Ceilometer Documentation
Release 16.0.2.dev14

OpenStack Foundation

Feb 14, 2024

CONTENTS

1 Overview 3
1.1 Installation Guide e 3
1.1.1 Telemetry Data Collection service overview 3

1.1.2 Install and Configure Controller Services 4
Ceilometer e e e 4

Cinder. e e e e 20

Glance e 23

Heat o o e 24

Keystone e 26

Neutron o e e e e e 26

SWIft . o 28

1.1.3 Install and Configure Compute Services 33

Enable Compute service meters for openSUSE and SUSE Linux Enterprise . . . 33
Enable Compute service meters for Red Hat Enterprise Linux and CentOS . . . 35

Enable Compute service meters for Ubuntu 36

1.1.4 Verifyoperation e 38
LIS NeXESIEPS & v v v v o e e e e e e e e e e e e e e e e e e 40
1.1.6 - Ocata e e 40
LI7 0 Newtono v vttt e e e e e e e e e e 40
1.2 Contributor Guide e 40
L2.1 0 OVerview o v it e e e e e e e e e e 41
OVEIVIEW o o e e e e e 41
System Architecture oL e e 41

1.2.2 DataTypes . . . v v v i o e e e e e e e e e e e e e e 46
Measurements Lol e e e e e e e e e e e e e e 46
Events and Event Processing 47

1.2.3 Getting Started e 52
Installing development sandbox 52
Runningthe Tests o o 52

Guru Meditation Reports 53

1.2.4 Development 0 i i e e e 54
Writing Agent Plugins oL oL 54
Ceilometer + Gnocchi Integration 56

1.3 Administrator Guide 57
1.3.1 0 OVerVIEW . . . o ot it e e e e e e e e e e e 57
System architecture oL 57

1.3.2 Configuration i i e e e e 58
Datacollection e 58

Data processing and pipelines 63

Telemetry best practices oL 68

Introduction to dynamic pollster subsystem 69

1.3.3 DataTypes o v i i e e e e e e e e e e e e e 81
Measurements e e e e e e e e e e e e e e 81

Events e e 93

1.3.4 Managementt e e e e e e e e e e e 95
Troubleshoot Telemetry 95

1.4 Ceilometer Configuration Options vt 96
1.4.1 Ceilometer Sample ConfigurationFile 96

1.5 Ceilometer CLI Documentation v v v v v v i vt et e e 96
1.5.1 ceilometer-statuso e e e 96

CLI interface for Ceilometer status commands 96

Appendix 99
2.1 Release NOteS o o i e e e e e e e 99
2.1.1 Folsom e e e e e e e e e 99

2.2 GlosSary . .o . e e e e e e 100

Ceilometer Documentation, Release 16.0.2.dev14

The Ceilometer project is a data collection service that provides the ability to normalise and transform
data across all current OpenStack core components with work underway to support future OpenStack
components.

Ceilometer is a component of the Telemetry project. Its data can be used to provide customer billing,
resource tracking, and alarming capabilities across all OpenStack core components.

This documentation offers information on how Ceilometer works and how to contribute to the project.

CONTENTS 1

Ceilometer Documentation, Release 16.0.2.dev14

2 CONTENTS

CHAPTER
ONE

OVERVIEW

1.1 Installation Guide

1.1.1 Telemetry Data Collection service overview

The Telemetry Data Collection services provide the following functions:

* Efficiently polls metering data related to OpenStack services.

* Collects event and metering data by monitoring notifications sent from services.

* Publishes collected data to various targets including data stores and message queues.
The Telemetry service consists of the following components:

A compute agent (ceilometer—agent—compute) Runs on each compute node and polls for re-
source utilization statistics. This is actually the polling agent ceilometer—-polling running
with parameter ——polling—-namespace compute.

A central agent (ceilometer—agent—central) Runs on a central management server to poll
for resource utilization statistics for resources not tied to instances or compute nodes. Mul-
tiple agents can be started to scale service horizontally. This is actually the polling agent
ceilometer-polling running with parameter ——polling—namespace central.

A notification agent (ceilometer—agent—-notification) Runs on a central management
server(s) and consumes messages from the message queue(s) to build event and metering data.
Data is then published to defined targets. By default, data is pushed to Gnocchi.

These services communicate by using the OpenStack messaging bus. Ceilometer data is designed to be
published to various endpoints for storage and analysis.

Note: Ceilometer previously provided a storage and API solution. As of Newton, this functionality is
officially deprecated and discouraged. For efficient storage and statistical analysis of Ceilometer data,
Gnocchi is recommended.

https://gnocchi.osci.io
https://gnocchi.osci.io

Ceilometer Documentation, Release 16.0.2.dev14

1.1.2 Install and Configure Controller Services

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Note that installation and configuration vary by distribution.
Ceilometer
Install and configure for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Telemetry service, code-named ceilometer, on
the controller node.

Prerequisites

Before you install and configure the Telemetry service, you must configure a target to send metering
data to. The recommended endpoint is Gnocchi.

1. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

2. To create the service credentials, complete these steps:

e Create the ceilometer user:

openstack user create —--domain default --password-prompt,,
—celilometer

Add the admin role to the ceilometer user.

openstack role add —--project service —--user ceilometer admin

Note: This command provides no output.

* Create the ceilometer service entity:

openstack service create —--name ceilometer

(continues on next page)

4 Chapter 1. Overview

https://gnocchi.osci.io

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

3. Register Gnocchi service in Keystone:

¢ Create the gnocchi user:

openstack user create —-domain default --password-prompt gnocchi

Create the gnocchi service entity:

openstack service create —--name gnocchi

Add the admin role to the gnocchi user.

openstack role add —--project service —--user gnocchi admin

Note: This command provides no output.

* Create the Metric service API endpoints:

openstack endpoint create —--region RegionOne

(continues on next page)

1.1. Installation Guide 5

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

openstack endpoint create --region RegionOne

openstack endpoint create —--region RegionOne

Install Gnocchi

1. Install the Gnocchi packages. Alternatively, Gnocchi can be install using pip:

zypper install openstack-gnocchi-api openstack-gnocchi-metricd

Note: Depending on your environment size, consider installing Gnocchi separately as it makes
extensive use of the cpu.

2. Create the database for Gnocchi’s indexer:

» Use the database access client to connect to the database server as the root user:

6 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

mysgl —-u root -p

Create the gnocchi database:

Grant proper access to the gnocchi database:

Replace GNOCCHI_DBPASS with a suitable password.
 Exit the database access client.
3. Editthe /etc/gnocchi/gnocchi.conf file and add Keystone options:

* Inthe [api] section, configure gnocchi to use keystone:

* Inthe [keystone_authtoken] section, configure keystone authentication:

Replace GNOCCHI_PASS with the password you chose for the gnocchi user in the Iden-
tity service.

* Inthe [indexer] section, configure database access:

Replace GNOCCHI_DBPASS with the password you chose for Gnocchi’s indexer database.

* In the [storage] section, configure location to store metric data. In this case, we will
store it to the local file system. See Gnocchi documenation for a list of more durable and
performant drivers:

(continues on next page)

1.1. Installation Guide 7

Ceilometer Documentation, Release 16.0.2.devi4

(continued from previous page)

4. Initialize Gnocchi:

Finalize Gnocchi installation

1. Start the Gnocchi services and configure them to start when the system boots:

systemctl enable openstack-gnocchi-api.service

systemctl start openstack-gnocchi-api.service

Install and configure components

1. Install the packages:

zypper install openstack-ceilometer-agent-notification

2. Editthe /etc/ceilometer/pipeline.yaml file and complete the following section:

* Configure Gnocchi connection:

3. Editthe /etc/ceilometer/ceilometer.conf file and complete the following actions:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [service_credentials] section, configure service credentials:

(continues on next page)

8 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in
the Identity service.

4. Create Ceilometer resources in Gnocchi. Gnocchi should be running by this stage:

ceilometer-upgrade

Finalize installation

1. Start the Telemetry services and configure them to start when the system boots:

systemctl enable openstack-ceilometer-agent-notification.service

systemctl start openstack-ceilometer-agent-notification.service

Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Telemetry service, code-named ceilometer, on
the controller node.

Prerequisites

Before you install and configure the Telemetry service, you must configure a target to send metering
data to. The recommended endpoint is Gnocchi.

1. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

2. To create the service credentials, complete these steps:

¢ Create the ceilometer user:

openstack user create —--domain default --password-prompt,,
—ceilometer

(continues on next page)

1.1. Installation Guide 9

https://gnocchi.osci.io

Ceilometer Documentation, Release 16.0.2.devi4

(continued from previous page)

¢ Add the admin role to the ceilometer user.

openstack role add —--project service —--user ceilometer admin

Note: This command provides no output.

* Create the ceilometer service entity:

openstack service create --name ceilometer

3. Register Gnocchi service in Keystone:

¢ Create the gnocchi user:

openstack user create --domain default --password-prompt gnocchi

* Create the gnocchi service entity:

openstack service create —--name gnocchi

* Add the admin role to the gnocchi user.

10 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

openstack role add —--project service —--user gnocchi admin

Note: This command provides no output.

* Create the Metric service API endpoints:

openstack endpoint create —--region RegionOne
openstack endpoint create —--region RegionOne
openstack endpoint create --region RegionOne

1.1. Installation Guide 11

Ceilometer Documentation, Release 16.0.2.devi4

Install Gnocchi

1. Install the Gnocchi packages. Alternatively, Gnocchi can be install using pip:

yum install openstack-gnocchi-api openstack-gnocchi-metricd

Note: Depending on your environment size, consider installing Gnocchi separately as it makes
extensive use of the cpu.

2. Create the database for Gnocchi’s indexer:

» Use the database access client to connect to the database server as the root user:

mysgl —-u root -p

¢ Create the gnocchi database:

Grant proper access to the gnocchi database:

Replace GNOCCHI_DBPASS with a suitable password.
 Exit the database access client.
3. Editthe /etc/gnocchi/gnocchi.conf file and add Keystone options:

* Inthe [api] section, configure gnocchi to use keystone:

* Inthe [keystone_authtoken] section, configure keystone authentication:

Replace GNOCCHI_PASS with the password you chose for the gnocchi user in the Iden-
tity service.

* Inthe [indexer] section, configure database access:

12 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Replace GNOCCHI_DBPASS with the password you chose for Gnocchi’s indexer database.

* In the [storage] section, configure location to store metric data. In this case, we will

store it to the local file system. See Gnocchi documenation for a list of more durable and
performant drivers:

4. Initialize Gnocchi:

Finalize Gnocchi installation

1. Start the Gnocchi services and configure them to start when the system boots:

systemctl enable openstack-gnocchi-api.service

systemctl start openstack-gnocchi-api.service

Install and configure components

1. Install the Ceilometer packages:

yum install openstack-ceilometer-notification

2. Editthe /etc/ceilometer/pipeline.yaml file and complete the following section:

* Configure Gnocchi connection:

3. Editthe /etc/ceilometer/ceilometer.conf file and complete the following actions:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

1.1. Installation Guide 13

Ceilometer Documentation, Release 16.0.2.dev14

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [service_credentials] section, configure service credentials:

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in
the Identity service.

4. Create Ceilometer resources in Gnocchi. Gnocchi should be running by this stage:

ceilometer-upgrade

Finalize installation

1. Start the Telemetry services and configure them to start when the system boots:

systemctl enable openstack-ceilometer-notification.service

systemctl start openstack-ceilometer-notification.service

Install and configure for Ubuntu

This section describes how to install and configure the Telemetry service, code-named ceilometer, on
the controller node.

Prerequisites

Before you install and configure the Telemetry service, you must configure a target to send metering
data to. The recommended endpoint is Gnocchi.

1. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

2. To create the service credentials, complete these steps:

e Create the ceilometer user:

14 Chapter 1. Overview

https://gnocchi.osci.io

Ceilometer Documentation, Release 16.0.2.dev14

openstack user create —--domain default --password-prompt,,
—ceilometer

¢ Add the admin role to the ceilometer user.

openstack role add —--project service —--user ceilometer admin

Note: This command provides no output.

* Create the ceilometer service entity:

openstack service create —--name ceilometer

3. Register Gnocchi service in Keystone:

* Create the gnocchi user:

openstack user create —-domain default --password-prompt gnocchi

* Create the gnocchi service entity:

openstack service create --name gnocchi

(continues on next page)

1.1. Installation Guide 15

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

* Add the admin role to the gnocchi user.

openstack role add —--project service --user gnocchi admin

Note: This command provides no output.

* Create the Metric service API endpoints:

openstack endpoint create —--region RegionOne
openstack endpoint create —--region RegionOne
openstack endpoint create —--region RegionOne

(continues on next page)

16 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

Install Gnocchi

1. Install the Gnocchi packages. Alternatively, Gnocchi can be installed using pip:

apt-get install gnocchi-api gnocchi-metricd python-gnocchiclient

Note: Depending on your environment size, consider installing Gnocchi separately as it makes
extensive use of the cpu.

2. Create the database for Gnocchi’s indexer:

¢ Use the database access client to connect to the database server as the root user:

mysgl —u root -p

Create the gnocchi database:

* Grant proper access to the gnocchi database:

Replace GNOCCHI_DBPASS with a suitable password.
* Exit the database access client.
3. Editthe /etc/gnocchi/gnocchi.conf file and add Keystone options:

* Inthe [api] section, configure gnocchi to use keystone:

Inthe [keystone_authtoken] section, configure keystone authentication:

(continues on next page)

1.1. Installation Guide 17

Ceilometer Documentation, Release 16.0.2.devi4

(continued from previous page)

Replace GNOCCHI_PASS with the password you chose for the gnocchi user in the Iden-
tity service.

* Inthe [indexer] section, configure database access:

Replace GNOCCHI_DBPASS with the password you chose for Gnocchi’s indexer database.

* In the [storage] section, configure location to store metric data. In this case, we will
store it to the local file system. See Gnocchi documenation for a list of more durable and
performant drivers:

4. Initialize Gnocchi:

Finalize Gnocchi installation

1. Restart the Gnocchi services:

service gnocchi-api restart
service gnocchi-metricd restart

Install and configure components

1. Install the ceilometer packages:

apt-get install ceilometer-agent-notification

2. Editthe /etc/ceilometer/pipeline.yaml file and complete the following section:

* Configure Gnocchi connection:

18 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

3. Editthe /etc/ceilometer/ceilometer.conf file and complete the following actions:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [service_credentials] section, configure service credentials:

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in
the Identity service.

4. Create Ceilometer resources in Gnocchi. Gnocchi should be running by this stage:

ceilometer-upgrade

Finalize installation

1. Restart the Telemetry services:

service ceilometer—-agent-central restart
service ceilometer-agent-notification restart

Additional steps are required to configure services to interact with ceilometer:

1.1. Installation Guide 19

Ceilometer Documentation, Release 16.0.2.dev14

Cinder

Enable Block Storage meters for openSUSE and SUSE Linux Enterprise

Telemetry uses notifications to collect Block Storage service meters. Perform these steps on the con-
troller and Block Storage nodes.

Note: Your environment must include the Block Storage service.

Configure Cinder to use Telemetry

Edit the /etc/cinder/cinder.conf file and complete the following actions:

* Inthe [oslo_messaging_notifications] section, configure notifications:

[oslo_messaging notifications]

* Enable periodic usage statistics relating to block storage. To use it, you must run this command
in the following format:

cinder-volume-usage—-audit -—--start_time

This script outputs what volumes or snapshots were created, deleted, or exists in a given period of
time and some information about these volumes or snapshots.

Using this script via cron you can get notifications periodically, for example, every 5 minutes:

5

Finalize installation

1. Restart the Block Storage services on the controller node:

systemctl restart openstack-cinder-api.service openstack-cinder-
—scheduler.service

2. Restart the Block Storage services on the storage nodes:

systemctl restart openstack-cinder-volume.service

20 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Enable Block Storage meters for Red Hat Enterprise Linux and CentOS

Telemetry uses notifications to collect Block Storage service meters. Perform these steps on the con-
troller and Block Storage nodes.

Note: Your environment must include the Block Storage service.

Configure Cinder to use Telemetry

Edit the /etc/cinder/cinder. conf file and complete the following actions:

* Inthe [oslo_messaging_notifications] section, configure notifications:

[oslo_messaging notifications]

* Enable periodic usage statistics relating to block storage. To use it, you must run this command
in the following format:

cinder-volume-usage—-audit -—--start_time

This script outputs what volumes or snapshots were created, deleted, or exists in a given period of
time and some information about these volumes or snapshots.

Using this script via cron you can get notifications periodically, for example, every 5 minutes:

5

Finalize installation

1. Restart the Block Storage services on the controller node:

systemctl restart openstack-cinder—-api.service openstack-cinder-
—scheduler.service

2. Restart the Block Storage services on the storage nodes:

systemctl restart openstack-cinder-volume.service

1.1. Installation Guide 21

Ceilometer Documentation, Release 16.0.2.dev14

Enable Block Storage meters for Ubuntu

Telemetry uses notifications to collect Block Storage service meters. Perform these steps on the con-
troller and Block Storage nodes.

Note: Your environment must include the Block Storage service.

Configure Cinder to use Telemetry

Edit the /etc/cinder/cinder. conf file and complete the following actions:

* Inthe [oslo_messaging_notifications] section, configure notifications:

* Enable periodic usage statistics relating to block storage. To use it, you must run this command
in the following format:

cinder-volume-usage—-audit -—--start_time

This script outputs what volumes or snapshots were created, deleted, or exists in a given period of
time and some information about these volumes or snapshots.

Using this script via cron you can get notifications periodically, for example, every 5 minutes:

5

Finalize installation

1. Restart the Block Storage services on the controller node:

service cinder—api restart
service cinder-scheduler restart

2. Restart the Block Storage services on the storage nodes:

service cinder-volume restart

22 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Glance

Enable Image service meters for openSUSE and SUSE Linux Enterprise

Telemetry uses notifications to collect Image service meters. Perform these steps on the controller node.

Configure the Image service to use Telemetry

* Editthe /etc/glance/glance—api.conf file and complete the following actions:

— In the [DEFAULT], [oslo_messaging_notifications] sections, configure noti-
fications and RabbitMQ message broker access:

[DEFAULT]

[oslo_messaging notifications]

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

Finalize installation

* Restart the Image service:

systemctl restart openstack-glance-api.service

Enable Image service meters for Red Hat Enterprise Linux and CentOS

Telemetry uses notifications to collect Image service meters. Perform these steps on the controller node.

Configure the Image service to use Telemetry

* Editthe /etc/glance/glance—api.conf file and complete the following actions:

— In the [DEFAULT], [oslo_messaging_notifications] sections, configure noti-
fications and RabbitMQ message broker access:

[DEFAULT]

[oslo_messaging notifications]

1.1. Installation Guide 23

Ceilometer Documentation, Release 16.0.2.dev14

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMOQ.

Finalize installation

* Restart the Image service:

systemctl restart openstack-glance—-api.service

Enable Image service meters for Ubuntu

Telemetry uses notifications to collect Image service meters. Perform these steps on the controller node.

Configure the Image service to use Telemetry

* Editthe /etc/glance/glance—api.conf file and complete the following actions:

— In the [DEFAULT], [oslo_messaging_notifications] sections, configure noti-
fications and RabbitMQ message broker access:

[DEFAULT]

[oslo_messaging _notifications]

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMOQ.

Finalize installation

* Restart the Image service:

service glance—-api restart

Heat

Enable Orchestration service meters for openSUSE and SUSE Linux Enterprise

Telemetry uses notifications to collect Orchestration service meters. Perform these steps on the controller
node.

24 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Configure the Orchestration service to use Telemetry

* Editthe /etc/heat/heat.conf and complete the following actions:

— Inthe [oslo_messaging_notifications] sections, enable notifications:

[oslo_messaging notifications]

Finalize installation

¢ Restart the Orchestration service:

systemctl restart openstack-heat-api.service

Enable Orchestration service meters for Red Hat Enterprise Linux and CentOS

Telemetry uses notifications to collect Orchestration service meters. Perform these steps on the controller

node.

Configure the Orchestration service to use Telemetry

* Editthe /etc/heat/heat.conf and complete the following actions:

— Inthe [oslo_messaging _notifications] sections, enable notifications:

[oslo_messaging notifications]

Finalize installation

¢ Restart the Orchestration service:

systemctl restart openstack-heat-api.service

1.1. Installation Guide 25

Ceilometer Documentation, Release 16.0.2.dev14

Enable Orchestration service meters for Ubuntu

Telemetry uses notifications to collect Orchestration service meters. Perform these steps on the controller
node.

Configure the Orchestration service to use Telemetry

» Editthe /etc/heat/heat .conf and complete the following actions:

— Inthe [oslo_messaging_notifications] sections, enable notifications:

[oslo_messaging notifications]

Finalize installation

¢ Restart the Orchestration service:

service heat-api restart
service heat-api-cfn restart
service heat-engine restart

Keystone
To enable auditing of API requests, Keystone provides middleware which captures API requests to a

service and emits data to Ceilometer. Instructions to enable this functionality is available in Keystone’s
developer documentation. Ceilometer will captures this information as audit .http. » events.

Neutron
Enable Networking service meters for openSUSE and SUSE Linux Enterprise

Telemetry uses notifications to collect Networking service meters. Perform these steps on the controller
node.

Configure the Networking service to use Telemetry

» Editthe /etc/neutron/neutron.conf and complete the following actions:

— Inthe [oslo_messaging_notifications] sections, enable notifications:

[oslo_messaging _notifications]

26 Chapter 1. Overview

https://docs.openstack.org/keystonemiddleware/latest/audit.html
https://docs.openstack.org/keystonemiddleware/latest/audit.html

Ceilometer Documentation, Release 16.0.2.dev14

Finalize installation

* Restart the Networking service:

systemctl restart neutron-server.service

Enable Networking service meters for Red Hat Enterprise Linux and CentOS

Telemetry uses notifications to collect Networking service meters. Perform these steps on the controller
node.

Configure the Networking service to use Telemetry

* Editthe /etc/neutron/neutron.conf and complete the following actions:

— Inthe [oslo_messaging _notifications] sections, enable notifications:

[oslo_messaging _notifications]

Finalize installation

* Restart the Networking service:

systemctl restart neutron-server.service

Enable Networking service meters for Ubuntu

Telemetry uses notifications to collect Networking service meters. Perform these steps on the controller
node.

Configure the Networking service to use Telemetry

* Editthe /etc/neutron/neutron.conf and complete the following actions:

— Inthe [oslo_messaging _notifications] sections, enable notifications:

[oslo_messaging notifications]

1.1. Installation Guide 27

Ceilometer Documentation, Release 16.0.2.dev14

Finalize installation

* Restart the Networking service:

service neutron-server restart

Swift

Enable Object Storage meters for openSUSE and SUSE Linux Enterprise

Telemetry uses a combination of polling and notifications to collect Object Storage meters.

Note: Your environment must include the Object Storage service.

Prerequisites

The Telemetry service requires access to the Object Storage service using the ResellerAdmin role.
Perform these steps on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands.

admin-openrc

2. Create the ResellerAdmin role:

openstack role create ResellerAdmin

3. Add the ResellerAdmin role to the ceilometer user:

openstack role add —--project service —--user ceilometer ResellerAdmin

Note: This command provides no output.

28 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Install components

* Install the packages:

zypper install python-ceilometermiddleware

Configure Object Storage to use Telemetry

Perform these steps on the controller and any other nodes that run the Object Storage proxy service.
* Editthe /etc/swift/proxy—-server.conf file and complete the following actions:

— Inthe [filter:keystoneauth] section, add the ResellerAdmin role:

— Inthe [pipeline:main] section, add ceilometer:

!

!

!

— Inthe [filter:ceilometer] section, configure notifications:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

Finalize installation

* Restart the Object Storage proxy service:

systemctl restart openstack-swift-proxy.service

1.1. Installation Guide 29

Ceilometer Documentation, Release 16.0.2.dev14

Enable Object Storage meters for Red Hat Enterprise Linux and CentOS

Telemetry uses a combination of polling and notifications to collect Object Storage meters.

Note: Your environment must include the Object Storage service.

Prerequisites

The Telemetry service requires access to the Object Storage service using the ResellerAdmin role.
Perform these steps on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands.

admin-openrc

2. Create the ResellerAdmin role:

openstack role create ResellerAdmin

3. Add the ResellerAdmin role to the ceilometer user:

openstack role add —--project service —--user ceilometer ResellerAdmin

Note: This command provides no output.

Install components

* Install the packages:

yum install python-ceilometermiddleware

Configure Object Storage to use Telemetry

Perform these steps on the controller and any other nodes that run the Object Storage proxy service.
» Editthe /etc/swift/proxy-server.conf file and complete the following actions:

— Inthe [filter:keystoneauth] section, add the ResellerAdmin role:

30 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

[filter:keystoneauth]

— Inthe [pipeline:main] section, add ceilometer:

[pipeline:main]

I

— Inthe [filter:ceilometer] section, configure notifications:

[filter:ceilometer]

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

Finalize installation

* Restart the Object Storage proxy service:

systemctl restart openstack-swift-proxy.service

Enable Object Storage meters for Ubuntu

Telemetry uses a combination of polling and notifications to collect Object Storage meters.

Note: Your environment must include the Object Storage service.

Prerequisites

The Telemetry service requires access to the Object Storage service using the ResellerAdmin role.
Perform these steps on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands.

admin-openrc

2. Create the ResellerAdmin role:

1.1. Installation Guide 31

Ceilometer Documentation, Release 16.0.2.dev14

openstack role create ResellerAdmin

3. Add the ResellerAdmin role to the ceilometer user:

openstack role add —--project service —-user ceilometer ResellerAdmin

Note: This command provides no output.

Install components

* Install the packages:

apt—-get install python-ceilometermiddleware

Configure Object Storage to use Telemetry

Perform these steps on the controller and any other nodes that run the Object Storage proxy service.
» Editthe /etc/swift/proxy-server.conf file and complete the following actions:

— Inthe [filter:keystoneauth] section, add the ResellerAdmin role:

[filter:keystoneauth]

Inthe [pipeline:main] section, add ceilometer:

[pipeline:main]

J

!

!

Inthe [filter:ceilometer] section, configure notifications:

[filter:ceilometer]

32

Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMOQ.

Finalize installation

* Restart the Object Storage proxy service:

service swift-proxy restart

1.1.3 Install and Configure Compute Services

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Note that installation and configuration vary by distribution.

Enable Compute service meters for openSUSE and SUSE Linux Enterprise

Telemetry uses a combination of notifications and an agent to collect Compute meters. Perform these
steps on each compute node.

Install and configure components

1. Install the packages:

zypper install openstack-ceilometer—-agent—compute
zypper install openstack-ceilometer—-agent—-ipmi (optional

2. Editthe /etc/ceilometer/ceilometer.conf file and complete the following actions:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMOQ.

* Inthe [service_credentials] section, configure service credentials:

[service_credentials]

1.1. Installation Guide 33

Ceilometer Documentation, Release 16.0.2.dev14

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in
the Identity service.

Configure Compute to use Telemetry

* Editthe /etc/nova/nova.conf file and configure notifications in the [DEFAULT] section:

[DEFAULT]

[notifications]

[oslo_messaging notifications]

Configure Compute to poll IPMI meters

Note: To enable IPMI meters, ensure IPMITool is installed and the host supports Intel Node Manager.

e Edit the /etc/sudoers file and include:

* Editthe /etc/ceilometer/polling.yaml to include the required meters, for example:

name
interval
meters

Finalize installation

1. Start the agent and configure it to start when the system boots:

systemctl enable openstack-ceilometer—-agent-compute.service
systemctl start openstack-ceilometer—-agent-compute.service
systemctl enable openstack-ceilometer-agent—-ipmi.service (optional
systemctl start openstack-ceilometer-agent-ipmi.service (optional

2. Restart the Compute service:

systemctl restart openstack-nova-compute.service

34 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Enable Compute service meters for Red Hat Enterprise Linux and CentOS

Telemetry uses a combination of notifications and an agent to collect Compute meters. Perform these
steps on each compute node.

Install and configure components

1. Install the packages:

yum install openstack-ceilometer-compute
yum install openstack-ceilometer—-ipmi optional

2. Editthe /etc/ceilometer/ceilometer. conf file and complete the following actions:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [service_credentials] section, configure service credentials:

[service_ credentials]

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in
the Identity service.

Configure Compute to use Telemetry

* Editthe /etc/nova/nova.conf file and configure notifications in the [DEFAULT] section:

[DEFAULT]

[notifications]

[oslo_messaging notifications]

(continues on next page)

1.1. Installation Guide 35

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

Configure Compute to poll IPMI meters

Note: To enable IPMI meters, ensure IPMITool is installed and the host supports Intel Node Manager.

e Edit the /etc/sudoers file and include:

* Editthe /etc/ceilometer/polling.yaml to include the required meters, for example:

name
interval
meters

Finalize installation

1. Start the agent and configure it to start when the system boots:

systemctl enable openstack-ceilometer-compute.service
systemctl start openstack-ceilometer-compute.service
systemctl enable openstack-ceilometer-ipmi.service (optional
systemctl start openstack-ceilometer-ipmi.service (optional

2. Restart the Compute service:

systemctl restart openstack-nova-compute.service

Enable Compute service meters for Ubuntu

Telemetry uses a combination of notifications and an agent to collect Compute meters. Perform these
steps on each compute node.

Install and configure components

1. Install the packages:

apt-get install ceilometer-agent-compute
apt—-get install ceilometer-agent-ipmi (optional

2. Editthe /etc/ceilometer/ceilometer.conf file and complete the following actions:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

36 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMOQ.

* Inthe [service_credentials] section, configure service credentials:

[service credentials]

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in
the Identity service.

Configure Compute to use Telemetry

* Editthe /etc/nova/nova.conf file and configure notifications in the [DEFAULT] section:

[DEFAULT]

[notifications]

[oslo_messaging _notifications]

Configure Compute to poll IPMI meters

Note: To enable IPMI meters, ensure IPMITool is installed and the host supports Intel Node Manager.

e Edit the /etc/sudoers file and include:

» Editthe /etc/ceilometer/polling.yaml to include the required meters, for example:

1.1. Installation Guide 37

Ceilometer Documentation, Release 16.0.2.dev14

name
interval
meters

Finalize installation

1. Restart the agent:

service ceilometer—-agent-compute restart
service ceilometer-agent-ipmi restart optional

2. Restart the Compute service:

service nova-compute restart

1.1.4 Verify operation

Verify operation of the Telemetry service. These steps only include the Image service meters to reduce
clutter. Environments with ceilometer integration for additional services contain more meters.

Note: Perform these steps on the controller node.

Note: The following uses Gnocchi to verify data. Alternatively, data can be published to a file backend
temporarily by using a file:// publisher.

1. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

2. List available resource and its metrics:

gnocchi resource list -—--type image

!

!

!

!

!

!

!

!

!

!

!

!

(continues on next page)

38 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

!

!

!

gnocchi resource show a6b387el-4276-43db-bl7a-e10£649d85a3

3. Download the CirrOS image from the Image service:

glance image-list grep awk
glance image-download > /tmp/cirros.img

4. List available meters again to validate detection of the image download:

gnocchi measures show 839%9afal02-1668-4922-a33e-6b6ea7780715

(continues on next page)

1.1. Installation Guide 39

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

5. Remove the previously downloaded image file /tmp/cirros. img:

rm /tmp/cirros.img

1.1.5 Next steps

Your OpenStack environment now includes the ceilometer service.
To add additional services, see the OpenStack Installation Tutorials and Guides.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorials and
Guides.

1.1.6 Ocata

To install Ceilometer, see the Ocata Telemetry Data Collection service install guide

1.1.7 Newton

To install Ceilometer, see the Newton Telemetry Data Collection service install guide

1.2 Contributor Guide

In the Contributor Guide, you will find documented policies for developing with Ceilometer. This
includes the processes we use for bugs, contributor onboarding, core reviewer memberships, and other
procedural items.

Ceilometer follows the same workflow as other OpenStack projects. To start contributing to Ceilometer,
please follow the workflow found here.

Bug tracker https://bugs.launchpad.net/ceilometer

Mailing list http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss (prefix
subjects with [Ceilometer] for faster responses)

Wiki https://wiki.openstack.org/wiki/Ceilometer
Code Hosting https://opendev.org/openstack/ceilometer/

Code Review https://review.opendev.org/#/q/status:open+project:openstack/ceilometer,n,
z

40 Chapter 1. Overview

https://docs.openstack.org/latest/install
https://docs.openstack.org/install-guide/
https://docs.openstack.org/install-guide/
https://docs.openstack.org/project-install-guide/telemetry/ocata/
https://docs.openstack.org/project-install-guide/telemetry/newton/
https://wiki.openstack.org/wiki/Gerrit_Workflow
https://bugs.launchpad.net/ceilometer
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://wiki.openstack.org/wiki/Ceilometer
https://opendev.org/openstack/ceilometer/
https://review.opendev.org/#/q/status:open+project:openstack/ceilometer,n,z
https://review.opendev.org/#/q/status:open+project:openstack/ceilometer,n,z

Ceilometer Documentation, Release 16.0.2.dev14

1.2.1 Overview
Overview

Objectives

The Ceilometer project was started in 2012 with one simple goal in mind: to provide an infrastructure
to collect any information needed regarding OpenStack projects. It was designed so that rating engines
could use this single source to transform events into billable items which we label as "metering".

As the project started to come to life, collecting an increasing number of meters across multiple projects,
the OpenStack community started to realize that a secondary goal could be added to Ceilometer: become
a standard way to meter, regardless of the purpose of the collection. This data can then be pushed to any
set of targets using provided publishers mentioned in pipeline-publishers section.

Metering

If you divide a billing process into a 3 step process, as is commonly done in the telco industry, the steps
are:

1. metering
2. rating
3. billing

Ceilometer’s initial goal was, and still is, strictly limited to step one. This is a choice made from the
beginning not to go into rating or billing, as the variety of possibilities seemed too large for the project
to ever deliver a solution that would fit everyone’s needs, from private to public clouds. This means that
if you are looking at this project to solve your billing needs, this is the right way to go, but certainly not
the end of the road for you.

System Architecture

High-Level Architecture

Each of Ceilometer’s services are designed to scale horizontally. Additional workers and nodes can be
added depending on the expected load. Ceilometer offers two core services:

1. polling agent - daemon designed to poll OpenStack services and build Meters.

2. notification agent - daemon designed to listen to notifications on message queue, convert them to
Events and Samples, and apply pipeline actions.

Data normalised and collected by Ceilometer can be sent to various targets. Gnocchi was developed to
capture measurement data in a time series format to optimise storage and querying. Gnocchi is intended
to replace the existing metering database interface. Additionally, Aodh is the alarming service which
can send alerts when user defined rules are broken. Lastly, Panko is the event storage project designed
to capture document-oriented data such as logs and system event actions.

1.2. Contributor Guide 41

https://docs.openstack.org/ceilometer/latest/contributor/measurements.html
https://gnocchi.osci.io/
https://docs.openstack.org/aodh/latest/
https://docs.openstack.org/panko/latest/

Ceilometer Documentation, Release 16.0.2.dev14

Ceilometer
Panko

Polling Agents Noiification
Agents

adC I——

IdV siuang

Agentl Agentl

Agent2 Agent2

Gnocchi

— Metrics API

Pipelines

Jorenead uuepy
JBNON Wy

e —-

AgentN Agenth Metries

o N
I Nofification Bus

Fig. 1: An overall summary of Ceilometer’s logical architecture.

42 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Gathering the data

How is data collected?

| Wotification bus

I 1 [| | [

\\ Compute \\ Volume \\ Network \\ Image \\Object Storage

API API API API API
7\ 7\ AN

Notifications

Polling agents

e Publishing .
Notification agents ::> Publishing

Fig. 2: This is a representation of how the agents gather data from multiple sources.

The Ceilometer project created 2 methods to collect data:

1. notification agent which takes messages generated on the notification bus and transforms them
into Ceilometer samples or events.

2. polling agent, will poll some API or other tool to collect information at a regular interval. The
polling approach may impose significant on the API services so should only be used on optimised
endpoints.

The first method is supported by the ceilometer-notification agent, which monitors the message queues
for notifications. Polling agents can be configured either to poll the local hypervisor or remote APIs
(public REST APIs exposed by services and host-level SNMP/IPMI daemons).

Notification Agent: Listening for data

The heart of the system is the notification daemon (agent-notification) which monitors the message
queue for data sent by other OpenStack components such as Nova, Glance, Cinder, Neutron, Swift,
Keystone, and Heat, as well as Ceilometer internal communication.

The notification daemon loads one or more listener plugins, using the namespace ceilometer.
notification. Each plugin can listen to any topic, but by default, will listen to notifications.
info,notifications.sample,andnotifications.error. The listeners grab messages off
the configured topics and redistributes them to the appropriate plugins(endpoints) to be processed into
Events and Samples.

Sample-oriented plugins provide a method to list the event types they’re interested in and a callback for
processing messages accordingly. The registered name of the callback is used to enable or disable it

1.2. Contributor Guide 43

Ceilometer Documentation, Release 16.0.2.dev14

Notification bus

[[[[[

Compute Volume Network Image Object Storage

Notifications

v

P Publishing
Notification agents | > Publishing

Fig. 3: Notification agent consuming messages from services.

using the pipeline of the notification daemon. The incoming messages are filtered based on their event
type value before being passed to the callback so the plugin only receives events it has expressed an
interest in seeing.

Polling Agent: Asking for data

Compute Volume Network Image Object Storage
API API API API API
A H\ H

Polling

Polling agents

g

| Notification bus

Fig. 4: Polling agent querying services for data.

Polling for compute resources is handled by a polling agent running on the compute node (where com-
munication with the hypervisor is more efficient), often referred to as the compute-agent. Polling via
service APIs for non-compute resources is handled by an agent running on a cloud controller node,
often referred to the central-agent. A single agent can fulfill both roles in an all-in-one deployment.
Conversely, multiple instances of an agent may be deployed, in which case the workload is shared.
The polling agent daemon is configured to run one or more pollster plugins using any combination
of ceilometer.poll.compute, ceilometer.poll.central, and ceilometer.poll.
ipmi namespaces

The frequency of polling is controlled via the polling configuration. See Polling for details. The agent
framework then passes the generated samples to the notification agent for processing.

44 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Processing the data

Pipeline Manager

Notification agents

Normalised
data

Publisher Receiver

Fig. 5: The assembly of components making the Ceilometer pipeline.

Ceilometer offers the ability to take data gathered by the agents, manipulate it, and publish it in various
combinations via multiple pipelines. This functionality is handled by the notification agents.

Publishing the data

Gnocchi
Publisher

> Gnocchi

AMQP
signed message

oslo.messaging
G Exemalsystem

monitoring, statistics,
performance, capacity
planning...

Fig. 6: This figure shows how a sample can be published to multiple destinations.

Currently, processed data can be published using different transport options:

1. gnocchi, which publishes samples/events to Gnocchi API;

1.2. Contributor Guide 45

Ceilometer Documentation, Release 16.0.2.dev14

2. notifier, a notification based publisher which pushes samples to a message queue which can be
consumed by an external system;

udp, which publishes samples using UDP packets;

http, which targets a REST interface;

file, which publishes samples to a file with specified name and location;

zaqar, a multi-tenant cloud messaging and notification service for web and mobile developers;
https, which is http over SSL and targets a REST interface;

prometheus, which publishes samples to Prometheus Pushgateway;

© ©° N kW

monasca, which publishes samples to the Monasca API.

Storing/Accessing the data

Ceilometer is designed solely to generate and normalise cloud data. The data created by Ceilometer
can be pushed to any number of target using publishers mentioned in pipeline-publishers section. The
recommended workflow is to push data to Gnocchi for efficient time-series storage and resource lifecycle
tracking.

1.2.2 Data Types
Measurements

Existing meters

For the list of existing meters see the tables under the Measurements page of Ceilometer in the Admin-
istrator Guide.

New measurements

Ceilometer is designed to collect measurements from OpenStack services and from other external com-
ponents. If you would like to add new meters to the currently existing ones, you need to follow the
guidelines given in this section.

Types

Three type of meters are defined in Ceilometer:

Type Definition

Cumulative | Increasing over time (instance hours)

Gauge Discrete items (floating IPs, image uploads) and fluctuating values (disk 1/0O)
Delta Changing over time (bandwidth)

When you’re about to add a new meter choose one type from the above list, which is applicable.

46 Chapter 1. Overview

https://gnocchi.osci.io/
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html

Ceilometer Documentation, Release 16.0.2.dev14

Units

1. Whenever a volume is to be measured, SI approved units and their approved symbols or abbrevi-
ations should be used. Information units should be expressed in bits (’b’) or bytes ("B’).

2. For a given meter, the units should NEVER, EVER be changed.

3. When the measurement does not represent a volume, the unit description should always describe
WHAT is measured (ie: apples, disk, routers, floating IPs, etc.).

4. When creating a new meter, if another meter exists measuring something similar, the same units
and precision should be used.

5. Meters and samples should always document their units in Ceilometer (API and Documentation)
and new sampling code should not be merged without the appropriate documentation.

Dimension | Unit Abbreviations | Note

None N/A Dimension-less variable
Volume byte B

Time seconds | s

Naming convention

If you plan on adding meters, please follow the convention below:

1. Always use ’.” as separator and go from least to most discriminant word. For example, do not use
ephemeral_disk_size but disk.ephemeral.size

2. When a part of the name is a variable, it should always be at the end and start with a ’:’. For
example, do not use <type>.image but image:<type>, where type is your variable name.

3. If you have any hesitation, come and ask in #openstack-telemetry

Meter definitions

Meters definitions by default, are stored in separate configuration file, called ceilometer/data/
meters.d/meters.yaml. This is essentially a replacement for prior approach of writing notifica-
tion handlers to consume specific topics.

A detailed description of how to use meter definition is illustrated in the admin_guide.

Events and Event Processing

Events vs. Samples

In addition to Meters, and related Sample data, Ceilometer can also process Events.

While a Sample represents a single numeric datapoint, driving a Meter that represents the changes in that
value over time, an Event represents the state of an object in an OpenStack service (such as an Instance
in Nova, or an Image in Glance) at a point in time when something of interest has occurred. This can
include non-numeric data, such as an instance’s flavor, or network address.

1.2. Contributor Guide 47

https://docs.openstack.org/ceilometer/latest/admin/telemetry-data-collection.html#meter-definitions

Ceilometer Documentation, Release 16.0.2.dev14

In general, Events let you know when something has changed about an object in an OpenStack system,
such as the resize of an instance, or creation of an image.

While Samples can be relatively cheap (small), disposable (losing an individual sample datapoint won’t
matter much), and fast, Events are larger, more informative, and should be handled more consistently
(you do not want to lose one).

Event Structure

To facilitate downstream processing (billing and/or aggregation), a minimum required data set and for-
mat <format> has been defined for services, however events generally contain the following informa-
tion:

event_type A dotted string defining what event occurred, such as compute.instance.resize.
start

message_id A UUID for this event.
generated A timestamp of when the event occurred on the source system.

traits A flat mapping of key-value pairs. The event’s Traits contain most of the details of the event.
Traits are typed, and can be strings, ints, floats, or datetimes.

raw (Optional) Mainly for auditing purpose, the full notification message can be stored (unindexed) for
future evaluation.

Events from Notifications

Events are primarily created via the notifications system in OpenStack. OpenStack systems, such as
Nova, Glance, Neutron, etc. will emit notifications in a JSON format to the message queue when some
notable action is taken by that system. Ceilometer will consume such notifications from the message
queue, and process them.

The general philosophy of notifications in OpenStack is to emit any and all data someone might need,
and let the consumer filter out what they are not interested in. In order to make processing simpler and
more efficient, the notifications are stored and processed within Ceilometer as Events. The notification
payload, which can be an arbitrarily complex JSON data structure, is converted to a flat set of key-value
pairs known as Traits. This conversion is specified by a config file, so that only the specific fields within
the notification that are actually needed for processing the event will have to be stored as Traits.

Note that the Event format is meant for efficient processing and querying, there are other means available
for archiving notifications (i.e. for audit purposes, etc), possibly to different datastores.

Converting Notifications to Events

In order to make it easier to allow users to extract what they need, the conversion from Notifications
to Events is driven by a configuration file (specified by the flag definitions_cfg_file in ceilometer.
conf).

This includes descriptions of how to map fields in the notification body to Traits, and optional plugins
for doing any programmatic translations (splitting a string, forcing case, etc.)

The mapping of notifications to events is defined per event_type, which can be wildcarded. Traits are
added to events if the corresponding fields in the notification exist and are non-null. (As a special case,

48 Chapter 1. Overview

http://docs.openstack.org/trunk/config-reference/content/ch_configuring-openstack-telemetry.html

Ceilometer Documentation, Release 16.0.2.dev14

an empty string is considered null for non-text traits. This is due to some openstack projects (mostly
Nova) using empty string for null dates.)

If the definitions file is not present, a warning will be logged, but an empty set of definitions will be
assumed. By default, any notifications that do not have a corresponding event definition in the definitions
file will be converted to events with a set of minimal, default traits. This can be changed by setting the
flag drop_unmatched_notifications in the ceilometer.conf file. If this is set to True, then any
notifications that don’t have events defined for them in the file will be dropped. This can be what you
want, the notification system is quite chatty by design (notifications philosophy is "tell us everything,
we’ll ignore what we don’t need"), so you may want to ignore the noisier ones if you don’t use them.

There is a set of default traits (all are TEXT type) that will be added to all events if the notification has
the relevant data:

* service: (All notifications should have this) notification’s publisher
e tenant_id

* request_id

* project_id

e user_id

These do not have to be specified in the event definition, they are automatically added, but their defini-
tions can be overridden for a given event_type.

Definitions file format

The event definitions file is in YAML format. It consists of a list of event definitions, which are map-
pings. Order is significant, the list of definitions is scanned in reverse order (last definition in the file to
the first), to find a definition which matches the notification’s event_type. That definition will be used to
generate the Event. The reverse ordering is done because it is common to want to have a more general
wildcarded definition (such as compute.instance. x) with a set of traits common to all of those
events, with a few more specific event definitions (like compute.instance.exists) afterward
that have all of the above traits, plus a few more. This lets you put the general definition first, followed
by the specific ones, and use YAML mapping include syntax to avoid copying all of the trait definitions.

Event Definitions

Each event definition is a mapping with two keys (both required):

event_type This is a list (or a string, which will be taken as a 1 element list) of event_types this def-
inition will handle. These can be wildcarded with unix shell glob syntax. An exclusion listing
(starting with a ’!”) will exclude any types listed from matching. If ONLY exclusions are listed,
the definition will match anything not matching the exclusions.

traits This is a mapping, the keys are the trait names, and the values are trait definitions.

1.2. Contributor Guide 49

http://docs.openstack.org/trunk/config-reference/content/ch_configuring-openstack-telemetry.html

Ceilometer Documentation, Release 16.0.2.dev14

Trait Definitions

Each trait definition is a mapping with the following keys:

type (optional) The data type for this trait. (as a string). Valid options are: text, int, float, and datetime.
defaults to text if not specified.

fields A path specification for the field(s) in the notification you wish to extract for this trait. Specifica-
tions can be written to match multiple possible fields, the value for the trait will be derived from
the matching fields that exist and have a non-null values in the notification. By default the value
will be the first such field. (plugins can alter that, if they wish). This is normally a string, but, for
convenience, it can be specified as a list of specifications, which will match the fields for all of
them. (See Field Path Specifications for more info on this syntax.)

plugin (optional) This is a mapping (For convenience, this value can also be specified as a string, which
is interpreted as the name of a plugin to be loaded with no parameters) with the following keys:

name (string) name of a plugin to load

parameters (optional) Mapping of keyword arguments to pass to the plugin on initialization.
(See documentation on each plugin to see what arguments it accepts.)

Field Path Specifications

The path specifications define which fields in the JSON notification body are extracted to provide the
value for a given trait. The paths can be specified with a dot syntax (e.g. payload.host). Square
bracket syntax (e.g. payload[host])is also supported. In either case, if the key for the field you are
looking for contains special characters, like °.’, it will need to be quoted (with double or single quotes)
like so:

The syntax used for the field specification is a variant of JSONPath, and is fairly flexible. (see: https:
//github.com/kennknowles/python-jsonpath-rw for more info)

Example Definitions file

(continues on next page)

50 Chapter 1. Overview

https://github.com/kennknowles/python-jsonpath-rw
https://github.com/kennknowles/python-jsonpath-rw

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

type: int

type

type

type

type

Trait plugins

Trait plugins can be used to do simple programmatic conversions on the value in a notification field, like
splitting a string, lowercasing a value, converting a screwball date into ISO format, or the like. They are
initialized with the parameters from the trait definition, if any, which can customize their behavior for a
given trait. They are called with a list of all matching fields from the notification, so they can derive a
value from multiple fields. The plugin will be called even if there are no fields found matching the field
path(s), this lets a plugin set a default value, if needed. A plugin can also reject a value by returning
None, which will cause the trait not to be added. If the plugin returns anything other than None, the
trait’s value will be set to whatever the plugin returned (coerced to the appropriate type for the trait).

Building Notifications

In general, the payload format OpenStack services emit could be described as the Wild West. The
payloads are often arbitrary data dumps at the time of the event which is often susceptible to change.
To make consumption easier, the Ceilometer team offers: CADF, an open, cloud standard which helps
model cloud events.

1.2. Contributor Guide 51

https://docs.openstack.org/pycadf/latest/

Ceilometer Documentation, Release 16.0.2.dev14

1.2.3 Getting Started

Installing development sandbox

In a development environment created by devstack, Ceilometer can be tested alongside other OpenStack
services.

Configuring devstack

5.

. Download devstack.

Create a 1ocal. conf file as input to devstack.

The ceilometer services are not enabled by default, so they must be enabled in 1ocal.conf but
adding the following:

By default, all ceilometer services except for ceilometer-ipmi agent will be enabled

. Enable Gnocchi storage support by including the following in 1ocal.conf:

Optionally, services which extend Ceilometer can be enabled:

These plugins should be added before ceilometer.

./stack.sh

Running the Tests

Ceilometer includes an extensive set of automated unit tests which are run through tox.

1.

Install t ox:

S sudo pip install tox

. Run the unit and code-style tests:

$ cd /opt/stack/ceilometer
$ tox —-e py27,peps8

As tox is a wrapper around testr, it also accepts the same flags as testr. See the testr documentation for
details about these additional flags.

Use a double hyphen to pass options to testr. For example, to run only tests under tests/unit/image:

$ tox —-e py27 —-- image

52

Chapter 1. Overview

https://docs.openstack.org/devstack/latest/
https://docs.openstack.org/devstack/latest/
https://tox.readthedocs.io/en/latest/
https://testrepository.readthedocs.org/en/latest/MANUAL.html

Ceilometer Documentation, Release 16.0.2.dev14

To debug tests (ie. break into pdb debugger), you can use “debug” tox environment. Here’s an example,
passing the name of a test since you’ll normally only want to run the test that hits your breakpoint:

$ tox —e debug ceilometer.tests.unit.test_bin

For reference, the debug tox environment implements the instructions here: https://wiki.openstack.org/
wiki/Testr#Debugging_.28pdb.29_Tests

Guru Meditation Reports

Ceilometer contains a mechanism whereby developers and system administrators can generate a report
about the state of a running Ceilometer executable. This report is called a Guru Meditation Report (GMR
for short).

Generating a GMR

A GMR can be generated by sending the USRI signal to any Ceilometer process with support (see
below). The GMR will then be outputted standard error for that particular process.

For example, suppose that ceilometer—-polling has processid 8675, and was run with 2>/var/
log/ceilometer/ceilometer-polling.log. Then, ki1l -USR1 8675 will trigger the
Guru Meditation report to be printed to /var/log/ceilometer/ceilometer-polling.log.

Structure of a GMR

The GMR is designed to be extensible; any particular executable may add its own sections. However,
the base GMR consists of several sections:

Package Shows information about the package to which this process belongs, including version infor-
mation

Threads Shows stack traces and thread ids for each of the threads within this process

Green Threads Shows stack traces for each of the green threads within this process (green threads
don’t have thread ids)

Configuration Lists all the configuration options currently accessible via the CONF object for the cur-
rent process

Adding Support for GMRs to New Executables

Adding support for a GMR to a given executable is fairly easy.

First import the module (currently residing in oslo-incubator), as well as the Ceilometer version module:

oslo_reports
ceilometer

Then, register any additional sections (optional):

1.2. Contributor Guide 53

https://wiki.openstack.org/wiki/Testr#Debugging_.28pdb.29_Tests
https://wiki.openstack.org/wiki/Testr#Debugging_.28pdb.29_Tests

Ceilometer Documentation, Release 16.0.2.dev14

Finally (under main), before running the "main loop" of the executable (usually service.
server (server) or something similar), register the GMR hook:

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the inline documentation about oslo.reports: oslo.reports

1.2.4 Development
Writing Agent Plugins

This documentation gives you some clues on how to write a new agent or plugin for Ceilometer if you
wish to instrument a measurement which has not yet been covered by an existing plugin.

Plugin Framework

Although we have described a list of the meters Ceilometer should collect, we cannot predict all of the
ways deployers will want to measure the resources their customers use. This means that Ceilometer
needs to be easy to extend and configure so it can be tuned for each installation. A plugin system based
on setuptools entry points makes it easy to add new monitors in the agents. In particular, Ceilometer
now uses Stevedore, and you should put your entry point definitions in the entry_points.txt file
of your Ceilometer egg.

Installing a plugin automatically activates it the next time the ceilometer daemon starts. Rather than
running and reporting errors or simply consuming cycles for no-ops, plugins may disable themselves
at runtime based on configuration settings defined by other components (for example, the plugin for
polling libvirt does not run if it sees that the system is configured using some other virtualization tool).
Additionally, if no valid resources can be discovered the plugin will be disabled.

Polling Agents

The polling agent is implemented in ceilometer/polling/manager.py. As you will see in
the manager, the agent loads all plugins defined in the ceilometer.poll. and ceilometer.
builder.poll.* namespaces, then periodically calls their get _samples () method.

Currently we keep separate namespaces - ceilometer.poll.compute and ceilometer.
poll.central for quick separation of what to poll depending on where is polling agent run-
ning. For example, this will load, among others, the ceilometer.compute.pollsters.
instance_stats.CPUPollster

54 Chapter 1. Overview

https://docs.openstack.org/oslo.reports/latest/
http://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins
https://docs.openstack.org/stevedore/latest/

Ceilometer Documentation, Release 16.0.2.dev14

Pollster

All pollsters are subclasses of ceilometer.polling.plugin_base.PollsterBase
class. Pollsters must implement one method: get_samples(self, manager, cache,
resources), which returns a sequence of Sample objects as defined in the ceilometer/
sample.py file.

Compute plugins are defined as subclasses of the ceilometer.compute.pollsters.
GenericComputePollster class as defined in the ceilometer/compute/pollsters/
__init__ .py file.

For example, in the CPUPollster plugin, the get_samples method takes in a given list of re-
sources representing instances on the local host, loops through them and retrieves the cpu time details
from resource. Similarly, other metrics are built by pulling the appropriate value from the given list of
resources.

Notifications

Notifications in OpenStack are consumed by the notification agent and passed through pipelines to be
normalised and re-published to specified targets.

The existing normalisation pipelines are defined in the namespace ceilometer.notification.
pipeline.

Each normalisation pipeline are defined as subclass of ceilometer.pipeline.base.
PipelineManager which interprets and builds pipelines based on a given configuration file.
Pipelines are required to define Source and Sink permutations to describe how to process notification.
Additionally, it must set get_main_endpoints which provides endpoints to be added to the main
queue listener in the notification agent. This main queue endpoint inherits ceilometer.pipeline.
base.NotificationEndpoint and defines which notification priorities to listen, normalises the
data, and redirects the data for pipeline processing.

Notification endpoints should implement:
event_types A sequence of strings defining the event types the endpoint should handle

process_notifications (self, priority, notifications) Receives an event mes-
sage from the list provided to event_types and returns a sequence of objects. Using the
SampleEndpoint, it should yield Sample objects as defined in the ceilometer/sample.py
file.

Two pipeline configurations exist and can be found under ceilometer.pipeline. . The sample
pipeline loads in multiple endpoints defined in ceilometer.sample.endpoint namespace. Each
of the endpoints normalises a given notification into different samples.

1.2. Contributor Guide 55

Ceilometer Documentation, Release 16.0.2.dev14

Ceilometer + Gnocchi Integration

Warning: Remember that custom modification may result in conflicts with upstream upgrades. If
not intended to be merged with upstream, it’s advisable to directly create resource-types via Gnocchi
APL

Managing Resource Types

Resource types in Gnocchi are managed by Ceilometer. The following describes how to add/remove or
update Gnocchi resource types to support new Ceilometer data.

The modification or creation of Gnocchi resource type definitions are managed re-
sources_update_operations of ceilometer/gnocchi_client.py.

The following operations are supported:

1. Adding a new attribute to a resource type. The following adds flavor_name attribute to an existing
instance resource:

0 255

2. Remove an existing attribute from a resource type. The following removes server_group attribute
from instance resource:

3. Creating a new resource type. The following creates a new resource type named nova_compute
with a required attribute host_name:

255

Note: Do not modify the existing change steps when making changes. Each modification requires a

56 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

new step to be added and for ceilometer-upgrade to be run to apply the change to Gnocchi.

With accomplishing sections above, don’t forget to add a new resource type or attributes of a resource
type into the ceilometer/publisher/data/gnocchi_resources.yamnml.

1.3 Administrator Guide

1.3.1 Overview
System architecture

The Telemetry service uses an agent-based architecture. Several modules combine their responsibilities
to collect, normalize, and redirect data to be used for use cases such as metering, monitoring, and
alerting.

The Telemetry service is built from the following agents:

ceilometer-polling Polls for different kinds of meter data by using the polling plug-ins (pollsters) reg-
istered in different namespaces. It provides a single polling interface across different namespaces.

Note: The ceilometer-polling service provides polling support on any namespace but
many distributions continue to provide namespace-scoped agents: ceilometer—agent—-central,
ceilometer—agent—compute, and ceilometer—agent—ipmi.

ceilometer-agent-notification Consumes AMQP messages from other OpenStack services, normalizes
messages, and publishes them to configured targets.

Except for the ceilometer—-polling agents polling the compute or ipmi namespaces, all the
other services are placed on one or more controller nodes.

The Telemetry architecture depends on the AMQP service both for consuming notifications coming from
OpenStack services and internal communication.

Supported databases

The other key external component of Telemetry is the database, where events, samples, alarm definitions,
and alarms are stored. Each of the data models have their own storage service and each support various
back ends.

The list of supported base back ends for measurements:
* gnocchi
* Monasca
The list of supported base back ends for alarms:
* MySQL
* PostgreSQL

The list of supported base back ends for events:

1.3. Administrator Guide 57

https://gnocchi.osci.io/
https://docs.openstack.org/monasca-api/latest/
http://www.mysql.com/
http://www.postgresql.org/

Ceilometer Documentation, Release 16.0.2.dev14

e ElasticSearch
* MongoDB
* MySQL

PostgreSQL

Supported hypervisors

The Telemetry service collects information about the virtual machines, which requires close connection
to the hypervisor that runs on the compute hosts.

The following is a list of supported hypervisors.
* Libvirt supported hypervisors such as KVM and QEMU
* Hyper-V
* XEN

e VMware vSphere

Note: For details about hypervisor support in libvirt please see the Libvirt API support matrix.

Supported networking services

Telemetry is able to retrieve information from external networking services:
* SDN controller meters:
— OpenDaylight

— OpenContrail

1.3.2 Configuration

Data collection
The main responsibility of Telemetry in OpenStack is to collect information about the system that can
be used by billing systems or interpreted by analytic tooling.

Collected data can be stored in the form of samples or events in the supported databases, which are listed
in Supported databases.

The available data collection mechanisms are:

Notifications Processing notifications from other OpenStack services, by consuming messages from
the configured message queue system.

Polling Retrieve information directly from the hypervisor or from the host machine using SNMP, or by
using the APIs of other OpenStack services.

58 Chapter 1. Overview

https://www.elastic.co/
https://www.mongodb.org/
http://www.mysql.com/
http://www.postgresql.org/
http://libvirt.org/
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-on-windows-server
http://www.xenproject.org/help/documentation.html
https://www.vmware.com/support/vsphere-hypervisor.html
http://libvirt.org/hvsupport.html
https://www.opendaylight.org/
http://www.opencontrail.org/

Ceilometer Documentation, Release 16.0.2.dev14

Notifications

All OpenStack services send notifications about the executed operations or system state. Several noti-
fications carry information that can be metered. For example, CPU time of a VM instance created by
OpenStack Compute service.

The notification agent is responsible for consuming notifications. This component is responsible for
consuming from the message bus and transforming notifications into events and measurement samples.

By default, the notification agent is configured to build both events and samples. To enable selective
data models, set the required pipelines using pipelines option under the [notification] section.

Additionally, the notification agent is responsible to send to any supported publisher target such as
gnocchi or panko. These services persist the data in configured databases.

The different OpenStack services emit several notifications about the various types of events that happen
in the system during normal operation. Not all these notifications are consumed by the Telemetry service,
as the intention is only to capture the billable events and notifications that can be used for monitoring
or profiling purposes. The notifications handled are contained under the ceilometer.sample.endpoint
namespace.

Note: Some services require additional configuration to emit the notifications. Please see the Install
and Configure Controller Services for more details.

Meter definitions

The Telemetry service collects a subset of the meters by filtering notifications emitted by other Open-
Stack services. You can find the meter definitions in a separate configuration file, called ceilometer/
data/meters.d/meters.yaml. This enables operators/administrators to add new meters to
Telemetry project by updating the meters.yaml file without any need for additional code changes.

Note: The meters.yaml file should be modified with care. Unless intended, do not remove any
existing meter definitions from the file. Also, the collected meters can differ in some cases from what is
referenced in the documentation.

It also support loading multiple meter definition files and allow users to add their own meter definitions
into several files according to different types of metrics under the directory of /etc/ceilometer/
meters.d.

A standard meter definition looks like:

1.3. Administrator Guide 59

Ceilometer Documentation, Release 16.0.2.dev14

The definition above shows a simple meter definition with some fields, from which name,
event_type, type, unit, and volume are required. If there is a match on the event type, samples
are generated for the meter.

The meters.yaml file contains the sample definitions for all the meters that Telemetry is collecting
from notifications. The value of each field is specified by using JSON path in order to find the right value
from the notification message. In order to be able to specify the right field you need to be aware of the
format of the consumed notification. The values that need to be searched in the notification message are
set with a JSON path starting with $. For instance, if you need the size information from the payload
you can define it like $.payload.size.

A notification message may contain multiple meters. You can use in the meter definition to capture
all the meters and generate samples respectively. You can use wild cards as shown in the following
example:

In the above example, the name field is a JSON path with matching a list of meter names defined in the
notification message.

You can use complex operations on JSON paths. In the following example, volume and
resource_id fields perform an arithmetic and string concatenation:

You can use the t imedelta plug-in to evaluate the difference in seconds between two datetime
fields from one notification.

60 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Polling

The Telemetry service is intended to store a complex picture of the infrastructure. This goal requires
additional information than what is provided by the events and notifications published by each service.
Some information is not emitted directly, like resource usage of the VM instances.

Therefore Telemetry uses another method to gather this data by polling the infrastructure including
the APIs of the different OpenStack services and other assets, like hypervisors. The latter case requires
closer interaction with the compute hosts. To solve this issue, Telemetry uses an agent based architecture
to fulfill the requirements against the data collection.

Configuration

Polling rules are defined by the polling.yaml file. It defines the pollsters to enable and the interval they
should be polled.

Each source configuration encapsulates meter name matching which matches against the entry point of
pollster. It also includes: polling interval determination, optional resource enumeration or discovery.

All samples generated by polling are placed on the queue to be handled by the pipeline configuration
loaded in the notification agent.

The polling definition may look like the following:

The interval parameter in the sources section defines the cadence of sample generation in seconds.

Polling plugins are invoked according to each source’s section whose meters parameter matches the
plugin’s meter name. Its matching logic functions the same as pipeline filtering.

The optional resources section of a polling source allows a list of static resource URLs to be configured.
An amalgamated list of all statically defined resources are passed to individual pollsters for polling.

The optional discovery section of a polling source contains the list of discoverers. These discoverers can
be used to dynamically discover the resources to be polled by the pollsters.

If both resources and discovery are set, the final resources passed to the pollsters will be the combination
of the dynamic resources returned by the discoverers and the static resources defined in the resources
section.

1.3. Administrator Guide 61

Ceilometer Documentation, Release 16.0.2.devi4

Agents

There are three types of agents supporting the polling mechanism, the compute agent, the
central agent, and the TPMI agent. Under the hood, all the types of polling agents are the
same ceilometer-polling agent, except that they load different polling plug-ins (pollsters) from
different namespaces to gather data. The following subsections give further information regarding the
architectural and configuration details of these components.

Running ceilometer—-agent—-compute is exactly the same as:

ceilometer-polling —--polling-namespaces compute

Running ceilometer—-agent—-central is exactly the same as:

ceilometer-polling —--polling-namespaces central

Running ceilometer—-agent-ipmi is exactly the same as:

ceilometer-polling —--polling-namespaces ipmi

Compute agent

This agent is responsible for collecting resource usage data of VM instances on individual compute
nodes within an OpenStack deployment. This mechanism requires a closer interaction with the hyper-
visor, therefore a separate agent type fulfills the collection of the related meters, which is placed on the
host machines to retrieve this information locally.

A Compute agent instance has to be installed on each and every compute node, installation instructions
can be found in the Install and Configure Compute Services section in the Installation Tutorials and
Guides.

The list of supported hypervisors can be found in Supported hypervisors. The Compute agent uses the
API of the hypervisor installed on the compute hosts. Therefore, the supported meters may be different
in case of each virtualization back end, as each inspection tool provides a different set of meters.

The list of collected meters can be found in OpenStack Compute. The support column provides the
information about which meter is available for each hypervisor supported by the Telemetry service.

Central agent

This agent is responsible for polling public REST APIs to retrieve additional information on OpenStack
resources not already surfaced via notifications, and also for polling hardware resources over SNMP.

Some of the services polled with this agent are:
* OpenStack Networking
* OpenStack Object Storage
* OpenStack Block Storage

e Hardware resources via SNMP

62 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

To install and configure this service use the Install and configure for Red Hat Enterprise Linux and
CentOS section in the Installation Tutorials and Guides.

Although Ceilometer has a set of default polling agents, operators can add new pollsters dynamically
via the dynamic pollsters subsystem Introduction to dynamic pollster subsystem.

IPMI agent

This agent is responsible for collecting IPMI sensor data and Intel Node Manager data on individual
compute nodes within an OpenStack deployment. This agent requires an IPMI capable node with the
ipmitool utility installed, which is commonly used for IPMI control on various Linux distributions.

An IPMI agent instance could be installed on each and every compute node with IPMI support, except
when the node is managed by the Bare metal service and the conductor.send_sensor_data
option is set to true in the Bare metal service. It is no harm to install this agent on a compute node
without IPMI or Intel Node Manager support, as the agent checks for the hardware and if none is avail-
able, returns empty data. It is suggested that you install the IPMI agent only on an IPMI capable node
for performance reasons.

The list of collected meters can be found in /PMI meters.

Note: Do not deploy both the IPMI agent and the Bare metal service on one compute node. If
conductor.send_sensor_data is set, this misconfiguration causes duplicated IPMI sensor sam-
ples.

Data processing and pipelines

The mechanism by which data is processed is called a pipeline. Pipelines, at the configuration level,
describe a coupling between sources of data and the corresponding sinks for publication of data. This
functionality is handled by the notification agents.

A source is a producer of data: samples or events. In effect, it is a set of notification handlers
emitting datapoints for a set of matching meters and event types.

Each source configuration encapsulates name matching and mapping to one or more sinks for publica-
tion.

A sink, on the other hand, is a consumer of data, providing logic for the publication of data emitted from
related sources.

In effect, a sink describes a list of one or more publishers.

1.3. Administrator Guide 63

Ceilometer Documentation, Release 16.0.2.dev14

Pipeline configuration

The notification agent supports two pipelines: one that handles samples and another that handles events.
The pipelines can be enabled and disabled by setting pipelines option in the [notifications] section.

The actual configuration of each pipelines is, by default, stored in separate configuration files:
pipeline.yaml and event_pipeline.yaml. The location of the configuration files can be
set by the pipeline_cfg_file and event_pipeline_cfg_file options listed in Ceilometer
Configuration Options

The meter pipeline definition looks like:

There are several ways to define the list of meters for a pipeline source. The list of valid meters can
be found in Measurements. There is a possibility to define all the meters, or just included or excluded
meters, with which a source should operate:

* To include all meters, use the » wildcard symbol. It is highly advisable to select only the meters
that you intend on using to avoid flooding the metering database with unused data.

* To define the list of meters, use either of the following:
— To define the list of included meters, use the meter_name syntax.

— To define the list of excluded meters, use the ! meter_name syntax.

Note: The OpenStack Telemetry service does not have any duplication check between pipelines, and if
you add a meter to multiple pipelines then it is assumed the duplication is intentional and may be stored
multiple times according to the specified sinks.

The above definition methods can be used in the following combinations:
* Use only the wildcard symbol.
* Use the list of included meters.
*» Use the list of excluded meters.

* Use wildcard symbol with the list of excluded meters.

Note: At least one of the above variations should be included in the meters section. Included and
excluded meters cannot co-exist in the same pipeline. Wildcard and included meters cannot co-exist in
the same pipeline definition section.

64 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

The publishers section contains the list of publishers, where the samples data should be sent.

Similarly, the event pipeline definition looks like:

The event filter uses the same filtering logic as the meter pipeline.

Publishers

The Telemetry service provides several transport methods to transfer the data collected to an external
system. The consumers of this data are widely different, like monitoring systems, for which data loss is
acceptable and billing systems, which require reliable data transportation. Telemetry provides methods
to fulfill the requirements of both kind of systems.

The publisher component makes it possible to save the data into persistent storage through the message
bus or to send it to one or more external consumers. One chain can contain multiple publishers.

To solve this problem, the multi-publisher can be configured for each data point within the Telemetry ser-
vice, allowing the same technical meter or event to be published multiple times to multiple destinations,
each potentially using a different transport.

The following publisher types are supported:

gnocchi (default)

When the gnocchi publisher is enabled, measurement and resource information is pushed to gnocchi for
time-series optimized storage. Gnocchi must be registered in the Identity service as Ceilometer discovers
the exact path via the Identity service.

More details on how to enable and configure gnocchi can be found on its official documentation page.

prometheus

Metering data can be send to the pushgateway of Prometheus by using:
prometheus://pushgateway-host:9091/metrics/job/openstack-telemetry

With this publisher, timestamp are not sent to Prometheus due to Prometheus Pushgateway design. All
timestamps are set at the time it scrapes the metrics from the Pushgateway and not when the metric was
polled on the OpenStack services.

1.3. Administrator Guide 65

https://gnocchi.osci.io
https://github.com/prometheus/pushgateway

Ceilometer Documentation, Release 16.0.2.devi4

In order to get timeseries in Prometheus that looks like the reality (but with the lag added by the
Prometheus scrapping mechanism). The scrape_interval for the pushgateway must be lower and a mul-
tiple of the Ceilometer polling interval.

You can read more here

Due to this, this is not recommended to use this publisher for billing purpose as timestamps in
Prometheus will not be exact.

panko

Event data in Ceilometer can be stored in panko which provides an HTTP REST interface to query
system events in OpenStack. To push data to panko, set the publisher to panko://.

notifier

The notifier publisher can be specified in the form of notifier://?
optionl=valuel&option2=value2. It emits data over AMQP using oslo.messaging. Any
consumer can then subscribe to the published topic for additional processing.

The following customization options are available:

per_meter_topic The value of this parameter is 1. It is used for publishing the sam-
ples on additional metering_topic.sample_name topic queue besides the default
metering_topic queue.

policy Used for configuring the behavior for the case, when the publisher fails to send the samples,
where the possible predefined values are:

default Used for waiting and blocking until the samples have been sent.
drop Used for dropping the samples which are failed to be sent.

queue Used for creating an in-memory queue and retrying to send the samples on the
queue in the next samples publishing period (the queue length can be configured with
max_queue_length, where 1024 is the default value).

topic The topic name of the queue to publish to. Setting this will override the default topic defined by
metering_topic and event_topic options. This option can be used to support multiple
consumers.

monasca

The monasca publisher can be used to send measurements to the Monasca API, where it will be stored
with other metrics gathered by Monasca Agent. Data is accessible through the Monasca API and be
transformed like other Monasca metrics.

The pipeline sink is specified with a publishers: element of the form - monasca://https:/
/<your vip>/metrics/v2.0

Monasca API connection information is configured in the ceilometer.conf file in a [monasca] section:

66 Chapter 1. Overview

https://github.com/prometheus/pushgateway#about-timestamps

Ceilometer Documentation, Release 16.0.2.dev14

60

format

Note: The username specified should be for a Keystone user that has the monasca_agent or
monasca_user role enabled. For management purposes, this may be the ceilometer user if the appro-
priate role is granted.

For more detail and history of this publisher, see the Ceilosca Wiki and monasca-ceilometer README.

udp

This publisher can be specified in the form of udp: //<host>:<port>/. It emits metering data over
UDP.

file

The file publisher can be specified in the form of file://path?
optionl=valuel&option2=value?2. This publisher records metering data into a file.

Note: If a file name and location is not specified, the £i1e publisher does not log any meters, instead
it logs a warning message in the configured log file for Telemetry.

The following options are available for the £i1e publisher:

max_bytes When this option is greater than zero, it will cause a rollover. When the specified size is
about to be exceeded, the file is closed and a new file is silently opened for output. If its value is
zero, rollover never occurs.

backup_count If this value is non-zero, an extension will be appended to the filename of the old log,
as ’.1°,’.2’, and so forth until the specified value is reached. The file that is written and contains
the newest data is always the one that is specified without any extensions.

json If this option is present, will force ceilometer to write json format into the file.

1.3. Administrator Guide 67

https://wiki.openstack.org/wiki/Ceilosca
https://github.com/openstack/monasca-ceilometer

Ceilometer Documentation, Release 16.0.2.dev14

http

The Telemetry service supports sending samples to an external HTTP target. The samples are sent with-
out any modification. To set this option as the notification agents’ target, set http:// as a publisher
endpoint in the pipeline definition files. The HTTP target should be set along with the publisher decla-
ration. For example, additional configuration options can be passed in: http://localhost:80/7?
optionl=valuel&optionz=value2

The following options are available:
timeout The number of seconds before HTTP request times out.
max_retries The number of times to retry a request before failing.

batch If false, the publisher will send each sample and event individually, whether or not the notifica-
tion agent is configured to process in batches.

verify_ ssl If false, the ssl certificate verification is disabled.

The default publisher is gnocchi, without any additional options specified. A sample publishers
section in the /etc/ceilometer/pipeline.yaml looks like the following:

Telemetry best practices

The following are some suggested best practices to follow when deploying and configuring the Telemetry
service.

Data collection

1. The Telemetry service collects a continuously growing set of data. Not all the data will be relevant
for an administrator to monitor.

* Based on your needs, you can edit the polling.yaml and pipeline.yaml configura-
tion files to include select meters to generate or process

* By default, Telemetry service polls the service APIs every 10 minutes. You can change the
polling interval on a per meter basis by editing the polling.yaml configuration file.

Warning: If the polling interval is too short, it will likely increase the stress on the
service APIs.

2. If polling many resources or at a high frequency, you can add additional central and compute
agents as necessary. The agents are designed to scale horizontally. For more information refer to
the high availability guide.

68 Chapter 1. Overview

https://docs.openstack.org/ha-guide/

Ceilometer Documentation, Release 16.0.2.dev14

Note: The High Availability Guide is a work in progress and is changing rapidly while testing
continues.

Introduction to dynamic pollster subsystem

The dynamic pollster feature allows system administrators to create/update REST API pollsters
on the fly (without changing code). The system reads YAML configures that are found in
pollsters_definitions_dirs parameter, which has the default at /etc/ceilometer/
pollsters.d. Operators can use a single file per dynamic pollster or multiple dynamic pollsters
per file.

Current limitations of the dynamic polister system

Currently, the following types of APIs are not supported by the dynamic pollster system:

* Tenant APIs: Tenant APIs are the ones that need to be polled in a tenant fashion. This feature is
"a nice" to have, but is currently not implemented.

The dynamic polisters system configuration (for OpenStack APIs)

Each YAML file in the dynamic pollster feature can use the following attributes to define a dynamic
pollster:

Warning: Caution: Ceilometer does not accept complex value data structure for value and
metadata configurations. Therefore, if you are extracting a complex data structure (Object, list,
map, or others), you can take advantage of the Operations on extracted attributes
feature to transform the object into a simple value (string or number)

* name: mandatory field. It specifies the name/key of the dynamic pollster. For instance, a pollster
for magnum can use the name dynamic.magnum.cluster;

* sample_type: mandatory field; it defines the sample type. It must be one of the values: gauge,
delta, cumulative;

* unit: mandatory field; defines the unit of the metric that is being collected. For magnum, for
instance, one can use cluster as the unit or some other meaningful String value;

* value_attribute: mandatory attribute; defines the attribute in the JSON response from
the URL of the component being polled. We also accept nested values dictionaries. To use
a nested value one can simply use attributel.attribute?2.<asMuchAsNeeded>.
lastattribute. It is also possible to reference the sample itself using "." (dot); the
self reference of the sample is interesting in cases when the attribute might not exist. Therefore,
together with the operations options, one can first check if it exist before retrieving it (exam-
ple: ". | value['some_field'] if 'some_field' in value else ''"). In
our magnum example, we can use status as the value attribute;

1.3. Administrator Guide 69

Ceilometer Documentation, Release 16.0.2.dev14

* endpoint_type: mandatory field; defines the endpoint type that is used to discover the base
URL of the component to be monitored; for magnum, one can use container—infra. Other
values are accepted such as volume for cinder endpoints, object-store for swift, and so on;

* url_path: mandatory attribute. It defines the path of the request that we execute on the endpoint
to gather data. For example, to gather data from magnum, one canuse vl /clusters/detail;

* metadata_fields: optional field. It is a list of all fields that the response of the request
executed with url_path that we want to retrieve. To use a nested value one can simply use
attributel.attribute2.<asMuchAsNeeded>.lastattribute. As an example,
for magnum, one can use the following values:

metadata fields

* skip_sample_values: optional field. It defines the values that might come in the
value_attribute that we want to ignore. For magnun, one could for instance, ignore some
of the status it has for clusters. Therefore, data is not gathered for clusters in the defined status.

skip_sample_values

* value_mapping: optional attribute. It defines a mapping for the values that the dynamic
pollster is handling. This is the actual value that is sent to Gnocchi or other backends. If
there is no mapping specified, we will use the raw value that is obtained with the use of
value_attribute. An example for magnum, one can use:

value_mapping

CREATE_IN_PROGRESS
CREATE_FATILED
CREATE_COMPLETE
UPDATE_IN_PROGRESS
UPDATE_FAILED
UPDATE_COMPLETE
DELETE_IN_PROGRESS
DELETE_FAILED
DELETE_COMPLETE
RESUME_COMPLETE

(continues on next page)

70 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

* default_value: optional parameter. The default value for the value mapping in case the vari-
able value receives data that is not mapped to something in the value_mapping configuration.
This attribute is only used when value_mapping is defined. Moreover, it has a default of —1.

* metadata_mapping: optional parameter. The map used to create new metadata fields. The
key is a metadata name that exists in the response of the request we make, and the value of this
map is the new desired metadata field that will be created with the content of the metadata that we
are mapping. The metadata_mapping can be created as follows:

* preserve_mapped_metadata: optional parameter. It indicates if we preserve the old meta-
data name when it gets mapped to a new one. The default value is True.

* response_entries_key: optional parameter. This value is used to define the "key" of the
response that will be used to look-up the entries used in the dynamic pollster processing. If no
response_entries_key isinformed by the operator, we will use the first we find. Moreover,
if the response contains a list, instead of an object where one of its attributes is a list of entries, we
use the list directly. Therefore, this option will be ignored when the API is returning the list/array
of entries to be processed directly. We also accept nested values dictionaries. To use a nested value
one can simply use attributel.attribute2.<asMuchAsNeeded>.lastattribute

* user_id_attribute: optional parameter. The default value is user_id. The name of the
attribute in the entries that are processed from response_entries_key elements that will be
mapped to user__id attribute that is sent to Gnocchi.

* project_id_attribute: optional parameter. The default valueis project_id. The name
of the attribute in the entries that are processed from response_entries_key elements that
will be mapped to project_1id attribute that is sent to Gnocchi.

* resource_id_attribute: optional parameter. The default value is id. The name of the
attribute in the entries that are processed from response_entries_key elements that will be
mapped to id attribute that is sent to Gnocchi.

* headers: optional parameter. It is a map (similar to the metadata_mapping) of key and value
that can be used to customize the header of the request that is executed against the URL. This
configuration works for both OpenStack and non-OpenStack dynamic pollster configuration.

The complete YAML configuration to gather data from Magnum (that has been used as an example) is
the following:

1.3. Administrator Guide 71

Ceilometer Documentation, Release 16.0.2.dev14

name: "dynamic.magnum.cluster"
sample_type: "gauge"

unit: "cluster"

value_attribute: "status"
endpoint_type: "container—-infra"

url_path: "vl/clusters/detail"
metadata fields
"labels"
"updated_at"
"keypair"
"master_flavor_id"
"api_address"
"master_addresses"
"node_count"
"docker_volume_size"
"master_count"
"node__addresses"
"status_reason"
"coe_version"
"cluster_template_id"
"name"
"stack_1id"
"created_at"
"discovery_url"
"container_version"
value_mapping
CREATE_IN_ PROGRESS: "0O"
CREATE_FAILED: "1"
CREATE_COMPLETE: "2"
UPDATE_IN_PROGRESS "3n
UPDATE_FAILED: "4"
UPDATE_COMPLETE: "5"
DELETE_IN_ PROGRESS: "6"
DELETE_FAILED: "7/"
DELETE_COMPLETE "gn
RESUME_COMPLETE: "O9"
RESUME_FAILED: "10"
RESTORE_COMPLETE: "11"
ROLLBACK_IN_PROGRESS: "12"
ROLLBACK_FAILED: "13"
ROLLBACK_COMPLETE "i4n
SNAPSHOT_COMPLETE: "15"
CHECK_COMPLETE: "16"
ADOPT COMPLETE: "17"

We can also replicate and enhance some hardcoded pollsters. For instance, the pollster to gather VPN
connections. Currently, it is always persisting / for all of the VPN connections it finds. However, the
VPN connection can have multiple statuses, and we should normally only bill for active resources, and
not resources on ERROR states. An example to gather VPN connections data is the following (this is
just an example, and one can adapt and configure as he/she desires):

name: "dynamic.network.services.vpn.connection"

(continues on next page)

72 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

The dynamic polisters system configuration (for non-OpenStack APIs)

The dynamic pollster system can also be used for non-OpenStack APIs. to configure non-OpenStack
APIs, one can use all but one attribute of the Dynamic pollster system. The attribute that is not sup-
ported is the endpoint_type. The dynamic pollster system for non-OpenStack APIs is activated
automatically when one uses the configurations module.

The extra parameters (in addition to the original ones) that are available when using the Non-OpenStack
dynamic pollster sub-subsystem are the following:

* module: required parameter. It is the python module name that Ceilometer has to load to use the
authentication object when executing requests against the API. For instance, if one wants to create
a pollster to gather data from RadosGW, he/she can use the awsauth python module.

* authentication_object: mandatory parameter. The name of the class that we can find in
the module that Ceilometer will use as the authentication object in the request. For instance,
when using the awsauth python module to gather data from RadosGW, one can use the authen-
tication object as S3Auth.

* authentication_parameters: optional parameter. It is a comma separated
value that will be used to instantiate the authentication_object. For in-
stance, if we gather data from RadosGW, and we use the S3Auth class, the
authentication_parameters can be configured as <rados_gw_access_key>,
rados_gw_secret_key, rados_gw_host_name.

* barbican_secret_id: optional parameter. The Barbican secret ID, from which, Ceilometer
can retrieve the comma separated values of the authentication_parameters.

As follows we present an example on how to convert the hard-coded pollster for radosgw.api.request
metric to the dynamic pollster model:

(continues on next page)

1.3. Administrator Guide 73

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

url_path

module
authentication_object
authentication_parameters

user_id attribute

project_id_attribute
resource_id_attribute
response_entries_key

We can take that example a bit further, and instead of gathering the fotal .ops variable, which counts for
all the requests (even the unsuccessful ones), we can use the successful_ops.

name

sample_type

unit

value_attribute

url_path

module
authentication_object
authentication_parameters

user_id_attribute

project_id_attribute
resource_id attribute
response_entries_key

Operations on extracted attributes

The dynamic pollster system can execute Python operations to transform the attributes that are extracted
from the JSON response that the system handles.

One example of use case is the RadosGW that uses <project_id$project_id> as the username (which
is normally mapped to the Gnocchi resource_id). With this feature (operations on extracted attributes),
one can create configurations in the dynamic pollster to clean/normalize that variable. It is as simple as
defining resource_id_attribute: "user | value.split(’$’)[0].strip()"

The operations are separated by | symbol. The first element of the expression is the key to be retrieved
from the JSON object. The other elements are operations that can be applied to the value variable. The
value variable is the variable we use to hold the data being extracted. The previous example can be
rewritten as: resource_id_attribute: "user | value.split (’$’) | value[0] | value.strip()"

As follows we present a complete configuration for a RadosGW dynamic pollster that is removing the $
symbol, and getting the first part of the String.

name
sample_type
unit
value_attribute

(continues on next page)

74 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

url_path

module
authentication_object
authentication_parameters

user_id attribute

project_id_attribute
resource_id_attribute
response_entries_key

The Dynamic pollster configuration options that support this feature are the following:

value_attribute
response_entries_key
user_id_attribute
project_id_attribute

resource_id_attribute

Multi metric dynamic polisters (handling attribute values with list of objects)

The initial idea for this feature comes from the categories fields that we can find in the summary object
of the RadosGW API. Each user has a categories attribute in the response; in the categories list, we can
find the object that presents in a granular fashion the consumption of different RadosGW API operations
such as GET, PUT, POST, and may others.

As follows we present an example of such a JSON response.

"entries"

"buckets"

"bucket"
"categories"

"bytes_received": 0
"bytes_sent" 40
"category"

"ops": 2
"successful_ops": 2

"epoch": 1572969600
"owner"
"time"

"bucket"
"categories"

"bytes_received": 0

(continues on next page)

1.3. Administrator Guide 75

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

"bytes_sent": 0

"category": "get_obj"
llopsll l
"successful _ops": 0
"epoch": 1572969600
"owner": "someOtherUser"
"time": "2019-11-21 00:00:00.000000Z"
"summary"
"categories"
"bytes_received": 0
"bytes_sent": 0
"category": "create_bucket"
"opsll 2
"successful ops": 2
"bytes_received": 0
"bytes_sent": 2120428
"category": "get_obj"
"opsll 46
"successful_ops": 46
"bytes_received": 0
"bytes_sent": 21484
"category": "list_bucket"
"opsll 8
"successful_ops": 8
"bytes_received": 6889056
"bytes_sent": 0
"category": "put_obj"
Hopsll 46
"successful_ops": 46
"total"
"bytes_received": 6889056
"bytes_sent": 2141912
"ops": 102
"successful_ops": 102
"userll Huserll
"categories"

(continues on next page)

76

Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

"bytes_received": 0
"bytes_sent": 0
"category"

"ops": 1
"successful_ops" 1

"bytes_received": 0
"bytes_sent": 0
"category"

"ops": 23
"successful_ops": 23

"bytes_received": 0
"bytes_sent": 5371
"category"

"ops": 2
"successful _ops": 2

"bytes_received": 3444350
"bytes_sent": 0
"category"

"ops": 23
"successful_ops": 23

"total"
"bytes_received": 3444350
"bytes_sent": 5371
"ops": 49
"successful_ops": 49

"user"

In that context, and having in mind that we have APIs with similar data structures, we developed an
extension for the dynamic pollster that enables multi-metric processing for a single pollster. It works as
follows.

The pollster name will contain a placeholder for the variable that identifies the "submetric". E.g. dy-
namic.radosgw.api.request.{category}. The placeholder {category} indicates the object’s attribute that is
in the list of objects that we use to load the sub metric name. Then, we must use a special notation in the
value_attribute configuration to indicate that we are dealing with a list of objects. This is achieved via []
(brackets); for instance, in the dynamic.radosgw.api.request.{category}, we can use [categories].ops as
the value_attribute. This indicates that the value we retrieve is a list of objects, and when the dynamic
pollster processes it, we want it (the pollster) to load the ops value for the sub metrics being generated.

Examples on how to create multi-metric pollster to handle data from RadosGW API are presented as
follows:

(continues on next page)

1.3. Administrator Guide 77

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

name: "dynamic.radosgw.api.request.{category}"
sample_type: "gauge"

unit: "request"

value_attribute: "[categories].ops"

url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"
authentication_object: "S3Auth"

authentication_parameters "<access_key>, <secret_key>,<rados_gateway_
wserver>"

user_id_attribute: "user | value.split('S$'")[0]"

project_id_attribute: "user | value.split('S$') | wvalue[O0]"

resource_id attribute: "user | value.split('$') | value[O0]"

response_entries_key: "summary"

name: "dynamic.radosgw.api.request.successful_ops.{category}"
sample_type: "gauge"

unit: "request"

value_attribute: "[categories].successful_ops"

url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"

authentication object: "S3Auth"

authentication_parameters "<access_key>, <secret_key>,<rados_gateway_
—server>"

user_id_attribute: "user | value.split('S$'")[0]"

project_id_attribute: "user | value.split('$') | valuel[O0]"

resource_id_attribute: "user | value.split('$') | value[O0]"

response_entries_key: "summary"

name: "dynamic.radosgw.api.bytes_sent. {category}"
sample_type: "gauge"

unit: "request"

value_attribute: "[categories].bytes_sent"

url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"

module: "awsauth"

authentication_object: "S3Auth"

authentication_ parameters "<access_key>, <secret_key>,<rados_gateway_
—server>"

user_id_attribute: "user | value.split ('S$')[0]"

[0]
project_id_ attribute: "user | value.split('S$') | wvalue[O0]"
resource_id attribute: "user | value.split('S$'") | value[O0]"
response_entries_key: "summary"
name: "dynamic.radosgw.api.bytes_received. {category}"
sample_type: "gauge"
unit: "request"
value_attribute: "[categories].bytes_received"

url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"
authentication_object: "S3Auth"

authentication_parameters "<access_key>, <secret_key>,<rados_gateway_
—server>"

user_id_attribute: "user | value.split('S$'")[0]"

project_id_ attribute: "user | value.split('S$') | value[O0]"

resource_id attribute: "user | value.split('$'") | value[0]"

response_entries_key: "summary"

78 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Handling linked API responses

If the consumed API returns a linked response which contains a link to the next response set (page), the
Dynamic pollsters can be configured to follow these links and join all linked responses into a single one.

To enable this behavior the operator will need to configure the parameter next_sample_url_attribute that
must contain a mapper to the response attribute that contains the link to the next response page. This
parameter also supports operations like the others *_attribute dynamic pollster’s parameters.

Examples on how to create a pollster to handle linked API responses are presented as follows:
* Example of a simple linked response:

— API response:

— Pollster configuration:

(continues on next page)

1.3. Administrator Guide 79

Ceilometer Documentation, Release 16.0.2.dev14

(continued from previous page)

unit: "request"

value_attribute: "[volume].tmp"
url_path: "vl/test-volumes"

response_entries_key
next_sample_url_ attribute

"servers"
"server_link"

* Example of a complex linked response:

— API response:

"server_link"

"rel" Hnext "

"rel" "prev"

"servers"
"volume"
"name n HaH

Htmpll "yg"

n idll l
"namell Hal "
"volume"

Hname n n b n

"tmp" "yrp"

n idll 2
"namell Hbz "
"wvolume"

Hname n " c "

HtmpH "yenh

Hidlv 3
"name" "C3 n

"href": "http://test.com/vl/test-volumes/marker=c3"

"href": "http://test.com/vl/test-volumes/marker=pbl"

— Pollster configuration:

80

Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

{
[

!

1.3.3 Data Types
Measurements

The Telemetry service collects meters within an OpenStack deployment. This section provides a brief
summary about meters format and origin and also contains the list of available meters.

Telemetry collects meters by polling the infrastructure elements and also by consuming the notifications
emitted by other OpenStack services. For more information about the polling mechanism and notifica-
tions see Data collection. There are several meters which are collected by polling and by consuming.
The origin for each meter is listed in the tables below.

Note: You may need to configure Telemetry or other OpenStack services in order to be able to collect
all the samples you need. For further information about configuration requirements see the Telemetry
chapter in the Installation Tutorials and Guides.

Telemetry uses the following meter types:

Type Description

Cumulative | Increasing over time (instance hours)

Delta Changing over time (bandwidth)

Gauge Discrete items (floating IPs, image uploads) and fluctuating values (disk 1/O)

Telemetry provides the possibility to store metadata for samples. This metadata can be extended for
OpenStack Compute and OpenStack Object Storage.

In order to add additional metadata information to OpenStack Compute you have two options to choose
from. The first one is to specify them when you boot up a new instance. The additional information will
be stored with the sample in the form of resource_metadata.user_metadata.x. The new
field should be defined by using the prefix metering.. The modified boot command look like the
following:

openstack server create —--property metering.custom_metadata a_value my_vm

1.3. Administrator Guide 81

https://docs.openstack.org/ceilometer/latest/install/index.html
https://docs.openstack.org/ceilometer/latest/install/index.html

Ceilometer Documentation, Release 16.0.2.dev14

The other option is to set the reserved_metadata_keys to the list of metadata keys that you
would like to be included in resource_metadata of the instance related samples that are collected
for OpenStack Compute. This option is included in the DEFAULT section of the ceilometer.conf
configuration file.

You might also specify headers whose values will be stored along with the sample data of OpenStack
Object Storage. The additional information is also stored under resource_metadata. The format
of the new field is resource_metadata.http_header_S$name, where $Sname is the name of
the header with - replaced by _.

For specifying the new header, you need to set metadata_headers option under the
[filter:ceilometer] sectionin proxy—-server.conf under the swift folder. You can use
this additional data for instance to distinguish external and internal users.

Measurements are grouped by services which are polled by Telemetry or emit notifications that this
service consumes.

OpenStack Compute

The following meters are collected for OpenStack Compute.

Name | Type | Unit | Resource | Origin | Support

Meters added in the Mitaka release or earlier
memory Gauge MB instance ID | Notification | Libvirt, Hyper-V
memory.usage Gauge MB instance ID | Pollster Libvirt, Hyper-V, vSphe:
memory.resident Gauge MB instance ID | Pollster Libvirt
cpu Cumulative | ns instance ID | Pollster Libvirt, Hyper-V
vepus Gauge vepu instance ID | Notification | Libvirt, Hyper-V
disk.device.read.requests Cumulative | request disk ID Pollster Libvirt, Hyper-V
disk.device.write.requests Cumulative | request disk ID Pollster Libvirt, Hyper-V
disk.device.read.bytes Cumulative | B disk ID Pollster Libvirt, Hyper-V
disk.device.write.bytes Cumulative | B disk ID Pollster Libvirt, Hyper-V
disk.root.size Gauge GB instance ID | Notification | Libvirt, Hyper-V
disk.ephemeral.size Gauge GB instance ID | Notification | Libvirt, Hyper-V
disk.device.latency Gauge ms disk ID Pollster Hyper-V
disk.device.iops Gauge count/s disk ID Pollster Hyper-V
disk.device.capacity Gauge B disk ID Pollster Libvirt
disk.device.allocation Gauge B disk ID Pollster Libvirt
disk.device.usage Gauge B disk ID Pollster Libvirt
network.incoming.bytes Cumulative | B interface ID | Pollster Libvirt, Hyper-V
network.outgoing.bytes Cumulative | B interface ID | Pollster Libvirt, Hyper-V
network.incoming.packets Cumulative | packet interface ID | Pollster Libvirt, Hyper-V
network.outgoing.packets Cumulative | packet interface ID | Pollster Libvirt, Hyper-V

Meters added in the Newton release
cpu_l3_cache Gauge B instance ID | Pollster Libvirt
memory.bandwidth.total Gauge B/s instance ID | Pollster Libvirt
memory.bandwidth.local Gauge B/s instance ID | Pollster Libvirt
perf.cpu.cycles Gauge cycle instance ID | Pollster Libvirt
perf.instructions Gauge instruction | instance ID | Pollster Libvirt
perf.cache.references Gauge count instance ID | Pollster Libvirt

82

Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Table 1 — continued from previc

Name Type Unit Resource | Origin Support
perf.cache.misses Gauge count instance ID | Pollster Libvirt
Meters added in the Ocata release
network.incoming.packets.drop | Cumulative | packet interface ID | Pollster Libvirt
network.outgoing.packets.drop | Cumulative | packet interface ID | Pollster Libvirt
network.incoming.packets.error | Cumulative | packet interface ID | Pollster Libvirt
network.outgoing.packets.error | Cumulative | packet interface ID | Pollster Libvirt
Meters added in the Pike release
memory.swap.in Cumulative | MB instance ID | Pollster Libvirt
memory.swap.out Cumulative | MB instance ID | Pollster Libvirt
Meters added in the Queens release
disk.device.read.latency Cumulative | ns Disk ID Pollster Libvirt
disk.device.write.latency Cumulative | ns Disk ID Pollster Libvirt

Note: To enable the libvirt memory . usage support, you need to install libvirt version 1.1.1+, QEMU
version 1.5+, and you also need to prepare suitable balloon driver in the image. It is applicable partic-
ularly for Windows guests, most modern Linux distributions already have it built in. Telemetry is not
able to fetch the memory . usage samples without the image balloon driver.

Note: To enable libvirt disk . = support when running on RBD-backed shared storage, you need to
install libvirt version 1.2.16+.

OpenStack Compute is capable of collecting CPU related meters from the compute host machines. In
order to use that you need to set the compute_monitors option to cpu.virt_driver in the
nova.conf configuration file. For further information see the Compute configuration section in the
Compute chapter of the OpenStack Configuration Reference.

The following host machine related meters are collected for OpenStack Compute:

1.3. Administrator Guide 83

https://docs.openstack.org/nova/latest/configuration/config.html

Ceilometer Documentation, Release 16.0.2.dev14

Name Type Unit Re- Origin Note
source

Meters added in the Mitaka release or earlier
com- Gauge MHz host ID | Notifica- | CPU frequency
pute.node.cpu.frequency tion
com- Cumula- | ns host ID | Notifica- | CPU kernel time
pute.node.cpu.kernel.time tive tion
compute.node.cpu.idle.time | Cumula- | ns host ID | Notifica- | CPU idle time

tive tion
com- Cumula- | ns host ID | Notifica- | CPU user mode time
pute.node.cpu.user.time tive tion
com- Cumula- | ns host ID Notifica- | CPU I/O wait time
pute.node.cpu.iowait.time tive tion
com- Gauge % host ID | Notifica- | CPU kernel percentage
pute.node.cpu.kernel.percent tion
com- Gauge % host ID | Notifica- | CPU idle percentage
pute.node.cpu.idle.percent tion
com- Gauge % host ID | Notifica- | CPU user mode per-
pute.node.cpu.user.percent tion centage
com- Gauge % host ID | Notifica- | CPU I/O wait percent-
pute.node.cpu.iowait.percent tion age
compute.node.cpu.percent | Gauge % host ID | Notifica- | CPU utilization

tion

IPMI meters

Telemetry captures notifications that are emitted by the Bare metal service. The source of the notifica-

tions are IPMI sensors that collect data from the host machine.

Alternatively, IPMI meters can be generated by deploying the ceilometer-agent-ipmi on each IPMI-

capable node. For further information about the IPMI agent see /PMI agent.

Warning:

file.

To avoid duplication of metering data and unnecessary load on the IPMI interface,
do not deploy the IPMI agent on nodes that are managed by the Bare metal service and keep the
conductor.send_sensor_data option set to False in the ironic.conf configuration

The following IPMI sensor meters are recorded:

84

Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Name | Type [Unit | Resource | Origin | Note

Meters added in the Mitaka release or earlier

hardware.ipmi.fan Gauge | RPM | fan sensor Notification, Fan rounds per minute
Pollster (RPM)

hard- Gauge | C temperature Notification, Temperature reading

ware.ipmi.temperature sensor Pollster from sensor

hard- Gauge | W current sensor | Notification, Current reading from

ware.ipmi.current Pollster sensor

hard- Gauge | V voltage Notification, Voltage reading from

ware.ipmi.voltage sensor Pollster sensor

Note: The sensor data is not available in the Bare metal service by default. To enable the meters and
configure this module to emit notifications about the measured values see the Installation Guide for the

Bare metal service.

Besides generic IPMI sensor data, the following Intel Node Manager meters are recorded from capable

platform:

Name Type | Unit | Re- Ori- | Note

source | gin
Meters added in the Mitaka release or earlier
hard- Gauge W host Poll- | Current power of the system
ware.ipmi.node.power ID ster
hard- Gauge C host Poll- | Current temperature of the system
ware.ipmi.node.temperature ID ster
hard- Gauge C host Poll- | Inlet temperature of the system
ware.ipmi.node.inlet_temperature ID ster
hard- Gauge C host Poll- | Outlet temperature of the system
ware.ipmi.node.outlet_temperature ID ster
hard- Gauge| CFM | host Poll- | Volumetric airflow of the system, ex-
ware.ipmi.node.airflow ID ster | pressed as 1/10th of CFM
hard- Gaugel CUPS| host Poll- | CUPS(Compute Usage Per Second) in-
ware.ipmi.node.cups ID ster | dex data of the system
hard- Gauge % host Poll- | CPU CUPS utilization of the system
ware.ipmi.node.cpu_util ID ster
hard- Gauge % host Poll- | Memory CUPS utilization of the sys-
ware.ipmi.node.mem_util ID ster tem
hard- Gauge % host Poll- | IO CUPS utilization of the system
ware.ipmi.node.io_util ID ster

1.3. Administrator Guide

85

https://docs.openstack.org/ironic/latest/install/index.html

Ceilometer Documentation, Release 16.0.2.dev14

SNMP based meters

Telemetry supports gathering SNMP based generic host meters. In order to be able to collect this data

you need to run snmpd on each target host.

The following meters are available about the host machines by using SNMP:

Name | Type | Unit | Resource | Origin Note
Meters added in the Mitaka release or earlier
hardware.cpu.load.1min Gauge process host ID Pollster CPL
hardware.cpu.load.5min Gauge process host ID Pollster CPL
hardware.cpu.load.15min Gauge process host ID Pollster CPL
hardware.disk.size.total Gauge KB disk ID Pollster Tota
hardware.disk.size.used Gauge KB disk ID Pollster Usec
hardware.memory.total Gauge KB host ID Pollster Tota
hardware.memory.used Gauge KB host ID Pollster Usex
hardware.memory.buffer Gauge KB host ID Pollster Phy:
hardware.memory.cached Gauge KB host ID Pollster Cacl
hardware.memory.swap.total Gauge KB host ID Pollster Tota
hardware.memory.swap.avail Gauge KB host ID Pollster Avai
hardware.network.incoming.bytes Cumulative B interface ID Pollster Byte
hardware.network.outgoing.bytes Cumulative B interface ID Pollster Byte
hardware.network.outgoing.errors Cumulative packet interface ID Pollster Senc
hardware.network.ip.incoming.datagrams | Cumulative datagrams host ID Pollster Nun
hardware.network.ip.outgoing.datagrams | Cumulative datagrams host ID Pollster Nun
hardware.system_stats.io.incoming.blocks | Cumulative blocks host ID Pollster Agg
hardware.system_stats.io.outgoing.blocks | Cumulative blocks host ID Pollster Agg
Meters added in the Queens release
hardware.disk.read.bytes Gauge B disk ID Pollster Byte
hardware.disk.write.bytes Gauge B disk ID Pollster Byte
hardware.disk.read.requests Gauge requests disk ID Pollster Rea
hardware.disk.write.requests Gauge requests disk ID Pollster Writ
Meters added in the Stein release
hardware.cpu.user Gauge tick host ID Pollster CPL
hardware.cpu.system Gauge tick host ID Pollster CPL
hardware.cpu.nice Gauge tick host ID Pollster CPL
hardware.cpu.idle Gauge tick host ID Pollster CPL
hardware.cpu.wait Gauge tick host ID Pollster CPL
hardware.cpu.kernel Gauge tick host ID Pollster CPL
hardware.cpu.interrupt Gauge tick host ID Pollster CPL

86

Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

OpenStack Image service

The following meters are collected for OpenStack Image service:

Name Type Unit Re- Origin Note
source
Meters added in the Mitaka release or earlier
image.size Gauge | B image ID | Notification, Poll- | Size of the uploaded im-
ster age
im- Delta B image ID | Notification Image is downloaded
age.download
image.serve Delta B image ID | Notification Image is served out
OpenStack Block Storage
The following meters are collected for OpenStack Block Storage:

Name Type | Unit | Re- Origin | Note

source
Meters added in the Mitaka release or earlier
volume.size Gauge| GB volume Notifi- | Size of the volume

ID cation
snapshot.size Gauge| GB snapshot | Notifi- | Size of the snapshot

ID cation
Meters added in the Queens release
vol- Gauge| GB hostname | Notifi- | Total volume capacity on host
ume.provider.capacity.total cation
vol- Gauge| GB hostname | Notifi- | Free volume capacity on host
ume.provider.capacity.free cation
vol- Gauge| GB hostname | Notifi- | Assigned volume capacity on
ume.provider.capacity.allocated cation host by Cinder
vol- Gauge| GB hostname | Notifi- | Assigned volume capacity on
ume.provider.capacity.provisioned cation host
vol- Gauge| GB hostname | Notifi- | Virtual free volume capacity
ume.provider.capacity.virtual| free cation on host
vol- Gauge| GB host- Notifi- | Total volume capacity in pool
ume.provider.pool.capacity.total name#pool| cation
vol- Gauge| GB host- Notifi- | Free volume capacity in pool
ume.provider.pool.capacity.free name#pool| cation
vol- Gauge| GB host- Notifi- | Assigned volume capacity in
ume.provider.pool.capacity.allocated name#pool| cation pool by Cinder
vol- Gauge| GB host- Notifi- | Assigned volume capacity in
ume.provider.pool.capacity.provisioned name#pool| cation pool
vol- Gauge| GB host- Notifi- | Virtual free volume capacity
ume.provider.pool.capacity.virtual_free name#pool| cation in pool

1.3. Administrator Guide

87

Ceilometer Documentation, Release 16.0.2.dev14

OpenStack File Share

The following meters are collected for OpenStack File Share:

Name

| Type | Unit | Resource | Origin

\ Note

Meters added in the Pike release

manila.share.size ‘ Gauge ‘ GB

‘ share ID

‘ Notification ‘ Size of the file share

OpenStack Object Storage

The following meters are collected for OpenStack Object Storage:

Name | Type | Unit | Resource | Origin | Note

Meters added in the Mitaka release or earlier

storage.objects Gauge | object | storage ID Pollster | Number of objects
storage.objects.size Gauge | B storage ID Pollster | Total size of stored objects
stor- Gauge | con- storage ID Pollster | Number of containers
age.objects.containers tainer

stor- Delta | B storage ID Notifi- Number of incoming bytes
age.objects.incoming.bytes cation

stor- Delta | B storage ID Notifi- Number of outgoing bytes
age.objects.outgoing.bytes cation

stor- Gauge | object | storage Pollster | Number of objects in con-
age.containers.objects ID/container tainer

stor- Gauge | B storage Pollster | Total size of stored objects
age.containers.objects.size ID/container in container

Ceph Object Storage

In order to gather meters from Ceph, you have to install and configure the Ceph Object Gateway (ra-
dosgw) as it is described in the Installation Manual. You also have to enable usage logging in order to
get the related meters from Ceph. You will need an admin user with users, buckets, metadata

and usage caps configured.

In order to access Ceph from Telemetry, you need to specify a service group for radosgw in the
ceilometer.conf configuration file along with access_key and secret_key of the admin

user mentioned above.

The following meters are collected for Ceph Object Storage:

88

Chapter 1. Overview

http://docs.ceph.com/docs/master/radosgw/
http://docs.ceph.com/docs/master/man/8/radosgw/#usage-logging

Ceilometer Documentation, Release 16.0.2.dev14

Name Type | Unit | Resource | Ori- | Note
gin

Meters added in the Mitaka release or earlier
radosgw.objects Gaugg ob- storage ID Poll- | Number of objects

ject ster
ra- Gauge B storage ID Poll- | Total size of stored objects
dosgw.objects.size ster
ra- Gauge con- | storage ID Poll- | Number of containers
dosgw.objects.containers tainer ster
ra- Gaugg re- storage ID Poll- | Number of API requests against Ceph
dosgw.api.request quest ster | Object Gateway (radosgw)
ra- Gauge ob- storage Poll- | Number of objects in container
dosgw.containers.objects | ject ID/container | ster
ra- Gauge B storage Poll- | Total size of stored objects in container
dosgw.containers.objects.size ID/container | ster

Note: The usage related information may not be updated right after an upload or download, be-
cause the Ceph Object Gateway needs time to update the usage properties. For instance, the default

configuration needs approximately 30 minutes to generate the usage logs.

OpenStack Identity

The following meters are collected for OpenStack Identity:

Name Type Unit Re- Origin Note

source
Meters added in the Mitaka release or earlier
iden- Delta | user user ID Notifica- | User successfully authenti-
tity.authenticate.success tion cated
iden- Delta | user user ID Notifica- | User pending authentica-
tity.authenticate.pending tion tion
iden- Delta user user ID Notifica- User failed to authenticate
tity.authenticate.failure tion

OpenStack Networking

The following meters are collected for OpenStack Networking:

Name | Type

| Unit | Resource | Origin

\ Note

Meters added in the Mitaka release or earlier

bandwidth | Delta

| B | label ID

‘ Notification ‘ Bytes through this 13 metering label

1.3. Administrator

Guide

89

Ceilometer Documentation, Release 16.0.2.dev14

SDN controllers

The following meters are collected for SDN:

Name | Type | Unit | Resource Origin | Note
Meters added in the Mitaka release or earlier
switch Gauge switch switch ID Pollster Existence of
switch.port Gauge port switch ID Pollster Existence of
switch.port.receive.packets Cumulative packet switch ID Pollster Packets recei
switch.port.transmit.packets Cumulative packet switch ID Pollster Packets trans
switch.port.receive.bytes Cumulative B switch ID Pollster Bytes receive
switch.port.transmit.bytes Cumulative B switch ID Pollster Bytes transm
switch.port.receive.drops Cumulative packet switch ID Pollster Drops receiv
switch.port.transmit.drops Cumulative packet switch ID Pollster Drops transn
switch.port.receive.errors Cumulative packet switch ID Pollster Errors receiv
switch.port.transmit.errors Cumulative packet switch ID Pollster Errors transn
switch.port.receive.frame_error Cumulative packet switch ID Pollster Frame alignr
switch.port.receive.overrun_error | Cumulative packet switch ID Pollster Overrun erro
switch.port.receive.crc_error Cumulative packet switch ID Pollster CRC errors 1
switch.port.collision.count Cumulative count switch ID Pollster Collisions or
switch.table Gauge table switch ID Pollster Duration of t
switch.table.active.entries Gauge entry switch ID Pollster Active entrie
switch.table.lookup.packets Gauge packet switch ID Pollster Lookup pack
switch.table.matched.packets Gauge packet switch ID Pollster Packets matc
switch.flow Gauge flow switch ID Pollster Duration of f
switch.flow.duration.seconds Gauge S switch ID Pollster Duration of f
switch.flow.duration.nanoseconds | Gauge ns switch ID Pollster Duration of f
switch.flow.packets Cumulative packet switch ID Pollster Packets recei
switch.flow.bytes Cumulative B switch ID Pollster Bytes receive
Meters added in the Pike release

port Gauge port port ID Pollster Existence of
port.uptime Gauge S port ID Pollster Uptime of pc
port.receive.packets Cumulative packet port ID Pollster Packets trasn
port.transmit.packets Cumulative packet port ID Pollster Packets trans
port.receive.bytes Cumulative B port ID Pollster Bytes receive
port.transmit.bytes Cumulative B port ID Pollster Bytes transm
port.receive.drops Cumulative packet port ID Pollster Drops receiv
port.receive.errors Cumulative packet port ID Pollster Errors receiv
switch.ports Gauge ports switch ID Pollster Number of p
switch.port.uptime Gauge S switch ID Pollster Uptime of sv

These meters are available for OpenFlow based switches. In order to enable these meters, each driver

needs to be properly configured.

90

Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Load-Balancer-as-a-Service (LBaa$S v1)

The following meters are collected for LBaaS v1:

Name Type Unit Re- Ori- Note
source | gin
Meters added in the Mitaka release or earlier
network.services.lb.pool Gauge pool pool ID | Poll- | Existence of a LB pool
ster
network.services.lb.vip Gauge vip vip ID Poll- | Existence of a LB VIP
ster
network.services.lb.member | Gauge member member | Poll- | Existence of a LB
ID ster member
net- Gauge health_monitomonitor | Poll- | Existence of a LB
work.services.Ib.health_monitor ID ster health probe
net- Cumu- connection | pool ID | Poll- | Total connections on a
work.services.lb.total.connectiolative ster LB
net- Gauge connection | pool ID | Poll- | Active connections on
work.services.lb.active.connegtions ster alLB
net- Gauge B pool ID | Poll- | Number of incoming
work.services.lb.incoming.bytes ster Bytes
net- Gauge B pool ID | Poll- | Number of outgoing
work.services.lb.outgoing.bytes ster Bytes

Load-Balancer-as-a-Service (LBaaS v2)

The following meters are collected for LBaaS v2.

1.3. Administrator Guide

91

Ceilometer Documentation, Release 16.0.2.dev14

Name Type Unit Resource | Ori- | Note
gin
Meters added in the Mitaka release or earlier
network.services.lb.pool Gauge pool pool ID Poll- | Existence of a LB
ster pool
network.services.lb.listener | Gauge listener listener ID | Poll- | Existence of a LB lis-
ster tener
net- Gauge member member ID | Poll- | Existence of a LB
work.services.lb.member ster member
net- Gauge health_monitanonitor ID | Poll- | Existence of a LB
work.services.lb.health_monijtor ster health probe
net- Gauge loadbal- loadbal- Poll- | Existence of a LB
work.services.lb.loadbalancey ancer ancer ster loadbalancer
ID
net- Cumu- | connec- pool ID Poll- | Total connections on a
work.services.lb.total.connedtitatsve tion ster LB
net- Gauge connec- pool ID Poll- | Active connections on
work.services.lb.active.conngctions tion ster alLB
net- Gauge B pool ID Poll- | Number of incoming
work.services.lb.incoming.bytes ster Bytes
net- Gauge B pool ID Poll- | Number of outgoing
work.services.lb.outgoing.bytes ster Bytes

Note: The above meters are experimental and may generate a large load against the Neutron APIs. The
future enhancement will be implemented when Neutron supports the new APIs.

VPN-as-a-Service (VPNaaS)

The following meters are collected for VPNaaS:

Name Type | Unit Re- Ori- | Note
source gin
Meters added in the Mitaka release or earlier
network.services.vpn Gauge | vpnservice vpn ID Poll- | Existence of a VPN
ster
net- Gauge | ipsec_site_conne¢toom- Poll- | Existence of an IPSec
work.services.vpn.connections nection ster connection
ID

92 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

Firewall-as-a-Service (FWaa$S)

The following meters are collected for FWaaS:

Name Type | Unit Re- Origin | Note
source

Meters added in the Mitaka release or earlier

network.services.firewall Gauge | firewall firewall | Poll- Existence of a firewall
ID ster

net- Gauge | fire- firewall | Poll- Existence of a firewall

work.services.firewall.policy wall_policy | ID ster policy

Events

In addition to meters, the Telemetry service collects events triggered within an OpenStack environment.
This section provides a brief summary of the events format in the Telemetry service.

While a sample represents a single, numeric datapoint within a time-series, an event is a broader concept
that represents the state of a resource at a point in time. The state may be described using various data
types including non-numeric data such as an instance’s flavor. In general, events represent any action
made in the OpenStack system.

Event configuration

By default, ceilometer builds event data from the messages it receives from other OpenStack services.

Note: In releases older than Ocata, it is advisable to set disable_non_metric_meters to True
when enabling events in the Telemetry service. The Telemetry service historically represented events as
metering data, which may create duplication of data if both events and non-metric meters are enabled.

Event structure

Events captured by the Telemetry service are represented by five key attributes:

event_type A dotted string defining what event occurred such as "compute.instance.resize.
start".

message_id A UUID for the event.
generated A timestamp of when the event occurred in the system.

traits A flat mapping of key-value pairs which describe the event. The event’s traits contain most of the
details of the event. Traits are typed, and can be strings, integers, floats, or datetimes.

raw Mainly for auditing purpose, the full event message can be stored (unindexed) for future evaluation.

1.3. Administrator Guide 93

Ceilometer Documentation, Release 16.0.2.dev14

Event indexing

The general philosophy of notifications in OpenStack is to emit any and all data someone might need,
and let the consumer filter out what they are not interested in. In order to make processing simpler and
more efficient, the notifications are stored and processed within Ceilometer as events. The notification
payload, which can be an arbitrarily complex JSON data structure, is converted to a flat set of key-value
pairs. This conversion is specified by a config file.

Note: The event format is meant for efficient processing and querying. Storage of complete notifications
for auditing purposes can be enabled by configuring st ore_raw option.

Event conversion

The conversion from notifications to events is driven by a configuration file defined by the
definitions_cfg_fileinthe ceilometer.conf configuration file.

This includes descriptions of how to map fields in the notification body to Traits, and optional plug-ins
for doing any programmatic translations (splitting a string, forcing case).

The mapping of notifications to events is defined per event_type, which can be wildcarded. Traits are
added to events if the corresponding fields in the notification exist and are non-null.

Note: The default definition file included with the Telemetry service contains a list of known notifica-
tions and useful traits. The mappings provided can be modified to include more or less data according
to user requirements.

If the definitions file is not present, a warning will be logged, but an empty set of definitions will be
assumed. By default, any notifications that do not have a corresponding event definition in the definitions
file will be converted to events with a set of minimal traits. This can be changed by setting the option
drop_unmatched_notifications inthe ceilometer.conf file. If this is set to True, any
unmapped notifications will be dropped.

The basic set of traits (all are TEXT type) that will be added to all events if the notification has the
relevant data are: service (notification’s publisher), tenant_id, and request_id. These do not have to be
specified in the event definition, they are automatically added, but their definitions can be overridden for
a given event_type.

Event definitions format

The event definitions file is in YAML format. It consists of a list of event definitions, which are map-
pings. Order is significant, the list of definitions is scanned in reverse order to find a definition which
matches the notification’s event_type. That definition will be used to generate the event. The reverse
ordering is done because it is common to want to have a more general wildcarded definition (such as
compute.instance.) with a set of traits common to all of those events, with a few more specific
event definitions afterwards that have all of the above traits, plus a few more.

Each event definition is a mapping with two keys:

94 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

event_type This is a list (or a string, which will be taken as a 1 element list) of event_types this def-
inition will handle. These can be wildcarded with unix shell glob syntax. An exclusion listing
(starting with a !) will exclude any types listed from matching. If only exclusions are listed, the
definition will match anything not matching the exclusions.

traits This is a mapping, the keys are the trait names, and the values are trait definitions.
Each trait definition is a mapping with the following keys:

fields A path specification for the field(s) in the notification you wish to extract for this trait. Specifica-
tions can be written to match multiple possible fields. By default the value will be the first such
field. The paths can be specified with a dot syntax (payload.host). Square bracket syntax
(payload[host]) is also supported. In either case, if the key for the field you are looking
for contains special characters, like ., it will need to be quoted (with double or single quotes):
payload.image_meta. org.openstack__1__architecture’. The syntax used for
the field specification is a variant of JSONPath

type (Optional) The data type for this trait. Valid options are: text, int, float, and datetime.
Defaults to text if not specified.

plugin (Optional) Used to execute simple programmatic conversions on the value in a notification field.

Event delivery to external sinks

You can configure the Telemetry service to deliver the events into external sinks. These sinks are con-
figurable in the /etc/ceilometer/event_pipeline.yamnl file.

1.3.4 Management
Troubleshoot Telemetry

Logging in Telemetry

The Telemetry service has similar log settings as the other OpenStack services. Multiple options are
available to change the target of logging, the format of the log entries and the log levels.

The log settings can be changed in ceilometer.conf. The list of configuration options are listed in
the logging configuration options table in the Telemetry section in the OpenStack Configuration Refer-
ence.

By default stderr is used as standard output for the log messages. It can be changed to either a log
file or syslog. The debug and verbose options are also set to false in the default settings, the default
log levels of the corresponding modules can be found in the table referred above.

1.3. Administrator Guide 95

https://github.com/kennknowles/python-jsonpath-rw
https://docs.openstack.org/ceilometer/latest/configuration/index.html

Ceilometer Documentation, Release 16.0.2.dev14

1.4 Ceilometer Configuration Options

1.4.1 Ceilometer Sample Configuration File

Configure Ceilometer by editing /etc/ceilometer/ceilometer.conf.

No config file is provided with the source code, it will be created during the installation. In case where
no configuration file was installed, one can be easily created by running:

\

1.5 Ceilometer CLI Documentation

In this section you will find information on Ceilometers command line interface.
1.5.1 ceilometer-status

CLI interface for Ceilometer status commands

Synopsis

Description

ceilometer-status is a tool that provides routines for checking the status of a Ceilometer deploy-
ment.

Options

The standard pattern for executing a ceilometer—-status command is:

Run without arguments to see a list of available command categories:

Categories are:
* upgrade
Detailed descriptions are below:

You can also run with a category argument such as upgrade to see a list of all commands in that
category:

96 Chapter 1. Overview

Ceilometer Documentation, Release 16.0.2.dev14

These sections describe the available categories and arguments for ceilometer-status.

Upgrade

ceilometer—status upgrade check Performs a release-specific readiness check before
restarting services with new code. For example, missing or changed configuration options, in-
compatible object states, or other conditions that could lead to failures while upgrading.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to
do.
1 At least one check encountered an issue and requires further investigation.
This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated.
This should be considered something that stops an upgrade.
255 An unexpected error occurred.
History of Checks
12.0.0 (Stein)

» Sample check to be filled in with checks as they are added in Stein.

1.5. Ceilometer CLI Documentation 97

Ceilometer Documentation, Release 16.0.2.dev14

98 Chapter 1. Overview

CHAPTER
TWO

APPENDIX

2.1 Release Notes

2.1.1 Folsom
This is the first release (Version 0.1) of Ceilometer. Please take all appropriate caution in using it, as it
is a technology preview at this time.

Version of OpenStack It is currently tested to work with OpenStack 2012.2 Folsom. Due to its use
of openstack-common, and the modification that were made in term of notification to many other
components (glance, cinder, quantum), it will not easily work with any prior version of OpenStack.

Components Currently covered components are: Nova, Nova-network, Glance, Cinder and Quantum.
Notably, there is no support yet for Swift and it was decided not to support nova-volume in favor
of Cinder. A detailed list of meters covered per component can be found at in Measurements.

Nova with libvirt only Most of the Nova meters will only work with libvirt fronted hypervisors at the
moment, and our test coverage was mostly done on KVM. Contributors are welcome to implement
other virtualization backends’ meters.

Quantum delete events Quantum delete notifications do not include the same metadata as the other
messages, so we ignore them for now. This isn’t ideal, since it may mean we miss charging for
some amount of time, but it is better than throwing away the existing metadata for a resource when
it is deleted.

Database backend The only tested and complete database backend is currently MongoDB, the
SQLAIchemy one is still work in progress.

Installation The current best source of information on how to deploy this project is found as the devs-
tack implementation but feel free to come to #openstack-metering on freenode for more info.

Volume of data Please note that metering can generate lots of data very quickly. Have a look at the
following spreadsheet to evaluate what you will end up with.

https://wiki.openstack.org/wiki/EfficientMetering#Volume_of_data
* Folsom
* Havana
* Icehouse
* Juno

e Kilo

99

https://wiki.openstack.org/wiki/EfficientMetering#Volume_of_data
https://wiki.openstack.org/wiki/ReleaseNotes/Havana#OpenStack_Metering_.28Ceilometer.29
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse#OpenStack_Telemetry_.28Ceilometer.29
https://wiki.openstack.org/wiki/ReleaseNotes/Juno#OpenStack_Telemetry_.28Ceilometer.29
https://wiki.openstack.org/wiki/ReleaseNotes/Kilo#OpenStack_Telemetry_.28Ceilometer.29

Ceilometer Documentation, Release 16.0.2.dev14

* Liberty

Since Mitaka development cycle, we start to host release notes on Ceilometer Release Notes

2.2 Glossary

agent Software service running on the OpenStack infrastructure measuring usage and sending the re-
sults to any number of target using the publisher.

billing Billing is the process to assemble bill line items into a single per customer bill, emitting the bill
to start the payment collection.

bus listener agent Bus listener agent which takes events generated on the Oslo notification bus and
transforms them into Ceilometer samples. This is the preferred method of data collection.

polling agent Software service running either on a central management node within the OpenStack
infrastructure or compute node measuring usage and sending the results to a queue.

notification agent The different OpenStack services emit several notifications about the various types
of events. The notification agent consumes them from respective queues and filters them by the
event_type.

data store Storage system for recording data collected by ceilometer.

meter The measurements tracked for a resource. For example, an instance has a number of meters, such
as duration of instance, CPU time used, number of disk io requests, etc. Three types of meters are
defined in ceilometer:

e Cumulative: Increasing over time (e.g. disk I/O)

* Gauge: Discrete items (e.g. floating IPs, image uploads) and fluctuating values (e.g. number
of Swift objects)

* Delta: Incremental change to a counter over time (e.g. bandwidth delta)

metering Metering is the process of collecting information about what, who, when and how much
regarding anything that can be billed. The result of this is a collection of "tickets" (a.k.a. samples)
which are ready to be processed in any way you want.

notification A message sent via an external OpenStack system (e.g Nova, Glance, etc) using the Oslo
notification mechanism'. These notifications are usually sent to and received by Ceilometer
through the notifier RPC driver.

non-repudiable "Non-repudiation refers to a state of affairs where the purported maker of a statement
will not be able to successfully challenge the validity of the statement or contract. The term is
often seen in a legal setting wherein the authenticity of a signature is being challenged. In such an
instance, the authenticity is being "repudiated”." (Wikipedia,”)

project The OpenStack tenant or project.

polling agents The polling agent is collecting measurements by polling some API or other tool at a
regular interval.

publisher The publisher is publishing samples to a specific target.

! http://en.wikipedia.org/wiki/Ceilometer
2 https://opendev.org/openstack/oslo.messaging/src/branch/master/oslo_messaging/notify/notifier.py

100 Chapter 2. Appendix

https://wiki.openstack.org/wiki/ReleaseNotes/Liberty#OpenStack_Telemetry_.28Ceilometer.29
https://docs.openstack.org/releasenotes/ceilometer/
http://en.wikipedia.org/wiki/Ceilometer
https://opendev.org/openstack/oslo.messaging/src/branch/master/oslo_messaging/notify/notifier.py

Ceilometer Documentation, Release 16.0.2.dev14

push agents The push agent is the only solution to fetch data within projects, which do not expose the
required data in a remotely usable way. This is not the preferred method as it makes deployment
a bit more complex having to add a component to each of the nodes that need to be monitored.

rating Rating is the process of analysing a series of tickets, according to business rules defined by
marketing, in order to transform them into bill line items with a currency value.

resource The OpenStack entity being metered (e.g. instance, volume, image, etc).
sample Data sample for a particular meter.

source The origin of metering data. This field is set to "openstack” by default. It can be configured to a
different value using the sample_source field in the ceilometer.conf file.

user An OpenStack user.

2.2. Glossary 101

	Overview
	Installation Guide
	Telemetry Data Collection service overview
	Install and Configure Controller Services
	Ceilometer
	Cinder
	Glance
	Heat
	Keystone
	Neutron
	Swift

	Install and Configure Compute Services
	Enable Compute service meters for openSUSE and SUSE Linux Enterprise
	Enable Compute service meters for Red Hat Enterprise Linux and CentOS
	Enable Compute service meters for Ubuntu

	Verify operation
	Next steps
	Ocata
	Newton

	Contributor Guide
	Overview
	Overview
	System Architecture

	Data Types
	Measurements
	Events and Event Processing

	Getting Started
	Installing development sandbox
	Running the Tests
	Guru Meditation Reports

	Development
	Writing Agent Plugins
	Ceilometer + Gnocchi Integration

	Administrator Guide
	Overview
	System architecture

	Configuration
	Data collection
	Data processing and pipelines
	Telemetry best practices
	Introduction to dynamic pollster subsystem

	Data Types
	Measurements
	Events

	Management
	Troubleshoot Telemetry

	Ceilometer Configuration Options
	Ceilometer Sample Configuration File

	Ceilometer CLI Documentation
	ceilometer-status
	CLI interface for Ceilometer status commands

	Appendix
	Release Notes
	Folsom

	Glossary

