR = 'error'

ERROR_DELETING = 'error_deleting'

RESTORING = 'restoring'

class BackupStatusField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.BackupStatus object>

class BaseCinderEnum
Bases: oslo_versionedobjects.fields.Enum

1002 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

class ConsistencyGroupStatus
Bases: cinder.objects.fields.BaseCinderEnum

ALL = ('error', 'available', 'creating', 'deleting', 'deleted',
'updating', 'error_deleting')

AVAILABLE = 'available'

CREATING = 'creating'

DELETED = 'deleted'

DELETING = 'deleting'

ERROR = 'error'

ERROR_DELETING = 'error_deleting'

UPDATING = 'updating'

class ConsistencyGroupStatusField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.ConsistencyGroupStatus object>

class DictOfNullableField(**kwargs)
Bases: oslo_versionedobjects.fields.AutoTypedField

AUTO_TYPE = <oslo_versionedobjects.fields.Dict object>

class GroupSnapshotStatus
Bases: cinder.objects.fields.BaseCinderEnum

ALL = ('error', 'available', 'creating', 'deleting', 'deleted',
'updating', 'error_deleting')

AVAILABLE = 'available'

CREATING = 'creating'

DELETED = 'deleted'

DELETING = 'deleting'

ERROR = 'error'

ERROR_DELETING = 'error_deleting'

UPDATING = 'updating'

class GroupSnapshotStatusField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.GroupSnapshotStatus object>

class GroupStatus
Bases: cinder.objects.fields.BaseCinderEnum

ALL = ('error', 'available', 'creating', 'deleting', 'deleted',
'updating', 'in-use', 'error_deleting')

AVAILABLE = 'available'

CREATING = 'creating'

4.1. Contributing to Cinder 1003

Cinder Documentation, Release 20.3.2.dev3

DELETED = 'deleted'

DELETING = 'deleting'

ERROR = 'error'

ERROR_DELETING = 'error_deleting'

IN_USE = 'in-use'

UPDATING = 'updating'

class GroupStatusField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.GroupStatus object>

class QoSConsumerField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.QoSConsumerValues object>

class QoSConsumerValues
Bases: cinder.objects.fields.BaseCinderEnum

ALL = ('back-end', 'front-end', 'both')

BACK_END = 'back-end'

BOTH = 'both'

FRONT_END = 'front-end'

class ReplicationStatus
Bases: cinder.objects.fields.BaseCinderEnum

ALL = ('error', 'enabled', 'disabled', 'not-capable', 'failover-error',
'failing-over', 'failed-over', 'enabling', 'disabling')

DISABLED = 'disabled'

DISABLING = 'disabling'

ENABLED = 'enabled'

ENABLING = 'enabling'

ERROR = 'error'

FAILED_OVER = 'failed-over'

FAILING_OVER = 'failing-over'

FAILOVER_ERROR = 'failover-error'

NOT_CAPABLE = 'not-capable'

class ReplicationStatusField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.ReplicationStatus object>

class SnapshotStatus
Bases: cinder.objects.fields.BaseCinderEnum

1004 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

ALL = ('error', 'available', 'creating', 'deleting', 'deleted',
'updating', 'error_deleting', 'unmanaging', 'backing-up', 'restoring')

AVAILABLE = 'available'

BACKING_UP = 'backing-up'

CREATING = 'creating'

DELETED = 'deleted'

DELETING = 'deleting'

ERROR = 'error'

ERROR_DELETING = 'error_deleting'

RESTORING = 'restoring'

UNMANAGING = 'unmanaging'

UPDATING = 'updating'

class SnapshotStatusField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.SnapshotStatus object>

class VolumeAttachStatus
Bases: cinder.objects.fields.BaseCinderEnum

ALL = ('attached', 'attaching', 'detached', 'error_attaching',
'error_detaching', 'reserved', 'deleted')

ATTACHED = 'attached'

ATTACHING = 'attaching'

DELETED = 'deleted'

DETACHED = 'detached'

ERROR_ATTACHING = 'error_attaching'

ERROR_DETACHING = 'error_detaching'

RESERVED = 'reserved'

class VolumeAttachStatusField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.VolumeAttachStatus object>

class VolumeMigrationStatus
Bases: cinder.objects.fields.BaseCinderEnum

ALL = ('migrating', 'error', 'success', 'completing', 'none', 'starting')

COMPLETING = 'completing'

ERROR = 'error'

MIGRATING = 'migrating'

NONE = 'none'

4.1. Contributing to Cinder 1005

Cinder Documentation, Release 20.3.2.dev3

STARTING = 'starting'

SUCCESS = 'success'

class VolumeMigrationStatusField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.VolumeStatus object>

class VolumeStatus
Bases: cinder.objects.fields.BaseCinderEnum

ALL = ('creating', 'available', 'deleting', 'error', 'error_deleting',
'error_managing', 'managing', 'attaching', 'in-use', 'detaching',
'maintenance', 'restoring-backup', 'error_restoring', 'reserved',
'awaiting-transfer', 'backing-up', 'error_backing-up', 'error_extending',
'downloading', 'uploading', 'retyping', 'extending')

ATTACHING = 'attaching'

AVAILABLE = 'available'

AWAITING_TRANSFER = 'awaiting-transfer'

BACKING_UP = 'backing-up'

CREATING = 'creating'

DELETING = 'deleting'

DETACHING = 'detaching'

DOWNLOADING = 'downloading'

ERROR = 'error'

ERROR_BACKING_UP = 'error_backing-up'

ERROR_DELETING = 'error_deleting'

ERROR_EXTENDING = 'error_extending'

ERROR_MANAGING = 'error_managing'

ERROR_RESTORING = 'error_restoring'

EXTENDING = 'extending'

IN_USE = 'in-use'

MAINTENANCE = 'maintenance'

MANAGING = 'managing'

RESERVED = 'reserved'

RESTORING_BACKUP = 'restoring-backup'

RETYPING = 'retyping'

UPLOADING = 'uploading'

class VolumeStatusField(**kwargs)
Bases: oslo_versionedobjects.fields.BaseEnumField

AUTO_TYPE = <cinder.objects.fields.VolumeStatus object>

1006 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.objects.group module

class Group(context=None, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.ClusteredObject

OPTIONAL_FIELDS = ['volumes', 'volume_types', 'group_snapshots']

VERSION = '1.2'

property availability_zone

property cluster_name

create(group_snapshot_id=None, source_group_id=None)

property created_at

property deleted

property deleted_at

property description

destroy()

4.1. Contributing to Cinder 1007

Cinder Documentation, Release 20.3.2.dev3

fields = {'availability_zone': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cluster_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_snapshot_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_snapshots': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_type_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'host': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'project_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'replication_status': ReplicationStatus(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True,
valid_values=('error', 'enabled', 'disabled', 'not-capable',
'failover-error', 'failing-over', 'failed-over', 'enabling',
'disabling')), 'source_group_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'status': GroupStatus(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=True,valid_values=('error', 'available',
'creating', 'deleting', 'deleted', 'updating', 'in-use',
'error_deleting')), 'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'user_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'volume_type_ids': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_types': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volumes': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property group_snapshot_id

property group_snapshots

property group_type_id

property host

property id

1008 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property is_replicated

model
alias of cinder.db.sqlalchemy.models.Group

property name

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

property project_id

property replication_status

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property source_group_id

property status

property updated_at

property user_id

property volume_type_ids

property volume_types

property volumes

class GroupList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, filters=None, marker=None, limit=None, offset=None,
sort_keys=None, sort_dirs=None)

classmethod get_all_by_project(context, project_id, filters=None, marker=None,
limit=None, offset=None, sort_keys=None,
sort_dirs=None)

classmethod get_all_replicated(context, filters=None, marker=None, limit=None,
offset=None, sort_keys=None, sort_dirs=None)

static include_in_cluster(context, cluster, partial_rename=True, **filters)
Include all generic groups matching the filters into a cluster.

When partial_rename is set we will not set the cluster_name with cluster parameter value
directly, well replace provided cluster_name or host filter value with cluster instead.

4.1. Contributing to Cinder 1009

Cinder Documentation, Release 20.3.2.dev3

This is useful when we want to replace just the cluster name but leave the backend and pool
information as it is. If we are using cluster_name to filter, well use that same DB field to
replace the cluster value and leave the rest as it is. Likewise if we use the host to filter.

Returns the number of generic groups that have been changed.

property objects

cinder.objects.group_snapshot module

class GroupSnapshot(context=None, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.ClusteredObject

OPTIONAL_FIELDS = ['group', 'snapshots']

VERSION = '1.0'

property cluster_name

create()

property created_at

property deleted

property deleted_at

property description

destroy()

1010 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'group_type_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'project_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'snapshots': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'status': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'user_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property group

property group_id

property group_type_id

property host

property id

model
alias of cinder.db.sqlalchemy.models.GroupSnapshot

property name

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

property project_id

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property snapshots

4.1. Contributing to Cinder 1011

Cinder Documentation, Release 20.3.2.dev3

property status

property updated_at

property user_id

class GroupSnapshotList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, filters=None, marker=None, limit=None, offset=None,
sort_keys=None, sort_dirs=None)

classmethod get_all_by_group(context, group_id, filters=None, marker=None,
limit=None, offset=None, sort_keys=None,
sort_dirs=None)

classmethod get_all_by_project(context, project_id, filters=None, marker=None,
limit=None, offset=None, sort_keys=None,
sort_dirs=None)

property objects

cinder.objects.group_type module

class GroupType(context=None, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.CinderComparableObject

OPTIONAL_FIELDS = ['group_specs', 'projects']

VERSION = '1.0'

create()

property created_at

property deleted

property deleted_at

property description

destroy()

1012 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_specs': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'is_public': Boolean(default=True,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'projects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property group_specs

property id

property is_public

model
alias of cinder.db.sqlalchemy.models.GroupType

property name

property projects

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property updated_at

class GroupTypeList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, inactive=0, filters=None, marker=None, limit=None,
sort_keys=None, sort_dirs=None, offset=None)

property objects

4.1. Contributing to Cinder 1013

Cinder Documentation, Release 20.3.2.dev3

cinder.objects.manageableresources module

class ManageableObject
Bases: object

fields = {'cinder_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra_info': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'reason_not_safe': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'reference': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'safe_to_manage': Boolean(default=False,nullable=True), 'size':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod from_primitives(context, dict_resource)

class ManageableSnapshot(context=None, **kwargs)
Bases: cinder.objects.base.CinderObject, cinder.objects.base.
CinderObjectDictCompat, cinder.objects.manageableresources.ManageableObject

VERSION = '1.0'

property cinder_id

property extra_info

fields = {'cinder_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra_info': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'reason_not_safe': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'reference': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'safe_to_manage': Boolean(default=False,nullable=True), 'size':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'source_reference': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property reason_not_safe

property reference

property safe_to_manage

property size

property source_reference

class ManageableSnapshotList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

1014 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod from_primitives(context, data)

property objects

class ManageableVolume(context=None, **kwargs)
Bases: cinder.objects.base.CinderObject, cinder.objects.base.
CinderObjectDictCompat, cinder.objects.base.CinderComparableObject, cinder.
objects.manageableresources.ManageableObject

VERSION = '1.0'

property cinder_id

property extra_info

fields = {'cinder_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra_info': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'reason_not_safe': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'reference': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'safe_to_manage': Boolean(default=False,nullable=True), 'size':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property reason_not_safe

property reference

property safe_to_manage

property size

class ManageableVolumeList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod from_primitives(context, data)

property objects

4.1. Contributing to Cinder 1015

Cinder Documentation, Release 20.3.2.dev3

cinder.objects.qos_specs module

class QualityOfServiceSpecs(*args, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.CinderComparableObject

OPTIONAL_FIELDS = ['volume_types']

VERSION = '1.0'

property consumer

create()

property created_at

property deleted

property deleted_at

destroy(force=False)
Deletes the QoS spec.

Parameters force when force is True, all volume_type mappings for this QoS are
deleted. When force is False and volume_type mappings still exist, a QoSSpec-
sInUse exception is thrown

fields = {'consumer': QoSConsumerValues(default=back-end,nullable=False,
valid_values=('back-end', 'front-end', 'both')), 'created_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'specs': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_types': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property id

model
alias of cinder.db.sqlalchemy.models.QualityOfServiceSpecs

property name

obj_get_changes()
Returns a dict of changed fields and their new values.

obj_load_attr(attrname)
Load an additional attribute from the real object.

1016 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

obj_reset_changes(fields=None, recursive=False)
Reset the list of fields that have been changed.

Parameters

• fields List of fields to reset, or all if None.

• recursive Call obj_reset_changes(recursive=True) on any sub-objects
within the list of fields being reset.

This is NOT revert to previous values.

Specifying fields on recursive resets will only be honored at the top level. Everything below
the top will reset all.

obj_what_changed()
Returns a set of fields that have been modified.

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property specs

property updated_at

property volume_types

class QualityOfServiceSpecsList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, *args, **kwargs)

property objects

cinder.objects.request_spec module

class RequestSpec(context=None, **kwargs)
Bases: cinder.objects.base.CinderObject, cinder.objects.base.
CinderObjectDictCompat, cinder.objects.base.CinderComparableObject

property CG_backend

VERSION = '1.5'

property availability_zones

property backup_id

property cgsnapshot_id

property consistencygroup_id

4.1. Contributing to Cinder 1017

Cinder Documentation, Release 20.3.2.dev3

fields = {'CG_backend': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'availability_zones': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'backup_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cgsnapshot_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'consistencygroup_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_backend': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'image_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'operation': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'resource_backend': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'snapshot_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'source_replicaid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'source_volid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_properties': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod from_primitives(spec)
Returns RequestSpec object creating it from legacy dictionary.

FIXME(dulek): This should go away in early O as we stop supporting backward compatibility
with M.

property group_backend

property group_id

property image_id

obj_extra_fields = ['resource_properties']

property operation

property resource_backend

property resource_properties

property snapshot_id

1018 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property source_replicaid

property source_volid

property volume

property volume_id

property volume_properties

property volume_type

class VolumeProperties(context=None, **kwargs)
Bases: cinder.objects.base.CinderObject, cinder.objects.base.
CinderObjectDictCompat

VERSION = '1.1'

property attach_status

property availability_zone

property cgsnapshot_id

property consistencygroup_id

property display_description

property display_name

property encryption_key_id

4.1. Contributing to Cinder 1019

Cinder Documentation, Release 20.3.2.dev3

fields = {'attach_status': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'availability_zone': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cgsnapshot_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'consistencygroup_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'encryption_key_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_type_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'metadata': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'multiattach': Boolean(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'project_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'qos_specs': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'replication_status': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'reservations': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'size':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'snapshot_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'source_replicaid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'source_volid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'status': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'user_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_type_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property group_id

property group_type_id

property metadata

property multiattach

property project_id

1020 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property qos_specs

property replication_status

property reservations

property size

property snapshot_id

property source_replicaid

property source_volid

property status

property user_id

property volume_type_id

cinder.objects.service module

class Service(context=None, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.CinderComparableObject, cinder.objects.base.ClusteredObject

OPTIONAL_FIELDS = ('cluster',)

VERSION = '1.6'

property active_backend_id

property availability_zone

property binary

property cluster

property cluster_name

create()

property created_at

property deleted

property deleted_at

destroy()

property disabled

property disabled_reason

4.1. Contributing to Cinder 1021

Cinder Documentation, Release 20.3.2.dev3

fields = {'active_backend_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'availability_zone': String(default=cinder,nullable=True), 'binary':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cluster': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cluster_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'disabled': Boolean(default=False,nullable=True), 'disabled_reason':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'frozen': Boolean(default=False,nullable=False), 'host':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'modified_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'object_current_version': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'replication_status': ReplicationStatus(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True,
valid_values=('error', 'enabled', 'disabled', 'not-capable',
'failover-error', 'failing-over', 'failed-over', 'enabling',
'disabling')), 'report_count': Integer(default=0,nullable=False),
'rpc_current_version': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'topic': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property frozen

classmethod get_by_args(context, host, binary_key)

classmethod get_by_host_and_topic(context, host, topic, disabled=False)

classmethod get_by_uuid(context, service_uuid)

classmethod get_minimum_obj_version(context, binary=None)

classmethod get_minimum_rpc_version(context, binary)

property host

property id

1022 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property is_up
Check whether a service is up based on last heartbeat.

model
alias of cinder.db.sqlalchemy.models.Service

property modified_at

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

property object_current_version

property replication_status

property report_count

property rpc_current_version

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property topic

property updated_at

property uuid

class ServiceList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.1'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, filters=None)

classmethod get_all_by_binary(context, binary, disabled=None)

classmethod get_all_by_topic(context, topic, disabled=None)

property objects

cinder.objects.snapshot module

class Snapshot(*args, **kwargs)
Bases: cinder.objects.cleanable.CinderCleanableObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.CinderComparableObject, cinder.objects.base.ClusteredObject

OPTIONAL_FIELDS = ('volume', 'metadata', 'cgsnapshot', 'group_snapshot')

VERSION = '1.6'

property cgsnapshot

4.1. Contributing to Cinder 1023

Cinder Documentation, Release 20.3.2.dev3

property cgsnapshot_id

property cluster_name

create()

property created_at

delete_metadata_key(context, key)

property deleted

property deleted_at

destroy()

property display_description

property display_name

property encryption_key_id

1024 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

fields = {'cgsnapshot': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cgsnapshot_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'encryption_key_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_snapshot': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_snapshot_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'metadata': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'progress': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'project_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provider_auth': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provider_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provider_location': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'status': SnapshotStatus(default=<class 'oslo_versionedobjects.fields.
UnspecifiedDefault'>,nullable=True,valid_values=('error', 'available',
'creating', 'deleting', 'deleted', 'updating', 'error_deleting',
'unmanaging', 'backing-up', 'restoring')), 'updated_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'use_quota': Boolean(default=True,nullable=True), 'user_id':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_size': Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_type_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

property group_snapshot

4.1. Contributing to Cinder 1025

Cinder Documentation, Release 20.3.2.dev3

property group_snapshot_id

property host
All cleanable VO must have a host property/attribute.

property id

property metadata

model
alias of cinder.db.sqlalchemy.models.Snapshot

property name

obj_extra_fields = ['name', 'volume_name']

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

obj_make_compatible(primitive, target_version)
Make a Snapshot representation compatible with a target version.

obj_reset_changes(fields=None)
Reset the list of fields that have been changed.

Parameters

• fields List of fields to reset, or all if None.

• recursive Call obj_reset_changes(recursive=True) on any sub-objects
within the list of fields being reset.

This is NOT revert to previous values.

Specifying fields on recursive resets will only be honored at the top level. Everything below
the top will reset all.

obj_what_changed()
Returns a set of fields that have been modified.

property progress

property project_id

property provider_auth

property provider_id

property provider_location

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

classmethod snapshot_data_get_for_project(context, project_id,
volume_type_id=None, host=None)

property status

1026 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property updated_at

property use_quota

property user_id

property volume

property volume_id

property volume_name

property volume_size

property volume_type_id

class SnapshotList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.0'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, filters, marker=None, limit=None, sort_keys=None,
sort_dirs=None, offset=None)

Get all snapshot given some search_opts (filters).

Special filters accepted are host and cluster_name, that refer to the volumes fields.

classmethod get_all_active_by_window(context, begin, end)

classmethod get_all_by_project(context, project_id, search_opts, marker=None,
limit=None, sort_keys=None, sort_dirs=None,
offset=None)

classmethod get_all_for_cgsnapshot(context, cgsnapshot_id)

classmethod get_all_for_group_snapshot(context, group_snapshot_id)

classmethod get_all_for_volume(context, volume_id)

classmethod get_by_host(context, host, filters=None)

classmethod get_snapshot_summary(context, project_only, filters=None)

property objects

cinder.objects.volume module

class MetadataObject(key=None, value=None)
Bases: dict

class Volume(*args, **kwargs)
Bases: cinder.objects.cleanable.CinderCleanableObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.CinderComparableObject, cinder.objects.base.ClusteredObject

OPTIONAL_FIELDS = ('metadata', 'admin_metadata', 'glance_metadata',
'volume_type', 'volume_attachment', 'consistencygroup', 'snapshots',
'cluster', 'group')

4.1. Contributing to Cinder 1027

Cinder Documentation, Release 20.3.2.dev3

VERSION = '1.9'

property admin_metadata

admin_metadata_update(metadata, delete, add=True, update=True)

property attach_status

property availability_zone

begin_attach(attach_mode)

property bootable

property cluster

property cluster_name

property consistencygroup

property consistencygroup_id

create()

property created_at

delete_metadata_key(key)

property deleted

property deleted_at

destroy()

property display_description

property display_name

property ec2_id

property encryption_key_id

1028 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

fields = {'_name_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'admin_metadata': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'attach_status': VolumeAttachStatus(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True,
valid_values=('attached', 'attaching', 'detached', 'error_attaching',
'error_detaching', 'reserved', 'deleted')), 'availability_zone':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'bootable': Boolean(default=False,nullable=True), 'cluster':
Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'cluster_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'consistencygroup': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'consistencygroup_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'display_name': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'ec2_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'encryption_key_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'glance_metadata': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'group_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'host':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'launched_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'metadata': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'migration_status': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'multiattach': Boolean(default=False,nullable=True), 'previous_status':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'project_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provider_auth': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provider_geometry': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provider_id': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'provider_location': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'replication_driver_data': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'replication_extended_status': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'replication_status': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'scheduled_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'service_uuid': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'shared_targets': Boolean(default=True,nullable=True), 'size':
Integer(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'snapshot_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'snapshots': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'source_volid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'status': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'terminated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'use_quota': Boolean(default=True,nullable=True), 'user_id':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_attachment': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_type': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume_type_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

4.1. Contributing to Cinder 1029

Cinder Documentation, Release 20.3.2.dev3

finish_detach(attachment_id)

finish_volume_migration(dest_volume)

get_latest_snapshot()
Get volumes latest snapshot

property glance_metadata

property group

property group_id

property host

property id

is_migration_target()

is_multiattach()

is_replicated()

property launched_at

property metadata

property migration_status

model
alias of cinder.db.sqlalchemy.models.Volume

property multiattach

property name

property name_id

obj_extra_fields = ['name', 'name_id', 'volume_metadata',
'volume_admin_metadata', 'volume_glance_metadata']

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

obj_make_compatible(primitive, target_version)
Make a Volume representation compatible with a target version.

obj_reset_changes(fields=None)
Reset the list of fields that have been changed.

Parameters

• fields List of fields to reset, or all if None.

• recursive Call obj_reset_changes(recursive=True) on any sub-objects
within the list of fields being reset.

This is NOT revert to previous values.

Specifying fields on recursive resets will only be honored at the top level. Everything below
the top will reset all.

1030 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

obj_what_changed()
Returns a set of fields that have been modified.

populate_consistencygroup()
Populate CG fields based on group fields.

Method assumes that consistencygroup_id and consistencygroup fields have not already been
set.

This is a hack to support backward compatibility of consistencygroup, where we set the fields
but dont want to write them to the DB, so we mark them as not changed, so they wont be stored
on the next save().

property previous_status

property project_id

property provider_auth

property provider_geometry

property provider_id

property provider_location

property replication_driver_data

property replication_extended_status

property replication_status

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property scheduled_at

property service_uuid

property shared_targets

property size

property snapshot_id

property snapshots

property source_volid

property status

property terminated_at

property updated_at

property use_quota

property user_id

property volume_admin_metadata

property volume_attachment

property volume_glance_metadata

4.1. Contributing to Cinder 1031

Cinder Documentation, Release 20.3.2.dev3

property volume_metadata

property volume_type

property volume_type_id

class VolumeList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.1'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, marker=None, limit=None, sort_keys=None, sort_dirs=None,
filters=None, offset=None)

classmethod get_all_active_by_window(context, begin, end)

classmethod get_all_by_generic_group(context, group_id, filters=None)

classmethod get_all_by_group(context, group_id, filters=None)

classmethod get_all_by_host(context, host, filters=None)

classmethod get_all_by_project(context, project_id, marker=None, limit=None,
sort_keys=None, sort_dirs=None, filters=None,
offset=None)

classmethod get_volume_summary(context, project_only, filters=None)

static include_in_cluster(context, cluster, partial_rename=True, **filters)
Include all volumes matching the filters into a cluster.

When partial_rename is set we will not set the cluster_name with cluster parameter value
directly, well replace provided cluster_name or host filter value with cluster instead.

This is useful when we want to replace just the cluster name but leave the backend and pool
information as it is. If we are using cluster_name to filter, well use that same DB field to
replace the cluster value and leave the rest as it is. Likewise if we use the host to filter.

Returns the number of volumes that have been changed.

property objects

cinder.objects.volume_attachment module

class VolumeAttachment(context=None, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.CinderComparableObject

OPTIONAL_FIELDS = ['volume']

VERSION = '1.3'

property attach_mode

property attach_status

property attach_time

1032 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property attached_host

property connection_info

property connector

create()

property created_at

property deleted

property deleted_at

destroy()

property detach_time

fields = {'attach_mode': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'attach_status': VolumeAttachStatus(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True,
valid_values=('attached', 'attaching', 'detached', 'error_attaching',
'error_detaching', 'reserved', 'deleted')), 'attach_time':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'attached_host': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'connection_info': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'connector': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'detach_time': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'instance_uuid': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'mountpoint': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'volume': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'volume_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

finish_attach(instance_uuid, host_name, mount_point, attach_mode=’rw’)

property id

property instance_uuid

4.1. Contributing to Cinder 1033

Cinder Documentation, Release 20.3.2.dev3

model
alias of cinder.db.sqlalchemy.models.VolumeAttachment

property mountpoint

obj_extra_fields = ['project_id', 'volume_host']

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

property project_id

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property updated_at

property volume

property volume_host

property volume_id

class VolumeAttachmentList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.1'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, search_opts=None, marker=None, limit=None, offset=None,
sort_keys=None, sort_direction=None)

classmethod get_all_by_host(context, host, search_opts=None)

classmethod get_all_by_instance_uuid(context, instance_uuid, search_opts=None)

classmethod get_all_by_project(context, project_id, search_opts=None, marker=None,
limit=None, offset=None, sort_keys=None,
sort_direction=None)

classmethod get_all_by_volume_id(context, volume_id)

property objects

1034 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.objects.volume_type module

class VolumeType(context=None, **kwargs)
Bases: cinder.objects.base.CinderPersistentObject, cinder.objects.base.
CinderObject, cinder.objects.base.CinderObjectDictCompat, cinder.objects.
base.CinderComparableObject

OPTIONAL_FIELDS = ('extra_specs', 'projects', 'qos_specs')

VERSION = '1.3'

create()

property created_at

property deleted

property deleted_at

property description

destroy()

property extra_specs

fields = {'created_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'deleted': Boolean(default=False,nullable=True), 'deleted_at':
DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'description': String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'extra_specs': Dict(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id':
UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False),
'is_public': Boolean(default=True,nullable=True), 'name':
String(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'projects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'qos_specs': Object(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'qos_specs_id': UUID(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True),
'updated_at': DateTime(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_by_name_or_id(context, identity)

property id

is_multiattach()

property is_public

is_replicated()

4.1. Contributing to Cinder 1035

Cinder Documentation, Release 20.3.2.dev3

model
alias of cinder.db.sqlalchemy.models.VolumeType

property name

obj_load_attr(attrname)
Load an additional attribute from the real object.

This should load self.$attrname and cache any data that might be useful for future load oper-
ations.

property projects

property qos_specs

property qos_specs_id

save()
Save the changed fields back to the store.

This is optional for subclasses, but is presented here in the base class for consistency among
those that do.

property updated_at

class VolumeTypeList(*args, **kwargs)
Bases: cinder.objects.base.ObjectListBase, cinder.objects.base.CinderObject

VERSION = '1.1'

fields = {'objects': List(default=<class
'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context, inactive=0, filters=None, marker=None, limit=None,
sort_keys=None, sort_dirs=None, offset=None)

classmethod get_all_by_group(context, group_id)

classmethod get_all_types_for_qos(context, qos_id)

property objects

Module contents

register_all()

cinder.policies package

Submodules

cinder.policies.attachments module

list_rules()

1036 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.policies.backup_actions module

list_rules()

cinder.policies.backups module

list_rules()

cinder.policies.base module

class CinderDeprecatedRule(name: str, check_str: str, *, deprecated_reason: Optional[str] =
’Default policies now support the three Keystone default roles,
namely \’admin\’, \’member\’, and \’reader\’ to implement three
Cinder "personas". See "Policy Personas and Permissions" in the
"Cinder Service Configuration" documentation (Xena release) for
details.’, deprecated_since: Optional[str] = ’X’)

Bases: oslo_policy.policy.DeprecatedRule

A DeprecatedRule subclass with pre-defined fields.

list_rules()

cinder.policies.capabilities module

list_rules()

cinder.policies.clusters module

list_rules()

cinder.policies.default_types module

list_rules()

cinder.policies.group_actions module

list_rules()

4.1. Contributing to Cinder 1037

Cinder Documentation, Release 20.3.2.dev3

cinder.policies.group_snapshot_actions module

list_rules()

cinder.policies.group_snapshots module

list_rules()

cinder.policies.group_types module

list_rules()

cinder.policies.groups module

list_rules()

cinder.policies.hosts module

list_rules()

cinder.policies.limits module

list_rules()

cinder.policies.manageable_snapshots module

list_rules()

cinder.policies.manageable_volumes module

list_rules()

cinder.policies.messages module

list_rules()

1038 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.policies.qos_specs module

list_rules()

cinder.policies.quota_class module

list_rules()

cinder.policies.quotas module

list_rules()

cinder.policies.scheduler_stats module

list_rules()

cinder.policies.services module

list_rules()

cinder.policies.snapshot_actions module

list_rules()

cinder.policies.snapshot_metadata module

list_rules()

cinder.policies.snapshots module

list_rules()

cinder.policies.type_extra_specs module

list_rules()

4.1. Contributing to Cinder 1039

Cinder Documentation, Release 20.3.2.dev3

cinder.policies.volume_access module

list_rules()

cinder.policies.volume_actions module

list_rules()

cinder.policies.volume_metadata module

list_rules()

cinder.policies.volume_transfer module

list_rules()

cinder.policies.volume_type module

list_rules()

cinder.policies.volumes module

list_rules()

cinder.policies.workers module

list_rules()

Module contents

list_rules()

cinder.privsep package

Subpackages

cinder.privsep.targets package

Submodules

cinder.privsep.targets.iet module

Helpers for ietadm related routines.

1040 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.privsep.targets.scst module

Helpers for scst related routines.

cinder.privsep.targets.tgt module

Helpers for iscsi related routines.

Module contents

Submodules

cinder.privsep.cgroup module

Helpers for cgroup related routines.

cinder.privsep.fs module

Helpers for filesystem related routines.

cinder.privsep.hscli module

Helpers for hscli related routines

cinder.privsep.lvm module

Helpers for lvm related routines

cinder.privsep.nvmcli module

Helpers for nvmetcli related routines.

cinder.privsep.path module

Helpers for path related routines.

4.1. Contributing to Cinder 1041

Cinder Documentation, Release 20.3.2.dev3

Module contents

Setup privsep decorator.

cinder.scheduler package

Subpackages

cinder.scheduler.evaluator package

Submodules

cinder.scheduler.evaluator.evaluator module

class EvalAddOp(toks)
Bases: object

eval()

class EvalBoolAndOp(toks)
Bases: object

eval()

class EvalBoolOrOp(toks)
Bases: object

eval()

class EvalCommaSeperator(toks)
Bases: object

eval()

class EvalComparisonOp(toks)
Bases: object

eval()

operations = {'!=': <built-in function ne>, '<': <built-in function lt>,
'<=': <built-in function le>, '<>': <built-in function ne>, '==':
<built-in function eq>, '>': <built-in function gt>, '>=': <built-in
function ge>}

class EvalConstant(toks)
Bases: object

eval()

class EvalFunction(toks)
Bases: object

eval()

functions: Dict[str, Callable] = {'abs': <built-in function abs>, 'max':
<built-in function max>, 'min': <built-in function min>}

1042 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

class EvalMultOp(toks)
Bases: object

eval()

class EvalNegateOp(toks)
Bases: object

eval()

class EvalPowerOp(toks)
Bases: object

eval()

class EvalSignOp(toks)
Bases: object

eval()

operations = {'+': 1, '-': -1}

class EvalTernaryOp(toks)
Bases: object

eval()

evaluate(expression, **kwargs)
Evaluates an expression.

Provides the facility to evaluate mathematical expressions, and to substitute variables from dictio-
naries into those expressions.

Supports both integer and floating point values, and automatic promotion where necessary.

Module contents

cinder.scheduler.filters package

Submodules

cinder.scheduler.filters.affinity_filter module

class AffinityFilter
Bases: cinder.scheduler.filters.BaseBackendFilter

class DifferentBackendFilter
Bases: cinder.scheduler.filters.affinity_filter.AffinityFilter

Schedule volume on a different back-end from a set of volumes.

backend_passes(backend_state, filter_properties)
Return True if the HostState passes the filter, otherwise False.

Override this in a subclass.

class SameBackendFilter
Bases: cinder.scheduler.filters.affinity_filter.AffinityFilter

4.1. Contributing to Cinder 1043

Cinder Documentation, Release 20.3.2.dev3

Schedule volume on the same back-end as another volume.

backend_passes(backend_state, filter_properties)
Return True if the HostState passes the filter, otherwise False.

Override this in a subclass.

cinder.scheduler.filters.availability_zone_filter module

class AvailabilityZoneFilter
Bases: cinder.scheduler.filters.BaseBackendFilter

Filters Backends by availability zone.

backend_passes(backend_state, filter_properties)
Return True if the HostState passes the filter, otherwise False.

Override this in a subclass.

run_filter_once_per_request = True

cinder.scheduler.filters.capabilities_filter module

class CapabilitiesFilter
Bases: cinder.scheduler.filters.BaseBackendFilter

BackendFilter to work with resource (instance & volume) type records.

backend_passes(backend_state, filter_properties)
Return a list of backends that can create resource_type.

cinder.scheduler.filters.capacity_filter module

class CapacityFilter
Bases: cinder.scheduler.filters.BaseBackendFilter

Capacity filters based on volume backends capacity utilization.

backend_passes(backend_state, filter_properties)
Return True if host has sufficient capacity.

cinder.scheduler.filters.driver_filter module

class DriverFilter
Bases: cinder.scheduler.filters.BaseBackendFilter

DriverFilter filters backend based on a filter function and metrics.

DriverFilter filters based on volume backends provided filter function and metrics.

backend_passes(backend_state, filter_properties)
Determines if a backend has a passing filter_function or not.

1044 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.scheduler.filters.extra_specs_ops module

match(value, req)

cinder.scheduler.filters.ignore_attempted_hosts_filter module

class IgnoreAttemptedHostsFilter
Bases: cinder.scheduler.filters.BaseBackendFilter

Filter out previously attempted hosts

A host passes this filter if it has not already been attempted for scheduling. The scheduler needs
to add previously attempted hosts to the retry key of filter_properties in order for this to work
correctly. For example:

{
'retry': {

'backends': ['backend1', 'backend2'],
'num_attempts': 3,

}
}

backend_passes(backend_state, filter_properties)
Skip nodes that have already been attempted.

cinder.scheduler.filters.instance_locality_filter module

class InstanceLocalityFilter
Bases: cinder.scheduler.filters.BaseBackendFilter

Schedule volume on the same host as a given instance.

This filter enables selection of a storage back-end located on the host where the instances hyper-
visor is running. This provides data locality: the instance and the volume are located on the same
physical machine.

In order to work:

• The Extended Server Attributes extension needs to be active in Nova (this is by default), so
that the OS-EXT-SRV-ATTR:host property is returned when requesting instance info.

• Either an account with privileged rights for Nova must be configured in Cinder configuration
(configure a keystone authentication plugin in the [nova] section), or the user making the call
needs to have sufficient rights (see extended_server_attributes in Nova policy).

backend_passes(backend_state, filter_properties)
Return True if the HostState passes the filter, otherwise False.

Override this in a subclass.

4.1. Contributing to Cinder 1045

Cinder Documentation, Release 20.3.2.dev3

cinder.scheduler.filters.json_filter module

class JsonFilter
Bases: cinder.scheduler.filters.BaseBackendFilter

Backend filter for simple JSON-based grammar for selecting backends.

If you want to choose one of your backend, make a query hint, for example:

cinder create hint query=[=, $backend_id, rbd:vol@ceph#cloud]

backend_passes(backend_state, filter_properties)
Return a list of backends that can fulfill query requirements.

commands = {'<': <function JsonFilter._less_than>, '<=': <function
JsonFilter._less_than_equal>, '=': <function JsonFilter._equals>, '>':
<function JsonFilter._greater_than>, '>=': <function
JsonFilter._greater_than_equal>, 'and': <function JsonFilter._and>, 'in':
<function JsonFilter._in>, 'not': <function JsonFilter._not>, 'or':
<function JsonFilter._or>}

Module contents

Scheduler host filters

class BackendFilterHandler(namespace)
Bases: cinder.scheduler.base_filter.BaseFilterHandler

class BaseBackendFilter
Bases: cinder.scheduler.base_filter.BaseFilter

Base class for host filters.

backend_passes(host_state, filter_properties)
Return True if the HostState passes the filter, otherwise False.

Override this in a subclass.

BaseHostFilter
alias of cinder.scheduler.filters.BaseBackendFilter

HostFilterHandler
alias of cinder.scheduler.filters.BackendFilterHandler

cinder.scheduler.flows package

Submodules

cinder.scheduler.flows.create_volume module

class ExtractSchedulerSpecTask(**kwargs)
Bases: cinder.flow_utils.CinderTask

Extracts a spec object from a partial and/or incomplete request spec.

Reversion strategy: N/A

1046 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

default_provides = {'request_spec'}

execute(context: cinder.context.RequestContext, request_spec: Optional[dict], volume:
cinder.objects.volume.Volume, snapshot_id: Optional[str], image_id: Optional[str],
backup_id: Optional[str])→ Dict[str, Any]

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class ScheduleCreateVolumeTask(driver_api, **kwargs)
Bases: cinder.flow_utils.CinderTask

Activates a scheduler driver and handles any subsequent failures.

Notification strategy: on failure the scheduler rpc notifier will be activated and a notification will
be emitted indicating what errored, the reason, and the request (and misc. other data) that caused
the error to be triggered.

Reversion strategy: N/A

FAILURE_TOPIC = 'scheduler.create_volume'

execute(context: cinder.context.RequestContext, request_spec: dict, filter_properties: dict,
volume: cinder.objects.volume.Volume)→ None

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

4.1. Contributing to Cinder 1047

Cinder Documentation, Release 20.3.2.dev3

get_flow(context: cinder.context.RequestContext, driver_api, request_spec: Optional[dict] = None,
filter_properties: Optional[dict] = None, volume: Optional[cinder.objects.volume.Volume]
= None, snapshot_id: Optional[str] = None, image_id: Optional[str] = None, backup_id:
Optional[str] = None)→ taskflow.engines.base.Engine

Constructs and returns the scheduler entrypoint flow.

This flow will do the following:

1. Inject keys & values for dependent tasks.

2. Extract a scheduler specification from the provided inputs.

3. Use provided scheduler driver to select host and pass volume creation request further.

Module contents

cinder.scheduler.weights package

Submodules

cinder.scheduler.weights.capacity module

class AllocatedCapacityWeigher
Bases: cinder.scheduler.weights.BaseHostWeigher

Allocated Capacity Weigher weighs hosts by their allocated capacity.

The default behavior is to place new volume to the host allocated the least space. This weigher
is intended to simulate the behavior of SimpleScheduler. If you prefer to place volumes to host
allocated the most space, you can set the allocated_capacity_weight_multiplier option to
a positive number and the weighing has the opposite effect of the default.

weight_multiplier()→ float
Override the weight multiplier.

class CapacityWeigher
Bases: cinder.scheduler.weights.BaseHostWeigher

Capacity Weigher weighs hosts by their virtual or actual free capacity.

For thin provisioning, weigh hosts by their virtual free capacity calculated by the total capacity
multiplied by the max over subscription ratio and subtracting the provisioned capacity; Otherwise,
weigh hosts by their actual free capacity, taking into account the reserved space.

The default is to spread volumes across all hosts evenly. If you prefer stacking, you can set the
capacity_weight_multiplier option to a negative number and the weighing has the opposite
effect of the default.

weigh_objects(weighed_obj_list, weight_properties)
Override the weigh objects.

This override calls the parent to do the weigh objects and then replaces any infinite weights
with a value that is a multiple of the delta between the min and max values.

1048 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

NOTE(jecarey): the infinite weight value is only used when the smallest value is being fa-
vored (negative multiplier). When the largest weight value is being used a weight of -1 is
used instead. See _weigh_object method.

weight_multiplier()→ float
Override the weight multiplier.

cinder.scheduler.weights.chance module

class ChanceWeigher
Bases: cinder.scheduler.weights.BaseHostWeigher

Chance Weigher assigns random weights to hosts.

Used to spread volumes randomly across a list of equally suitable hosts.

cinder.scheduler.weights.goodness module

class GoodnessWeigher
Bases: cinder.scheduler.weights.BaseHostWeigher

Goodness Weigher. Assign weights based on a hosts goodness function.

Goodness rating is the following:

0 -- host is a poor choice
.
.
50 -- host is a good choice
.
.

100 -- host is a perfect choice

cinder.scheduler.weights.stochastic module

Stochastic weight handler

This weight handler differs from the default weight handler by giving every pool a chance to be chosen
where the probability is proportional to each pools weight.

class StochasticHostWeightHandler(namespace)
Bases: cinder.scheduler.base_weight.BaseWeightHandler

get_weighed_objects(weigher_classes, obj_list, weighing_properties)
Return a sorted (descending), normalized list of WeighedObjects.

4.1. Contributing to Cinder 1049

Cinder Documentation, Release 20.3.2.dev3

cinder.scheduler.weights.volume_number module

class VolumeNumberWeigher
Bases: cinder.scheduler.weights.BaseHostWeigher

Weigher that weighs hosts by volume number in backends.

The default is to spread volumes across all hosts evenly. If you prefer stacking, you can set the
volume_number_multiplier option to a positive number and the weighing has the opposite
effect of the default.

weight_multiplier()→ float
Override the weight multiplier.

Module contents

Scheduler host weights

class BaseHostWeigher
Bases: cinder.scheduler.base_weight.BaseWeigher

Base class for host weights.

class OrderedHostWeightHandler(namespace)
Bases: cinder.scheduler.base_weight.BaseWeightHandler

object_class
alias of cinder.scheduler.weights.WeighedHost

class WeighedHost(obj, weight: float)
Bases: cinder.scheduler.base_weight.WeighedObject

to_dict()

Submodules

cinder.scheduler.base_filter module

Filter support

class BaseFilter
Bases: object

Base class for all filter classes.

filter_all(filter_obj_list, filter_properties)
Yield objects that pass the filter.

Can be overridden in a subclass, if you need to base filtering decisions on all objects. Other-
wise, one can just override _filter_one() to filter a single object.

run_filter_for_index(index)
Return True if the filter needs to be run for n-th instances.

Only need to override this if a filter needs anything other than first only or all behaviour.

run_filter_once_per_request = False

1050 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

class BaseFilterHandler(modifier_class_type, modifier_namespace)
Bases: cinder.scheduler.base_handler.BaseHandler

Base class to handle loading filter classes.

This class should be subclassed where one needs to use filters.

get_filtered_objects(filter_classes, objs: Iterable, filter_properties: dict, index: int = 0)
→ list

Get objects after filter

Parameters

• filter_classes filters that will be used to filter the objects

• objs objects that will be filtered

• filter_properties client filter properties

• index This value needs to be increased in the caller function of
get_filtered_objects when handling each resource.

cinder.scheduler.base_handler module

A common base for handling extension classes.

Used by BaseFilterHandler and BaseWeightHandler

class BaseHandler(modifier_class_type, modifier_namespace)
Bases: object

Base class to handle loading filter and weight classes.

get_all_classes()→ list

cinder.scheduler.base_weight module

Pluggable Weighing support

class BaseWeigher
Bases: object

Base class for pluggable weighers.

The attributes maxval and minval can be specified to set up the maximum and minimum values
for the weighed objects. These values will then be taken into account in the normalization step,
instead of taking the values from the calculated weights.

maxval: Optional[float] = None

minval: Optional[float] = None

weigh_objects(weighed_obj_list: List[cinder.scheduler.base_weight.WeighedObject],
weight_properties: dict)→ List[float]

Weigh multiple objects.

Override in a subclass if you need access to all objects in order to calculate weights. Do not
modify the weight of an object here, just return a list of weights.

4.1. Contributing to Cinder 1051

Cinder Documentation, Release 20.3.2.dev3

weight_multiplier()→ float
How weighted this weigher should be.

Override this method in a subclass, so that the returned value is read from a configuration
option to permit operators specify a multiplier for the weigher.

class BaseWeightHandler(modifier_class_type, modifier_namespace)
Bases: cinder.scheduler.base_handler.BaseHandler

get_weighed_objects(weigher_classes: list, obj_list:
List[cinder.scheduler.base_weight.WeighedObject],
weighing_properties: dict)→
List[cinder.scheduler.base_weight.WeighedObject]

Return a sorted (descending), normalized list of WeighedObjects.

object_class
alias of cinder.scheduler.base_weight.WeighedObject

class WeighedObject(obj, weight: float)
Bases: object

Object with weight information.

normalize(weight_list: List[float], minval: Optional[float] = None, maxval: Optional[float] = None)
→ Iterable[float]

Normalize the values in a list between 0 and 1.0.

The normalization is made regarding the lower and upper values present in weight_list. If the
minval and/or maxval parameters are set, these values will be used instead of the minimum and
maximum from the list.

If all the values are equal, they are normalized to 0.

cinder.scheduler.driver module

Scheduler base class that all Schedulers should inherit from

class Scheduler
Bases: object

The base class that all Scheduler classes should inherit from.

backend_passes_filters(context, backend, request_spec, filter_properties)
Check if the specified backend passes the filters.

find_retype_backend(context, request_spec, filter_properties=None,
migration_policy=’never’)

Find a backend that can accept the volume with its new type.

find_retype_host(context, request_spec, filter_properties=None, migration_policy=’never’)
Find a backend that can accept the volume with its new type.

get_backup_host(volume, driver=None)
Must override schedule method for scheduler to work.

get_pools(context, filters)
Must override schedule method for scheduler to work.

1052 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

host_passes_filters(context, backend, request_spec, filter_properties)
Check if the specified backend passes the filters.

is_first_receive()
Returns True if Scheduler receives the capabilities at startup.

This is to handle the problem of too long sleep time during scheduler service startup process.

is_ready()
Returns True if Scheduler is ready to accept requests.

This is to handle scheduler service startup when it has no volume hosts stats and will fail all
the requests.

notify_service_capabilities(service_name, backend, capabilities, timestamp)
Notify capability update from a service node.

reset()
Reset volume RPC API object to load new version pins.

schedule(context, topic, method, *_args, **_kwargs)
Must override schedule method for scheduler to work.

schedule_create_group(context, group, group_spec, request_spec_list,
group_filter_properties, filter_properties_list)

Must override schedule method for scheduler to work.

schedule_create_volume(context, request_spec, filter_properties)
Must override schedule method for scheduler to work.

update_service_capabilities(service_name, host, capabilities, cluster_name, timestamp)
Process a capability update from a service node.

generic_group_update_db(context, group, host, cluster_name)
Set the host and the scheduled_at field of a group.

Returns A Group with the updated fields set properly.

volume_update_db(context, volume_id, host, cluster_name, availability_zone=None)
Set the host, cluster_name, and set the scheduled_at field of a volume.

Returns A Volume with the updated fields set properly.

cinder.scheduler.filter_scheduler module

The FilterScheduler is for creating volumes.

You can customize this scheduler by specifying your own volume Filters and Weighing Functions.

class FilterScheduler(*args, **kwargs)
Bases: cinder.scheduler.driver.Scheduler

Scheduler that can be used for filtering and weighing.

backend_passes_filters(context: cinder.context.RequestContext, backend: str,
request_spec: dict, filter_properties: dict)

Check if the specified backend passes the filters.

4.1. Contributing to Cinder 1053

Cinder Documentation, Release 20.3.2.dev3

find_retype_backend(context: cinder.context.RequestContext, request_spec: dict,
filter_properties: Optional[dict] = None, migration_policy: str =
’never’)→ cinder.scheduler.host_manager.BackendState

Find a backend that can accept the volume with its new type.

get_backup_host(volume: cinder.objects.volume.Volume, driver=None)
Must override schedule method for scheduler to work.

get_pools(context: cinder.context.RequestContext, filters: dict)
Must override schedule method for scheduler to work.

populate_filter_properties(request_spec: dict, filter_properties: dict)→ None
Stuff things into filter_properties.

Can be overridden in a subclass to add more data.

schedule_create_group(context: cinder.context.RequestContext, group, group_spec,
request_spec_list, group_filter_properties, filter_properties_list)→
None

Must override schedule method for scheduler to work.

schedule_create_volume(context: cinder.context.RequestContext, request_spec: dict,
filter_properties: dict)→ None

Must override schedule method for scheduler to work.

cinder.scheduler.host_manager module

Manage backends in the current zone.

class BackendState(host: str, cluster_name: Optional[str], capabilities:
Union[cinder.scheduler.host_manager.ReadOnlyDict, None, dict] = None,
service=None)

Bases: object

Mutable and immutable information tracked for a volume backend.

property backend_id: str

consume_from_volume(volume: cinder.objects.volume.Volume, update_time: bool = True)→
None

Incrementally update host state from a volume.

update_backend(capability: dict)→ None

update_capabilities(capabilities: Union[cinder.scheduler.host_manager.ReadOnlyDict,
None, dict] = None, service: Optional[dict] = None)→ None

update_from_volume_capability(capability: Dict[str, Any], service=None)→ None
Update information about a host from its volume_node info.

capability is the status info reported by volume backend, a typical capability looks like this:

{
capability = {

'volume_backend_name': 'Local iSCSI', #
'vendor_name': 'OpenStack', # backend level
'driver_version': '1.0', # mandatory/fixed

(continues on next page)

1054 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

'storage_protocol': 'iSCSI', # stats&capabilities

'active_volumes': 10, #
'IOPS_provisioned': 30000, # optional custom
'fancy_capability_1': 'eat', # stats & capabilities
'fancy_capability_2': 'drink', #

'pools': [
{'pool_name': '1st pool', #
'total_capacity_gb': 500, # mandatory stats for
'free_capacity_gb': 230, # pools
'allocated_capacity_gb': 270, #
'QoS_support': 'False', #
'reserved_percentage': 0, #

'dying_disks': 100, #
'super_hero_1': 'spider-man', # optional custom
'super_hero_2': 'flash', # stats & capabilities
'super_hero_3': 'neoncat' #
},
{'pool_name': '2nd pool',
'total_capacity_gb': 1024,
'free_capacity_gb': 1024,
'allocated_capacity_gb': 0,
'QoS_support': 'False',
'reserved_percentage': 0,

'dying_disks': 200,
'super_hero_1': 'superman',
'super_hero_2': ' ',
'super_hero_2': 'Hulk'
}

]
}
}

update_pools(capability: Optional[dict], service)→ None
Update storage pools information from backend reported info.

class HostManager
Bases: object

Base HostManager class.

ALLOWED_SERVICE_NAMES = ('volume', 'backup')

REQUIRED_KEYS = frozenset({'allocated_capacity_gb', 'free_capacity_gb',
'max_over_subscription_ratio', 'pool_name', 'provisioned_capacity_gb',
'reserved_percentage', 'thick_provisioning_support',
'thin_provisioning_support', 'total_capacity_gb'})

4.1. Contributing to Cinder 1055

Cinder Documentation, Release 20.3.2.dev3

backend_state_cls
alias of cinder.scheduler.host_manager.BackendState

first_receive_capabilities()→ bool

get_all_backend_states(context: cinder.context.RequestContext)→ Iterable
Returns a dict of all the backends the HostManager knows about.

Each of the consumable resources in BackendState are populated with capabilities scheduler
received from RPC.

For example: {192.168.1.100: BackendState(), }

get_backup_host(volume: cinder.objects.volume.Volume, driver=None)→ str

get_filtered_backends(backends, filter_properties, filter_class_names=None)
Filter backends and return only ones passing all filters.

get_pools(context: cinder.context.RequestContext, filters: Optional[dict] = None)→
List[dict]

Returns a dict of all pools on all hosts HostManager knows about.

get_usage_and_notify(capa_new: dict, updated_pools: Iterable[dict], host: str, timestamp)
→ None

get_weighed_backends(backends, weight_properties, weigher_class_names=None)→ list
Weigh the backends.

has_all_capabilities()→ bool

notify_service_capabilities(service_name, backend, capabilities, timestamp)
Notify the ceilometer with updated volume stats

revert_volume_consumed_capacity(pool_name: str, size: int)→ None

update_service_capabilities(service_name: str, host: str, capabilities: dict,
cluster_name: Optional[str], timestamp)→ None

Update the per-service capabilities based on this notification.

class PoolState(host: str, cluster_name: Optional[str], capabilities:
Union[cinder.scheduler.host_manager.ReadOnlyDict, None, dict], pool_name:
str)

Bases: cinder.scheduler.host_manager.BackendState

update_from_volume_capability(capability: Dict[str, Any], service=None)→ None
Update information about a pool from its volume_node info.

update_pools(capability)
Update storage pools information from backend reported info.

class ReadOnlyDict(source: Optional[Union[dict, cinder.scheduler.host_manager.ReadOnlyDict]]
= None)

Bases: collections.abc.Mapping

A read-only dict.

1056 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.scheduler.manager module

Scheduler Service

class SchedulerManager(scheduler_driver=None, service_name=None, *args, **kwargs)
Bases: cinder.manager.CleanableManager, cinder.manager.Manager

Chooses a host to create volumes.

RPC_API_VERSION = '3.12'

additional_endpoints: list

create_backup(context, backup)

create_group(context, group, group_spec=None, group_filter_properties=None,
request_spec_list=None, filter_properties_list=None)

create_snapshot(ctxt, volume, snapshot, backend, request_spec=None,
filter_properties=None)

Create snapshot for a volume.

The main purpose of this method is to check if target backend (of volume and snapshot) has
sufficient capacity to host to-be-created snapshot.

create_volume(context, volume, snapshot_id=None, image_id=None, request_spec=None,
filter_properties=None, backup_id=None)

extend_volume(context, volume, new_size, reservations, request_spec=None,
filter_properties=None)

get_pools(context, filters=None)
Get active pools from schedulers cache.

NOTE(dulek): Theres no self._wait_for_scheduler() because get_pools is an RPC call (is
blocking for the c-api). Also this is admin-only API extension so it wont hurt the user much
to retry the request manually.

host: oslo_config.types.HostAddress

init_host_with_rpc()
A hook for service to do jobs after RPC is ready.

Like init_host(), this method is a hook where services get a chance to execute tasks that need
RPC. Child classes should override this method.

manage_existing(context, volume, request_spec, filter_properties=None)
Ensure that the host exists and can accept the volume.

manage_existing_snapshot(context, volume, snapshot, ref, request_spec,
filter_properties=None)

Ensure that the host exists and can accept the snapshot.

migrate_volume(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, backend: str, force_copy: bool, request_spec,
filter_properties)→ None

Ensure that the backend exists and can accept the volume.

migrate_volume_to_host(context, volume, host, force_host_copy, request_spec,
filter_properties=None)

4.1. Contributing to Cinder 1057

Cinder Documentation, Release 20.3.2.dev3

notify_service_capabilities(context, service_name, capabilities, host=None,
backend=None, timestamp=None)

Process a capability update from a service node.

request_service_capabilities(context: cinder.context.RequestContext)→ None

reset()
Method executed when SIGHUP is caught by the process.

Were utilizing it to reset RPC API version pins to avoid restart of the service when rolling
upgrade is completed.

retype(context, volume, request_spec, filter_properties=None)
Schedule the modification of a volumes type.

Parameters

• context the request context

• volume the volume object to retype

• request_spec parameters for this retype request

• filter_properties parameters to filter by

target = <Target version=3.12>

update_service_capabilities(context, service_name=None, host=None,
capabilities=None, cluster_name=None, timestamp=None,
**kwargs)

Process a capability update from a service node.

property upgrading_cloud

validate_host_capacity(context, backend, request_spec, filter_properties)

work_cleanup(context, cleanup_request)
Process request from API to do cleanup on services.

Here we retrieve from the DB which services we want to clean up based on the request from
the user.

Then send individual cleanup requests to each of the services that are up, and we finally return
a tuple with services that we have sent a cleanup request and those that were not up and we
couldnt send it.

append_operation_type(name=None)

cinder.scheduler.rpcapi module

Client side of the scheduler manager RPC API.

class SchedulerAPI
Bases: cinder.rpc.RPCAPI

Client side of the scheduler RPC API.

API version history:

1058 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

1.0 - Initial version.
1.1 - Add create_volume() method
1.2 - Add request_spec, filter_properties arguments to

create_volume()
1.3 - Add migrate_volume_to_host() method
1.4 - Add retype method
1.5 - Add manage_existing method
1.6 - Add create_consistencygroup method
1.7 - Add get_active_pools method
1.8 - Add sending object over RPC in create_consistencygroup method
1.9 - Adds support for sending objects over RPC in create_volume()
1.10 - Adds support for sending objects over RPC in retype()
1.11 - Adds support for sending objects over RPC in

migrate_volume_to_host()

... Mitaka supports messaging 1.11. Any changes to existing methods in
1.x after this point should be done so that they can handle version cap
set to 1.11.

2.0 - Remove 1.x compatibility
2.1 - Adds support for sending objects over RPC in manage_existing()
2.2 - Sends request_spec as object in create_volume()
2.3 - Add create_group method

... Newton supports messaging 2.3. Any changes to existing methods in
2.x after this point should be done so that they can handle version cap
set to 2.3.

3.0 - Remove 2.x compatibility
3.1 - Adds notify_service_capabilities()
3.2 - Adds extend_volume()
3.3 - Add cluster support to migrate_volume, and to

update_service_capabilities and send the timestamp from the
capabilities.

3.4 - Adds work_cleanup and do_cleanup methods.
3.5 - Make notify_service_capabilities support A/A
3.6 - Removed create_consistencygroup method
3.7 - Adds set_log_levels and get_log_levels
3.8 - Addds ``valid_host_capacity`` method
3.9 - Adds create_snapshot method
3.10 - Adds backup_id to create_volume method.
3.11 - Adds manage_existing_snapshot method.
3.12 - Adds create_backup method.

BINARY = 'cinder-scheduler'

RPC_API_VERSION = '3.12'

RPC_DEFAULT_VERSION = '3.0'

TOPIC = 'cinder-scheduler'

create_backup(ctxt, backup)

4.1. Contributing to Cinder 1059

Cinder Documentation, Release 20.3.2.dev3

create_group(ctxt, group, group_spec=None, request_spec_list=None,
group_filter_properties=None, filter_properties_list=None)

create_snapshot(ctxt, volume, snapshot, backend, request_spec=None,
filter_properties=None)

create_volume(ctxt, volume, snapshot_id=None, image_id=None, request_spec=None,
filter_properties=None, backup_id=None)

do_cleanup(ctxt, cleanup_request)
Perform this schedulers resource cleanup as per cleanup_request.

extend_volume(ctxt, volume, new_size, reservations, request_spec, filter_properties=None)

get_log_levels(context, service, log_request)

get_pools(ctxt, filters=None)

manage_existing(ctxt, volume, request_spec=None, filter_properties=None)

manage_existing_snapshot(ctxt, volume, snapshot, ref, request_spec=None,
filter_properties=None)

migrate_volume(ctxt, volume, backend, force_copy=False, request_spec=None,
filter_properties=None)

notify_service_capabilities(ctxt, service_name, backend, capabilities,
timestamp=None)

static prepare_timestamp(timestamp)

retype(ctxt, volume, request_spec=None, filter_properties=None)

set_log_levels(context, service, log_request)

update_service_capabilities(ctxt, service_name, host, capabilities, cluster_name,
timestamp=None)

validate_host_capacity(ctxt, backend, request_spec, filter_properties=None)

work_cleanup(ctxt, cleanup_request)
Generate individual service cleanup requests from user request.

cinder.scheduler.scheduler_options module

SchedulerOptions monitors a local .json file for changes and loads it if needed. This file is converted
to a data structure and passed into the filtering and weighing functions which can use it for dynamic
configuration.

class SchedulerOptions
Bases: object

SchedulerOptions monitors a local .json file for changes.

The file is reloaded if needed and converted to a data structure and passed into the filtering and
weighing functions which can use it for dynamic configuration.

get_configuration(filename=None)→ dict
Check the json file for changes and load it if needed.

1060 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Module contents

cinder.transfer package

Submodules

cinder.transfer.api module

Handles all requests relating to transferring ownership of volumes.

class API
Bases: cinder.db.base.Base

API for interacting volume transfers.

accept(context, transfer_id, auth_key)
Accept a volume that has been offered for transfer.

create(context, volume_id, display_name, no_snapshots=False)
Creates an entry in the transfers table.

delete(context, transfer_id)
Make the RPC call to delete a volume transfer.

get(context, transfer_id)

get_all(context, marker=None, limit=None, sort_keys=None, sort_dirs=None, filters=None,
offset=None)

Module contents

cinder.volume package

Subpackages

cinder.volume.flows package

Subpackages

cinder.volume.flows.api package

Submodules

cinder.volume.flows.api.create_volume module

class EntryCreateTask
Bases: cinder.flow_utils.CinderTask

Creates an entry for the given volume creation in the database.

Reversion strategy: remove the volume_id created from the database.

4.1. Contributing to Cinder 1061

Cinder Documentation, Release 20.3.2.dev3

default_provides = {'volume', 'volume_id', 'volume_properties'}

execute(context: cinder.context.RequestContext, optional_args: dict, **kwargs)→ Dict[str,
Any]

Creates a database entry for the given inputs and returns details.

Accesses the database and creates a new entry for the to be created volume using the given
volume properties which are extracted from the input kwargs (and associated requirements
this task needs). These requirements should be previously satisfied and validated by a pre-
cursor task.

revert(context: cinder.context.RequestContext, result: Union[dict,
taskflow.types.failure.Failure], optional_args: dict, **kwargs)→ None

Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class ExtractVolumeRequestTask(image_service: cinder.image.glance.GlanceImageService,
availability_zones, **kwargs)

Bases: cinder.flow_utils.CinderTask

Processes an api request values into a validated set of values.

This tasks responsibility is to take in a set of inputs that will form a potential volume request and
validates those values against a set of conditions and/or translates those values into a valid set and
then returns the validated/translated values for use by other tasks.

Reversion strategy: N/A

default_provides = {'availability_zones', 'backup_id', 'cgsnapshot_id',
'consistencygroup_id', 'encryption_key_id', 'group_id', 'multiattach',
'qos_specs', 'refresh_az', 'size', 'snapshot_id', 'source_volid',
'volume_type', 'volume_type_id'}

execute(context: cinder.context.RequestContext, size: int, snapshot: Optional[dict], image_id:
Optional[str], source_volume: Optional[dict], availability_zone: Optional[str],
volume_type, metadata, key_manager, consistencygroup, cgsnapshot, group,
group_snapshot, backup: Optional[dict])→ Dict[str, Any]

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

1062 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class QuotaCommitTask
Bases: cinder.flow_utils.CinderTask

Commits the reservation.

Reversion strategy: N/A (the rollback will be handled by the task that did the initial reservation
(see: QuotaReserveTask).

Warning Warning: if the process that is running this reserve and commit process fails (or is killed
before the quota is rolled back or committed it does appear like the quota will never be rolled
back). This makes software upgrades hard (inflight operations will need to be stopped or allowed
to complete before the upgrade can occur). In the future when taskflow has persistence built-in
this should be easier to correct via an automated or manual process.

execute(context: cinder.context.RequestContext, reservations, volume_properties,
optional_args: dict)→ dict

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context: cinder.context.RequestContext, result: Union[dict,
taskflow.types.failure.Failure], **kwargs)→ None

Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class QuotaReserveTask
Bases: cinder.flow_utils.CinderTask

Reserves a single volume with the given size & the given volume type.

4.1. Contributing to Cinder 1063

Cinder Documentation, Release 20.3.2.dev3

Reversion strategy: rollback the quota reservation.

Warning Warning: if the process that is running this reserve and commit process fails (or is killed
before the quota is rolled back or committed it does appear like the quota will never be rolled
back). This makes software upgrades hard (inflight operations will need to be stopped or allowed
to complete before the upgrade can occur). In the future when taskflow has persistence built-in
this should be easier to correct via an automated or manual process.

default_provides = {'reservations'}

execute(context: cinder.context.RequestContext, size: int, volume_type_id, group_snapshot:
Optional[cinder.objects.snapshot.Snapshot], optional_args: dict)→ Optional[dict]

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context: cinder.context.RequestContext, result: Union[dict,
taskflow.types.failure.Failure], optional_args: dict, **kwargs)→ None

Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class VolumeCastTask(scheduler_rpcapi, volume_rpcapi, db)
Bases: cinder.flow_utils.CinderTask

Performs a volume create cast to the scheduler or to the volume manager.

This will signal a transition of the api workflow to another child and/or related workflow on another
component.

Reversion strategy: rollback source volume status and error out newly created volume.

execute(context: cinder.context.RequestContext, **kwargs)→ None
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may

1064 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context: cinder.context.RequestContext, result: Union[dict,
taskflow.types.failure.Failure], flow_failures, volume: cinder.objects.volume.Volume,
**kwargs)→ None

Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

get_flow(db_api, image_service_api, availability_zones, create_what, scheduler_rpcapi=None,
volume_rpcapi=None)

Constructs and returns the api entrypoint flow.

This flow will do the following:

1. Inject keys & values for dependent tasks.

2. Extracts and validates the input keys & values.

3. Reserves the quota (reverts quota on any failures).

4. Creates the database entry.

5. Commits the quota.

6. Casts to volume manager or scheduler for further processing.

cinder.volume.flows.api.manage_existing module

class EntryCreateTask(db)
Bases: cinder.flow_utils.CinderTask

Creates an entry for the given volume creation in the database.

Reversion strategy: remove the volume_id created from the database.

default_provides = {'volume', 'volume_properties'}

4.1. Contributing to Cinder 1065

Cinder Documentation, Release 20.3.2.dev3

execute(context, **kwargs)
Creates a database entry for the given inputs and returns details.

Accesses the database and creates a new entry for the to be created volume using the given
volume properties which are extracted from the input kwargs.

revert(context, result, optional_args=None, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class ManageCastTask(scheduler_rpcapi, db)
Bases: cinder.flow_utils.CinderTask

Performs a volume manage cast to the scheduler and the volume manager.

This which will signal a transition of the api workflow to another child and/or related workflow.

execute(context, volume, **kwargs)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context, result, flow_failures, volume, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

1066 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_flow(scheduler_rpcapi, db_api, create_what)
Constructs and returns the api entrypoint flow.

This flow will do the following:

1. Inject keys & values for dependent tasks.

2. Extracts and validates the input keys & values.

3. Creates the database entry.

4. Casts to volume manager and scheduler for further processing.

Module contents

cinder.volume.flows.manager package

Submodules

cinder.volume.flows.manager.create_volume module

class CreateVolumeFromSpecTask(manager, db, driver, image_volume_cache=None)
Bases: cinder.flow_utils.CinderTask

Creates a volume from a provided specification.

Reversion strategy: N/A

default_provides = 'volume_spec'

execute(context: cinder.context.RequestContext, volume: cinder.objects.volume.Volume,
volume_spec)→ dict

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class CreateVolumeOnFinishTask(db, event_suffix)
Bases: cinder.volume.flows.manager.create_volume.NotifyVolumeActionTask

On successful volume creation this will perform final volume actions.

When a volume is created successfully it is expected that MQ notifications and database updates
will occur to signal to others that the volume is now ready for usage. This task does those no-

4.1. Contributing to Cinder 1067

Cinder Documentation, Release 20.3.2.dev3

tifications and updates in a reliable manner (not re-raising exceptions if said actions can not be
triggered).

Reversion strategy: N/A

execute(context, volume, volume_spec)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class ExtractVolumeRefTask(db, host, set_error=True)
Bases: cinder.flow_utils.CinderTask

Extracts volume reference for given volume id.

default_provides = 'refreshed'

execute(context, volume)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context, volume, result, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

1068 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class ExtractVolumeSpecTask(db)
Bases: cinder.flow_utils.CinderTask

Extracts a spec of a volume to be created into a common structure.

This task extracts and organizes the input requirements into a common and easier to analyze struc-
ture for later tasks to use. It will also attach the underlying database volume reference which can
be used by other tasks to reference for further details about the volume to be.

Reversion strategy: N/A

default_provides = 'volume_spec'

execute(context, volume, request_spec)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context, result, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class NotifyVolumeActionTask(db, event_suffix)
Bases: cinder.flow_utils.CinderTask

Performs a notification about the given volume when called.

Reversion strategy: N/A

execute(context, volume)
Activate a given atom which will perform some operation and return.

4.1. Contributing to Cinder 1069

Cinder Documentation, Release 20.3.2.dev3

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class OnFailureRescheduleTask(reschedule_context, db, manager, scheduler_rpcapi,
do_reschedule)

Bases: cinder.flow_utils.CinderTask

Triggers a rescheduling request to be sent when reverting occurs.

If rescheduling doesnt occur this task errors out the volume.

Reversion strategy: Triggers the rescheduling mechanism whereby a cast gets sent to the scheduler
rpc api to allow for an attempt X of Y for scheduling this volume elsewhere.

execute(**kwargs)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context, result, flow_failures, volume, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

1070 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_flow(context, manager, db, driver, scheduler_rpcapi, host, volume, allow_reschedule,
reschedule_context, request_spec, filter_properties, image_volume_cache=None)

Constructs and returns the manager entrypoint flow.

This flow will do the following:

1. Determines if rescheduling is enabled (ahead of time).

2. Inject keys & values for dependent tasks.

3. Selects 1 of 2 activated only on failure tasks (one to update the db status & notify or one to
update the db status & notify & reschedule).

4. Extracts a volume specification from the provided inputs.

5. Notifies that the volume has started to be created.

6. Creates a volume from the extracted volume specification.

7. Attaches an on-success only task that notifies that the volume creation has ended and performs
further database status updates.

cinder.volume.flows.manager.manage_existing module

class ManageExistingTask(db, driver)
Bases: cinder.flow_utils.CinderTask

Brings an existing volume under Cinder management.

default_provides = {'volume'}

execute(context, volume, manage_existing_ref, size)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class PrepareForQuotaReservationTask(db, driver)
Bases: cinder.flow_utils.CinderTask

Gets the volume size from the driver.

default_provides = {'size', 'volume_properties', 'volume_spec',
'volume_type_id'}

execute(context, volume, manage_existing_ref)
Activate a given atom which will perform some operation and return.

4.1. Contributing to Cinder 1071

Cinder Documentation, Release 20.3.2.dev3

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context, result, flow_failures, volume, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

get_flow(context, db, driver, host, volume, ref)
Constructs and returns the manager entrypoint flow.

cinder.volume.flows.manager.manage_existing_snapshot module

class CreateSnapshotOnFinishTask(db, event_suffix, host)
Bases: cinder.volume.flows.manager.manage_existing_snapshot.
NotifySnapshotActionTask

Perform final snapshot actions.

When a snapshot is created successfully it is expected that MQ notifications and database updates
will occur to signal to others that the snapshot is now ready for usage. This task does those no-
tifications and updates in a reliable manner (not re-raising exceptions if said actions can not be
triggered).

Reversion strategy: N/A

execute(context, snapshot, new_status)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

1072 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class ExtractSnapshotRefTask(db)
Bases: cinder.flow_utils.CinderTask

Extracts snapshot reference for given snapshot id.

default_provides = 'snapshot_ref'

execute(context, snapshot_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context, snapshot_id, result, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class ManageExistingTask(db, driver)
Bases: cinder.flow_utils.CinderTask

Brings an existing snapshot under Cinder management.

default_provides = {'new_status', 'snapshot'}

execute(context, snapshot_ref, manage_existing_ref, size)
Activate a given atom which will perform some operation and return.

4.1. Contributing to Cinder 1073

Cinder Documentation, Release 20.3.2.dev3

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class NotifySnapshotActionTask(db, event_suffix, host)
Bases: cinder.flow_utils.CinderTask

Performs a notification about the given snapshot when called.

Reversion strategy: N/A

execute(context, snapshot_ref)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class PrepareForQuotaReservationTask(db, driver)
Bases: cinder.flow_utils.CinderTask

Gets the snapshot size from the driver.

default_provides = {'size', 'snapshot_properties'}

execute(context, snapshot_ref, manage_existing_ref)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

1074 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

class QuotaCommitTask
Bases: cinder.flow_utils.CinderTask

Commits the reservation.

Reversion strategy: N/A (the rollback will be handled by the task that did the initial reservation
(see: QuotaReserveTask).

Warning Warning: if the process that is running this reserve and commit process fails (or is killed
before the quota is rolled back or committed it does appear like the quota will never be rolled
back). This makes software upgrades hard (inflight operations will need to be stopped or allowed
to complete before the upgrade can occur). In the future when taskflow has persistence built-in
this should be easier to correct via an automated or manual process.

execute(context, reservations, snapshot_properties, optional_args)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context, result, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class QuotaReserveTask
Bases: cinder.flow_utils.CinderTask

Reserves a single snapshot with the given size.

Reversion strategy: rollback the quota reservation.

4.1. Contributing to Cinder 1075

Cinder Documentation, Release 20.3.2.dev3

Warning Warning: if the process that is running this reserve and commit process fails (or is killed
before the quota is rolled back or committed it does appear like the quota will never be rolled
back). This makes software upgrades hard (inflight operations will need to be stopped or allowed
to complete before the upgrade can occur). In the future when taskflow has persistence built-in
this should be easier to correct via an automated or manual process.

default_provides = {'reservations'}

execute(context, size, snapshot_ref, optional_args)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args positional arguments that atom requires to execute.

• kwargs any keyword arguments that atom requires to execute.

revert(context, result, optional_args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args positional arguments that the atom required to execute.

• kwargs any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

get_flow(context, db, driver, host, snapshot_id, ref)
Constructs and returns the manager entry point flow.

Module contents

Submodules

cinder.volume.flows.common module

error_out(resource, reason=None, status=’error’)
Sets status to error for any persistent OVO.

make_pretty_name(method: Callable)→ str
Makes a pretty name for a function/method.

1076 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

restore_source_status(context, db, volume_spec)

Module contents

cinder.volume.targets package

Submodules

cinder.volume.targets.cxt module

class CxtAdm(*args, **kwargs)
Bases: cinder.volume.targets.iscsi.ISCSITarget

Chiscsi target configuration for block storage devices.

This includes things like create targets, attach, detach etc.

TARGET_FMT = '\n target:\n TargetName=%s\n TargetDevice=%s\n
PortalGroup=1@%s\n '

TARGET_FMT_WITH_CHAP = '\n target:\n TargetName=%s\n TargetDevice=%s\n
PortalGroup=1@%s\n AuthMethod=CHAP\n Auth_CHAP_Policy=Oneway\n
Auth_CHAP_Initiator=%s\n '

create_iscsi_target(name, tid, lun, path, chap_auth=None, **kwargs)

cxt_subdir = 'cxt'

remove_iscsi_target(tid, lun, vol_id, vol_name, **kwargs)

cinder.volume.targets.driver module

class Target(*args, **kwargs)
Bases: object

Target object for block storage devices.

Base class for target object, where target is data transport mechanism (target) specific calls. This
includes things like create targets, attach, detach etc.

Base class here does nothing more than set an executor and db as well as force implementation of
required methods.

abstract create_export(context, volume, volume_path)
Exports a Target/Volume.

Can optionally return a Dict of changes to the volume object to be persisted.

abstract ensure_export(context, volume, volume_path)
Synchronously recreates an export for a volume.

abstract initialize_connection(volume, connector)
Allow connection to connector and return connection info.

abstract remove_export(context, volume)
Removes an export for a Target/Volume.

4.1. Contributing to Cinder 1077

Cinder Documentation, Release 20.3.2.dev3

abstract terminate_connection(volume, connector, **kwargs)
Disallow connection from connector.

cinder.volume.targets.fake module

class FakeTarget(*args, **kwargs)
Bases: cinder.volume.targets.iscsi.ISCSITarget

VERSION = '0.1'

create_iscsi_target(name, tid, lun, path, chap_auth, **kwargs)

remove_iscsi_target(tid, lun, vol_id, vol_name, **kwargs)

cinder.volume.targets.iet module

class IetAdm(*args, **kwargs)
Bases: cinder.volume.targets.iscsi.ISCSITarget

VERSION = '0.1'

create_iscsi_target(name, tid, lun, path, chap_auth=None, **kwargs)

remove_iscsi_target(tid, lun, vol_id, vol_name, **kwargs)

update_config_file(name, tid, path, config_auth)

cinder.volume.targets.iscsi module

class ISCSITarget(*args, **kwargs)
Bases: cinder.volume.targets.driver.Target

Target object for block storage devices.

Base class for target object, where target is data transport mechanism (target) specific calls. This
includes things like create targets, attach, detach etc.

create_export(context, volume, volume_path)
Creates an export for a logical volume.

abstract create_iscsi_target(name, tid, lun, path, chap_auth, **kwargs)

ensure_export(context, volume, volume_path)
Recreates an export for a logical volume.

extend_target(volume)
Reinitializes a target after the LV has been extended.

Note: This will cause IO disruption in most cases.

initialize_connection(volume, connector)
Initializes the connection and returns connection info.

The iscsi driver returns a driver_volume_type of iscsi. The format of the driver data is defined
in _get_iscsi_properties. Example return value:

1078 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

{
'driver_volume_type': 'iscsi'
'data': {

'target_discovered': True,
'target_iqn': 'iqn.2010-10.org.openstack:volume-00000001',
'target_portal': '127.0.0.0.1:3260',
'volume_id': '9a0d35d0-175a-11e4-8c21-0800200c9a66',
'discard': False,

}
}

remove_export(context, volume)
Removes an export for a Target/Volume.

abstract remove_iscsi_target(tid, lun, vol_id, vol_name, **kwargs)

show_target(iscsi_target, iqn, **kwargs)

terminate_connection(volume, connector, **kwargs)
Disallow connection from connector.

validate_connector(connector)

class SanISCSITarget(*args, **kwargs)
Bases: cinder.volume.targets.iscsi.ISCSITarget

iSCSI target for san devices.

San devices are slightly different, they dont need to implement all of the same things that we need
to implement locally fro LVM and local block devices when we create and manage our own targets.

abstract create_export(context, volume, volume_path)
Creates an export for a logical volume.

create_iscsi_target(name, tid, lun, path, chap_auth, **kwargs)

abstract ensure_export(context, volume, volume_path)
Recreates an export for a logical volume.

abstract remove_export(context, volume)
Removes an export for a Target/Volume.

remove_iscsi_target(tid, lun, vol_id, vol_name, **kwargs)

abstract terminate_connection(volume, connector, **kwargs)
Disallow connection from connector.

cinder.volume.targets.lio module

class LioAdm(*args, **kwargs)
Bases: cinder.volume.targets.iscsi.ISCSITarget

iSCSI target administration for LIO using python-rtslib.

create_iscsi_target(name, tid, lun, path, chap_auth=None, **kwargs)

ensure_export(context, volume, volume_path)
Recreate exports for logical volumes.

4.1. Contributing to Cinder 1079

Cinder Documentation, Release 20.3.2.dev3

initialize_connection(volume, connector)
Initializes the connection and returns connection info.

The iscsi driver returns a driver_volume_type of iscsi. The format of the driver data is defined
in _get_iscsi_properties. Example return value:

{
'driver_volume_type': 'iscsi'
'data': {

'target_discovered': True,
'target_iqn': 'iqn.2010-10.org.openstack:volume-00000001',
'target_portal': '127.0.0.0.1:3260',
'volume_id': '9a0d35d0-175a-11e4-8c21-0800200c9a66',
'discard': False,

}
}

remove_iscsi_target(tid, lun, vol_id, vol_name, **kwargs)

terminate_connection(volume, connector, **kwargs)
Disallow connection from connector.

cinder.volume.targets.nvmeof module

class NVMeOF(*args, **kwargs)
Bases: cinder.volume.targets.driver.Target

Target object for block storage devices with RDMA transport.

create_export(context, volume, volume_path)
Creates export data for a logical volume.

abstract create_nvmeof_target(volume_id, subsystem_name, target_ip, target_port,
transport_type, nvmet_port_id, ns_id, volume_path)

abstract delete_nvmeof_target(target_name)

ensure_export(context, volume, volume_path)
Synchronously recreates an export for a volume.

get_nvmeof_location(nqn, target_ip, target_port, nvme_transport_type, nvmet_ns_id)
Serializes driver data into single line string.

initialize_connection(volume, connector)
Returns the connection info.

In NVMeOF driver, :driver_volume_type: is set to nvmeof, :data: is the driver data that has
the value of _get_connection_properties.

Example return value:

{
"driver_volume_type": "nvmeof",
"data":
{

(continues on next page)

1080 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

"target_portal": "1.1.1.1",
"target_port": 4420,
"nqn": "nqn.volume-0001",
"transport_type": "rdma",
"ns_id": 10

}
}

protocol = 'nvmeof'

remove_export(context, volume)
Removes an export for a Target/Volume.

target_protocol_map = {'nvmet_rdma': 'rdma', 'nvmet_tcp': 'tcp'}

terminate_connection(volume, connector, **kwargs)
Disallow connection from connector.

validate_connector(connector)

exception UnsupportedNVMETProtocol(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = "An invalid 'target_protocol' value was provided: %(protocol)s"

cinder.volume.targets.nvmet module

class NVMET(*args, **kwargs)
Bases: cinder.volume.targets.nvmeof.NVMeOF

create_nvmeof_target(volume_id, subsystem_name, target_ip, target_port, transport_type,
nvmet_port_id, ns_id, volume_path)

delete_nvmeof_target(volume)

exception NVMETTargetAddError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to add subsystem: %(subsystem)s'

exception NVMETTargetDeleteError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to delete subsystem: %(subsystem)s'

4.1. Contributing to Cinder 1081

Cinder Documentation, Release 20.3.2.dev3

cinder.volume.targets.scst module

class SCSTAdm(*args, **kwargs)
Bases: cinder.volume.targets.iscsi.ISCSITarget

create_export(context, volume, volume_path)
Creates an export for a logical volume.

create_iscsi_target(name, vol_id, tid, lun, path, chap_auth=None)

ensure_export(context, volume, volume_path)
Recreates an export for a logical volume.

remove_export(context, volume)
Removes an export for a Target/Volume.

remove_iscsi_target(tid, lun, vol_id, vol_name, **kwargs)

scst_execute(*args)

show_target(tid, iqn)

terminate_connection(volume, connector, **kwargs)
Disallow connection from connector.

validate_connector(connector)

cinder.volume.targets.spdknvmf module

class SpdkNvmf(*args, **kwargs)
Bases: cinder.volume.targets.nvmeof.NVMeOF

create_nvmeof_target(volume_id, subsystem_name, target_ip, target_port, transport_type,
nvmet_port_id, ns_id, volume_path)

delete_nvmeof_target(target_name)

cinder.volume.targets.tgt module

class TgtAdm(*args, **kwargs)
Bases: cinder.volume.targets.iscsi.ISCSITarget

Target object for block storage devices.

Base class for target object, where target is data transport mechanism (target) specific calls. This
includes things like create targets, attach, detach etc.

VOLUME_CONF = '\n<target %(name)s>\n backing-store %(path)s\n driver
%(driver)s\n %(chap_auth)s\n %(target_flags)s\n write-cache
%(write_cache)s\n</target>\n'

create_iscsi_target(name, tid, lun, path, chap_auth=None, **kwargs)

remove_iscsi_target(tid, lun, vol_id, vol_name, **kwargs)

1082 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Module contents

Submodules

cinder.volume.api module

Handles all requests relating to volumes.

class API(image_service=None)
Bases: cinder.db.base.Base

API for interacting with the volume manager.

AVAILABLE_MIGRATION_STATUS = (None, 'deleting', 'error', 'success')

accept_transfer(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, new_user: str, new_project: str,
no_snapshots: bool = False)→ dict

attach(context: cinder.context.RequestContext, volume: cinder.objects.volume.Volume,
instance_uuid: str, host_name: str, mountpoint: str, mode: str)→
cinder.objects.volume_attachment.VolumeAttachment

attachment_create(ctxt: cinder.context.RequestContext, volume_ref:
cinder.objects.volume.Volume, instance_uuid: str, connector:
Optional[dict] = None, attach_mode: Optional[str] = ’null’)→
cinder.objects.volume_attachment.VolumeAttachment

Create an attachment record for the specified volume.

attachment_delete(ctxt: cinder.context.RequestContext, attachment)→
cinder.objects.volume_attachment.VolumeAttachmentList

attachment_deletion_allowed(ctxt: cinder.context.RequestContext,
attachment_or_attachment_id, volume=None)

Check if deleting an attachment is allowed (Bug #2004555)

Allowed is based on the REST API policy, the status of the attachment, where it is used, and
who is making the request.

Deleting an attachment on the Cinder side while leaving the volume connected to the nova
host results in leftover devices that can lead to data leaks/corruption.

OS-Brick may have code to detect it, but in some cases it is detected after it has already been
exposed, so its better to prevent users from being able to intentionally triggering the issue.

attachment_update(ctxt: cinder.context.RequestContext, attachment_ref:
cinder.objects.volume_attachment.VolumeAttachment, connector)→
cinder.objects.volume_attachment.VolumeAttachment

Update an existing attachment record.

begin_detaching(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume)→ None

calculate_resource_count(context: cinder.context.RequestContext, resource_type: str,
filters: Optional[dict])→ int

check_volume_filters(filters: dict, strict: bool = False)→ None
Sets the user filter value to accepted format

4.1. Contributing to Cinder 1083

Cinder Documentation, Release 20.3.2.dev3

copy_volume_to_image(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, metadata: Dict[str, str], force: bool)
→ Dict[str, Optional[str]]

Create a new image from the specified volume.

create(context: cinder.context.RequestContext, size: Optional[Union[str, int]], name:
Optional[str], description: Optional[str], snapshot:
Optional[cinder.objects.snapshot.Snapshot] = None, image_id: Optional[str] = None,
volume_type: Optional[cinder.objects.volume_type.VolumeType] = None, metadata:
Optional[dict] = None, availability_zone: Optional[str] = None, source_volume:
Optional[cinder.objects.volume.Volume] = None, scheduler_hints=None,
source_replica=None, consistencygroup:
Optional[cinder.objects.consistencygroup.ConsistencyGroup] = None, cgsnapshot:
Optional[cinder.objects.cgsnapshot.CGSnapshot] = None, source_cg=None, group:
Optional[cinder.objects.group.Group] = None, group_snapshot=None,
source_group=None, backup: Optional[cinder.objects.backup.Backup] = None)

create_snapshot(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, name: str, description: str, metadata:
Optional[Dict[str, Any]] = None, cgsnapshot_id: Optional[str] = None,
group_snapshot_id: Optional[str] = None, allow_in_use: bool = False)→
cinder.objects.snapshot.Snapshot

create_snapshot_force(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, name: str, description: str,
metadata: Optional[Dict[str, Any]] = None)→
cinder.objects.snapshot.Snapshot

create_snapshot_in_db(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, name: Optional[str], description:
Optional[str], force: bool, metadata: Optional[dict],
cgsnapshot_id: Optional[str], commit_quota: bool = True,
group_snapshot_id: Optional[str] = None, allow_in_use: bool =
False)→ cinder.objects.snapshot.Snapshot

create_snapshots_in_db(context: cinder.context.RequestContext, volume_list: list, name:
str, description: str, cgsnapshot_id: str, group_snapshot_id:
Optional[str] = None)→ list

create_volume_metadata(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, metadata: Dict[str, Any])→ dict

Creates volume metadata.

delete(context: cinder.context.RequestContext, volume: cinder.objects.volume.Volume, force:
bool = False, unmanage_only: bool = False, cascade: bool = False)→ None

delete_snapshot(context: cinder.context.RequestContext, snapshot:
cinder.objects.snapshot.Snapshot, force: bool = False, unmanage_only:
bool = False)→ None

delete_snapshot_metadata(context: cinder.context.RequestContext, snapshot:
cinder.objects.snapshot.Snapshot, key: str)→ None

Delete the given metadata item from a snapshot.

1084 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

delete_volume_metadata(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, key: str,
meta_type=METADATA_TYPES.user)→ None

Delete the given metadata item from a volume.

detach(context: cinder.context.RequestContext, volume: cinder.objects.volume.Volume,
attachment_id: str)→ None

extend(context: cinder.context.RequestContext, volume: cinder.objects.volume.Volume,
new_size: int)→ None

extend_attached_volume(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, new_size: int)→ None

failover(ctxt: cinder.context.RequestContext, host: str, cluster_name: str, secondary_id:
Optional[str] = None)→ None

freeze_host(ctxt: cinder.context.RequestContext, host: str, cluster_name: str)→ None

get(context: cinder.context.RequestContext, volume_id: str, viewable_admin_meta: bool =
False)→ cinder.objects.volume.Volume

get_all(context: cinder.context.RequestContext, marker: Optional[str] = None, limit:
Optional[int] = None, sort_keys: Optional[Iterable[str]] = None, sort_dirs:
Optional[Iterable[str]] = None, filters: Optional[dict] = None, viewable_admin_meta:
bool = False, offset: Optional[int] = None)→ cinder.objects.volume.VolumeList

get_all_snapshots(context: cinder.context.RequestContext, search_opts: Optional[dict] =
None, marker: Optional[str] = None, limit: Optional[int] = None,
sort_keys: Optional[List[str]] = None, sort_dirs: Optional[List[str]] =
None, offset: Optional[int] = None)→
cinder.objects.snapshot.SnapshotList

get_list_volumes_image_metadata(context: cinder.context.RequestContext,
volume_id_list: List[str])→ DefaultDict[str, str]

get_manageable_snapshots(context: cinder.context.RequestContext, host: str, cluster_name:
Optional[str], marker: Optional[str] = None, limit:
Optional[int] = None, offset: Optional[int] = None, sort_keys:
Optional[List[str]] = None, sort_dirs: Optional[List[str]] =
None)→ List[dict]

get_manageable_volumes(context: cinder.context.RequestContext, host: str, cluster_name,
marker: Optional[str] = None, limit: Optional[int] = None, offset:
Optional[int] = None, sort_keys: Optional[List[str]] = None,
sort_dirs: Optional[List[str]] = None)

get_snapshot(context: cinder.context.RequestContext, snapshot_id: str)→
cinder.objects.snapshot.Snapshot

get_snapshot_metadata(context: cinder.context.RequestContext, snapshot:
cinder.objects.snapshot.Snapshot)→ dict

Get all metadata associated with a snapshot.

get_volume(context: cinder.context.RequestContext, volume_id: str)→
cinder.objects.volume.Volume

get_volume_image_metadata(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume)→ Dict[str, str]

4.1. Contributing to Cinder 1085

Cinder Documentation, Release 20.3.2.dev3

get_volume_metadata(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume)→ dict

Get all metadata associated with a volume.

get_volume_summary(context: cinder.context.RequestContext, filters: Optional[dict] = None)
→ cinder.objects.volume.VolumeList

get_volumes_image_metadata(context: cinder.context.RequestContext)→
collections.defaultdict

initialize_connection(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, connector: dict)→ dict

static is_service_request(ctxt: cinder.context.RequestContext)→ bool
Check if a request is coming from a service

A request is coming from a service if it has a service token and the service user has one of the
roles configured in the service_token_roles configuration option in the [keystone_authtoken]
section (defaults to service).

list_availability_zones(enable_cache: bool = False, refresh_cache: bool = False)→
tuple

Describe the known availability zones

Parameters

• enable_cache Enable az cache

• refresh_cache Refresh cache immediately

Returns tuple of dicts, each with a name and available key

manage_existing(context: cinder.context.RequestContext, host: str, cluster_name:
Optional[str], ref: dict, name: Optional[str] = None, description:
Optional[str] = None, volume_type:
Optional[cinder.objects.volume_type.VolumeType] = None, metadata:
Optional[dict] = None, availability_zone: Optional[str] = None, bootable:
Optional[bool] = False)→ cinder.objects.volume.Volume

manage_existing_snapshot(context: cinder.context.RequestContext, ref: dict, volume:
cinder.objects.volume.Volume, name: Optional[str] = None,
description: Optional[str] = None, metadata: Optional[dict] =
None)→ cinder.objects.snapshot.Snapshot

migrate_volume(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, host: str, cluster_name: str, force_copy:
bool, lock_volume: bool)→ None

Migrate the volume to the specified host or cluster.

migrate_volume_completion(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, new_volume:
cinder.objects.volume.Volume, error: bool)→ str

reimage(context, volume, image_id, reimage_reserved=False)

reserve_volume(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume)→ None

1086 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

retype(context: cinder.context.RequestContext, volume: cinder.objects.volume.Volume,
new_type: Union[str, cinder.objects.volume_type.VolumeType], migration_policy:
Optional[str] = None)→ None

Attempt to modify the type associated with an existing volume.

revert_to_snapshot(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, snapshot:
cinder.objects.snapshot.Snapshot)→ None

revert a volume to a snapshot

roll_detaching(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume)→ None

terminate_connection(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, connector: dict, force: bool = False)
→ None

thaw_host(ctxt: cinder.context.RequestContext, host: str, cluster_name: str)→ Optional[str]

unreserve_volume(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume)→ None

update(context: cinder.context.RequestContext, volume: cinder.objects.volume.Volume, fields:
dict)→ None

update_readonly_flag(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, flag)→ None

update_snapshot(context: cinder.context.RequestContext, snapshot:
cinder.objects.snapshot.Snapshot, fields: Dict[str, Any])→ None

update_snapshot_metadata(context: cinder.context.RequestContext, snapshot:
cinder.objects.snapshot.Snapshot, metadata: Dict[str, Any],
delete: bool = False)→ dict

Updates or creates snapshot metadata.

If delete is True, metadata items that are not specified in the metadata argument will be
deleted.

update_volume_admin_metadata(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, metadata: Dict[str, Any],
delete: Optional[bool] = False, add: Optional[bool] =
True, update: Optional[bool] = True)→ dict

Updates or creates volume administration metadata.

If delete is True, metadata items that are not specified in the metadata argument will be
deleted.

update_volume_metadata(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, metadata: Dict[str, Any], delete:
bool = False, meta_type=METADATA_TYPES.user)→ dict

Updates volume metadata.

If delete is True, metadata items that are not specified in the metadata argument will be
deleted.

class HostAPI
Bases: cinder.db.base.Base

4.1. Contributing to Cinder 1087

Cinder Documentation, Release 20.3.2.dev3

Sub-set of the Volume Manager API for managing host operations.

set_host_enabled(context, host, enabled)
Sets the specified hosts ability to accept new volumes.

cinder.volume.configuration module

Configuration support for all drivers.

This module allows support for setting configurations either from default or from a particular FLAGS
group, to be able to set multiple configurations for a given set of values.

For instance, two lvm configurations can be set by naming them in groups as

[lvm1] volume_group=lvm-group-1

[lvm2] volume_group=lvm-group-2

And the configuration group name will be passed in so that all calls to configuration.volume_group within
that instance will be mapped to the proper named group.

This class also ensures the implementations configuration is grafted into the option group. This is due to
the way cfg works. All cfg options must be defined and registered in the group in which they are used.

class BackendGroupConfiguration(volume_opts, config_group=None)
Bases: object

append_config_values(volume_opts)

get(key, default=None)

safe_get(value)

set_default(opt_name, default)

class Configuration(volume_opts, config_group=None)
Bases: object

append_config_values(volume_opts)

safe_get(value)

class DefaultGroupConfiguration
Bases: object

Get config options from only DEFAULT.

append_config_values(volume_opts)

safe_get(value)

1088 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.volume.driver module

Drivers for volumes.

class BaseVD(execute=<function execute>, *args, **kwargs)
Bases: object

Executes commands relating to Volumes.

Base Driver for Cinder Volume Control Path, This includes supported/required implemen-
tation for API calls. Also provides generic implementation of core features like cloning,
copy_image_to_volume etc, this way drivers that inherit from this base class and dont offer their
own impl can fall back on a general solution here.

Key thing to keep in mind with this driver is that its intended that these drivers ONLY implement
Control Path details (create, delete, extend), while transport or data path related implementation
should be a member object that we call a connector. The point here is that for example dont allow
the LVM driver to implement iSCSI methods, instead call whatever connector it has configured
via conf file (iSCSI{LIO, TGT, ET}, FC, etc).

In the base class and for example the LVM driver we do this via a has-a relationship and just provide
an interface to the specific connector methods. How you do this in your own driver is of course up
to you.

REPLICATION_FEATURE_CHECKERS = {'a/a': 'failover_completed', 'v2.1':
'failover_host'}

SUPPORTED = True

SUPPORTS_ACTIVE_ACTIVE = False

VERSION = 'N/A'

accept_transfer(context, volume, new_user, new_project)

after_volume_copy(context, src_vol, dest_vol, remote=None)
Driver-specific actions after copyvolume data.

This method will be called after _copy_volume_data during volume migration

backup_use_temp_snapshot()
Get the configured setting for backup from snapshot.

If an inheriting driver does not support this operation, the driver should override this method
to return false and log a warning letting the administrator know they have configured some-
thing that cannot be done.

before_volume_copy(context, src_vol, dest_vol, remote=None)
Driver-specific actions before copyvolume data.

This method will be called before _copy_volume_data during volume migration

abstract check_for_setup_error()

classmethod clean_snapshot_file_locks(snapshot_id)
Clean up driver specific snapshot locks.

This method will be called when a snapshot has been removed from cinder or when we detect
that the snapshot doesnt exist.

There are 3 types of locks in Cinder:

4.1. Contributing to Cinder 1089

Cinder Documentation, Release 20.3.2.dev3

• Process locks: Dont need cleanup

• Node locks: Must use cinder.utils.synchronized_remove

• Global locks: Must use cinder.coordination.synchronized_remove

When using method cinder.utils.synchronized_remove we must pass the exact lock name,
whereas method cinder.coordination.synchronized_remove accepts a glob.

Refer to clean_volume_file_locks, api_clean_volume_file_locks, and
clean_snapshot_file_locks in cinder.utils for examples.

classmethod clean_volume_file_locks(volume_id)
Clean up driver specific volume locks.

This method will be called when a volume has been removed from Cinder or when we detect
that the volume doesnt exist.

There are 3 types of locks in Cinder:

• Process locks: Dont need cleanup

• Node locks: Must use cinder.utils.synchronized_remove

• Global locks: Must use cinder.coordination.synchronized_remove

When using method cinder.utils.synchronized_remove we must pass the exact lock name,
whereas method cinder.coordination.synchronized_remove accepts a glob.

Refer to clean_volume_file_locks, api_clean_volume_file_locks, and
clean_snapshot_file_locks in cinder.utils for examples.

clear_download(context, volume)
Clean up after an interrupted image copy.

clone_image(context, volume, image_location, image_meta, image_service)

copy_image_to_encrypted_volume(context, volume, image_service, image_id)
Fetch image from image_service and write to encrypted volume.

This attaches the encryptor layer when connecting to the volume.

copy_image_to_volume(context, volume, image_service, image_id)
Fetch image from image_service and write to unencrypted volume.

This does not attach an encryptor layer when connecting to the volume.

copy_volume_to_image(context, volume, image_service, image_meta)
Copy the volume to the specified image.

create_cloned_volume(volume, src_vref)
Creates a clone of the specified volume.

If volume_type extra specs includes replication: <is> True the driver needs to create a vol-
ume replica (secondary) and setup replication between the newly created volume and the
secondary volume.

abstract create_export(context, volume, connector)
Exports the volume.

Can optionally return a Dictionary of changes to the volume object to be persisted.

1090 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

create_export_snapshot(context, snapshot, connector)
Exports the snapshot.

Can optionally return a Dictionary of changes to the snapshot object to be persisted.

create_group(context, group)
Creates a group.

Parameters

• context the context of the caller.

• group the Group object of the group to be created.

Returns model_update

model_update will be in this format: {status: xxx, }.

If the status in model_update is error, the manager will throw an exception and it will be
caught in the try-except block in the manager. If the driver throws an exception, the manager
will also catch it in the try-except block. The group status in the db will be changed to error.

For a successful operation, the driver can either build the model_update and return it or return
None. The group status will be set to available.

create_group_from_src(context, group, volumes, group_snapshot=None, snapshots=None,
source_group=None, source_vols=None)

Creates a group from source.

Parameters

• context the context of the caller.

• group the Group object to be created.

• volumes a list of Volume objects in the group.

• group_snapshot the GroupSnapshot object as source.

• snapshots a list of Snapshot objects in group_snapshot.

• source_group the Group object as source.

• source_vols a list of Volume objects in the source_group.

Returns model_update, volumes_model_update

The source can be group_snapshot or a source_group.

param volumes is a list of objects retrieved from the db. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be built by
the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update will be in
this format: {status: xxx, }.

To be consistent with other volume operations, the manager will assume the operation is
successful if no exception is thrown by the driver. For a successful operation, the driver can
either build the model_update and volumes_model_update and return them or return None,
None.

create_group_snapshot(context, group_snapshot, snapshots)
Creates a group_snapshot.

Parameters

4.1. Contributing to Cinder 1091

Cinder Documentation, Release 20.3.2.dev3

• context the context of the caller.

• group_snapshot the GroupSnapshot object to be created.

• snapshots a list of Snapshot objects in the group_snapshot.

Returns model_update, snapshots_model_update

param snapshots is a list of Snapshot objects. It cannot be assigned to snap-
shots_model_update. snapshots_model_update is a list of dictionaries. It has to be built
by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update will be
in this format: {status: xxx, }.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error, the status in model_update will
be set to the same if it is not already error.

If the status in model_update is error, the manager will raise an exception and the status of
group_snapshot will be set to error in the db. If snapshots_model_update is not returned by
the driver, the manager will set the status of every snapshot to error in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of group_snapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of group_snapshot
and all snapshots will be set to available at the end of the manager function.

abstract create_volume(volume)
Creates a volume.

Can optionally return a Dictionary of changes to the volume object to be persisted.

If volume_type extra specs includes capabilities:replication <is> True the driver needs to
create a volume replica (secondary), and setup replication between the newly created volume
and the secondary volume. Returned dictionary should include:

volume['replication_status'] = 'copying'
volume['replication_extended_status'] = <driver specific value>
volume['driver_data'] = <driver specific value>

create_volume_from_backup(volume, backup)
Creates a volume from a backup.

Can optionally return a Dictionary of changes to the volume object to be persisted.

Parameters

• volume the volume object to be created.

• backup the backup object as source.

Returns volume_model_update

delete_group(context, group, volumes)
Deletes a group.

1092 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Parameters

• context the context of the caller.

• group the Group object of the group to be deleted.

• volumes a list of Volume objects in the group.

Returns model_update, volumes_model_update

param volumes is a list of objects retrieved from the db. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be built by
the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update will be in
this format: {status: xxx, }.

The driver should populate volumes_model_update and model_update and return them.

The manager will check volumes_model_update and update db accordingly for each volume.
If the driver successfully deleted some volumes but failed to delete others, it should set sta-
tuses of the volumes accordingly so that the manager can update db correctly.

If the status in any entry of volumes_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of the group will be set to error in the db. If volumes_model_update is not
returned by the driver, the manager will set the status of every volume in the group to error
in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager. The statuses of the group and all volumes in it will be set to error.

For a successful operation, the driver can either build the model_update and vol-
umes_model_update and return them or return None, None. The statuses of the group and
all volumes will be set to deleted after the manager deletes them from db.

delete_group_snapshot(context, group_snapshot, snapshots)
Deletes a group_snapshot.

Parameters

• context the context of the caller.

• group_snapshot the GroupSnapshot object to be deleted.

• snapshots a list of Snapshot objects in the group_snapshot.

Returns model_update, snapshots_model_update

param snapshots is a list of objects. It cannot be assigned to snapshots_model_update. snap-
shots_model_update is a list of of dictionaries. It has to be built by the driver. An entry will
be in this format: {id: xxx, status: xxx, }. model_update will be in this format: {status: xxx,
}.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

4.1. Contributing to Cinder 1093

Cinder Documentation, Release 20.3.2.dev3

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of group_snapshot will be set to error in the db. If snapshots_model_update
is not returned by the driver, the manager will set the status of every snapshot to error in the
except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of group_snapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of group_snapshot
and all snapshots will be set to deleted after the manager deletes them from db.

abstract delete_volume(volume)
Deletes a volume.

If volume_type extra specs includes replication: <is> True then the driver needs to delete the
volume replica too.

It is imperative that this operation ensures that the data from the deleted volume cannot leak
into new volumes when they are created, as new volumes are likely to belong to a different
tenant/project.

If the driver uses custom file locks they should be cleaned on success using cin-
der.utils.synchronized_remove

disable_replication(context, group, volumes)
Disables replication for a group and volumes in the group.

Parameters

• group group object

• volumes list of volume objects in the group

Returns model_update - dict of group updates

Returns volume_model_updates - list of dicts of volume updates

do_setup(context)
Any initialization the volume driver does while starting.

enable_replication(context, group, volumes)
Enables replication for a group and volumes in the group.

Parameters

• group group object

• volumes list of volume objects in the group

Returns model_update - dict of group updates

Returns volume_model_updates - list of dicts of volume updates

abstract ensure_export(context, volume)
Synchronously recreates an export for a volume.

extend_volume(volume, new_size)

failover(context, volumes, secondary_id=None, groups=None)
Like failover but for a host that is clustered.

1094 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Most of the time this will be the exact same behavior as failover_host, so if its not overwritten,
it is assumed to be the case.

failover_completed(context, active_backend_id=None)
This method is called after failover for clustered backends.

failover_host(context, volumes, secondary_id=None, groups=None)
Failover a backend to a secondary replication target.

Instructs a replication capable/configured backend to failover to one of its secondary replica-
tion targets. host=None is an acceptable input, and leaves it to the driver to failover to the only
configured target, or to choose a target on its own. All of the hosts volumes will be passed
on to the driver in order for it to determine the replicated volumes on the host, if needed.

Response is a tuple, including the new target backend_id AND a lit of dictionaries
with volume_id and updates. Key things to consider (attaching failed-over volumes): -
provider_location - provider_auth - provider_id - replication_status

Parameters

• context security context

• volumes list of volume objects, in case the driver needs to take action on
them in some way

• secondary_id Specifies rep target backend to fail over to

• groups replication groups

Returns ID of the backend that was failed-over to, model update for volumes, and
model update for groups

failover_replication(context, group, volumes, secondary_backend_id=None)
Fails over replication for a group and volumes in the group.

Parameters

• group group object

• volumes list of volume objects in the group

• secondary_backend_id backend_id of the secondary site

Returns model_update - dict of group updates

Returns volume_model_updates - list of dicts of volume updates

freeze_backend(context)
Notify the backend that its frozen.

We use set to prohibit the creation of any new resources on the backend, or any modifications
to existing items on a backend. We set/enforce this by not allowing scheduling of new volumes
to the specified backend, and checking at the api for modifications to resources and failing.

In most cases the driver may not need to do anything, but this provides a handle if they need
it.

Parameters context security context

Response True|False

4.1. Contributing to Cinder 1095

Cinder Documentation, Release 20.3.2.dev3

get_backup_device(context, backup)
Get a backup device from an existing volume.

The function returns a volume or snapshot to backup service, and then backup service attaches
the device and does backup.

get_default_filter_function()
Get the default filter_function string.

Each driver could overwrite the method to return a well-known default string if it is available.

Returns None

get_default_goodness_function()
Get the default goodness_function string.

Each driver could overwrite the method to return a well-known default string if it is available.

Returns None

static get_driver_options()
Return the oslo_config options specific to the driver.

get_filter_function()
Get filter_function string.

Returns either the string from the driver instance or global section in cinder.conf. If nothing
is specified in cinder.conf, then try to find the default filter_function. When None is returned
the scheduler will always pass the driver instance.

Returns a filter_function string or None

get_goodness_function()
Get good_function string.

Returns either the string from the driver instance or global section in cinder.conf. If nothing
is specified in cinder.conf, then try to find the default goodness_function. When None is
returned the scheduler will give the lowest score to the driver instance.

Returns a goodness_function string or None

get_pool(volume)
Return pool name where volume reside on.

Parameters volume The volume hosted by the driver.

Returns name of the pool where given volume is in.

get_replication_error_status(context, groups)
Returns error info for replicated groups and its volumes.

Returns group_model_updates - list of dicts of group updates

if error happens. For example, a dict of a group can be as follows:

{'group_id': xxxx,
'replication_status': fields.ReplicationStatus.ERROR}

Returns volume_model_updates - list of dicts of volume updates

if error happens. For example, a dict of a volume can be as follows:

1096 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

{'volume_id': xxxx,
'replication_status': fields.ReplicationStatus.ERROR}

get_version()
Get the current version of this driver.

get_volume_stats(refresh=False)
Get volume stats.

If refresh is True, run update the stats first.

init_capabilities()
Obtain backend volume stats and capabilities list.

This stores a dictionary which is consisted of two parts. First part includes static backend
capabilities which are obtained by get_volume_stats(). Second part is properties, which in-
cludes parameters correspond to extra specs. This properties part is consisted of cinder stan-
dard capabilities and vendor unique properties.

Using this capabilities list, operator can manage/configure backend using key/value from
capabilities without specific knowledge of backend.

abstract initialize_connection(volume, connector)
Allow connection to connector and return connection info.

..note:: Whether or not a volume is cacheable for volume local cache on the hypervisor is
normally configured in the volume-type extra-specs. Support may be disabled at the
driver level, however, by returning cacheable: False in the conn_info. This will override
any setting in the volume-type extra-specs.

Parameters

• volume The volume to be attached

• connector Dictionary containing information about what is being con-
nected to.

Returns conn_info A dictionary of connection information.

initialize_connection_snapshot(snapshot, connector, **kwargs)
Allow connection to connector and return connection info.

Parameters

• snapshot The snapshot to be attached

• connector Dictionary containing information about what is being con-
nected to.

Returns conn_info A dictionary of connection information. This can optionally
include a initiator_updates field.

The initiator_updates field must be a dictionary containing a set_values and/or remove_values
field. The set_values field must be a dictionary of key-value pairs to be set/updated in the db.
The remove_values field must be a list of keys, previously set with set_values, that will be
deleted from the db.

property initialized

4.1. Contributing to Cinder 1097

Cinder Documentation, Release 20.3.2.dev3

manage_existing(volume, existing_ref)
Manage exiting stub.

This is for drivers that dont implement manage_existing().

migrate_volume(context, volume, host)
Migrate volume stub.

This is for drivers that dont implement an enhanced version of this operation.

abstract remove_export(context, volume)
Removes an export for a volume.

remove_export_snapshot(context, snapshot)
Removes an export for a snapshot.

retype(context, volume, new_type, diff, host)

secure_file_operations_enabled()
Determine if driver is running in Secure File Operations mode.

The Cinder Volume driver needs to query if this driver is running in a secure file operations
mode. By default, it is False: any driver that does support secure file operations should
override this method.

set_initialized()

set_throttle()

snapshot_revert_use_temp_snapshot()

property supported

classmethod supports_replication_feature(feature)
Check if driver class supports replication features.

Feature is a string that must be one of:

• v2.1

• a/a

abstract terminate_connection(volume, connector, **kwargs)
Disallow connection from connector.

Parameters

• volume The volume to be disconnected.

• connector A dictionary describing the connection with details about the
initiator. Can be None.

terminate_connection_snapshot(snapshot, connector, **kwargs)
Disallow connection from connector.

thaw_backend(context)
Notify the backend that its unfrozen/thawed.

Returns the backend to a normal state after a freeze operation.

In most cases the driver may not need to do anything, but this provides a handle if they need
it.

Parameters context security context

1098 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Response True|False

unmanage(volume)
Unmanage stub.

This is for drivers that dont implement unmanage().

update_group(context, group, add_volumes=None, remove_volumes=None)
Updates a group.

Parameters

• context the context of the caller.

• group the Group object of the group to be updated.

• add_volumes a list of Volume objects to be added.

• remove_volumes a list of Volume objects to be removed.

Returns model_update, add_volumes_update, remove_volumes_update

model_update is a dictionary that the driver wants the manager to update upon a successful
return. If None is returned, the manager will set the status to available.

add_volumes_update and remove_volumes_update are lists of dictionaries that the driver
wants the manager to update upon a successful return. Note that each entry requires a {id:
xxx} so that the correct volume entry can be updated. If None is returned, the volume
will remain its original status. Also note that you cannot directly assign add_volumes to
add_volumes_update as add_volumes is a list of volume objects and cannot be used for db
update directly. Same with remove_volumes.

If the driver throws an exception, the status of the group as well as those of the volumes to be
added/removed will be set to error.

update_migrated_volume(ctxt, volume, new_volume, original_volume_status)
Return model update for migrated volume.

Each driver implementing this method needs to be responsible for the values of _name_id
and provider_location. If None is returned or either key is not set, it means the volume table
does not need to change the value(s) for the key(s). The return format is {_name_id: value,
provider_location: value}.

Parameters

• volume The original volume that was migrated to this backend

• new_volume The migration volume object that was created on this backend
as part of the migration process

• original_volume_status The status of the original volume

Returns model_update to update DB with any needed changes

update_provider_info(volumes, snapshots)
Get provider info updates from driver.

Parameters

• volumes List of Cinder volumes to check for updates

• snapshots List of Cinder snapshots to check for updates

4.1. Contributing to Cinder 1099

Cinder Documentation, Release 20.3.2.dev3

Returns tuple (volume_updates, snapshot_updates)

where volume updates {id: uuid, provider_id: <provider-id>} and snapshot updates {id:
uuid, provider_id: <provider-id>}

validate_connector(connector)
Fail if connector doesnt contain all the data needed by driver.

static validate_connector_has_setting(connector, setting)

class CloneableImageVD
Bases: object

abstract clone_image(volume, image_location, image_id, image_meta, image_service)
Create a volume efficiently from an existing image.

image_location is a string whose format depends on the image service backend in use. The
driver should use it to determine whether cloning is possible.

image_id is a string which represents id of the image. It can be used by the driver to introspect
internal stores or registry to do an efficient image clone.

image_meta is a dictionary that includes disk_format (e.g. raw, qcow2) and other image
attributes that allow drivers to decide whether they can clone the image without first requiring
conversion.

image_service is the reference of the image_service to use. Note that this is needed to be
passed here for drivers that will want to fetch images from the image service directly.

Returns a dict of volume properties eg. provider_location, boolean indicating whether
cloning occurred

class FibreChannelDriver(*args, **kwargs)
Bases: cinder.volume.driver.VolumeDriver

Executes commands relating to Fibre Channel volumes.

initialize_connection(volume, connector)
Initializes the connection and returns connection info.

The driver returns a driver_volume_type of fibre_channel. The target_wwn can be a single
entry or a list of wwns that correspond to the list of remote wwn(s) that will export the volume.
Example return values:

{
'driver_volume_type': 'fibre_channel',
'data': {

'target_discovered': True,
'target_lun': 1,
'target_wwn': '1234567890123',
'discard': False,

}
}

or

{
'driver_volume_type': 'fibre_channel',

(continues on next page)

1100 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

'data': {
'target_discovered': True,
'target_lun': 1,
'target_wwn': ['1234567890123', '0987654321321'],
'discard': False,

}
}

validate_connector(connector)
Fail if connector doesnt contain all the data needed by driver.

Do a check on the connector and ensure that it has wwnns, wwpns.

static validate_connector_has_setting(connector, setting)
Test for non-empty setting in connector.

class ISCSIDriver(*args, **kwargs)
Bases: cinder.volume.driver.VolumeDriver

Executes commands relating to ISCSI volumes.

We make use of model provider properties as follows:

provider_location if present, contains the iSCSI target information in the same format as an
ietadm discovery i.e. <ip>:<port>,<portal> <target IQN>

provider_auth if present, contains a space-separated triple: <auth method> <auth username>
<auth password>. CHAP is the only auth_method in use at the moment.

initialize_connection(volume, connector)
Initializes the connection and returns connection info.

The iscsi driver returns a driver_volume_type of iscsi. The format of the driver data is defined
in _get_iscsi_properties. Example return value:

{
'driver_volume_type': 'iscsi',
'data': {

'target_discovered': True,
'target_iqn': 'iqn.2010-10.org.openstack:volume-00000001',
'target_portal': '127.0.0.0.1:3260',
'volume_id': 1,
'discard': False,

}
}

If the backend driver supports multiple connections for multipath and for single path with
failover, target_portals, target_iqns, target_luns are also populated:

{
'driver_volume_type': 'iscsi',
'data': {

'target_discovered': False,
'target_iqn': 'iqn.2010-10.org.openstack:volume1',

(continues on next page)

4.1. Contributing to Cinder 1101

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

'target_iqns': ['iqn.2010-10.org.openstack:volume1',
'iqn.2010-10.org.openstack:volume1-2'],

'target_portal': '10.0.0.1:3260',
'target_portals': ['10.0.0.1:3260', '10.0.1.1:3260'],
'target_lun': 1,
'target_luns': [1, 1],
'volume_id': 1,
'discard': False,

}
}

terminate_connection(volume, connector, **kwargs)
Disallow connection from connector

Parameters

• volume The volume to be disconnected.

• connector A dictionary describing the connection with details about the
initiator. Can be None.

validate_connector(connector)
Fail if connector doesnt contain all the data needed by driver.

class ISERDriver(*args, **kwargs)
Bases: cinder.volume.driver.ISCSIDriver

Executes commands relating to ISER volumes.

We make use of model provider properties as follows:

provider_location if present, contains the iSER target information in the same format as an
ietadm discovery i.e. <ip>:<port>,<portal> <target IQN>

provider_auth if present, contains a space-separated triple: <auth method> <auth username>
<auth password>. CHAP is the only auth_method in use at the moment.

initialize_connection(volume, connector)
Initializes the connection and returns connection info.

The iser driver returns a driver_volume_type of iser. The format of the driver data is defined
in _get_iser_properties. Example return value:

{
'driver_volume_type': 'iser',
'data': {

'target_discovered': True,
'target_iqn':
'iqn.2010-10.org.iser.openstack:volume-00000001',
'target_portal': '127.0.0.0.1:3260',
'volume_id': 1,

}
}

class ManageableSnapshotsVD
Bases: object

1102 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_manageable_snapshots(cinder_snapshots, marker, limit, offset, sort_keys, sort_dirs)
List snapshots on the backend available for management by Cinder.

Returns a list of dictionaries, each specifying a snapshot in the host, with the following
keys: - reference (dictionary): The reference for a snapshot, which can be passed to man-
age_existing_snapshot. - size (int): The size of the snapshot according to the storage back-
end, rounded up to the nearest GB. - safe_to_manage (boolean): Whether or not this snapshot
is safe to manage according to the storage backend. For example, is the snapshot in use or
invalid for any reason. - reason_not_safe (string): If safe_to_manage is False, the reason why.
- cinder_id (string): If already managed, provide the Cinder ID. - extra_info (string): Any
extra information to return to the user - source_reference (string): Similar to reference, but
for the snapshots source volume.

Parameters

• cinder_snapshots A list of snapshots in this host that Cinder currently
manages, used to determine if a snapshot is manageable or not.

• marker The last item of the previous page; we return the next results after
this value (after sorting)

• limit Maximum number of items to return

• offset Number of items to skip after marker

• sort_keys List of keys to sort results by (valid keys are identifier and size)

• sort_dirs List of directions to sort by, corresponding to sort_keys (valid
directions are asc and desc)

manage_existing_snapshot(snapshot, existing_ref)
Brings an existing backend storage object under Cinder management.

existing_ref is passed straight through from the API requests manage_existing_ref value, and
it is up to the driver how this should be interpreted. It should be sufficient to identify a stor-
age object that the driver should somehow associate with the newly-created cinder snapshot
structure.

There are two ways to do this:

1. Rename the backend storage object so that it matches the snapshot[name] which is how
drivers traditionally map between a cinder snapshot and the associated backend storage
object.

2. Place some metadata on the snapshot, or somewhere in the backend, that allows other
driver requests (e.g. delete) to locate the backend storage object when required.

If the existing_ref doesnt make sense, or doesnt refer to an existing backend storage object,
raise a ManageExistingInvalidReference exception.

Parameters

• snapshot Cinder volume snapshot to manage

• existing_ref Driver-specific information used to identify a volume snap-
shot

manage_existing_snapshot_get_size(snapshot, existing_ref)
Return size of snapshot to be managed by manage_existing.

When calculating the size, round up to the next GB.

4.1. Contributing to Cinder 1103

Cinder Documentation, Release 20.3.2.dev3

Parameters

• snapshot Cinder volume snapshot to manage

• existing_ref Driver-specific information used to identify a volume snap-
shot

Returns size Volume snapshot size in GiB (integer)

unmanage_snapshot(snapshot)
Removes the specified snapshot from Cinder management.

Does not delete the underlying backend storage object.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Cinder-specific configuration that they have associated
with the backend storage object.

Parameters snapshot Cinder volume snapshot to unmanage

class ManageableVD
Bases: object

get_manageable_volumes(cinder_volumes, marker, limit, offset, sort_keys, sort_dirs)
List volumes on the backend available for management by Cinder.

Returns a list of dictionaries, each specifying a volume in the host, with the following keys: -
reference (dictionary): The reference for a volume, which can be passed to manage_existing.
- size (int): The size of the volume according to the storage backend, rounded up to the
nearest GB. - safe_to_manage (boolean): Whether or not this volume is safe to manage ac-
cording to the storage backend. For example, is the volume in use or invalid for any reason.
- reason_not_safe (string): If safe_to_manage is False, the reason why. - cinder_id (string):
If already managed, provide the Cinder ID. - extra_info (string): Any extra information to
return to the user

Parameters

• cinder_volumes A list of volumes in this host that Cinder currently man-
ages, used to determine if a volume is manageable or not.

• marker The last item of the previous page; we return the next results after
this value (after sorting)

• limit Maximum number of items to return

• offset Number of items to skip after marker

• sort_keys List of keys to sort results by (valid keys are identifier and size)

• sort_dirs List of directions to sort by, corresponding to sort_keys (valid
directions are asc and desc)

abstract manage_existing(volume, existing_ref)
Brings an existing backend storage object under Cinder management.

existing_ref is passed straight through from the API requests manage_existing_ref value, and
it is up to the driver how this should be interpreted. It should be sufficient to identify a
storage object that the driver should somehow associate with the newly-created cinder volume
structure.

There are two ways to do this:

1104 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

1. Rename the backend storage object so that it matches the, volume[name] which is how
drivers traditionally map between a cinder volume and the associated backend storage
object.

2. Place some metadata on the volume, or somewhere in the backend, that allows other
driver requests (e.g. delete, clone, attach, detach) to locate the backend storage object
when required.

If the existing_ref doesnt make sense, or doesnt refer to an existing backend storage object,
raise a ManageExistingInvalidReference exception.

The volume may have a volume_type, and the driver can inspect that and compare against
the properties of the referenced backend storage object. If they are incompatible, raise a
ManageExistingVolumeTypeMismatch, specifying a reason for the failure.

Parameters

• volume Cinder volume to manage

• existing_ref Driver-specific information used to identify a volume

abstract manage_existing_get_size(volume, existing_ref)
Return size of volume to be managed by manage_existing.

When calculating the size, round up to the next GB.

Parameters

• volume Cinder volume to manage

• existing_ref Driver-specific information used to identify a volume

Returns size Volume size in GiB (integer)

abstract unmanage(volume)
Removes the specified volume from Cinder management.

Does not delete the underlying backend storage object.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Cinder-specific configuration that they have associated
with the backend storage object.

Parameters volume Cinder volume to unmanage

class MigrateVD
Bases: object

abstract migrate_volume(context, volume, host)
Migrate the volume to the specified host.

Returns a boolean indicating whether the migration occurred, as well as model_update.

Parameters

• context Context

• volume A dictionary describing the volume to migrate

• host A dictionary describing the host to migrate to, where host[host] is its
name, and host[capabilities] is a dictionary of its reported capabilities.

4.1. Contributing to Cinder 1105

Cinder Documentation, Release 20.3.2.dev3

class ProxyVD
Bases: object

Proxy Volume Driver to mark proxy drivers

If a driver uses a proxy class (e.g. by using __setattr__ and __getattr__) without directly inheriting
from base volume driver this class can help marking them and retrieve the actual used driver object.

class VolumeDriver(execute=<function execute>, *args, **kwargs)
Bases: cinder.volume.driver.ManageableVD, cinder.volume.driver.
CloneableImageVD, cinder.volume.driver.ManageableSnapshotsVD, cinder.volume.
driver.MigrateVD, cinder.volume.driver.BaseVD

accept_transfer(context, volume, new_user, new_project)

check_for_setup_error()

clear_download(context, volume)
Clean up after an interrupted image copy.

clone_image(volume, image_location, image_id, image_meta, image_service)
Create a volume efficiently from an existing image.

image_location is a string whose format depends on the image service backend in use. The
driver should use it to determine whether cloning is possible.

image_id is a string which represents id of the image. It can be used by the driver to introspect
internal stores or registry to do an efficient image clone.

image_meta is a dictionary that includes disk_format (e.g. raw, qcow2) and other image
attributes that allow drivers to decide whether they can clone the image without first requiring
conversion.

image_service is the reference of the image_service to use. Note that this is needed to be
passed here for drivers that will want to fetch images from the image service directly.

Returns a dict of volume properties eg. provider_location, boolean indicating whether
cloning occurred

create_cgsnapshot(context, cgsnapshot, snapshots)
Creates a cgsnapshot.

Parameters

• context the context of the caller.

• cgsnapshot the dictionary of the cgsnapshot to be created.

• snapshots a list of snapshot dictionaries in the cgsnapshot.

Returns model_update, snapshots_model_update

param snapshots is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Snapshot to be precise. It cannot be assigned to snap-
shots_model_update. snapshots_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

The driver should populate snapshots_model_update and model_update and return them.

1106 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error, the status in model_update will
be set to the same if it is not already error.

If the status in model_update is error, the manager will raise an exception and the status of
cgsnapshot will be set to error in the db. If snapshots_model_update is not returned by the
driver, the manager will set the status of every snapshot to error in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of cgsnapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of cgsnapshot and
all snapshots will be set to available at the end of the manager function.

create_consistencygroup(context, group)
Creates a consistencygroup.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be created.

Returns model_update

model_update will be in this format: {status: xxx, }.

If the status in model_update is error, the manager will throw an exception and it will be
caught in the try-except block in the manager. If the driver throws an exception, the manager
will also catch it in the try-except block. The group status in the db will be changed to error.

For a successful operation, the driver can either build the model_update and return it or return
None. The group status will be set to available.

create_consistencygroup_from_src(context, group, volumes, cgsnapshot=None,
snapshots=None, source_cg=None,
source_vols=None)

Creates a consistencygroup from source.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be created.

• volumes a list of volume dictionaries in the group.

• cgsnapshot the dictionary of the cgsnapshot as source.

• snapshots a list of snapshot dictionaries in the cgsnapshot.

• source_cg the dictionary of a consistency group as source.

• source_vols a list of volume dictionaries in the source_cg.

Returns model_update, volumes_model_update

The source can be cgsnapshot or a source cg.

4.1. Contributing to Cinder 1107

Cinder Documentation, Release 20.3.2.dev3

param volumes is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Volume to be precise. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

To be consistent with other volume operations, the manager will assume the operation is
successful if no exception is thrown by the driver. For a successful operation, the driver can
either build the model_update and volumes_model_update and return them or return None,
None.

create_export(context, volume, connector)
Exports the volume.

Can optionally return a Dictionary of changes to the volume object to be persisted.

create_export_snapshot(context, snapshot, connector)
Exports the snapshot.

Can optionally return a Dictionary of changes to the snapshot object to be persisted.

create_snapshot(snapshot)
Creates a snapshot.

create_volume(volume)
Creates a volume.

Can optionally return a Dictionary of changes to the volume object to be persisted.

If volume_type extra specs includes capabilities:replication <is> True the driver needs to
create a volume replica (secondary), and setup replication between the newly created volume
and the secondary volume. Returned dictionary should include:

volume['replication_status'] = 'copying'
volume['replication_extended_status'] = <driver specific value>
volume['driver_data'] = <driver specific value>

create_volume_from_snapshot(volume, snapshot)
Creates a volume from a snapshot.

If volume_type extra specs includes replication: <is> True the driver needs to create a vol-
ume replica (secondary), and setup replication between the newly created volume and the
secondary volume.

delete_cgsnapshot(context, cgsnapshot, snapshots)
Deletes a cgsnapshot.

Parameters

• context the context of the caller.

• cgsnapshot the dictionary of the cgsnapshot to be deleted.

• snapshots a list of snapshot dictionaries in the cgsnapshot.

Returns model_update, snapshots_model_update

param snapshots is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Snapshot to be precise. It cannot be assigned to snap-
shots_model_update. snapshots_model_update is a list of dictionaries. It has to be

1108 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

The driver should populate snapshots_model_update and model_update and return them.

The manager will check snapshots_model_update and update db accordingly for each snap-
shot. If the driver successfully deleted some snapshots but failed to delete others, it should
set statuses of the snapshots accordingly so that the manager can update db correctly.

If the status in any entry of snapshots_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of cgsnapshot will be set to error in the db. If snapshots_model_update is not
returned by the driver, the manager will set the status of every snapshot to error in the except
block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager and the statuses of cgsnapshot and all snapshots will be set to error.

For a successful operation, the driver can either build the model_update and snap-
shots_model_update and return them or return None, None. The statuses of cgsnapshot and
all snapshots will be set to deleted after the manager deletes them from db.

delete_consistencygroup(context, group, volumes)
Deletes a consistency group.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be deleted.

• volumes a list of volume dictionaries in the group.

Returns model_update, volumes_model_update

param volumes is retrieved directly from the db. It is a list of cin-
der.db.sqlalchemy.models.Volume to be precise. It cannot be assigned to vol-
umes_model_update. volumes_model_update is a list of dictionaries. It has to be
built by the driver. An entry will be in this format: {id: xxx, status: xxx, }. model_update
will be in this format: {status: xxx, }.

The driver should populate volumes_model_update and model_update and return them.

The manager will check volumes_model_update and update db accordingly for each volume.
If the driver successfully deleted some volumes but failed to delete others, it should set sta-
tuses of the volumes accordingly so that the manager can update db correctly.

If the status in any entry of volumes_model_update is error_deleting or error, the status in
model_update will be set to the same if it is not already error_deleting or error.

If the status in model_update is error_deleting or error, the manager will raise an exception
and the status of the group will be set to error in the db. If volumes_model_update is not
returned by the driver, the manager will set the status of every volume in the group to error
in the except block.

If the driver raises an exception during the operation, it will be caught by the try-except block
in the manager. The statuses of the group and all volumes in it will be set to error.

4.1. Contributing to Cinder 1109

Cinder Documentation, Release 20.3.2.dev3

For a successful operation, the driver can either build the model_update and vol-
umes_model_update and return them or return None, None. The statuses of the group and
all volumes will be set to deleted after the manager deletes them from db.

delete_snapshot(snapshot)
Deletes a snapshot.

If the driver uses custom file locks they should be cleaned on success using cin-
der.utils.synchronized_remove

delete_volume(volume)
Deletes a volume.

If volume_type extra specs includes replication: <is> True then the driver needs to delete the
volume replica too.

It is imperative that this operation ensures that the data from the deleted volume cannot leak
into new volumes when they are created, as new volumes are likely to belong to a different
tenant/project.

If the driver uses custom file locks they should be cleaned on success using cin-
der.utils.synchronized_remove

ensure_export(context, volume)
Synchronously recreates an export for a volume.

extend_volume(volume, new_size)

get_manageable_snapshots(cinder_snapshots, marker, limit, offset, sort_keys, sort_dirs)
List snapshots on the backend available for management by Cinder.

Returns a list of dictionaries, each specifying a snapshot in the host, with the following
keys: - reference (dictionary): The reference for a snapshot, which can be passed to man-
age_existing_snapshot. - size (int): The size of the snapshot according to the storage back-
end, rounded up to the nearest GB. - safe_to_manage (boolean): Whether or not this snapshot
is safe to manage according to the storage backend. For example, is the snapshot in use or
invalid for any reason. - reason_not_safe (string): If safe_to_manage is False, the reason why.
- cinder_id (string): If already managed, provide the Cinder ID. - extra_info (string): Any
extra information to return to the user - source_reference (string): Similar to reference, but
for the snapshots source volume.

Parameters

• cinder_snapshots A list of snapshots in this host that Cinder currently
manages, used to determine if a snapshot is manageable or not.

• marker The last item of the previous page; we return the next results after
this value (after sorting)

• limit Maximum number of items to return

• offset Number of items to skip after marker

• sort_keys List of keys to sort results by (valid keys are identifier and size)

• sort_dirs List of directions to sort by, corresponding to sort_keys (valid
directions are asc and desc)

get_manageable_volumes(cinder_volumes, marker, limit, offset, sort_keys, sort_dirs)
List volumes on the backend available for management by Cinder.

1110 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Returns a list of dictionaries, each specifying a volume in the host, with the following keys: -
reference (dictionary): The reference for a volume, which can be passed to manage_existing.
- size (int): The size of the volume according to the storage backend, rounded up to the
nearest GB. - safe_to_manage (boolean): Whether or not this volume is safe to manage ac-
cording to the storage backend. For example, is the volume in use or invalid for any reason.
- reason_not_safe (string): If safe_to_manage is False, the reason why. - cinder_id (string):
If already managed, provide the Cinder ID. - extra_info (string): Any extra information to
return to the user

Parameters

• cinder_volumes A list of volumes in this host that Cinder currently man-
ages, used to determine if a volume is manageable or not.

• marker The last item of the previous page; we return the next results after
this value (after sorting)

• limit Maximum number of items to return

• offset Number of items to skip after marker

• sort_keys List of keys to sort results by (valid keys are identifier and size)

• sort_dirs List of directions to sort by, corresponding to sort_keys (valid
directions are asc and desc)

get_pool(volume)
Return pool name where volume reside on.

Parameters volume The volume hosted by the driver.

Returns name of the pool where given volume is in.

initialize_connection(volume, connector, **kwargs)
Allow connection to connector and return connection info.

..note:: Whether or not a volume is cacheable for volume local cache on the hypervisor is
normally configured in the volume-type extra-specs. Support may be disabled at the
driver level, however, by returning cacheable: False in the conn_info. This will override
any setting in the volume-type extra-specs.

Parameters

• volume The volume to be attached

• connector Dictionary containing information about what is being con-
nected to.

Returns conn_info A dictionary of connection information.

initialize_connection_snapshot(snapshot, connector, **kwargs)
Allow connection from connector for a snapshot.

local_path(volume)

manage_existing(volume, existing_ref)
Brings an existing backend storage object under Cinder management.

existing_ref is passed straight through from the API requests manage_existing_ref value, and
it is up to the driver how this should be interpreted. It should be sufficient to identify a

4.1. Contributing to Cinder 1111

Cinder Documentation, Release 20.3.2.dev3

storage object that the driver should somehow associate with the newly-created cinder volume
structure.

There are two ways to do this:

1. Rename the backend storage object so that it matches the, volume[name] which is how
drivers traditionally map between a cinder volume and the associated backend storage
object.

2. Place some metadata on the volume, or somewhere in the backend, that allows other
driver requests (e.g. delete, clone, attach, detach) to locate the backend storage object
when required.

If the existing_ref doesnt make sense, or doesnt refer to an existing backend storage object,
raise a ManageExistingInvalidReference exception.

The volume may have a volume_type, and the driver can inspect that and compare against
the properties of the referenced backend storage object. If they are incompatible, raise a
ManageExistingVolumeTypeMismatch, specifying a reason for the failure.

Parameters

• volume Cinder volume to manage

• existing_ref Driver-specific information used to identify a volume

manage_existing_get_size(volume, existing_ref)
Return size of volume to be managed by manage_existing.

When calculating the size, round up to the next GB.

Parameters

• volume Cinder volume to manage

• existing_ref Driver-specific information used to identify a volume

Returns size Volume size in GiB (integer)

manage_existing_snapshot(snapshot, existing_ref)
Brings an existing backend storage object under Cinder management.

existing_ref is passed straight through from the API requests manage_existing_ref value, and
it is up to the driver how this should be interpreted. It should be sufficient to identify a stor-
age object that the driver should somehow associate with the newly-created cinder snapshot
structure.

There are two ways to do this:

1. Rename the backend storage object so that it matches the snapshot[name] which is how
drivers traditionally map between a cinder snapshot and the associated backend storage
object.

2. Place some metadata on the snapshot, or somewhere in the backend, that allows other
driver requests (e.g. delete) to locate the backend storage object when required.

If the existing_ref doesnt make sense, or doesnt refer to an existing backend storage object,
raise a ManageExistingInvalidReference exception.

Parameters

• snapshot Cinder volume snapshot to manage

1112 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• existing_ref Driver-specific information used to identify a volume snap-
shot

manage_existing_snapshot_get_size(snapshot, existing_ref)
Return size of snapshot to be managed by manage_existing.

When calculating the size, round up to the next GB.

Parameters

• snapshot Cinder volume snapshot to manage

• existing_ref Driver-specific information used to identify a volume snap-
shot

Returns size Volume snapshot size in GiB (integer)

migrate_volume(context, volume, host)
Migrate the volume to the specified host.

Returns a boolean indicating whether the migration occurred, as well as model_update.

Parameters

• context Context

• volume A dictionary describing the volume to migrate

• host A dictionary describing the host to migrate to, where host[host] is its
name, and host[capabilities] is a dictionary of its reported capabilities.

remove_export(context, volume)
Removes an export for a volume.

remove_export_snapshot(context, snapshot)
Removes an export for a snapshot.

retype(context, volume, new_type, diff, host)

revert_to_snapshot(context, volume, snapshot)
Revert volume to snapshot.

Note: the revert process should not change the volumes current size, that means if the driver
shrank the volume during the process, it should extend the volume internally.

terminate_connection(volume, connector, **kwargs)
Disallow connection from connector

Parameters

• volume The volume to be disconnected.

• connector A dictionary describing the connection with details about the
initiator. Can be None.

terminate_connection_snapshot(snapshot, connector, **kwargs)
Disallow connection from connector for a snapshot.

unmanage(volume)
Removes the specified volume from Cinder management.

Does not delete the underlying backend storage object.

4.1. Contributing to Cinder 1113

Cinder Documentation, Release 20.3.2.dev3

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Cinder-specific configuration that they have associated
with the backend storage object.

Parameters volume Cinder volume to unmanage

unmanage_snapshot(snapshot)
Unmanage the specified snapshot from Cinder management.

update_consistencygroup(context, group, add_volumes=None, remove_volumes=None)
Updates a consistency group.

Parameters

• context the context of the caller.

• group the dictionary of the consistency group to be updated.

• add_volumes a list of volume dictionaries to be added.

• remove_volumes a list of volume dictionaries to be removed.

Returns model_update, add_volumes_update, remove_volumes_update

model_update is a dictionary that the driver wants the manager to update upon a successful
return. If None is returned, the manager will set the status to available.

add_volumes_update and remove_volumes_update are lists of dictionaries that the driver
wants the manager to update upon a successful return. Note that each entry requires a {id:
xxx} so that the correct volume entry can be updated. If None is returned, the volume
will remain its original status. Also note that you cannot directly assign add_volumes to
add_volumes_update as add_volumes is a list of cinder.db.sqlalchemy.models.Volume ob-
jects and cannot be used for db update directly. Same with remove_volumes.

If the driver throws an exception, the status of the group as well as those of the volumes to be
added/removed will be set to error.

cinder.volume.driver_utils module

class VolumeDriverUtils(namespace, db)
Bases: object

get_driver_initiator_data(initiator, ctxt=None)

insert_driver_initiator_data(initiator, key, value, ctxt=None)
Update the initiator data at key with value.

If the key has already been set to something return False, otherwise if saved successfully
return True.

1114 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.volume.group_types module

Built-in group type properties.

add_group_type_access(context, group_type_id, project_id)
Add access to group type for project_id.

create(context, name, group_specs=None, is_public=True, projects=None, description=None)
Creates group types.

destroy(context, id)
Marks group types as deleted.

get_all_group_types(context, inactive=0, filters=None, marker=None, limit=None,
sort_keys=None, sort_dirs=None, offset=None, list_result=False)

Get all non-deleted group_types.

Pass true as argument if you want deleted group types returned also.

get_default_cgsnapshot_type()
Get the default group type for migrating cgsnapshots.

Get the default group type for migrating consistencygroups to groups and cgsnapshots to
group_snapshots.

get_default_group_type()
Get the default group type.

get_group_type(ctxt, id, expected_fields=None)
Retrieves single group type by id.

get_group_type_by_name(context, name)
Retrieves single group type by name.

get_group_type_specs(group_type_id, key=False)

is_default_cgsnapshot_type(group_type_id)

is_public_group_type(context, group_type_id)
Return is_public boolean value of group type

remove_group_type_access(context, group_type_id, project_id)
Remove access to group type for project_id.

update(context, id, name, description, is_public=None)
Update group type by id.

cinder.volume.manager module

Volume manager manages creating, attaching, detaching, and persistent storage.

Persistent storage volumes keep their state independent of instances. You can attach to an instance,
terminate the instance, spawn a new instance (even one from a different image) and re-attach the volume
with the same data intact.

Related Flags

volume_manager The module name of a class derived from manager.Manager (default:
cinder.volume.manager.Manager).

4.1. Contributing to Cinder 1115

Cinder Documentation, Release 20.3.2.dev3

volume_driver Used by Manager. Defaults to cinder.volume.drivers.lvm.
LVMVolumeDriver.

volume_group Name of the group that will contain exported volumes (default: cinder-
volumes)

num_shell_tries Number of times to attempt to run commands (default: 3)

class VolumeManager(volume_driver=None, service_name: Optional[str] = None, *args,
**kwargs)

Bases: cinder.manager.CleanableManager, cinder.manager.
SchedulerDependentManager

Manages attachable block storage devices.

FAILBACK_SENTINEL = 'default'

RPC_API_VERSION = '3.18'

accept_transfer(context, volume_id, new_user, new_project, no_snapshots=False)→ dict

additional_endpoints: list

attach_volume(context, volume_id, instance_uuid, host_name, mountpoint, mode,
volume=None)→ cinder.objects.volume_attachment.VolumeAttachment

Updates db to show volume is attached.

attachment_delete(context: cinder.context.RequestContext, attachment_id: str, vref:
cinder.objects.volume.Volume)→ None

Delete/Detach the specified attachment.

Notifies the backend device that were detaching the specified attachment instance.

param: attachment_id: Attachment id to remove param: vref: Volume object associated with
the attachment

attachment_update(context: cinder.context.RequestContext, vref:
cinder.objects.volume.Volume, connector: dict, attachment_id: str)→
Dict[str, Any]

Update/Finalize an attachment.

This call updates a valid attachment record to associate with a volume and provide the caller
with the proper connection info. Note that this call requires an attachment_ref. Its expected
that prior to this call that the volume and an attachment UUID has been reserved.

param: vref: Volume object to create attachment for param: connector: Connector object to
use for attachment creation param: attachment_ref: ID of the attachment record to update

copy_volume_to_image(context: cinder.context.RequestContext, volume_id: str, image_meta:
dict)→ None

Uploads the specified volume to Glance.

image_meta is a dictionary containing the following keys: id, container_format, disk_format

create_group(context: cinder.context.RequestContext, group)→ cinder.objects.group.Group
Creates the group.

1116 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

create_group_from_src(context: cinder.context.RequestContext, group:
cinder.objects.group.Group, group_snapshot:
Optional[cinder.objects.group_snapshot.GroupSnapshot] = None,
source_group=None)→ cinder.objects.group.Group

Creates the group from source.

The source can be a group snapshot or a source group.

create_group_snapshot(context: cinder.context.RequestContext, group_snapshot:
cinder.objects.group_snapshot.GroupSnapshot)→
cinder.objects.group_snapshot.GroupSnapshot

Creates the group_snapshot.

create_snapshot(context, snapshot)→ oslo_versionedobjects.fields.UUIDField
Creates and exports the snapshot.

create_volume(context, volume, request_spec=None, filter_properties=None,
allow_reschedule=True)→ oslo_versionedobjects.fields.UUIDField

Creates the volume.

delete_group(context: cinder.context.RequestContext, group: cinder.objects.group.Group)→
None

Deletes group and the volumes in the group.

delete_group_snapshot(context: cinder.context.RequestContext, group_snapshot:
cinder.objects.group_snapshot.GroupSnapshot)→ None

Deletes group_snapshot.

delete_snapshot(context: cinder.context.RequestContext, snapshot:
cinder.objects.snapshot.Snapshot, unmanage_only: bool = False)→
Optional[bool]

Deletes and unexports snapshot.

delete_volume(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, unmanage_only=False, cascade=False)→
Optional[bool]

Deletes and unexports volume.

1. Delete a volume(normal case) Delete a volume and update quotas.

2. Delete a migration volume If deleting the volume in a migration, we want to skip quotas
but we need database updates for the volume.

3. Delete a temp volume for backup If deleting the temp volume for backup, we want to
skip quotas but we need database updates for the volume.

detach_volume(context, volume_id, attachment_id=None, volume=None)→ None
Updates db to show volume is detached.

disable_replication(ctxt: cinder.context.RequestContext, group:
cinder.objects.group.Group)→ None

Disable replication.

driver_delete_snapshot(snapshot)

driver_delete_volume(volume)

4.1. Contributing to Cinder 1117

Cinder Documentation, Release 20.3.2.dev3

enable_replication(ctxt: cinder.context.RequestContext, group:
cinder.objects.group.Group)→ None

Enable replication.

extend_volume(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, new_size: int, reservations)→ None

failover(context: cinder.context.RequestContext, secondary_backend_id=None)→ None
Failover a backend to a secondary replication target.

Instructs a replication capable/configured backend to failover to one of its secondary replica-
tion targets. host=None is an acceetable input, and leaves it to the driver to failover to the only
configured target, or to choose a target on its own. All of the hosts volumes will be passed
on to the driver in order for it to determine the replicated volumes on the host, if needed.

Parameters

• context security context

• secondary_backend_id Specifies backend_id to fail over to

failover_completed(context: cinder.context.RequestContext, updates)→ None
Finalize failover of this backend.

When a service is clustered and replicated the failover has 2 stages, one that does the failover
of the volumes and another that finalizes the failover of the services themselves.

This method takes care of the last part and is called from the service doing the failover of the
volumes after finished processing the volumes.

failover_host(context: cinder.context.RequestContext, secondary_backend_id=None)→
None

Failover a backend to a secondary replication target.

Instructs a replication capable/configured backend to failover to one of its secondary replica-
tion targets. host=None is an acceetable input, and leaves it to the driver to failover to the only
configured target, or to choose a target on its own. All of the hosts volumes will be passed
on to the driver in order for it to determine the replicated volumes on the host, if needed.

Parameters

• context security context

• secondary_backend_id Specifies backend_id to fail over to

failover_replication(ctxt: cinder.context.RequestContext, group:
cinder.objects.group.Group, allow_attached_volume: bool = False,
secondary_backend_id=None)→ None

Failover replication.

finish_failover(context: cinder.context.RequestContext, service, updates)→ None
Completion of the failover locally or via RPC.

freeze_host(context: cinder.context.RequestContext)→ bool
Freeze management plane on this backend.

Basically puts the control/management plane into a Read Only state. We should handle this
in the scheduler, however this is provided to let the driver know in case it needs/wants to do
something specific on the backend.

Parameters context security context

1118 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_backup_device(ctxt: cinder.context.RequestContext, backup:
cinder.objects.backup.Backup, want_objects: bool = False, async_call:
bool = False)

get_capabilities(context: cinder.context.RequestContext, discover: bool)
Get capabilities of backend storage.

get_manageable_snapshots(ctxt: cinder.context.RequestContext, marker, limit:
Optional[int], offset: Optional[int], sort_keys, sort_dirs,
want_objects=False)

get_manageable_volumes(ctxt: cinder.context.RequestContext, marker, limit: Optional[int],
offset: Optional[int], sort_keys, sort_dirs, want_objects=False)
→ list

host: oslo_config.types.HostAddress

init_host(added_to_cluster=None, **kwargs)→ None
Perform any required initialization.

init_host_with_rpc()→ None
A hook for service to do jobs after RPC is ready.

Like init_host(), this method is a hook where services get a chance to execute tasks that need
RPC. Child classes should override this method.

initialize_connection(context, volume: cinder.objects.volume.Volume, connector: dict)
→ dict

Prepare volume for connection from host represented by connector.

This method calls the driver initialize_connection and returns it to the caller. The connector
parameter is a dictionary with information about the host that will connect to the volume in
the following format:

{
"ip": "<ip>",
"initiator": "<initiator>"

}

ip: the ip address of the connecting machine

initiator: the iscsi initiator name of the connecting machine. This can be None if the con-
necting machine does not support iscsi connections.

driver is responsible for doing any necessary security setup and returning a connection_info
dictionary in the following format:

{
"driver_volume_type": "<driver_volume_type>",
"data": "<data>"

}

driver_volume_type: a string to identify the type of volume. This can be used by the calling
code to determine the strategy for connecting to the volume. This could be iscsi, rbd,
etc.

4.1. Contributing to Cinder 1119

Cinder Documentation, Release 20.3.2.dev3

data: this is the data that the calling code will use to connect to the volume. Keep in mind
that this will be serialized to json in various places, so it should not contain any non-json
data types.

initialize_connection_snapshot(ctxt, snapshot_id:
oslo_versionedobjects.fields.UUIDField, connector:
dict)→ dict

is_working()→ bool
Return if Manager is ready to accept requests.

This is to inform Service class that in case of volume driver initialization failure the manager
is actually down and not ready to accept any requests.

list_replication_targets(ctxt: cinder.context.RequestContext, group:
cinder.objects.group.Group)→ Dict[str, list]

Provide a means to obtain replication targets for a group.

This method is used to find the replication_device config info. backend_id is a required key
in replication_device.

Response Example for admin:

{
"replication_targets": [

{
"backend_id": "vendor-id-1",
"unique_key": "val1"

},
{

"backend_id": "vendor-id-2",
"unique_key": "val2"

}
]

}

Response example for non-admin:

{
"replication_targets": [

{
"backend_id": "vendor-id-1"

},
{

"backend_id": "vendor-id-2"
}

]
}

manage_existing(ctxt: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, ref=None)→
oslo_versionedobjects.fields.UUIDField

1120 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

manage_existing_snapshot(ctxt: cinder.context.RequestContext, snapshot:
cinder.objects.snapshot.Snapshot, ref=None)→
oslo_versionedobjects.fields.UUIDField

migrate_volume(ctxt: cinder.context.RequestContext, volume, host, force_host_copy: bool =
False, new_type_id=None, diff=None)→ None

Migrate the volume to the specified host (called on source host).

migrate_volume_completion(ctxt: cinder.context.RequestContext, volume, new_volume,
error=False)→ oslo_versionedobjects.fields.UUIDField

publish_service_capabilities(context: cinder.context.RequestContext)→ None
Collect driver status and then publish.

reimage(context, volume, image_meta)
Reimage a volume with specific image.

remove_export(context, volume_id: oslo_versionedobjects.fields.UUIDField)→ None
Removes an export for a volume.

remove_export_snapshot(ctxt, snapshot_id: oslo_versionedobjects.fields.UUIDField)→
None

Removes an export for a snapshot.

retype(context: cinder.context.RequestContext, volume: cinder.objects.volume.Volume,
new_type_id: str, host, migration_policy: str = ’never’, reservations=None,
old_reservations=None)→ None

revert_to_snapshot(context, volume, snapshot)→ None
Revert a volume to a snapshot.

The process of reverting to snapshot consists of several steps: 1. create a snapshot for backup
(in case of data loss) 2.1. use drivers specific logic to revert volume 2.2. try the generic way
to revert volume if drivers method is missing 3. delete the backup snapshot

secure_file_operations_enabled(ctxt: cinder.context.RequestContext, volume:
Optional[cinder.objects.volume.Volume])→ bool

target = <Target version=3.18>

terminate_connection(context, volume_id: oslo_versionedobjects.fields.UUIDField,
connector: dict, force=False)→ None

Cleanup connection from host represented by connector.

The format of connector is the same as for initialize_connection.

terminate_connection_snapshot(ctxt, snapshot_id:
oslo_versionedobjects.fields.UUIDField, connector: dict,
force=False)→ None

thaw_host(context: cinder.context.RequestContext)→ bool
UnFreeze management plane on this backend.

Basically puts the control/management plane back into a normal state. We should handle this
in the scheduler, however this is provided to let the driver know in case it needs/wants to do
something specific on the backend.

Parameters context security context

4.1. Contributing to Cinder 1121

Cinder Documentation, Release 20.3.2.dev3

update_group(context: cinder.context.RequestContext, group, add_volumes: Optional[str] =
None, remove_volumes: Optional[str] = None)→ None

Updates group.

Update group by adding volumes to the group, or removing volumes from the group.

update_migrated_volume(ctxt: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, new_volume:
cinder.objects.volume.Volume, volume_status)→ None

Finalize migration process on backend device.

clean_snapshot_locks(func)

clean_volume_locks(func)

cinder.volume.qos_specs module

The QoS Specs Implementation

associate_qos_with_type(context, specs_id, type_id)
Associate qos_specs with volume type.

Associate target qos specs with specific volume type.

Parameters

• specs_id qos specs ID to associate with

• type_id volume type ID to associate with

Raises

• VolumeTypeNotFound if volume type doesnt exist

• QoSSpecsNotFound if qos specs doesnt exist

• InvalidVolumeType if volume type is already associated with qos specs
other than given one.

• QoSSpecsAssociateFailed if there was general DB error

create(context, name, specs=None)
Creates qos_specs.

Parameters specs Dictionary that contains specifications for QoS

Expected format of the input parameter:

{
'consumer': 'front-end',
'total_iops_sec': 1000,
'total_bytes_sec': 1024000

}

delete(context, qos_specs_id, force=False)
Marks qos specs as deleted.

force parameter is a flag to determine whether should destroy should continue when there were
entities associated with the qos specs. force=True indicates caller would like to mark qos specs as

1122 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

deleted even if there was entities associate with target qos specs. Trying to delete a qos specs still
associated with entities will cause QoSSpecsInUse exception if force=False (default).

delete_keys(context, qos_specs_id, keys)
Marks specified key of target qos specs as deleted.

disassociate_all(context, specs_id)
Disassociate qos_specs from all entities.

disassociate_qos_specs(context, specs_id, type_id)
Disassociate qos_specs from volume type.

get_all_specs(context, filters=None, marker=None, limit=None, offset=None, sort_keys=None,
sort_dirs=None)

Get all non-deleted qos specs.

get_associations(context, qos_specs_id)
Get all associations of given qos specs.

get_qos_specs(ctxt, spec_id)
Retrieves single qos specs by id.

update(context, qos_specs_id, specs)
Update qos specs.

Parameters specs

dictionary that contains key/value pairs for updating existing specs.

e.g. {consumer: front-end, total_iops_sec: 500, total_bytes_sec: 512000,}

cinder.volume.rpcapi module

class VolumeAPI
Bases: cinder.rpc.RPCAPI

Client side of the volume rpc API.

API version history:

1.0 - Initial version.
1.1 - Adds clone volume option to create_volume.
1.2 - Add publish_service_capabilities() method.
1.3 - Pass all image metadata (not just ID) in copy_volume_to_image.
1.4 - Add request_spec, filter_properties and

allow_reschedule arguments to create_volume().
1.5 - Add accept_transfer.
1.6 - Add extend_volume.
1.7 - Adds host_name parameter to attach_volume()

to allow attaching to host rather than instance.
1.8 - Add migrate_volume, rename_volume.
1.9 - Add new_user and new_project to accept_transfer.
1.10 - Add migrate_volume_completion, remove rename_volume.
1.11 - Adds mode parameter to attach_volume()

to support volume read-only attaching.
1.12 - Adds retype.

(continues on next page)

4.1. Contributing to Cinder 1123

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

1.13 - Adds create_export.
1.14 - Adds reservation parameter to extend_volume().
1.15 - Adds manage_existing and unmanage_only flag to delete_volume.
1.16 - Removes create_export.
1.17 - Add replica option to create_volume, promote_replica and

sync_replica.
1.18 - Adds create_consistencygroup, delete_consistencygroup,

create_cgsnapshot, and delete_cgsnapshot. Also adds
the consistencygroup_id parameter in create_volume.

1.19 - Adds update_migrated_volume
1.20 - Adds support for sending objects over RPC in create_snapshot()

and delete_snapshot()
1.21 - Adds update_consistencygroup.
1.22 - Adds create_consistencygroup_from_src.
1.23 - Adds attachment_id to detach_volume.
1.24 - Removed duplicated parameters: snapshot_id, image_id,

source_volid, source_replicaid, consistencygroup_id and
cgsnapshot_id from create_volume. All off them are already
passed either in request_spec or available in the DB.

1.25 - Add source_cg to create_consistencygroup_from_src.
1.26 - Adds support for sending objects over RPC in

create_consistencygroup(), create_consistencygroup_from_src(),
update_consistencygroup() and delete_consistencygroup().

1.27 - Adds support for replication V2
1.28 - Adds manage_existing_snapshot
1.29 - Adds get_capabilities.
1.30 - Adds remove_export
1.31 - Updated: create_consistencygroup_from_src(), create_cgsnapshot()

and delete_cgsnapshot() to cast method only with necessary
args. Forwarding CGSnapshot object instead of CGSnapshot_id.

1.32 - Adds support for sending objects over RPC in create_volume().
1.33 - Adds support for sending objects over RPC in delete_volume().
1.34 - Adds support for sending objects over RPC in retype().
1.35 - Adds support for sending objects over RPC in extend_volume().
1.36 - Adds support for sending objects over RPC in migrate_volume(),

migrate_volume_completion(), and update_migrated_volume().
1.37 - Adds old_reservations parameter to retype to support quota

checks in the API.
1.38 - Scaling backup service, add get_backup_device() and

secure_file_operations_enabled()
1.39 - Update replication methods to reflect new backend rep strategy
1.40 - Add cascade option to delete_volume().

... Mitaka supports messaging version 1.40. Any changes to existing
methods in 1.x after that point should be done so that they can handle
the version_cap being set to 1.40.

2.0 - Remove 1.x compatibility
2.1 - Add get_manageable_volumes() and get_manageable_snapshots().

(continues on next page)

1124 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

(continued from previous page)

2.2 - Adds support for sending objects over RPC in manage_existing().
2.3 - Adds support for sending objects over RPC in

initialize_connection().
2.4 - Sends request_spec as object in create_volume().
2.5 - Adds create_group, delete_group, and update_group
2.6 - Adds create_group_snapshot, delete_group_snapshot, and

create_group_from_src().

... Newton supports messaging version 2.6. Any changes to existing
methods in 2.x after that point should be done so that they can handle
the version_cap being set to 2.6.

3.0 - Drop 2.x compatibility
3.1 - Remove promote_replica and reenable_replication. This is

non-backward compatible, but the user-facing API was removed
back in Mitaka when introducing cheesecake replication.

3.2 - Adds support for sending objects over RPC in
get_backup_device().

3.3 - Adds support for sending objects over RPC in attach_volume().
3.4 - Adds support for sending objects over RPC in detach_volume().
3.5 - Adds support for cluster in retype and migrate_volume
3.6 - Switch to use oslo.messaging topics to indicate backends instead

of @backend suffixes in server names.
3.7 - Adds do_cleanup method to do volume cleanups from other nodes

that we were doing in init_host.
3.8 - Make failover_host cluster aware and add failover_completed.
3.9 - Adds new attach/detach methods
3.10 - Returning objects instead of raw dictionaries in

get_manageable_volumes & get_manageable_snapshots
3.11 - Removes create_consistencygroup, delete_consistencygroup,

create_cgsnapshot, delete_cgsnapshot, update_consistencygroup,
and create_consistencygroup_from_src.

3.12 - Adds set_log_levels and get_log_levels
3.13 - Add initialize_connection_snapshot,

terminate_connection_snapshot, and remove_export_snapshot.
3.14 - Adds enable_replication, disable_replication,

failover_replication, and list_replication_targets.
3.15 - Add revert_to_snapshot method
3.16 - Add no_snapshots to accept_transfer method
3.17 - Make get_backup_device a cast (async)
3.18 - Add reimage method

BINARY = 'cinder-volume'

RPC_API_VERSION = '3.18'

RPC_DEFAULT_VERSION = '3.0'

TOPIC = 'cinder-volume'

accept_transfer(ctxt, volume, new_user, new_project, no_snapshots=False)

4.1. Contributing to Cinder 1125

Cinder Documentation, Release 20.3.2.dev3

attach_volume(ctxt, volume, instance_uuid, host_name, mountpoint, mode)

attachment_delete(ctxt, attachment_id, vref)

attachment_update(ctxt, vref, connector, attachment_id)

copy_volume_to_image(ctxt, volume, image_meta)

create_group(ctxt: cinder.context.RequestContext, group: cinder.objects.group.Group)→
None

create_group_from_src(ctxt, group, group_snapshot=None, source_group=None)

create_group_snapshot(ctxt, group_snapshot)

create_snapshot(ctxt: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, snapshot:
cinder.objects.snapshot.Snapshot)→ None

create_volume(ctxt: cinder.context.RequestContext, volume: cinder.objects.volume.Volume,
request_spec: Optional[dict], filter_properties: Optional[dict],
allow_reschedule: bool = True)→ None

delete_group(ctxt, group)

delete_group_snapshot(ctxt, group_snapshot)

delete_snapshot(ctxt, snapshot, unmanage_only=False)

delete_volume(ctxt: cinder.context.RequestContext, volume: cinder.objects.volume.Volume,
unmanage_only: bool = False, cascade: bool = False)→ None

detach_volume(ctxt, volume, attachment_id)

disable_replication(ctxt, group)

do_cleanup(ctxt, cleanup_request)
Perform this service/cluster resource cleanup as requested.

enable_replication(ctxt, group)

extend_volume(ctxt, volume, new_size, reservations)

failover(ctxt, service, secondary_backend_id=None)
Failover host to the specified backend_id (secondary).

failover_completed(ctxt, service, updates)
Complete failover on all services of the cluster.

failover_replication(ctxt, group, allow_attached_volume=False,
secondary_backend_id=None)

freeze_host(ctxt, service)
Set backend host to frozen.

get_backup_device(ctxt, backup, volume)

get_capabilities(ctxt, backend_id, discover)

get_log_levels(context, service, log_request)

get_manageable_snapshots(ctxt, service, marker, limit, offset, sort_keys, sort_dirs)

get_manageable_volumes(ctxt, service, marker, limit, offset, sort_keys, sort_dirs)

1126 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

initialize_connection(ctxt, volume, connector)

initialize_connection_snapshot(ctxt, snapshot, connector)

list_replication_targets(ctxt, group)

manage_existing(ctxt, volume, ref)

manage_existing_snapshot(ctxt, snapshot, ref, backend)

migrate_volume(ctxt, volume, dest_backend, force_host_copy)

migrate_volume_completion(ctxt, volume, new_volume, error)

publish_service_capabilities(ctxt)

reimage(ctxt, volume, image_meta)

remove_export(ctxt, volume, sync=False)

remove_export_snapshot(ctxt, snapshot, sync=False)

retype(ctxt, volume, new_type_id, dest_backend, migration_policy=’never’,
reservations=None, old_reservations=None)

revert_to_snapshot(ctxt, volume, snapshot)

secure_file_operations_enabled(ctxt, volume)

set_log_levels(context, service, log_request)

terminate_connection(ctxt, volume, connector, force=False)

terminate_connection_snapshot(ctxt, snapshot, connector, force=False)

thaw_host(ctxt, service)
Clear the frozen setting on a backend host.

update_group(ctxt, group, add_volumes=None, remove_volumes=None)

update_migrated_volume(ctxt, volume, new_volume, original_volume_status)

cinder.volume.throttling module

Volume copy throttling helpers.

class BlkioCgroup(bps_limit, cgroup_name)
Bases: cinder.volume.throttling.Throttle

Throttle disk I/O bandwidth using blkio cgroups.

subcommand(srcpath, dstpath)
Sub-command that reads from srcpath and writes to dstpath.

Throttle disk I/O bandwidth used by a sub-command, such as dd, that reads from srcpath and
writes to dstpath. The sub-command must be executed with the generated prefix command.

class Throttle(prefix=None)
Bases: object

Base class for throttling disk I/O bandwidth

DEFAULT = None

4.1. Contributing to Cinder 1127

Cinder Documentation, Release 20.3.2.dev3

static get_default()

static set_default(throttle)

subcommand(srcpath, dstpath)
Sub-command that reads from srcpath and writes to dstpath.

Throttle disk I/O bandwidth used by a sub-command, such as dd, that reads from srcpath and
writes to dstpath. The sub-command must be executed with the generated prefix command.

cinder.volume.volume_migration module

class VolumeMigration(id, user_id, encryption_key_id)
Bases: object

Lightweight Volume Migration object.

Will be used by KeyMigrator instead of regular Volume object to avoid extra memory usage.

static from_volume(volume, context)

save()

class VolumeMigrationList
Bases: list

append(volumes, context)
Append object to the end of the list.

cinder.volume.volume_types module

Built-in volume type properties.

add_volume_type_access(context, volume_type_id, project_id)
Add access to volume type for project_id.

create(context, name, extra_specs=None, is_public=True, projects=None, description=None)
Creates volume types.

destroy(context, id)
Marks volume types as deleted.

There must exist at least one volume type (i.e. the default type) in the deployment. This method
achieves that by ensuring: 1) the default_volume_type is set and is a valid one 2) the type requested
to delete isnt the default type

Raises VolumeTypeDefaultDeletionError when the type requested to delete is
the default type

get_all_types(context, inactive=0, filters=None, marker=None, limit=None, sort_keys=None,
sort_dirs=None, offset=None, list_result=False)

Get all non-deleted volume_types.

Pass true as argument if you want deleted volume types returned also.

get_all_types_by_group(context, group_id)
Get all volume_types in a group.

1128 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

get_by_name_or_id(context, identity)
Retrieves volume type by id or name

get_default_volume_type(contxt=None)
Get the default volume type.

Raises VolumeTypeDefaultMisconfiguredError when the configured default is
not found

get_volume_type(ctxt, id, expected_fields=None)
Retrieves single volume type by id.

get_volume_type_by_name(context, name)
Retrieves single volume type by name.

get_volume_type_encryption(context, volume_type_id)

get_volume_type_extra_specs(volume_type_id, key=False)

get_volume_type_qos_specs(volume_type_id)
Get all qos specs for given volume type.

is_encrypted(context: cinder.context.RequestContext, volume_type_id: str)→ bool

is_public_volume_type(context, volume_type_id)
Return is_public boolean value of volume type

notify_about_volume_type_access_usage(context, volume_type_id, project_id, event_suffix,
host=None)

Notify about successful usage type-access-(add/remove) command.

Parameters

• context security context

• volume_type_id volume type uuid

• project_id tenant uuid

• event_suffix name of called operation access-(add/remove)

• host hostname

provision_filter_on_size(context, volume_type, size)
This function filters volume provisioning requests on size limits.

If a volume type has provisioning size min/max set, this filter will ensure that the volume size
requested is within the size limits specified in the volume type.

remove_volume_type_access(context, volume_type_id, project_id)
Remove access to volume type for project_id.

update(context, id, name, description, is_public=None)
Update volume type by id.

volume_types_diff(context: cinder.context.RequestContext, vol_type_id1, vol_type_id2)→
Tuple[dict, bool]

Returns a diff of two volume types and whether they are equal.

Returns a tuple of (diff, equal), where equal is a boolean indicating whether there is any difference,
and diff is a dictionary with the following format:

4.1. Contributing to Cinder 1129

Cinder Documentation, Release 20.3.2.dev3

{
'extra_specs': {'key1': (value_in_1st_vol_type,

value_in_2nd_vol_type),
'key2': (value_in_1st_vol_type,

value_in_2nd_vol_type),
{...}}

'qos_specs': {'key1': (value_in_1st_vol_type,
value_in_2nd_vol_type),

'key2': (value_in_1st_vol_type,
value_in_2nd_vol_type),

{...}}
'encryption': {'cipher': (value_in_1st_vol_type,

value_in_2nd_vol_type),
{'key_size': (value_in_1st_vol_type,

value_in_2nd_vol_type),
{...}}

}

volume_types_encryption_changed(context, vol_type_id1, vol_type_id2)
Return whether encryptions of two volume types are same.

cinder.volume.volume_utils module

Volume-related Utilities and helpers.

class TraceWrapperMetaclass(classname, bases, classDict)
Bases: type

Metaclass that wraps all methods of a class with trace_method.

This metaclass will cause every function inside of the class to be decorated with the trace_method
decorator.

To use the metaclass you define a class like so: class MyClass(object, meta-
class=utils.TraceWrapperMetaclass):

class TraceWrapperWithABCMetaclass(name, bases, namespace, **kwargs)
Bases: abc.ABCMeta, cinder.volume.volume_utils.TraceWrapperMetaclass

Metaclass that wraps all methods of a class with trace.

append_host(host: Optional[str], pool: Optional[str])→ Optional[str]
Encode pool into host info.

brick_attach_volume_encryptor(context: cinder.context.RequestContext, attach_info: dict,
encryption: dict)→ None

Attach encryption layer.

brick_detach_volume_encryptor(attach_info: dict, encryption: dict)→ None
Detach encryption layer.

brick_get_connector(protocol: str, driver=None, use_multipath: bool = False,
device_scan_attempts: int = 3, *args, **kwargs)

Wrapper to get a brick connector object.

1130 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

This automatically populates the required protocol as well as the root_helper needed to execute
commands.

brick_get_connector_properties(multipath: bool = False, enforce_multipath: bool = False)
Wrapper to automatically set root_helper in brick calls.

Parameters

• multipath A boolean indicating whether the connector can support multi-
path.

• enforce_multipath If True, it raises exception when multipath=True is
specified but multipathd is not running. If False, it falls back to multi-
path=False when multipathd is not running.

brick_get_encryptor(connection_info: dict, *args, **kwargs)
Wrapper to get a brick encryptor object.

check_already_managed_volume(vol_id: Optional[str])
Check cinder db for already managed volume.

Parameters vol_id volume id parameter

Returns bool return True, if db entry with specified volume id exists, otherwise return
False

Raises ValueError if vol_id is not a valid uuid string

check_encryption_provider(volume: cinder.objects.volume.Volume, context:
cinder.context.RequestContext)→ dict

Check that this is a LUKS encryption provider.

Returns encryption dict

check_for_odirect_support(src: str, dest: str, flag: str = ’oflag=direct’)→ bool

check_image_metadata(image_meta: Dict[str, Union[str, int]], vol_size: int)→ None
Validates the image metadata.

clear_volume(volume_size: int, volume_path: str, volume_clear: Optional[str] = None,
volume_clear_size: Optional[int] = None, volume_clear_ionice: Optional[str] =
None, throttle=None)→ None

Unprovision old volumes to prevent data leaking between users.

clone_encryption_key(context: cinder.context.RequestContext, key_manager, encryption_key_id:
str)→ str

convert_config_string_to_dict(config_string: str)→ dict
Convert config file replication string to a dict.

The only supported form is as follows: {key-1=val-1 key-2=val-2}

Parameters config_string Properly formatted string to convert to dict.

Response dict of string values

copy_image_to_volume(driver, context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, image_meta: dict, image_location: str,
image_service)→ None

Downloads Glance image to the specified volume.

4.1. Contributing to Cinder 1131

Cinder Documentation, Release 20.3.2.dev3

copy_volume(src: typing.Union[str, typing.BinaryIO], dest: typing.Union[str, typing.BinaryIO],
size_in_m: int, blocksize: typing.Union[str, int], sync=False, execute=<function
execute>, ionice=None, throttle=None, sparse=False)→ None

Copy data from the source volume to the destination volume.

The parameters src and dest are both typically of type str, which represents the path to each vol-
ume on the filesystem. Connectors can optionally return a volume handle of type RawIOBase for
volumes that are not available on the local filesystem for open/close operations.

If either src or dest are not of type str, then they are assumed to be of type RawIOBase or any
derivative that supports file operations such as read and write. In this case, the handles are treated
as file handles instead of file paths and, at present moment, throttling is unavailable.

create_encryption_key(context: cinder.context.RequestContext, key_manager, volume_type_id:
str)→ Optional[str]

delete_encryption_key(context: cinder.context.RequestContext, key_manager, encryption_key_id:
str)→ None

enable_bootable_flag(volume: cinder.objects.volume.Volume)→ None

extract_availability_zones_from_volume_type(volume_type:
Union[cinder.objects.volume_type.VolumeType,
dict])→ Optional[List[str]]

extract_host(host: Optional[str], level: str = ’backend’, default_pool_name: bool = False)→
Optional[str]

Extract Host, Backend or Pool information from host string.

Parameters

• host String for host, which could include host@backend#pool info

• level Indicate which level of information should be extracted from host
string. Level can be host, backend or pool, default value is backend

• default_pool_name this flag specify what to do if level == pool and there
is no pool info encoded in host string. default_pool_name=True will return
DEFAULT_POOL_NAME, otherwise we return None. Default value of this
parameter is False.

Returns expected information, string or None

Raises exception.InvalidVolume

For example: host = HostA@BackendB#PoolC ret = extract_host(host, host) # ret is HostA ret =
extract_host(host, backend) # ret is HostA@BackendB ret = extract_host(host, pool) # ret is
PoolC

host = HostX@BackendY ret = extract_host(host, pool) # ret is None ret = extract_host(host,
pool, True) # ret is _pool0

extract_id_from_snapshot_name(snap_name: str)→ Optional[str]
Return a snapshots ID from its name on the backend.

extract_id_from_volume_name(vol_name: str)→ Optional[str]

1132 Chapter 4. For contributors

mailto:host@backend#pool
mailto:'HostA@BackendB#PoolC
mailto:'HostA@BackendB
mailto:'HostX@BackendY

Cinder Documentation, Release 20.3.2.dev3

generate_password(length: int = 16, symbolgroups: Tuple[str, ...] = (’23456789’,
’ABCDEFGHJKLMNPQRSTUVWXYZ’, ’abcdefghijkmnopqrstuvwxyz’))→ str

Generate a random password from the supplied symbol groups.

At least one symbol from each group will be included. Unpredictable results if length is less than
the number of symbol groups.

Believed to be reasonably secure (with a reasonable password length!)

generate_username(length: int = 20, symbolgroups: Tuple[str, ...] = (’23456789’,
’ABCDEFGHJKLMNPQRSTUVWXYZ’, ’abcdefghijkmnopqrstuvwxyz’))→ str

get_all_physical_volumes(vg_name=None)→ list

get_all_volume_groups(vg_name=None)→ list

get_backend_configuration(backend_name, backend_opts=None)
Get a configuration object for a specific backend.

get_base_image_ref(volume: cinder.objects.volume.Volume)

get_max_over_subscription_ratio(str_value: Union[str, float], supports_auto: bool = False)→
Union[str, float]

Get the max_over_subscription_ratio from a string

As some drivers need to do some calculations with the value and we are now receiving a string
value in the conf, this converts the value to float when appropriate.

Parameters

• str_value Configuration object

• supports_auto Tell if the calling driver supports auto MOSR.

Response value of mosr

get_volume_image_metadata(image_id: str, image_meta: Dict[str, Any])→ dict

group_get_by_id(group_id)

hosts_are_equivalent(host_1: str, host_2: str)→ bool

image_conversion_dir()→ str

is_boolean_str(str: Optional[str])→ bool

is_group_a_cg_snapshot_type(group_or_snap)→ bool

is_group_a_type(group: cinder.objects.group.Group, key: str)→ bool

is_multiattach_spec(extra_specs: dict)→ bool

is_replicated_spec(extra_specs: dict)→ bool

log_unsupported_driver_warning(driver)
Annoy the log about unsupported drivers.

matching_backend_name(src_volume_type, volume_type)→ bool

notify_about_backup_usage(context: cinder.context.RequestContext, backup:
cinder.objects.backup.Backup, event_suffix: str, extra_usage_info:
dict = None, host: str = None)→ None

4.1. Contributing to Cinder 1133

Cinder Documentation, Release 20.3.2.dev3

notify_about_capacity_usage(context: cinder.context.RequestContext, capacity: dict, suffix: str,
extra_usage_info: dict = None, host: str = None)→ None

notify_about_cgsnapshot_usage(context: cinder.context.RequestContext, cgsnapshot:
cinder.objects.cgsnapshot.CGSnapshot, event_suffix: str,
extra_usage_info: dict = None, host: str = None)→ None

notify_about_consistencygroup_usage(context: cinder.context.RequestContext, group:
cinder.objects.group.Group, event_suffix: str,
extra_usage_info: dict = None, host: str = None)→
None

notify_about_group_snapshot_usage(context: cinder.context.RequestContext, group_snapshot:
cinder.objects.group_snapshot.GroupSnapshot,
event_suffix: str, extra_usage_info=None, host: str =
None)→ None

notify_about_group_usage(context: cinder.context.RequestContext, group:
cinder.objects.group.Group, event_suffix: str, extra_usage_info: dict =
None, host: str = None)→ None

notify_about_snapshot_usage(context: cinder.context.RequestContext, snapshot:
cinder.objects.snapshot.Snapshot, event_suffix: str,
extra_usage_info: dict = None, host: str = None)→ None

notify_about_volume_usage(context: cinder.context.RequestContext, volume:
cinder.objects.volume.Volume, event_suffix: str, extra_usage_info:
dict = None, host: str = None)→ None

null_safe_str(s: Optional[str])→ str

paginate_entries_list(entries: List[Dict], marker: Optional[Union[dict, str]], limit: int, offset:
Optional[int], sort_keys: List[str], sort_dirs: List[str])→ list

Paginate a list of entries.

Parameters entries list of dictionaries

Marker The last element previously returned

Limit The maximum number of items to return

Offset The number of items to skip from the marker or from the first element.

Sort_keys A list of keys in the dictionaries to sort by

Sort_dirs A list of sort directions, where each is either asc or dec

require_driver_initialized(driver)
Verifies if driver is initialized

If the driver is not initialized, an exception will be raised.

Params driver The driver instance.

Raises exception.DriverNotInitialized

resolve_hostname(hostname: str)→ str
Resolves host name to IP address.

Resolves a host name (my.data.point.com) to an IP address (10.12.143.11). This routine also works
if the data passed in hostname is already an IP. In this case, the same IP address will be returned.

1134 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Parameters hostname Host name to resolve.

Returns IP Address for Host name.

sanitize_host(host: str)→ str
Ensure IPv6 addresses are enclosed in [] for iSCSI portals.

sanitize_hostname(hostname)→ str
Return a hostname which conforms to RFC-952 and RFC-1123 specs.

setup_tracing(trace_flags)
Set global variables for each trace flag.

Sets variables TRACE_METHOD and TRACE_API, which represent whether to log methods or
api traces.

Parameters trace_flags a list of strings

supports_thin_provisioning()→ bool

trace(*dec_args, **dec_kwargs)
Trace calls to the decorated function.

This decorator should always be defined as the outermost decorator so it is defined last. This is
important so it does not interfere with other decorators.

Using this decorator on a function will cause its execution to be logged at DEBUG level with
arguments, return values, and exceptions.

Returns a function decorator

trace_api(*dec_args, **dec_kwargs)
Decorates a function if TRACE_API is true.

trace_method(f)
Decorates a function if TRACE_METHOD is true.

update_backup_error(backup, err: str, status=’error’)→ None

upload_volume(context: cinder.context.RequestContext, image_service, image_meta, volume_path,
volume: cinder.objects.volume.Volume, volume_format: str = ’raw’, run_as_root:
bool = True, compress: bool = True)→ None

Module contents

API(*args, **kwargs)

cinder.wsgi package

Submodules

cinder.wsgi.common module

Utility methods for working with WSGI servers.

4.1. Contributing to Cinder 1135

Cinder Documentation, Release 20.3.2.dev3

class Application
Bases: object

Base WSGI application wrapper. Subclasses need to implement __call__.

classmethod factory(global_config, **local_config)
Used for paste app factories in paste.deploy config files.

Any local configuration (that is, values under the [app:APPNAME] section of the paste con-
fig) will be passed into the __init__ method as kwargs.

A hypothetical configuration would look like:

[app:wadl] latest_version = 1.3 paste.app_factory = cin-
der.api.fancy_api:Wadl.factory

which would result in a call to the Wadl class as

import cinder.api.fancy_api fancy_api.Wadl(latest_version=1.3)

You could of course re-implement the factory method in subclasses, but using the kwarg
passing it shouldnt be necessary.

class Middleware(application)
Bases: cinder.wsgi.common.Application

Base WSGI middleware.

These classes require an application to be initialized that will be called next. By default the mid-
dleware will simply call its wrapped app, or you can override __call__ to customize its behavior.

classmethod factory(global_config, **local_config)
Used for paste app factories in paste.deploy config files.

Any local configuration (that is, values under the [filter:APPNAME] section of the paste
config) will be passed into the __init__ method as kwargs.

A hypothetical configuration would look like:

[filter:analytics] redis_host = 127.0.0.1 paste.filter_factory = cin-
der.api.analytics:Analytics.factory

which would result in a call to the Analytics class as

import cinder.api.analytics analytics.Analytics(app_from_paste, re-
dis_host=127.0.0.1)

You could of course re-implement the factory method in subclasses, but using the kwarg
passing it shouldnt be necessary.

process_request(req)
Called on each request.

If this returns None, the next application down the stack will be executed. If it returns a
response then that response will be returned and execution will stop here.

process_response(response)
Do whatever youd like to the response.

class Request(environ, charset=None, unicode_errors=None, decode_param_names=None, **kw)
Bases: webob.request.Request

1136 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.wsgi.eventlet_server module

Methods for working with eventlet WSGI servers.

class Server(conf, name, app, host=’0.0.0.0’, port=0, pool_size=None, protocol=<class
’eventlet.wsgi.HttpProtocol’>, backlog=128, use_ssl=False, max_url_len=None,
logger_name=’eventlet.wsgi.server’, socket_family=None, socket_file=None,
socket_mode=None)

Bases: oslo_service.wsgi.Server

Server class to manage a WSGI server, serving a WSGI application.

cinder.wsgi.wsgi module

Cinder OS API WSGI application.

initialize_application()

Module contents

cinder.zonemanager package

Submodules

cinder.zonemanager.fc_common module

class FCCommon(**kwargs)
Bases: object

Common interface for FC operations.

VERSION = '1.0'

get_version()

cinder.zonemanager.fc_san_lookup_service module

Base Lookup Service for name server lookup to find the initiator to target port mapping for available
SAN contexts. Vendor specific lookup classes are expected to implement the interfaces defined in this
class.

class FCSanLookupService(**kwargs)
Bases: cinder.zonemanager.fc_common.FCCommon

Base Lookup Service.

Base Lookup Service for name server lookup to find the initiator to target port mapping for available
SAN contexts.

get_device_mapping_from_network(initiator_list, target_list)
Get device mapping from FC network.

4.1. Contributing to Cinder 1137

Cinder Documentation, Release 20.3.2.dev3

Gets a filtered list of initiator ports and target ports for each SAN available. :param ini-
tiator_list: list of initiator port WWN :param target_list: list of target port WWN :returns:
device wwn map in following format

{
<San name>: {

'initiator_port_wwn_list':
('200000051E55A100', '200000051E55A121'..)
'target_port_wwn_list':
('100000051E55A100', '100000051E55A121'..)

}
}

Raises Exception when a lookup service implementation is not specified in cin-
der.conf:fc_san_lookup_service

lookup_service = None

cinder.zonemanager.fc_zone_manager module

ZoneManager is responsible to manage access control using FC zoning when zoning mode is set as fabric.
ZoneManager provides interfaces to add connection and remove connection for given initiator and target
list associated with a FC volume attach and detach operation.

Related Flags

zone_driver Used by:class:ZoneManager. Defaults to cin-
der.zonemanager.drivers.brocade.brcd_fc_zone_driver.BrcdFCZoneDriver

zoning_policy Used by: class: ZoneManager. Defaults to none

class ZoneManager(*args, **kwargs)
Bases: cinder.zonemanager.fc_common.FCCommon

Manages Connection control during attach/detach.

Version History: 1.0 - Initial version 1.0.1 - Added __new__ for singleton 1.0.2 - Added friendly
zone name

VERSION = '1.0.2'

add_connection(conn_info)
Add connection control.

Adds connection control for the given initiator target map. initiator_target_map - each initia-
tor WWN mapped to a list of one or more target WWN:

e.g.:
{

'10008c7cff523b01': ['20240002ac000a50', '20240002ac000a40']
}

delete_connection(conn_info)
Delete connection.

1138 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

Updates/deletes connection control for the given initiator target map. initiator_target_map -
each initiator WWN mapped to a list of one or more target WWN:

e.g.:
{

'10008c7cff523b01': ['20240002ac000a50', '20240002ac000a40']
}

driver = None

fabric_names = []

get_san_context(target_wwn_list)
SAN lookup for end devices.

Look up each SAN configured and return a map of SAN (fabric IP) to list of target WWNs
visible to the fabric.

get_valid_initiator_target_map(initiator_target_map, add_control)
Reference count check for end devices.

Looks up the reference count for each initiator-target pair from the map and returns a filtered
list based on the operation type add_control - operation type can be true for add connection
control and false for remove connection control

get_zoning_state_ref_count(initiator_wwn, target_wwn)
Zone management state check.

Performs state check for given I-T pair to return the current count of active attach for the pair.

property initialized

set_initialized(value=True)

cinder.zonemanager.fczm_constants module

Common constants used by FC Zone Manager.

cinder.zonemanager.utils module

Utility functions related to the Zone Manager.

add_fc_zone(connection_info)
Utility function to add a FC Zone.

create_lookup_service()

create_zone_manager()
If zoning is enabled, build the Zone Manager.

get_formatted_wwn(wwn_str)
Utility API that formats WWN to insert :.

remove_fc_zone(connection_info)
Utility function for FC drivers to remove zone.

4.1. Contributing to Cinder 1139

Cinder Documentation, Release 20.3.2.dev3

Module contents

Submodules

cinder.context module

RequestContext: context for requests that persist through all of cinder.

class RequestContext(user_id: Optional[str] = None, project_id: Optional[str] = None,
is_admin: Optional[bool] = None, read_deleted: Optional[str] = ’no’,
project_name: Optional[str] = None, remote_address: Optional[str] =
None, timestamp=None, quota_class=None, service_catalog:
Optional[dict] = None, user_auth_plugin=None,
message_resource_id=None, message_resource_type=None,
message_action=None, **kwargs)

Bases: oslo_context.context.RequestContext

Security context and request information.

Represents the user taking a given action within the system.

authorize(action: str, target: Optional[dict] = None, target_obj: Optional[dict] = None, fatal:
bool = True)

Verify that the given action is valid on the target in this context.

Parameters

• action string representing the action to be checked.

• target dictionary representing the object of the action for object cre-
ation this should be a dictionary representing the location of the object e.g.
{'project_id': context.project_id}. If None, then this default tar-
get will be considered: {project_id: self.project_id, user_id: self.user_id}

• target_obj dictionary representing the object which will be used to update
target.

• fatal if False, will return False when an exception.PolicyNotAuthorized
occurs.

Raises cinder.exception.NotAuthorized if verification fails and fatal is
True.

Returns returns a non-False value (not necessarily True) if authorized and False if
not authorized and fatal is False.

property connection

deepcopy()→ cinder.context.RequestContext

elevated(read_deleted: Optional[str] = None, overwrite: bool = False)→
cinder.context.RequestContext

Return a version of this context with admin flag set.

classmethod from_dict(values: dict)→ cinder.context.RequestContext
Construct a context object from a provided dictionary.

get_auth_plugin()

1140 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

property read_deleted: str

property session

to_dict()→ Dict[str, Any]
Return a dictionary of context attributes.

to_policy_values()→ dict
A dictionary of context attributes to enforce policy with.

oslo.policy enforcement requires a dictionary of attributes representing the current logged
in user on which it applies policy enforcement. This dictionary defines a standard list of
attributes that should be available for enforcement across services.

It is expected that services will often have to override this method with either deprecated
values or additional attributes used by that service specific policy.

property transaction

property transaction_ctx

get_admin_context(read_deleted: Optional[str] = ’no’)→ cinder.context.RequestContext

get_internal_tenant_context()→ Optional[cinder.context.RequestContext]
Build and return the Cinder internal tenant context object

This request context will only work for internal Cinder operations. It will not be able to make
requests to remote services. To do so it will need to use the keystone client to get an auth_token.

cinder.coordination module

Coordination and locking utilities.

class Coordinator(agent_id: Optional[str] = None, prefix: str = ”)
Bases: object

Tooz coordination wrapper.

Coordination member id is created from concatenated prefix and agent_id parameters.

Parameters

• agent_id (str) Agent identifier

• prefix (str) Used to provide member identifier with a meaningful prefix.

get_lock(name: str)
Return a Tooz backend lock.

Parameters name (str) The lock name that is used to identify it across all nodes.

remove_lock(glob_name)

start()→ None

stop()→ None
Disconnect from coordination backend and stop heartbeat.

synchronized(lock_name: str, blocking: bool = True, coordinator: cinder.coordination.Coordinator
= <cinder.coordination.Coordinator object>)→ Callable

Synchronization decorator.

4.1. Contributing to Cinder 1141

Cinder Documentation, Release 20.3.2.dev3

Parameters

• lock_name (str) Lock name.

• blocking If True, blocks until the lock is acquired. If False, raises exception
when not acquired. Otherwise, the value is used as a timeout value and if lock
is not acquired after this number of seconds exception is raised.

• coordinator Coordinator class to use when creating lock. Defaults to the
global coordinator.

Raises tooz.coordination.LockAcquireFailed if lock is not acquired

Decorating a method like so:

@synchronized('mylock')
def foo(self, *args):

...

ensures that only one process will execute the foo method at a time.

Different methods can share the same lock:

@synchronized('mylock')
def foo(self, *args):

...

@synchronized('mylock')
def bar(self, *args):

...

This way only one of either foo or bar can be executing at a time.

Lock name can be formatted using Python format string syntax:

@synchronized('{f_name}-{vol.id}-{snap[name]}')
def foo(self, vol, snap):

...

Available field names are: decorated function parameters and f_name as a decorated function name.

synchronized_remove(glob_name, coordinator=<cinder.coordination.Coordinator object>)

cinder.exception module

Cinder base exception handling.

Includes decorator for re-raising Cinder-type exceptions.

SHOULD include dedicated exception logging.

exception APIException(message=None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Error while requesting %(service)s API.'

exception APITimeout(message=None, **kwargs)
Bases: cinder.exception.APIException

1142 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

message = 'Timeout while requesting %(service)s API.'

exception AdminRequired(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotAuthorized

message = 'User does not have admin privileges'

exception AttachmentSpecsNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Attachment %(attachment_id)s has no key %(specs_key)s.'

exception BackupDriverException(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Backup driver reported an error: %(reason)s'

exception BackupInvalidCephArgs(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.BackupDriverException

message = 'Invalid Ceph args provided for backup rbd operation'

exception BackupLimitExceeded(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaError

message = 'Maximum number of backups allowed (%(allowed)d) exceeded'

exception BackupMetadataNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Backup %(backup_id)s has no metadata with key
%(metadata_key)s.'

exception BackupMetadataUnsupportedVersion(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.BackupDriverException

message = 'Unsupported backup metadata version requested'

exception BackupNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Backup %(backup_id)s could not be found.'

exception BackupOperationError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'An error has occurred during backup operation'

exception BackupRBDOperationFailed(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.BackupDriverException

message = 'Backup RBD operation failed'

exception BackupRestoreCancel(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Canceled backup %(back_id)s restore on volume %(vol_id)s'

exception BadHTTPResponseStatus(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.VolumeDriverException

4.1. Contributing to Cinder 1143

Cinder Documentation, Release 20.3.2.dev3

message = 'Bad HTTP response status %(status)s'

exception BadResetResourceStatus(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Bad reset resource status : %(reason)s'

exception CappedVersionUnknown(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = "Unrecoverable Error: Versioned Objects in DB are capped to
unknown version %(version)s. Most likely your environment contains only
new services and you're trying to start an older one. Use `cinder-manage
service list` to check that and upgrade this service."

exception CgSnapshotNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'CgSnapshot %(cgsnapshot_id)s could not be found.'

exception CinderAcceleratorError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Cinder accelerator %(accelerator)s encountered an error while
compressing/decompressing image.\nCommand %(cmd)s execution
failed.\n%(description)s\nReason: %(reason)s'

exception CinderException(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: Exception

Base Cinder Exception

To correctly use this class, inherit from it and define a message property. That message will get
printfd with the keyword arguments provided to the constructor.

code = 500

headers: dict = {}

message = 'An unknown exception occurred.'

safe = False

exception CleanableInUse(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = '%(type)s with id %(id)s is already being cleaned up or another
host has taken over it.'

exception ClusterExists(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Duplicate

message = 'Cluster %(name)s already exists.'

exception ClusterHasHosts(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Cluster %(id)s still has hosts.'

exception ClusterNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Cluster %(id)s could not be found.'

1144 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

exception ConfigNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Could not find config at %(path)s'

exception ConflictNovaUsingAttachment(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

code = 409

message = 'Detach volume from instance %(instance_id)s using the Compute
API'

safe = True

exception ConsistencyGroupNotFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.NotFound

message = 'ConsistencyGroup %(consistencygroup_id)s could not be found.'

exception ConvertedException(code: int = 500, title: str = ”, explanation: str = ”)
Bases: webob.exc.WSGIHTTPException

exception DeviceUnavailable(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'The device in the path %(path)s is unavailable: %(reason)s'

exception DriverNotInitialized(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Volume driver not ready.'

exception Duplicate(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

exception EncryptedBackupOperationFailed(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.BackupDriverException

message = 'Backup operation of an encrypted volume failed.'

exception EvaluatorParseException
Bases: Exception

message = 'Error during evaluator parsing: %(reason)s'

exception ExportFailure(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Failed to export for volume: %(reason)s'

exception ExtendVolumeError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Error extending volume: %(reason)s'

exception FCSanLookupServiceException(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

4.1. Contributing to Cinder 1145

Cinder Documentation, Release 20.3.2.dev3

message = 'Fibre Channel SAN Lookup failure: %(reason)s'

exception FCZoneDriverException(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Fibre Channel Zone operation failed: %(reason)s'

exception FailedCmdWithDump(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.VolumeDriverException

message = 'Operation failed with status=%(status)s. Full dump: %(data)s'

exception FileNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'File %(file_path)s could not be found.'

exception GlanceConnectionFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Connection to glance failed: %(reason)s'

exception GlanceMetadataExists(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Glance metadata cannot be updated, key %(key)s exists for
volume id %(volume_id)s'

exception GlanceMetadataNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Glance metadata for volume/snapshot %(id)s cannot be found.'

exception GlanceStoreNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Store %(store_id)s not enabled in glance.'

exception GlanceStoreReadOnly(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Store %(store_id)s is read-only in glance.'

exception GroupLimitExceeded(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaError

message = 'Maximum number of groups allowed (%(allowed)d) exceeded'

exception GroupNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Group %(group_id)s could not be found.'

exception GroupSnapshotNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'GroupSnapshot %(group_snapshot_id)s could not be found.'

exception GroupTypeAccessExists(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Duplicate

message = 'Group type access for %(group_type_id)s / %(project_id)s
combination already exists.'

1146 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

exception GroupTypeAccessNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Group type access not found for %(group_type_id)s /
%(project_id)s combination.'

exception GroupTypeCreateFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Cannot create group_type with name %(name)s and specs
%(group_specs)s'

exception GroupTypeExists(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Duplicate

message = 'Group Type %(id)s already exists.'

exception GroupTypeInUse(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Group Type %(group_type_id)s deletion is not allowed with
groups present with the type.'

exception GroupTypeNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Group type %(group_type_id)s could not be found.'

exception GroupTypeNotFoundByName(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.GroupTypeNotFound

message = 'Group type with name %(group_type_name)s could not be found.'

exception GroupTypeSpecsNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Group Type %(group_type_id)s has no specs with key
%(group_specs_key)s.'

exception GroupTypeUpdateFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Cannot update group_type %(id)s'

exception GroupVolumeTypeMappingExists(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Duplicate

message = 'Group volume type mapping for %(group_id)s / %(volume_type_id)s
combination already exists.'

exception HostNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Host %(host)s could not be found.'

exception ISCSITargetAttachFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to attach iSCSI target for volume %(volume_id)s.'

4.1. Contributing to Cinder 1147

Cinder Documentation, Release 20.3.2.dev3

exception ISCSITargetCreateFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to create iscsi target for volume %(volume_id)s.'

exception ISCSITargetDetachFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to detach iSCSI target for volume %(volume_id)s.'

exception ISCSITargetHelperCommandFailed(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

message = '%(error_message)s'

exception ISCSITargetRemoveFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to remove iscsi target for volume %(volume_id)s.'

exception ImageCompressionNotAllowed(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

message = 'Image compression upload disallowed, but container_format is
compressed'

exception ImageCopyFailure(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Failed to copy image to volume: %(reason)s'

exception ImageDownloadFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to download image %(image_href)s, reason: %(reason)s'

exception ImageLimitExceeded(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaError

message = 'Image quota exceeded'

exception ImageNotAuthorized(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Not authorized for image %(image_id)s.'

exception ImageNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Image %(image_id)s could not be found.'

exception ImageSignatureVerificationException(message: Optional[Union[str, tuple]] =
None, **kwargs)

Bases: cinder.exception.CinderException

message = 'Failed to verify image signature, reason: %(reason)s.'

exception ImageTooBig(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

1148 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

message = 'Image %(image_id)s size exceeded available disk space:
%(reason)s'

exception ImageUnacceptable(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Image %(image_id)s is unacceptable: %(reason)s'

exception Invalid(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

code = 400

message = 'Unacceptable parameters.'

exception InvalidAPIVersionString(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'API Version String %(version)s is of invalid format. Must be of
format MajorNum.MinorNum.'

exception InvalidAuthKey(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid auth key: %(reason)s'

exception InvalidAvailabilityZone(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = "Availability zone '%(az)s' is invalid."

exception InvalidBackup(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid backup: %(reason)s'

exception InvalidCgSnapshot(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid CgSnapshot: %(reason)s'

exception InvalidConfigurationValue(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'Value "%(value)s" is not valid for configuration option
"%(option)s"'

exception InvalidConnectorException(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.VolumeDriverException

message = "Connector doesn't have required information: %(missing)s"

exception InvalidConsistencyGroup(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid ConsistencyGroup: %(reason)s'

exception InvalidContentType(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid content type %(content_type)s.'

4.1. Contributing to Cinder 1149

Cinder Documentation, Release 20.3.2.dev3

exception InvalidGlobalAPIVersion(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Version %(req_ver)s is not supported by the API. Minimum is
%(min_ver)s and maximum is %(max_ver)s.'

exception InvalidGroup(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid Group: %(reason)s'

exception InvalidGroupSnapshot(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid GroupSnapshot: %(reason)s'

exception InvalidGroupSnapshotStatus(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'Invalid GroupSnapshot Status: %(reason)s'

exception InvalidGroupStatus(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid Group Status: %(reason)s'

exception InvalidGroupType(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid group type: %(reason)s'

exception InvalidHost(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid host: %(reason)s'

exception InvalidImageRef(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid image href %(image_href)s.'

exception InvalidInput(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid input received: %(reason)s'

exception InvalidMetadataType(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'The type of metadata: %(metadata_type)s for volume/snapshot
%(id)s is invalid.'

exception InvalidName(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = "An invalid 'name' value was provided. %(reason)s"

exception InvalidParameterValue(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = '%(err)s'

1150 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

exception InvalidQoSSpecs(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid qos specs: %(reason)s'

exception InvalidQuotaValue(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Change would make usage less than 0 for the following
resources: %(unders)s'

exception InvalidReplicationTarget(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'Invalid Replication Target: %(reason)s'

exception InvalidReservationExpiration(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'Invalid reservation expiration %(expire)s.'

exception InvalidResults(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'The results are invalid.'

exception InvalidSignatureImage(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Signature metadata is incomplete for image: %(image_id)s.'

exception InvalidSnapshot(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid snapshot: %(reason)s'

exception InvalidTypeAvailabilityZones(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'Volume type is only supported in these availability zones:
%(az)s'

exception InvalidUUID(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Expected a UUID but received %(uuid)s.'

exception InvalidVolume(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid volume: %(reason)s'

exception InvalidVolumeAttachMode(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = "Invalid attaching mode '%(mode)s' for volume %(volume_id)s."

exception InvalidVolumeMetadata(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

4.1. Contributing to Cinder 1151

Cinder Documentation, Release 20.3.2.dev3

message = 'Invalid metadata: %(reason)s'

exception InvalidVolumeMetadataSize(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'Invalid metadata size: %(reason)s'

exception InvalidVolumeType(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Invalid volume type: %(reason)s'

exception KeyManagerError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'key manager error: %(reason)s'

exception LockCreationFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Unable to create lock. Coordination backend not started.'

exception MalformedRequestBody(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Malformed message body: %(reason)s'

exception MalformedResponse(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.VolumeDriverException

message = 'Malformed response to command %(cmd)s: %(reason)s'

exception ManageExistingAlreadyManaged(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

message = 'Unable to manage existing volume. Volume %(volume_ref)s already
managed.'

exception ManageExistingInvalidReference(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

message = 'Manage existing volume failed due to invalid backend reference
%(existing_ref)s: %(reason)s'

exception ManageExistingVolumeTypeMismatch(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

message = 'Manage existing volume failed due to volume type mismatch:
%(reason)s'

exception MessageNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Message %(message_id)s could not be found.'

exception MetadataAbsent(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

1152 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

message = 'There is no metadata in DB object.'

exception MetadataCopyFailure(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Failed to copy metadata to volume: %(reason)s'

exception MetadataUpdateFailure(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Failed to update metadata for volume: %(reason)s'

exception NfsException(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.RemoteFSException

message = 'Unknown NFS exception'

exception NfsNoSharesMounted(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.RemoteFSNoSharesMounted

message = 'No mounted NFS shares found'

exception NfsNoSuitableShareFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.RemoteFSNoSuitableShareFound

message = 'There is no share which can host %(volume_size)sG'

exception NoValidBackend(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'No valid backend was found. %(reason)s'

exception NotAuthorized(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

code = 403

message = 'Not authorized.'

exception NotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

code = 404

message = 'Resource could not be found.'

safe = True

exception NotSupportedOperation(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

code = 405

message = 'Operation not supported: %(operation)s.'

exception OverQuota(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Quota exceeded for resources: %(overs)s'

exception ParameterNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Could not find parameter %(param)s'

4.1. Contributing to Cinder 1153

Cinder Documentation, Release 20.3.2.dev3

exception PolicyNotAuthorized(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotAuthorized

message = "Policy doesn't allow %(action)s to be performed."

exception ProgrammingError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Programming error in Cinder: %(reason)s'

exception ProjectQuotaNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaNotFound

message = 'Quota for project %(project_id)s could not be found.'

exception QoSSpecsAssociateFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to associate qos_specs: %(specs_id)s with type
%(type_id)s.'

exception QoSSpecsCreateFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to create qos_specs: %(name)s with specs
%(qos_specs)s.'

exception QoSSpecsDisassociateFailed(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

message = 'Failed to disassociate qos_specs: %(specs_id)s with type
%(type_id)s.'

exception QoSSpecsExists(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Duplicate

message = 'QoS Specs %(specs_id)s already exists.'

exception QoSSpecsInUse(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'QoS Specs %(specs_id)s is still associated with entities.'

exception QoSSpecsKeyNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'QoS spec %(specs_id)s has no spec with key %(specs_key)s.'

exception QoSSpecsNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'No such QoS spec %(specs_id)s.'

exception QoSSpecsUpdateFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to update qos_specs: %(specs_id)s with specs
%(qos_specs)s.'

exception QuotaClassNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaNotFound

1154 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

message = 'Quota class %(class_name)s could not be found.'

exception QuotaError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

code = 413

headers: dict = {'Retry-After': '0'}

message = 'Quota exceeded: code=%(code)s'

safe = True

exception QuotaNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Quota could not be found'

exception QuotaResourceUnknown(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaNotFound

message = 'Unknown quota resources %(unknown)s.'

exception QuotaUsageNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaNotFound

message = 'Quota usage for project %(project_id)s could not be found.'

exception RPCTimeout(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

code = 502

message = 'Timeout while requesting capabilities from backend
%(service)s.'

exception RekeyNotSupported(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Rekey not supported.'

exception RemoteFSConcurrentRequest(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.RemoteFSException

message = 'A concurrent, possibly contradictory, request has been made.'

exception RemoteFSException(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.VolumeDriverException

message = 'Unknown RemoteFS exception'

exception RemoteFSInvalidBackingFile(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.VolumeDriverException

message = 'File %(path)s has invalid backing file %(backing_file)s.'

exception RemoteFSNoSharesMounted(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.RemoteFSException

message = 'No mounted shares found'

4.1. Contributing to Cinder 1155

Cinder Documentation, Release 20.3.2.dev3

exception RemoteFSNoSuitableShareFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.RemoteFSException

message = 'There is no share which can host %(volume_size)sG'

exception RemoveExportException(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.VolumeDriverException

message = 'Failed to remove export for volume %(volume)s: %(reason)s'

exception ReplicationError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Volume %(volume_id)s replication error: %(reason)s'

exception ReplicationGroupError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Group %(group_id)s replication error: %(reason)s.'

exception SSHInjectionThreat(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'SSH command injection detected: %(command)s'

exception SchedulerHostFilterNotFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.NotFound

message = 'Scheduler Host Filter %(filter_name)s could not be found.'

exception SchedulerHostWeigherNotFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.NotFound

message = 'Scheduler Host Weigher %(weigher_name)s could not be found.'

exception ServerNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Instance %(uuid)s could not be found.'

exception ServiceNotFound(message=None, **kwargs)
Bases: cinder.exception.NotFound

exception ServiceTooOld(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Service is too old to fulfil this request.'

exception ServiceUnavailable(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Service is unavailable at this time.'

exception ServiceUserTokenNoAuth(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'The [service_user] send_service_user_token option was
requested, but no service auth could be loaded. Please check the
[service_user] configuration section.'

1156 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

exception SnapshotIsBusy(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'deleting snapshot %(snapshot_name)s that has dependent volumes'

exception SnapshotLimitExceeded(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaError

message = 'Maximum number of snapshots allowed (%(allowed)d) exceeded'

exception SnapshotLimitReached(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Exceeded the configured limit of %(set_limit)s snapshots per
volume.'

exception SnapshotMetadataNotFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.NotFound

message = 'Snapshot %(snapshot_id)s has no metadata with key
%(metadata_key)s.'

exception SnapshotNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Snapshot %(snapshot_id)s could not be found.'

exception SnapshotUnavailable(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.VolumeBackendAPIException

message = 'The snapshot is unavailable: %(data)s'

exception SwiftConnectionFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.BackupDriverException

message = 'Connection to swift failed: %(reason)s'

exception TargetUpdateFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Failed to update target for volume %(volume_id)s.'

exception TransferNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Transfer %(transfer_id)s could not be found.'

exception UnableToFailOver(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Unable to failover to replication target: %(reason)s).'

exception UnavailableDuringUpgrade(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'Cannot perform %(action)s during system upgrade.'

exception UnexpectedOverQuota(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaError

message = 'Unexpected over quota on %(name)s.'

4.1. Contributing to Cinder 1157

Cinder Documentation, Release 20.3.2.dev3

exception UnknownCmd(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.VolumeDriverException

message = 'Unknown or unsupported command %(cmd)s'

exception ValidationError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = '%(detail)s'

exception VersionNotFoundForAPIMethod(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'API version %(version)s is not supported on this method.'

exception VolumeAttached(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'Volume %(volume_id)s is still attached, detach volume first.'

exception VolumeAttachmentNotFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.NotFound

message = 'Volume attachment could not be found with filter: %(filter)s.'

exception VolumeBackendAPIException(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

message = 'Bad or unexpected response from the storage volume backend API:
%(data)s'

exception VolumeBackupSizeExceedsAvailableQuota(message: Optional[Union[str, tuple]] =
None, **kwargs)

Bases: cinder.exception.QuotaError

message = 'Requested backup exceeds allowed Backup gigabytes quota.
Requested %(requested)sG, quota is %(quota)sG and %(consumed)sG has been
consumed.'

exception VolumeDeviceNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Volume device not found at %(device)s.'

exception VolumeDriverException(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Volume driver reported an error: %(message)s'

exception VolumeGroupCreationFailed(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

message = 'Failed to create Volume Group: %(vg_name)s'

exception VolumeGroupNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Unable to find Volume Group: %(vg_name)s'

1158 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

exception VolumeIsBusy(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'deleting volume %(volume_name)s that has snapshot'

exception VolumeLimitExceeded(message=None, **kwargs)
Bases: cinder.exception.QuotaError

message = "Maximum number of volumes allowed (%(allowed)d) exceeded for
quota '%(name)s'."

exception VolumeMetadataBackupExists(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.BackupDriverException

message = 'Metadata backup already exists for this volume'

exception VolumeMetadataNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Volume %(volume_id)s has no metadata with key
%(metadata_key)s.'

exception VolumeMigrationFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Volume migration failed: %(reason)s'

exception VolumeNotDeactivated(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Volume %(name)s was not deactivated in time.'

exception VolumeNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Volume %(volume_id)s could not be found.'

exception VolumeSizeExceedsAvailableQuota(message=None, **kwargs)
Bases: cinder.exception.QuotaError

message = 'Requested volume or snapshot exceeds allowed %(name)s quota.
Requested %(requested)sG, quota is %(quota)sG and %(consumed)sG has been
consumed.'

exception VolumeSizeExceedsLimit(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.QuotaError

message = 'Requested volume size %(size)dG is larger than maximum allowed
limit %(limit)dG.'

exception VolumeSnapshotNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'No snapshots found for volume %(volume_id)s.'

exception VolumeTypeAccessExists(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Duplicate

message = 'Volume type access for %(volume_type_id)s / %(project_id)s
combination already exists.'

4.1. Contributing to Cinder 1159

Cinder Documentation, Release 20.3.2.dev3

exception VolumeTypeAccessNotFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.NotFound

message = 'Volume type access not found for %(volume_type_id)s /
%(project_id)s combination.'

exception VolumeTypeCreateFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Cannot create volume_type with name %(name)s and specs
%(extra_specs)s'

exception VolumeTypeDefaultDeletionError(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'The volume type %(volume_type_id)s is a default volume type and
cannot be deleted.'

exception VolumeTypeDefaultMisconfiguredError(message: Optional[Union[str, tuple]] =
None, **kwargs)

Bases: cinder.exception.CinderException

message = 'The request cannot be fulfilled as the default volume type
%(volume_type_name)s cannot be found.'

exception VolumeTypeDeletionError(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Invalid

message = 'The volume type %(volume_type_id)s is the only currently
defined volume type and cannot be deleted.'

exception VolumeTypeEncryptionExists(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.Invalid

message = 'Volume type encryption for type %(type_id)s already exists.'

exception VolumeTypeEncryptionNotFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.NotFound

message = 'Volume type encryption for type %(type_id)s does not exist.'

exception VolumeTypeExists(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Duplicate

message = 'Volume Type %(id)s already exists.'

exception VolumeTypeExtraSpecsNotFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.NotFound

message = 'Volume Type %(volume_type_id)s has no extra specs with key
%(extra_specs_key)s.'

exception VolumeTypeInUse(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

1160 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

message = 'Volume Type %(volume_type_id)s deletion is not allowed with
volumes present with the type.'

exception VolumeTypeNotFound(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Volume type %(volume_type_id)s could not be found.'

exception VolumeTypeNotFoundByName(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.VolumeTypeNotFound

message = 'Volume type with name %(volume_type_name)s could not be found.'

exception VolumeTypeProjectDefaultNotFound(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.NotFound

message = 'Default type for project %(project_id)s not found.'

exception VolumeTypeUpdateFailed(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Cannot update volume_type %(id)s'

exception WorkerExists(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.Duplicate

message = 'Worker for %(type)s %(id)s already exists.'

exception WorkerNotFound(message=None, **kwargs)
Bases: cinder.exception.NotFound

message = 'Worker with %s could not be found.'

exception ZoneManagerException(message: Optional[Union[str, tuple]] = None, **kwargs)
Bases: cinder.exception.CinderException

message = 'Fibre Channel connection control failure: %(reason)s'

exception ZoneManagerNotInitialized(message: Optional[Union[str, tuple]] = None,
**kwargs)

Bases: cinder.exception.CinderException

message = 'Fibre Channel Zone Manager not initialized'

cinder.flow_utils module

class CinderTask(addons: Optional[List[str]] = None, **kwargs: Any)
Bases: taskflow.task.Task

The root task class for all cinder tasks.

It automatically names the given task using the module and class that implement the given task as
the task name.

classmethod make_name(addons: Optional[List[str]] = None)→ str

4.1. Contributing to Cinder 1161

Cinder Documentation, Release 20.3.2.dev3

class DynamicLogListener(engine, task_listen_for=(’*’,), flow_listen_for=(’*’,),
retry_listen_for=(’*’,), logger=<KeywordArgumentAdapter
cinder.flow_utils (WARNING)>)

Bases: taskflow.listeners.logging.DynamicLoggingListener

This is used to attach to taskflow engines while they are running.

It provides a bunch of useful features that expose the actions happening inside a taskflow engine,
which can be useful for developers for debugging, for operations folks for monitoring and tracking
of the resource actions and more

class SpecialFormatter(engine)
Bases: taskflow.formatters.FailureFormatter

format(fail, atom_matcher)
Returns a (exc_info, details) tuple about the failure.

The exc_info tuple should be a standard three element (exctype, value, traceback) tuple
that will be used for further logging. A non-empty string is typically returned for details;
it should contain any string info about the failure (with any specific details the exc_info
may not have/contain).

cinder.i18n module

oslo.i18n integration module.

See https://docs.openstack.org/oslo.i18n/latest/user/index.html .

enable_lazy(enable=True)

get_available_languages()

translate(value, user_locale=None)

cinder.manager module

Base Manager class.

Managers are responsible for a certain aspect of the system. It is a logical grouping of code relating to a
portion of the system. In general other components should be using the manager to make changes to the
components that it is responsible for.

For example, other components that need to deal with volumes in some way, should do so by calling
methods on the VolumeManager instead of directly changing fields in the database. This allows us to
keep all of the code relating to volumes in the same place.

We have adopted a basic strategy of Smart managers and dumb data, which means rather than attaching
methods to data objects, components should call manager methods that act on the data.

Methods on managers that can be executed locally should be called directly. If a particular method must
execute on a remote host, this should be done via rpc to the service that wraps the manager

Managers should be responsible for most of the db access, and non-implementation specific data. Any-
thing implementation specific that cant be generalized should be done by the Driver.

In general, we prefer to have one manager with multiple drivers for different implementations, but some-
times it makes sense to have multiple managers. You can think of it this way: Abstract different overall

1162 Chapter 4. For contributors

https://docs.openstack.org/oslo.i18n/latest/user/index.html

Cinder Documentation, Release 20.3.2.dev3

strategies at the manager level(FlatNetwork vs VlanNetwork), and different implementations at the driver
level(LinuxNetDriver vs CiscoNetDriver).

Managers will often provide methods for initial setup of a host or periodic tasks to a wrapping service.

This module provides Manager, a base class for managers.

class CleanableManager
Bases: object

do_cleanup(context: cinder.context.RequestContext, cleanup_request:
cinder.objects.cleanup_request.CleanupRequest)→ None

init_host(service_id, added_to_cluster=None, **kwargs)

class Manager(host: Optional[oslo_config.types.HostAddress] = None, cluster=None, **_kwargs)
Bases: cinder.db.base.Base, cinder.manager.PeriodicTasks

RPC_API_VERSION = '1.0'

get_log_levels(context, log_request)

init_host(service_id, added_to_cluster=None)
Handle initialization if this is a standalone service.

A hook point for services to execute tasks before the services are made available (i.e. showing
up on RPC and starting to accept RPC calls) to other components. Child classes should
override this method.

Parameters

• service_id ID of the service where the manager is running.

• added_to_cluster True when a hosts cluster configuration has changed
from not being defined or being to any other value and the DB service record
reflects this new value.

init_host_with_rpc()
A hook for service to do jobs after RPC is ready.

Like init_host(), this method is a hook where services get a chance to execute tasks that need
RPC. Child classes should override this method.

is_working()
Method indicating if service is working correctly.

This method is supposed to be overridden by subclasses and return if manager is working
correctly.

reset()
Method executed when SIGHUP is caught by the process.

Were utilizing it to reset RPC API version pins to avoid restart of the service when rolling
upgrade is completed.

property service_topic_queue

set_log_levels(context, log_request)

target = <Target version=1.0>

class PeriodicTasks
Bases: oslo_service.periodic_task.PeriodicTasks

4.1. Contributing to Cinder 1163

Cinder Documentation, Release 20.3.2.dev3

class SchedulerDependentManager(host=None, service_name=’undefined’, cluster=None,
*args, **kwargs)

Bases: cinder.manager.ThreadPoolManager

Periodically send capability updates to the Scheduler services.

Services that need to update the Scheduler of their capabilities should derive from this class.
Otherwise they can derive from manager.Manager directly. Updates are only sent after up-
date_service_capabilities is called with non-None values.

additional_endpoints: list

host: oslo_config.types.HostAddress

reset()
Method executed when SIGHUP is caught by the process.

Were utilizing it to reset RPC API version pins to avoid restart of the service when rolling
upgrade is completed.

update_service_capabilities(capabilities)
Remember these capabilities to send on next periodic update.

class ThreadPoolManager(*args, **kwargs)
Bases: cinder.manager.Manager

additional_endpoints: list

host: oslo_config.types.HostAddress

cinder.opts module

list_opts()

cinder.policy module

Policy Engine For Cinder

authorize(context, action, target, do_raise=True, exc=None)
Verifies that the action is valid on the target in this context.

Parameters

• context cinder context

• action string representing the action to be checked this should
be colon separated for clarity. i.e. compute:create_instance,
compute:attach_volume, volume:attach_volume

• target dictionary representing the object of the action for object cre-
ation this should be a dictionary representing the location of the object e.g.
{'project_id': context.project_id}

• do_raise if True (the default), raises PolicyNotAuthorized; if False, returns
False

1164 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• exc Class of the exception to raise if the check fails. Any remaining argu-
ments passed to authorize() (both positional and keyword arguments) will
be passed to the exception class. If not specified, PolicyNotAuthorizedwill
be used.

Raises cinder.exception.PolicyNotAuthorized if verification fails and
do_raise is True. Or if exc is specified it will raise an exception of that type.

Returns returns a non-False value (not necessarily True) if authorized, and the exact
value False if not authorized and do_raise is False.

check_is_admin(context)
Whether or not user is admin according to policy setting.

enforce(context, action, target)
Verifies that the action is valid on the target in this context.

Parameters

• context cinder context

• action string representing the action to be checked this should
be colon separated for clarity. i.e. compute:create_instance,
compute:attach_volume, volume:attach_volume

• target dictionary representing the object of the action for object cre-
ation this should be a dictionary representing the location of the object e.g.
{'project_id': context.project_id}

Raises PolicyNotAuthorized if verification fails.

get_enforcer()

get_rules()

init(use_conf=True, suppress_deprecation_warnings=False)
Init an Enforcer class.

Parameters use_conf Whether to load rules from config file.

register_rules(enforcer)

reset()

set_rules(rules, overwrite=True, use_conf=False)
Set rules based on the provided dict of rules.

Parameters

• rules New rules to use. It should be an instance of dict.

• overwrite Whether to overwrite current rules or update them with the new
rules.

• use_conf Whether to reload rules from config file.

4.1. Contributing to Cinder 1165

Cinder Documentation, Release 20.3.2.dev3

cinder.quota module

Quotas for volumes.

class BaseResource(name, flag=None, parent_project_id=None)
Bases: object

Describe a single resource for quota checking.

property default
Return the default value of the quota.

quota(driver, context, **kwargs)
Given a driver and context, obtain the quota for this resource.

Parameters

• driver A quota driver.

• context The request context.

• project_id The project to obtain the quota value for. If not provided, it is
taken from the context. If it is given as None, no project-specific quota will
be searched for.

• quota_class The quota class corresponding to the project, or for which the
quota is to be looked up. If not provided, it is taken from the context. If it is
given as None, no quota class-specific quota will be searched for. Note that
the quota class defaults to the value in the context, which may not correspond
to the project if project_id is not the same as the one in the context.

class CGQuotaEngine(quota_driver_class=None)
Bases: cinder.quota.QuotaEngine

Represent the consistencygroup quotas.

register_resource(resource)
Register a resource.

register_resources(resources)
Register a list of resources.

property resources
Fetches all possible quota resources.

class DbQuotaDriver
Bases: object

Driver to perform check to enforcement of quotas.

Also allows to obtain quota information. The default driver utilizes the local database.

commit(context, reservations, project_id=None)
Commit reservations.

Parameters

• context The request context, for access checks.

• reservations A list of the reservation UUIDs, as returned by the reserve()
method.

1166 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• project_id Specify the project_id if current context is admin and admin
wants to impact on common users tenant.

destroy_by_project(context, project_id)
Destroy all limit quotas associated with a project.

Leave usage and reservation quotas intact.

Parameters

• context The request context, for access checks.

• project_id The ID of the project being deleted.

expire(context)
Expire reservations.

Explores all currently existing reservations and rolls back any that have expired.

Parameters context The request context, for access checks.

get_by_class(context, quota_class, resource_name)
Get a specific quota by quota class.

get_by_project(context, project_id, resource_name)
Get a specific quota by project.

get_class_quotas(context, resources, quota_class, defaults=True)
Given list of resources, retrieve the quotas for given quota class.

Parameters

• context The request context, for access checks.

• resources A dictionary of the registered resources.

• quota_class The name of the quota class to return quotas for.

• defaults If True, the default value will be reported if there is no specific
value for the resource.

get_default(context, resource, project_id)
Get a specific default quota for a resource.

get_defaults(context, resources, project_id=None)
Given a list of resources, retrieve the default quotas.

Use the class quotas named _DEFAULT_QUOTA_NAME as default quotas, if it exists.

Parameters

• context The request context, for access checks.

• resources A dictionary of the registered resources.

• project_id The id of the current project

get_project_quotas(context, resources, project_id, quota_class=None, defaults=True,
usages=True)

Retrieve quotas for a project.

Given a list of resources, retrieve the quotas for the given project.

Parameters

4.1. Contributing to Cinder 1167

Cinder Documentation, Release 20.3.2.dev3

• context The request context, for access checks.

• resources A dictionary of the registered resources.

• project_id The ID of the project to return quotas for.

• quota_class If project_id != context.project_id, the quota class cannot be
determined. This parameter allows it to be specified. It will be ignored if
project_id == context.project_id.

• defaults If True, the quota class value (or the default value, if there is no
value from the quota class) will be reported if there is no specific value for
the resource.

• usages If True, the current in_use and reserved counts will also be returned.

limit_check(context, resources, values, project_id=None)
Check simple quota limits.

For limitsthose quotas for which there is no usage synchronization functionthis method checks
that a set of proposed values are permitted by the limit restriction.

This method will raise a QuotaResourceUnknown exception if a given resource is unknown
or if it is not a simple limit resource.

If any of the proposed values is over the defined quota, an OverQuota exception will be raised
with the sorted list of the resources which are too high. Otherwise, the method returns noth-
ing.

Parameters

• context The request context, for access checks.

• resources A dictionary of the registered resources.

• values A dictionary of the values to check against the quota.

• project_id Specify the project_id if current context is admin and admin
wants to impact on common users tenant.

reserve(context, resources, deltas, expire=None, project_id=None)
Check quotas and reserve resources.

For counting quotasthose quotas for which there is a usage synchronization functionthis
method checks quotas against current usage and the desired deltas.

This method will raise a QuotaResourceUnknown exception if a given resource is unknown
or if it does not have a usage synchronization function.

If any of the proposed values is over the defined quota, an OverQuota exception will be raised
with the sorted list of the resources which are too high. Otherwise, the method returns a list
of reservation UUIDs which were created.

Parameters

• context The request context, for access checks.

• resources A dictionary of the registered resources.

• deltas A dictionary of the proposed delta changes.

• expire An optional parameter specifying an expiration time for the reser-
vations. If it is a simple number, it is interpreted as a number of seconds and

1168 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

added to the current time; if it is a datetime.timedelta object, it will also be
added to the current time. A datetime.datetime object will be interpreted as
the absolute expiration time. If None is specified, the default expiration time
set by default-reservation-expire will be used (this value will be treated as a
number of seconds).

• project_id Specify the project_id if current context is admin and admin
wants to impact on common users tenant.

rollback(context, reservations, project_id=None)
Roll back reservations.

Parameters

• context The request context, for access checks.

• reservations A list of the reservation UUIDs, as returned by the reserve()
method.

• project_id Specify the project_id if current context is admin and admin
wants to impact on common users tenant.

class GroupQuotaEngine(quota_driver_class=None)
Bases: cinder.quota.QuotaEngine

Represent the group quotas.

register_resource(resource)
Register a resource.

register_resources(resources)
Register a list of resources.

property resources
Fetches all possible quota resources.

class QuotaEngine(quota_driver_class=None)
Bases: object

Represent the set of recognized quotas.

add_volume_type_opts(context, opts, volume_type_id)
Add volume type resource options.

Adds elements to the opts hash for volume type quotas. If a resource is being reserved (gi-
gabytes, etc) and the volume type is set up for its own quotas, these reservations are copied
into keys for gigabytes_<volume type name>, etc.

Parameters

• context The request context, for access checks.

• opts The reservations options hash.

• volume_type_id The volume type id for this reservation.

commit(context, reservations, project_id=None)
Commit reservations.

Parameters

• context The request context, for access checks.

4.1. Contributing to Cinder 1169

Cinder Documentation, Release 20.3.2.dev3

• reservations A list of the reservation UUIDs, as returned by the reserve()
method.

• project_id Specify the project_id if current context is admin and admin
wants to impact on common users tenant.

destroy_by_project(context, project_id)
Destroy all quota limits associated with a project.

Parameters

• context The request context, for access checks.

• project_id The ID of the project being deleted.

expire(context)
Expire reservations.

Explores all currently existing reservations and rolls back any that have expired.

Parameters context The request context, for access checks.

get_by_class(context, quota_class, resource_name)
Get a specific quota by quota class.

get_by_project(context, project_id, resource_name)
Get a specific quota by project.

get_by_project_or_default(context, project_id, resource_name)
Get specific quota by project or default quota if doesnt exists.

get_class_quotas(context, quota_class, defaults=True)
Retrieve the quotas for the given quota class.

Parameters

• context The request context, for access checks.

• quota_class The name of the quota class to return quotas for.

• defaults If True, the default value will be reported if there is no specific
value for the resource.

get_default(context, resource, parent_project_id=None)
Get a specific default quota for a resource.

Parameters parent_project_id The id of the current projects parent, if any.

get_defaults(context, project_id=None)
Retrieve the default quotas.

Parameters

• context The request context, for access checks.

• project_id The id of the current project

get_project_quotas(context, project_id, quota_class=None, defaults=True, usages=True)
Retrieve the quotas for the given project.

Parameters

• context The request context, for access checks.

1170 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• project_id The ID of the project to return quotas for.

• quota_class If project_id != context.project_id, the quota class cannot be
determined. This parameter allows it to be specified.

• defaults If True, the quota class value (or the default value, if there is no
value from the quota class) will be reported if there is no specific value for
the resource.

• usages If True, the current in_use and reserved counts will also be returned.

limit_check(context, project_id=None, **values)
Check simple quota limits.

For limitsthose quotas for which there is no usage synchronization functionthis method checks
that a set of proposed values are permitted by the limit restriction. The values to check are
given as keyword arguments, where the key identifies the specific quota limit to check, and
the value is the proposed value.

This method will raise a QuotaResourceUnknown exception if a given resource is unknown
or if it is not a simple limit resource.

If any of the proposed values is over the defined quota, an OverQuota exception will be raised
with the sorted list of the resources which are too high. Otherwise, the method returns noth-
ing.

Parameters

• context The request context, for access checks.

• project_id Specify the project_id if current context is admin and admin
wants to impact on common users tenant.

register_resource(resource)
Register a resource.

register_resources(resources)
Register a list of resources.

reserve(context, expire=None, project_id=None, **deltas)
Check quotas and reserve resources.

For counting quotasthose quotas for which there is a usage synchronization functionthis
method checks quotas against current usage and the desired deltas. The deltas are given
as keyword arguments, and current usage and other reservations are factored into the quota
check.

This method will raise a QuotaResourceUnknown exception if a given resource is unknown
or if it does not have a usage synchronization function.

If any of the proposed values is over the defined quota, an OverQuota exception will be raised
with the sorted list of the resources which are too high. Otherwise, the method returns a list
of reservation UUIDs which were created.

Parameters

• context The request context, for access checks.

• expire An optional parameter specifying an expiration time for the reser-
vations. If it is a simple number, it is interpreted as a number of seconds and
added to the current time; if it is a datetime.timedelta object, it will also be

4.1. Contributing to Cinder 1171

Cinder Documentation, Release 20.3.2.dev3

added to the current time. A datetime.datetime object will be interpreted as
the absolute expiration time. If None is specified, the default expiration time
set by default-reservation-expire will be used (this value will be treated as a
number of seconds).

• project_id Specify the project_id if current context is admin and admin
wants to impact on common users tenant.

property resource_names

property resources

rollback(context, reservations, project_id=None)
Roll back reservations.

Parameters

• context The request context, for access checks.

• reservations A list of the reservation UUIDs, as returned by the reserve()
method.

• project_id Specify the project_id if current context is admin and admin
wants to impact on common users tenant.

class ReservableResource(name, sync, flag=None)
Bases: cinder.quota.BaseResource

Describe a reservable resource.

class VolumeTypeQuotaEngine(quota_driver_class=None)
Bases: cinder.quota.QuotaEngine

Represent the set of all quotas.

register_resource(resource)
Register a resource.

register_resources(resources)
Register a list of resources.

property resources
Fetches all possible quota resources.

update_quota_resource(context, old_type_name, new_type_name)
Update resource in quota.

This is to update resource in quotas, quota_classes, and quota_usages once the name of a
volume type is changed.

Parameters

• context The request context, for access checks.

• old_type_name old name of volume type.

• new_type_name new name of volume type.

class VolumeTypeResource(part_name, volume_type)
Bases: cinder.quota.ReservableResource

ReservableResource for a specific volume type.

1172 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

cinder.quota_utils module

get_volume_type_reservation(ctxt, volume, type_id, reserve_vol_type_only=False,
negative=False)

process_reserve_over_quota(context, over_quota_exception, resource, size=None)
Handle OverQuota exception.

Analyze OverQuota exception, and raise new exception related to resource type. If there are unex-
pected items in overs, UnexpectedOverQuota is raised.

Parameters

• context security context

• over_quota_exception OverQuota exception

• resource can be backups, snapshots, and volumes

• size requested size in reservation

cinder.rpc module

class RequestContextSerializer(base)
Bases: oslo_messaging.serializer.Serializer

deserialize_context(context)
Deserialize a dictionary into a request context.

Parameters ctxt Request context dictionary

Returns Deserialized form of entity

deserialize_entity(context, entity)
Deserialize something from primitive form.

Parameters

• ctxt Request context, in deserialized form

• entity Primitive to be deserialized

Returns Deserialized form of entity

serialize_context(context)
Serialize a request context into a dictionary.

Parameters ctxt Request context

Returns Serialized form of context

serialize_entity(context, entity)
Serialize something to primitive form.

Parameters

• ctxt Request context, in deserialized form

• entity Entity to be serialized

Returns Serialized form of entity

4.1. Contributing to Cinder 1173

Cinder Documentation, Release 20.3.2.dev3

add_extra_exmods(*args)

cleanup()

clear_extra_exmods()

get_allowed_exmods()

get_client(target, version_cap=None, serializer=None)→ oslo_messaging.rpc.client.RPCClient

get_notifier(service: str = None, host: str = None, publisher_id: str = None)→
oslo_messaging.notify.notifier.Notifier

get_server(target, endpoints, serializer=None)→ oslo_messaging.rpc.server.RPCServer

init(conf)→ None

set_defaults(control_exchange)

cinder.service module

Generic Node base class for all workers that run on hosts.

class Launcher
Bases: object

class Service(host, binary, topic, manager, report_interval=None, periodic_interval=None,
periodic_fuzzy_delay=None, service_name=None, coordination=False,
cluster=None, *args, **kwargs)

Bases: oslo_service.service.Service

Service object for binaries running on hosts.

A service takes a manager and enables rpc by listening to queues based on topic. It also periodically
runs tasks on the manager and reports it state to the database services table.

basic_config_check()
Perform basic config checks before starting service.

classmethod create(host=None, binary=None, topic=None, manager=None,
report_interval=None, periodic_interval=None,
periodic_fuzzy_delay=None, service_name=None, coordination=False,
cluster=None, **kwargs)

Instantiates class and passes back application object.

Parameters

• host defaults to CONF.host

• binary defaults to basename of executable

• topic defaults to bin_name - cinder- part

• manager defaults to CONF.<topic>_manager

• report_interval defaults to CONF.report_interval

• periodic_interval defaults to CONF.periodic_interval

• periodic_fuzzy_delay defaults to CONF.periodic_fuzzy_delay

• cluster Defaults to None, as only some services will have it

1174 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

periodic_tasks(raise_on_error=False)
Tasks to be run at a periodic interval.

report_state()
Update the state of this service in the datastore.

reset()
Reset a service in case it received a SIGHUP.

service_id = None

start()
Start a service.

stop()
Stop a service.

Parameters graceful indicates whether to wait for all threads to finish or termi-
nate them instantly

wait()
Wait for a service to shut down.

class WSGIService(name, loader=None)
Bases: oslo_service.service.ServiceBase

Provides ability to launch API from a paste configuration.

reset()
Reset server greenpool size to default.

Returns None

start()
Start serving this service using loaded configuration.

Also, retrieve updated port number in case 0 was passed in, which indicates a random port
should be used.

Returns None

stop()
Stop serving this API.

Returns None

wait()
Wait for the service to stop serving this API.

Returns None

class WindowsProcessLauncher
Bases: object

add_process(cmd)

wait()

get_launcher()

process_launcher()

serve(server, workers=None)

4.1. Contributing to Cinder 1175

Cinder Documentation, Release 20.3.2.dev3

setup_profiler(binary, host)

wait()

cinder.service_auth module

get_auth_plugin(context, auth=None)

reset_globals()
For async unit test consistency.

cinder.ssh_utils module

Utilities related to SSH connection management.

class SSHPool(ip, port, conn_timeout, login, password=None, privatekey=None, *args, **kwargs)
Bases: eventlet.pools.Pool

A simple eventlet pool to hold ssh connections.

create()
Generate a new pool item. In order for the pool to function, either this method must be
overriden in a subclass or the pool must be constructed with the create argument. It accepts
no arguments and returns a single instance of whatever thing the pool is supposed to contain.

In general, create() is called whenever the pool exceeds its previous high-water mark of
concurrently-checked-out-items. In other words, in a new pool with min_size of 0, the very
first call to get() will result in a call to create(). If the first caller calls put() before some
other caller calls get(), then the first item will be returned, and create() will not be called
a second time.

get()
Return an item from the pool, when one is available.

This may cause the calling greenthread to block. Check if a connection is active before
returning it.

For dead connections create and return a new connection.

put(conn)
Put an item back into the pool, when done. This may cause the putting greenthread to block.

remove(ssh)
Close an ssh client and remove it from free_items.

cinder.utils module

Utilities and helper functions for all Cinder code.

This file is for utilities useful in all of Cinder, including cinder-manage, the api service, the scheduler,
etc.

Code related to volume drivers and connecting to volumes should be placed in volume_utils instead.

class ComparableMixin
Bases: object

1176 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

class DoNothing
Bases: str

Class that literrally does nothing.

We inherit from str in case its called with json.dumps.

class Semaphore(limit)
Bases: object

Custom semaphore to workaround eventlet issues with multiprocessing.

api_clean_volume_file_locks(volume_id)

as_int(obj: Union[int, float, str], quiet: bool = True)→ int

build_or_str(elements: Union[None, str, Iterable[str]], str_format: Optional[str] = None)→ str
Builds a string of elements joined by or.

Will join strings with the or word and if a str_format is provided it will be used to format the
resulted joined string. If there are no elements an empty string will be returned.

Parameters

• elements (String or iterable of strings.) Elements we want to
join.

• str_format (String.) String to use to format the response.

calculate_capacity_factors(total_capacity: float, free_capacity: float, provisioned_capacity:
float, thin_provisioning_support: bool,
max_over_subscription_ratio: float, reserved_percentage: int, thin:
bool)→ dict

Create the various capacity factors of the a particular backend.

Based off of definition of terms cinder-specs/specs/queens/provisioning-improvements.html
Description of factors calculated where units of gb are Gibibytes. reserved_capacity
- The amount of space reserved from the total_capacity as reported by the back-
end. total_reserved_available_capacity - The total capacity minus reserved capacity
total_available_capacity - The total capacity available to cinder calculated from to-
tal_reserved_available_capacity (for thick) OR for thin total_reserved_available_capacity
max_over_subscription_ratio calculated_free_capacity - total_available_capacity - provi-
sioned_capacity virtual_free_capacity - The calculated free capacity available to cinder to allocate
new storage. For thin: calculated_free_capacity For thick: the reported free_capacity can be less
than the calculated capacity, so we use free_capacity - reserved_capacity.

free_percent - the percentage of the virtual_free_capacity and total_available_capacity is left over
provisioned_ratio - The ratio of provisioned storage to total_available_capacity

Parameters

• total_capacity (float) The reported total capacity in the backend.

• free_capacity (float) The free space/capacity as reported by the backend.

• provisioned_capacity (float) as reported by backend or volume man-
ager from allocated_capacity_gb

• thin_provisioning_support (bool) Is thin provisioning supported?

• max_over_subscription_ratio (float) as reported by the backend

4.1. Contributing to Cinder 1177

Cinder Documentation, Release 20.3.2.dev3

• reserved_percentage (int, 0-100) the % amount to reserve as unavail-
able. 0-100

• thin (bool) calculate based on thin provisioning if enabled by
thin_provisioning_support

Returns A dictionary of all of the capacity factors.

Return type dict

calculate_max_over_subscription_ratio(capability: dict,
global_max_over_subscription_ratio: float)→ float

calculate_virtual_free_capacity(total_capacity: float, free_capacity: float,
provisioned_capacity: float, thin_provisioning_support:
bool, max_over_subscription_ratio: float,
reserved_percentage: int, thin: bool)→ float

Calculate the virtual free capacity based on multiple factors.

Parameters

• total_capacity total_capacity_gb of a host_state or pool.

• free_capacity free_capacity_gb of a host_state or pool.

• provisioned_capacity provisioned_capacity_gb of a host_state or pool.

• thin_provisioning_support thin_provisioning_support of a host_state or
a pool.

• max_over_subscription_ratio max_over_subscription_ratio of a
host_state or a pool

• reserved_percentage reserved_percentage of a host_state or a pool.

• thin whether volume to be provisioned is thin

Returns the calculated virtual free capacity.

check_exclusive_options(**kwargs: Optional[Union[dict, str, bool]])→ None
Checks that only one of the provided options is actually not-none.

Iterates over all the kwargs passed in and checks that only one of said arguments is not-none, if
more than one is not-none then an exception will be raised with the names of those arguments who
were not-none.

check_metadata_properties(metadata: Optional[Dict[str, str]])→ None
Checks that the volume metadata properties are valid.

check_ssh_injection(cmd_list: List[str])→ None

check_string_length(value: str, name: str, min_length: int = 0, max_length: Optional[int] =
None, allow_all_spaces: bool = True)→ None

Check the length of specified string.

Parameters

• value the value of the string

• name the name of the string

• min_length the min_length of the string

1178 Chapter 4. For contributors

Cinder Documentation, Release 20.3.2.dev3

• max_length the max_length of the string

clean_snapshot_file_locks(snapshot_id, driver)

clean_volume_file_locks(volume_id, driver)
Remove file locks used by Cinder.

This doesnt take care of driver locks, those should be handled in drivers delete_volume method.

convert_str(text: Union[str, bytes])→ str
Convert to native string.

Convert bytes and Unicode strings to native strings:

• convert to bytes on Python 2: encode Unicode using encodeutils.safe_encode()

• convert to Unicode on Python 3: decode bytes from UTF-8

create_ordereddict(adict: dict)→ collections.OrderedDict
Given a dict, return a sorted OrderedDict.

execute(*cmd: str, **kwargs: Union[bool, str])→ Tuple[str, str]
Convenience wrapper around oslos execute() method.

get_blkdev_major_minor(path: str, lookup_for_file: bool = True)→ Optional[str]
Get major:minor number of block device.

Get the devices major:minor number of a block device to control I/O ratelimit of the specified path.
If lookup_for_file is True and the path is a regular file, lookup a disk device which the file lies on
and returns the result for the device.

get_bool_param(param_string: str, params: dict, default: bool = False)→ bool

get_file_gid(path: str)→ int
This primarily exists to make unit testing easier.

get_file_mode(path: str)→ int
This primarily exists to make unit testing easier.

get_file_size(path: str)→ int
Returns the file size.

get_log_levels(prefix: str)→ dict

get_log_method(level_string: str)→ int

get_root_helper()→ str

if_notifications_enabled(f: Callable)→ Callable
Calls decorated method only if notifications are enabled.

is_blk_device(dev: str)→ bool

last_completed_audit_period(unit: Optional[str] = None)→ Tuple[Union[datetime.datetime,
datetime.timedelta], Union[datetime.datetime,
datetime.timedelta]]

This method gives you the most recently completed audit period.

arguments:

units: string, one of hour, day, month, year Periods normally begin at the beginning
(UTC) of the period unit (So a day period begins at midnight UTC, a month unit on
the 1st, a year on Jan, 1) unit string may be appended with an optional offset like so:

4.1. Contributing to Cinder 1179

Cinder Documentation, Release 20.3.2.dev3

day@18 This will begin the period at 18:00 UTC. month@15 starts a monthly period
on the 15th, and year@3 begins a yearly one on March 1st.

returns: 2 tuple of datetimes (begin, end) The begin timestamp of this audit period is the same
as the end of the previous.

limit_operations(func: Callable)→ Callable
Decorator to limit the number of concurrent operations.

This method decorator expects to have a _semaphore attribute holding an initialized semaphore in
the self instance object.

We can get the appropriate semaphore with the semaphore_factory method.

make_dev_path(dev: str, partition: Optional[str] = None, base: str = ’/dev’)→ str
Return a path to a particular device.

>>> make_dev_path('xvdc')
/dev/xvdc

>>> make_dev_path('xvdc', 1)
/dev/xvdc1

monkey_patch()→ None
Patches decorators for all functions in a specified module.

If the CONF.monkey_patch set as True, this function patches a decorator for all functions in spec-
ified modules.

You can set decorators for each modules using CONF.monkey_patch_modules. The
format is Module path:Decorator function. Example: cinder.api.ec2.cloud: cin-
der.openstack.common.notifier.api.notify_decorator

Parameters of the decorator are as follows. (See cin-
der.openstack.common.notifier.api.notify_decorator)

Parameters

• name name of the function

• function object of the function

notifications_enabled(conf)
Check if oslo notifications are enabled.

paths_normcase_equal(path_a: str, path_b: str)→ bool

retry(retry_param: typing.Union[None, typing.Type[Exception],
typing.Tuple[typing.Type[Exception], ...], int, typing.Tuple[int, ...]], interval: float = 1, retries:
int = 3, backoff_rate: float = 2, wait_random: bool = False, retry=<class
’tenacity.retry.retry_if_exception_type’>)→ Callable

class retry_if_exit_code(codes)
Bases: tenacity.retry.retry_if_exception

Retry on ProcessExecutionError specific exit codes.

robust_file_write(directory: str, filename: str, data: str)→ None
Robust file write.

1180 Chapter 4. For contributors

mailto:'day@18
mailto:'month@15

Cinder Documentation, Release 20.3.2.dev3

Use write to temp file and rename model for writing the persistence file.

Parameters

• directory Target directory to create a file.

• filename File name to store specified data.

• data String data.

semaphore_factory(limit: int, concurrent_processes: int)→
Union[eventlet.semaphore.Semaphore, cinder.utils.Semaphore]

Get a semaphore to limit concurrent operations.

The semaphore depends on the limit we want to set and the concurrent processes that need to be
limited.

service_expired_time(with_timezone: Optional[bool] = False)→ datetime.datetime

set_log_levels(prefix: str, level_string: str)→ None

tempdir(**kwargs)→ Iterator[str]

temporary_chown(path: str, owner_uid: int = None)→ Iterator[None]
Temporarily chown a path.

Params owner_uid UID of temporary owner (defaults to current user)

validate_dictionary_string_length(specs: dict)→ None
Check the length of each key and value of dictionary.

cinder.version module

Module contents

Root Cinder module.

4.1. Contributing to Cinder 1181

Cinder Documentation, Release 20.3.2.dev3

1182 Chapter 4. For contributors

CHAPTER

FIVE

FOR REVIEWERS

• Python 2 to Python 3 transition guidelines

1183

Cinder Documentation, Release 20.3.2.dev3

1184 Chapter 5. For reviewers

CHAPTER

SIX

ADDITIONAL REFERENCE

Contents:

6.1 Glossary

This glossary offers a list of terms and definitions to define a vocabulary for Cinder concepts.

Logical Volume Manager (LVM) Provides a method of allocating space on mass-storage devices that
is more flexible than conventional partitioning schemes.

iSCSI Qualified Name (IQN) IQN is the format most commonly used for iSCSI names, which uniquely
identify nodes in an iSCSI network. All IQNs follow the pattern iqn.yyyy-mm.domain:identifier,
where yyyy-mm is the year and month in which the domain was registered, domain is the reversed
domain name of the issuing organization, and identifier is an optional string which makes each
IQN under the same domain unique. For example, iqn.2015-10.org.openstack.408ae959bce1.

1185

	What is Cinder?
	For end users
	Tools for using Cinder
	Using the Cinder API

	For operators
	Installing Cinder
	Cinder Installation Guide
	Prerequisites
	Adding Cinder to your OpenStack Environment
	Cinder Block Storage service overview
	The default volume type

	Cinder Installation Guide for openSUSE and SUSE Linux Enterprise
	Install and configure controller node
	Prerequisites
	Install and configure components
	Configure Compute to use Block Storage
	Finalize installation
	Install and configure a storage node
	Prerequisites
	Install and configure components
	Finalize installation
	Install and configure the backup service
	Install and configure components
	Finalize installation
	Verify Cinder operation

	Cinder Installation Guide for Red Hat Enterprise Linux and CentOS
	Install and configure controller node
	Prerequisites
	Install and configure components
	Configure Compute to use Block Storage
	Finalize installation
	Install and configure a storage node
	Prerequisites
	Install and configure components
	Finalize installation
	Install and configure the backup service
	Install and configure components
	Finalize installation

	Cinder Installation Guide for Ubuntu
	Install and configure controller node
	Prerequisites
	Install and configure components
	Configure Compute to use Block Storage
	Finalize installation
	Install and configure a storage node
	Prerequisites
	Install and configure components
	Finalize installation
	Install and configure the backup service
	Install and configure components
	Finalize installation

	Cinder Installation Guide for Windows
	Install and configure a storage node
	Prerequisites
	Configure NTP
	Install and configure components
	Graphical mode
	Unattended mode
	Configuring Cinder
	Finalize installation

	Administrating Cinder
	Cinder Administration
	Security
	Network traffic
	Data at rest
	Data leakage

	Accelerate image compression
	Configure image compression
	System requirement

	Increase Block Storage API service throughput
	Manage volumes
	Boot from volume
	Configure an NFS storage back end
	Configure multiple-storage back ends
	Enable multiple-storage back ends
	Configure shared volume driver backends
	Configure Block Storage scheduler multi back end
	Volume type
	Usage

	Back up Block Storage service disks
	Migrate volumes
	Back up and restore volumes and snapshots
	Cancelling
	backup_max_operations

	Export and import backup metadata
	Use LIO iSCSI support
	Configure and use volume number weigher
	Enable volume number weigher
	Configure multiple-storage back ends
	Volume type
	Usage

	Capacity based quality of service
	Consistency groups
	Configure and use driver filter and weighing for scheduler
	What is driver filter and weigher and when to use it
	Enable driver filter and weighing
	Defining your own filter and goodness functions
	Supported operations in filter and goodness functions
	Available properties when creating custom functions
	Host stats for a back end
	Capabilities specific to a back end
	Requested volume properties
	Extra specs for the requested volume type
	Current QoS specs for the requested volume type
	Driver filter and weigher usage examples

	Rate-limit volume copy bandwidth
	Configure volume copy bandwidth limit

	Oversubscription in thin provisioning
	Configure oversubscription settings
	Capabilities
	Volume type extra specs
	Volume replication extra specs
	Capacity filter
	Capacity weigher

	Image-Volume cache
	Configure the Internal Tenant
	Configure the Image-Volume cache
	Notifications
	Managing cached Image-Volumes

	Volume-backed image
	Configure the Volume-backed image
	Creating a Volume-backed image

	Get capabilities
	Usage of cinder client
	Disable a service
	Usage of REST API
	Usage of volume type access extension

	User visible extra specs
	Behavior using openstack client
	Filtering with extra specs
	Security considerations

	Generic volume groups

	Troubleshoot your installation
	Troubleshoot the Block Storage configuration
	Issues with state_path and volumes_dir settings
	Problem
	Solution
	The persistent tgt include file
	Problem
	Solution
	Failed to create iscsi target error in the cinder-volume.log file
	Problem
	Solution

	Multipath call failed exit
	Problem
	Solution

	HTTP bad request in cinder volume log
	Problem
	Solution

	Duplicate 3PAR host
	Problem
	Solution

	Failed to attach volume after detaching
	Problem
	Solution

	Failed to attach volume, systool is not installed
	Problem
	Solution

	Failed to connect volume in FC SAN
	Problem
	Solution

	Cannot find suitable emulator for x86_64
	Problem
	Solution

	Non-existent host
	Problem
	Solution

	Non-existent VLUN
	Problem
	Solution

	Availability-zone types
	Background
	How to config availability zone types?

	Generalized filters
	Background
	How do I configure the filter keys?
	Which filter keys are supported?

	Basic volume quality of service
	Volume multi-attach: Enable attaching a volume to multiple servers
	How to create a ‘multiattach’ volume
	Multiattach volume type

	RO / RW caveats (the secondary RW attachment issue)
	Back end support
	Policy rules
	Multiattach policy
	Multiattach policy for bootable volumes

	Known issues and limitations

	Default Volume Types
	Default types per project

	API Configuration
	Rate limiting

	Upgrades
	Concepts
	RPC version pinning
	Graceful service shutdown
	Database upgrades
	API load balancer draining
	DB prune deleted rows
	Versioned object backports

	Minimal Downtime Upgrade Procedure
	Plan your upgrade
	Rolling upgrade process

	Reference
	Cinder Service Configuration
	Introduction to the Block Storage service
	Using service tokens
	Configuration
	Troubleshooting

	Volume drivers
	Driver Configuration Reference
	Ceph RADOS Block Device (RBD)
	RADOS
	Ways to store, use, and expose data
	RBD pool
	Driver options
	LVM
	NFS driver
	How the NFS driver works
	Enable the NFS driver and related options
	How to use the NFS driver
	Configure with one NFS server
	Configure with multiple NFS servers
	NFS driver notes
	Datera drivers
	Datera iSCSI driver
	System requirements, prerequisites, and recommendations
	Prerequisites
	Configuring the Datera volume driver
	Enable the Datera volume driver
	Configuring one (or more) Datera specific volume types
	Supported operations
	Configuring multipathing
	Dell EMC PowerFlex Storage driver
	Overview
	Official PowerFlex documentation
	Supported PowerFlex, VxFlex OS and ScaleIO Versions
	Deployment prerequisites
	Supported operations
	PowerFlex Block Storage driver configuration
	PowerFlex driver name
	PowerFlex Gateway server IP
	PowerFlex Storage Pools
	PowerFlex user credentials
	Oversubscription
	Default provisioning type
	Configuration example
	Connector configuration
	Configuration options
	Volume Types
	PowerFlex Protection Domain and Storage Pool
	PowerFlex thin provisioning support
	PowerFlex QoS support
	PowerFlex compression support
	PowerFlex replication support
	Prerequisites
	Configure replication
	Failover host
	PowerFlex storage-assisted volume migration
	Known limitations
	Migrate volume
	Using PowerFlex Storage with a containerized overcloud
	Dell EMC PowerMax iSCSI and FC drivers
	System requirements and licensing
	Required PowerMax software suites for OpenStack
	PowerMax
	All Flash
	Hybrid
	eLicensing support
	PowerMax for OpenStack Cinder customer support
	Supported operations
	PowerMax naming conventions
	Masking view names
	Initiator group names
	FA port groups
	Storage group names
	PowerMax driver integration
	1. Prerequisites
	2. FC zoning with PowerMax
	3. iSCSI with PowerMax
	4. Configure block storage in cinder.conf
	5. SSL support
	6. Create volume types
	7. Interval and retries
	8. CHAP authentication support
	Assumptions, restrictions and prerequisites
	Settings and configuration
	Usage
	9. QoS (Quality of Service) support
	USE CASE 1 - Default values
	USE CASE 2 - Pre-set limits
	USE CASE 3 - Pre-set limits
	USE CASE 4 - Default values
	10. Multi-pathing support
	Multipath configuration file
	OpenStack configurations
	Verify you have multiple initiators available on the compute node for I/O
	11. All Flash compression support
	Use case 1 - Compression disabled create, attach, detach, and delete volume
	Use case 2 - Retype from compression disabled to compression enabled
	12. Oversubscription support
	13. Live migration support
	Architecture
	Live migration configuration
	System configuration
	Use case
	14. Multi-attach support
	Multi-attach architecture
	Example use case
	15. Volume encryption support
	16. Volume metadata
	16.1 Volume metadata in logs
	16.2 Metadata in the UI and CLI
	17. Unisphere High Availability (HA) support
	Requirements
	Configuration
	18. Rapid TDEV deallocation
	19. PowerMax online (in-use) device expansion
	Assumptions, restrictions and prerequisites
	20. PowerMax array and storage group tagging
	Assumptions, restrictions and prerequisites
	21. PowerMax short host name and port group name override
	Assumptions, restrictions, and prerequisites
	21. Snap ids replacing generations
	Cinder supported operations
	Volume replication support
	Configure a single replication target
	Configure multiple replication targets
	Volume replication interoperability with other features
	Failover host
	Failover promotion
	Asynchronous and metro replication management groups
	Metro support
	Volume retype - storage assisted volume migration
	Generic volume group support
	Consistent group snapshot
	Replication groups
	Storage group names
	Group type, group, and group snapshot operations
	Group replication operations
	Manage and unmanage Volumes
	Manage volumes
	Managing volumes with replication enabled
	Unmanage volume
	Manage/unmanage snapshots
	Manage SnapVX snapshot
	Unmanage cinder snapshot
	List manageable volumes and snapshots
	Manageable volumes
	Manageable snaphots
	Cinder backup support
	Port group & port load balancing
	Calculating load
	Pre-requisites
	Configuration
	Port-Group Metrics
	Port Metrics
	Upgrading from SMI-S based driver to REST API based driver
	Dell EMC PowerStore driver
	Supported operations
	Driver configuration
	Driver options
	SSL support
	Thin provisioning and compression
	CHAP authentication support
	Replication support
	Configure replication
	Failover host
	Consistency Groups support
	Dell EMC PowerVault ME4 Series Fibre Channel and iSCSI drivers
	System requirements
	Supported operations
	Configuring the array
	Driver-specific options
	Dell EMC Unity driver
	Prerequisites
	Supported operations
	Driver configuration
	Driver options
	FC or iSCSI ports option
	Live migration integration
	Thin and thick provisioning
	Compressed volume support
	Storage-assisted volume migration support
	Retype volume support
	QoS support
	Storage tiering support
	Auto-zoning support
	Solution for LUNZ device
	Efficient non-disruptive volume backup
	SSL support
	IPv6 support
	Force detach volume from all hosts
	Consistent group support
	Volume replications
	Consistency group replications
	Troubleshooting
	Dell EMC VNX driver
	System requirements
	Supported operations
	Preparation
	Install Navisphere CLI
	Install Python library storops
	Check array software
	Network configuration
	Back-end configuration
	Minimum configuration
	Multiple back-end configuration
	Required configurations
	Optional configurations
	VNX pool names
	Force delete volumes in storage group
	Over subscription in thin provisioning
	Storage group automatic deletion
	Initiator auto deregistration
	FC SAN auto zoning
	Volume number threshold
	iSCSI initiators
	Default timeout
	Max LUNs per storage group
	Ignore pool full threshold
	Default value for async migration
	Extra spec options
	Provisioning type
	Storage tiering support
	FAST cache support
	Pool name
	Obsolete extra specs
	Force detach
	Advanced features
	Snap copy
	Efficient non-disruptive volume backup
	Configurable migration rate
	Replication v2.1 support
	Asynchronous migration support
	Best practice
	Multipath setup
	Restrictions and limitations
	iSCSI port cache
	No extending for volume with snapshots
	Limitations for deploying cinder on computer node
	Storage group with host names in VNX
	EMC storage-assisted volume migration
	Appendix
	Authenticate by security file
	Register FC port with VNX
	Register iSCSI port with VNX
	Dell EMC XtremIO Block Storage driver
	Support matrix
	Supported operations
	XtremIO Block Storage driver configuration
	XtremIO driver name
	XtremIO management server (XMS) IP
	XtremIO cluster name
	XtremIO user credentials
	Multiple back ends
	Setting thin provisioning and multipathing parameters
	Image service optimization
	SSL certification
	Configuring CHAP
	Configuring ports filtering
	Configuration example
	Dell EMC SC Series Fibre Channel and iSCSI drivers
	Supported operations
	Extra spec options
	iSCSI configuration
	Fibre Channel configuration
	Dual DSM
	Replication configuration
	Replication notes
	Failback
	Server type configuration
	Excluding a domain
	Including domains
	Setting Dell EMC SC REST API timeouts
	Driver options
	Fujitsu ETERNUS DX driver
	System requirements
	Supported operations
	Preparation
	Package installation
	ETERNUS DX setup
	Configuration
	Configuration example
	Hedvig Volume Driver
	Using the Hedvig Volume Driver
	Requirement
	Supported operations
	Hedvig Volume Driver configuration
	Hedvig QoS Spec parameters and values
	Creating a Hedvig Cinder Volume with custom attributes (QoS Specs)
	Hitachi block storage driver
	System requirements
	Supported operations
	Configuration
	Set up Hitachi storage
	Set up Hitachi storage volume driver
	Required options
	HPE MSA Fibre Channel and iSCSI drivers
	System requirements
	Supported operations
	Configuring the array
	Driver-specific options
	HPE 3PAR, HPE Primera and HPE Alletra 9k Driver
	System requirements
	Supported operations
	Enable the HPE 3PAR Fibre Channel and iSCSI drivers
	Specify NSP for FC Bootable Volume
	Peer Persistence support
	Support duplicated FQDN in network
	Huawei volume driver
	Version mappings
	Volume driver configuration
	Configuring iSCSI Multipathing
	Configuring FC Multipathing
	Configuring CHAP and ALUA
	Configuring multiple storage
	Configuration file parameters
	IBM FlashSystem 840/900 driver
	Supported operations
	Configure FlashSystem
	Configure storage array
	Configure user authentication for the driver
	IBM FlashSystem FC driver
	Data Path configuration
	Enable IBM FlashSystem FC driver
	IBM FlashSystem iSCSI driver
	Network configuration
	Enable IBM FlashSystem iSCSI driver
	Limitations and known issues
	IBM Spectrum Scale volume driver
	How the Spectrum Scale volume driver works
	Supported operations
	Driver configurations
	Mode 1 – Pervasive Spectrum Scale Client
	Mode 2 – Remote Spectrum Scale Driver with Local Compute Access
	Mode 3 – Remote Spectrum Scale Access
	Volume creation options
	Operational notes for GPFS driver
	IBM Storage Driver for OpenStack
	Introduction
	Concept diagram
	Compatibility and requirements
	Supported storage systems
	Copy Services license
	Required software on the OpenStack Cinder and Nova nodes
	Configuration
	Configuration Description for DS8000
	Replication parameters
	Security
	Configuring Cinder nodes for trusted communication
	Configuring trusted communication link
	Adding a public certificate to trusted CA certificate store
	Verifying trusted communication link
	Troubleshooting
	Checking the Cinder log files
	Best practices
	Configuring volume replication (DS8000 Family)
	Configuring groups
	Replication groups
	Consistency groups
	Using volume types for volume allocation control (DS8000 Family)
	IBM Spectrum Virtualize family volume driver
	Supported operations
	Configure the Spectrum Virtualize family system
	Network configuration
	iSCSI CHAP authentication
	Configure storage pools
	Configure user authentication for the driver
	Create a SSH key pair with OpenSSH
	Configure the Spectrum Virtualize family driver
	Enable the Spectrum Virtualize family driver
	Replication configuration
	Spectrum Virtualize family driver options in cinder.conf
	Placement with volume types
	Configure per-volume creation options
	Example: Volume types
	QOS
	Operational notes for the Spectrum Virtualize family driver
	Migrate volumes
	Extend volumes
	Snapshots and clones
	Volume retype
	Replication operation
	Configure replication in volume type
	Failover host
	Replication group
	HyperSwap Volumes
	INFINIDAT InfiniBox Block Storage driver
	Supported operations
	External package installation
	Setting up the storage array
	Driver configuration
	Configuration example
	Driver-specific options
	Infortrend volume driver
	Supported operations
	System requirements
	Set up Infortrend storage
	Set up cinder-volume node
	Driver configuration
	Driver options
	iSCSI configuration example
	Fibre Channel configuration example
	Multipath configuration
	Extra spec usage
	Inspur AS13000 series volume driver
	Driver options
	Supported operations
	Configure Inspur AS13000 iSCSI backend
	Inspur InStorage family volume driver
	Supported operations
	Configure Inspur InStorage iSCSI/FC backend
	Intel Rack Scale Design (RSD) driver
	System requirements
	Supported operations
	Configuration
	Kaminario K2 all-flash array iSCSI and FC volume drivers
	Driver requirements
	Supported operations
	Limitations and known issues
	Configure single Kaminario iSCSI/FC back end
	Setting multiple Kaminario iSCSI/FC back ends
	Creating volume types
	Supported retype cases
	Driver options
	KIOXIA Kumoscale NVMeOF Driver
	Driver options
	Supported operations
	Configure KIOXIA Kumoscale NVMeOF backend
	Lenovo Fibre Channel and iSCSI drivers
	System requirements
	Supported operations
	Configuring the array
	Driver-specific options
	Lightbits LightOS Cinder Driver
	Supported operations
	LightOS OpenStack Driver Components
	The Cinder Driver
	NVNe/TCP and Asymmetric Namespace Access (ANA)
	Note
	Driver options
	LINSTOR driver
	Configuration
	MacroSAN Fibre Channel and iSCSI drivers
	System requirements
	Supported operations
	Configuring the array
	Configuration file parameters
	NEC Storage M series driver
	System requirements
	Supported operations
	Preparation
	Configuration
	Required options
	Timeout configuration
	Configuration example for /etc/cinder/cinder.conf
	When using one config-group
	When using multi config-group (multi-backend)
	NEC Storage V series driver
	System requirements
	Supported operations
	Configuration
	Set up NEC V series storage
	Set up NEC V series storage volume driver
	Required options
	NetApp unified driver
	NetApp clustered Data ONTAP storage family
	NetApp iSCSI configuration for clustered Data ONTAP
	NetApp NFS configuration for clustered Data ONTAP
	NetApp NFS Copy Offload client
	NetApp-supported extra specs for clustered Data ONTAP
	NexentaStor 4.x NFS and iSCSI drivers
	Supported operations
	Nexenta iSCSI driver
	Nexenta NFS driver
	Driver options
	NexentaStor 5.x NFS and iSCSI drivers
	Supported operations
	iSCSI driver
	NFS driver
	Driver options
	Nimble & Alletra 6k Storage volume driver
	Supported operations
	Nimble and Alletra 6k Storage driver configuration
	Nimble driver extra spec options
	Configuration options
	Multipathing
	Open-E JovianDSS iSCSI driver
	Supported operations
	Configuring
	Multiple Pools
	HA Cluster
	Feedback
	ProphetStor Fibre Channel and iSCSI drivers
	Supported operations
	Enable the Fibre Channel or iSCSI drivers
	Pure Storage iSCSI and Fibre Channel volume drivers
	Limitations and known issues
	Supported operations
	Configure OpenStack and Purity
	Configure the OpenStack Block Storage service
	Volume auto-eradication
	Setting host personality
	SSL certification
	Replication configuration
	Automatic thin-provisioning/oversubscription ratio
	Scheduling metrics
	Configuration Options
	Quobyte driver
	Supported operations
	Configuration
	SandStone iSCSI Driver
	System requirements
	Configuration example
	General parameters
	Seagate Array Fibre Channel and iSCSI drivers
	System requirements
	Supported operations
	Configuring the array
	Driver-specific options
	SolidFire
	Supported operations
	Storage Performance Development Kit driver
	Preparation
	SPDK NVMe-oF target installation
	Storage pools configuration
	Supported operations
	Configuration
	StorPool volume driver
	Prerequisites
	Configuring the StorPool volume driver
	Using the StorPool volume driver
	Synology DSM volume driver
	System requirements
	Supported operations
	Driver configuration
	Configuration options
	TOYOU NetStor Cinder driver
	Driver options
	Supported operations
	Configure TOYOU NetStor iSCSI/FC backend
	Veritas ACCESS iSCSI driver
	Requirements
	Supported operations
	Configuration
	VMware VMDK driver
	Functional context
	Configuration
	VMDK disk type
	Clone type
	Adapter type
	Use vCenter storage policies to specify back-end data stores
	Supported operations
	Storage policy-based configuration in vCenter
	Prerequisites
	Create storage policies in vCenter
	Data store selection
	Virtuozzo Storage driver
	Windows iSCSI volume driver
	Prerequisites
	Configuring cinder-volume
	Windows SMB volume driver
	Description
	Common deployment scenarios
	Features
	Clustering support
	Prerequisites
	Configuring cinder-volume
	Configuring the list of available shares
	Configuring Nova credentials
	Configuring storage pools
	Zadara Storage VPSA volume driver
	System requirements
	Supported operations
	Configuration
	Driver-specific options

	Backup drivers
	Ceph backup driver
	GlusterFS backup driver
	NFS backup driver
	POSIX file systems backup driver
	Swift backup driver
	Google Cloud Storage backup driver
	S3 Storage backup driver

	Block Storage schedulers
	Cinder Scheduler Filters
	AvailabilityZoneFilter
	CapabilitiesFilter
	CapacityFilter
	DifferentBackendFilter
	DriverFilter
	InstanceLocalityFilter
	JsonFilter
	RetryFilter
	SameBackendFilter

	Cinder Scheduler Weights
	AllocatedCapacityWeigher
	CapacityWeigher
	ChanceWeigher
	GoodnessWeigher
	VolumeNumberWeigher

	Log files used by Block Storage
	Policy Personas and Permissions
	Vocabulary Note
	The Cinder Personas
	Implementation Schedule
	Cinder Permissions Matrix

	Policy configuration
	Configuration
	cinder

	Policy configuration HowTo
	Vocabulary Note
	The User Model
	Policies
	Pre-Defined Policy Rules
	Example: Configuring a Read-Only Administrator
	Step 0: Testing
	Step 1: Create a new role
	Step 2: Open the floodgates
	Step 3: Plug the holes in the Admin API
	3A: New Policy Rule
	3B: Plugging Holes
	3C: Other Changes
	Step 4: Plug the holes in the “Regular” API
	4A: New Policy Rule
	4B: Plugging Holes
	4C: Unrestricted Policies
	Step 5: Testing

	Fibre Channel Zone Manager
	Configure Block Storage to use Fibre Channel Zone Manager
	Brocade Fibre Channel Zone Driver
	System requirements

	Cisco Fibre Channel Zone Driver
	System requirements

	Volume encryption supported by the key manager
	Initial configuration
	Key management access control
	Create an encrypted volume type
	Create an encrypted volume
	Testing volume encryption
	Known Issues

	Additional options
	Block Storage service sample configuration files
	cinder.conf
	api-paste.ini
	policy.yaml
	rootwrap.conf

	All About Cinder Drivers
	Cinder Driver Support Matrix
	Required Driver Functions
	Driver Removal History

	Available Drivers
	Volume Drivers
	Supported Drivers
	AS13000Driver
	Acs5000FCDriver
	Acs5000ISCSIDriver
	DSWAREDriver
	DateraDriver
	FJDXFCDriver
	FJDXISCSIDriver
	GPFSDriver
	GPFSNFSDriver
	GPFSRemoteDriver
	HBSDFCDriver
	HBSDISCSIDriver
	HPE3PARFCDriver
	HPE3PARISCSIDriver
	HPMSAFCDriver
	HPMSAISCSIDriver
	HedvigISCSIDriver
	HuaweiFCDriver
	HuaweiISCSIDriver
	IBMStorageDriver
	InStorageMCSFCDriver
	InStorageMCSISCSIDriver
	InfiniboxVolumeDriver
	InfortrendCLIFCDriver
	InfortrendCLIISCSIDriver
	JovianISCSIDriver
	KaminarioISCSIDriver
	KumoScaleBaseVolumeDriver
	LVMVolumeDriver
	LenovoFCDriver
	LenovoISCSIDriver
	LightOSVolumeDriver
	LinstorDrbdDriver
	LinstorIscsiDriver
	MStorageFCDriver
	MStorageISCSIDriver
	MacroSANFCDriver
	MacroSANISCSIDriver
	NetAppCmodeFibreChannelDriver
	NetAppCmodeISCSIDriver
	NetAppCmodeNfsDriver
	NexentaISCSIDriver
	NexentaISCSIDriver
	NexentaNfsDriver
	NexentaNfsDriver
	NfsDriver
	NimbleFCDriver
	NimbleISCSIDriver
	PVMEFCDriver
	PVMEISCSIDriver
	PowerFlexDriver
	PowerMaxFCDriver
	PowerMaxISCSIDriver
	PowerStoreDriver
	PureFCDriver
	PureISCSIDriver
	QuobyteDriver
	RBDDriver
	RBDISCSIDriver
	RSDDriver
	SCFCDriver
	SCISCSIDriver
	SPDKDriver
	SdsISCSIDriver
	SolidFireDriver
	StorPoolDriver
	StorwizeSVCFCDriver
	StorwizeSVCISCSIDriver
	SynoISCSIDriver
	UnityDriver
	VMwareVStorageObjectDriver
	VMwareVcVmdkDriver
	VNXDriver
	VStorageFCDriver
	VStorageISCSIDriver
	WindowsISCSIDriver
	WindowsSmbfsDriver
	XtremIOFCDriver
	XtremIOISCSIDriver
	ZadaraVPSAISCSIDriver
	Unsupported Drivers
	ACCESSIscsiDriver (unsupported)
	DPLFCDriver (unsupported)
	DPLISCSIDriver (unsupported)
	FlashSystemFCDriver (unsupported)
	FlashSystemISCSIDriver (unsupported)
	QnapISCSIDriver (unsupported)
	VZStorageDriver (unsupported)
	VeritasCNFSDriver (unsupported)

	Backup Drivers
	CephBackupDriver
	GlusterfsBackupDriver
	GoogleBackupDriver
	NFSBackupDriver
	PosixBackupDriver
	S3BackupDriver
	SwiftBackupDriver

	FC Zone Manager Drivers
	BrcdFCZoneDriver (unsupported)
	CiscoFCZoneDriver

	General Considerations
	“Supported” drivers
	Driver Compliance
	“Unsupported” drivers
	Driver Removal

	Current Cinder Drivers

	Command-Line Interface Reference
	Cinder Management Commands
	cinder-manage
	Control and manage OpenStack block storage
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Cinder Quota
	Cinder Db
	Cinder Logs
	Cinder Volume
	Cinder Host
	Cinder Service
	Cinder Backup
	Cinder Version
	Cinder Config
	Cinder Util
	FILES
	SEE ALSO
	BUGS

	cinder-status
	CLI interface for cinder status commands
	Synopsis
	Description
	Options
	Upgrade
	See Also
	Bugs

	Additional Tools and Information
	Manage volumes
	Create a volume
	Volume Types
	volume-type
	cinder_img_volume_type
	default volume type
	Project specific defaults (available since mv 3.62 or higher)
	default_volume_type
	Attach a volume to an instance
	Detach a volume from an instance
	Delete a volume
	Resize a volume
	Extend attached volume
	Migrate a volume
	Transfer a volume
	Create a volume transfer request
	Accept a volume transfer request
	Delete a volume transfer
	Manage and unmanage a snapshot
	Manage a snapshot
	Unmanage a snapshot
	Report backend state in service list

	Manage quotas
	Manage Block Storage service quotas
	View Block Storage quotas
	Edit and update Block Storage service quotas

	Manage Block Storage scheduling
	Example Usages

	Additional resources

	For contributors
	Contributing to Cinder
	Contributor Guide
	Getting Started
	So You Want to Contribute…
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties

	Writing Release Notes
	Release notes
	Reviewing release note content
	Fixing a release note
	Bugs
	Drivers
	Creating the note

	Programming HowTos and Tutorials
	Setting Up a Development Environment
	Virtual environments
	Linux Systems
	macOS Systems
	Getting the code
	Running unit tests
	Manually installing and using the virtualenv
	Contributing Your Work

	Testing
	Test Types
	Unit Tests
	Functional Tests
	Tempest Tests
	Running the tests
	Unit Tests
	Functional Tests
	Tempest Tests
	Database Setup
	Running a subset of tests using tox
	Gotchas
	Debugging

	API Microversions
	Background
	When do I need a new Microversion?
	In Code
	Adding a new API method
	Removing an API method
	Changing a method’s behaviour
	A method with only small changes between versions
	When not using decorators
	Other necessary changes
	Allocating a microversion
	Testing Microversioned API Methods
	REST API Version History
	REST API Version History
	3.0 (Maximum in Mitaka)
	3.1
	3.2
	3.3
	3.4
	3.5
	3.6
	3.7
	3.8
	3.9
	3.10
	3.11
	3.12
	3.13
	3.14
	3.15 (Maximum in Newton)
	3.16
	3.17
	3.18
	3.19
	3.20
	3.21
	3.22
	3.23
	3.24
	3.25
	3.26
	3.27 (Maximum in Ocata)
	3.28
	3.29
	3.30
	3.31
	3.32
	3.33
	3.34
	3.35
	3.36
	3.37
	3.38
	3.39
	3.40
	3.41
	3.42
	3.43 (Maximum in Pike)
	3.44
	3.45
	3.46
	3.47
	3.48
	3.49
	3.50 (Maximum in Queens)
	3.51
	3.52
	3.53
	3.54
	3.55 (Maximum in Rocky)
	3.56
	3.57
	3.58
	3.59 (Maximum in Stein and Train)
	3.60 (Maximum in Ussuri)
	3.61
	3.62 (Maximum in Victoria)
	3.63
	3.64 (Maximum in Wallaby)
	3.65
	3.66 (Maximum in Xena)
	3.67
	3.68 (Maximum in Yoga)

	API Races - Conditional Updates
	Background
	Conditional Update
	Basic Usage
	Returning Errors
	Building filters on the API
	Using DB fields for assignment
	Conditional value setting
	reflect_changes considerations
	Limitations
	Considerations for new ORM & Versioned Objects

	Adding a Method to the OpenStack API
	Routing
	Controllers and actions
	Serialization
	Errors

	Drivers
	Basic attributes
	Configuration options
	Minimum Features
	Core Functionality
	Security Requirements
	Volume Stats
	Feature Enforcement
	New Driver Review Checklist
	New Driver Review Checklist
	Review Checklist
	Driver Development Documentations
	Base Driver Interface
	Manage/Unmanage Support
	Manage/Unmanage Snapshot Support
	Volume Consistency Groups
	Generic Volume Groups
	Revert To Snapshot

	High Availability
	Overview
	Job distribution
	Heartbeats
	Cleanup
	Workers table
	Tracking resources
	Actions on resource cleanup
	Cleaning resources
	Mutual exclusion
	Status based locking
	Process locks
	Node locks
	Global locks
	Cinder locking
	Driver locking
	Cinder-API
	Race prevention
	Cinder-Volume
	RPC calls
	Replication
	Enabling Active-Active on Drivers
	Cinder-Scheduler
	Heartbeats
	Cinder-Backups
	Scheduling
	Cleaning

	Guru Meditation Reports
	Generating a GMR
	Structure of a GMR
	Adding Support for GMRs to New Executables
	Extending the GMR

	Replication
	Overview
	Storage Device configuration
	Service configuration
	Capabilities reporting
	Volume Types / Extra Specs
	Volume creation
	Failover
	Failback
	Initialization
	Freeze / Thaw

	User Messages
	General information
	Example
	Adding user messages
	Usage patterns
	No exception in context
	Cinder exception in context
	General Exception in context
	Not passing the Exception to message_api.create()
	Passing the Exception to message_api.create()
	Module documentation
	The Message API Module
	The Message Field Module
	The Defined Messages Module

	Migration
	Introduction to volume migration
	How to do volume migration via CLI
	Configurations
	What can be tracked during volume migration
	How to implement volume migration for a back-end driver
	Required methods

	Running Cinder API under Apache
	Files
	Access Control

	Upgrades
	Database schema and data migrations
	Adding a column
	Dropping a column not referenced in SQLAlchemy code
	Removal of unnecessary column
	ALTER on a column
	RPC API changes
	RPC payload changes (oslo.versionedobjects)
	Upgrade Checks
	What can be checked?

	Generic Volume Groups
	Introduction to generic volume groups
	Action items for drivers supporting consistency groups
	Group Type and Group Specs / Volume Types and Extra Specs
	Capabilities reporting
	Driver methods
	Migrate CGs to Generic Volume Groups
	References

	Database migrations
	Schema migrations
	Data migrations

	Managing the Development Cycle
	Release Cycle Tasks
	Before PTG (after closing previous release)
	Between Summit and Milestone-1
	Milestone-1
	Between Milestone-1 and Milestone-2
	Milestone-2
	Between Milestone-2 and Milestone-3
	Milestone-3
	Between Milestone-3 and RC1
	RC1 week
	Between RC1 and Final
	Final Release
	Post-Final Release

	Cinder Groups in Gerrit and Launchpad
	Cinder-related groups in Launchpad
	Cinder-related groups in Gerrit
	How Gerrit groups are connected to project repositories

	Documentation Contribution
	Contributing Documentation to Cinder
	Documentation Content
	Using RST
	Building Cinder’s Documentation
	Review and Release Process
	Doc Directory Structure
	Cinder Administration Documentation (source/admin)
	Introduction:
	Cinder CLI Documentation (source/cli)
	Introduction:
	Cinder Configuration Documentation (source/configuration)
	Introduction:
	Cinder Contributor Documentation (source/contributor)
	Introduction:
	Cinder Installation Documentation (source/install)
	Introduction:
	Cinder Reference Documentation (source/reference)
	Introduction:
	Cinder User Documentation (source/user)
	Introduction:
	Finding something to contribute

	Background Concepts for Cinder
	Cinder System Architecture
	Components

	Volume Attach/Detach workflow
	Attach/Detach Operations are multi-part commands
	Attach workflow
	reserve_volume(self, context, volume)
	initialize_connection(self, context, volume, connector)
	driver.validate_connector
	driver.create_export
	driver.initialize_connection
	attach(self, context, volume, instance_uuid, host_name, mountpoint, mode)
	Detach workflow
	begin_detaching(self, context, volume)
	terminate_connection(self, context, volume, connector, force=False)
	detach(self, context, volume, attachment_id)

	Volume Attach/Detach workflow - V2
	Attachment Object
	New API and Flow
	attachment-create
	attachment-update
	attachment-delete

	Cinder Thin provisioning and Oversubscription
	Background
	Core concepts and terminology
	Stats to be reported
	Mandatory Fields
	Optional Fields

	Threading model
	Yielding the thread in long-running tasks
	MySQL access and eventlet

	Internationalization
	AMQP and Cinder
	Cinder RPC Mappings
	RPC Calls
	RPC Casts
	AMQP Broker Load
	RabbitMQ Gotchas

	Other Resources
	Project hosting with Launchpad
	Launchpad credentials
	Mailing list
	Bug tracking
	Feature requests (Blueprints)
	Technical support (Answers)

	Code Reviews
	Gerrit
	The Great Change
	Python 2 to Python 3 transition guidelines
	Targeting Milestones
	Reviewing Vendor Patches
	Unit Tests
	CI Job rechecks

	Continuous Integration with Zuul
	cinder
	cinder package
	Subpackages
	cinder.api package
	Subpackages
	cinder.api.contrib package
	Submodules
	cinder.api.contrib.admin_actions module
	cinder.api.contrib.availability_zones module
	cinder.api.contrib.backups module
	cinder.api.contrib.capabilities module
	cinder.api.contrib.cgsnapshots module
	cinder.api.contrib.consistencygroups module
	cinder.api.contrib.extended_services module
	cinder.api.contrib.extended_snapshot_attributes module
	cinder.api.contrib.hosts module
	cinder.api.contrib.qos_specs_manage module
	cinder.api.contrib.quota_classes module
	cinder.api.contrib.quotas module
	cinder.api.contrib.resource_common_manage module
	cinder.api.contrib.scheduler_hints module
	cinder.api.contrib.scheduler_stats module
	cinder.api.contrib.services module
	cinder.api.contrib.snapshot_actions module
	cinder.api.contrib.snapshot_manage module
	cinder.api.contrib.snapshot_unmanage module
	cinder.api.contrib.types_extra_specs module
	cinder.api.contrib.types_manage module
	cinder.api.contrib.used_limits module
	cinder.api.contrib.volume_actions module
	cinder.api.contrib.volume_encryption_metadata module
	cinder.api.contrib.volume_host_attribute module
	cinder.api.contrib.volume_image_metadata module
	cinder.api.contrib.volume_manage module
	cinder.api.contrib.volume_mig_status_attribute module
	cinder.api.contrib.volume_tenant_attribute module
	cinder.api.contrib.volume_transfer module
	cinder.api.contrib.volume_type_access module
	cinder.api.contrib.volume_type_encryption module
	cinder.api.contrib.volume_unmanage module
	Module contents
	cinder.api.middleware package
	Submodules
	cinder.api.middleware.auth module
	cinder.api.middleware.fault module
	cinder.api.middleware.request_id module
	Module contents
	cinder.api.openstack package
	Submodules
	cinder.api.openstack.api_version_request module
	cinder.api.openstack.versioned_method module
	cinder.api.openstack.wsgi module
	Module contents
	cinder.api.schemas package
	Submodules
	cinder.api.schemas.admin_actions module
	cinder.api.schemas.attachments module
	cinder.api.schemas.backups module
	cinder.api.schemas.clusters module
	cinder.api.schemas.default_types module
	cinder.api.schemas.group_snapshots module
	cinder.api.schemas.group_specs module
	cinder.api.schemas.group_types module
	cinder.api.schemas.groups module
	cinder.api.schemas.qos_specs module
	cinder.api.schemas.quota_classes module
	cinder.api.schemas.quotas module
	cinder.api.schemas.scheduler_hints module
	cinder.api.schemas.services module
	cinder.api.schemas.snapshot_actions module
	cinder.api.schemas.snapshot_manage module
	cinder.api.schemas.snapshots module
	cinder.api.schemas.types_extra_specs module
	cinder.api.schemas.volume_actions module
	cinder.api.schemas.volume_image_metadata module
	cinder.api.schemas.volume_manage module
	cinder.api.schemas.volume_metadata module
	cinder.api.schemas.volume_transfer module
	cinder.api.schemas.volume_type_access module
	cinder.api.schemas.volume_type_encryption module
	cinder.api.schemas.volume_types module
	cinder.api.schemas.volumes module
	cinder.api.schemas.workers module
	Module contents
	cinder.api.v2 package
	Subpackages
	cinder.api.v2.views package
	Submodules
	cinder.api.v2.views.volumes module
	Module contents
	Submodules
	cinder.api.v2.limits module
	cinder.api.v2.snapshots module
	cinder.api.v2.volume_metadata module
	cinder.api.v2.volumes module
	Module contents
	cinder.api.v3 package
	Subpackages
	cinder.api.v3.views package
	Submodules
	cinder.api.v3.views.attachments module
	cinder.api.v3.views.backups module
	cinder.api.v3.views.clusters module
	cinder.api.v3.views.default_types module
	cinder.api.v3.views.group_snapshots module
	cinder.api.v3.views.group_types module
	cinder.api.v3.views.groups module
	cinder.api.v3.views.messages module
	cinder.api.v3.views.resource_filters module
	cinder.api.v3.views.snapshots module
	cinder.api.v3.views.types module
	cinder.api.v3.views.volumes module
	cinder.api.v3.views.workers module
	Module contents
	Submodules
	cinder.api.v3.attachments module
	cinder.api.v3.backups module
	cinder.api.v3.clusters module
	cinder.api.v3.consistencygroups module
	cinder.api.v3.default_types module
	cinder.api.v3.group_snapshots module
	cinder.api.v3.group_specs module
	cinder.api.v3.group_types module
	cinder.api.v3.groups module
	cinder.api.v3.limits module
	cinder.api.v3.messages module
	cinder.api.v3.resource_common_manage module
	cinder.api.v3.resource_filters module
	cinder.api.v3.router module
	cinder.api.v3.snapshot_manage module
	cinder.api.v3.snapshot_metadata module
	cinder.api.v3.snapshots module
	cinder.api.v3.types module
	cinder.api.v3.volume_manage module
	cinder.api.v3.volume_metadata module
	cinder.api.v3.volume_transfer module
	cinder.api.v3.volumes module
	cinder.api.v3.workers module
	Module contents
	cinder.api.validation package
	Submodules
	cinder.api.validation.parameter_types module
	cinder.api.validation.validators module
	Module contents
	cinder.api.views package
	Submodules
	cinder.api.views.availability_zones module
	cinder.api.views.backups module
	cinder.api.views.capabilities module
	cinder.api.views.cgsnapshots module
	cinder.api.views.consistencygroups module
	cinder.api.views.limits module
	cinder.api.views.manageable_snapshots module
	cinder.api.views.manageable_volumes module
	cinder.api.views.qos_specs module
	cinder.api.views.scheduler_stats module
	cinder.api.views.snapshots module
	cinder.api.views.transfers module
	cinder.api.views.types module
	cinder.api.views.versions module
	Module contents
	Submodules
	cinder.api.api_utils module
	cinder.api.common module
	cinder.api.extensions module
	cinder.api.microversions module
	cinder.api.urlmap module
	cinder.api.versions module
	Module contents
	cinder.backup package
	Submodules
	cinder.backup.api module
	cinder.backup.chunkeddriver module
	cinder.backup.driver module
	cinder.backup.manager module
	cinder.backup.rpcapi module
	Module contents
	cinder.brick package
	Subpackages
	cinder.brick.local_dev package
	Submodules
	cinder.brick.local_dev.lvm module
	Module contents
	Module contents
	cinder.cmd package
	Submodules
	cinder.cmd.api module
	cinder.cmd.backup module
	cinder.cmd.manage module
	cinder.cmd.rtstool module
	cinder.cmd.scheduler module
	cinder.cmd.status module
	cinder.cmd.volume module
	cinder.cmd.volume_usage_audit module
	Module contents
	cinder.common package
	Submodules
	cinder.common.config module
	cinder.common.constants module
	cinder.common.sqlalchemyutils module
	Module contents
	cinder.compute package
	Submodules
	cinder.compute.nova module
	Module contents
	cinder.db package
	Submodules
	cinder.db.api module
	cinder.db.base module
	cinder.db.migration module
	Module contents
	cinder.group package
	Submodules
	cinder.group.api module
	Module contents
	cinder.image package
	Subpackages
	cinder.image.accelerators package
	Submodules
	cinder.image.accelerators.gzip module
	cinder.image.accelerators.qat module
	Module contents
	Submodules
	cinder.image.accelerator module
	cinder.image.cache module
	cinder.image.glance module
	cinder.image.image_utils module
	Module contents
	cinder.interface package
	Submodules
	cinder.interface.backup_chunked_driver module
	cinder.interface.backup_driver module
	cinder.interface.base module
	cinder.interface.fczm_driver module
	cinder.interface.util module
	cinder.interface.volume_consistencygroup_driver module
	cinder.interface.volume_driver module
	cinder.interface.volume_group_driver module
	cinder.interface.volume_manageable_driver module
	cinder.interface.volume_snapshot_revert module
	cinder.interface.volume_snapshotmanagement_driver module
	Module contents
	cinder.keymgr package
	Submodules
	cinder.keymgr.conf_key_mgr module
	cinder.keymgr.migration module
	Module contents
	cinder.message package
	Submodules
	cinder.message.api module
	cinder.message.defined_messages module
	cinder.message.message_field module
	Module contents
	cinder.objects package
	Submodules
	cinder.objects.backup module
	cinder.objects.base module
	cinder.objects.cgsnapshot module
	cinder.objects.cleanable module
	cinder.objects.cleanup_request module
	cinder.objects.cluster module
	cinder.objects.consistencygroup module
	cinder.objects.dynamic_log module
	cinder.objects.fields module
	cinder.objects.group module
	cinder.objects.group_snapshot module
	cinder.objects.group_type module
	cinder.objects.manageableresources module
	cinder.objects.qos_specs module
	cinder.objects.request_spec module
	cinder.objects.service module
	cinder.objects.snapshot module
	cinder.objects.volume module
	cinder.objects.volume_attachment module
	cinder.objects.volume_type module
	Module contents
	cinder.policies package
	Submodules
	cinder.policies.attachments module
	cinder.policies.backup_actions module
	cinder.policies.backups module
	cinder.policies.base module
	cinder.policies.capabilities module
	cinder.policies.clusters module
	cinder.policies.default_types module
	cinder.policies.group_actions module
	cinder.policies.group_snapshot_actions module
	cinder.policies.group_snapshots module
	cinder.policies.group_types module
	cinder.policies.groups module
	cinder.policies.hosts module
	cinder.policies.limits module
	cinder.policies.manageable_snapshots module
	cinder.policies.manageable_volumes module
	cinder.policies.messages module
	cinder.policies.qos_specs module
	cinder.policies.quota_class module
	cinder.policies.quotas module
	cinder.policies.scheduler_stats module
	cinder.policies.services module
	cinder.policies.snapshot_actions module
	cinder.policies.snapshot_metadata module
	cinder.policies.snapshots module
	cinder.policies.type_extra_specs module
	cinder.policies.volume_access module
	cinder.policies.volume_actions module
	cinder.policies.volume_metadata module
	cinder.policies.volume_transfer module
	cinder.policies.volume_type module
	cinder.policies.volumes module
	cinder.policies.workers module
	Module contents
	cinder.privsep package
	Subpackages
	cinder.privsep.targets package
	Submodules
	cinder.privsep.targets.iet module
	cinder.privsep.targets.scst module
	cinder.privsep.targets.tgt module
	Module contents
	Submodules
	cinder.privsep.cgroup module
	cinder.privsep.fs module
	cinder.privsep.hscli module
	cinder.privsep.lvm module
	cinder.privsep.nvmcli module
	cinder.privsep.path module
	Module contents
	cinder.scheduler package
	Subpackages
	cinder.scheduler.evaluator package
	Submodules
	cinder.scheduler.evaluator.evaluator module
	Module contents
	cinder.scheduler.filters package
	Submodules
	cinder.scheduler.filters.affinity_filter module
	cinder.scheduler.filters.availability_zone_filter module
	cinder.scheduler.filters.capabilities_filter module
	cinder.scheduler.filters.capacity_filter module
	cinder.scheduler.filters.driver_filter module
	cinder.scheduler.filters.extra_specs_ops module
	cinder.scheduler.filters.ignore_attempted_hosts_filter module
	cinder.scheduler.filters.instance_locality_filter module
	cinder.scheduler.filters.json_filter module
	Module contents
	cinder.scheduler.flows package
	Submodules
	cinder.scheduler.flows.create_volume module
	Module contents
	cinder.scheduler.weights package
	Submodules
	cinder.scheduler.weights.capacity module
	cinder.scheduler.weights.chance module
	cinder.scheduler.weights.goodness module
	cinder.scheduler.weights.stochastic module
	cinder.scheduler.weights.volume_number module
	Module contents
	Submodules
	cinder.scheduler.base_filter module
	cinder.scheduler.base_handler module
	cinder.scheduler.base_weight module
	cinder.scheduler.driver module
	cinder.scheduler.filter_scheduler module
	cinder.scheduler.host_manager module
	cinder.scheduler.manager module
	cinder.scheduler.rpcapi module
	cinder.scheduler.scheduler_options module
	Module contents
	cinder.transfer package
	Submodules
	cinder.transfer.api module
	Module contents
	cinder.volume package
	Subpackages
	cinder.volume.flows package
	Subpackages
	cinder.volume.flows.api package
	Submodules
	cinder.volume.flows.api.create_volume module
	cinder.volume.flows.api.manage_existing module
	Module contents
	cinder.volume.flows.manager package
	Submodules
	cinder.volume.flows.manager.create_volume module
	cinder.volume.flows.manager.manage_existing module
	cinder.volume.flows.manager.manage_existing_snapshot module
	Module contents
	Submodules
	cinder.volume.flows.common module
	Module contents
	cinder.volume.targets package
	Submodules
	cinder.volume.targets.cxt module
	cinder.volume.targets.driver module
	cinder.volume.targets.fake module
	cinder.volume.targets.iet module
	cinder.volume.targets.iscsi module
	cinder.volume.targets.lio module
	cinder.volume.targets.nvmeof module
	cinder.volume.targets.nvmet module
	cinder.volume.targets.scst module
	cinder.volume.targets.spdknvmf module
	cinder.volume.targets.tgt module
	Module contents
	Submodules
	cinder.volume.api module
	cinder.volume.configuration module
	cinder.volume.driver module
	cinder.volume.driver_utils module
	cinder.volume.group_types module
	cinder.volume.manager module
	cinder.volume.qos_specs module
	cinder.volume.rpcapi module
	cinder.volume.throttling module
	cinder.volume.volume_migration module
	cinder.volume.volume_types module
	cinder.volume.volume_utils module
	Module contents
	cinder.wsgi package
	Submodules
	cinder.wsgi.common module
	cinder.wsgi.eventlet_server module
	cinder.wsgi.wsgi module
	Module contents
	cinder.zonemanager package
	Submodules
	cinder.zonemanager.fc_common module
	cinder.zonemanager.fc_san_lookup_service module
	cinder.zonemanager.fc_zone_manager module
	cinder.zonemanager.fczm_constants module
	cinder.zonemanager.utils module
	Module contents
	Submodules
	cinder.context module
	cinder.coordination module
	cinder.exception module
	cinder.flow_utils module
	cinder.i18n module
	cinder.manager module
	cinder.opts module
	cinder.policy module
	cinder.quota module
	cinder.quota_utils module
	cinder.rpc module
	cinder.service module
	cinder.service_auth module
	cinder.ssh_utils module
	cinder.utils module
	cinder.version module
	Module contents

	For reviewers
	Additional reference
	Glossary

